]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - kernel/printk/printk.c
asm/sections: add helpers to check for section data
[mirror_ubuntu-artful-kernel.git] / kernel / printk / printk.c
1 /*
2 * linux/kernel/printk.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 *
6 * Modified to make sys_syslog() more flexible: added commands to
7 * return the last 4k of kernel messages, regardless of whether
8 * they've been read or not. Added option to suppress kernel printk's
9 * to the console. Added hook for sending the console messages
10 * elsewhere, in preparation for a serial line console (someday).
11 * Ted Ts'o, 2/11/93.
12 * Modified for sysctl support, 1/8/97, Chris Horn.
13 * Fixed SMP synchronization, 08/08/99, Manfred Spraul
14 * manfred@colorfullife.com
15 * Rewrote bits to get rid of console_lock
16 * 01Mar01 Andrew Morton
17 */
18
19 #include <linux/kernel.h>
20 #include <linux/mm.h>
21 #include <linux/tty.h>
22 #include <linux/tty_driver.h>
23 #include <linux/console.h>
24 #include <linux/init.h>
25 #include <linux/jiffies.h>
26 #include <linux/nmi.h>
27 #include <linux/module.h>
28 #include <linux/moduleparam.h>
29 #include <linux/interrupt.h> /* For in_interrupt() */
30 #include <linux/delay.h>
31 #include <linux/smp.h>
32 #include <linux/security.h>
33 #include <linux/bootmem.h>
34 #include <linux/memblock.h>
35 #include <linux/syscalls.h>
36 #include <linux/kexec.h>
37 #include <linux/kdb.h>
38 #include <linux/ratelimit.h>
39 #include <linux/kmsg_dump.h>
40 #include <linux/syslog.h>
41 #include <linux/cpu.h>
42 #include <linux/notifier.h>
43 #include <linux/rculist.h>
44 #include <linux/poll.h>
45 #include <linux/irq_work.h>
46 #include <linux/utsname.h>
47 #include <linux/ctype.h>
48 #include <linux/uio.h>
49
50 #include <asm/uaccess.h>
51
52 #define CREATE_TRACE_POINTS
53 #include <trace/events/printk.h>
54
55 #include "console_cmdline.h"
56 #include "braille.h"
57
58 int console_printk[4] = {
59 CONSOLE_LOGLEVEL_DEFAULT, /* console_loglevel */
60 MESSAGE_LOGLEVEL_DEFAULT, /* default_message_loglevel */
61 CONSOLE_LOGLEVEL_MIN, /* minimum_console_loglevel */
62 CONSOLE_LOGLEVEL_DEFAULT, /* default_console_loglevel */
63 };
64
65 /*
66 * Low level drivers may need that to know if they can schedule in
67 * their unblank() callback or not. So let's export it.
68 */
69 int oops_in_progress;
70 EXPORT_SYMBOL(oops_in_progress);
71
72 /*
73 * console_sem protects the console_drivers list, and also
74 * provides serialisation for access to the entire console
75 * driver system.
76 */
77 static DEFINE_SEMAPHORE(console_sem);
78 struct console *console_drivers;
79 EXPORT_SYMBOL_GPL(console_drivers);
80
81 #ifdef CONFIG_LOCKDEP
82 static struct lockdep_map console_lock_dep_map = {
83 .name = "console_lock"
84 };
85 #endif
86
87 /*
88 * Number of registered extended console drivers.
89 *
90 * If extended consoles are present, in-kernel cont reassembly is disabled
91 * and each fragment is stored as a separate log entry with proper
92 * continuation flag so that every emitted message has full metadata. This
93 * doesn't change the result for regular consoles or /proc/kmsg. For
94 * /dev/kmsg, as long as the reader concatenates messages according to
95 * consecutive continuation flags, the end result should be the same too.
96 */
97 static int nr_ext_console_drivers;
98
99 /*
100 * Helper macros to handle lockdep when locking/unlocking console_sem. We use
101 * macros instead of functions so that _RET_IP_ contains useful information.
102 */
103 #define down_console_sem() do { \
104 down(&console_sem);\
105 mutex_acquire(&console_lock_dep_map, 0, 0, _RET_IP_);\
106 } while (0)
107
108 static int __down_trylock_console_sem(unsigned long ip)
109 {
110 if (down_trylock(&console_sem))
111 return 1;
112 mutex_acquire(&console_lock_dep_map, 0, 1, ip);
113 return 0;
114 }
115 #define down_trylock_console_sem() __down_trylock_console_sem(_RET_IP_)
116
117 #define up_console_sem() do { \
118 mutex_release(&console_lock_dep_map, 1, _RET_IP_);\
119 up(&console_sem);\
120 } while (0)
121
122 /*
123 * This is used for debugging the mess that is the VT code by
124 * keeping track if we have the console semaphore held. It's
125 * definitely not the perfect debug tool (we don't know if _WE_
126 * hold it and are racing, but it helps tracking those weird code
127 * paths in the console code where we end up in places I want
128 * locked without the console sempahore held).
129 */
130 static int console_locked, console_suspended;
131
132 /*
133 * If exclusive_console is non-NULL then only this console is to be printed to.
134 */
135 static struct console *exclusive_console;
136
137 /*
138 * Array of consoles built from command line options (console=)
139 */
140
141 #define MAX_CMDLINECONSOLES 8
142
143 static struct console_cmdline console_cmdline[MAX_CMDLINECONSOLES];
144
145 static int selected_console = -1;
146 static int preferred_console = -1;
147 int console_set_on_cmdline;
148 EXPORT_SYMBOL(console_set_on_cmdline);
149
150 /* Flag: console code may call schedule() */
151 static int console_may_schedule;
152
153 /*
154 * The printk log buffer consists of a chain of concatenated variable
155 * length records. Every record starts with a record header, containing
156 * the overall length of the record.
157 *
158 * The heads to the first and last entry in the buffer, as well as the
159 * sequence numbers of these entries are maintained when messages are
160 * stored.
161 *
162 * If the heads indicate available messages, the length in the header
163 * tells the start next message. A length == 0 for the next message
164 * indicates a wrap-around to the beginning of the buffer.
165 *
166 * Every record carries the monotonic timestamp in microseconds, as well as
167 * the standard userspace syslog level and syslog facility. The usual
168 * kernel messages use LOG_KERN; userspace-injected messages always carry
169 * a matching syslog facility, by default LOG_USER. The origin of every
170 * message can be reliably determined that way.
171 *
172 * The human readable log message directly follows the message header. The
173 * length of the message text is stored in the header, the stored message
174 * is not terminated.
175 *
176 * Optionally, a message can carry a dictionary of properties (key/value pairs),
177 * to provide userspace with a machine-readable message context.
178 *
179 * Examples for well-defined, commonly used property names are:
180 * DEVICE=b12:8 device identifier
181 * b12:8 block dev_t
182 * c127:3 char dev_t
183 * n8 netdev ifindex
184 * +sound:card0 subsystem:devname
185 * SUBSYSTEM=pci driver-core subsystem name
186 *
187 * Valid characters in property names are [a-zA-Z0-9.-_]. The plain text value
188 * follows directly after a '=' character. Every property is terminated by
189 * a '\0' character. The last property is not terminated.
190 *
191 * Example of a message structure:
192 * 0000 ff 8f 00 00 00 00 00 00 monotonic time in nsec
193 * 0008 34 00 record is 52 bytes long
194 * 000a 0b 00 text is 11 bytes long
195 * 000c 1f 00 dictionary is 23 bytes long
196 * 000e 03 00 LOG_KERN (facility) LOG_ERR (level)
197 * 0010 69 74 27 73 20 61 20 6c "it's a l"
198 * 69 6e 65 "ine"
199 * 001b 44 45 56 49 43 "DEVIC"
200 * 45 3d 62 38 3a 32 00 44 "E=b8:2\0D"
201 * 52 49 56 45 52 3d 62 75 "RIVER=bu"
202 * 67 "g"
203 * 0032 00 00 00 padding to next message header
204 *
205 * The 'struct printk_log' buffer header must never be directly exported to
206 * userspace, it is a kernel-private implementation detail that might
207 * need to be changed in the future, when the requirements change.
208 *
209 * /dev/kmsg exports the structured data in the following line format:
210 * "<level>,<sequnum>,<timestamp>,<contflag>[,additional_values, ... ];<message text>\n"
211 *
212 * Users of the export format should ignore possible additional values
213 * separated by ',', and find the message after the ';' character.
214 *
215 * The optional key/value pairs are attached as continuation lines starting
216 * with a space character and terminated by a newline. All possible
217 * non-prinatable characters are escaped in the "\xff" notation.
218 */
219
220 enum log_flags {
221 LOG_NOCONS = 1, /* already flushed, do not print to console */
222 LOG_NEWLINE = 2, /* text ended with a newline */
223 LOG_PREFIX = 4, /* text started with a prefix */
224 LOG_CONT = 8, /* text is a fragment of a continuation line */
225 };
226
227 struct printk_log {
228 u64 ts_nsec; /* timestamp in nanoseconds */
229 u16 len; /* length of entire record */
230 u16 text_len; /* length of text buffer */
231 u16 dict_len; /* length of dictionary buffer */
232 u8 facility; /* syslog facility */
233 u8 flags:5; /* internal record flags */
234 u8 level:3; /* syslog level */
235 };
236
237 /*
238 * The logbuf_lock protects kmsg buffer, indices, counters. This can be taken
239 * within the scheduler's rq lock. It must be released before calling
240 * console_unlock() or anything else that might wake up a process.
241 */
242 static DEFINE_RAW_SPINLOCK(logbuf_lock);
243
244 #ifdef CONFIG_PRINTK
245 DECLARE_WAIT_QUEUE_HEAD(log_wait);
246 /* the next printk record to read by syslog(READ) or /proc/kmsg */
247 static u64 syslog_seq;
248 static u32 syslog_idx;
249 static enum log_flags syslog_prev;
250 static size_t syslog_partial;
251
252 /* index and sequence number of the first record stored in the buffer */
253 static u64 log_first_seq;
254 static u32 log_first_idx;
255
256 /* index and sequence number of the next record to store in the buffer */
257 static u64 log_next_seq;
258 static u32 log_next_idx;
259
260 /* the next printk record to write to the console */
261 static u64 console_seq;
262 static u32 console_idx;
263 static enum log_flags console_prev;
264
265 /* the next printk record to read after the last 'clear' command */
266 static u64 clear_seq;
267 static u32 clear_idx;
268
269 #define PREFIX_MAX 32
270 #define LOG_LINE_MAX (1024 - PREFIX_MAX)
271
272 #define LOG_LEVEL(v) ((v) & 0x07)
273 #define LOG_FACILITY(v) ((v) >> 3 & 0xff)
274
275 /* record buffer */
276 #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS)
277 #define LOG_ALIGN 4
278 #else
279 #define LOG_ALIGN __alignof__(struct printk_log)
280 #endif
281 #define __LOG_BUF_LEN (1 << CONFIG_LOG_BUF_SHIFT)
282 static char __log_buf[__LOG_BUF_LEN] __aligned(LOG_ALIGN);
283 static char *log_buf = __log_buf;
284 static u32 log_buf_len = __LOG_BUF_LEN;
285
286 /* Return log buffer address */
287 char *log_buf_addr_get(void)
288 {
289 return log_buf;
290 }
291
292 /* Return log buffer size */
293 u32 log_buf_len_get(void)
294 {
295 return log_buf_len;
296 }
297
298 /* human readable text of the record */
299 static char *log_text(const struct printk_log *msg)
300 {
301 return (char *)msg + sizeof(struct printk_log);
302 }
303
304 /* optional key/value pair dictionary attached to the record */
305 static char *log_dict(const struct printk_log *msg)
306 {
307 return (char *)msg + sizeof(struct printk_log) + msg->text_len;
308 }
309
310 /* get record by index; idx must point to valid msg */
311 static struct printk_log *log_from_idx(u32 idx)
312 {
313 struct printk_log *msg = (struct printk_log *)(log_buf + idx);
314
315 /*
316 * A length == 0 record is the end of buffer marker. Wrap around and
317 * read the message at the start of the buffer.
318 */
319 if (!msg->len)
320 return (struct printk_log *)log_buf;
321 return msg;
322 }
323
324 /* get next record; idx must point to valid msg */
325 static u32 log_next(u32 idx)
326 {
327 struct printk_log *msg = (struct printk_log *)(log_buf + idx);
328
329 /* length == 0 indicates the end of the buffer; wrap */
330 /*
331 * A length == 0 record is the end of buffer marker. Wrap around and
332 * read the message at the start of the buffer as *this* one, and
333 * return the one after that.
334 */
335 if (!msg->len) {
336 msg = (struct printk_log *)log_buf;
337 return msg->len;
338 }
339 return idx + msg->len;
340 }
341
342 /*
343 * Check whether there is enough free space for the given message.
344 *
345 * The same values of first_idx and next_idx mean that the buffer
346 * is either empty or full.
347 *
348 * If the buffer is empty, we must respect the position of the indexes.
349 * They cannot be reset to the beginning of the buffer.
350 */
351 static int logbuf_has_space(u32 msg_size, bool empty)
352 {
353 u32 free;
354
355 if (log_next_idx > log_first_idx || empty)
356 free = max(log_buf_len - log_next_idx, log_first_idx);
357 else
358 free = log_first_idx - log_next_idx;
359
360 /*
361 * We need space also for an empty header that signalizes wrapping
362 * of the buffer.
363 */
364 return free >= msg_size + sizeof(struct printk_log);
365 }
366
367 static int log_make_free_space(u32 msg_size)
368 {
369 while (log_first_seq < log_next_seq) {
370 if (logbuf_has_space(msg_size, false))
371 return 0;
372 /* drop old messages until we have enough contiguous space */
373 log_first_idx = log_next(log_first_idx);
374 log_first_seq++;
375 }
376
377 /* sequence numbers are equal, so the log buffer is empty */
378 if (logbuf_has_space(msg_size, true))
379 return 0;
380
381 return -ENOMEM;
382 }
383
384 /* compute the message size including the padding bytes */
385 static u32 msg_used_size(u16 text_len, u16 dict_len, u32 *pad_len)
386 {
387 u32 size;
388
389 size = sizeof(struct printk_log) + text_len + dict_len;
390 *pad_len = (-size) & (LOG_ALIGN - 1);
391 size += *pad_len;
392
393 return size;
394 }
395
396 /*
397 * Define how much of the log buffer we could take at maximum. The value
398 * must be greater than two. Note that only half of the buffer is available
399 * when the index points to the middle.
400 */
401 #define MAX_LOG_TAKE_PART 4
402 static const char trunc_msg[] = "<truncated>";
403
404 static u32 truncate_msg(u16 *text_len, u16 *trunc_msg_len,
405 u16 *dict_len, u32 *pad_len)
406 {
407 /*
408 * The message should not take the whole buffer. Otherwise, it might
409 * get removed too soon.
410 */
411 u32 max_text_len = log_buf_len / MAX_LOG_TAKE_PART;
412 if (*text_len > max_text_len)
413 *text_len = max_text_len;
414 /* enable the warning message */
415 *trunc_msg_len = strlen(trunc_msg);
416 /* disable the "dict" completely */
417 *dict_len = 0;
418 /* compute the size again, count also the warning message */
419 return msg_used_size(*text_len + *trunc_msg_len, 0, pad_len);
420 }
421
422 /* insert record into the buffer, discard old ones, update heads */
423 static int log_store(int facility, int level,
424 enum log_flags flags, u64 ts_nsec,
425 const char *dict, u16 dict_len,
426 const char *text, u16 text_len)
427 {
428 struct printk_log *msg;
429 u32 size, pad_len;
430 u16 trunc_msg_len = 0;
431
432 /* number of '\0' padding bytes to next message */
433 size = msg_used_size(text_len, dict_len, &pad_len);
434
435 if (log_make_free_space(size)) {
436 /* truncate the message if it is too long for empty buffer */
437 size = truncate_msg(&text_len, &trunc_msg_len,
438 &dict_len, &pad_len);
439 /* survive when the log buffer is too small for trunc_msg */
440 if (log_make_free_space(size))
441 return 0;
442 }
443
444 if (log_next_idx + size + sizeof(struct printk_log) > log_buf_len) {
445 /*
446 * This message + an additional empty header does not fit
447 * at the end of the buffer. Add an empty header with len == 0
448 * to signify a wrap around.
449 */
450 memset(log_buf + log_next_idx, 0, sizeof(struct printk_log));
451 log_next_idx = 0;
452 }
453
454 /* fill message */
455 msg = (struct printk_log *)(log_buf + log_next_idx);
456 memcpy(log_text(msg), text, text_len);
457 msg->text_len = text_len;
458 if (trunc_msg_len) {
459 memcpy(log_text(msg) + text_len, trunc_msg, trunc_msg_len);
460 msg->text_len += trunc_msg_len;
461 }
462 memcpy(log_dict(msg), dict, dict_len);
463 msg->dict_len = dict_len;
464 msg->facility = facility;
465 msg->level = level & 7;
466 msg->flags = flags & 0x1f;
467 if (ts_nsec > 0)
468 msg->ts_nsec = ts_nsec;
469 else
470 msg->ts_nsec = local_clock();
471 memset(log_dict(msg) + dict_len, 0, pad_len);
472 msg->len = size;
473
474 /* insert message */
475 log_next_idx += msg->len;
476 log_next_seq++;
477
478 return msg->text_len;
479 }
480
481 int dmesg_restrict = IS_ENABLED(CONFIG_SECURITY_DMESG_RESTRICT);
482
483 static int syslog_action_restricted(int type)
484 {
485 if (dmesg_restrict)
486 return 1;
487 /*
488 * Unless restricted, we allow "read all" and "get buffer size"
489 * for everybody.
490 */
491 return type != SYSLOG_ACTION_READ_ALL &&
492 type != SYSLOG_ACTION_SIZE_BUFFER;
493 }
494
495 int check_syslog_permissions(int type, int source)
496 {
497 /*
498 * If this is from /proc/kmsg and we've already opened it, then we've
499 * already done the capabilities checks at open time.
500 */
501 if (source == SYSLOG_FROM_PROC && type != SYSLOG_ACTION_OPEN)
502 goto ok;
503
504 if (syslog_action_restricted(type)) {
505 if (capable(CAP_SYSLOG))
506 goto ok;
507 /*
508 * For historical reasons, accept CAP_SYS_ADMIN too, with
509 * a warning.
510 */
511 if (capable(CAP_SYS_ADMIN)) {
512 pr_warn_once("%s (%d): Attempt to access syslog with "
513 "CAP_SYS_ADMIN but no CAP_SYSLOG "
514 "(deprecated).\n",
515 current->comm, task_pid_nr(current));
516 goto ok;
517 }
518 return -EPERM;
519 }
520 ok:
521 return security_syslog(type);
522 }
523 EXPORT_SYMBOL_GPL(check_syslog_permissions);
524
525 static void append_char(char **pp, char *e, char c)
526 {
527 if (*pp < e)
528 *(*pp)++ = c;
529 }
530
531 static ssize_t msg_print_ext_header(char *buf, size_t size,
532 struct printk_log *msg, u64 seq,
533 enum log_flags prev_flags)
534 {
535 u64 ts_usec = msg->ts_nsec;
536 char cont = '-';
537
538 do_div(ts_usec, 1000);
539
540 /*
541 * If we couldn't merge continuation line fragments during the print,
542 * export the stored flags to allow an optional external merge of the
543 * records. Merging the records isn't always neccessarily correct, like
544 * when we hit a race during printing. In most cases though, it produces
545 * better readable output. 'c' in the record flags mark the first
546 * fragment of a line, '+' the following.
547 */
548 if (msg->flags & LOG_CONT && !(prev_flags & LOG_CONT))
549 cont = 'c';
550 else if ((msg->flags & LOG_CONT) ||
551 ((prev_flags & LOG_CONT) && !(msg->flags & LOG_PREFIX)))
552 cont = '+';
553
554 return scnprintf(buf, size, "%u,%llu,%llu,%c;",
555 (msg->facility << 3) | msg->level, seq, ts_usec, cont);
556 }
557
558 static ssize_t msg_print_ext_body(char *buf, size_t size,
559 char *dict, size_t dict_len,
560 char *text, size_t text_len)
561 {
562 char *p = buf, *e = buf + size;
563 size_t i;
564
565 /* escape non-printable characters */
566 for (i = 0; i < text_len; i++) {
567 unsigned char c = text[i];
568
569 if (c < ' ' || c >= 127 || c == '\\')
570 p += scnprintf(p, e - p, "\\x%02x", c);
571 else
572 append_char(&p, e, c);
573 }
574 append_char(&p, e, '\n');
575
576 if (dict_len) {
577 bool line = true;
578
579 for (i = 0; i < dict_len; i++) {
580 unsigned char c = dict[i];
581
582 if (line) {
583 append_char(&p, e, ' ');
584 line = false;
585 }
586
587 if (c == '\0') {
588 append_char(&p, e, '\n');
589 line = true;
590 continue;
591 }
592
593 if (c < ' ' || c >= 127 || c == '\\') {
594 p += scnprintf(p, e - p, "\\x%02x", c);
595 continue;
596 }
597
598 append_char(&p, e, c);
599 }
600 append_char(&p, e, '\n');
601 }
602
603 return p - buf;
604 }
605
606 /* /dev/kmsg - userspace message inject/listen interface */
607 struct devkmsg_user {
608 u64 seq;
609 u32 idx;
610 enum log_flags prev;
611 struct mutex lock;
612 char buf[CONSOLE_EXT_LOG_MAX];
613 };
614
615 static ssize_t devkmsg_write(struct kiocb *iocb, struct iov_iter *from)
616 {
617 char *buf, *line;
618 int level = default_message_loglevel;
619 int facility = 1; /* LOG_USER */
620 size_t len = iov_iter_count(from);
621 ssize_t ret = len;
622
623 if (len > LOG_LINE_MAX)
624 return -EINVAL;
625 buf = kmalloc(len+1, GFP_KERNEL);
626 if (buf == NULL)
627 return -ENOMEM;
628
629 buf[len] = '\0';
630 if (copy_from_iter(buf, len, from) != len) {
631 kfree(buf);
632 return -EFAULT;
633 }
634
635 /*
636 * Extract and skip the syslog prefix <[0-9]*>. Coming from userspace
637 * the decimal value represents 32bit, the lower 3 bit are the log
638 * level, the rest are the log facility.
639 *
640 * If no prefix or no userspace facility is specified, we
641 * enforce LOG_USER, to be able to reliably distinguish
642 * kernel-generated messages from userspace-injected ones.
643 */
644 line = buf;
645 if (line[0] == '<') {
646 char *endp = NULL;
647 unsigned int u;
648
649 u = simple_strtoul(line + 1, &endp, 10);
650 if (endp && endp[0] == '>') {
651 level = LOG_LEVEL(u);
652 if (LOG_FACILITY(u) != 0)
653 facility = LOG_FACILITY(u);
654 endp++;
655 len -= endp - line;
656 line = endp;
657 }
658 }
659
660 printk_emit(facility, level, NULL, 0, "%s", line);
661 kfree(buf);
662 return ret;
663 }
664
665 static ssize_t devkmsg_read(struct file *file, char __user *buf,
666 size_t count, loff_t *ppos)
667 {
668 struct devkmsg_user *user = file->private_data;
669 struct printk_log *msg;
670 size_t len;
671 ssize_t ret;
672
673 if (!user)
674 return -EBADF;
675
676 ret = mutex_lock_interruptible(&user->lock);
677 if (ret)
678 return ret;
679 raw_spin_lock_irq(&logbuf_lock);
680 while (user->seq == log_next_seq) {
681 if (file->f_flags & O_NONBLOCK) {
682 ret = -EAGAIN;
683 raw_spin_unlock_irq(&logbuf_lock);
684 goto out;
685 }
686
687 raw_spin_unlock_irq(&logbuf_lock);
688 ret = wait_event_interruptible(log_wait,
689 user->seq != log_next_seq);
690 if (ret)
691 goto out;
692 raw_spin_lock_irq(&logbuf_lock);
693 }
694
695 if (user->seq < log_first_seq) {
696 /* our last seen message is gone, return error and reset */
697 user->idx = log_first_idx;
698 user->seq = log_first_seq;
699 ret = -EPIPE;
700 raw_spin_unlock_irq(&logbuf_lock);
701 goto out;
702 }
703
704 msg = log_from_idx(user->idx);
705 len = msg_print_ext_header(user->buf, sizeof(user->buf),
706 msg, user->seq, user->prev);
707 len += msg_print_ext_body(user->buf + len, sizeof(user->buf) - len,
708 log_dict(msg), msg->dict_len,
709 log_text(msg), msg->text_len);
710
711 user->prev = msg->flags;
712 user->idx = log_next(user->idx);
713 user->seq++;
714 raw_spin_unlock_irq(&logbuf_lock);
715
716 if (len > count) {
717 ret = -EINVAL;
718 goto out;
719 }
720
721 if (copy_to_user(buf, user->buf, len)) {
722 ret = -EFAULT;
723 goto out;
724 }
725 ret = len;
726 out:
727 mutex_unlock(&user->lock);
728 return ret;
729 }
730
731 static loff_t devkmsg_llseek(struct file *file, loff_t offset, int whence)
732 {
733 struct devkmsg_user *user = file->private_data;
734 loff_t ret = 0;
735
736 if (!user)
737 return -EBADF;
738 if (offset)
739 return -ESPIPE;
740
741 raw_spin_lock_irq(&logbuf_lock);
742 switch (whence) {
743 case SEEK_SET:
744 /* the first record */
745 user->idx = log_first_idx;
746 user->seq = log_first_seq;
747 break;
748 case SEEK_DATA:
749 /*
750 * The first record after the last SYSLOG_ACTION_CLEAR,
751 * like issued by 'dmesg -c'. Reading /dev/kmsg itself
752 * changes no global state, and does not clear anything.
753 */
754 user->idx = clear_idx;
755 user->seq = clear_seq;
756 break;
757 case SEEK_END:
758 /* after the last record */
759 user->idx = log_next_idx;
760 user->seq = log_next_seq;
761 break;
762 default:
763 ret = -EINVAL;
764 }
765 raw_spin_unlock_irq(&logbuf_lock);
766 return ret;
767 }
768
769 static unsigned int devkmsg_poll(struct file *file, poll_table *wait)
770 {
771 struct devkmsg_user *user = file->private_data;
772 int ret = 0;
773
774 if (!user)
775 return POLLERR|POLLNVAL;
776
777 poll_wait(file, &log_wait, wait);
778
779 raw_spin_lock_irq(&logbuf_lock);
780 if (user->seq < log_next_seq) {
781 /* return error when data has vanished underneath us */
782 if (user->seq < log_first_seq)
783 ret = POLLIN|POLLRDNORM|POLLERR|POLLPRI;
784 else
785 ret = POLLIN|POLLRDNORM;
786 }
787 raw_spin_unlock_irq(&logbuf_lock);
788
789 return ret;
790 }
791
792 static int devkmsg_open(struct inode *inode, struct file *file)
793 {
794 struct devkmsg_user *user;
795 int err;
796
797 /* write-only does not need any file context */
798 if ((file->f_flags & O_ACCMODE) == O_WRONLY)
799 return 0;
800
801 err = check_syslog_permissions(SYSLOG_ACTION_READ_ALL,
802 SYSLOG_FROM_READER);
803 if (err)
804 return err;
805
806 user = kmalloc(sizeof(struct devkmsg_user), GFP_KERNEL);
807 if (!user)
808 return -ENOMEM;
809
810 mutex_init(&user->lock);
811
812 raw_spin_lock_irq(&logbuf_lock);
813 user->idx = log_first_idx;
814 user->seq = log_first_seq;
815 raw_spin_unlock_irq(&logbuf_lock);
816
817 file->private_data = user;
818 return 0;
819 }
820
821 static int devkmsg_release(struct inode *inode, struct file *file)
822 {
823 struct devkmsg_user *user = file->private_data;
824
825 if (!user)
826 return 0;
827
828 mutex_destroy(&user->lock);
829 kfree(user);
830 return 0;
831 }
832
833 const struct file_operations kmsg_fops = {
834 .open = devkmsg_open,
835 .read = devkmsg_read,
836 .write_iter = devkmsg_write,
837 .llseek = devkmsg_llseek,
838 .poll = devkmsg_poll,
839 .release = devkmsg_release,
840 };
841
842 #ifdef CONFIG_KEXEC_CORE
843 /*
844 * This appends the listed symbols to /proc/vmcore
845 *
846 * /proc/vmcore is used by various utilities, like crash and makedumpfile to
847 * obtain access to symbols that are otherwise very difficult to locate. These
848 * symbols are specifically used so that utilities can access and extract the
849 * dmesg log from a vmcore file after a crash.
850 */
851 void log_buf_kexec_setup(void)
852 {
853 VMCOREINFO_SYMBOL(log_buf);
854 VMCOREINFO_SYMBOL(log_buf_len);
855 VMCOREINFO_SYMBOL(log_first_idx);
856 VMCOREINFO_SYMBOL(log_next_idx);
857 /*
858 * Export struct printk_log size and field offsets. User space tools can
859 * parse it and detect any changes to structure down the line.
860 */
861 VMCOREINFO_STRUCT_SIZE(printk_log);
862 VMCOREINFO_OFFSET(printk_log, ts_nsec);
863 VMCOREINFO_OFFSET(printk_log, len);
864 VMCOREINFO_OFFSET(printk_log, text_len);
865 VMCOREINFO_OFFSET(printk_log, dict_len);
866 }
867 #endif
868
869 /* requested log_buf_len from kernel cmdline */
870 static unsigned long __initdata new_log_buf_len;
871
872 /* we practice scaling the ring buffer by powers of 2 */
873 static void __init log_buf_len_update(unsigned size)
874 {
875 if (size)
876 size = roundup_pow_of_two(size);
877 if (size > log_buf_len)
878 new_log_buf_len = size;
879 }
880
881 /* save requested log_buf_len since it's too early to process it */
882 static int __init log_buf_len_setup(char *str)
883 {
884 unsigned size = memparse(str, &str);
885
886 log_buf_len_update(size);
887
888 return 0;
889 }
890 early_param("log_buf_len", log_buf_len_setup);
891
892 #ifdef CONFIG_SMP
893 #define __LOG_CPU_MAX_BUF_LEN (1 << CONFIG_LOG_CPU_MAX_BUF_SHIFT)
894
895 static void __init log_buf_add_cpu(void)
896 {
897 unsigned int cpu_extra;
898
899 /*
900 * archs should set up cpu_possible_bits properly with
901 * set_cpu_possible() after setup_arch() but just in
902 * case lets ensure this is valid.
903 */
904 if (num_possible_cpus() == 1)
905 return;
906
907 cpu_extra = (num_possible_cpus() - 1) * __LOG_CPU_MAX_BUF_LEN;
908
909 /* by default this will only continue through for large > 64 CPUs */
910 if (cpu_extra <= __LOG_BUF_LEN / 2)
911 return;
912
913 pr_info("log_buf_len individual max cpu contribution: %d bytes\n",
914 __LOG_CPU_MAX_BUF_LEN);
915 pr_info("log_buf_len total cpu_extra contributions: %d bytes\n",
916 cpu_extra);
917 pr_info("log_buf_len min size: %d bytes\n", __LOG_BUF_LEN);
918
919 log_buf_len_update(cpu_extra + __LOG_BUF_LEN);
920 }
921 #else /* !CONFIG_SMP */
922 static inline void log_buf_add_cpu(void) {}
923 #endif /* CONFIG_SMP */
924
925 void __init setup_log_buf(int early)
926 {
927 unsigned long flags;
928 char *new_log_buf;
929 int free;
930
931 if (log_buf != __log_buf)
932 return;
933
934 if (!early && !new_log_buf_len)
935 log_buf_add_cpu();
936
937 if (!new_log_buf_len)
938 return;
939
940 if (early) {
941 new_log_buf =
942 memblock_virt_alloc(new_log_buf_len, LOG_ALIGN);
943 } else {
944 new_log_buf = memblock_virt_alloc_nopanic(new_log_buf_len,
945 LOG_ALIGN);
946 }
947
948 if (unlikely(!new_log_buf)) {
949 pr_err("log_buf_len: %ld bytes not available\n",
950 new_log_buf_len);
951 return;
952 }
953
954 raw_spin_lock_irqsave(&logbuf_lock, flags);
955 log_buf_len = new_log_buf_len;
956 log_buf = new_log_buf;
957 new_log_buf_len = 0;
958 free = __LOG_BUF_LEN - log_next_idx;
959 memcpy(log_buf, __log_buf, __LOG_BUF_LEN);
960 raw_spin_unlock_irqrestore(&logbuf_lock, flags);
961
962 pr_info("log_buf_len: %d bytes\n", log_buf_len);
963 pr_info("early log buf free: %d(%d%%)\n",
964 free, (free * 100) / __LOG_BUF_LEN);
965 }
966
967 static bool __read_mostly ignore_loglevel;
968
969 static int __init ignore_loglevel_setup(char *str)
970 {
971 ignore_loglevel = true;
972 pr_info("debug: ignoring loglevel setting.\n");
973
974 return 0;
975 }
976
977 early_param("ignore_loglevel", ignore_loglevel_setup);
978 module_param(ignore_loglevel, bool, S_IRUGO | S_IWUSR);
979 MODULE_PARM_DESC(ignore_loglevel,
980 "ignore loglevel setting (prints all kernel messages to the console)");
981
982 #ifdef CONFIG_BOOT_PRINTK_DELAY
983
984 static int boot_delay; /* msecs delay after each printk during bootup */
985 static unsigned long long loops_per_msec; /* based on boot_delay */
986
987 static int __init boot_delay_setup(char *str)
988 {
989 unsigned long lpj;
990
991 lpj = preset_lpj ? preset_lpj : 1000000; /* some guess */
992 loops_per_msec = (unsigned long long)lpj / 1000 * HZ;
993
994 get_option(&str, &boot_delay);
995 if (boot_delay > 10 * 1000)
996 boot_delay = 0;
997
998 pr_debug("boot_delay: %u, preset_lpj: %ld, lpj: %lu, "
999 "HZ: %d, loops_per_msec: %llu\n",
1000 boot_delay, preset_lpj, lpj, HZ, loops_per_msec);
1001 return 0;
1002 }
1003 early_param("boot_delay", boot_delay_setup);
1004
1005 static void boot_delay_msec(int level)
1006 {
1007 unsigned long long k;
1008 unsigned long timeout;
1009
1010 if ((boot_delay == 0 || system_state != SYSTEM_BOOTING)
1011 || (level >= console_loglevel && !ignore_loglevel)) {
1012 return;
1013 }
1014
1015 k = (unsigned long long)loops_per_msec * boot_delay;
1016
1017 timeout = jiffies + msecs_to_jiffies(boot_delay);
1018 while (k) {
1019 k--;
1020 cpu_relax();
1021 /*
1022 * use (volatile) jiffies to prevent
1023 * compiler reduction; loop termination via jiffies
1024 * is secondary and may or may not happen.
1025 */
1026 if (time_after(jiffies, timeout))
1027 break;
1028 touch_nmi_watchdog();
1029 }
1030 }
1031 #else
1032 static inline void boot_delay_msec(int level)
1033 {
1034 }
1035 #endif
1036
1037 static bool printk_time = IS_ENABLED(CONFIG_PRINTK_TIME);
1038 module_param_named(time, printk_time, bool, S_IRUGO | S_IWUSR);
1039
1040 static size_t print_time(u64 ts, char *buf)
1041 {
1042 unsigned long rem_nsec;
1043
1044 if (!printk_time)
1045 return 0;
1046
1047 rem_nsec = do_div(ts, 1000000000);
1048
1049 if (!buf)
1050 return snprintf(NULL, 0, "[%5lu.000000] ", (unsigned long)ts);
1051
1052 return sprintf(buf, "[%5lu.%06lu] ",
1053 (unsigned long)ts, rem_nsec / 1000);
1054 }
1055
1056 static size_t print_prefix(const struct printk_log *msg, bool syslog, char *buf)
1057 {
1058 size_t len = 0;
1059 unsigned int prefix = (msg->facility << 3) | msg->level;
1060
1061 if (syslog) {
1062 if (buf) {
1063 len += sprintf(buf, "<%u>", prefix);
1064 } else {
1065 len += 3;
1066 if (prefix > 999)
1067 len += 3;
1068 else if (prefix > 99)
1069 len += 2;
1070 else if (prefix > 9)
1071 len++;
1072 }
1073 }
1074
1075 len += print_time(msg->ts_nsec, buf ? buf + len : NULL);
1076 return len;
1077 }
1078
1079 static size_t msg_print_text(const struct printk_log *msg, enum log_flags prev,
1080 bool syslog, char *buf, size_t size)
1081 {
1082 const char *text = log_text(msg);
1083 size_t text_size = msg->text_len;
1084 bool prefix = true;
1085 bool newline = true;
1086 size_t len = 0;
1087
1088 if ((prev & LOG_CONT) && !(msg->flags & LOG_PREFIX))
1089 prefix = false;
1090
1091 if (msg->flags & LOG_CONT) {
1092 if ((prev & LOG_CONT) && !(prev & LOG_NEWLINE))
1093 prefix = false;
1094
1095 if (!(msg->flags & LOG_NEWLINE))
1096 newline = false;
1097 }
1098
1099 do {
1100 const char *next = memchr(text, '\n', text_size);
1101 size_t text_len;
1102
1103 if (next) {
1104 text_len = next - text;
1105 next++;
1106 text_size -= next - text;
1107 } else {
1108 text_len = text_size;
1109 }
1110
1111 if (buf) {
1112 if (print_prefix(msg, syslog, NULL) +
1113 text_len + 1 >= size - len)
1114 break;
1115
1116 if (prefix)
1117 len += print_prefix(msg, syslog, buf + len);
1118 memcpy(buf + len, text, text_len);
1119 len += text_len;
1120 if (next || newline)
1121 buf[len++] = '\n';
1122 } else {
1123 /* SYSLOG_ACTION_* buffer size only calculation */
1124 if (prefix)
1125 len += print_prefix(msg, syslog, NULL);
1126 len += text_len;
1127 if (next || newline)
1128 len++;
1129 }
1130
1131 prefix = true;
1132 text = next;
1133 } while (text);
1134
1135 return len;
1136 }
1137
1138 static int syslog_print(char __user *buf, int size)
1139 {
1140 char *text;
1141 struct printk_log *msg;
1142 int len = 0;
1143
1144 text = kmalloc(LOG_LINE_MAX + PREFIX_MAX, GFP_KERNEL);
1145 if (!text)
1146 return -ENOMEM;
1147
1148 while (size > 0) {
1149 size_t n;
1150 size_t skip;
1151
1152 raw_spin_lock_irq(&logbuf_lock);
1153 if (syslog_seq < log_first_seq) {
1154 /* messages are gone, move to first one */
1155 syslog_seq = log_first_seq;
1156 syslog_idx = log_first_idx;
1157 syslog_prev = 0;
1158 syslog_partial = 0;
1159 }
1160 if (syslog_seq == log_next_seq) {
1161 raw_spin_unlock_irq(&logbuf_lock);
1162 break;
1163 }
1164
1165 skip = syslog_partial;
1166 msg = log_from_idx(syslog_idx);
1167 n = msg_print_text(msg, syslog_prev, true, text,
1168 LOG_LINE_MAX + PREFIX_MAX);
1169 if (n - syslog_partial <= size) {
1170 /* message fits into buffer, move forward */
1171 syslog_idx = log_next(syslog_idx);
1172 syslog_seq++;
1173 syslog_prev = msg->flags;
1174 n -= syslog_partial;
1175 syslog_partial = 0;
1176 } else if (!len){
1177 /* partial read(), remember position */
1178 n = size;
1179 syslog_partial += n;
1180 } else
1181 n = 0;
1182 raw_spin_unlock_irq(&logbuf_lock);
1183
1184 if (!n)
1185 break;
1186
1187 if (copy_to_user(buf, text + skip, n)) {
1188 if (!len)
1189 len = -EFAULT;
1190 break;
1191 }
1192
1193 len += n;
1194 size -= n;
1195 buf += n;
1196 }
1197
1198 kfree(text);
1199 return len;
1200 }
1201
1202 static int syslog_print_all(char __user *buf, int size, bool clear)
1203 {
1204 char *text;
1205 int len = 0;
1206
1207 text = kmalloc(LOG_LINE_MAX + PREFIX_MAX, GFP_KERNEL);
1208 if (!text)
1209 return -ENOMEM;
1210
1211 raw_spin_lock_irq(&logbuf_lock);
1212 if (buf) {
1213 u64 next_seq;
1214 u64 seq;
1215 u32 idx;
1216 enum log_flags prev;
1217
1218 if (clear_seq < log_first_seq) {
1219 /* messages are gone, move to first available one */
1220 clear_seq = log_first_seq;
1221 clear_idx = log_first_idx;
1222 }
1223
1224 /*
1225 * Find first record that fits, including all following records,
1226 * into the user-provided buffer for this dump.
1227 */
1228 seq = clear_seq;
1229 idx = clear_idx;
1230 prev = 0;
1231 while (seq < log_next_seq) {
1232 struct printk_log *msg = log_from_idx(idx);
1233
1234 len += msg_print_text(msg, prev, true, NULL, 0);
1235 prev = msg->flags;
1236 idx = log_next(idx);
1237 seq++;
1238 }
1239
1240 /* move first record forward until length fits into the buffer */
1241 seq = clear_seq;
1242 idx = clear_idx;
1243 prev = 0;
1244 while (len > size && seq < log_next_seq) {
1245 struct printk_log *msg = log_from_idx(idx);
1246
1247 len -= msg_print_text(msg, prev, true, NULL, 0);
1248 prev = msg->flags;
1249 idx = log_next(idx);
1250 seq++;
1251 }
1252
1253 /* last message fitting into this dump */
1254 next_seq = log_next_seq;
1255
1256 len = 0;
1257 while (len >= 0 && seq < next_seq) {
1258 struct printk_log *msg = log_from_idx(idx);
1259 int textlen;
1260
1261 textlen = msg_print_text(msg, prev, true, text,
1262 LOG_LINE_MAX + PREFIX_MAX);
1263 if (textlen < 0) {
1264 len = textlen;
1265 break;
1266 }
1267 idx = log_next(idx);
1268 seq++;
1269 prev = msg->flags;
1270
1271 raw_spin_unlock_irq(&logbuf_lock);
1272 if (copy_to_user(buf + len, text, textlen))
1273 len = -EFAULT;
1274 else
1275 len += textlen;
1276 raw_spin_lock_irq(&logbuf_lock);
1277
1278 if (seq < log_first_seq) {
1279 /* messages are gone, move to next one */
1280 seq = log_first_seq;
1281 idx = log_first_idx;
1282 prev = 0;
1283 }
1284 }
1285 }
1286
1287 if (clear) {
1288 clear_seq = log_next_seq;
1289 clear_idx = log_next_idx;
1290 }
1291 raw_spin_unlock_irq(&logbuf_lock);
1292
1293 kfree(text);
1294 return len;
1295 }
1296
1297 int do_syslog(int type, char __user *buf, int len, int source)
1298 {
1299 bool clear = false;
1300 static int saved_console_loglevel = LOGLEVEL_DEFAULT;
1301 int error;
1302
1303 error = check_syslog_permissions(type, source);
1304 if (error)
1305 goto out;
1306
1307 switch (type) {
1308 case SYSLOG_ACTION_CLOSE: /* Close log */
1309 break;
1310 case SYSLOG_ACTION_OPEN: /* Open log */
1311 break;
1312 case SYSLOG_ACTION_READ: /* Read from log */
1313 error = -EINVAL;
1314 if (!buf || len < 0)
1315 goto out;
1316 error = 0;
1317 if (!len)
1318 goto out;
1319 if (!access_ok(VERIFY_WRITE, buf, len)) {
1320 error = -EFAULT;
1321 goto out;
1322 }
1323 error = wait_event_interruptible(log_wait,
1324 syslog_seq != log_next_seq);
1325 if (error)
1326 goto out;
1327 error = syslog_print(buf, len);
1328 break;
1329 /* Read/clear last kernel messages */
1330 case SYSLOG_ACTION_READ_CLEAR:
1331 clear = true;
1332 /* FALL THRU */
1333 /* Read last kernel messages */
1334 case SYSLOG_ACTION_READ_ALL:
1335 error = -EINVAL;
1336 if (!buf || len < 0)
1337 goto out;
1338 error = 0;
1339 if (!len)
1340 goto out;
1341 if (!access_ok(VERIFY_WRITE, buf, len)) {
1342 error = -EFAULT;
1343 goto out;
1344 }
1345 error = syslog_print_all(buf, len, clear);
1346 break;
1347 /* Clear ring buffer */
1348 case SYSLOG_ACTION_CLEAR:
1349 syslog_print_all(NULL, 0, true);
1350 break;
1351 /* Disable logging to console */
1352 case SYSLOG_ACTION_CONSOLE_OFF:
1353 if (saved_console_loglevel == LOGLEVEL_DEFAULT)
1354 saved_console_loglevel = console_loglevel;
1355 console_loglevel = minimum_console_loglevel;
1356 break;
1357 /* Enable logging to console */
1358 case SYSLOG_ACTION_CONSOLE_ON:
1359 if (saved_console_loglevel != LOGLEVEL_DEFAULT) {
1360 console_loglevel = saved_console_loglevel;
1361 saved_console_loglevel = LOGLEVEL_DEFAULT;
1362 }
1363 break;
1364 /* Set level of messages printed to console */
1365 case SYSLOG_ACTION_CONSOLE_LEVEL:
1366 error = -EINVAL;
1367 if (len < 1 || len > 8)
1368 goto out;
1369 if (len < minimum_console_loglevel)
1370 len = minimum_console_loglevel;
1371 console_loglevel = len;
1372 /* Implicitly re-enable logging to console */
1373 saved_console_loglevel = LOGLEVEL_DEFAULT;
1374 error = 0;
1375 break;
1376 /* Number of chars in the log buffer */
1377 case SYSLOG_ACTION_SIZE_UNREAD:
1378 raw_spin_lock_irq(&logbuf_lock);
1379 if (syslog_seq < log_first_seq) {
1380 /* messages are gone, move to first one */
1381 syslog_seq = log_first_seq;
1382 syslog_idx = log_first_idx;
1383 syslog_prev = 0;
1384 syslog_partial = 0;
1385 }
1386 if (source == SYSLOG_FROM_PROC) {
1387 /*
1388 * Short-cut for poll(/"proc/kmsg") which simply checks
1389 * for pending data, not the size; return the count of
1390 * records, not the length.
1391 */
1392 error = log_next_seq - syslog_seq;
1393 } else {
1394 u64 seq = syslog_seq;
1395 u32 idx = syslog_idx;
1396 enum log_flags prev = syslog_prev;
1397
1398 error = 0;
1399 while (seq < log_next_seq) {
1400 struct printk_log *msg = log_from_idx(idx);
1401
1402 error += msg_print_text(msg, prev, true, NULL, 0);
1403 idx = log_next(idx);
1404 seq++;
1405 prev = msg->flags;
1406 }
1407 error -= syslog_partial;
1408 }
1409 raw_spin_unlock_irq(&logbuf_lock);
1410 break;
1411 /* Size of the log buffer */
1412 case SYSLOG_ACTION_SIZE_BUFFER:
1413 error = log_buf_len;
1414 break;
1415 default:
1416 error = -EINVAL;
1417 break;
1418 }
1419 out:
1420 return error;
1421 }
1422
1423 SYSCALL_DEFINE3(syslog, int, type, char __user *, buf, int, len)
1424 {
1425 return do_syslog(type, buf, len, SYSLOG_FROM_READER);
1426 }
1427
1428 /*
1429 * Call the console drivers, asking them to write out
1430 * log_buf[start] to log_buf[end - 1].
1431 * The console_lock must be held.
1432 */
1433 static void call_console_drivers(int level,
1434 const char *ext_text, size_t ext_len,
1435 const char *text, size_t len)
1436 {
1437 struct console *con;
1438
1439 trace_console(text, len);
1440
1441 if (level >= console_loglevel && !ignore_loglevel)
1442 return;
1443 if (!console_drivers)
1444 return;
1445
1446 for_each_console(con) {
1447 if (exclusive_console && con != exclusive_console)
1448 continue;
1449 if (!(con->flags & CON_ENABLED))
1450 continue;
1451 if (!con->write)
1452 continue;
1453 if (!cpu_online(smp_processor_id()) &&
1454 !(con->flags & CON_ANYTIME))
1455 continue;
1456 if (con->flags & CON_EXTENDED)
1457 con->write(con, ext_text, ext_len);
1458 else
1459 con->write(con, text, len);
1460 }
1461 }
1462
1463 /*
1464 * Zap console related locks when oopsing.
1465 * To leave time for slow consoles to print a full oops,
1466 * only zap at most once every 30 seconds.
1467 */
1468 static void zap_locks(void)
1469 {
1470 static unsigned long oops_timestamp;
1471
1472 if (time_after_eq(jiffies, oops_timestamp) &&
1473 !time_after(jiffies, oops_timestamp + 30 * HZ))
1474 return;
1475
1476 oops_timestamp = jiffies;
1477
1478 debug_locks_off();
1479 /* If a crash is occurring, make sure we can't deadlock */
1480 raw_spin_lock_init(&logbuf_lock);
1481 /* And make sure that we print immediately */
1482 sema_init(&console_sem, 1);
1483 }
1484
1485 /*
1486 * Check if we have any console that is capable of printing while cpu is
1487 * booting or shutting down. Requires console_sem.
1488 */
1489 static int have_callable_console(void)
1490 {
1491 struct console *con;
1492
1493 for_each_console(con)
1494 if (con->flags & CON_ANYTIME)
1495 return 1;
1496
1497 return 0;
1498 }
1499
1500 /*
1501 * Can we actually use the console at this time on this cpu?
1502 *
1503 * Console drivers may assume that per-cpu resources have been allocated. So
1504 * unless they're explicitly marked as being able to cope (CON_ANYTIME) don't
1505 * call them until this CPU is officially up.
1506 */
1507 static inline int can_use_console(unsigned int cpu)
1508 {
1509 return cpu_online(cpu) || have_callable_console();
1510 }
1511
1512 /*
1513 * Try to get console ownership to actually show the kernel
1514 * messages from a 'printk'. Return true (and with the
1515 * console_lock held, and 'console_locked' set) if it
1516 * is successful, false otherwise.
1517 */
1518 static int console_trylock_for_printk(void)
1519 {
1520 unsigned int cpu = smp_processor_id();
1521
1522 if (!console_trylock())
1523 return 0;
1524 /*
1525 * If we can't use the console, we need to release the console
1526 * semaphore by hand to avoid flushing the buffer. We need to hold the
1527 * console semaphore in order to do this test safely.
1528 */
1529 if (!can_use_console(cpu)) {
1530 console_locked = 0;
1531 up_console_sem();
1532 return 0;
1533 }
1534 return 1;
1535 }
1536
1537 int printk_delay_msec __read_mostly;
1538
1539 static inline void printk_delay(void)
1540 {
1541 if (unlikely(printk_delay_msec)) {
1542 int m = printk_delay_msec;
1543
1544 while (m--) {
1545 mdelay(1);
1546 touch_nmi_watchdog();
1547 }
1548 }
1549 }
1550
1551 /*
1552 * Continuation lines are buffered, and not committed to the record buffer
1553 * until the line is complete, or a race forces it. The line fragments
1554 * though, are printed immediately to the consoles to ensure everything has
1555 * reached the console in case of a kernel crash.
1556 */
1557 static struct cont {
1558 char buf[LOG_LINE_MAX];
1559 size_t len; /* length == 0 means unused buffer */
1560 size_t cons; /* bytes written to console */
1561 struct task_struct *owner; /* task of first print*/
1562 u64 ts_nsec; /* time of first print */
1563 u8 level; /* log level of first message */
1564 u8 facility; /* log facility of first message */
1565 enum log_flags flags; /* prefix, newline flags */
1566 bool flushed:1; /* buffer sealed and committed */
1567 } cont;
1568
1569 static void cont_flush(enum log_flags flags)
1570 {
1571 if (cont.flushed)
1572 return;
1573 if (cont.len == 0)
1574 return;
1575
1576 if (cont.cons) {
1577 /*
1578 * If a fragment of this line was directly flushed to the
1579 * console; wait for the console to pick up the rest of the
1580 * line. LOG_NOCONS suppresses a duplicated output.
1581 */
1582 log_store(cont.facility, cont.level, flags | LOG_NOCONS,
1583 cont.ts_nsec, NULL, 0, cont.buf, cont.len);
1584 cont.flags = flags;
1585 cont.flushed = true;
1586 } else {
1587 /*
1588 * If no fragment of this line ever reached the console,
1589 * just submit it to the store and free the buffer.
1590 */
1591 log_store(cont.facility, cont.level, flags, 0,
1592 NULL, 0, cont.buf, cont.len);
1593 cont.len = 0;
1594 }
1595 }
1596
1597 static bool cont_add(int facility, int level, const char *text, size_t len)
1598 {
1599 if (cont.len && cont.flushed)
1600 return false;
1601
1602 /*
1603 * If ext consoles are present, flush and skip in-kernel
1604 * continuation. See nr_ext_console_drivers definition. Also, if
1605 * the line gets too long, split it up in separate records.
1606 */
1607 if (nr_ext_console_drivers || cont.len + len > sizeof(cont.buf)) {
1608 cont_flush(LOG_CONT);
1609 return false;
1610 }
1611
1612 if (!cont.len) {
1613 cont.facility = facility;
1614 cont.level = level;
1615 cont.owner = current;
1616 cont.ts_nsec = local_clock();
1617 cont.flags = 0;
1618 cont.cons = 0;
1619 cont.flushed = false;
1620 }
1621
1622 memcpy(cont.buf + cont.len, text, len);
1623 cont.len += len;
1624
1625 if (cont.len > (sizeof(cont.buf) * 80) / 100)
1626 cont_flush(LOG_CONT);
1627
1628 return true;
1629 }
1630
1631 static size_t cont_print_text(char *text, size_t size)
1632 {
1633 size_t textlen = 0;
1634 size_t len;
1635
1636 if (cont.cons == 0 && (console_prev & LOG_NEWLINE)) {
1637 textlen += print_time(cont.ts_nsec, text);
1638 size -= textlen;
1639 }
1640
1641 len = cont.len - cont.cons;
1642 if (len > 0) {
1643 if (len+1 > size)
1644 len = size-1;
1645 memcpy(text + textlen, cont.buf + cont.cons, len);
1646 textlen += len;
1647 cont.cons = cont.len;
1648 }
1649
1650 if (cont.flushed) {
1651 if (cont.flags & LOG_NEWLINE)
1652 text[textlen++] = '\n';
1653 /* got everything, release buffer */
1654 cont.len = 0;
1655 }
1656 return textlen;
1657 }
1658
1659 asmlinkage int vprintk_emit(int facility, int level,
1660 const char *dict, size_t dictlen,
1661 const char *fmt, va_list args)
1662 {
1663 static int recursion_bug;
1664 static char textbuf[LOG_LINE_MAX];
1665 char *text = textbuf;
1666 size_t text_len = 0;
1667 enum log_flags lflags = 0;
1668 unsigned long flags;
1669 int this_cpu;
1670 int printed_len = 0;
1671 bool in_sched = false;
1672 /* cpu currently holding logbuf_lock in this function */
1673 static unsigned int logbuf_cpu = UINT_MAX;
1674
1675 if (level == LOGLEVEL_SCHED) {
1676 level = LOGLEVEL_DEFAULT;
1677 in_sched = true;
1678 }
1679
1680 boot_delay_msec(level);
1681 printk_delay();
1682
1683 /* This stops the holder of console_sem just where we want him */
1684 local_irq_save(flags);
1685 this_cpu = smp_processor_id();
1686
1687 /*
1688 * Ouch, printk recursed into itself!
1689 */
1690 if (unlikely(logbuf_cpu == this_cpu)) {
1691 /*
1692 * If a crash is occurring during printk() on this CPU,
1693 * then try to get the crash message out but make sure
1694 * we can't deadlock. Otherwise just return to avoid the
1695 * recursion and return - but flag the recursion so that
1696 * it can be printed at the next appropriate moment:
1697 */
1698 if (!oops_in_progress && !lockdep_recursing(current)) {
1699 recursion_bug = 1;
1700 local_irq_restore(flags);
1701 return 0;
1702 }
1703 zap_locks();
1704 }
1705
1706 lockdep_off();
1707 raw_spin_lock(&logbuf_lock);
1708 logbuf_cpu = this_cpu;
1709
1710 if (unlikely(recursion_bug)) {
1711 static const char recursion_msg[] =
1712 "BUG: recent printk recursion!";
1713
1714 recursion_bug = 0;
1715 /* emit KERN_CRIT message */
1716 printed_len += log_store(0, 2, LOG_PREFIX|LOG_NEWLINE, 0,
1717 NULL, 0, recursion_msg,
1718 strlen(recursion_msg));
1719 }
1720
1721 /*
1722 * The printf needs to come first; we need the syslog
1723 * prefix which might be passed-in as a parameter.
1724 */
1725 text_len = vscnprintf(text, sizeof(textbuf), fmt, args);
1726
1727 /* mark and strip a trailing newline */
1728 if (text_len && text[text_len-1] == '\n') {
1729 text_len--;
1730 lflags |= LOG_NEWLINE;
1731 }
1732
1733 /* strip kernel syslog prefix and extract log level or control flags */
1734 if (facility == 0) {
1735 int kern_level = printk_get_level(text);
1736
1737 if (kern_level) {
1738 const char *end_of_header = printk_skip_level(text);
1739 switch (kern_level) {
1740 case '0' ... '7':
1741 if (level == LOGLEVEL_DEFAULT)
1742 level = kern_level - '0';
1743 /* fallthrough */
1744 case 'd': /* KERN_DEFAULT */
1745 lflags |= LOG_PREFIX;
1746 }
1747 /*
1748 * No need to check length here because vscnprintf
1749 * put '\0' at the end of the string. Only valid and
1750 * newly printed level is detected.
1751 */
1752 text_len -= end_of_header - text;
1753 text = (char *)end_of_header;
1754 }
1755 }
1756
1757 if (level == LOGLEVEL_DEFAULT)
1758 level = default_message_loglevel;
1759
1760 if (dict)
1761 lflags |= LOG_PREFIX|LOG_NEWLINE;
1762
1763 if (!(lflags & LOG_NEWLINE)) {
1764 /*
1765 * Flush the conflicting buffer. An earlier newline was missing,
1766 * or another task also prints continuation lines.
1767 */
1768 if (cont.len && (lflags & LOG_PREFIX || cont.owner != current))
1769 cont_flush(LOG_NEWLINE);
1770
1771 /* buffer line if possible, otherwise store it right away */
1772 if (cont_add(facility, level, text, text_len))
1773 printed_len += text_len;
1774 else
1775 printed_len += log_store(facility, level,
1776 lflags | LOG_CONT, 0,
1777 dict, dictlen, text, text_len);
1778 } else {
1779 bool stored = false;
1780
1781 /*
1782 * If an earlier newline was missing and it was the same task,
1783 * either merge it with the current buffer and flush, or if
1784 * there was a race with interrupts (prefix == true) then just
1785 * flush it out and store this line separately.
1786 * If the preceding printk was from a different task and missed
1787 * a newline, flush and append the newline.
1788 */
1789 if (cont.len) {
1790 if (cont.owner == current && !(lflags & LOG_PREFIX))
1791 stored = cont_add(facility, level, text,
1792 text_len);
1793 cont_flush(LOG_NEWLINE);
1794 }
1795
1796 if (stored)
1797 printed_len += text_len;
1798 else
1799 printed_len += log_store(facility, level, lflags, 0,
1800 dict, dictlen, text, text_len);
1801 }
1802
1803 logbuf_cpu = UINT_MAX;
1804 raw_spin_unlock(&logbuf_lock);
1805 lockdep_on();
1806 local_irq_restore(flags);
1807
1808 /* If called from the scheduler, we can not call up(). */
1809 if (!in_sched) {
1810 lockdep_off();
1811 /*
1812 * Disable preemption to avoid being preempted while holding
1813 * console_sem which would prevent anyone from printing to
1814 * console
1815 */
1816 preempt_disable();
1817
1818 /*
1819 * Try to acquire and then immediately release the console
1820 * semaphore. The release will print out buffers and wake up
1821 * /dev/kmsg and syslog() users.
1822 */
1823 if (console_trylock_for_printk())
1824 console_unlock();
1825 preempt_enable();
1826 lockdep_on();
1827 }
1828
1829 return printed_len;
1830 }
1831 EXPORT_SYMBOL(vprintk_emit);
1832
1833 asmlinkage int vprintk(const char *fmt, va_list args)
1834 {
1835 return vprintk_emit(0, LOGLEVEL_DEFAULT, NULL, 0, fmt, args);
1836 }
1837 EXPORT_SYMBOL(vprintk);
1838
1839 asmlinkage int printk_emit(int facility, int level,
1840 const char *dict, size_t dictlen,
1841 const char *fmt, ...)
1842 {
1843 va_list args;
1844 int r;
1845
1846 va_start(args, fmt);
1847 r = vprintk_emit(facility, level, dict, dictlen, fmt, args);
1848 va_end(args);
1849
1850 return r;
1851 }
1852 EXPORT_SYMBOL(printk_emit);
1853
1854 int vprintk_default(const char *fmt, va_list args)
1855 {
1856 int r;
1857
1858 #ifdef CONFIG_KGDB_KDB
1859 if (unlikely(kdb_trap_printk)) {
1860 r = vkdb_printf(KDB_MSGSRC_PRINTK, fmt, args);
1861 return r;
1862 }
1863 #endif
1864 r = vprintk_emit(0, LOGLEVEL_DEFAULT, NULL, 0, fmt, args);
1865
1866 return r;
1867 }
1868 EXPORT_SYMBOL_GPL(vprintk_default);
1869
1870 /*
1871 * This allows printk to be diverted to another function per cpu.
1872 * This is useful for calling printk functions from within NMI
1873 * without worrying about race conditions that can lock up the
1874 * box.
1875 */
1876 DEFINE_PER_CPU(printk_func_t, printk_func) = vprintk_default;
1877
1878 /**
1879 * printk - print a kernel message
1880 * @fmt: format string
1881 *
1882 * This is printk(). It can be called from any context. We want it to work.
1883 *
1884 * We try to grab the console_lock. If we succeed, it's easy - we log the
1885 * output and call the console drivers. If we fail to get the semaphore, we
1886 * place the output into the log buffer and return. The current holder of
1887 * the console_sem will notice the new output in console_unlock(); and will
1888 * send it to the consoles before releasing the lock.
1889 *
1890 * One effect of this deferred printing is that code which calls printk() and
1891 * then changes console_loglevel may break. This is because console_loglevel
1892 * is inspected when the actual printing occurs.
1893 *
1894 * See also:
1895 * printf(3)
1896 *
1897 * See the vsnprintf() documentation for format string extensions over C99.
1898 */
1899 asmlinkage __visible int printk(const char *fmt, ...)
1900 {
1901 printk_func_t vprintk_func;
1902 va_list args;
1903 int r;
1904
1905 va_start(args, fmt);
1906
1907 /*
1908 * If a caller overrides the per_cpu printk_func, then it needs
1909 * to disable preemption when calling printk(). Otherwise
1910 * the printk_func should be set to the default. No need to
1911 * disable preemption here.
1912 */
1913 vprintk_func = this_cpu_read(printk_func);
1914 r = vprintk_func(fmt, args);
1915
1916 va_end(args);
1917
1918 return r;
1919 }
1920 EXPORT_SYMBOL(printk);
1921
1922 #else /* CONFIG_PRINTK */
1923
1924 #define LOG_LINE_MAX 0
1925 #define PREFIX_MAX 0
1926
1927 static u64 syslog_seq;
1928 static u32 syslog_idx;
1929 static u64 console_seq;
1930 static u32 console_idx;
1931 static enum log_flags syslog_prev;
1932 static u64 log_first_seq;
1933 static u32 log_first_idx;
1934 static u64 log_next_seq;
1935 static enum log_flags console_prev;
1936 static struct cont {
1937 size_t len;
1938 size_t cons;
1939 u8 level;
1940 bool flushed:1;
1941 } cont;
1942 static char *log_text(const struct printk_log *msg) { return NULL; }
1943 static char *log_dict(const struct printk_log *msg) { return NULL; }
1944 static struct printk_log *log_from_idx(u32 idx) { return NULL; }
1945 static u32 log_next(u32 idx) { return 0; }
1946 static ssize_t msg_print_ext_header(char *buf, size_t size,
1947 struct printk_log *msg, u64 seq,
1948 enum log_flags prev_flags) { return 0; }
1949 static ssize_t msg_print_ext_body(char *buf, size_t size,
1950 char *dict, size_t dict_len,
1951 char *text, size_t text_len) { return 0; }
1952 static void call_console_drivers(int level,
1953 const char *ext_text, size_t ext_len,
1954 const char *text, size_t len) {}
1955 static size_t msg_print_text(const struct printk_log *msg, enum log_flags prev,
1956 bool syslog, char *buf, size_t size) { return 0; }
1957 static size_t cont_print_text(char *text, size_t size) { return 0; }
1958
1959 /* Still needs to be defined for users */
1960 DEFINE_PER_CPU(printk_func_t, printk_func);
1961
1962 #endif /* CONFIG_PRINTK */
1963
1964 #ifdef CONFIG_EARLY_PRINTK
1965 struct console *early_console;
1966
1967 asmlinkage __visible void early_printk(const char *fmt, ...)
1968 {
1969 va_list ap;
1970 char buf[512];
1971 int n;
1972
1973 if (!early_console)
1974 return;
1975
1976 va_start(ap, fmt);
1977 n = vscnprintf(buf, sizeof(buf), fmt, ap);
1978 va_end(ap);
1979
1980 early_console->write(early_console, buf, n);
1981 }
1982 #endif
1983
1984 static int __add_preferred_console(char *name, int idx, char *options,
1985 char *brl_options)
1986 {
1987 struct console_cmdline *c;
1988 int i;
1989
1990 /*
1991 * See if this tty is not yet registered, and
1992 * if we have a slot free.
1993 */
1994 for (i = 0, c = console_cmdline;
1995 i < MAX_CMDLINECONSOLES && c->name[0];
1996 i++, c++) {
1997 if (strcmp(c->name, name) == 0 && c->index == idx) {
1998 if (!brl_options)
1999 selected_console = i;
2000 return 0;
2001 }
2002 }
2003 if (i == MAX_CMDLINECONSOLES)
2004 return -E2BIG;
2005 if (!brl_options)
2006 selected_console = i;
2007 strlcpy(c->name, name, sizeof(c->name));
2008 c->options = options;
2009 braille_set_options(c, brl_options);
2010
2011 c->index = idx;
2012 return 0;
2013 }
2014 /*
2015 * Set up a console. Called via do_early_param() in init/main.c
2016 * for each "console=" parameter in the boot command line.
2017 */
2018 static int __init console_setup(char *str)
2019 {
2020 char buf[sizeof(console_cmdline[0].name) + 4]; /* 4 for "ttyS" */
2021 char *s, *options, *brl_options = NULL;
2022 int idx;
2023
2024 if (_braille_console_setup(&str, &brl_options))
2025 return 1;
2026
2027 /*
2028 * Decode str into name, index, options.
2029 */
2030 if (str[0] >= '0' && str[0] <= '9') {
2031 strcpy(buf, "ttyS");
2032 strncpy(buf + 4, str, sizeof(buf) - 5);
2033 } else {
2034 strncpy(buf, str, sizeof(buf) - 1);
2035 }
2036 buf[sizeof(buf) - 1] = 0;
2037 options = strchr(str, ',');
2038 if (options)
2039 *(options++) = 0;
2040 #ifdef __sparc__
2041 if (!strcmp(str, "ttya"))
2042 strcpy(buf, "ttyS0");
2043 if (!strcmp(str, "ttyb"))
2044 strcpy(buf, "ttyS1");
2045 #endif
2046 for (s = buf; *s; s++)
2047 if (isdigit(*s) || *s == ',')
2048 break;
2049 idx = simple_strtoul(s, NULL, 10);
2050 *s = 0;
2051
2052 __add_preferred_console(buf, idx, options, brl_options);
2053 console_set_on_cmdline = 1;
2054 return 1;
2055 }
2056 __setup("console=", console_setup);
2057
2058 /**
2059 * add_preferred_console - add a device to the list of preferred consoles.
2060 * @name: device name
2061 * @idx: device index
2062 * @options: options for this console
2063 *
2064 * The last preferred console added will be used for kernel messages
2065 * and stdin/out/err for init. Normally this is used by console_setup
2066 * above to handle user-supplied console arguments; however it can also
2067 * be used by arch-specific code either to override the user or more
2068 * commonly to provide a default console (ie from PROM variables) when
2069 * the user has not supplied one.
2070 */
2071 int add_preferred_console(char *name, int idx, char *options)
2072 {
2073 return __add_preferred_console(name, idx, options, NULL);
2074 }
2075
2076 bool console_suspend_enabled = true;
2077 EXPORT_SYMBOL(console_suspend_enabled);
2078
2079 static int __init console_suspend_disable(char *str)
2080 {
2081 console_suspend_enabled = false;
2082 return 1;
2083 }
2084 __setup("no_console_suspend", console_suspend_disable);
2085 module_param_named(console_suspend, console_suspend_enabled,
2086 bool, S_IRUGO | S_IWUSR);
2087 MODULE_PARM_DESC(console_suspend, "suspend console during suspend"
2088 " and hibernate operations");
2089
2090 /**
2091 * suspend_console - suspend the console subsystem
2092 *
2093 * This disables printk() while we go into suspend states
2094 */
2095 void suspend_console(void)
2096 {
2097 if (!console_suspend_enabled)
2098 return;
2099 printk("Suspending console(s) (use no_console_suspend to debug)\n");
2100 console_lock();
2101 console_suspended = 1;
2102 up_console_sem();
2103 }
2104
2105 void resume_console(void)
2106 {
2107 if (!console_suspend_enabled)
2108 return;
2109 down_console_sem();
2110 console_suspended = 0;
2111 console_unlock();
2112 }
2113
2114 /**
2115 * console_cpu_notify - print deferred console messages after CPU hotplug
2116 * @self: notifier struct
2117 * @action: CPU hotplug event
2118 * @hcpu: unused
2119 *
2120 * If printk() is called from a CPU that is not online yet, the messages
2121 * will be spooled but will not show up on the console. This function is
2122 * called when a new CPU comes online (or fails to come up), and ensures
2123 * that any such output gets printed.
2124 */
2125 static int console_cpu_notify(struct notifier_block *self,
2126 unsigned long action, void *hcpu)
2127 {
2128 switch (action) {
2129 case CPU_ONLINE:
2130 case CPU_DEAD:
2131 case CPU_DOWN_FAILED:
2132 case CPU_UP_CANCELED:
2133 console_lock();
2134 console_unlock();
2135 }
2136 return NOTIFY_OK;
2137 }
2138
2139 /**
2140 * console_lock - lock the console system for exclusive use.
2141 *
2142 * Acquires a lock which guarantees that the caller has
2143 * exclusive access to the console system and the console_drivers list.
2144 *
2145 * Can sleep, returns nothing.
2146 */
2147 void console_lock(void)
2148 {
2149 might_sleep();
2150
2151 down_console_sem();
2152 if (console_suspended)
2153 return;
2154 console_locked = 1;
2155 console_may_schedule = 1;
2156 }
2157 EXPORT_SYMBOL(console_lock);
2158
2159 /**
2160 * console_trylock - try to lock the console system for exclusive use.
2161 *
2162 * Try to acquire a lock which guarantees that the caller has exclusive
2163 * access to the console system and the console_drivers list.
2164 *
2165 * returns 1 on success, and 0 on failure to acquire the lock.
2166 */
2167 int console_trylock(void)
2168 {
2169 if (down_trylock_console_sem())
2170 return 0;
2171 if (console_suspended) {
2172 up_console_sem();
2173 return 0;
2174 }
2175 console_locked = 1;
2176 console_may_schedule = 0;
2177 return 1;
2178 }
2179 EXPORT_SYMBOL(console_trylock);
2180
2181 int is_console_locked(void)
2182 {
2183 return console_locked;
2184 }
2185
2186 static void console_cont_flush(char *text, size_t size)
2187 {
2188 unsigned long flags;
2189 size_t len;
2190
2191 raw_spin_lock_irqsave(&logbuf_lock, flags);
2192
2193 if (!cont.len)
2194 goto out;
2195
2196 /*
2197 * We still queue earlier records, likely because the console was
2198 * busy. The earlier ones need to be printed before this one, we
2199 * did not flush any fragment so far, so just let it queue up.
2200 */
2201 if (console_seq < log_next_seq && !cont.cons)
2202 goto out;
2203
2204 len = cont_print_text(text, size);
2205 raw_spin_unlock(&logbuf_lock);
2206 stop_critical_timings();
2207 call_console_drivers(cont.level, NULL, 0, text, len);
2208 start_critical_timings();
2209 local_irq_restore(flags);
2210 return;
2211 out:
2212 raw_spin_unlock_irqrestore(&logbuf_lock, flags);
2213 }
2214
2215 /**
2216 * console_unlock - unlock the console system
2217 *
2218 * Releases the console_lock which the caller holds on the console system
2219 * and the console driver list.
2220 *
2221 * While the console_lock was held, console output may have been buffered
2222 * by printk(). If this is the case, console_unlock(); emits
2223 * the output prior to releasing the lock.
2224 *
2225 * If there is output waiting, we wake /dev/kmsg and syslog() users.
2226 *
2227 * console_unlock(); may be called from any context.
2228 */
2229 void console_unlock(void)
2230 {
2231 static char ext_text[CONSOLE_EXT_LOG_MAX];
2232 static char text[LOG_LINE_MAX + PREFIX_MAX];
2233 static u64 seen_seq;
2234 unsigned long flags;
2235 bool wake_klogd = false;
2236 bool retry;
2237
2238 if (console_suspended) {
2239 up_console_sem();
2240 return;
2241 }
2242
2243 console_may_schedule = 0;
2244
2245 /* flush buffered message fragment immediately to console */
2246 console_cont_flush(text, sizeof(text));
2247 again:
2248 for (;;) {
2249 struct printk_log *msg;
2250 size_t ext_len = 0;
2251 size_t len;
2252 int level;
2253
2254 raw_spin_lock_irqsave(&logbuf_lock, flags);
2255 if (seen_seq != log_next_seq) {
2256 wake_klogd = true;
2257 seen_seq = log_next_seq;
2258 }
2259
2260 if (console_seq < log_first_seq) {
2261 len = sprintf(text, "** %u printk messages dropped ** ",
2262 (unsigned)(log_first_seq - console_seq));
2263
2264 /* messages are gone, move to first one */
2265 console_seq = log_first_seq;
2266 console_idx = log_first_idx;
2267 console_prev = 0;
2268 } else {
2269 len = 0;
2270 }
2271 skip:
2272 if (console_seq == log_next_seq)
2273 break;
2274
2275 msg = log_from_idx(console_idx);
2276 if (msg->flags & LOG_NOCONS) {
2277 /*
2278 * Skip record we have buffered and already printed
2279 * directly to the console when we received it.
2280 */
2281 console_idx = log_next(console_idx);
2282 console_seq++;
2283 /*
2284 * We will get here again when we register a new
2285 * CON_PRINTBUFFER console. Clear the flag so we
2286 * will properly dump everything later.
2287 */
2288 msg->flags &= ~LOG_NOCONS;
2289 console_prev = msg->flags;
2290 goto skip;
2291 }
2292
2293 level = msg->level;
2294 len += msg_print_text(msg, console_prev, false,
2295 text + len, sizeof(text) - len);
2296 if (nr_ext_console_drivers) {
2297 ext_len = msg_print_ext_header(ext_text,
2298 sizeof(ext_text),
2299 msg, console_seq, console_prev);
2300 ext_len += msg_print_ext_body(ext_text + ext_len,
2301 sizeof(ext_text) - ext_len,
2302 log_dict(msg), msg->dict_len,
2303 log_text(msg), msg->text_len);
2304 }
2305 console_idx = log_next(console_idx);
2306 console_seq++;
2307 console_prev = msg->flags;
2308 raw_spin_unlock(&logbuf_lock);
2309
2310 stop_critical_timings(); /* don't trace print latency */
2311 call_console_drivers(level, ext_text, ext_len, text, len);
2312 start_critical_timings();
2313 local_irq_restore(flags);
2314 }
2315 console_locked = 0;
2316
2317 /* Release the exclusive_console once it is used */
2318 if (unlikely(exclusive_console))
2319 exclusive_console = NULL;
2320
2321 raw_spin_unlock(&logbuf_lock);
2322
2323 up_console_sem();
2324
2325 /*
2326 * Someone could have filled up the buffer again, so re-check if there's
2327 * something to flush. In case we cannot trylock the console_sem again,
2328 * there's a new owner and the console_unlock() from them will do the
2329 * flush, no worries.
2330 */
2331 raw_spin_lock(&logbuf_lock);
2332 retry = console_seq != log_next_seq;
2333 raw_spin_unlock_irqrestore(&logbuf_lock, flags);
2334
2335 if (retry && console_trylock())
2336 goto again;
2337
2338 if (wake_klogd)
2339 wake_up_klogd();
2340 }
2341 EXPORT_SYMBOL(console_unlock);
2342
2343 /**
2344 * console_conditional_schedule - yield the CPU if required
2345 *
2346 * If the console code is currently allowed to sleep, and
2347 * if this CPU should yield the CPU to another task, do
2348 * so here.
2349 *
2350 * Must be called within console_lock();.
2351 */
2352 void __sched console_conditional_schedule(void)
2353 {
2354 if (console_may_schedule)
2355 cond_resched();
2356 }
2357 EXPORT_SYMBOL(console_conditional_schedule);
2358
2359 void console_unblank(void)
2360 {
2361 struct console *c;
2362
2363 /*
2364 * console_unblank can no longer be called in interrupt context unless
2365 * oops_in_progress is set to 1..
2366 */
2367 if (oops_in_progress) {
2368 if (down_trylock_console_sem() != 0)
2369 return;
2370 } else
2371 console_lock();
2372
2373 console_locked = 1;
2374 console_may_schedule = 0;
2375 for_each_console(c)
2376 if ((c->flags & CON_ENABLED) && c->unblank)
2377 c->unblank();
2378 console_unlock();
2379 }
2380
2381 /*
2382 * Return the console tty driver structure and its associated index
2383 */
2384 struct tty_driver *console_device(int *index)
2385 {
2386 struct console *c;
2387 struct tty_driver *driver = NULL;
2388
2389 console_lock();
2390 for_each_console(c) {
2391 if (!c->device)
2392 continue;
2393 driver = c->device(c, index);
2394 if (driver)
2395 break;
2396 }
2397 console_unlock();
2398 return driver;
2399 }
2400
2401 /*
2402 * Prevent further output on the passed console device so that (for example)
2403 * serial drivers can disable console output before suspending a port, and can
2404 * re-enable output afterwards.
2405 */
2406 void console_stop(struct console *console)
2407 {
2408 console_lock();
2409 console->flags &= ~CON_ENABLED;
2410 console_unlock();
2411 }
2412 EXPORT_SYMBOL(console_stop);
2413
2414 void console_start(struct console *console)
2415 {
2416 console_lock();
2417 console->flags |= CON_ENABLED;
2418 console_unlock();
2419 }
2420 EXPORT_SYMBOL(console_start);
2421
2422 static int __read_mostly keep_bootcon;
2423
2424 static int __init keep_bootcon_setup(char *str)
2425 {
2426 keep_bootcon = 1;
2427 pr_info("debug: skip boot console de-registration.\n");
2428
2429 return 0;
2430 }
2431
2432 early_param("keep_bootcon", keep_bootcon_setup);
2433
2434 /*
2435 * The console driver calls this routine during kernel initialization
2436 * to register the console printing procedure with printk() and to
2437 * print any messages that were printed by the kernel before the
2438 * console driver was initialized.
2439 *
2440 * This can happen pretty early during the boot process (because of
2441 * early_printk) - sometimes before setup_arch() completes - be careful
2442 * of what kernel features are used - they may not be initialised yet.
2443 *
2444 * There are two types of consoles - bootconsoles (early_printk) and
2445 * "real" consoles (everything which is not a bootconsole) which are
2446 * handled differently.
2447 * - Any number of bootconsoles can be registered at any time.
2448 * - As soon as a "real" console is registered, all bootconsoles
2449 * will be unregistered automatically.
2450 * - Once a "real" console is registered, any attempt to register a
2451 * bootconsoles will be rejected
2452 */
2453 void register_console(struct console *newcon)
2454 {
2455 int i;
2456 unsigned long flags;
2457 struct console *bcon = NULL;
2458 struct console_cmdline *c;
2459
2460 if (console_drivers)
2461 for_each_console(bcon)
2462 if (WARN(bcon == newcon,
2463 "console '%s%d' already registered\n",
2464 bcon->name, bcon->index))
2465 return;
2466
2467 /*
2468 * before we register a new CON_BOOT console, make sure we don't
2469 * already have a valid console
2470 */
2471 if (console_drivers && newcon->flags & CON_BOOT) {
2472 /* find the last or real console */
2473 for_each_console(bcon) {
2474 if (!(bcon->flags & CON_BOOT)) {
2475 pr_info("Too late to register bootconsole %s%d\n",
2476 newcon->name, newcon->index);
2477 return;
2478 }
2479 }
2480 }
2481
2482 if (console_drivers && console_drivers->flags & CON_BOOT)
2483 bcon = console_drivers;
2484
2485 if (preferred_console < 0 || bcon || !console_drivers)
2486 preferred_console = selected_console;
2487
2488 /*
2489 * See if we want to use this console driver. If we
2490 * didn't select a console we take the first one
2491 * that registers here.
2492 */
2493 if (preferred_console < 0) {
2494 if (newcon->index < 0)
2495 newcon->index = 0;
2496 if (newcon->setup == NULL ||
2497 newcon->setup(newcon, NULL) == 0) {
2498 newcon->flags |= CON_ENABLED;
2499 if (newcon->device) {
2500 newcon->flags |= CON_CONSDEV;
2501 preferred_console = 0;
2502 }
2503 }
2504 }
2505
2506 /*
2507 * See if this console matches one we selected on
2508 * the command line.
2509 */
2510 for (i = 0, c = console_cmdline;
2511 i < MAX_CMDLINECONSOLES && c->name[0];
2512 i++, c++) {
2513 if (!newcon->match ||
2514 newcon->match(newcon, c->name, c->index, c->options) != 0) {
2515 /* default matching */
2516 BUILD_BUG_ON(sizeof(c->name) != sizeof(newcon->name));
2517 if (strcmp(c->name, newcon->name) != 0)
2518 continue;
2519 if (newcon->index >= 0 &&
2520 newcon->index != c->index)
2521 continue;
2522 if (newcon->index < 0)
2523 newcon->index = c->index;
2524
2525 if (_braille_register_console(newcon, c))
2526 return;
2527
2528 if (newcon->setup &&
2529 newcon->setup(newcon, c->options) != 0)
2530 break;
2531 }
2532
2533 newcon->flags |= CON_ENABLED;
2534 if (i == selected_console) {
2535 newcon->flags |= CON_CONSDEV;
2536 preferred_console = selected_console;
2537 }
2538 break;
2539 }
2540
2541 if (!(newcon->flags & CON_ENABLED))
2542 return;
2543
2544 /*
2545 * If we have a bootconsole, and are switching to a real console,
2546 * don't print everything out again, since when the boot console, and
2547 * the real console are the same physical device, it's annoying to
2548 * see the beginning boot messages twice
2549 */
2550 if (bcon && ((newcon->flags & (CON_CONSDEV | CON_BOOT)) == CON_CONSDEV))
2551 newcon->flags &= ~CON_PRINTBUFFER;
2552
2553 /*
2554 * Put this console in the list - keep the
2555 * preferred driver at the head of the list.
2556 */
2557 console_lock();
2558 if ((newcon->flags & CON_CONSDEV) || console_drivers == NULL) {
2559 newcon->next = console_drivers;
2560 console_drivers = newcon;
2561 if (newcon->next)
2562 newcon->next->flags &= ~CON_CONSDEV;
2563 } else {
2564 newcon->next = console_drivers->next;
2565 console_drivers->next = newcon;
2566 }
2567
2568 if (newcon->flags & CON_EXTENDED)
2569 if (!nr_ext_console_drivers++)
2570 pr_info("printk: continuation disabled due to ext consoles, expect more fragments in /dev/kmsg\n");
2571
2572 if (newcon->flags & CON_PRINTBUFFER) {
2573 /*
2574 * console_unlock(); will print out the buffered messages
2575 * for us.
2576 */
2577 raw_spin_lock_irqsave(&logbuf_lock, flags);
2578 console_seq = syslog_seq;
2579 console_idx = syslog_idx;
2580 console_prev = syslog_prev;
2581 raw_spin_unlock_irqrestore(&logbuf_lock, flags);
2582 /*
2583 * We're about to replay the log buffer. Only do this to the
2584 * just-registered console to avoid excessive message spam to
2585 * the already-registered consoles.
2586 */
2587 exclusive_console = newcon;
2588 }
2589 console_unlock();
2590 console_sysfs_notify();
2591
2592 /*
2593 * By unregistering the bootconsoles after we enable the real console
2594 * we get the "console xxx enabled" message on all the consoles -
2595 * boot consoles, real consoles, etc - this is to ensure that end
2596 * users know there might be something in the kernel's log buffer that
2597 * went to the bootconsole (that they do not see on the real console)
2598 */
2599 pr_info("%sconsole [%s%d] enabled\n",
2600 (newcon->flags & CON_BOOT) ? "boot" : "" ,
2601 newcon->name, newcon->index);
2602 if (bcon &&
2603 ((newcon->flags & (CON_CONSDEV | CON_BOOT)) == CON_CONSDEV) &&
2604 !keep_bootcon) {
2605 /* We need to iterate through all boot consoles, to make
2606 * sure we print everything out, before we unregister them.
2607 */
2608 for_each_console(bcon)
2609 if (bcon->flags & CON_BOOT)
2610 unregister_console(bcon);
2611 }
2612 }
2613 EXPORT_SYMBOL(register_console);
2614
2615 int unregister_console(struct console *console)
2616 {
2617 struct console *a, *b;
2618 int res;
2619
2620 pr_info("%sconsole [%s%d] disabled\n",
2621 (console->flags & CON_BOOT) ? "boot" : "" ,
2622 console->name, console->index);
2623
2624 res = _braille_unregister_console(console);
2625 if (res)
2626 return res;
2627
2628 res = 1;
2629 console_lock();
2630 if (console_drivers == console) {
2631 console_drivers=console->next;
2632 res = 0;
2633 } else if (console_drivers) {
2634 for (a=console_drivers->next, b=console_drivers ;
2635 a; b=a, a=b->next) {
2636 if (a == console) {
2637 b->next = a->next;
2638 res = 0;
2639 break;
2640 }
2641 }
2642 }
2643
2644 if (!res && (console->flags & CON_EXTENDED))
2645 nr_ext_console_drivers--;
2646
2647 /*
2648 * If this isn't the last console and it has CON_CONSDEV set, we
2649 * need to set it on the next preferred console.
2650 */
2651 if (console_drivers != NULL && console->flags & CON_CONSDEV)
2652 console_drivers->flags |= CON_CONSDEV;
2653
2654 console->flags &= ~CON_ENABLED;
2655 console_unlock();
2656 console_sysfs_notify();
2657 return res;
2658 }
2659 EXPORT_SYMBOL(unregister_console);
2660
2661 static int __init printk_late_init(void)
2662 {
2663 struct console *con;
2664
2665 for_each_console(con) {
2666 if (!keep_bootcon && con->flags & CON_BOOT) {
2667 unregister_console(con);
2668 }
2669 }
2670 hotcpu_notifier(console_cpu_notify, 0);
2671 return 0;
2672 }
2673 late_initcall(printk_late_init);
2674
2675 #if defined CONFIG_PRINTK
2676 /*
2677 * Delayed printk version, for scheduler-internal messages:
2678 */
2679 #define PRINTK_PENDING_WAKEUP 0x01
2680 #define PRINTK_PENDING_OUTPUT 0x02
2681
2682 static DEFINE_PER_CPU(int, printk_pending);
2683
2684 static void wake_up_klogd_work_func(struct irq_work *irq_work)
2685 {
2686 int pending = __this_cpu_xchg(printk_pending, 0);
2687
2688 if (pending & PRINTK_PENDING_OUTPUT) {
2689 /* If trylock fails, someone else is doing the printing */
2690 if (console_trylock())
2691 console_unlock();
2692 }
2693
2694 if (pending & PRINTK_PENDING_WAKEUP)
2695 wake_up_interruptible(&log_wait);
2696 }
2697
2698 static DEFINE_PER_CPU(struct irq_work, wake_up_klogd_work) = {
2699 .func = wake_up_klogd_work_func,
2700 .flags = IRQ_WORK_LAZY,
2701 };
2702
2703 void wake_up_klogd(void)
2704 {
2705 preempt_disable();
2706 if (waitqueue_active(&log_wait)) {
2707 this_cpu_or(printk_pending, PRINTK_PENDING_WAKEUP);
2708 irq_work_queue(this_cpu_ptr(&wake_up_klogd_work));
2709 }
2710 preempt_enable();
2711 }
2712
2713 int printk_deferred(const char *fmt, ...)
2714 {
2715 va_list args;
2716 int r;
2717
2718 preempt_disable();
2719 va_start(args, fmt);
2720 r = vprintk_emit(0, LOGLEVEL_SCHED, NULL, 0, fmt, args);
2721 va_end(args);
2722
2723 __this_cpu_or(printk_pending, PRINTK_PENDING_OUTPUT);
2724 irq_work_queue(this_cpu_ptr(&wake_up_klogd_work));
2725 preempt_enable();
2726
2727 return r;
2728 }
2729
2730 /*
2731 * printk rate limiting, lifted from the networking subsystem.
2732 *
2733 * This enforces a rate limit: not more than 10 kernel messages
2734 * every 5s to make a denial-of-service attack impossible.
2735 */
2736 DEFINE_RATELIMIT_STATE(printk_ratelimit_state, 5 * HZ, 10);
2737
2738 int __printk_ratelimit(const char *func)
2739 {
2740 return ___ratelimit(&printk_ratelimit_state, func);
2741 }
2742 EXPORT_SYMBOL(__printk_ratelimit);
2743
2744 /**
2745 * printk_timed_ratelimit - caller-controlled printk ratelimiting
2746 * @caller_jiffies: pointer to caller's state
2747 * @interval_msecs: minimum interval between prints
2748 *
2749 * printk_timed_ratelimit() returns true if more than @interval_msecs
2750 * milliseconds have elapsed since the last time printk_timed_ratelimit()
2751 * returned true.
2752 */
2753 bool printk_timed_ratelimit(unsigned long *caller_jiffies,
2754 unsigned int interval_msecs)
2755 {
2756 unsigned long elapsed = jiffies - *caller_jiffies;
2757
2758 if (*caller_jiffies && elapsed <= msecs_to_jiffies(interval_msecs))
2759 return false;
2760
2761 *caller_jiffies = jiffies;
2762 return true;
2763 }
2764 EXPORT_SYMBOL(printk_timed_ratelimit);
2765
2766 static DEFINE_SPINLOCK(dump_list_lock);
2767 static LIST_HEAD(dump_list);
2768
2769 /**
2770 * kmsg_dump_register - register a kernel log dumper.
2771 * @dumper: pointer to the kmsg_dumper structure
2772 *
2773 * Adds a kernel log dumper to the system. The dump callback in the
2774 * structure will be called when the kernel oopses or panics and must be
2775 * set. Returns zero on success and %-EINVAL or %-EBUSY otherwise.
2776 */
2777 int kmsg_dump_register(struct kmsg_dumper *dumper)
2778 {
2779 unsigned long flags;
2780 int err = -EBUSY;
2781
2782 /* The dump callback needs to be set */
2783 if (!dumper->dump)
2784 return -EINVAL;
2785
2786 spin_lock_irqsave(&dump_list_lock, flags);
2787 /* Don't allow registering multiple times */
2788 if (!dumper->registered) {
2789 dumper->registered = 1;
2790 list_add_tail_rcu(&dumper->list, &dump_list);
2791 err = 0;
2792 }
2793 spin_unlock_irqrestore(&dump_list_lock, flags);
2794
2795 return err;
2796 }
2797 EXPORT_SYMBOL_GPL(kmsg_dump_register);
2798
2799 /**
2800 * kmsg_dump_unregister - unregister a kmsg dumper.
2801 * @dumper: pointer to the kmsg_dumper structure
2802 *
2803 * Removes a dump device from the system. Returns zero on success and
2804 * %-EINVAL otherwise.
2805 */
2806 int kmsg_dump_unregister(struct kmsg_dumper *dumper)
2807 {
2808 unsigned long flags;
2809 int err = -EINVAL;
2810
2811 spin_lock_irqsave(&dump_list_lock, flags);
2812 if (dumper->registered) {
2813 dumper->registered = 0;
2814 list_del_rcu(&dumper->list);
2815 err = 0;
2816 }
2817 spin_unlock_irqrestore(&dump_list_lock, flags);
2818 synchronize_rcu();
2819
2820 return err;
2821 }
2822 EXPORT_SYMBOL_GPL(kmsg_dump_unregister);
2823
2824 static bool always_kmsg_dump;
2825 module_param_named(always_kmsg_dump, always_kmsg_dump, bool, S_IRUGO | S_IWUSR);
2826
2827 /**
2828 * kmsg_dump - dump kernel log to kernel message dumpers.
2829 * @reason: the reason (oops, panic etc) for dumping
2830 *
2831 * Call each of the registered dumper's dump() callback, which can
2832 * retrieve the kmsg records with kmsg_dump_get_line() or
2833 * kmsg_dump_get_buffer().
2834 */
2835 void kmsg_dump(enum kmsg_dump_reason reason)
2836 {
2837 struct kmsg_dumper *dumper;
2838 unsigned long flags;
2839
2840 if ((reason > KMSG_DUMP_OOPS) && !always_kmsg_dump)
2841 return;
2842
2843 rcu_read_lock();
2844 list_for_each_entry_rcu(dumper, &dump_list, list) {
2845 if (dumper->max_reason && reason > dumper->max_reason)
2846 continue;
2847
2848 /* initialize iterator with data about the stored records */
2849 dumper->active = true;
2850
2851 raw_spin_lock_irqsave(&logbuf_lock, flags);
2852 dumper->cur_seq = clear_seq;
2853 dumper->cur_idx = clear_idx;
2854 dumper->next_seq = log_next_seq;
2855 dumper->next_idx = log_next_idx;
2856 raw_spin_unlock_irqrestore(&logbuf_lock, flags);
2857
2858 /* invoke dumper which will iterate over records */
2859 dumper->dump(dumper, reason);
2860
2861 /* reset iterator */
2862 dumper->active = false;
2863 }
2864 rcu_read_unlock();
2865 }
2866
2867 /**
2868 * kmsg_dump_get_line_nolock - retrieve one kmsg log line (unlocked version)
2869 * @dumper: registered kmsg dumper
2870 * @syslog: include the "<4>" prefixes
2871 * @line: buffer to copy the line to
2872 * @size: maximum size of the buffer
2873 * @len: length of line placed into buffer
2874 *
2875 * Start at the beginning of the kmsg buffer, with the oldest kmsg
2876 * record, and copy one record into the provided buffer.
2877 *
2878 * Consecutive calls will return the next available record moving
2879 * towards the end of the buffer with the youngest messages.
2880 *
2881 * A return value of FALSE indicates that there are no more records to
2882 * read.
2883 *
2884 * The function is similar to kmsg_dump_get_line(), but grabs no locks.
2885 */
2886 bool kmsg_dump_get_line_nolock(struct kmsg_dumper *dumper, bool syslog,
2887 char *line, size_t size, size_t *len)
2888 {
2889 struct printk_log *msg;
2890 size_t l = 0;
2891 bool ret = false;
2892
2893 if (!dumper->active)
2894 goto out;
2895
2896 if (dumper->cur_seq < log_first_seq) {
2897 /* messages are gone, move to first available one */
2898 dumper->cur_seq = log_first_seq;
2899 dumper->cur_idx = log_first_idx;
2900 }
2901
2902 /* last entry */
2903 if (dumper->cur_seq >= log_next_seq)
2904 goto out;
2905
2906 msg = log_from_idx(dumper->cur_idx);
2907 l = msg_print_text(msg, 0, syslog, line, size);
2908
2909 dumper->cur_idx = log_next(dumper->cur_idx);
2910 dumper->cur_seq++;
2911 ret = true;
2912 out:
2913 if (len)
2914 *len = l;
2915 return ret;
2916 }
2917
2918 /**
2919 * kmsg_dump_get_line - retrieve one kmsg log line
2920 * @dumper: registered kmsg dumper
2921 * @syslog: include the "<4>" prefixes
2922 * @line: buffer to copy the line to
2923 * @size: maximum size of the buffer
2924 * @len: length of line placed into buffer
2925 *
2926 * Start at the beginning of the kmsg buffer, with the oldest kmsg
2927 * record, and copy one record into the provided buffer.
2928 *
2929 * Consecutive calls will return the next available record moving
2930 * towards the end of the buffer with the youngest messages.
2931 *
2932 * A return value of FALSE indicates that there are no more records to
2933 * read.
2934 */
2935 bool kmsg_dump_get_line(struct kmsg_dumper *dumper, bool syslog,
2936 char *line, size_t size, size_t *len)
2937 {
2938 unsigned long flags;
2939 bool ret;
2940
2941 raw_spin_lock_irqsave(&logbuf_lock, flags);
2942 ret = kmsg_dump_get_line_nolock(dumper, syslog, line, size, len);
2943 raw_spin_unlock_irqrestore(&logbuf_lock, flags);
2944
2945 return ret;
2946 }
2947 EXPORT_SYMBOL_GPL(kmsg_dump_get_line);
2948
2949 /**
2950 * kmsg_dump_get_buffer - copy kmsg log lines
2951 * @dumper: registered kmsg dumper
2952 * @syslog: include the "<4>" prefixes
2953 * @buf: buffer to copy the line to
2954 * @size: maximum size of the buffer
2955 * @len: length of line placed into buffer
2956 *
2957 * Start at the end of the kmsg buffer and fill the provided buffer
2958 * with as many of the the *youngest* kmsg records that fit into it.
2959 * If the buffer is large enough, all available kmsg records will be
2960 * copied with a single call.
2961 *
2962 * Consecutive calls will fill the buffer with the next block of
2963 * available older records, not including the earlier retrieved ones.
2964 *
2965 * A return value of FALSE indicates that there are no more records to
2966 * read.
2967 */
2968 bool kmsg_dump_get_buffer(struct kmsg_dumper *dumper, bool syslog,
2969 char *buf, size_t size, size_t *len)
2970 {
2971 unsigned long flags;
2972 u64 seq;
2973 u32 idx;
2974 u64 next_seq;
2975 u32 next_idx;
2976 enum log_flags prev;
2977 size_t l = 0;
2978 bool ret = false;
2979
2980 if (!dumper->active)
2981 goto out;
2982
2983 raw_spin_lock_irqsave(&logbuf_lock, flags);
2984 if (dumper->cur_seq < log_first_seq) {
2985 /* messages are gone, move to first available one */
2986 dumper->cur_seq = log_first_seq;
2987 dumper->cur_idx = log_first_idx;
2988 }
2989
2990 /* last entry */
2991 if (dumper->cur_seq >= dumper->next_seq) {
2992 raw_spin_unlock_irqrestore(&logbuf_lock, flags);
2993 goto out;
2994 }
2995
2996 /* calculate length of entire buffer */
2997 seq = dumper->cur_seq;
2998 idx = dumper->cur_idx;
2999 prev = 0;
3000 while (seq < dumper->next_seq) {
3001 struct printk_log *msg = log_from_idx(idx);
3002
3003 l += msg_print_text(msg, prev, true, NULL, 0);
3004 idx = log_next(idx);
3005 seq++;
3006 prev = msg->flags;
3007 }
3008
3009 /* move first record forward until length fits into the buffer */
3010 seq = dumper->cur_seq;
3011 idx = dumper->cur_idx;
3012 prev = 0;
3013 while (l > size && seq < dumper->next_seq) {
3014 struct printk_log *msg = log_from_idx(idx);
3015
3016 l -= msg_print_text(msg, prev, true, NULL, 0);
3017 idx = log_next(idx);
3018 seq++;
3019 prev = msg->flags;
3020 }
3021
3022 /* last message in next interation */
3023 next_seq = seq;
3024 next_idx = idx;
3025
3026 l = 0;
3027 while (seq < dumper->next_seq) {
3028 struct printk_log *msg = log_from_idx(idx);
3029
3030 l += msg_print_text(msg, prev, syslog, buf + l, size - l);
3031 idx = log_next(idx);
3032 seq++;
3033 prev = msg->flags;
3034 }
3035
3036 dumper->next_seq = next_seq;
3037 dumper->next_idx = next_idx;
3038 ret = true;
3039 raw_spin_unlock_irqrestore(&logbuf_lock, flags);
3040 out:
3041 if (len)
3042 *len = l;
3043 return ret;
3044 }
3045 EXPORT_SYMBOL_GPL(kmsg_dump_get_buffer);
3046
3047 /**
3048 * kmsg_dump_rewind_nolock - reset the interator (unlocked version)
3049 * @dumper: registered kmsg dumper
3050 *
3051 * Reset the dumper's iterator so that kmsg_dump_get_line() and
3052 * kmsg_dump_get_buffer() can be called again and used multiple
3053 * times within the same dumper.dump() callback.
3054 *
3055 * The function is similar to kmsg_dump_rewind(), but grabs no locks.
3056 */
3057 void kmsg_dump_rewind_nolock(struct kmsg_dumper *dumper)
3058 {
3059 dumper->cur_seq = clear_seq;
3060 dumper->cur_idx = clear_idx;
3061 dumper->next_seq = log_next_seq;
3062 dumper->next_idx = log_next_idx;
3063 }
3064
3065 /**
3066 * kmsg_dump_rewind - reset the interator
3067 * @dumper: registered kmsg dumper
3068 *
3069 * Reset the dumper's iterator so that kmsg_dump_get_line() and
3070 * kmsg_dump_get_buffer() can be called again and used multiple
3071 * times within the same dumper.dump() callback.
3072 */
3073 void kmsg_dump_rewind(struct kmsg_dumper *dumper)
3074 {
3075 unsigned long flags;
3076
3077 raw_spin_lock_irqsave(&logbuf_lock, flags);
3078 kmsg_dump_rewind_nolock(dumper);
3079 raw_spin_unlock_irqrestore(&logbuf_lock, flags);
3080 }
3081 EXPORT_SYMBOL_GPL(kmsg_dump_rewind);
3082
3083 static char dump_stack_arch_desc_str[128];
3084
3085 /**
3086 * dump_stack_set_arch_desc - set arch-specific str to show with task dumps
3087 * @fmt: printf-style format string
3088 * @...: arguments for the format string
3089 *
3090 * The configured string will be printed right after utsname during task
3091 * dumps. Usually used to add arch-specific system identifiers. If an
3092 * arch wants to make use of such an ID string, it should initialize this
3093 * as soon as possible during boot.
3094 */
3095 void __init dump_stack_set_arch_desc(const char *fmt, ...)
3096 {
3097 va_list args;
3098
3099 va_start(args, fmt);
3100 vsnprintf(dump_stack_arch_desc_str, sizeof(dump_stack_arch_desc_str),
3101 fmt, args);
3102 va_end(args);
3103 }
3104
3105 /**
3106 * dump_stack_print_info - print generic debug info for dump_stack()
3107 * @log_lvl: log level
3108 *
3109 * Arch-specific dump_stack() implementations can use this function to
3110 * print out the same debug information as the generic dump_stack().
3111 */
3112 void dump_stack_print_info(const char *log_lvl)
3113 {
3114 printk("%sCPU: %d PID: %d Comm: %.20s %s %s %.*s\n",
3115 log_lvl, raw_smp_processor_id(), current->pid, current->comm,
3116 print_tainted(), init_utsname()->release,
3117 (int)strcspn(init_utsname()->version, " "),
3118 init_utsname()->version);
3119
3120 if (dump_stack_arch_desc_str[0] != '\0')
3121 printk("%sHardware name: %s\n",
3122 log_lvl, dump_stack_arch_desc_str);
3123
3124 print_worker_info(log_lvl, current);
3125 }
3126
3127 /**
3128 * show_regs_print_info - print generic debug info for show_regs()
3129 * @log_lvl: log level
3130 *
3131 * show_regs() implementations can use this function to print out generic
3132 * debug information.
3133 */
3134 void show_regs_print_info(const char *log_lvl)
3135 {
3136 dump_stack_print_info(log_lvl);
3137
3138 printk("%stask: %p ti: %p task.ti: %p\n",
3139 log_lvl, current, current_thread_info(),
3140 task_thread_info(current));
3141 }
3142
3143 #endif