]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - kernel/irq/manage.c
Merge branch 'libnvdimm-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/nvdim...
[mirror_ubuntu-artful-kernel.git] / kernel / irq / manage.c
1 /*
2 * linux/kernel/irq/manage.c
3 *
4 * Copyright (C) 1992, 1998-2006 Linus Torvalds, Ingo Molnar
5 * Copyright (C) 2005-2006 Thomas Gleixner
6 *
7 * This file contains driver APIs to the irq subsystem.
8 */
9
10 #define pr_fmt(fmt) "genirq: " fmt
11
12 #include <linux/irq.h>
13 #include <linux/kthread.h>
14 #include <linux/module.h>
15 #include <linux/random.h>
16 #include <linux/interrupt.h>
17 #include <linux/slab.h>
18 #include <linux/sched.h>
19 #include <linux/sched/rt.h>
20 #include <linux/sched/task.h>
21 #include <uapi/linux/sched/types.h>
22 #include <linux/task_work.h>
23
24 #include "internals.h"
25
26 #ifdef CONFIG_IRQ_FORCED_THREADING
27 __read_mostly bool force_irqthreads;
28
29 static int __init setup_forced_irqthreads(char *arg)
30 {
31 force_irqthreads = true;
32 return 0;
33 }
34 early_param("threadirqs", setup_forced_irqthreads);
35 #endif
36
37 static void __synchronize_hardirq(struct irq_desc *desc)
38 {
39 bool inprogress;
40
41 do {
42 unsigned long flags;
43
44 /*
45 * Wait until we're out of the critical section. This might
46 * give the wrong answer due to the lack of memory barriers.
47 */
48 while (irqd_irq_inprogress(&desc->irq_data))
49 cpu_relax();
50
51 /* Ok, that indicated we're done: double-check carefully. */
52 raw_spin_lock_irqsave(&desc->lock, flags);
53 inprogress = irqd_irq_inprogress(&desc->irq_data);
54 raw_spin_unlock_irqrestore(&desc->lock, flags);
55
56 /* Oops, that failed? */
57 } while (inprogress);
58 }
59
60 /**
61 * synchronize_hardirq - wait for pending hard IRQ handlers (on other CPUs)
62 * @irq: interrupt number to wait for
63 *
64 * This function waits for any pending hard IRQ handlers for this
65 * interrupt to complete before returning. If you use this
66 * function while holding a resource the IRQ handler may need you
67 * will deadlock. It does not take associated threaded handlers
68 * into account.
69 *
70 * Do not use this for shutdown scenarios where you must be sure
71 * that all parts (hardirq and threaded handler) have completed.
72 *
73 * Returns: false if a threaded handler is active.
74 *
75 * This function may be called - with care - from IRQ context.
76 */
77 bool synchronize_hardirq(unsigned int irq)
78 {
79 struct irq_desc *desc = irq_to_desc(irq);
80
81 if (desc) {
82 __synchronize_hardirq(desc);
83 return !atomic_read(&desc->threads_active);
84 }
85
86 return true;
87 }
88 EXPORT_SYMBOL(synchronize_hardirq);
89
90 /**
91 * synchronize_irq - wait for pending IRQ handlers (on other CPUs)
92 * @irq: interrupt number to wait for
93 *
94 * This function waits for any pending IRQ handlers for this interrupt
95 * to complete before returning. If you use this function while
96 * holding a resource the IRQ handler may need you will deadlock.
97 *
98 * This function may be called - with care - from IRQ context.
99 */
100 void synchronize_irq(unsigned int irq)
101 {
102 struct irq_desc *desc = irq_to_desc(irq);
103
104 if (desc) {
105 __synchronize_hardirq(desc);
106 /*
107 * We made sure that no hardirq handler is
108 * running. Now verify that no threaded handlers are
109 * active.
110 */
111 wait_event(desc->wait_for_threads,
112 !atomic_read(&desc->threads_active));
113 }
114 }
115 EXPORT_SYMBOL(synchronize_irq);
116
117 #ifdef CONFIG_SMP
118 cpumask_var_t irq_default_affinity;
119
120 static bool __irq_can_set_affinity(struct irq_desc *desc)
121 {
122 if (!desc || !irqd_can_balance(&desc->irq_data) ||
123 !desc->irq_data.chip || !desc->irq_data.chip->irq_set_affinity)
124 return false;
125 return true;
126 }
127
128 /**
129 * irq_can_set_affinity - Check if the affinity of a given irq can be set
130 * @irq: Interrupt to check
131 *
132 */
133 int irq_can_set_affinity(unsigned int irq)
134 {
135 return __irq_can_set_affinity(irq_to_desc(irq));
136 }
137
138 /**
139 * irq_can_set_affinity_usr - Check if affinity of a irq can be set from user space
140 * @irq: Interrupt to check
141 *
142 * Like irq_can_set_affinity() above, but additionally checks for the
143 * AFFINITY_MANAGED flag.
144 */
145 bool irq_can_set_affinity_usr(unsigned int irq)
146 {
147 struct irq_desc *desc = irq_to_desc(irq);
148
149 return __irq_can_set_affinity(desc) &&
150 !irqd_affinity_is_managed(&desc->irq_data);
151 }
152
153 /**
154 * irq_set_thread_affinity - Notify irq threads to adjust affinity
155 * @desc: irq descriptor which has affitnity changed
156 *
157 * We just set IRQTF_AFFINITY and delegate the affinity setting
158 * to the interrupt thread itself. We can not call
159 * set_cpus_allowed_ptr() here as we hold desc->lock and this
160 * code can be called from hard interrupt context.
161 */
162 void irq_set_thread_affinity(struct irq_desc *desc)
163 {
164 struct irqaction *action;
165
166 for_each_action_of_desc(desc, action)
167 if (action->thread)
168 set_bit(IRQTF_AFFINITY, &action->thread_flags);
169 }
170
171 #ifdef CONFIG_GENERIC_PENDING_IRQ
172 static inline bool irq_can_move_pcntxt(struct irq_data *data)
173 {
174 return irqd_can_move_in_process_context(data);
175 }
176 static inline bool irq_move_pending(struct irq_data *data)
177 {
178 return irqd_is_setaffinity_pending(data);
179 }
180 static inline void
181 irq_copy_pending(struct irq_desc *desc, const struct cpumask *mask)
182 {
183 cpumask_copy(desc->pending_mask, mask);
184 }
185 static inline void
186 irq_get_pending(struct cpumask *mask, struct irq_desc *desc)
187 {
188 cpumask_copy(mask, desc->pending_mask);
189 }
190 #else
191 static inline bool irq_can_move_pcntxt(struct irq_data *data) { return true; }
192 static inline bool irq_move_pending(struct irq_data *data) { return false; }
193 static inline void
194 irq_copy_pending(struct irq_desc *desc, const struct cpumask *mask) { }
195 static inline void
196 irq_get_pending(struct cpumask *mask, struct irq_desc *desc) { }
197 #endif
198
199 int irq_do_set_affinity(struct irq_data *data, const struct cpumask *mask,
200 bool force)
201 {
202 struct irq_desc *desc = irq_data_to_desc(data);
203 struct irq_chip *chip = irq_data_get_irq_chip(data);
204 int ret;
205
206 ret = chip->irq_set_affinity(data, mask, force);
207 switch (ret) {
208 case IRQ_SET_MASK_OK:
209 case IRQ_SET_MASK_OK_DONE:
210 cpumask_copy(desc->irq_common_data.affinity, mask);
211 case IRQ_SET_MASK_OK_NOCOPY:
212 irq_set_thread_affinity(desc);
213 ret = 0;
214 }
215
216 return ret;
217 }
218
219 int irq_set_affinity_locked(struct irq_data *data, const struct cpumask *mask,
220 bool force)
221 {
222 struct irq_chip *chip = irq_data_get_irq_chip(data);
223 struct irq_desc *desc = irq_data_to_desc(data);
224 int ret = 0;
225
226 if (!chip || !chip->irq_set_affinity)
227 return -EINVAL;
228
229 if (irq_can_move_pcntxt(data)) {
230 ret = irq_do_set_affinity(data, mask, force);
231 } else {
232 irqd_set_move_pending(data);
233 irq_copy_pending(desc, mask);
234 }
235
236 if (desc->affinity_notify) {
237 kref_get(&desc->affinity_notify->kref);
238 schedule_work(&desc->affinity_notify->work);
239 }
240 irqd_set(data, IRQD_AFFINITY_SET);
241
242 return ret;
243 }
244
245 int __irq_set_affinity(unsigned int irq, const struct cpumask *mask, bool force)
246 {
247 struct irq_desc *desc = irq_to_desc(irq);
248 unsigned long flags;
249 int ret;
250
251 if (!desc)
252 return -EINVAL;
253
254 raw_spin_lock_irqsave(&desc->lock, flags);
255 ret = irq_set_affinity_locked(irq_desc_get_irq_data(desc), mask, force);
256 raw_spin_unlock_irqrestore(&desc->lock, flags);
257 return ret;
258 }
259
260 int irq_set_affinity_hint(unsigned int irq, const struct cpumask *m)
261 {
262 unsigned long flags;
263 struct irq_desc *desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL);
264
265 if (!desc)
266 return -EINVAL;
267 desc->affinity_hint = m;
268 irq_put_desc_unlock(desc, flags);
269 /* set the initial affinity to prevent every interrupt being on CPU0 */
270 if (m)
271 __irq_set_affinity(irq, m, false);
272 return 0;
273 }
274 EXPORT_SYMBOL_GPL(irq_set_affinity_hint);
275
276 static void irq_affinity_notify(struct work_struct *work)
277 {
278 struct irq_affinity_notify *notify =
279 container_of(work, struct irq_affinity_notify, work);
280 struct irq_desc *desc = irq_to_desc(notify->irq);
281 cpumask_var_t cpumask;
282 unsigned long flags;
283
284 if (!desc || !alloc_cpumask_var(&cpumask, GFP_KERNEL))
285 goto out;
286
287 raw_spin_lock_irqsave(&desc->lock, flags);
288 if (irq_move_pending(&desc->irq_data))
289 irq_get_pending(cpumask, desc);
290 else
291 cpumask_copy(cpumask, desc->irq_common_data.affinity);
292 raw_spin_unlock_irqrestore(&desc->lock, flags);
293
294 notify->notify(notify, cpumask);
295
296 free_cpumask_var(cpumask);
297 out:
298 kref_put(&notify->kref, notify->release);
299 }
300
301 /**
302 * irq_set_affinity_notifier - control notification of IRQ affinity changes
303 * @irq: Interrupt for which to enable/disable notification
304 * @notify: Context for notification, or %NULL to disable
305 * notification. Function pointers must be initialised;
306 * the other fields will be initialised by this function.
307 *
308 * Must be called in process context. Notification may only be enabled
309 * after the IRQ is allocated and must be disabled before the IRQ is
310 * freed using free_irq().
311 */
312 int
313 irq_set_affinity_notifier(unsigned int irq, struct irq_affinity_notify *notify)
314 {
315 struct irq_desc *desc = irq_to_desc(irq);
316 struct irq_affinity_notify *old_notify;
317 unsigned long flags;
318
319 /* The release function is promised process context */
320 might_sleep();
321
322 if (!desc)
323 return -EINVAL;
324
325 /* Complete initialisation of *notify */
326 if (notify) {
327 notify->irq = irq;
328 kref_init(&notify->kref);
329 INIT_WORK(&notify->work, irq_affinity_notify);
330 }
331
332 raw_spin_lock_irqsave(&desc->lock, flags);
333 old_notify = desc->affinity_notify;
334 desc->affinity_notify = notify;
335 raw_spin_unlock_irqrestore(&desc->lock, flags);
336
337 if (old_notify)
338 kref_put(&old_notify->kref, old_notify->release);
339
340 return 0;
341 }
342 EXPORT_SYMBOL_GPL(irq_set_affinity_notifier);
343
344 #ifndef CONFIG_AUTO_IRQ_AFFINITY
345 /*
346 * Generic version of the affinity autoselector.
347 */
348 static int setup_affinity(struct irq_desc *desc, struct cpumask *mask)
349 {
350 struct cpumask *set = irq_default_affinity;
351 int node = irq_desc_get_node(desc);
352
353 /* Excludes PER_CPU and NO_BALANCE interrupts */
354 if (!__irq_can_set_affinity(desc))
355 return 0;
356
357 /*
358 * Preserve the managed affinity setting and a userspace affinity
359 * setup, but make sure that one of the targets is online.
360 */
361 if (irqd_affinity_is_managed(&desc->irq_data) ||
362 irqd_has_set(&desc->irq_data, IRQD_AFFINITY_SET)) {
363 if (cpumask_intersects(desc->irq_common_data.affinity,
364 cpu_online_mask))
365 set = desc->irq_common_data.affinity;
366 else
367 irqd_clear(&desc->irq_data, IRQD_AFFINITY_SET);
368 }
369
370 cpumask_and(mask, cpu_online_mask, set);
371 if (node != NUMA_NO_NODE) {
372 const struct cpumask *nodemask = cpumask_of_node(node);
373
374 /* make sure at least one of the cpus in nodemask is online */
375 if (cpumask_intersects(mask, nodemask))
376 cpumask_and(mask, mask, nodemask);
377 }
378 irq_do_set_affinity(&desc->irq_data, mask, false);
379 return 0;
380 }
381 #else
382 /* Wrapper for ALPHA specific affinity selector magic */
383 static inline int setup_affinity(struct irq_desc *d, struct cpumask *mask)
384 {
385 return irq_select_affinity(irq_desc_get_irq(d));
386 }
387 #endif
388
389 /*
390 * Called when affinity is set via /proc/irq
391 */
392 int irq_select_affinity_usr(unsigned int irq, struct cpumask *mask)
393 {
394 struct irq_desc *desc = irq_to_desc(irq);
395 unsigned long flags;
396 int ret;
397
398 raw_spin_lock_irqsave(&desc->lock, flags);
399 ret = setup_affinity(desc, mask);
400 raw_spin_unlock_irqrestore(&desc->lock, flags);
401 return ret;
402 }
403
404 #else
405 static inline int
406 setup_affinity(struct irq_desc *desc, struct cpumask *mask)
407 {
408 return 0;
409 }
410 #endif
411
412 /**
413 * irq_set_vcpu_affinity - Set vcpu affinity for the interrupt
414 * @irq: interrupt number to set affinity
415 * @vcpu_info: vCPU specific data
416 *
417 * This function uses the vCPU specific data to set the vCPU
418 * affinity for an irq. The vCPU specific data is passed from
419 * outside, such as KVM. One example code path is as below:
420 * KVM -> IOMMU -> irq_set_vcpu_affinity().
421 */
422 int irq_set_vcpu_affinity(unsigned int irq, void *vcpu_info)
423 {
424 unsigned long flags;
425 struct irq_desc *desc = irq_get_desc_lock(irq, &flags, 0);
426 struct irq_data *data;
427 struct irq_chip *chip;
428 int ret = -ENOSYS;
429
430 if (!desc)
431 return -EINVAL;
432
433 data = irq_desc_get_irq_data(desc);
434 chip = irq_data_get_irq_chip(data);
435 if (chip && chip->irq_set_vcpu_affinity)
436 ret = chip->irq_set_vcpu_affinity(data, vcpu_info);
437 irq_put_desc_unlock(desc, flags);
438
439 return ret;
440 }
441 EXPORT_SYMBOL_GPL(irq_set_vcpu_affinity);
442
443 void __disable_irq(struct irq_desc *desc)
444 {
445 if (!desc->depth++)
446 irq_disable(desc);
447 }
448
449 static int __disable_irq_nosync(unsigned int irq)
450 {
451 unsigned long flags;
452 struct irq_desc *desc = irq_get_desc_buslock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL);
453
454 if (!desc)
455 return -EINVAL;
456 __disable_irq(desc);
457 irq_put_desc_busunlock(desc, flags);
458 return 0;
459 }
460
461 /**
462 * disable_irq_nosync - disable an irq without waiting
463 * @irq: Interrupt to disable
464 *
465 * Disable the selected interrupt line. Disables and Enables are
466 * nested.
467 * Unlike disable_irq(), this function does not ensure existing
468 * instances of the IRQ handler have completed before returning.
469 *
470 * This function may be called from IRQ context.
471 */
472 void disable_irq_nosync(unsigned int irq)
473 {
474 __disable_irq_nosync(irq);
475 }
476 EXPORT_SYMBOL(disable_irq_nosync);
477
478 /**
479 * disable_irq - disable an irq and wait for completion
480 * @irq: Interrupt to disable
481 *
482 * Disable the selected interrupt line. Enables and Disables are
483 * nested.
484 * This function waits for any pending IRQ handlers for this interrupt
485 * to complete before returning. If you use this function while
486 * holding a resource the IRQ handler may need you will deadlock.
487 *
488 * This function may be called - with care - from IRQ context.
489 */
490 void disable_irq(unsigned int irq)
491 {
492 if (!__disable_irq_nosync(irq))
493 synchronize_irq(irq);
494 }
495 EXPORT_SYMBOL(disable_irq);
496
497 /**
498 * disable_hardirq - disables an irq and waits for hardirq completion
499 * @irq: Interrupt to disable
500 *
501 * Disable the selected interrupt line. Enables and Disables are
502 * nested.
503 * This function waits for any pending hard IRQ handlers for this
504 * interrupt to complete before returning. If you use this function while
505 * holding a resource the hard IRQ handler may need you will deadlock.
506 *
507 * When used to optimistically disable an interrupt from atomic context
508 * the return value must be checked.
509 *
510 * Returns: false if a threaded handler is active.
511 *
512 * This function may be called - with care - from IRQ context.
513 */
514 bool disable_hardirq(unsigned int irq)
515 {
516 if (!__disable_irq_nosync(irq))
517 return synchronize_hardirq(irq);
518
519 return false;
520 }
521 EXPORT_SYMBOL_GPL(disable_hardirq);
522
523 void __enable_irq(struct irq_desc *desc)
524 {
525 switch (desc->depth) {
526 case 0:
527 err_out:
528 WARN(1, KERN_WARNING "Unbalanced enable for IRQ %d\n",
529 irq_desc_get_irq(desc));
530 break;
531 case 1: {
532 if (desc->istate & IRQS_SUSPENDED)
533 goto err_out;
534 /* Prevent probing on this irq: */
535 irq_settings_set_noprobe(desc);
536 irq_enable(desc);
537 check_irq_resend(desc);
538 /* fall-through */
539 }
540 default:
541 desc->depth--;
542 }
543 }
544
545 /**
546 * enable_irq - enable handling of an irq
547 * @irq: Interrupt to enable
548 *
549 * Undoes the effect of one call to disable_irq(). If this
550 * matches the last disable, processing of interrupts on this
551 * IRQ line is re-enabled.
552 *
553 * This function may be called from IRQ context only when
554 * desc->irq_data.chip->bus_lock and desc->chip->bus_sync_unlock are NULL !
555 */
556 void enable_irq(unsigned int irq)
557 {
558 unsigned long flags;
559 struct irq_desc *desc = irq_get_desc_buslock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL);
560
561 if (!desc)
562 return;
563 if (WARN(!desc->irq_data.chip,
564 KERN_ERR "enable_irq before setup/request_irq: irq %u\n", irq))
565 goto out;
566
567 __enable_irq(desc);
568 out:
569 irq_put_desc_busunlock(desc, flags);
570 }
571 EXPORT_SYMBOL(enable_irq);
572
573 static int set_irq_wake_real(unsigned int irq, unsigned int on)
574 {
575 struct irq_desc *desc = irq_to_desc(irq);
576 int ret = -ENXIO;
577
578 if (irq_desc_get_chip(desc)->flags & IRQCHIP_SKIP_SET_WAKE)
579 return 0;
580
581 if (desc->irq_data.chip->irq_set_wake)
582 ret = desc->irq_data.chip->irq_set_wake(&desc->irq_data, on);
583
584 return ret;
585 }
586
587 /**
588 * irq_set_irq_wake - control irq power management wakeup
589 * @irq: interrupt to control
590 * @on: enable/disable power management wakeup
591 *
592 * Enable/disable power management wakeup mode, which is
593 * disabled by default. Enables and disables must match,
594 * just as they match for non-wakeup mode support.
595 *
596 * Wakeup mode lets this IRQ wake the system from sleep
597 * states like "suspend to RAM".
598 */
599 int irq_set_irq_wake(unsigned int irq, unsigned int on)
600 {
601 unsigned long flags;
602 struct irq_desc *desc = irq_get_desc_buslock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL);
603 int ret = 0;
604
605 if (!desc)
606 return -EINVAL;
607
608 /* wakeup-capable irqs can be shared between drivers that
609 * don't need to have the same sleep mode behaviors.
610 */
611 if (on) {
612 if (desc->wake_depth++ == 0) {
613 ret = set_irq_wake_real(irq, on);
614 if (ret)
615 desc->wake_depth = 0;
616 else
617 irqd_set(&desc->irq_data, IRQD_WAKEUP_STATE);
618 }
619 } else {
620 if (desc->wake_depth == 0) {
621 WARN(1, "Unbalanced IRQ %d wake disable\n", irq);
622 } else if (--desc->wake_depth == 0) {
623 ret = set_irq_wake_real(irq, on);
624 if (ret)
625 desc->wake_depth = 1;
626 else
627 irqd_clear(&desc->irq_data, IRQD_WAKEUP_STATE);
628 }
629 }
630 irq_put_desc_busunlock(desc, flags);
631 return ret;
632 }
633 EXPORT_SYMBOL(irq_set_irq_wake);
634
635 /*
636 * Internal function that tells the architecture code whether a
637 * particular irq has been exclusively allocated or is available
638 * for driver use.
639 */
640 int can_request_irq(unsigned int irq, unsigned long irqflags)
641 {
642 unsigned long flags;
643 struct irq_desc *desc = irq_get_desc_lock(irq, &flags, 0);
644 int canrequest = 0;
645
646 if (!desc)
647 return 0;
648
649 if (irq_settings_can_request(desc)) {
650 if (!desc->action ||
651 irqflags & desc->action->flags & IRQF_SHARED)
652 canrequest = 1;
653 }
654 irq_put_desc_unlock(desc, flags);
655 return canrequest;
656 }
657
658 int __irq_set_trigger(struct irq_desc *desc, unsigned long flags)
659 {
660 struct irq_chip *chip = desc->irq_data.chip;
661 int ret, unmask = 0;
662
663 if (!chip || !chip->irq_set_type) {
664 /*
665 * IRQF_TRIGGER_* but the PIC does not support multiple
666 * flow-types?
667 */
668 pr_debug("No set_type function for IRQ %d (%s)\n",
669 irq_desc_get_irq(desc),
670 chip ? (chip->name ? : "unknown") : "unknown");
671 return 0;
672 }
673
674 if (chip->flags & IRQCHIP_SET_TYPE_MASKED) {
675 if (!irqd_irq_masked(&desc->irq_data))
676 mask_irq(desc);
677 if (!irqd_irq_disabled(&desc->irq_data))
678 unmask = 1;
679 }
680
681 /* Mask all flags except trigger mode */
682 flags &= IRQ_TYPE_SENSE_MASK;
683 ret = chip->irq_set_type(&desc->irq_data, flags);
684
685 switch (ret) {
686 case IRQ_SET_MASK_OK:
687 case IRQ_SET_MASK_OK_DONE:
688 irqd_clear(&desc->irq_data, IRQD_TRIGGER_MASK);
689 irqd_set(&desc->irq_data, flags);
690
691 case IRQ_SET_MASK_OK_NOCOPY:
692 flags = irqd_get_trigger_type(&desc->irq_data);
693 irq_settings_set_trigger_mask(desc, flags);
694 irqd_clear(&desc->irq_data, IRQD_LEVEL);
695 irq_settings_clr_level(desc);
696 if (flags & IRQ_TYPE_LEVEL_MASK) {
697 irq_settings_set_level(desc);
698 irqd_set(&desc->irq_data, IRQD_LEVEL);
699 }
700
701 ret = 0;
702 break;
703 default:
704 pr_err("Setting trigger mode %lu for irq %u failed (%pF)\n",
705 flags, irq_desc_get_irq(desc), chip->irq_set_type);
706 }
707 if (unmask)
708 unmask_irq(desc);
709 return ret;
710 }
711
712 #ifdef CONFIG_HARDIRQS_SW_RESEND
713 int irq_set_parent(int irq, int parent_irq)
714 {
715 unsigned long flags;
716 struct irq_desc *desc = irq_get_desc_lock(irq, &flags, 0);
717
718 if (!desc)
719 return -EINVAL;
720
721 desc->parent_irq = parent_irq;
722
723 irq_put_desc_unlock(desc, flags);
724 return 0;
725 }
726 EXPORT_SYMBOL_GPL(irq_set_parent);
727 #endif
728
729 /*
730 * Default primary interrupt handler for threaded interrupts. Is
731 * assigned as primary handler when request_threaded_irq is called
732 * with handler == NULL. Useful for oneshot interrupts.
733 */
734 static irqreturn_t irq_default_primary_handler(int irq, void *dev_id)
735 {
736 return IRQ_WAKE_THREAD;
737 }
738
739 /*
740 * Primary handler for nested threaded interrupts. Should never be
741 * called.
742 */
743 static irqreturn_t irq_nested_primary_handler(int irq, void *dev_id)
744 {
745 WARN(1, "Primary handler called for nested irq %d\n", irq);
746 return IRQ_NONE;
747 }
748
749 static irqreturn_t irq_forced_secondary_handler(int irq, void *dev_id)
750 {
751 WARN(1, "Secondary action handler called for irq %d\n", irq);
752 return IRQ_NONE;
753 }
754
755 static int irq_wait_for_interrupt(struct irqaction *action)
756 {
757 set_current_state(TASK_INTERRUPTIBLE);
758
759 while (!kthread_should_stop()) {
760
761 if (test_and_clear_bit(IRQTF_RUNTHREAD,
762 &action->thread_flags)) {
763 __set_current_state(TASK_RUNNING);
764 return 0;
765 }
766 schedule();
767 set_current_state(TASK_INTERRUPTIBLE);
768 }
769 __set_current_state(TASK_RUNNING);
770 return -1;
771 }
772
773 /*
774 * Oneshot interrupts keep the irq line masked until the threaded
775 * handler finished. unmask if the interrupt has not been disabled and
776 * is marked MASKED.
777 */
778 static void irq_finalize_oneshot(struct irq_desc *desc,
779 struct irqaction *action)
780 {
781 if (!(desc->istate & IRQS_ONESHOT) ||
782 action->handler == irq_forced_secondary_handler)
783 return;
784 again:
785 chip_bus_lock(desc);
786 raw_spin_lock_irq(&desc->lock);
787
788 /*
789 * Implausible though it may be we need to protect us against
790 * the following scenario:
791 *
792 * The thread is faster done than the hard interrupt handler
793 * on the other CPU. If we unmask the irq line then the
794 * interrupt can come in again and masks the line, leaves due
795 * to IRQS_INPROGRESS and the irq line is masked forever.
796 *
797 * This also serializes the state of shared oneshot handlers
798 * versus "desc->threads_onehsot |= action->thread_mask;" in
799 * irq_wake_thread(). See the comment there which explains the
800 * serialization.
801 */
802 if (unlikely(irqd_irq_inprogress(&desc->irq_data))) {
803 raw_spin_unlock_irq(&desc->lock);
804 chip_bus_sync_unlock(desc);
805 cpu_relax();
806 goto again;
807 }
808
809 /*
810 * Now check again, whether the thread should run. Otherwise
811 * we would clear the threads_oneshot bit of this thread which
812 * was just set.
813 */
814 if (test_bit(IRQTF_RUNTHREAD, &action->thread_flags))
815 goto out_unlock;
816
817 desc->threads_oneshot &= ~action->thread_mask;
818
819 if (!desc->threads_oneshot && !irqd_irq_disabled(&desc->irq_data) &&
820 irqd_irq_masked(&desc->irq_data))
821 unmask_threaded_irq(desc);
822
823 out_unlock:
824 raw_spin_unlock_irq(&desc->lock);
825 chip_bus_sync_unlock(desc);
826 }
827
828 #ifdef CONFIG_SMP
829 /*
830 * Check whether we need to change the affinity of the interrupt thread.
831 */
832 static void
833 irq_thread_check_affinity(struct irq_desc *desc, struct irqaction *action)
834 {
835 cpumask_var_t mask;
836 bool valid = true;
837
838 if (!test_and_clear_bit(IRQTF_AFFINITY, &action->thread_flags))
839 return;
840
841 /*
842 * In case we are out of memory we set IRQTF_AFFINITY again and
843 * try again next time
844 */
845 if (!alloc_cpumask_var(&mask, GFP_KERNEL)) {
846 set_bit(IRQTF_AFFINITY, &action->thread_flags);
847 return;
848 }
849
850 raw_spin_lock_irq(&desc->lock);
851 /*
852 * This code is triggered unconditionally. Check the affinity
853 * mask pointer. For CPU_MASK_OFFSTACK=n this is optimized out.
854 */
855 if (desc->irq_common_data.affinity)
856 cpumask_copy(mask, desc->irq_common_data.affinity);
857 else
858 valid = false;
859 raw_spin_unlock_irq(&desc->lock);
860
861 if (valid)
862 set_cpus_allowed_ptr(current, mask);
863 free_cpumask_var(mask);
864 }
865 #else
866 static inline void
867 irq_thread_check_affinity(struct irq_desc *desc, struct irqaction *action) { }
868 #endif
869
870 /*
871 * Interrupts which are not explicitely requested as threaded
872 * interrupts rely on the implicit bh/preempt disable of the hard irq
873 * context. So we need to disable bh here to avoid deadlocks and other
874 * side effects.
875 */
876 static irqreturn_t
877 irq_forced_thread_fn(struct irq_desc *desc, struct irqaction *action)
878 {
879 irqreturn_t ret;
880
881 local_bh_disable();
882 ret = action->thread_fn(action->irq, action->dev_id);
883 irq_finalize_oneshot(desc, action);
884 local_bh_enable();
885 return ret;
886 }
887
888 /*
889 * Interrupts explicitly requested as threaded interrupts want to be
890 * preemtible - many of them need to sleep and wait for slow busses to
891 * complete.
892 */
893 static irqreturn_t irq_thread_fn(struct irq_desc *desc,
894 struct irqaction *action)
895 {
896 irqreturn_t ret;
897
898 ret = action->thread_fn(action->irq, action->dev_id);
899 irq_finalize_oneshot(desc, action);
900 return ret;
901 }
902
903 static void wake_threads_waitq(struct irq_desc *desc)
904 {
905 if (atomic_dec_and_test(&desc->threads_active))
906 wake_up(&desc->wait_for_threads);
907 }
908
909 static void irq_thread_dtor(struct callback_head *unused)
910 {
911 struct task_struct *tsk = current;
912 struct irq_desc *desc;
913 struct irqaction *action;
914
915 if (WARN_ON_ONCE(!(current->flags & PF_EXITING)))
916 return;
917
918 action = kthread_data(tsk);
919
920 pr_err("exiting task \"%s\" (%d) is an active IRQ thread (irq %d)\n",
921 tsk->comm, tsk->pid, action->irq);
922
923
924 desc = irq_to_desc(action->irq);
925 /*
926 * If IRQTF_RUNTHREAD is set, we need to decrement
927 * desc->threads_active and wake possible waiters.
928 */
929 if (test_and_clear_bit(IRQTF_RUNTHREAD, &action->thread_flags))
930 wake_threads_waitq(desc);
931
932 /* Prevent a stale desc->threads_oneshot */
933 irq_finalize_oneshot(desc, action);
934 }
935
936 static void irq_wake_secondary(struct irq_desc *desc, struct irqaction *action)
937 {
938 struct irqaction *secondary = action->secondary;
939
940 if (WARN_ON_ONCE(!secondary))
941 return;
942
943 raw_spin_lock_irq(&desc->lock);
944 __irq_wake_thread(desc, secondary);
945 raw_spin_unlock_irq(&desc->lock);
946 }
947
948 /*
949 * Interrupt handler thread
950 */
951 static int irq_thread(void *data)
952 {
953 struct callback_head on_exit_work;
954 struct irqaction *action = data;
955 struct irq_desc *desc = irq_to_desc(action->irq);
956 irqreturn_t (*handler_fn)(struct irq_desc *desc,
957 struct irqaction *action);
958
959 if (force_irqthreads && test_bit(IRQTF_FORCED_THREAD,
960 &action->thread_flags))
961 handler_fn = irq_forced_thread_fn;
962 else
963 handler_fn = irq_thread_fn;
964
965 init_task_work(&on_exit_work, irq_thread_dtor);
966 task_work_add(current, &on_exit_work, false);
967
968 irq_thread_check_affinity(desc, action);
969
970 while (!irq_wait_for_interrupt(action)) {
971 irqreturn_t action_ret;
972
973 irq_thread_check_affinity(desc, action);
974
975 action_ret = handler_fn(desc, action);
976 if (action_ret == IRQ_HANDLED)
977 atomic_inc(&desc->threads_handled);
978 if (action_ret == IRQ_WAKE_THREAD)
979 irq_wake_secondary(desc, action);
980
981 wake_threads_waitq(desc);
982 }
983
984 /*
985 * This is the regular exit path. __free_irq() is stopping the
986 * thread via kthread_stop() after calling
987 * synchronize_irq(). So neither IRQTF_RUNTHREAD nor the
988 * oneshot mask bit can be set. We cannot verify that as we
989 * cannot touch the oneshot mask at this point anymore as
990 * __setup_irq() might have given out currents thread_mask
991 * again.
992 */
993 task_work_cancel(current, irq_thread_dtor);
994 return 0;
995 }
996
997 /**
998 * irq_wake_thread - wake the irq thread for the action identified by dev_id
999 * @irq: Interrupt line
1000 * @dev_id: Device identity for which the thread should be woken
1001 *
1002 */
1003 void irq_wake_thread(unsigned int irq, void *dev_id)
1004 {
1005 struct irq_desc *desc = irq_to_desc(irq);
1006 struct irqaction *action;
1007 unsigned long flags;
1008
1009 if (!desc || WARN_ON(irq_settings_is_per_cpu_devid(desc)))
1010 return;
1011
1012 raw_spin_lock_irqsave(&desc->lock, flags);
1013 for_each_action_of_desc(desc, action) {
1014 if (action->dev_id == dev_id) {
1015 if (action->thread)
1016 __irq_wake_thread(desc, action);
1017 break;
1018 }
1019 }
1020 raw_spin_unlock_irqrestore(&desc->lock, flags);
1021 }
1022 EXPORT_SYMBOL_GPL(irq_wake_thread);
1023
1024 static int irq_setup_forced_threading(struct irqaction *new)
1025 {
1026 if (!force_irqthreads)
1027 return 0;
1028 if (new->flags & (IRQF_NO_THREAD | IRQF_PERCPU | IRQF_ONESHOT))
1029 return 0;
1030
1031 new->flags |= IRQF_ONESHOT;
1032
1033 /*
1034 * Handle the case where we have a real primary handler and a
1035 * thread handler. We force thread them as well by creating a
1036 * secondary action.
1037 */
1038 if (new->handler != irq_default_primary_handler && new->thread_fn) {
1039 /* Allocate the secondary action */
1040 new->secondary = kzalloc(sizeof(struct irqaction), GFP_KERNEL);
1041 if (!new->secondary)
1042 return -ENOMEM;
1043 new->secondary->handler = irq_forced_secondary_handler;
1044 new->secondary->thread_fn = new->thread_fn;
1045 new->secondary->dev_id = new->dev_id;
1046 new->secondary->irq = new->irq;
1047 new->secondary->name = new->name;
1048 }
1049 /* Deal with the primary handler */
1050 set_bit(IRQTF_FORCED_THREAD, &new->thread_flags);
1051 new->thread_fn = new->handler;
1052 new->handler = irq_default_primary_handler;
1053 return 0;
1054 }
1055
1056 static int irq_request_resources(struct irq_desc *desc)
1057 {
1058 struct irq_data *d = &desc->irq_data;
1059 struct irq_chip *c = d->chip;
1060
1061 return c->irq_request_resources ? c->irq_request_resources(d) : 0;
1062 }
1063
1064 static void irq_release_resources(struct irq_desc *desc)
1065 {
1066 struct irq_data *d = &desc->irq_data;
1067 struct irq_chip *c = d->chip;
1068
1069 if (c->irq_release_resources)
1070 c->irq_release_resources(d);
1071 }
1072
1073 static int
1074 setup_irq_thread(struct irqaction *new, unsigned int irq, bool secondary)
1075 {
1076 struct task_struct *t;
1077 struct sched_param param = {
1078 .sched_priority = MAX_USER_RT_PRIO/2,
1079 };
1080
1081 if (!secondary) {
1082 t = kthread_create(irq_thread, new, "irq/%d-%s", irq,
1083 new->name);
1084 } else {
1085 t = kthread_create(irq_thread, new, "irq/%d-s-%s", irq,
1086 new->name);
1087 param.sched_priority -= 1;
1088 }
1089
1090 if (IS_ERR(t))
1091 return PTR_ERR(t);
1092
1093 sched_setscheduler_nocheck(t, SCHED_FIFO, &param);
1094
1095 /*
1096 * We keep the reference to the task struct even if
1097 * the thread dies to avoid that the interrupt code
1098 * references an already freed task_struct.
1099 */
1100 get_task_struct(t);
1101 new->thread = t;
1102 /*
1103 * Tell the thread to set its affinity. This is
1104 * important for shared interrupt handlers as we do
1105 * not invoke setup_affinity() for the secondary
1106 * handlers as everything is already set up. Even for
1107 * interrupts marked with IRQF_NO_BALANCE this is
1108 * correct as we want the thread to move to the cpu(s)
1109 * on which the requesting code placed the interrupt.
1110 */
1111 set_bit(IRQTF_AFFINITY, &new->thread_flags);
1112 return 0;
1113 }
1114
1115 /*
1116 * Internal function to register an irqaction - typically used to
1117 * allocate special interrupts that are part of the architecture.
1118 */
1119 static int
1120 __setup_irq(unsigned int irq, struct irq_desc *desc, struct irqaction *new)
1121 {
1122 struct irqaction *old, **old_ptr;
1123 unsigned long flags, thread_mask = 0;
1124 int ret, nested, shared = 0;
1125 cpumask_var_t mask;
1126
1127 if (!desc)
1128 return -EINVAL;
1129
1130 if (desc->irq_data.chip == &no_irq_chip)
1131 return -ENOSYS;
1132 if (!try_module_get(desc->owner))
1133 return -ENODEV;
1134
1135 new->irq = irq;
1136
1137 /*
1138 * If the trigger type is not specified by the caller,
1139 * then use the default for this interrupt.
1140 */
1141 if (!(new->flags & IRQF_TRIGGER_MASK))
1142 new->flags |= irqd_get_trigger_type(&desc->irq_data);
1143
1144 /*
1145 * Check whether the interrupt nests into another interrupt
1146 * thread.
1147 */
1148 nested = irq_settings_is_nested_thread(desc);
1149 if (nested) {
1150 if (!new->thread_fn) {
1151 ret = -EINVAL;
1152 goto out_mput;
1153 }
1154 /*
1155 * Replace the primary handler which was provided from
1156 * the driver for non nested interrupt handling by the
1157 * dummy function which warns when called.
1158 */
1159 new->handler = irq_nested_primary_handler;
1160 } else {
1161 if (irq_settings_can_thread(desc)) {
1162 ret = irq_setup_forced_threading(new);
1163 if (ret)
1164 goto out_mput;
1165 }
1166 }
1167
1168 /*
1169 * Create a handler thread when a thread function is supplied
1170 * and the interrupt does not nest into another interrupt
1171 * thread.
1172 */
1173 if (new->thread_fn && !nested) {
1174 ret = setup_irq_thread(new, irq, false);
1175 if (ret)
1176 goto out_mput;
1177 if (new->secondary) {
1178 ret = setup_irq_thread(new->secondary, irq, true);
1179 if (ret)
1180 goto out_thread;
1181 }
1182 }
1183
1184 if (!alloc_cpumask_var(&mask, GFP_KERNEL)) {
1185 ret = -ENOMEM;
1186 goto out_thread;
1187 }
1188
1189 /*
1190 * Drivers are often written to work w/o knowledge about the
1191 * underlying irq chip implementation, so a request for a
1192 * threaded irq without a primary hard irq context handler
1193 * requires the ONESHOT flag to be set. Some irq chips like
1194 * MSI based interrupts are per se one shot safe. Check the
1195 * chip flags, so we can avoid the unmask dance at the end of
1196 * the threaded handler for those.
1197 */
1198 if (desc->irq_data.chip->flags & IRQCHIP_ONESHOT_SAFE)
1199 new->flags &= ~IRQF_ONESHOT;
1200
1201 /*
1202 * The following block of code has to be executed atomically
1203 */
1204 raw_spin_lock_irqsave(&desc->lock, flags);
1205 old_ptr = &desc->action;
1206 old = *old_ptr;
1207 if (old) {
1208 /*
1209 * Can't share interrupts unless both agree to and are
1210 * the same type (level, edge, polarity). So both flag
1211 * fields must have IRQF_SHARED set and the bits which
1212 * set the trigger type must match. Also all must
1213 * agree on ONESHOT.
1214 */
1215 if (!((old->flags & new->flags) & IRQF_SHARED) ||
1216 ((old->flags ^ new->flags) & IRQF_TRIGGER_MASK) ||
1217 ((old->flags ^ new->flags) & IRQF_ONESHOT))
1218 goto mismatch;
1219
1220 /* All handlers must agree on per-cpuness */
1221 if ((old->flags & IRQF_PERCPU) !=
1222 (new->flags & IRQF_PERCPU))
1223 goto mismatch;
1224
1225 /* add new interrupt at end of irq queue */
1226 do {
1227 /*
1228 * Or all existing action->thread_mask bits,
1229 * so we can find the next zero bit for this
1230 * new action.
1231 */
1232 thread_mask |= old->thread_mask;
1233 old_ptr = &old->next;
1234 old = *old_ptr;
1235 } while (old);
1236 shared = 1;
1237 }
1238
1239 /*
1240 * Setup the thread mask for this irqaction for ONESHOT. For
1241 * !ONESHOT irqs the thread mask is 0 so we can avoid a
1242 * conditional in irq_wake_thread().
1243 */
1244 if (new->flags & IRQF_ONESHOT) {
1245 /*
1246 * Unlikely to have 32 resp 64 irqs sharing one line,
1247 * but who knows.
1248 */
1249 if (thread_mask == ~0UL) {
1250 ret = -EBUSY;
1251 goto out_mask;
1252 }
1253 /*
1254 * The thread_mask for the action is or'ed to
1255 * desc->thread_active to indicate that the
1256 * IRQF_ONESHOT thread handler has been woken, but not
1257 * yet finished. The bit is cleared when a thread
1258 * completes. When all threads of a shared interrupt
1259 * line have completed desc->threads_active becomes
1260 * zero and the interrupt line is unmasked. See
1261 * handle.c:irq_wake_thread() for further information.
1262 *
1263 * If no thread is woken by primary (hard irq context)
1264 * interrupt handlers, then desc->threads_active is
1265 * also checked for zero to unmask the irq line in the
1266 * affected hard irq flow handlers
1267 * (handle_[fasteoi|level]_irq).
1268 *
1269 * The new action gets the first zero bit of
1270 * thread_mask assigned. See the loop above which or's
1271 * all existing action->thread_mask bits.
1272 */
1273 new->thread_mask = 1 << ffz(thread_mask);
1274
1275 } else if (new->handler == irq_default_primary_handler &&
1276 !(desc->irq_data.chip->flags & IRQCHIP_ONESHOT_SAFE)) {
1277 /*
1278 * The interrupt was requested with handler = NULL, so
1279 * we use the default primary handler for it. But it
1280 * does not have the oneshot flag set. In combination
1281 * with level interrupts this is deadly, because the
1282 * default primary handler just wakes the thread, then
1283 * the irq lines is reenabled, but the device still
1284 * has the level irq asserted. Rinse and repeat....
1285 *
1286 * While this works for edge type interrupts, we play
1287 * it safe and reject unconditionally because we can't
1288 * say for sure which type this interrupt really
1289 * has. The type flags are unreliable as the
1290 * underlying chip implementation can override them.
1291 */
1292 pr_err("Threaded irq requested with handler=NULL and !ONESHOT for irq %d\n",
1293 irq);
1294 ret = -EINVAL;
1295 goto out_mask;
1296 }
1297
1298 if (!shared) {
1299 ret = irq_request_resources(desc);
1300 if (ret) {
1301 pr_err("Failed to request resources for %s (irq %d) on irqchip %s\n",
1302 new->name, irq, desc->irq_data.chip->name);
1303 goto out_mask;
1304 }
1305
1306 init_waitqueue_head(&desc->wait_for_threads);
1307
1308 /* Setup the type (level, edge polarity) if configured: */
1309 if (new->flags & IRQF_TRIGGER_MASK) {
1310 ret = __irq_set_trigger(desc,
1311 new->flags & IRQF_TRIGGER_MASK);
1312
1313 if (ret)
1314 goto out_mask;
1315 }
1316
1317 desc->istate &= ~(IRQS_AUTODETECT | IRQS_SPURIOUS_DISABLED | \
1318 IRQS_ONESHOT | IRQS_WAITING);
1319 irqd_clear(&desc->irq_data, IRQD_IRQ_INPROGRESS);
1320
1321 if (new->flags & IRQF_PERCPU) {
1322 irqd_set(&desc->irq_data, IRQD_PER_CPU);
1323 irq_settings_set_per_cpu(desc);
1324 }
1325
1326 if (new->flags & IRQF_ONESHOT)
1327 desc->istate |= IRQS_ONESHOT;
1328
1329 if (irq_settings_can_autoenable(desc))
1330 irq_startup(desc, true);
1331 else
1332 /* Undo nested disables: */
1333 desc->depth = 1;
1334
1335 /* Exclude IRQ from balancing if requested */
1336 if (new->flags & IRQF_NOBALANCING) {
1337 irq_settings_set_no_balancing(desc);
1338 irqd_set(&desc->irq_data, IRQD_NO_BALANCING);
1339 }
1340
1341 /* Set default affinity mask once everything is setup */
1342 setup_affinity(desc, mask);
1343
1344 } else if (new->flags & IRQF_TRIGGER_MASK) {
1345 unsigned int nmsk = new->flags & IRQF_TRIGGER_MASK;
1346 unsigned int omsk = irqd_get_trigger_type(&desc->irq_data);
1347
1348 if (nmsk != omsk)
1349 /* hope the handler works with current trigger mode */
1350 pr_warn("irq %d uses trigger mode %u; requested %u\n",
1351 irq, omsk, nmsk);
1352 }
1353
1354 *old_ptr = new;
1355
1356 irq_pm_install_action(desc, new);
1357
1358 /* Reset broken irq detection when installing new handler */
1359 desc->irq_count = 0;
1360 desc->irqs_unhandled = 0;
1361
1362 /*
1363 * Check whether we disabled the irq via the spurious handler
1364 * before. Reenable it and give it another chance.
1365 */
1366 if (shared && (desc->istate & IRQS_SPURIOUS_DISABLED)) {
1367 desc->istate &= ~IRQS_SPURIOUS_DISABLED;
1368 __enable_irq(desc);
1369 }
1370
1371 raw_spin_unlock_irqrestore(&desc->lock, flags);
1372
1373 /*
1374 * Strictly no need to wake it up, but hung_task complains
1375 * when no hard interrupt wakes the thread up.
1376 */
1377 if (new->thread)
1378 wake_up_process(new->thread);
1379 if (new->secondary)
1380 wake_up_process(new->secondary->thread);
1381
1382 register_irq_proc(irq, desc);
1383 new->dir = NULL;
1384 register_handler_proc(irq, new);
1385 free_cpumask_var(mask);
1386
1387 return 0;
1388
1389 mismatch:
1390 if (!(new->flags & IRQF_PROBE_SHARED)) {
1391 pr_err("Flags mismatch irq %d. %08x (%s) vs. %08x (%s)\n",
1392 irq, new->flags, new->name, old->flags, old->name);
1393 #ifdef CONFIG_DEBUG_SHIRQ
1394 dump_stack();
1395 #endif
1396 }
1397 ret = -EBUSY;
1398
1399 out_mask:
1400 raw_spin_unlock_irqrestore(&desc->lock, flags);
1401 free_cpumask_var(mask);
1402
1403 out_thread:
1404 if (new->thread) {
1405 struct task_struct *t = new->thread;
1406
1407 new->thread = NULL;
1408 kthread_stop(t);
1409 put_task_struct(t);
1410 }
1411 if (new->secondary && new->secondary->thread) {
1412 struct task_struct *t = new->secondary->thread;
1413
1414 new->secondary->thread = NULL;
1415 kthread_stop(t);
1416 put_task_struct(t);
1417 }
1418 out_mput:
1419 module_put(desc->owner);
1420 return ret;
1421 }
1422
1423 /**
1424 * setup_irq - setup an interrupt
1425 * @irq: Interrupt line to setup
1426 * @act: irqaction for the interrupt
1427 *
1428 * Used to statically setup interrupts in the early boot process.
1429 */
1430 int setup_irq(unsigned int irq, struct irqaction *act)
1431 {
1432 int retval;
1433 struct irq_desc *desc = irq_to_desc(irq);
1434
1435 if (!desc || WARN_ON(irq_settings_is_per_cpu_devid(desc)))
1436 return -EINVAL;
1437
1438 retval = irq_chip_pm_get(&desc->irq_data);
1439 if (retval < 0)
1440 return retval;
1441
1442 chip_bus_lock(desc);
1443 retval = __setup_irq(irq, desc, act);
1444 chip_bus_sync_unlock(desc);
1445
1446 if (retval)
1447 irq_chip_pm_put(&desc->irq_data);
1448
1449 return retval;
1450 }
1451 EXPORT_SYMBOL_GPL(setup_irq);
1452
1453 /*
1454 * Internal function to unregister an irqaction - used to free
1455 * regular and special interrupts that are part of the architecture.
1456 */
1457 static struct irqaction *__free_irq(unsigned int irq, void *dev_id)
1458 {
1459 struct irq_desc *desc = irq_to_desc(irq);
1460 struct irqaction *action, **action_ptr;
1461 unsigned long flags;
1462
1463 WARN(in_interrupt(), "Trying to free IRQ %d from IRQ context!\n", irq);
1464
1465 if (!desc)
1466 return NULL;
1467
1468 chip_bus_lock(desc);
1469 raw_spin_lock_irqsave(&desc->lock, flags);
1470
1471 /*
1472 * There can be multiple actions per IRQ descriptor, find the right
1473 * one based on the dev_id:
1474 */
1475 action_ptr = &desc->action;
1476 for (;;) {
1477 action = *action_ptr;
1478
1479 if (!action) {
1480 WARN(1, "Trying to free already-free IRQ %d\n", irq);
1481 raw_spin_unlock_irqrestore(&desc->lock, flags);
1482 chip_bus_sync_unlock(desc);
1483 return NULL;
1484 }
1485
1486 if (action->dev_id == dev_id)
1487 break;
1488 action_ptr = &action->next;
1489 }
1490
1491 /* Found it - now remove it from the list of entries: */
1492 *action_ptr = action->next;
1493
1494 irq_pm_remove_action(desc, action);
1495
1496 /* If this was the last handler, shut down the IRQ line: */
1497 if (!desc->action) {
1498 irq_settings_clr_disable_unlazy(desc);
1499 irq_shutdown(desc);
1500 irq_release_resources(desc);
1501 }
1502
1503 #ifdef CONFIG_SMP
1504 /* make sure affinity_hint is cleaned up */
1505 if (WARN_ON_ONCE(desc->affinity_hint))
1506 desc->affinity_hint = NULL;
1507 #endif
1508
1509 raw_spin_unlock_irqrestore(&desc->lock, flags);
1510 chip_bus_sync_unlock(desc);
1511
1512 unregister_handler_proc(irq, action);
1513
1514 /* Make sure it's not being used on another CPU: */
1515 synchronize_irq(irq);
1516
1517 #ifdef CONFIG_DEBUG_SHIRQ
1518 /*
1519 * It's a shared IRQ -- the driver ought to be prepared for an IRQ
1520 * event to happen even now it's being freed, so let's make sure that
1521 * is so by doing an extra call to the handler ....
1522 *
1523 * ( We do this after actually deregistering it, to make sure that a
1524 * 'real' IRQ doesn't run in * parallel with our fake. )
1525 */
1526 if (action->flags & IRQF_SHARED) {
1527 local_irq_save(flags);
1528 action->handler(irq, dev_id);
1529 local_irq_restore(flags);
1530 }
1531 #endif
1532
1533 if (action->thread) {
1534 kthread_stop(action->thread);
1535 put_task_struct(action->thread);
1536 if (action->secondary && action->secondary->thread) {
1537 kthread_stop(action->secondary->thread);
1538 put_task_struct(action->secondary->thread);
1539 }
1540 }
1541
1542 irq_chip_pm_put(&desc->irq_data);
1543 module_put(desc->owner);
1544 kfree(action->secondary);
1545 return action;
1546 }
1547
1548 /**
1549 * remove_irq - free an interrupt
1550 * @irq: Interrupt line to free
1551 * @act: irqaction for the interrupt
1552 *
1553 * Used to remove interrupts statically setup by the early boot process.
1554 */
1555 void remove_irq(unsigned int irq, struct irqaction *act)
1556 {
1557 struct irq_desc *desc = irq_to_desc(irq);
1558
1559 if (desc && !WARN_ON(irq_settings_is_per_cpu_devid(desc)))
1560 __free_irq(irq, act->dev_id);
1561 }
1562 EXPORT_SYMBOL_GPL(remove_irq);
1563
1564 /**
1565 * free_irq - free an interrupt allocated with request_irq
1566 * @irq: Interrupt line to free
1567 * @dev_id: Device identity to free
1568 *
1569 * Remove an interrupt handler. The handler is removed and if the
1570 * interrupt line is no longer in use by any driver it is disabled.
1571 * On a shared IRQ the caller must ensure the interrupt is disabled
1572 * on the card it drives before calling this function. The function
1573 * does not return until any executing interrupts for this IRQ
1574 * have completed.
1575 *
1576 * This function must not be called from interrupt context.
1577 */
1578 void free_irq(unsigned int irq, void *dev_id)
1579 {
1580 struct irq_desc *desc = irq_to_desc(irq);
1581
1582 if (!desc || WARN_ON(irq_settings_is_per_cpu_devid(desc)))
1583 return;
1584
1585 #ifdef CONFIG_SMP
1586 if (WARN_ON(desc->affinity_notify))
1587 desc->affinity_notify = NULL;
1588 #endif
1589
1590 kfree(__free_irq(irq, dev_id));
1591 }
1592 EXPORT_SYMBOL(free_irq);
1593
1594 /**
1595 * request_threaded_irq - allocate an interrupt line
1596 * @irq: Interrupt line to allocate
1597 * @handler: Function to be called when the IRQ occurs.
1598 * Primary handler for threaded interrupts
1599 * If NULL and thread_fn != NULL the default
1600 * primary handler is installed
1601 * @thread_fn: Function called from the irq handler thread
1602 * If NULL, no irq thread is created
1603 * @irqflags: Interrupt type flags
1604 * @devname: An ascii name for the claiming device
1605 * @dev_id: A cookie passed back to the handler function
1606 *
1607 * This call allocates interrupt resources and enables the
1608 * interrupt line and IRQ handling. From the point this
1609 * call is made your handler function may be invoked. Since
1610 * your handler function must clear any interrupt the board
1611 * raises, you must take care both to initialise your hardware
1612 * and to set up the interrupt handler in the right order.
1613 *
1614 * If you want to set up a threaded irq handler for your device
1615 * then you need to supply @handler and @thread_fn. @handler is
1616 * still called in hard interrupt context and has to check
1617 * whether the interrupt originates from the device. If yes it
1618 * needs to disable the interrupt on the device and return
1619 * IRQ_WAKE_THREAD which will wake up the handler thread and run
1620 * @thread_fn. This split handler design is necessary to support
1621 * shared interrupts.
1622 *
1623 * Dev_id must be globally unique. Normally the address of the
1624 * device data structure is used as the cookie. Since the handler
1625 * receives this value it makes sense to use it.
1626 *
1627 * If your interrupt is shared you must pass a non NULL dev_id
1628 * as this is required when freeing the interrupt.
1629 *
1630 * Flags:
1631 *
1632 * IRQF_SHARED Interrupt is shared
1633 * IRQF_TRIGGER_* Specify active edge(s) or level
1634 *
1635 */
1636 int request_threaded_irq(unsigned int irq, irq_handler_t handler,
1637 irq_handler_t thread_fn, unsigned long irqflags,
1638 const char *devname, void *dev_id)
1639 {
1640 struct irqaction *action;
1641 struct irq_desc *desc;
1642 int retval;
1643
1644 if (irq == IRQ_NOTCONNECTED)
1645 return -ENOTCONN;
1646
1647 /*
1648 * Sanity-check: shared interrupts must pass in a real dev-ID,
1649 * otherwise we'll have trouble later trying to figure out
1650 * which interrupt is which (messes up the interrupt freeing
1651 * logic etc).
1652 *
1653 * Also IRQF_COND_SUSPEND only makes sense for shared interrupts and
1654 * it cannot be set along with IRQF_NO_SUSPEND.
1655 */
1656 if (((irqflags & IRQF_SHARED) && !dev_id) ||
1657 (!(irqflags & IRQF_SHARED) && (irqflags & IRQF_COND_SUSPEND)) ||
1658 ((irqflags & IRQF_NO_SUSPEND) && (irqflags & IRQF_COND_SUSPEND)))
1659 return -EINVAL;
1660
1661 desc = irq_to_desc(irq);
1662 if (!desc)
1663 return -EINVAL;
1664
1665 if (!irq_settings_can_request(desc) ||
1666 WARN_ON(irq_settings_is_per_cpu_devid(desc)))
1667 return -EINVAL;
1668
1669 if (!handler) {
1670 if (!thread_fn)
1671 return -EINVAL;
1672 handler = irq_default_primary_handler;
1673 }
1674
1675 action = kzalloc(sizeof(struct irqaction), GFP_KERNEL);
1676 if (!action)
1677 return -ENOMEM;
1678
1679 action->handler = handler;
1680 action->thread_fn = thread_fn;
1681 action->flags = irqflags;
1682 action->name = devname;
1683 action->dev_id = dev_id;
1684
1685 retval = irq_chip_pm_get(&desc->irq_data);
1686 if (retval < 0) {
1687 kfree(action);
1688 return retval;
1689 }
1690
1691 chip_bus_lock(desc);
1692 retval = __setup_irq(irq, desc, action);
1693 chip_bus_sync_unlock(desc);
1694
1695 if (retval) {
1696 irq_chip_pm_put(&desc->irq_data);
1697 kfree(action->secondary);
1698 kfree(action);
1699 }
1700
1701 #ifdef CONFIG_DEBUG_SHIRQ_FIXME
1702 if (!retval && (irqflags & IRQF_SHARED)) {
1703 /*
1704 * It's a shared IRQ -- the driver ought to be prepared for it
1705 * to happen immediately, so let's make sure....
1706 * We disable the irq to make sure that a 'real' IRQ doesn't
1707 * run in parallel with our fake.
1708 */
1709 unsigned long flags;
1710
1711 disable_irq(irq);
1712 local_irq_save(flags);
1713
1714 handler(irq, dev_id);
1715
1716 local_irq_restore(flags);
1717 enable_irq(irq);
1718 }
1719 #endif
1720 return retval;
1721 }
1722 EXPORT_SYMBOL(request_threaded_irq);
1723
1724 /**
1725 * request_any_context_irq - allocate an interrupt line
1726 * @irq: Interrupt line to allocate
1727 * @handler: Function to be called when the IRQ occurs.
1728 * Threaded handler for threaded interrupts.
1729 * @flags: Interrupt type flags
1730 * @name: An ascii name for the claiming device
1731 * @dev_id: A cookie passed back to the handler function
1732 *
1733 * This call allocates interrupt resources and enables the
1734 * interrupt line and IRQ handling. It selects either a
1735 * hardirq or threaded handling method depending on the
1736 * context.
1737 *
1738 * On failure, it returns a negative value. On success,
1739 * it returns either IRQC_IS_HARDIRQ or IRQC_IS_NESTED.
1740 */
1741 int request_any_context_irq(unsigned int irq, irq_handler_t handler,
1742 unsigned long flags, const char *name, void *dev_id)
1743 {
1744 struct irq_desc *desc;
1745 int ret;
1746
1747 if (irq == IRQ_NOTCONNECTED)
1748 return -ENOTCONN;
1749
1750 desc = irq_to_desc(irq);
1751 if (!desc)
1752 return -EINVAL;
1753
1754 if (irq_settings_is_nested_thread(desc)) {
1755 ret = request_threaded_irq(irq, NULL, handler,
1756 flags, name, dev_id);
1757 return !ret ? IRQC_IS_NESTED : ret;
1758 }
1759
1760 ret = request_irq(irq, handler, flags, name, dev_id);
1761 return !ret ? IRQC_IS_HARDIRQ : ret;
1762 }
1763 EXPORT_SYMBOL_GPL(request_any_context_irq);
1764
1765 void enable_percpu_irq(unsigned int irq, unsigned int type)
1766 {
1767 unsigned int cpu = smp_processor_id();
1768 unsigned long flags;
1769 struct irq_desc *desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_PERCPU);
1770
1771 if (!desc)
1772 return;
1773
1774 /*
1775 * If the trigger type is not specified by the caller, then
1776 * use the default for this interrupt.
1777 */
1778 type &= IRQ_TYPE_SENSE_MASK;
1779 if (type == IRQ_TYPE_NONE)
1780 type = irqd_get_trigger_type(&desc->irq_data);
1781
1782 if (type != IRQ_TYPE_NONE) {
1783 int ret;
1784
1785 ret = __irq_set_trigger(desc, type);
1786
1787 if (ret) {
1788 WARN(1, "failed to set type for IRQ%d\n", irq);
1789 goto out;
1790 }
1791 }
1792
1793 irq_percpu_enable(desc, cpu);
1794 out:
1795 irq_put_desc_unlock(desc, flags);
1796 }
1797 EXPORT_SYMBOL_GPL(enable_percpu_irq);
1798
1799 /**
1800 * irq_percpu_is_enabled - Check whether the per cpu irq is enabled
1801 * @irq: Linux irq number to check for
1802 *
1803 * Must be called from a non migratable context. Returns the enable
1804 * state of a per cpu interrupt on the current cpu.
1805 */
1806 bool irq_percpu_is_enabled(unsigned int irq)
1807 {
1808 unsigned int cpu = smp_processor_id();
1809 struct irq_desc *desc;
1810 unsigned long flags;
1811 bool is_enabled;
1812
1813 desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_PERCPU);
1814 if (!desc)
1815 return false;
1816
1817 is_enabled = cpumask_test_cpu(cpu, desc->percpu_enabled);
1818 irq_put_desc_unlock(desc, flags);
1819
1820 return is_enabled;
1821 }
1822 EXPORT_SYMBOL_GPL(irq_percpu_is_enabled);
1823
1824 void disable_percpu_irq(unsigned int irq)
1825 {
1826 unsigned int cpu = smp_processor_id();
1827 unsigned long flags;
1828 struct irq_desc *desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_PERCPU);
1829
1830 if (!desc)
1831 return;
1832
1833 irq_percpu_disable(desc, cpu);
1834 irq_put_desc_unlock(desc, flags);
1835 }
1836 EXPORT_SYMBOL_GPL(disable_percpu_irq);
1837
1838 /*
1839 * Internal function to unregister a percpu irqaction.
1840 */
1841 static struct irqaction *__free_percpu_irq(unsigned int irq, void __percpu *dev_id)
1842 {
1843 struct irq_desc *desc = irq_to_desc(irq);
1844 struct irqaction *action;
1845 unsigned long flags;
1846
1847 WARN(in_interrupt(), "Trying to free IRQ %d from IRQ context!\n", irq);
1848
1849 if (!desc)
1850 return NULL;
1851
1852 raw_spin_lock_irqsave(&desc->lock, flags);
1853
1854 action = desc->action;
1855 if (!action || action->percpu_dev_id != dev_id) {
1856 WARN(1, "Trying to free already-free IRQ %d\n", irq);
1857 goto bad;
1858 }
1859
1860 if (!cpumask_empty(desc->percpu_enabled)) {
1861 WARN(1, "percpu IRQ %d still enabled on CPU%d!\n",
1862 irq, cpumask_first(desc->percpu_enabled));
1863 goto bad;
1864 }
1865
1866 /* Found it - now remove it from the list of entries: */
1867 desc->action = NULL;
1868
1869 raw_spin_unlock_irqrestore(&desc->lock, flags);
1870
1871 unregister_handler_proc(irq, action);
1872
1873 irq_chip_pm_put(&desc->irq_data);
1874 module_put(desc->owner);
1875 return action;
1876
1877 bad:
1878 raw_spin_unlock_irqrestore(&desc->lock, flags);
1879 return NULL;
1880 }
1881
1882 /**
1883 * remove_percpu_irq - free a per-cpu interrupt
1884 * @irq: Interrupt line to free
1885 * @act: irqaction for the interrupt
1886 *
1887 * Used to remove interrupts statically setup by the early boot process.
1888 */
1889 void remove_percpu_irq(unsigned int irq, struct irqaction *act)
1890 {
1891 struct irq_desc *desc = irq_to_desc(irq);
1892
1893 if (desc && irq_settings_is_per_cpu_devid(desc))
1894 __free_percpu_irq(irq, act->percpu_dev_id);
1895 }
1896
1897 /**
1898 * free_percpu_irq - free an interrupt allocated with request_percpu_irq
1899 * @irq: Interrupt line to free
1900 * @dev_id: Device identity to free
1901 *
1902 * Remove a percpu interrupt handler. The handler is removed, but
1903 * the interrupt line is not disabled. This must be done on each
1904 * CPU before calling this function. The function does not return
1905 * until any executing interrupts for this IRQ have completed.
1906 *
1907 * This function must not be called from interrupt context.
1908 */
1909 void free_percpu_irq(unsigned int irq, void __percpu *dev_id)
1910 {
1911 struct irq_desc *desc = irq_to_desc(irq);
1912
1913 if (!desc || !irq_settings_is_per_cpu_devid(desc))
1914 return;
1915
1916 chip_bus_lock(desc);
1917 kfree(__free_percpu_irq(irq, dev_id));
1918 chip_bus_sync_unlock(desc);
1919 }
1920 EXPORT_SYMBOL_GPL(free_percpu_irq);
1921
1922 /**
1923 * setup_percpu_irq - setup a per-cpu interrupt
1924 * @irq: Interrupt line to setup
1925 * @act: irqaction for the interrupt
1926 *
1927 * Used to statically setup per-cpu interrupts in the early boot process.
1928 */
1929 int setup_percpu_irq(unsigned int irq, struct irqaction *act)
1930 {
1931 struct irq_desc *desc = irq_to_desc(irq);
1932 int retval;
1933
1934 if (!desc || !irq_settings_is_per_cpu_devid(desc))
1935 return -EINVAL;
1936
1937 retval = irq_chip_pm_get(&desc->irq_data);
1938 if (retval < 0)
1939 return retval;
1940
1941 chip_bus_lock(desc);
1942 retval = __setup_irq(irq, desc, act);
1943 chip_bus_sync_unlock(desc);
1944
1945 if (retval)
1946 irq_chip_pm_put(&desc->irq_data);
1947
1948 return retval;
1949 }
1950
1951 /**
1952 * request_percpu_irq - allocate a percpu interrupt line
1953 * @irq: Interrupt line to allocate
1954 * @handler: Function to be called when the IRQ occurs.
1955 * @devname: An ascii name for the claiming device
1956 * @dev_id: A percpu cookie passed back to the handler function
1957 *
1958 * This call allocates interrupt resources and enables the
1959 * interrupt on the local CPU. If the interrupt is supposed to be
1960 * enabled on other CPUs, it has to be done on each CPU using
1961 * enable_percpu_irq().
1962 *
1963 * Dev_id must be globally unique. It is a per-cpu variable, and
1964 * the handler gets called with the interrupted CPU's instance of
1965 * that variable.
1966 */
1967 int request_percpu_irq(unsigned int irq, irq_handler_t handler,
1968 const char *devname, void __percpu *dev_id)
1969 {
1970 struct irqaction *action;
1971 struct irq_desc *desc;
1972 int retval;
1973
1974 if (!dev_id)
1975 return -EINVAL;
1976
1977 desc = irq_to_desc(irq);
1978 if (!desc || !irq_settings_can_request(desc) ||
1979 !irq_settings_is_per_cpu_devid(desc))
1980 return -EINVAL;
1981
1982 action = kzalloc(sizeof(struct irqaction), GFP_KERNEL);
1983 if (!action)
1984 return -ENOMEM;
1985
1986 action->handler = handler;
1987 action->flags = IRQF_PERCPU | IRQF_NO_SUSPEND;
1988 action->name = devname;
1989 action->percpu_dev_id = dev_id;
1990
1991 retval = irq_chip_pm_get(&desc->irq_data);
1992 if (retval < 0) {
1993 kfree(action);
1994 return retval;
1995 }
1996
1997 chip_bus_lock(desc);
1998 retval = __setup_irq(irq, desc, action);
1999 chip_bus_sync_unlock(desc);
2000
2001 if (retval) {
2002 irq_chip_pm_put(&desc->irq_data);
2003 kfree(action);
2004 }
2005
2006 return retval;
2007 }
2008 EXPORT_SYMBOL_GPL(request_percpu_irq);
2009
2010 /**
2011 * irq_get_irqchip_state - returns the irqchip state of a interrupt.
2012 * @irq: Interrupt line that is forwarded to a VM
2013 * @which: One of IRQCHIP_STATE_* the caller wants to know about
2014 * @state: a pointer to a boolean where the state is to be storeed
2015 *
2016 * This call snapshots the internal irqchip state of an
2017 * interrupt, returning into @state the bit corresponding to
2018 * stage @which
2019 *
2020 * This function should be called with preemption disabled if the
2021 * interrupt controller has per-cpu registers.
2022 */
2023 int irq_get_irqchip_state(unsigned int irq, enum irqchip_irq_state which,
2024 bool *state)
2025 {
2026 struct irq_desc *desc;
2027 struct irq_data *data;
2028 struct irq_chip *chip;
2029 unsigned long flags;
2030 int err = -EINVAL;
2031
2032 desc = irq_get_desc_buslock(irq, &flags, 0);
2033 if (!desc)
2034 return err;
2035
2036 data = irq_desc_get_irq_data(desc);
2037
2038 do {
2039 chip = irq_data_get_irq_chip(data);
2040 if (chip->irq_get_irqchip_state)
2041 break;
2042 #ifdef CONFIG_IRQ_DOMAIN_HIERARCHY
2043 data = data->parent_data;
2044 #else
2045 data = NULL;
2046 #endif
2047 } while (data);
2048
2049 if (data)
2050 err = chip->irq_get_irqchip_state(data, which, state);
2051
2052 irq_put_desc_busunlock(desc, flags);
2053 return err;
2054 }
2055 EXPORT_SYMBOL_GPL(irq_get_irqchip_state);
2056
2057 /**
2058 * irq_set_irqchip_state - set the state of a forwarded interrupt.
2059 * @irq: Interrupt line that is forwarded to a VM
2060 * @which: State to be restored (one of IRQCHIP_STATE_*)
2061 * @val: Value corresponding to @which
2062 *
2063 * This call sets the internal irqchip state of an interrupt,
2064 * depending on the value of @which.
2065 *
2066 * This function should be called with preemption disabled if the
2067 * interrupt controller has per-cpu registers.
2068 */
2069 int irq_set_irqchip_state(unsigned int irq, enum irqchip_irq_state which,
2070 bool val)
2071 {
2072 struct irq_desc *desc;
2073 struct irq_data *data;
2074 struct irq_chip *chip;
2075 unsigned long flags;
2076 int err = -EINVAL;
2077
2078 desc = irq_get_desc_buslock(irq, &flags, 0);
2079 if (!desc)
2080 return err;
2081
2082 data = irq_desc_get_irq_data(desc);
2083
2084 do {
2085 chip = irq_data_get_irq_chip(data);
2086 if (chip->irq_set_irqchip_state)
2087 break;
2088 #ifdef CONFIG_IRQ_DOMAIN_HIERARCHY
2089 data = data->parent_data;
2090 #else
2091 data = NULL;
2092 #endif
2093 } while (data);
2094
2095 if (data)
2096 err = chip->irq_set_irqchip_state(data, which, val);
2097
2098 irq_put_desc_busunlock(desc, flags);
2099 return err;
2100 }
2101 EXPORT_SYMBOL_GPL(irq_set_irqchip_state);