]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - kernel/rcu/tree_plugin.h
Merge tag 'iomap-5.7-merge-3' of git://git.kernel.org/pub/scm/fs/xfs/xfs-linux
[mirror_ubuntu-jammy-kernel.git] / kernel / rcu / tree_plugin.h
1 /* SPDX-License-Identifier: GPL-2.0+ */
2 /*
3 * Read-Copy Update mechanism for mutual exclusion (tree-based version)
4 * Internal non-public definitions that provide either classic
5 * or preemptible semantics.
6 *
7 * Copyright Red Hat, 2009
8 * Copyright IBM Corporation, 2009
9 *
10 * Author: Ingo Molnar <mingo@elte.hu>
11 * Paul E. McKenney <paulmck@linux.ibm.com>
12 */
13
14 #include "../locking/rtmutex_common.h"
15
16 #ifdef CONFIG_RCU_NOCB_CPU
17 static cpumask_var_t rcu_nocb_mask; /* CPUs to have callbacks offloaded. */
18 static bool __read_mostly rcu_nocb_poll; /* Offload kthread are to poll. */
19 #endif /* #ifdef CONFIG_RCU_NOCB_CPU */
20
21 /*
22 * Check the RCU kernel configuration parameters and print informative
23 * messages about anything out of the ordinary.
24 */
25 static void __init rcu_bootup_announce_oddness(void)
26 {
27 if (IS_ENABLED(CONFIG_RCU_TRACE))
28 pr_info("\tRCU event tracing is enabled.\n");
29 if ((IS_ENABLED(CONFIG_64BIT) && RCU_FANOUT != 64) ||
30 (!IS_ENABLED(CONFIG_64BIT) && RCU_FANOUT != 32))
31 pr_info("\tCONFIG_RCU_FANOUT set to non-default value of %d.\n",
32 RCU_FANOUT);
33 if (rcu_fanout_exact)
34 pr_info("\tHierarchical RCU autobalancing is disabled.\n");
35 if (IS_ENABLED(CONFIG_RCU_FAST_NO_HZ))
36 pr_info("\tRCU dyntick-idle grace-period acceleration is enabled.\n");
37 if (IS_ENABLED(CONFIG_PROVE_RCU))
38 pr_info("\tRCU lockdep checking is enabled.\n");
39 if (RCU_NUM_LVLS >= 4)
40 pr_info("\tFour(or more)-level hierarchy is enabled.\n");
41 if (RCU_FANOUT_LEAF != 16)
42 pr_info("\tBuild-time adjustment of leaf fanout to %d.\n",
43 RCU_FANOUT_LEAF);
44 if (rcu_fanout_leaf != RCU_FANOUT_LEAF)
45 pr_info("\tBoot-time adjustment of leaf fanout to %d.\n",
46 rcu_fanout_leaf);
47 if (nr_cpu_ids != NR_CPUS)
48 pr_info("\tRCU restricting CPUs from NR_CPUS=%d to nr_cpu_ids=%u.\n", NR_CPUS, nr_cpu_ids);
49 #ifdef CONFIG_RCU_BOOST
50 pr_info("\tRCU priority boosting: priority %d delay %d ms.\n",
51 kthread_prio, CONFIG_RCU_BOOST_DELAY);
52 #endif
53 if (blimit != DEFAULT_RCU_BLIMIT)
54 pr_info("\tBoot-time adjustment of callback invocation limit to %ld.\n", blimit);
55 if (qhimark != DEFAULT_RCU_QHIMARK)
56 pr_info("\tBoot-time adjustment of callback high-water mark to %ld.\n", qhimark);
57 if (qlowmark != DEFAULT_RCU_QLOMARK)
58 pr_info("\tBoot-time adjustment of callback low-water mark to %ld.\n", qlowmark);
59 if (qovld != DEFAULT_RCU_QOVLD)
60 pr_info("\tBoot-time adjustment of callback overload level to %ld.\n", qovld);
61 if (jiffies_till_first_fqs != ULONG_MAX)
62 pr_info("\tBoot-time adjustment of first FQS scan delay to %ld jiffies.\n", jiffies_till_first_fqs);
63 if (jiffies_till_next_fqs != ULONG_MAX)
64 pr_info("\tBoot-time adjustment of subsequent FQS scan delay to %ld jiffies.\n", jiffies_till_next_fqs);
65 if (jiffies_till_sched_qs != ULONG_MAX)
66 pr_info("\tBoot-time adjustment of scheduler-enlistment delay to %ld jiffies.\n", jiffies_till_sched_qs);
67 if (rcu_kick_kthreads)
68 pr_info("\tKick kthreads if too-long grace period.\n");
69 if (IS_ENABLED(CONFIG_DEBUG_OBJECTS_RCU_HEAD))
70 pr_info("\tRCU callback double-/use-after-free debug enabled.\n");
71 if (gp_preinit_delay)
72 pr_info("\tRCU debug GP pre-init slowdown %d jiffies.\n", gp_preinit_delay);
73 if (gp_init_delay)
74 pr_info("\tRCU debug GP init slowdown %d jiffies.\n", gp_init_delay);
75 if (gp_cleanup_delay)
76 pr_info("\tRCU debug GP init slowdown %d jiffies.\n", gp_cleanup_delay);
77 if (!use_softirq)
78 pr_info("\tRCU_SOFTIRQ processing moved to rcuc kthreads.\n");
79 if (IS_ENABLED(CONFIG_RCU_EQS_DEBUG))
80 pr_info("\tRCU debug extended QS entry/exit.\n");
81 rcupdate_announce_bootup_oddness();
82 }
83
84 #ifdef CONFIG_PREEMPT_RCU
85
86 static void rcu_report_exp_rnp(struct rcu_node *rnp, bool wake);
87 static void rcu_read_unlock_special(struct task_struct *t);
88
89 /*
90 * Tell them what RCU they are running.
91 */
92 static void __init rcu_bootup_announce(void)
93 {
94 pr_info("Preemptible hierarchical RCU implementation.\n");
95 rcu_bootup_announce_oddness();
96 }
97
98 /* Flags for rcu_preempt_ctxt_queue() decision table. */
99 #define RCU_GP_TASKS 0x8
100 #define RCU_EXP_TASKS 0x4
101 #define RCU_GP_BLKD 0x2
102 #define RCU_EXP_BLKD 0x1
103
104 /*
105 * Queues a task preempted within an RCU-preempt read-side critical
106 * section into the appropriate location within the ->blkd_tasks list,
107 * depending on the states of any ongoing normal and expedited grace
108 * periods. The ->gp_tasks pointer indicates which element the normal
109 * grace period is waiting on (NULL if none), and the ->exp_tasks pointer
110 * indicates which element the expedited grace period is waiting on (again,
111 * NULL if none). If a grace period is waiting on a given element in the
112 * ->blkd_tasks list, it also waits on all subsequent elements. Thus,
113 * adding a task to the tail of the list blocks any grace period that is
114 * already waiting on one of the elements. In contrast, adding a task
115 * to the head of the list won't block any grace period that is already
116 * waiting on one of the elements.
117 *
118 * This queuing is imprecise, and can sometimes make an ongoing grace
119 * period wait for a task that is not strictly speaking blocking it.
120 * Given the choice, we needlessly block a normal grace period rather than
121 * blocking an expedited grace period.
122 *
123 * Note that an endless sequence of expedited grace periods still cannot
124 * indefinitely postpone a normal grace period. Eventually, all of the
125 * fixed number of preempted tasks blocking the normal grace period that are
126 * not also blocking the expedited grace period will resume and complete
127 * their RCU read-side critical sections. At that point, the ->gp_tasks
128 * pointer will equal the ->exp_tasks pointer, at which point the end of
129 * the corresponding expedited grace period will also be the end of the
130 * normal grace period.
131 */
132 static void rcu_preempt_ctxt_queue(struct rcu_node *rnp, struct rcu_data *rdp)
133 __releases(rnp->lock) /* But leaves rrupts disabled. */
134 {
135 int blkd_state = (rnp->gp_tasks ? RCU_GP_TASKS : 0) +
136 (rnp->exp_tasks ? RCU_EXP_TASKS : 0) +
137 (rnp->qsmask & rdp->grpmask ? RCU_GP_BLKD : 0) +
138 (rnp->expmask & rdp->grpmask ? RCU_EXP_BLKD : 0);
139 struct task_struct *t = current;
140
141 raw_lockdep_assert_held_rcu_node(rnp);
142 WARN_ON_ONCE(rdp->mynode != rnp);
143 WARN_ON_ONCE(!rcu_is_leaf_node(rnp));
144 /* RCU better not be waiting on newly onlined CPUs! */
145 WARN_ON_ONCE(rnp->qsmaskinitnext & ~rnp->qsmaskinit & rnp->qsmask &
146 rdp->grpmask);
147
148 /*
149 * Decide where to queue the newly blocked task. In theory,
150 * this could be an if-statement. In practice, when I tried
151 * that, it was quite messy.
152 */
153 switch (blkd_state) {
154 case 0:
155 case RCU_EXP_TASKS:
156 case RCU_EXP_TASKS + RCU_GP_BLKD:
157 case RCU_GP_TASKS:
158 case RCU_GP_TASKS + RCU_EXP_TASKS:
159
160 /*
161 * Blocking neither GP, or first task blocking the normal
162 * GP but not blocking the already-waiting expedited GP.
163 * Queue at the head of the list to avoid unnecessarily
164 * blocking the already-waiting GPs.
165 */
166 list_add(&t->rcu_node_entry, &rnp->blkd_tasks);
167 break;
168
169 case RCU_EXP_BLKD:
170 case RCU_GP_BLKD:
171 case RCU_GP_BLKD + RCU_EXP_BLKD:
172 case RCU_GP_TASKS + RCU_EXP_BLKD:
173 case RCU_GP_TASKS + RCU_GP_BLKD + RCU_EXP_BLKD:
174 case RCU_GP_TASKS + RCU_EXP_TASKS + RCU_GP_BLKD + RCU_EXP_BLKD:
175
176 /*
177 * First task arriving that blocks either GP, or first task
178 * arriving that blocks the expedited GP (with the normal
179 * GP already waiting), or a task arriving that blocks
180 * both GPs with both GPs already waiting. Queue at the
181 * tail of the list to avoid any GP waiting on any of the
182 * already queued tasks that are not blocking it.
183 */
184 list_add_tail(&t->rcu_node_entry, &rnp->blkd_tasks);
185 break;
186
187 case RCU_EXP_TASKS + RCU_EXP_BLKD:
188 case RCU_EXP_TASKS + RCU_GP_BLKD + RCU_EXP_BLKD:
189 case RCU_GP_TASKS + RCU_EXP_TASKS + RCU_EXP_BLKD:
190
191 /*
192 * Second or subsequent task blocking the expedited GP.
193 * The task either does not block the normal GP, or is the
194 * first task blocking the normal GP. Queue just after
195 * the first task blocking the expedited GP.
196 */
197 list_add(&t->rcu_node_entry, rnp->exp_tasks);
198 break;
199
200 case RCU_GP_TASKS + RCU_GP_BLKD:
201 case RCU_GP_TASKS + RCU_EXP_TASKS + RCU_GP_BLKD:
202
203 /*
204 * Second or subsequent task blocking the normal GP.
205 * The task does not block the expedited GP. Queue just
206 * after the first task blocking the normal GP.
207 */
208 list_add(&t->rcu_node_entry, rnp->gp_tasks);
209 break;
210
211 default:
212
213 /* Yet another exercise in excessive paranoia. */
214 WARN_ON_ONCE(1);
215 break;
216 }
217
218 /*
219 * We have now queued the task. If it was the first one to
220 * block either grace period, update the ->gp_tasks and/or
221 * ->exp_tasks pointers, respectively, to reference the newly
222 * blocked tasks.
223 */
224 if (!rnp->gp_tasks && (blkd_state & RCU_GP_BLKD)) {
225 WRITE_ONCE(rnp->gp_tasks, &t->rcu_node_entry);
226 WARN_ON_ONCE(rnp->completedqs == rnp->gp_seq);
227 }
228 if (!rnp->exp_tasks && (blkd_state & RCU_EXP_BLKD))
229 rnp->exp_tasks = &t->rcu_node_entry;
230 WARN_ON_ONCE(!(blkd_state & RCU_GP_BLKD) !=
231 !(rnp->qsmask & rdp->grpmask));
232 WARN_ON_ONCE(!(blkd_state & RCU_EXP_BLKD) !=
233 !(rnp->expmask & rdp->grpmask));
234 raw_spin_unlock_rcu_node(rnp); /* interrupts remain disabled. */
235
236 /*
237 * Report the quiescent state for the expedited GP. This expedited
238 * GP should not be able to end until we report, so there should be
239 * no need to check for a subsequent expedited GP. (Though we are
240 * still in a quiescent state in any case.)
241 */
242 if (blkd_state & RCU_EXP_BLKD && rdp->exp_deferred_qs)
243 rcu_report_exp_rdp(rdp);
244 else
245 WARN_ON_ONCE(rdp->exp_deferred_qs);
246 }
247
248 /*
249 * Record a preemptible-RCU quiescent state for the specified CPU.
250 * Note that this does not necessarily mean that the task currently running
251 * on the CPU is in a quiescent state: Instead, it means that the current
252 * grace period need not wait on any RCU read-side critical section that
253 * starts later on this CPU. It also means that if the current task is
254 * in an RCU read-side critical section, it has already added itself to
255 * some leaf rcu_node structure's ->blkd_tasks list. In addition to the
256 * current task, there might be any number of other tasks blocked while
257 * in an RCU read-side critical section.
258 *
259 * Callers to this function must disable preemption.
260 */
261 static void rcu_qs(void)
262 {
263 RCU_LOCKDEP_WARN(preemptible(), "rcu_qs() invoked with preemption enabled!!!\n");
264 if (__this_cpu_read(rcu_data.cpu_no_qs.s)) {
265 trace_rcu_grace_period(TPS("rcu_preempt"),
266 __this_cpu_read(rcu_data.gp_seq),
267 TPS("cpuqs"));
268 __this_cpu_write(rcu_data.cpu_no_qs.b.norm, false);
269 barrier(); /* Coordinate with rcu_flavor_sched_clock_irq(). */
270 WRITE_ONCE(current->rcu_read_unlock_special.b.need_qs, false);
271 }
272 }
273
274 /*
275 * We have entered the scheduler, and the current task might soon be
276 * context-switched away from. If this task is in an RCU read-side
277 * critical section, we will no longer be able to rely on the CPU to
278 * record that fact, so we enqueue the task on the blkd_tasks list.
279 * The task will dequeue itself when it exits the outermost enclosing
280 * RCU read-side critical section. Therefore, the current grace period
281 * cannot be permitted to complete until the blkd_tasks list entries
282 * predating the current grace period drain, in other words, until
283 * rnp->gp_tasks becomes NULL.
284 *
285 * Caller must disable interrupts.
286 */
287 void rcu_note_context_switch(bool preempt)
288 {
289 struct task_struct *t = current;
290 struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
291 struct rcu_node *rnp;
292
293 trace_rcu_utilization(TPS("Start context switch"));
294 lockdep_assert_irqs_disabled();
295 WARN_ON_ONCE(!preempt && rcu_preempt_depth() > 0);
296 if (rcu_preempt_depth() > 0 &&
297 !t->rcu_read_unlock_special.b.blocked) {
298
299 /* Possibly blocking in an RCU read-side critical section. */
300 rnp = rdp->mynode;
301 raw_spin_lock_rcu_node(rnp);
302 t->rcu_read_unlock_special.b.blocked = true;
303 t->rcu_blocked_node = rnp;
304
305 /*
306 * Verify the CPU's sanity, trace the preemption, and
307 * then queue the task as required based on the states
308 * of any ongoing and expedited grace periods.
309 */
310 WARN_ON_ONCE((rdp->grpmask & rcu_rnp_online_cpus(rnp)) == 0);
311 WARN_ON_ONCE(!list_empty(&t->rcu_node_entry));
312 trace_rcu_preempt_task(rcu_state.name,
313 t->pid,
314 (rnp->qsmask & rdp->grpmask)
315 ? rnp->gp_seq
316 : rcu_seq_snap(&rnp->gp_seq));
317 rcu_preempt_ctxt_queue(rnp, rdp);
318 } else {
319 rcu_preempt_deferred_qs(t);
320 }
321
322 /*
323 * Either we were not in an RCU read-side critical section to
324 * begin with, or we have now recorded that critical section
325 * globally. Either way, we can now note a quiescent state
326 * for this CPU. Again, if we were in an RCU read-side critical
327 * section, and if that critical section was blocking the current
328 * grace period, then the fact that the task has been enqueued
329 * means that we continue to block the current grace period.
330 */
331 rcu_qs();
332 if (rdp->exp_deferred_qs)
333 rcu_report_exp_rdp(rdp);
334 trace_rcu_utilization(TPS("End context switch"));
335 }
336 EXPORT_SYMBOL_GPL(rcu_note_context_switch);
337
338 /*
339 * Check for preempted RCU readers blocking the current grace period
340 * for the specified rcu_node structure. If the caller needs a reliable
341 * answer, it must hold the rcu_node's ->lock.
342 */
343 static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp)
344 {
345 return READ_ONCE(rnp->gp_tasks) != NULL;
346 }
347
348 /* Bias and limit values for ->rcu_read_lock_nesting. */
349 #define RCU_NEST_BIAS INT_MAX
350 #define RCU_NEST_NMAX (-INT_MAX / 2)
351 #define RCU_NEST_PMAX (INT_MAX / 2)
352
353 static void rcu_preempt_read_enter(void)
354 {
355 current->rcu_read_lock_nesting++;
356 }
357
358 static void rcu_preempt_read_exit(void)
359 {
360 current->rcu_read_lock_nesting--;
361 }
362
363 static void rcu_preempt_depth_set(int val)
364 {
365 current->rcu_read_lock_nesting = val;
366 }
367
368 /*
369 * Preemptible RCU implementation for rcu_read_lock().
370 * Just increment ->rcu_read_lock_nesting, shared state will be updated
371 * if we block.
372 */
373 void __rcu_read_lock(void)
374 {
375 rcu_preempt_read_enter();
376 if (IS_ENABLED(CONFIG_PROVE_LOCKING))
377 WARN_ON_ONCE(rcu_preempt_depth() > RCU_NEST_PMAX);
378 barrier(); /* critical section after entry code. */
379 }
380 EXPORT_SYMBOL_GPL(__rcu_read_lock);
381
382 /*
383 * Preemptible RCU implementation for rcu_read_unlock().
384 * Decrement ->rcu_read_lock_nesting. If the result is zero (outermost
385 * rcu_read_unlock()) and ->rcu_read_unlock_special is non-zero, then
386 * invoke rcu_read_unlock_special() to clean up after a context switch
387 * in an RCU read-side critical section and other special cases.
388 */
389 void __rcu_read_unlock(void)
390 {
391 struct task_struct *t = current;
392
393 if (rcu_preempt_depth() != 1) {
394 rcu_preempt_read_exit();
395 } else {
396 barrier(); /* critical section before exit code. */
397 rcu_preempt_depth_set(-RCU_NEST_BIAS);
398 barrier(); /* assign before ->rcu_read_unlock_special load */
399 if (unlikely(READ_ONCE(t->rcu_read_unlock_special.s)))
400 rcu_read_unlock_special(t);
401 barrier(); /* ->rcu_read_unlock_special load before assign */
402 rcu_preempt_depth_set(0);
403 }
404 if (IS_ENABLED(CONFIG_PROVE_LOCKING)) {
405 int rrln = rcu_preempt_depth();
406
407 WARN_ON_ONCE(rrln < 0 && rrln > RCU_NEST_NMAX);
408 }
409 }
410 EXPORT_SYMBOL_GPL(__rcu_read_unlock);
411
412 /*
413 * Advance a ->blkd_tasks-list pointer to the next entry, instead
414 * returning NULL if at the end of the list.
415 */
416 static struct list_head *rcu_next_node_entry(struct task_struct *t,
417 struct rcu_node *rnp)
418 {
419 struct list_head *np;
420
421 np = t->rcu_node_entry.next;
422 if (np == &rnp->blkd_tasks)
423 np = NULL;
424 return np;
425 }
426
427 /*
428 * Return true if the specified rcu_node structure has tasks that were
429 * preempted within an RCU read-side critical section.
430 */
431 static bool rcu_preempt_has_tasks(struct rcu_node *rnp)
432 {
433 return !list_empty(&rnp->blkd_tasks);
434 }
435
436 /*
437 * Report deferred quiescent states. The deferral time can
438 * be quite short, for example, in the case of the call from
439 * rcu_read_unlock_special().
440 */
441 static void
442 rcu_preempt_deferred_qs_irqrestore(struct task_struct *t, unsigned long flags)
443 {
444 bool empty_exp;
445 bool empty_norm;
446 bool empty_exp_now;
447 struct list_head *np;
448 bool drop_boost_mutex = false;
449 struct rcu_data *rdp;
450 struct rcu_node *rnp;
451 union rcu_special special;
452
453 /*
454 * If RCU core is waiting for this CPU to exit its critical section,
455 * report the fact that it has exited. Because irqs are disabled,
456 * t->rcu_read_unlock_special cannot change.
457 */
458 special = t->rcu_read_unlock_special;
459 rdp = this_cpu_ptr(&rcu_data);
460 if (!special.s && !rdp->exp_deferred_qs) {
461 local_irq_restore(flags);
462 return;
463 }
464 t->rcu_read_unlock_special.s = 0;
465 if (special.b.need_qs)
466 rcu_qs();
467
468 /*
469 * Respond to a request by an expedited grace period for a
470 * quiescent state from this CPU. Note that requests from
471 * tasks are handled when removing the task from the
472 * blocked-tasks list below.
473 */
474 if (rdp->exp_deferred_qs)
475 rcu_report_exp_rdp(rdp);
476
477 /* Clean up if blocked during RCU read-side critical section. */
478 if (special.b.blocked) {
479
480 /*
481 * Remove this task from the list it blocked on. The task
482 * now remains queued on the rcu_node corresponding to the
483 * CPU it first blocked on, so there is no longer any need
484 * to loop. Retain a WARN_ON_ONCE() out of sheer paranoia.
485 */
486 rnp = t->rcu_blocked_node;
487 raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
488 WARN_ON_ONCE(rnp != t->rcu_blocked_node);
489 WARN_ON_ONCE(!rcu_is_leaf_node(rnp));
490 empty_norm = !rcu_preempt_blocked_readers_cgp(rnp);
491 WARN_ON_ONCE(rnp->completedqs == rnp->gp_seq &&
492 (!empty_norm || rnp->qsmask));
493 empty_exp = sync_rcu_exp_done(rnp);
494 smp_mb(); /* ensure expedited fastpath sees end of RCU c-s. */
495 np = rcu_next_node_entry(t, rnp);
496 list_del_init(&t->rcu_node_entry);
497 t->rcu_blocked_node = NULL;
498 trace_rcu_unlock_preempted_task(TPS("rcu_preempt"),
499 rnp->gp_seq, t->pid);
500 if (&t->rcu_node_entry == rnp->gp_tasks)
501 WRITE_ONCE(rnp->gp_tasks, np);
502 if (&t->rcu_node_entry == rnp->exp_tasks)
503 rnp->exp_tasks = np;
504 if (IS_ENABLED(CONFIG_RCU_BOOST)) {
505 /* Snapshot ->boost_mtx ownership w/rnp->lock held. */
506 drop_boost_mutex = rt_mutex_owner(&rnp->boost_mtx) == t;
507 if (&t->rcu_node_entry == rnp->boost_tasks)
508 rnp->boost_tasks = np;
509 }
510
511 /*
512 * If this was the last task on the current list, and if
513 * we aren't waiting on any CPUs, report the quiescent state.
514 * Note that rcu_report_unblock_qs_rnp() releases rnp->lock,
515 * so we must take a snapshot of the expedited state.
516 */
517 empty_exp_now = sync_rcu_exp_done(rnp);
518 if (!empty_norm && !rcu_preempt_blocked_readers_cgp(rnp)) {
519 trace_rcu_quiescent_state_report(TPS("preempt_rcu"),
520 rnp->gp_seq,
521 0, rnp->qsmask,
522 rnp->level,
523 rnp->grplo,
524 rnp->grphi,
525 !!rnp->gp_tasks);
526 rcu_report_unblock_qs_rnp(rnp, flags);
527 } else {
528 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
529 }
530
531 /* Unboost if we were boosted. */
532 if (IS_ENABLED(CONFIG_RCU_BOOST) && drop_boost_mutex)
533 rt_mutex_futex_unlock(&rnp->boost_mtx);
534
535 /*
536 * If this was the last task on the expedited lists,
537 * then we need to report up the rcu_node hierarchy.
538 */
539 if (!empty_exp && empty_exp_now)
540 rcu_report_exp_rnp(rnp, true);
541 } else {
542 local_irq_restore(flags);
543 }
544 }
545
546 /*
547 * Is a deferred quiescent-state pending, and are we also not in
548 * an RCU read-side critical section? It is the caller's responsibility
549 * to ensure it is otherwise safe to report any deferred quiescent
550 * states. The reason for this is that it is safe to report a
551 * quiescent state during context switch even though preemption
552 * is disabled. This function cannot be expected to understand these
553 * nuances, so the caller must handle them.
554 */
555 static bool rcu_preempt_need_deferred_qs(struct task_struct *t)
556 {
557 return (__this_cpu_read(rcu_data.exp_deferred_qs) ||
558 READ_ONCE(t->rcu_read_unlock_special.s)) &&
559 rcu_preempt_depth() <= 0;
560 }
561
562 /*
563 * Report a deferred quiescent state if needed and safe to do so.
564 * As with rcu_preempt_need_deferred_qs(), "safe" involves only
565 * not being in an RCU read-side critical section. The caller must
566 * evaluate safety in terms of interrupt, softirq, and preemption
567 * disabling.
568 */
569 static void rcu_preempt_deferred_qs(struct task_struct *t)
570 {
571 unsigned long flags;
572 bool couldrecurse = rcu_preempt_depth() >= 0;
573
574 if (!rcu_preempt_need_deferred_qs(t))
575 return;
576 if (couldrecurse)
577 rcu_preempt_depth_set(rcu_preempt_depth() - RCU_NEST_BIAS);
578 local_irq_save(flags);
579 rcu_preempt_deferred_qs_irqrestore(t, flags);
580 if (couldrecurse)
581 rcu_preempt_depth_set(rcu_preempt_depth() + RCU_NEST_BIAS);
582 }
583
584 /*
585 * Minimal handler to give the scheduler a chance to re-evaluate.
586 */
587 static void rcu_preempt_deferred_qs_handler(struct irq_work *iwp)
588 {
589 struct rcu_data *rdp;
590
591 rdp = container_of(iwp, struct rcu_data, defer_qs_iw);
592 rdp->defer_qs_iw_pending = false;
593 }
594
595 /*
596 * Handle special cases during rcu_read_unlock(), such as needing to
597 * notify RCU core processing or task having blocked during the RCU
598 * read-side critical section.
599 */
600 static void rcu_read_unlock_special(struct task_struct *t)
601 {
602 unsigned long flags;
603 bool preempt_bh_were_disabled =
604 !!(preempt_count() & (PREEMPT_MASK | SOFTIRQ_MASK));
605 bool irqs_were_disabled;
606
607 /* NMI handlers cannot block and cannot safely manipulate state. */
608 if (in_nmi())
609 return;
610
611 local_irq_save(flags);
612 irqs_were_disabled = irqs_disabled_flags(flags);
613 if (preempt_bh_were_disabled || irqs_were_disabled) {
614 bool exp;
615 struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
616 struct rcu_node *rnp = rdp->mynode;
617
618 exp = (t->rcu_blocked_node && t->rcu_blocked_node->exp_tasks) ||
619 (rdp->grpmask & READ_ONCE(rnp->expmask)) ||
620 tick_nohz_full_cpu(rdp->cpu);
621 // Need to defer quiescent state until everything is enabled.
622 if (irqs_were_disabled && use_softirq &&
623 (in_interrupt() ||
624 (exp && !t->rcu_read_unlock_special.b.deferred_qs))) {
625 // Using softirq, safe to awaken, and we get
626 // no help from enabling irqs, unlike bh/preempt.
627 raise_softirq_irqoff(RCU_SOFTIRQ);
628 } else {
629 // Enabling BH or preempt does reschedule, so...
630 // Also if no expediting or NO_HZ_FULL, slow is OK.
631 set_tsk_need_resched(current);
632 set_preempt_need_resched();
633 if (IS_ENABLED(CONFIG_IRQ_WORK) && irqs_were_disabled &&
634 !rdp->defer_qs_iw_pending && exp) {
635 // Get scheduler to re-evaluate and call hooks.
636 // If !IRQ_WORK, FQS scan will eventually IPI.
637 init_irq_work(&rdp->defer_qs_iw,
638 rcu_preempt_deferred_qs_handler);
639 rdp->defer_qs_iw_pending = true;
640 irq_work_queue_on(&rdp->defer_qs_iw, rdp->cpu);
641 }
642 }
643 t->rcu_read_unlock_special.b.deferred_qs = true;
644 local_irq_restore(flags);
645 return;
646 }
647 rcu_preempt_deferred_qs_irqrestore(t, flags);
648 }
649
650 /*
651 * Check that the list of blocked tasks for the newly completed grace
652 * period is in fact empty. It is a serious bug to complete a grace
653 * period that still has RCU readers blocked! This function must be
654 * invoked -before- updating this rnp's ->gp_seq.
655 *
656 * Also, if there are blocked tasks on the list, they automatically
657 * block the newly created grace period, so set up ->gp_tasks accordingly.
658 */
659 static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp)
660 {
661 struct task_struct *t;
662
663 RCU_LOCKDEP_WARN(preemptible(), "rcu_preempt_check_blocked_tasks() invoked with preemption enabled!!!\n");
664 raw_lockdep_assert_held_rcu_node(rnp);
665 if (WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp)))
666 dump_blkd_tasks(rnp, 10);
667 if (rcu_preempt_has_tasks(rnp) &&
668 (rnp->qsmaskinit || rnp->wait_blkd_tasks)) {
669 WRITE_ONCE(rnp->gp_tasks, rnp->blkd_tasks.next);
670 t = container_of(rnp->gp_tasks, struct task_struct,
671 rcu_node_entry);
672 trace_rcu_unlock_preempted_task(TPS("rcu_preempt-GPS"),
673 rnp->gp_seq, t->pid);
674 }
675 WARN_ON_ONCE(rnp->qsmask);
676 }
677
678 /*
679 * Check for a quiescent state from the current CPU, including voluntary
680 * context switches for Tasks RCU. When a task blocks, the task is
681 * recorded in the corresponding CPU's rcu_node structure, which is checked
682 * elsewhere, hence this function need only check for quiescent states
683 * related to the current CPU, not to those related to tasks.
684 */
685 static void rcu_flavor_sched_clock_irq(int user)
686 {
687 struct task_struct *t = current;
688
689 if (user || rcu_is_cpu_rrupt_from_idle()) {
690 rcu_note_voluntary_context_switch(current);
691 }
692 if (rcu_preempt_depth() > 0 ||
693 (preempt_count() & (PREEMPT_MASK | SOFTIRQ_MASK))) {
694 /* No QS, force context switch if deferred. */
695 if (rcu_preempt_need_deferred_qs(t)) {
696 set_tsk_need_resched(t);
697 set_preempt_need_resched();
698 }
699 } else if (rcu_preempt_need_deferred_qs(t)) {
700 rcu_preempt_deferred_qs(t); /* Report deferred QS. */
701 return;
702 } else if (!rcu_preempt_depth()) {
703 rcu_qs(); /* Report immediate QS. */
704 return;
705 }
706
707 /* If GP is oldish, ask for help from rcu_read_unlock_special(). */
708 if (rcu_preempt_depth() > 0 &&
709 __this_cpu_read(rcu_data.core_needs_qs) &&
710 __this_cpu_read(rcu_data.cpu_no_qs.b.norm) &&
711 !t->rcu_read_unlock_special.b.need_qs &&
712 time_after(jiffies, rcu_state.gp_start + HZ))
713 t->rcu_read_unlock_special.b.need_qs = true;
714 }
715
716 /*
717 * Check for a task exiting while in a preemptible-RCU read-side
718 * critical section, clean up if so. No need to issue warnings, as
719 * debug_check_no_locks_held() already does this if lockdep is enabled.
720 * Besides, if this function does anything other than just immediately
721 * return, there was a bug of some sort. Spewing warnings from this
722 * function is like as not to simply obscure important prior warnings.
723 */
724 void exit_rcu(void)
725 {
726 struct task_struct *t = current;
727
728 if (unlikely(!list_empty(&current->rcu_node_entry))) {
729 rcu_preempt_depth_set(1);
730 barrier();
731 WRITE_ONCE(t->rcu_read_unlock_special.b.blocked, true);
732 } else if (unlikely(rcu_preempt_depth())) {
733 rcu_preempt_depth_set(1);
734 } else {
735 return;
736 }
737 __rcu_read_unlock();
738 rcu_preempt_deferred_qs(current);
739 }
740
741 /*
742 * Dump the blocked-tasks state, but limit the list dump to the
743 * specified number of elements.
744 */
745 static void
746 dump_blkd_tasks(struct rcu_node *rnp, int ncheck)
747 {
748 int cpu;
749 int i;
750 struct list_head *lhp;
751 bool onl;
752 struct rcu_data *rdp;
753 struct rcu_node *rnp1;
754
755 raw_lockdep_assert_held_rcu_node(rnp);
756 pr_info("%s: grp: %d-%d level: %d ->gp_seq %ld ->completedqs %ld\n",
757 __func__, rnp->grplo, rnp->grphi, rnp->level,
758 (long)READ_ONCE(rnp->gp_seq), (long)rnp->completedqs);
759 for (rnp1 = rnp; rnp1; rnp1 = rnp1->parent)
760 pr_info("%s: %d:%d ->qsmask %#lx ->qsmaskinit %#lx ->qsmaskinitnext %#lx\n",
761 __func__, rnp1->grplo, rnp1->grphi, rnp1->qsmask, rnp1->qsmaskinit, rnp1->qsmaskinitnext);
762 pr_info("%s: ->gp_tasks %p ->boost_tasks %p ->exp_tasks %p\n",
763 __func__, READ_ONCE(rnp->gp_tasks), rnp->boost_tasks,
764 rnp->exp_tasks);
765 pr_info("%s: ->blkd_tasks", __func__);
766 i = 0;
767 list_for_each(lhp, &rnp->blkd_tasks) {
768 pr_cont(" %p", lhp);
769 if (++i >= ncheck)
770 break;
771 }
772 pr_cont("\n");
773 for (cpu = rnp->grplo; cpu <= rnp->grphi; cpu++) {
774 rdp = per_cpu_ptr(&rcu_data, cpu);
775 onl = !!(rdp->grpmask & rcu_rnp_online_cpus(rnp));
776 pr_info("\t%d: %c online: %ld(%d) offline: %ld(%d)\n",
777 cpu, ".o"[onl],
778 (long)rdp->rcu_onl_gp_seq, rdp->rcu_onl_gp_flags,
779 (long)rdp->rcu_ofl_gp_seq, rdp->rcu_ofl_gp_flags);
780 }
781 }
782
783 #else /* #ifdef CONFIG_PREEMPT_RCU */
784
785 /*
786 * Tell them what RCU they are running.
787 */
788 static void __init rcu_bootup_announce(void)
789 {
790 pr_info("Hierarchical RCU implementation.\n");
791 rcu_bootup_announce_oddness();
792 }
793
794 /*
795 * Note a quiescent state for PREEMPTION=n. Because we do not need to know
796 * how many quiescent states passed, just if there was at least one since
797 * the start of the grace period, this just sets a flag. The caller must
798 * have disabled preemption.
799 */
800 static void rcu_qs(void)
801 {
802 RCU_LOCKDEP_WARN(preemptible(), "rcu_qs() invoked with preemption enabled!!!");
803 if (!__this_cpu_read(rcu_data.cpu_no_qs.s))
804 return;
805 trace_rcu_grace_period(TPS("rcu_sched"),
806 __this_cpu_read(rcu_data.gp_seq), TPS("cpuqs"));
807 __this_cpu_write(rcu_data.cpu_no_qs.b.norm, false);
808 if (!__this_cpu_read(rcu_data.cpu_no_qs.b.exp))
809 return;
810 __this_cpu_write(rcu_data.cpu_no_qs.b.exp, false);
811 rcu_report_exp_rdp(this_cpu_ptr(&rcu_data));
812 }
813
814 /*
815 * Register an urgently needed quiescent state. If there is an
816 * emergency, invoke rcu_momentary_dyntick_idle() to do a heavy-weight
817 * dyntick-idle quiescent state visible to other CPUs, which will in
818 * some cases serve for expedited as well as normal grace periods.
819 * Either way, register a lightweight quiescent state.
820 */
821 void rcu_all_qs(void)
822 {
823 unsigned long flags;
824
825 if (!raw_cpu_read(rcu_data.rcu_urgent_qs))
826 return;
827 preempt_disable();
828 /* Load rcu_urgent_qs before other flags. */
829 if (!smp_load_acquire(this_cpu_ptr(&rcu_data.rcu_urgent_qs))) {
830 preempt_enable();
831 return;
832 }
833 this_cpu_write(rcu_data.rcu_urgent_qs, false);
834 if (unlikely(raw_cpu_read(rcu_data.rcu_need_heavy_qs))) {
835 local_irq_save(flags);
836 rcu_momentary_dyntick_idle();
837 local_irq_restore(flags);
838 }
839 rcu_qs();
840 preempt_enable();
841 }
842 EXPORT_SYMBOL_GPL(rcu_all_qs);
843
844 /*
845 * Note a PREEMPTION=n context switch. The caller must have disabled interrupts.
846 */
847 void rcu_note_context_switch(bool preempt)
848 {
849 trace_rcu_utilization(TPS("Start context switch"));
850 rcu_qs();
851 /* Load rcu_urgent_qs before other flags. */
852 if (!smp_load_acquire(this_cpu_ptr(&rcu_data.rcu_urgent_qs)))
853 goto out;
854 this_cpu_write(rcu_data.rcu_urgent_qs, false);
855 if (unlikely(raw_cpu_read(rcu_data.rcu_need_heavy_qs)))
856 rcu_momentary_dyntick_idle();
857 if (!preempt)
858 rcu_tasks_qs(current);
859 out:
860 trace_rcu_utilization(TPS("End context switch"));
861 }
862 EXPORT_SYMBOL_GPL(rcu_note_context_switch);
863
864 /*
865 * Because preemptible RCU does not exist, there are never any preempted
866 * RCU readers.
867 */
868 static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp)
869 {
870 return 0;
871 }
872
873 /*
874 * Because there is no preemptible RCU, there can be no readers blocked.
875 */
876 static bool rcu_preempt_has_tasks(struct rcu_node *rnp)
877 {
878 return false;
879 }
880
881 /*
882 * Because there is no preemptible RCU, there can be no deferred quiescent
883 * states.
884 */
885 static bool rcu_preempt_need_deferred_qs(struct task_struct *t)
886 {
887 return false;
888 }
889 static void rcu_preempt_deferred_qs(struct task_struct *t) { }
890
891 /*
892 * Because there is no preemptible RCU, there can be no readers blocked,
893 * so there is no need to check for blocked tasks. So check only for
894 * bogus qsmask values.
895 */
896 static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp)
897 {
898 WARN_ON_ONCE(rnp->qsmask);
899 }
900
901 /*
902 * Check to see if this CPU is in a non-context-switch quiescent state,
903 * namely user mode and idle loop.
904 */
905 static void rcu_flavor_sched_clock_irq(int user)
906 {
907 if (user || rcu_is_cpu_rrupt_from_idle()) {
908
909 /*
910 * Get here if this CPU took its interrupt from user
911 * mode or from the idle loop, and if this is not a
912 * nested interrupt. In this case, the CPU is in
913 * a quiescent state, so note it.
914 *
915 * No memory barrier is required here because rcu_qs()
916 * references only CPU-local variables that other CPUs
917 * neither access nor modify, at least not while the
918 * corresponding CPU is online.
919 */
920
921 rcu_qs();
922 }
923 }
924
925 /*
926 * Because preemptible RCU does not exist, tasks cannot possibly exit
927 * while in preemptible RCU read-side critical sections.
928 */
929 void exit_rcu(void)
930 {
931 }
932
933 /*
934 * Dump the guaranteed-empty blocked-tasks state. Trust but verify.
935 */
936 static void
937 dump_blkd_tasks(struct rcu_node *rnp, int ncheck)
938 {
939 WARN_ON_ONCE(!list_empty(&rnp->blkd_tasks));
940 }
941
942 #endif /* #else #ifdef CONFIG_PREEMPT_RCU */
943
944 /*
945 * If boosting, set rcuc kthreads to realtime priority.
946 */
947 static void rcu_cpu_kthread_setup(unsigned int cpu)
948 {
949 #ifdef CONFIG_RCU_BOOST
950 struct sched_param sp;
951
952 sp.sched_priority = kthread_prio;
953 sched_setscheduler_nocheck(current, SCHED_FIFO, &sp);
954 #endif /* #ifdef CONFIG_RCU_BOOST */
955 }
956
957 #ifdef CONFIG_RCU_BOOST
958
959 /*
960 * Carry out RCU priority boosting on the task indicated by ->exp_tasks
961 * or ->boost_tasks, advancing the pointer to the next task in the
962 * ->blkd_tasks list.
963 *
964 * Note that irqs must be enabled: boosting the task can block.
965 * Returns 1 if there are more tasks needing to be boosted.
966 */
967 static int rcu_boost(struct rcu_node *rnp)
968 {
969 unsigned long flags;
970 struct task_struct *t;
971 struct list_head *tb;
972
973 if (READ_ONCE(rnp->exp_tasks) == NULL &&
974 READ_ONCE(rnp->boost_tasks) == NULL)
975 return 0; /* Nothing left to boost. */
976
977 raw_spin_lock_irqsave_rcu_node(rnp, flags);
978
979 /*
980 * Recheck under the lock: all tasks in need of boosting
981 * might exit their RCU read-side critical sections on their own.
982 */
983 if (rnp->exp_tasks == NULL && rnp->boost_tasks == NULL) {
984 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
985 return 0;
986 }
987
988 /*
989 * Preferentially boost tasks blocking expedited grace periods.
990 * This cannot starve the normal grace periods because a second
991 * expedited grace period must boost all blocked tasks, including
992 * those blocking the pre-existing normal grace period.
993 */
994 if (rnp->exp_tasks != NULL)
995 tb = rnp->exp_tasks;
996 else
997 tb = rnp->boost_tasks;
998
999 /*
1000 * We boost task t by manufacturing an rt_mutex that appears to
1001 * be held by task t. We leave a pointer to that rt_mutex where
1002 * task t can find it, and task t will release the mutex when it
1003 * exits its outermost RCU read-side critical section. Then
1004 * simply acquiring this artificial rt_mutex will boost task
1005 * t's priority. (Thanks to tglx for suggesting this approach!)
1006 *
1007 * Note that task t must acquire rnp->lock to remove itself from
1008 * the ->blkd_tasks list, which it will do from exit() if from
1009 * nowhere else. We therefore are guaranteed that task t will
1010 * stay around at least until we drop rnp->lock. Note that
1011 * rnp->lock also resolves races between our priority boosting
1012 * and task t's exiting its outermost RCU read-side critical
1013 * section.
1014 */
1015 t = container_of(tb, struct task_struct, rcu_node_entry);
1016 rt_mutex_init_proxy_locked(&rnp->boost_mtx, t);
1017 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1018 /* Lock only for side effect: boosts task t's priority. */
1019 rt_mutex_lock(&rnp->boost_mtx);
1020 rt_mutex_unlock(&rnp->boost_mtx); /* Then keep lockdep happy. */
1021
1022 return READ_ONCE(rnp->exp_tasks) != NULL ||
1023 READ_ONCE(rnp->boost_tasks) != NULL;
1024 }
1025
1026 /*
1027 * Priority-boosting kthread, one per leaf rcu_node.
1028 */
1029 static int rcu_boost_kthread(void *arg)
1030 {
1031 struct rcu_node *rnp = (struct rcu_node *)arg;
1032 int spincnt = 0;
1033 int more2boost;
1034
1035 trace_rcu_utilization(TPS("Start boost kthread@init"));
1036 for (;;) {
1037 WRITE_ONCE(rnp->boost_kthread_status, RCU_KTHREAD_WAITING);
1038 trace_rcu_utilization(TPS("End boost kthread@rcu_wait"));
1039 rcu_wait(rnp->boost_tasks || rnp->exp_tasks);
1040 trace_rcu_utilization(TPS("Start boost kthread@rcu_wait"));
1041 WRITE_ONCE(rnp->boost_kthread_status, RCU_KTHREAD_RUNNING);
1042 more2boost = rcu_boost(rnp);
1043 if (more2boost)
1044 spincnt++;
1045 else
1046 spincnt = 0;
1047 if (spincnt > 10) {
1048 WRITE_ONCE(rnp->boost_kthread_status, RCU_KTHREAD_YIELDING);
1049 trace_rcu_utilization(TPS("End boost kthread@rcu_yield"));
1050 schedule_timeout_interruptible(2);
1051 trace_rcu_utilization(TPS("Start boost kthread@rcu_yield"));
1052 spincnt = 0;
1053 }
1054 }
1055 /* NOTREACHED */
1056 trace_rcu_utilization(TPS("End boost kthread@notreached"));
1057 return 0;
1058 }
1059
1060 /*
1061 * Check to see if it is time to start boosting RCU readers that are
1062 * blocking the current grace period, and, if so, tell the per-rcu_node
1063 * kthread to start boosting them. If there is an expedited grace
1064 * period in progress, it is always time to boost.
1065 *
1066 * The caller must hold rnp->lock, which this function releases.
1067 * The ->boost_kthread_task is immortal, so we don't need to worry
1068 * about it going away.
1069 */
1070 static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags)
1071 __releases(rnp->lock)
1072 {
1073 raw_lockdep_assert_held_rcu_node(rnp);
1074 if (!rcu_preempt_blocked_readers_cgp(rnp) && rnp->exp_tasks == NULL) {
1075 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1076 return;
1077 }
1078 if (rnp->exp_tasks != NULL ||
1079 (rnp->gp_tasks != NULL &&
1080 rnp->boost_tasks == NULL &&
1081 rnp->qsmask == 0 &&
1082 (ULONG_CMP_GE(jiffies, rnp->boost_time) || rcu_state.cbovld))) {
1083 if (rnp->exp_tasks == NULL)
1084 rnp->boost_tasks = rnp->gp_tasks;
1085 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1086 rcu_wake_cond(rnp->boost_kthread_task,
1087 READ_ONCE(rnp->boost_kthread_status));
1088 } else {
1089 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1090 }
1091 }
1092
1093 /*
1094 * Is the current CPU running the RCU-callbacks kthread?
1095 * Caller must have preemption disabled.
1096 */
1097 static bool rcu_is_callbacks_kthread(void)
1098 {
1099 return __this_cpu_read(rcu_data.rcu_cpu_kthread_task) == current;
1100 }
1101
1102 #define RCU_BOOST_DELAY_JIFFIES DIV_ROUND_UP(CONFIG_RCU_BOOST_DELAY * HZ, 1000)
1103
1104 /*
1105 * Do priority-boost accounting for the start of a new grace period.
1106 */
1107 static void rcu_preempt_boost_start_gp(struct rcu_node *rnp)
1108 {
1109 rnp->boost_time = jiffies + RCU_BOOST_DELAY_JIFFIES;
1110 }
1111
1112 /*
1113 * Create an RCU-boost kthread for the specified node if one does not
1114 * already exist. We only create this kthread for preemptible RCU.
1115 * Returns zero if all is well, a negated errno otherwise.
1116 */
1117 static void rcu_spawn_one_boost_kthread(struct rcu_node *rnp)
1118 {
1119 int rnp_index = rnp - rcu_get_root();
1120 unsigned long flags;
1121 struct sched_param sp;
1122 struct task_struct *t;
1123
1124 if (!IS_ENABLED(CONFIG_PREEMPT_RCU))
1125 return;
1126
1127 if (!rcu_scheduler_fully_active || rcu_rnp_online_cpus(rnp) == 0)
1128 return;
1129
1130 rcu_state.boost = 1;
1131
1132 if (rnp->boost_kthread_task != NULL)
1133 return;
1134
1135 t = kthread_create(rcu_boost_kthread, (void *)rnp,
1136 "rcub/%d", rnp_index);
1137 if (WARN_ON_ONCE(IS_ERR(t)))
1138 return;
1139
1140 raw_spin_lock_irqsave_rcu_node(rnp, flags);
1141 rnp->boost_kthread_task = t;
1142 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1143 sp.sched_priority = kthread_prio;
1144 sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
1145 wake_up_process(t); /* get to TASK_INTERRUPTIBLE quickly. */
1146 }
1147
1148 /*
1149 * Set the per-rcu_node kthread's affinity to cover all CPUs that are
1150 * served by the rcu_node in question. The CPU hotplug lock is still
1151 * held, so the value of rnp->qsmaskinit will be stable.
1152 *
1153 * We don't include outgoingcpu in the affinity set, use -1 if there is
1154 * no outgoing CPU. If there are no CPUs left in the affinity set,
1155 * this function allows the kthread to execute on any CPU.
1156 */
1157 static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu)
1158 {
1159 struct task_struct *t = rnp->boost_kthread_task;
1160 unsigned long mask = rcu_rnp_online_cpus(rnp);
1161 cpumask_var_t cm;
1162 int cpu;
1163
1164 if (!t)
1165 return;
1166 if (!zalloc_cpumask_var(&cm, GFP_KERNEL))
1167 return;
1168 for_each_leaf_node_possible_cpu(rnp, cpu)
1169 if ((mask & leaf_node_cpu_bit(rnp, cpu)) &&
1170 cpu != outgoingcpu)
1171 cpumask_set_cpu(cpu, cm);
1172 if (cpumask_weight(cm) == 0)
1173 cpumask_setall(cm);
1174 set_cpus_allowed_ptr(t, cm);
1175 free_cpumask_var(cm);
1176 }
1177
1178 /*
1179 * Spawn boost kthreads -- called as soon as the scheduler is running.
1180 */
1181 static void __init rcu_spawn_boost_kthreads(void)
1182 {
1183 struct rcu_node *rnp;
1184
1185 rcu_for_each_leaf_node(rnp)
1186 rcu_spawn_one_boost_kthread(rnp);
1187 }
1188
1189 static void rcu_prepare_kthreads(int cpu)
1190 {
1191 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
1192 struct rcu_node *rnp = rdp->mynode;
1193
1194 /* Fire up the incoming CPU's kthread and leaf rcu_node kthread. */
1195 if (rcu_scheduler_fully_active)
1196 rcu_spawn_one_boost_kthread(rnp);
1197 }
1198
1199 #else /* #ifdef CONFIG_RCU_BOOST */
1200
1201 static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags)
1202 __releases(rnp->lock)
1203 {
1204 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1205 }
1206
1207 static bool rcu_is_callbacks_kthread(void)
1208 {
1209 return false;
1210 }
1211
1212 static void rcu_preempt_boost_start_gp(struct rcu_node *rnp)
1213 {
1214 }
1215
1216 static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu)
1217 {
1218 }
1219
1220 static void __init rcu_spawn_boost_kthreads(void)
1221 {
1222 }
1223
1224 static void rcu_prepare_kthreads(int cpu)
1225 {
1226 }
1227
1228 #endif /* #else #ifdef CONFIG_RCU_BOOST */
1229
1230 #if !defined(CONFIG_RCU_FAST_NO_HZ)
1231
1232 /*
1233 * Check to see if any future non-offloaded RCU-related work will need
1234 * to be done by the current CPU, even if none need be done immediately,
1235 * returning 1 if so. This function is part of the RCU implementation;
1236 * it is -not- an exported member of the RCU API.
1237 *
1238 * Because we not have RCU_FAST_NO_HZ, just check whether or not this
1239 * CPU has RCU callbacks queued.
1240 */
1241 int rcu_needs_cpu(u64 basemono, u64 *nextevt)
1242 {
1243 *nextevt = KTIME_MAX;
1244 return !rcu_segcblist_empty(&this_cpu_ptr(&rcu_data)->cblist) &&
1245 !rcu_segcblist_is_offloaded(&this_cpu_ptr(&rcu_data)->cblist);
1246 }
1247
1248 /*
1249 * Because we do not have RCU_FAST_NO_HZ, don't bother cleaning up
1250 * after it.
1251 */
1252 static void rcu_cleanup_after_idle(void)
1253 {
1254 }
1255
1256 /*
1257 * Do the idle-entry grace-period work, which, because CONFIG_RCU_FAST_NO_HZ=n,
1258 * is nothing.
1259 */
1260 static void rcu_prepare_for_idle(void)
1261 {
1262 }
1263
1264 #else /* #if !defined(CONFIG_RCU_FAST_NO_HZ) */
1265
1266 /*
1267 * This code is invoked when a CPU goes idle, at which point we want
1268 * to have the CPU do everything required for RCU so that it can enter
1269 * the energy-efficient dyntick-idle mode.
1270 *
1271 * The following preprocessor symbol controls this:
1272 *
1273 * RCU_IDLE_GP_DELAY gives the number of jiffies that a CPU is permitted
1274 * to sleep in dyntick-idle mode with RCU callbacks pending. This
1275 * is sized to be roughly one RCU grace period. Those energy-efficiency
1276 * benchmarkers who might otherwise be tempted to set this to a large
1277 * number, be warned: Setting RCU_IDLE_GP_DELAY too high can hang your
1278 * system. And if you are -that- concerned about energy efficiency,
1279 * just power the system down and be done with it!
1280 *
1281 * The value below works well in practice. If future workloads require
1282 * adjustment, they can be converted into kernel config parameters, though
1283 * making the state machine smarter might be a better option.
1284 */
1285 #define RCU_IDLE_GP_DELAY 4 /* Roughly one grace period. */
1286
1287 static int rcu_idle_gp_delay = RCU_IDLE_GP_DELAY;
1288 module_param(rcu_idle_gp_delay, int, 0644);
1289
1290 /*
1291 * Try to advance callbacks on the current CPU, but only if it has been
1292 * awhile since the last time we did so. Afterwards, if there are any
1293 * callbacks ready for immediate invocation, return true.
1294 */
1295 static bool __maybe_unused rcu_try_advance_all_cbs(void)
1296 {
1297 bool cbs_ready = false;
1298 struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
1299 struct rcu_node *rnp;
1300
1301 /* Exit early if we advanced recently. */
1302 if (jiffies == rdp->last_advance_all)
1303 return false;
1304 rdp->last_advance_all = jiffies;
1305
1306 rnp = rdp->mynode;
1307
1308 /*
1309 * Don't bother checking unless a grace period has
1310 * completed since we last checked and there are
1311 * callbacks not yet ready to invoke.
1312 */
1313 if ((rcu_seq_completed_gp(rdp->gp_seq,
1314 rcu_seq_current(&rnp->gp_seq)) ||
1315 unlikely(READ_ONCE(rdp->gpwrap))) &&
1316 rcu_segcblist_pend_cbs(&rdp->cblist))
1317 note_gp_changes(rdp);
1318
1319 if (rcu_segcblist_ready_cbs(&rdp->cblist))
1320 cbs_ready = true;
1321 return cbs_ready;
1322 }
1323
1324 /*
1325 * Allow the CPU to enter dyntick-idle mode unless it has callbacks ready
1326 * to invoke. If the CPU has callbacks, try to advance them. Tell the
1327 * caller about what to set the timeout.
1328 *
1329 * The caller must have disabled interrupts.
1330 */
1331 int rcu_needs_cpu(u64 basemono, u64 *nextevt)
1332 {
1333 struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
1334 unsigned long dj;
1335
1336 lockdep_assert_irqs_disabled();
1337
1338 /* If no non-offloaded callbacks, RCU doesn't need the CPU. */
1339 if (rcu_segcblist_empty(&rdp->cblist) ||
1340 rcu_segcblist_is_offloaded(&this_cpu_ptr(&rcu_data)->cblist)) {
1341 *nextevt = KTIME_MAX;
1342 return 0;
1343 }
1344
1345 /* Attempt to advance callbacks. */
1346 if (rcu_try_advance_all_cbs()) {
1347 /* Some ready to invoke, so initiate later invocation. */
1348 invoke_rcu_core();
1349 return 1;
1350 }
1351 rdp->last_accelerate = jiffies;
1352
1353 /* Request timer and round. */
1354 dj = round_up(rcu_idle_gp_delay + jiffies, rcu_idle_gp_delay) - jiffies;
1355
1356 *nextevt = basemono + dj * TICK_NSEC;
1357 return 0;
1358 }
1359
1360 /*
1361 * Prepare a CPU for idle from an RCU perspective. The first major task is to
1362 * sense whether nohz mode has been enabled or disabled via sysfs. The second
1363 * major task is to accelerate (that is, assign grace-period numbers to) any
1364 * recently arrived callbacks.
1365 *
1366 * The caller must have disabled interrupts.
1367 */
1368 static void rcu_prepare_for_idle(void)
1369 {
1370 bool needwake;
1371 struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
1372 struct rcu_node *rnp;
1373 int tne;
1374
1375 lockdep_assert_irqs_disabled();
1376 if (rcu_segcblist_is_offloaded(&rdp->cblist))
1377 return;
1378
1379 /* Handle nohz enablement switches conservatively. */
1380 tne = READ_ONCE(tick_nohz_active);
1381 if (tne != rdp->tick_nohz_enabled_snap) {
1382 if (!rcu_segcblist_empty(&rdp->cblist))
1383 invoke_rcu_core(); /* force nohz to see update. */
1384 rdp->tick_nohz_enabled_snap = tne;
1385 return;
1386 }
1387 if (!tne)
1388 return;
1389
1390 /*
1391 * If we have not yet accelerated this jiffy, accelerate all
1392 * callbacks on this CPU.
1393 */
1394 if (rdp->last_accelerate == jiffies)
1395 return;
1396 rdp->last_accelerate = jiffies;
1397 if (rcu_segcblist_pend_cbs(&rdp->cblist)) {
1398 rnp = rdp->mynode;
1399 raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
1400 needwake = rcu_accelerate_cbs(rnp, rdp);
1401 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
1402 if (needwake)
1403 rcu_gp_kthread_wake();
1404 }
1405 }
1406
1407 /*
1408 * Clean up for exit from idle. Attempt to advance callbacks based on
1409 * any grace periods that elapsed while the CPU was idle, and if any
1410 * callbacks are now ready to invoke, initiate invocation.
1411 */
1412 static void rcu_cleanup_after_idle(void)
1413 {
1414 struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
1415
1416 lockdep_assert_irqs_disabled();
1417 if (rcu_segcblist_is_offloaded(&rdp->cblist))
1418 return;
1419 if (rcu_try_advance_all_cbs())
1420 invoke_rcu_core();
1421 }
1422
1423 #endif /* #else #if !defined(CONFIG_RCU_FAST_NO_HZ) */
1424
1425 #ifdef CONFIG_RCU_NOCB_CPU
1426
1427 /*
1428 * Offload callback processing from the boot-time-specified set of CPUs
1429 * specified by rcu_nocb_mask. For the CPUs in the set, there are kthreads
1430 * created that pull the callbacks from the corresponding CPU, wait for
1431 * a grace period to elapse, and invoke the callbacks. These kthreads
1432 * are organized into GP kthreads, which manage incoming callbacks, wait for
1433 * grace periods, and awaken CB kthreads, and the CB kthreads, which only
1434 * invoke callbacks. Each GP kthread invokes its own CBs. The no-CBs CPUs
1435 * do a wake_up() on their GP kthread when they insert a callback into any
1436 * empty list, unless the rcu_nocb_poll boot parameter has been specified,
1437 * in which case each kthread actively polls its CPU. (Which isn't so great
1438 * for energy efficiency, but which does reduce RCU's overhead on that CPU.)
1439 *
1440 * This is intended to be used in conjunction with Frederic Weisbecker's
1441 * adaptive-idle work, which would seriously reduce OS jitter on CPUs
1442 * running CPU-bound user-mode computations.
1443 *
1444 * Offloading of callbacks can also be used as an energy-efficiency
1445 * measure because CPUs with no RCU callbacks queued are more aggressive
1446 * about entering dyntick-idle mode.
1447 */
1448
1449
1450 /*
1451 * Parse the boot-time rcu_nocb_mask CPU list from the kernel parameters.
1452 * The string after the "rcu_nocbs=" is either "all" for all CPUs, or a
1453 * comma-separated list of CPUs and/or CPU ranges. If an invalid list is
1454 * given, a warning is emitted and all CPUs are offloaded.
1455 */
1456 static int __init rcu_nocb_setup(char *str)
1457 {
1458 alloc_bootmem_cpumask_var(&rcu_nocb_mask);
1459 if (!strcasecmp(str, "all"))
1460 cpumask_setall(rcu_nocb_mask);
1461 else
1462 if (cpulist_parse(str, rcu_nocb_mask)) {
1463 pr_warn("rcu_nocbs= bad CPU range, all CPUs set\n");
1464 cpumask_setall(rcu_nocb_mask);
1465 }
1466 return 1;
1467 }
1468 __setup("rcu_nocbs=", rcu_nocb_setup);
1469
1470 static int __init parse_rcu_nocb_poll(char *arg)
1471 {
1472 rcu_nocb_poll = true;
1473 return 0;
1474 }
1475 early_param("rcu_nocb_poll", parse_rcu_nocb_poll);
1476
1477 /*
1478 * Don't bother bypassing ->cblist if the call_rcu() rate is low.
1479 * After all, the main point of bypassing is to avoid lock contention
1480 * on ->nocb_lock, which only can happen at high call_rcu() rates.
1481 */
1482 int nocb_nobypass_lim_per_jiffy = 16 * 1000 / HZ;
1483 module_param(nocb_nobypass_lim_per_jiffy, int, 0);
1484
1485 /*
1486 * Acquire the specified rcu_data structure's ->nocb_bypass_lock. If the
1487 * lock isn't immediately available, increment ->nocb_lock_contended to
1488 * flag the contention.
1489 */
1490 static void rcu_nocb_bypass_lock(struct rcu_data *rdp)
1491 __acquires(&rdp->nocb_bypass_lock)
1492 {
1493 lockdep_assert_irqs_disabled();
1494 if (raw_spin_trylock(&rdp->nocb_bypass_lock))
1495 return;
1496 atomic_inc(&rdp->nocb_lock_contended);
1497 WARN_ON_ONCE(smp_processor_id() != rdp->cpu);
1498 smp_mb__after_atomic(); /* atomic_inc() before lock. */
1499 raw_spin_lock(&rdp->nocb_bypass_lock);
1500 smp_mb__before_atomic(); /* atomic_dec() after lock. */
1501 atomic_dec(&rdp->nocb_lock_contended);
1502 }
1503
1504 /*
1505 * Spinwait until the specified rcu_data structure's ->nocb_lock is
1506 * not contended. Please note that this is extremely special-purpose,
1507 * relying on the fact that at most two kthreads and one CPU contend for
1508 * this lock, and also that the two kthreads are guaranteed to have frequent
1509 * grace-period-duration time intervals between successive acquisitions
1510 * of the lock. This allows us to use an extremely simple throttling
1511 * mechanism, and further to apply it only to the CPU doing floods of
1512 * call_rcu() invocations. Don't try this at home!
1513 */
1514 static void rcu_nocb_wait_contended(struct rcu_data *rdp)
1515 {
1516 WARN_ON_ONCE(smp_processor_id() != rdp->cpu);
1517 while (WARN_ON_ONCE(atomic_read(&rdp->nocb_lock_contended)))
1518 cpu_relax();
1519 }
1520
1521 /*
1522 * Conditionally acquire the specified rcu_data structure's
1523 * ->nocb_bypass_lock.
1524 */
1525 static bool rcu_nocb_bypass_trylock(struct rcu_data *rdp)
1526 {
1527 lockdep_assert_irqs_disabled();
1528 return raw_spin_trylock(&rdp->nocb_bypass_lock);
1529 }
1530
1531 /*
1532 * Release the specified rcu_data structure's ->nocb_bypass_lock.
1533 */
1534 static void rcu_nocb_bypass_unlock(struct rcu_data *rdp)
1535 __releases(&rdp->nocb_bypass_lock)
1536 {
1537 lockdep_assert_irqs_disabled();
1538 raw_spin_unlock(&rdp->nocb_bypass_lock);
1539 }
1540
1541 /*
1542 * Acquire the specified rcu_data structure's ->nocb_lock, but only
1543 * if it corresponds to a no-CBs CPU.
1544 */
1545 static void rcu_nocb_lock(struct rcu_data *rdp)
1546 {
1547 lockdep_assert_irqs_disabled();
1548 if (!rcu_segcblist_is_offloaded(&rdp->cblist))
1549 return;
1550 raw_spin_lock(&rdp->nocb_lock);
1551 }
1552
1553 /*
1554 * Release the specified rcu_data structure's ->nocb_lock, but only
1555 * if it corresponds to a no-CBs CPU.
1556 */
1557 static void rcu_nocb_unlock(struct rcu_data *rdp)
1558 {
1559 if (rcu_segcblist_is_offloaded(&rdp->cblist)) {
1560 lockdep_assert_irqs_disabled();
1561 raw_spin_unlock(&rdp->nocb_lock);
1562 }
1563 }
1564
1565 /*
1566 * Release the specified rcu_data structure's ->nocb_lock and restore
1567 * interrupts, but only if it corresponds to a no-CBs CPU.
1568 */
1569 static void rcu_nocb_unlock_irqrestore(struct rcu_data *rdp,
1570 unsigned long flags)
1571 {
1572 if (rcu_segcblist_is_offloaded(&rdp->cblist)) {
1573 lockdep_assert_irqs_disabled();
1574 raw_spin_unlock_irqrestore(&rdp->nocb_lock, flags);
1575 } else {
1576 local_irq_restore(flags);
1577 }
1578 }
1579
1580 /* Lockdep check that ->cblist may be safely accessed. */
1581 static void rcu_lockdep_assert_cblist_protected(struct rcu_data *rdp)
1582 {
1583 lockdep_assert_irqs_disabled();
1584 if (rcu_segcblist_is_offloaded(&rdp->cblist))
1585 lockdep_assert_held(&rdp->nocb_lock);
1586 }
1587
1588 /*
1589 * Wake up any no-CBs CPUs' kthreads that were waiting on the just-ended
1590 * grace period.
1591 */
1592 static void rcu_nocb_gp_cleanup(struct swait_queue_head *sq)
1593 {
1594 swake_up_all(sq);
1595 }
1596
1597 static struct swait_queue_head *rcu_nocb_gp_get(struct rcu_node *rnp)
1598 {
1599 return &rnp->nocb_gp_wq[rcu_seq_ctr(rnp->gp_seq) & 0x1];
1600 }
1601
1602 static void rcu_init_one_nocb(struct rcu_node *rnp)
1603 {
1604 init_swait_queue_head(&rnp->nocb_gp_wq[0]);
1605 init_swait_queue_head(&rnp->nocb_gp_wq[1]);
1606 }
1607
1608 /* Is the specified CPU a no-CBs CPU? */
1609 bool rcu_is_nocb_cpu(int cpu)
1610 {
1611 if (cpumask_available(rcu_nocb_mask))
1612 return cpumask_test_cpu(cpu, rcu_nocb_mask);
1613 return false;
1614 }
1615
1616 /*
1617 * Kick the GP kthread for this NOCB group. Caller holds ->nocb_lock
1618 * and this function releases it.
1619 */
1620 static void wake_nocb_gp(struct rcu_data *rdp, bool force,
1621 unsigned long flags)
1622 __releases(rdp->nocb_lock)
1623 {
1624 bool needwake = false;
1625 struct rcu_data *rdp_gp = rdp->nocb_gp_rdp;
1626
1627 lockdep_assert_held(&rdp->nocb_lock);
1628 if (!READ_ONCE(rdp_gp->nocb_gp_kthread)) {
1629 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
1630 TPS("AlreadyAwake"));
1631 rcu_nocb_unlock_irqrestore(rdp, flags);
1632 return;
1633 }
1634 del_timer(&rdp->nocb_timer);
1635 rcu_nocb_unlock_irqrestore(rdp, flags);
1636 raw_spin_lock_irqsave(&rdp_gp->nocb_gp_lock, flags);
1637 if (force || READ_ONCE(rdp_gp->nocb_gp_sleep)) {
1638 WRITE_ONCE(rdp_gp->nocb_gp_sleep, false);
1639 needwake = true;
1640 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("DoWake"));
1641 }
1642 raw_spin_unlock_irqrestore(&rdp_gp->nocb_gp_lock, flags);
1643 if (needwake)
1644 wake_up_process(rdp_gp->nocb_gp_kthread);
1645 }
1646
1647 /*
1648 * Arrange to wake the GP kthread for this NOCB group at some future
1649 * time when it is safe to do so.
1650 */
1651 static void wake_nocb_gp_defer(struct rcu_data *rdp, int waketype,
1652 const char *reason)
1653 {
1654 if (rdp->nocb_defer_wakeup == RCU_NOCB_WAKE_NOT)
1655 mod_timer(&rdp->nocb_timer, jiffies + 1);
1656 if (rdp->nocb_defer_wakeup < waketype)
1657 WRITE_ONCE(rdp->nocb_defer_wakeup, waketype);
1658 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, reason);
1659 }
1660
1661 /*
1662 * Flush the ->nocb_bypass queue into ->cblist, enqueuing rhp if non-NULL.
1663 * However, if there is a callback to be enqueued and if ->nocb_bypass
1664 * proves to be initially empty, just return false because the no-CB GP
1665 * kthread may need to be awakened in this case.
1666 *
1667 * Note that this function always returns true if rhp is NULL.
1668 */
1669 static bool rcu_nocb_do_flush_bypass(struct rcu_data *rdp, struct rcu_head *rhp,
1670 unsigned long j)
1671 {
1672 struct rcu_cblist rcl;
1673
1674 WARN_ON_ONCE(!rcu_segcblist_is_offloaded(&rdp->cblist));
1675 rcu_lockdep_assert_cblist_protected(rdp);
1676 lockdep_assert_held(&rdp->nocb_bypass_lock);
1677 if (rhp && !rcu_cblist_n_cbs(&rdp->nocb_bypass)) {
1678 raw_spin_unlock(&rdp->nocb_bypass_lock);
1679 return false;
1680 }
1681 /* Note: ->cblist.len already accounts for ->nocb_bypass contents. */
1682 if (rhp)
1683 rcu_segcblist_inc_len(&rdp->cblist); /* Must precede enqueue. */
1684 rcu_cblist_flush_enqueue(&rcl, &rdp->nocb_bypass, rhp);
1685 rcu_segcblist_insert_pend_cbs(&rdp->cblist, &rcl);
1686 WRITE_ONCE(rdp->nocb_bypass_first, j);
1687 rcu_nocb_bypass_unlock(rdp);
1688 return true;
1689 }
1690
1691 /*
1692 * Flush the ->nocb_bypass queue into ->cblist, enqueuing rhp if non-NULL.
1693 * However, if there is a callback to be enqueued and if ->nocb_bypass
1694 * proves to be initially empty, just return false because the no-CB GP
1695 * kthread may need to be awakened in this case.
1696 *
1697 * Note that this function always returns true if rhp is NULL.
1698 */
1699 static bool rcu_nocb_flush_bypass(struct rcu_data *rdp, struct rcu_head *rhp,
1700 unsigned long j)
1701 {
1702 if (!rcu_segcblist_is_offloaded(&rdp->cblist))
1703 return true;
1704 rcu_lockdep_assert_cblist_protected(rdp);
1705 rcu_nocb_bypass_lock(rdp);
1706 return rcu_nocb_do_flush_bypass(rdp, rhp, j);
1707 }
1708
1709 /*
1710 * If the ->nocb_bypass_lock is immediately available, flush the
1711 * ->nocb_bypass queue into ->cblist.
1712 */
1713 static void rcu_nocb_try_flush_bypass(struct rcu_data *rdp, unsigned long j)
1714 {
1715 rcu_lockdep_assert_cblist_protected(rdp);
1716 if (!rcu_segcblist_is_offloaded(&rdp->cblist) ||
1717 !rcu_nocb_bypass_trylock(rdp))
1718 return;
1719 WARN_ON_ONCE(!rcu_nocb_do_flush_bypass(rdp, NULL, j));
1720 }
1721
1722 /*
1723 * See whether it is appropriate to use the ->nocb_bypass list in order
1724 * to control contention on ->nocb_lock. A limited number of direct
1725 * enqueues are permitted into ->cblist per jiffy. If ->nocb_bypass
1726 * is non-empty, further callbacks must be placed into ->nocb_bypass,
1727 * otherwise rcu_barrier() breaks. Use rcu_nocb_flush_bypass() to switch
1728 * back to direct use of ->cblist. However, ->nocb_bypass should not be
1729 * used if ->cblist is empty, because otherwise callbacks can be stranded
1730 * on ->nocb_bypass because we cannot count on the current CPU ever again
1731 * invoking call_rcu(). The general rule is that if ->nocb_bypass is
1732 * non-empty, the corresponding no-CBs grace-period kthread must not be
1733 * in an indefinite sleep state.
1734 *
1735 * Finally, it is not permitted to use the bypass during early boot,
1736 * as doing so would confuse the auto-initialization code. Besides
1737 * which, there is no point in worrying about lock contention while
1738 * there is only one CPU in operation.
1739 */
1740 static bool rcu_nocb_try_bypass(struct rcu_data *rdp, struct rcu_head *rhp,
1741 bool *was_alldone, unsigned long flags)
1742 {
1743 unsigned long c;
1744 unsigned long cur_gp_seq;
1745 unsigned long j = jiffies;
1746 long ncbs = rcu_cblist_n_cbs(&rdp->nocb_bypass);
1747
1748 if (!rcu_segcblist_is_offloaded(&rdp->cblist)) {
1749 *was_alldone = !rcu_segcblist_pend_cbs(&rdp->cblist);
1750 return false; /* Not offloaded, no bypassing. */
1751 }
1752 lockdep_assert_irqs_disabled();
1753
1754 // Don't use ->nocb_bypass during early boot.
1755 if (rcu_scheduler_active != RCU_SCHEDULER_RUNNING) {
1756 rcu_nocb_lock(rdp);
1757 WARN_ON_ONCE(rcu_cblist_n_cbs(&rdp->nocb_bypass));
1758 *was_alldone = !rcu_segcblist_pend_cbs(&rdp->cblist);
1759 return false;
1760 }
1761
1762 // If we have advanced to a new jiffy, reset counts to allow
1763 // moving back from ->nocb_bypass to ->cblist.
1764 if (j == rdp->nocb_nobypass_last) {
1765 c = rdp->nocb_nobypass_count + 1;
1766 } else {
1767 WRITE_ONCE(rdp->nocb_nobypass_last, j);
1768 c = rdp->nocb_nobypass_count - nocb_nobypass_lim_per_jiffy;
1769 if (ULONG_CMP_LT(rdp->nocb_nobypass_count,
1770 nocb_nobypass_lim_per_jiffy))
1771 c = 0;
1772 else if (c > nocb_nobypass_lim_per_jiffy)
1773 c = nocb_nobypass_lim_per_jiffy;
1774 }
1775 WRITE_ONCE(rdp->nocb_nobypass_count, c);
1776
1777 // If there hasn't yet been all that many ->cblist enqueues
1778 // this jiffy, tell the caller to enqueue onto ->cblist. But flush
1779 // ->nocb_bypass first.
1780 if (rdp->nocb_nobypass_count < nocb_nobypass_lim_per_jiffy) {
1781 rcu_nocb_lock(rdp);
1782 *was_alldone = !rcu_segcblist_pend_cbs(&rdp->cblist);
1783 if (*was_alldone)
1784 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
1785 TPS("FirstQ"));
1786 WARN_ON_ONCE(!rcu_nocb_flush_bypass(rdp, NULL, j));
1787 WARN_ON_ONCE(rcu_cblist_n_cbs(&rdp->nocb_bypass));
1788 return false; // Caller must enqueue the callback.
1789 }
1790
1791 // If ->nocb_bypass has been used too long or is too full,
1792 // flush ->nocb_bypass to ->cblist.
1793 if ((ncbs && j != READ_ONCE(rdp->nocb_bypass_first)) ||
1794 ncbs >= qhimark) {
1795 rcu_nocb_lock(rdp);
1796 if (!rcu_nocb_flush_bypass(rdp, rhp, j)) {
1797 *was_alldone = !rcu_segcblist_pend_cbs(&rdp->cblist);
1798 if (*was_alldone)
1799 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
1800 TPS("FirstQ"));
1801 WARN_ON_ONCE(rcu_cblist_n_cbs(&rdp->nocb_bypass));
1802 return false; // Caller must enqueue the callback.
1803 }
1804 if (j != rdp->nocb_gp_adv_time &&
1805 rcu_segcblist_nextgp(&rdp->cblist, &cur_gp_seq) &&
1806 rcu_seq_done(&rdp->mynode->gp_seq, cur_gp_seq)) {
1807 rcu_advance_cbs_nowake(rdp->mynode, rdp);
1808 rdp->nocb_gp_adv_time = j;
1809 }
1810 rcu_nocb_unlock_irqrestore(rdp, flags);
1811 return true; // Callback already enqueued.
1812 }
1813
1814 // We need to use the bypass.
1815 rcu_nocb_wait_contended(rdp);
1816 rcu_nocb_bypass_lock(rdp);
1817 ncbs = rcu_cblist_n_cbs(&rdp->nocb_bypass);
1818 rcu_segcblist_inc_len(&rdp->cblist); /* Must precede enqueue. */
1819 rcu_cblist_enqueue(&rdp->nocb_bypass, rhp);
1820 if (!ncbs) {
1821 WRITE_ONCE(rdp->nocb_bypass_first, j);
1822 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("FirstBQ"));
1823 }
1824 rcu_nocb_bypass_unlock(rdp);
1825 smp_mb(); /* Order enqueue before wake. */
1826 if (ncbs) {
1827 local_irq_restore(flags);
1828 } else {
1829 // No-CBs GP kthread might be indefinitely asleep, if so, wake.
1830 rcu_nocb_lock(rdp); // Rare during call_rcu() flood.
1831 if (!rcu_segcblist_pend_cbs(&rdp->cblist)) {
1832 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
1833 TPS("FirstBQwake"));
1834 __call_rcu_nocb_wake(rdp, true, flags);
1835 } else {
1836 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
1837 TPS("FirstBQnoWake"));
1838 rcu_nocb_unlock_irqrestore(rdp, flags);
1839 }
1840 }
1841 return true; // Callback already enqueued.
1842 }
1843
1844 /*
1845 * Awaken the no-CBs grace-period kthead if needed, either due to it
1846 * legitimately being asleep or due to overload conditions.
1847 *
1848 * If warranted, also wake up the kthread servicing this CPUs queues.
1849 */
1850 static void __call_rcu_nocb_wake(struct rcu_data *rdp, bool was_alldone,
1851 unsigned long flags)
1852 __releases(rdp->nocb_lock)
1853 {
1854 unsigned long cur_gp_seq;
1855 unsigned long j;
1856 long len;
1857 struct task_struct *t;
1858
1859 // If we are being polled or there is no kthread, just leave.
1860 t = READ_ONCE(rdp->nocb_gp_kthread);
1861 if (rcu_nocb_poll || !t) {
1862 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
1863 TPS("WakeNotPoll"));
1864 rcu_nocb_unlock_irqrestore(rdp, flags);
1865 return;
1866 }
1867 // Need to actually to a wakeup.
1868 len = rcu_segcblist_n_cbs(&rdp->cblist);
1869 if (was_alldone) {
1870 rdp->qlen_last_fqs_check = len;
1871 if (!irqs_disabled_flags(flags)) {
1872 /* ... if queue was empty ... */
1873 wake_nocb_gp(rdp, false, flags);
1874 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
1875 TPS("WakeEmpty"));
1876 } else {
1877 wake_nocb_gp_defer(rdp, RCU_NOCB_WAKE,
1878 TPS("WakeEmptyIsDeferred"));
1879 rcu_nocb_unlock_irqrestore(rdp, flags);
1880 }
1881 } else if (len > rdp->qlen_last_fqs_check + qhimark) {
1882 /* ... or if many callbacks queued. */
1883 rdp->qlen_last_fqs_check = len;
1884 j = jiffies;
1885 if (j != rdp->nocb_gp_adv_time &&
1886 rcu_segcblist_nextgp(&rdp->cblist, &cur_gp_seq) &&
1887 rcu_seq_done(&rdp->mynode->gp_seq, cur_gp_seq)) {
1888 rcu_advance_cbs_nowake(rdp->mynode, rdp);
1889 rdp->nocb_gp_adv_time = j;
1890 }
1891 smp_mb(); /* Enqueue before timer_pending(). */
1892 if ((rdp->nocb_cb_sleep ||
1893 !rcu_segcblist_ready_cbs(&rdp->cblist)) &&
1894 !timer_pending(&rdp->nocb_bypass_timer))
1895 wake_nocb_gp_defer(rdp, RCU_NOCB_WAKE_FORCE,
1896 TPS("WakeOvfIsDeferred"));
1897 rcu_nocb_unlock_irqrestore(rdp, flags);
1898 } else {
1899 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("WakeNot"));
1900 rcu_nocb_unlock_irqrestore(rdp, flags);
1901 }
1902 return;
1903 }
1904
1905 /* Wake up the no-CBs GP kthread to flush ->nocb_bypass. */
1906 static void do_nocb_bypass_wakeup_timer(struct timer_list *t)
1907 {
1908 unsigned long flags;
1909 struct rcu_data *rdp = from_timer(rdp, t, nocb_bypass_timer);
1910
1911 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("Timer"));
1912 rcu_nocb_lock_irqsave(rdp, flags);
1913 smp_mb__after_spinlock(); /* Timer expire before wakeup. */
1914 __call_rcu_nocb_wake(rdp, true, flags);
1915 }
1916
1917 /*
1918 * No-CBs GP kthreads come here to wait for additional callbacks to show up
1919 * or for grace periods to end.
1920 */
1921 static void nocb_gp_wait(struct rcu_data *my_rdp)
1922 {
1923 bool bypass = false;
1924 long bypass_ncbs;
1925 int __maybe_unused cpu = my_rdp->cpu;
1926 unsigned long cur_gp_seq;
1927 unsigned long flags;
1928 bool gotcbs = false;
1929 unsigned long j = jiffies;
1930 bool needwait_gp = false; // This prevents actual uninitialized use.
1931 bool needwake;
1932 bool needwake_gp;
1933 struct rcu_data *rdp;
1934 struct rcu_node *rnp;
1935 unsigned long wait_gp_seq = 0; // Suppress "use uninitialized" warning.
1936 bool wasempty = false;
1937
1938 /*
1939 * Each pass through the following loop checks for CBs and for the
1940 * nearest grace period (if any) to wait for next. The CB kthreads
1941 * and the global grace-period kthread are awakened if needed.
1942 */
1943 for (rdp = my_rdp; rdp; rdp = rdp->nocb_next_cb_rdp) {
1944 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("Check"));
1945 rcu_nocb_lock_irqsave(rdp, flags);
1946 bypass_ncbs = rcu_cblist_n_cbs(&rdp->nocb_bypass);
1947 if (bypass_ncbs &&
1948 (time_after(j, READ_ONCE(rdp->nocb_bypass_first) + 1) ||
1949 bypass_ncbs > 2 * qhimark)) {
1950 // Bypass full or old, so flush it.
1951 (void)rcu_nocb_try_flush_bypass(rdp, j);
1952 bypass_ncbs = rcu_cblist_n_cbs(&rdp->nocb_bypass);
1953 } else if (!bypass_ncbs && rcu_segcblist_empty(&rdp->cblist)) {
1954 rcu_nocb_unlock_irqrestore(rdp, flags);
1955 continue; /* No callbacks here, try next. */
1956 }
1957 if (bypass_ncbs) {
1958 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
1959 TPS("Bypass"));
1960 bypass = true;
1961 }
1962 rnp = rdp->mynode;
1963 if (bypass) { // Avoid race with first bypass CB.
1964 WRITE_ONCE(my_rdp->nocb_defer_wakeup,
1965 RCU_NOCB_WAKE_NOT);
1966 del_timer(&my_rdp->nocb_timer);
1967 }
1968 // Advance callbacks if helpful and low contention.
1969 needwake_gp = false;
1970 if (!rcu_segcblist_restempty(&rdp->cblist,
1971 RCU_NEXT_READY_TAIL) ||
1972 (rcu_segcblist_nextgp(&rdp->cblist, &cur_gp_seq) &&
1973 rcu_seq_done(&rnp->gp_seq, cur_gp_seq))) {
1974 raw_spin_lock_rcu_node(rnp); /* irqs disabled. */
1975 needwake_gp = rcu_advance_cbs(rnp, rdp);
1976 wasempty = rcu_segcblist_restempty(&rdp->cblist,
1977 RCU_NEXT_READY_TAIL);
1978 raw_spin_unlock_rcu_node(rnp); /* irqs disabled. */
1979 }
1980 // Need to wait on some grace period?
1981 WARN_ON_ONCE(wasempty &&
1982 !rcu_segcblist_restempty(&rdp->cblist,
1983 RCU_NEXT_READY_TAIL));
1984 if (rcu_segcblist_nextgp(&rdp->cblist, &cur_gp_seq)) {
1985 if (!needwait_gp ||
1986 ULONG_CMP_LT(cur_gp_seq, wait_gp_seq))
1987 wait_gp_seq = cur_gp_seq;
1988 needwait_gp = true;
1989 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
1990 TPS("NeedWaitGP"));
1991 }
1992 if (rcu_segcblist_ready_cbs(&rdp->cblist)) {
1993 needwake = rdp->nocb_cb_sleep;
1994 WRITE_ONCE(rdp->nocb_cb_sleep, false);
1995 smp_mb(); /* CB invocation -after- GP end. */
1996 } else {
1997 needwake = false;
1998 }
1999 rcu_nocb_unlock_irqrestore(rdp, flags);
2000 if (needwake) {
2001 swake_up_one(&rdp->nocb_cb_wq);
2002 gotcbs = true;
2003 }
2004 if (needwake_gp)
2005 rcu_gp_kthread_wake();
2006 }
2007
2008 my_rdp->nocb_gp_bypass = bypass;
2009 my_rdp->nocb_gp_gp = needwait_gp;
2010 my_rdp->nocb_gp_seq = needwait_gp ? wait_gp_seq : 0;
2011 if (bypass && !rcu_nocb_poll) {
2012 // At least one child with non-empty ->nocb_bypass, so set
2013 // timer in order to avoid stranding its callbacks.
2014 raw_spin_lock_irqsave(&my_rdp->nocb_gp_lock, flags);
2015 mod_timer(&my_rdp->nocb_bypass_timer, j + 2);
2016 raw_spin_unlock_irqrestore(&my_rdp->nocb_gp_lock, flags);
2017 }
2018 if (rcu_nocb_poll) {
2019 /* Polling, so trace if first poll in the series. */
2020 if (gotcbs)
2021 trace_rcu_nocb_wake(rcu_state.name, cpu, TPS("Poll"));
2022 schedule_timeout_interruptible(1);
2023 } else if (!needwait_gp) {
2024 /* Wait for callbacks to appear. */
2025 trace_rcu_nocb_wake(rcu_state.name, cpu, TPS("Sleep"));
2026 swait_event_interruptible_exclusive(my_rdp->nocb_gp_wq,
2027 !READ_ONCE(my_rdp->nocb_gp_sleep));
2028 trace_rcu_nocb_wake(rcu_state.name, cpu, TPS("EndSleep"));
2029 } else {
2030 rnp = my_rdp->mynode;
2031 trace_rcu_this_gp(rnp, my_rdp, wait_gp_seq, TPS("StartWait"));
2032 swait_event_interruptible_exclusive(
2033 rnp->nocb_gp_wq[rcu_seq_ctr(wait_gp_seq) & 0x1],
2034 rcu_seq_done(&rnp->gp_seq, wait_gp_seq) ||
2035 !READ_ONCE(my_rdp->nocb_gp_sleep));
2036 trace_rcu_this_gp(rnp, my_rdp, wait_gp_seq, TPS("EndWait"));
2037 }
2038 if (!rcu_nocb_poll) {
2039 raw_spin_lock_irqsave(&my_rdp->nocb_gp_lock, flags);
2040 if (bypass)
2041 del_timer(&my_rdp->nocb_bypass_timer);
2042 WRITE_ONCE(my_rdp->nocb_gp_sleep, true);
2043 raw_spin_unlock_irqrestore(&my_rdp->nocb_gp_lock, flags);
2044 }
2045 my_rdp->nocb_gp_seq = -1;
2046 WARN_ON(signal_pending(current));
2047 }
2048
2049 /*
2050 * No-CBs grace-period-wait kthread. There is one of these per group
2051 * of CPUs, but only once at least one CPU in that group has come online
2052 * at least once since boot. This kthread checks for newly posted
2053 * callbacks from any of the CPUs it is responsible for, waits for a
2054 * grace period, then awakens all of the rcu_nocb_cb_kthread() instances
2055 * that then have callback-invocation work to do.
2056 */
2057 static int rcu_nocb_gp_kthread(void *arg)
2058 {
2059 struct rcu_data *rdp = arg;
2060
2061 for (;;) {
2062 WRITE_ONCE(rdp->nocb_gp_loops, rdp->nocb_gp_loops + 1);
2063 nocb_gp_wait(rdp);
2064 cond_resched_tasks_rcu_qs();
2065 }
2066 return 0;
2067 }
2068
2069 /*
2070 * Invoke any ready callbacks from the corresponding no-CBs CPU,
2071 * then, if there are no more, wait for more to appear.
2072 */
2073 static void nocb_cb_wait(struct rcu_data *rdp)
2074 {
2075 unsigned long cur_gp_seq;
2076 unsigned long flags;
2077 bool needwake_gp = false;
2078 struct rcu_node *rnp = rdp->mynode;
2079
2080 local_irq_save(flags);
2081 rcu_momentary_dyntick_idle();
2082 local_irq_restore(flags);
2083 local_bh_disable();
2084 rcu_do_batch(rdp);
2085 local_bh_enable();
2086 lockdep_assert_irqs_enabled();
2087 rcu_nocb_lock_irqsave(rdp, flags);
2088 if (rcu_segcblist_nextgp(&rdp->cblist, &cur_gp_seq) &&
2089 rcu_seq_done(&rnp->gp_seq, cur_gp_seq) &&
2090 raw_spin_trylock_rcu_node(rnp)) { /* irqs already disabled. */
2091 needwake_gp = rcu_advance_cbs(rdp->mynode, rdp);
2092 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
2093 }
2094 if (rcu_segcblist_ready_cbs(&rdp->cblist)) {
2095 rcu_nocb_unlock_irqrestore(rdp, flags);
2096 if (needwake_gp)
2097 rcu_gp_kthread_wake();
2098 return;
2099 }
2100
2101 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("CBSleep"));
2102 WRITE_ONCE(rdp->nocb_cb_sleep, true);
2103 rcu_nocb_unlock_irqrestore(rdp, flags);
2104 if (needwake_gp)
2105 rcu_gp_kthread_wake();
2106 swait_event_interruptible_exclusive(rdp->nocb_cb_wq,
2107 !READ_ONCE(rdp->nocb_cb_sleep));
2108 if (!smp_load_acquire(&rdp->nocb_cb_sleep)) { /* VVV */
2109 /* ^^^ Ensure CB invocation follows _sleep test. */
2110 return;
2111 }
2112 WARN_ON(signal_pending(current));
2113 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("WokeEmpty"));
2114 }
2115
2116 /*
2117 * Per-rcu_data kthread, but only for no-CBs CPUs. Repeatedly invoke
2118 * nocb_cb_wait() to do the dirty work.
2119 */
2120 static int rcu_nocb_cb_kthread(void *arg)
2121 {
2122 struct rcu_data *rdp = arg;
2123
2124 // Each pass through this loop does one callback batch, and,
2125 // if there are no more ready callbacks, waits for them.
2126 for (;;) {
2127 nocb_cb_wait(rdp);
2128 cond_resched_tasks_rcu_qs();
2129 }
2130 return 0;
2131 }
2132
2133 /* Is a deferred wakeup of rcu_nocb_kthread() required? */
2134 static int rcu_nocb_need_deferred_wakeup(struct rcu_data *rdp)
2135 {
2136 return READ_ONCE(rdp->nocb_defer_wakeup);
2137 }
2138
2139 /* Do a deferred wakeup of rcu_nocb_kthread(). */
2140 static void do_nocb_deferred_wakeup_common(struct rcu_data *rdp)
2141 {
2142 unsigned long flags;
2143 int ndw;
2144
2145 rcu_nocb_lock_irqsave(rdp, flags);
2146 if (!rcu_nocb_need_deferred_wakeup(rdp)) {
2147 rcu_nocb_unlock_irqrestore(rdp, flags);
2148 return;
2149 }
2150 ndw = READ_ONCE(rdp->nocb_defer_wakeup);
2151 WRITE_ONCE(rdp->nocb_defer_wakeup, RCU_NOCB_WAKE_NOT);
2152 wake_nocb_gp(rdp, ndw == RCU_NOCB_WAKE_FORCE, flags);
2153 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("DeferredWake"));
2154 }
2155
2156 /* Do a deferred wakeup of rcu_nocb_kthread() from a timer handler. */
2157 static void do_nocb_deferred_wakeup_timer(struct timer_list *t)
2158 {
2159 struct rcu_data *rdp = from_timer(rdp, t, nocb_timer);
2160
2161 do_nocb_deferred_wakeup_common(rdp);
2162 }
2163
2164 /*
2165 * Do a deferred wakeup of rcu_nocb_kthread() from fastpath.
2166 * This means we do an inexact common-case check. Note that if
2167 * we miss, ->nocb_timer will eventually clean things up.
2168 */
2169 static void do_nocb_deferred_wakeup(struct rcu_data *rdp)
2170 {
2171 if (rcu_nocb_need_deferred_wakeup(rdp))
2172 do_nocb_deferred_wakeup_common(rdp);
2173 }
2174
2175 void __init rcu_init_nohz(void)
2176 {
2177 int cpu;
2178 bool need_rcu_nocb_mask = false;
2179 struct rcu_data *rdp;
2180
2181 #if defined(CONFIG_NO_HZ_FULL)
2182 if (tick_nohz_full_running && cpumask_weight(tick_nohz_full_mask))
2183 need_rcu_nocb_mask = true;
2184 #endif /* #if defined(CONFIG_NO_HZ_FULL) */
2185
2186 if (!cpumask_available(rcu_nocb_mask) && need_rcu_nocb_mask) {
2187 if (!zalloc_cpumask_var(&rcu_nocb_mask, GFP_KERNEL)) {
2188 pr_info("rcu_nocb_mask allocation failed, callback offloading disabled.\n");
2189 return;
2190 }
2191 }
2192 if (!cpumask_available(rcu_nocb_mask))
2193 return;
2194
2195 #if defined(CONFIG_NO_HZ_FULL)
2196 if (tick_nohz_full_running)
2197 cpumask_or(rcu_nocb_mask, rcu_nocb_mask, tick_nohz_full_mask);
2198 #endif /* #if defined(CONFIG_NO_HZ_FULL) */
2199
2200 if (!cpumask_subset(rcu_nocb_mask, cpu_possible_mask)) {
2201 pr_info("\tNote: kernel parameter 'rcu_nocbs=', 'nohz_full', or 'isolcpus=' contains nonexistent CPUs.\n");
2202 cpumask_and(rcu_nocb_mask, cpu_possible_mask,
2203 rcu_nocb_mask);
2204 }
2205 if (cpumask_empty(rcu_nocb_mask))
2206 pr_info("\tOffload RCU callbacks from CPUs: (none).\n");
2207 else
2208 pr_info("\tOffload RCU callbacks from CPUs: %*pbl.\n",
2209 cpumask_pr_args(rcu_nocb_mask));
2210 if (rcu_nocb_poll)
2211 pr_info("\tPoll for callbacks from no-CBs CPUs.\n");
2212
2213 for_each_cpu(cpu, rcu_nocb_mask) {
2214 rdp = per_cpu_ptr(&rcu_data, cpu);
2215 if (rcu_segcblist_empty(&rdp->cblist))
2216 rcu_segcblist_init(&rdp->cblist);
2217 rcu_segcblist_offload(&rdp->cblist);
2218 }
2219 rcu_organize_nocb_kthreads();
2220 }
2221
2222 /* Initialize per-rcu_data variables for no-CBs CPUs. */
2223 static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp)
2224 {
2225 init_swait_queue_head(&rdp->nocb_cb_wq);
2226 init_swait_queue_head(&rdp->nocb_gp_wq);
2227 raw_spin_lock_init(&rdp->nocb_lock);
2228 raw_spin_lock_init(&rdp->nocb_bypass_lock);
2229 raw_spin_lock_init(&rdp->nocb_gp_lock);
2230 timer_setup(&rdp->nocb_timer, do_nocb_deferred_wakeup_timer, 0);
2231 timer_setup(&rdp->nocb_bypass_timer, do_nocb_bypass_wakeup_timer, 0);
2232 rcu_cblist_init(&rdp->nocb_bypass);
2233 }
2234
2235 /*
2236 * If the specified CPU is a no-CBs CPU that does not already have its
2237 * rcuo CB kthread, spawn it. Additionally, if the rcuo GP kthread
2238 * for this CPU's group has not yet been created, spawn it as well.
2239 */
2240 static void rcu_spawn_one_nocb_kthread(int cpu)
2241 {
2242 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
2243 struct rcu_data *rdp_gp;
2244 struct task_struct *t;
2245
2246 /*
2247 * If this isn't a no-CBs CPU or if it already has an rcuo kthread,
2248 * then nothing to do.
2249 */
2250 if (!rcu_is_nocb_cpu(cpu) || rdp->nocb_cb_kthread)
2251 return;
2252
2253 /* If we didn't spawn the GP kthread first, reorganize! */
2254 rdp_gp = rdp->nocb_gp_rdp;
2255 if (!rdp_gp->nocb_gp_kthread) {
2256 t = kthread_run(rcu_nocb_gp_kthread, rdp_gp,
2257 "rcuog/%d", rdp_gp->cpu);
2258 if (WARN_ONCE(IS_ERR(t), "%s: Could not start rcuo GP kthread, OOM is now expected behavior\n", __func__))
2259 return;
2260 WRITE_ONCE(rdp_gp->nocb_gp_kthread, t);
2261 }
2262
2263 /* Spawn the kthread for this CPU. */
2264 t = kthread_run(rcu_nocb_cb_kthread, rdp,
2265 "rcuo%c/%d", rcu_state.abbr, cpu);
2266 if (WARN_ONCE(IS_ERR(t), "%s: Could not start rcuo CB kthread, OOM is now expected behavior\n", __func__))
2267 return;
2268 WRITE_ONCE(rdp->nocb_cb_kthread, t);
2269 WRITE_ONCE(rdp->nocb_gp_kthread, rdp_gp->nocb_gp_kthread);
2270 }
2271
2272 /*
2273 * If the specified CPU is a no-CBs CPU that does not already have its
2274 * rcuo kthread, spawn it.
2275 */
2276 static void rcu_spawn_cpu_nocb_kthread(int cpu)
2277 {
2278 if (rcu_scheduler_fully_active)
2279 rcu_spawn_one_nocb_kthread(cpu);
2280 }
2281
2282 /*
2283 * Once the scheduler is running, spawn rcuo kthreads for all online
2284 * no-CBs CPUs. This assumes that the early_initcall()s happen before
2285 * non-boot CPUs come online -- if this changes, we will need to add
2286 * some mutual exclusion.
2287 */
2288 static void __init rcu_spawn_nocb_kthreads(void)
2289 {
2290 int cpu;
2291
2292 for_each_online_cpu(cpu)
2293 rcu_spawn_cpu_nocb_kthread(cpu);
2294 }
2295
2296 /* How many CB CPU IDs per GP kthread? Default of -1 for sqrt(nr_cpu_ids). */
2297 static int rcu_nocb_gp_stride = -1;
2298 module_param(rcu_nocb_gp_stride, int, 0444);
2299
2300 /*
2301 * Initialize GP-CB relationships for all no-CBs CPU.
2302 */
2303 static void __init rcu_organize_nocb_kthreads(void)
2304 {
2305 int cpu;
2306 bool firsttime = true;
2307 bool gotnocbs = false;
2308 bool gotnocbscbs = true;
2309 int ls = rcu_nocb_gp_stride;
2310 int nl = 0; /* Next GP kthread. */
2311 struct rcu_data *rdp;
2312 struct rcu_data *rdp_gp = NULL; /* Suppress misguided gcc warn. */
2313 struct rcu_data *rdp_prev = NULL;
2314
2315 if (!cpumask_available(rcu_nocb_mask))
2316 return;
2317 if (ls == -1) {
2318 ls = nr_cpu_ids / int_sqrt(nr_cpu_ids);
2319 rcu_nocb_gp_stride = ls;
2320 }
2321
2322 /*
2323 * Each pass through this loop sets up one rcu_data structure.
2324 * Should the corresponding CPU come online in the future, then
2325 * we will spawn the needed set of rcu_nocb_kthread() kthreads.
2326 */
2327 for_each_cpu(cpu, rcu_nocb_mask) {
2328 rdp = per_cpu_ptr(&rcu_data, cpu);
2329 if (rdp->cpu >= nl) {
2330 /* New GP kthread, set up for CBs & next GP. */
2331 gotnocbs = true;
2332 nl = DIV_ROUND_UP(rdp->cpu + 1, ls) * ls;
2333 rdp->nocb_gp_rdp = rdp;
2334 rdp_gp = rdp;
2335 if (dump_tree) {
2336 if (!firsttime)
2337 pr_cont("%s\n", gotnocbscbs
2338 ? "" : " (self only)");
2339 gotnocbscbs = false;
2340 firsttime = false;
2341 pr_alert("%s: No-CB GP kthread CPU %d:",
2342 __func__, cpu);
2343 }
2344 } else {
2345 /* Another CB kthread, link to previous GP kthread. */
2346 gotnocbscbs = true;
2347 rdp->nocb_gp_rdp = rdp_gp;
2348 rdp_prev->nocb_next_cb_rdp = rdp;
2349 if (dump_tree)
2350 pr_cont(" %d", cpu);
2351 }
2352 rdp_prev = rdp;
2353 }
2354 if (gotnocbs && dump_tree)
2355 pr_cont("%s\n", gotnocbscbs ? "" : " (self only)");
2356 }
2357
2358 /*
2359 * Bind the current task to the offloaded CPUs. If there are no offloaded
2360 * CPUs, leave the task unbound. Splat if the bind attempt fails.
2361 */
2362 void rcu_bind_current_to_nocb(void)
2363 {
2364 if (cpumask_available(rcu_nocb_mask) && cpumask_weight(rcu_nocb_mask))
2365 WARN_ON(sched_setaffinity(current->pid, rcu_nocb_mask));
2366 }
2367 EXPORT_SYMBOL_GPL(rcu_bind_current_to_nocb);
2368
2369 /*
2370 * Dump out nocb grace-period kthread state for the specified rcu_data
2371 * structure.
2372 */
2373 static void show_rcu_nocb_gp_state(struct rcu_data *rdp)
2374 {
2375 struct rcu_node *rnp = rdp->mynode;
2376
2377 pr_info("nocb GP %d %c%c%c%c%c%c %c[%c%c] %c%c:%ld rnp %d:%d %lu\n",
2378 rdp->cpu,
2379 "kK"[!!rdp->nocb_gp_kthread],
2380 "lL"[raw_spin_is_locked(&rdp->nocb_gp_lock)],
2381 "dD"[!!rdp->nocb_defer_wakeup],
2382 "tT"[timer_pending(&rdp->nocb_timer)],
2383 "bB"[timer_pending(&rdp->nocb_bypass_timer)],
2384 "sS"[!!rdp->nocb_gp_sleep],
2385 ".W"[swait_active(&rdp->nocb_gp_wq)],
2386 ".W"[swait_active(&rnp->nocb_gp_wq[0])],
2387 ".W"[swait_active(&rnp->nocb_gp_wq[1])],
2388 ".B"[!!rdp->nocb_gp_bypass],
2389 ".G"[!!rdp->nocb_gp_gp],
2390 (long)rdp->nocb_gp_seq,
2391 rnp->grplo, rnp->grphi, READ_ONCE(rdp->nocb_gp_loops));
2392 }
2393
2394 /* Dump out nocb kthread state for the specified rcu_data structure. */
2395 static void show_rcu_nocb_state(struct rcu_data *rdp)
2396 {
2397 struct rcu_segcblist *rsclp = &rdp->cblist;
2398 bool waslocked;
2399 bool wastimer;
2400 bool wassleep;
2401
2402 if (rdp->nocb_gp_rdp == rdp)
2403 show_rcu_nocb_gp_state(rdp);
2404
2405 pr_info(" CB %d->%d %c%c%c%c%c%c F%ld L%ld C%d %c%c%c%c%c q%ld\n",
2406 rdp->cpu, rdp->nocb_gp_rdp->cpu,
2407 "kK"[!!rdp->nocb_cb_kthread],
2408 "bB"[raw_spin_is_locked(&rdp->nocb_bypass_lock)],
2409 "cC"[!!atomic_read(&rdp->nocb_lock_contended)],
2410 "lL"[raw_spin_is_locked(&rdp->nocb_lock)],
2411 "sS"[!!rdp->nocb_cb_sleep],
2412 ".W"[swait_active(&rdp->nocb_cb_wq)],
2413 jiffies - rdp->nocb_bypass_first,
2414 jiffies - rdp->nocb_nobypass_last,
2415 rdp->nocb_nobypass_count,
2416 ".D"[rcu_segcblist_ready_cbs(rsclp)],
2417 ".W"[!rcu_segcblist_restempty(rsclp, RCU_DONE_TAIL)],
2418 ".R"[!rcu_segcblist_restempty(rsclp, RCU_WAIT_TAIL)],
2419 ".N"[!rcu_segcblist_restempty(rsclp, RCU_NEXT_READY_TAIL)],
2420 ".B"[!!rcu_cblist_n_cbs(&rdp->nocb_bypass)],
2421 rcu_segcblist_n_cbs(&rdp->cblist));
2422
2423 /* It is OK for GP kthreads to have GP state. */
2424 if (rdp->nocb_gp_rdp == rdp)
2425 return;
2426
2427 waslocked = raw_spin_is_locked(&rdp->nocb_gp_lock);
2428 wastimer = timer_pending(&rdp->nocb_timer);
2429 wassleep = swait_active(&rdp->nocb_gp_wq);
2430 if (!rdp->nocb_defer_wakeup && !rdp->nocb_gp_sleep &&
2431 !waslocked && !wastimer && !wassleep)
2432 return; /* Nothing untowards. */
2433
2434 pr_info(" !!! %c%c%c%c %c\n",
2435 "lL"[waslocked],
2436 "dD"[!!rdp->nocb_defer_wakeup],
2437 "tT"[wastimer],
2438 "sS"[!!rdp->nocb_gp_sleep],
2439 ".W"[wassleep]);
2440 }
2441
2442 #else /* #ifdef CONFIG_RCU_NOCB_CPU */
2443
2444 /* No ->nocb_lock to acquire. */
2445 static void rcu_nocb_lock(struct rcu_data *rdp)
2446 {
2447 }
2448
2449 /* No ->nocb_lock to release. */
2450 static void rcu_nocb_unlock(struct rcu_data *rdp)
2451 {
2452 }
2453
2454 /* No ->nocb_lock to release. */
2455 static void rcu_nocb_unlock_irqrestore(struct rcu_data *rdp,
2456 unsigned long flags)
2457 {
2458 local_irq_restore(flags);
2459 }
2460
2461 /* Lockdep check that ->cblist may be safely accessed. */
2462 static void rcu_lockdep_assert_cblist_protected(struct rcu_data *rdp)
2463 {
2464 lockdep_assert_irqs_disabled();
2465 }
2466
2467 static void rcu_nocb_gp_cleanup(struct swait_queue_head *sq)
2468 {
2469 }
2470
2471 static struct swait_queue_head *rcu_nocb_gp_get(struct rcu_node *rnp)
2472 {
2473 return NULL;
2474 }
2475
2476 static void rcu_init_one_nocb(struct rcu_node *rnp)
2477 {
2478 }
2479
2480 static bool rcu_nocb_flush_bypass(struct rcu_data *rdp, struct rcu_head *rhp,
2481 unsigned long j)
2482 {
2483 return true;
2484 }
2485
2486 static bool rcu_nocb_try_bypass(struct rcu_data *rdp, struct rcu_head *rhp,
2487 bool *was_alldone, unsigned long flags)
2488 {
2489 return false;
2490 }
2491
2492 static void __call_rcu_nocb_wake(struct rcu_data *rdp, bool was_empty,
2493 unsigned long flags)
2494 {
2495 WARN_ON_ONCE(1); /* Should be dead code! */
2496 }
2497
2498 static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp)
2499 {
2500 }
2501
2502 static int rcu_nocb_need_deferred_wakeup(struct rcu_data *rdp)
2503 {
2504 return false;
2505 }
2506
2507 static void do_nocb_deferred_wakeup(struct rcu_data *rdp)
2508 {
2509 }
2510
2511 static void rcu_spawn_cpu_nocb_kthread(int cpu)
2512 {
2513 }
2514
2515 static void __init rcu_spawn_nocb_kthreads(void)
2516 {
2517 }
2518
2519 static void show_rcu_nocb_state(struct rcu_data *rdp)
2520 {
2521 }
2522
2523 #endif /* #else #ifdef CONFIG_RCU_NOCB_CPU */
2524
2525 /*
2526 * Is this CPU a NO_HZ_FULL CPU that should ignore RCU so that the
2527 * grace-period kthread will do force_quiescent_state() processing?
2528 * The idea is to avoid waking up RCU core processing on such a
2529 * CPU unless the grace period has extended for too long.
2530 *
2531 * This code relies on the fact that all NO_HZ_FULL CPUs are also
2532 * CONFIG_RCU_NOCB_CPU CPUs.
2533 */
2534 static bool rcu_nohz_full_cpu(void)
2535 {
2536 #ifdef CONFIG_NO_HZ_FULL
2537 if (tick_nohz_full_cpu(smp_processor_id()) &&
2538 (!rcu_gp_in_progress() ||
2539 ULONG_CMP_LT(jiffies, READ_ONCE(rcu_state.gp_start) + HZ)))
2540 return true;
2541 #endif /* #ifdef CONFIG_NO_HZ_FULL */
2542 return false;
2543 }
2544
2545 /*
2546 * Bind the RCU grace-period kthreads to the housekeeping CPU.
2547 */
2548 static void rcu_bind_gp_kthread(void)
2549 {
2550 if (!tick_nohz_full_enabled())
2551 return;
2552 housekeeping_affine(current, HK_FLAG_RCU);
2553 }
2554
2555 /* Record the current task on dyntick-idle entry. */
2556 static void rcu_dynticks_task_enter(void)
2557 {
2558 #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL)
2559 WRITE_ONCE(current->rcu_tasks_idle_cpu, smp_processor_id());
2560 #endif /* #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL) */
2561 }
2562
2563 /* Record no current task on dyntick-idle exit. */
2564 static void rcu_dynticks_task_exit(void)
2565 {
2566 #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL)
2567 WRITE_ONCE(current->rcu_tasks_idle_cpu, -1);
2568 #endif /* #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL) */
2569 }