]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - kernel/rcu/update.c
da128deb10ec505cec3f70d84f253ca7f62abe59
[mirror_ubuntu-artful-kernel.git] / kernel / rcu / update.c
1 /*
2 * Read-Copy Update mechanism for mutual exclusion
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, you can access it online at
16 * http://www.gnu.org/licenses/gpl-2.0.html.
17 *
18 * Copyright IBM Corporation, 2001
19 *
20 * Authors: Dipankar Sarma <dipankar@in.ibm.com>
21 * Manfred Spraul <manfred@colorfullife.com>
22 *
23 * Based on the original work by Paul McKenney <paulmck@us.ibm.com>
24 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
25 * Papers:
26 * http://www.rdrop.com/users/paulmck/paper/rclockpdcsproof.pdf
27 * http://lse.sourceforge.net/locking/rclock_OLS.2001.05.01c.sc.pdf (OLS2001)
28 *
29 * For detailed explanation of Read-Copy Update mechanism see -
30 * http://lse.sourceforge.net/locking/rcupdate.html
31 *
32 */
33 #include <linux/types.h>
34 #include <linux/kernel.h>
35 #include <linux/init.h>
36 #include <linux/spinlock.h>
37 #include <linux/smp.h>
38 #include <linux/interrupt.h>
39 #include <linux/sched/signal.h>
40 #include <linux/atomic.h>
41 #include <linux/bitops.h>
42 #include <linux/percpu.h>
43 #include <linux/notifier.h>
44 #include <linux/cpu.h>
45 #include <linux/mutex.h>
46 #include <linux/export.h>
47 #include <linux/hardirq.h>
48 #include <linux/delay.h>
49 #include <linux/moduleparam.h>
50 #include <linux/kthread.h>
51 #include <linux/tick.h>
52 #include <linux/rcupdate_wait.h>
53
54 #define CREATE_TRACE_POINTS
55
56 #include "rcu.h"
57
58 #ifdef MODULE_PARAM_PREFIX
59 #undef MODULE_PARAM_PREFIX
60 #endif
61 #define MODULE_PARAM_PREFIX "rcupdate."
62
63 #ifndef CONFIG_TINY_RCU
64 module_param(rcu_expedited, int, 0);
65 module_param(rcu_normal, int, 0);
66 static int rcu_normal_after_boot;
67 module_param(rcu_normal_after_boot, int, 0);
68 #endif /* #ifndef CONFIG_TINY_RCU */
69
70 #ifdef CONFIG_DEBUG_LOCK_ALLOC
71 /**
72 * rcu_read_lock_sched_held() - might we be in RCU-sched read-side critical section?
73 *
74 * If CONFIG_DEBUG_LOCK_ALLOC is selected, returns nonzero iff in an
75 * RCU-sched read-side critical section. In absence of
76 * CONFIG_DEBUG_LOCK_ALLOC, this assumes we are in an RCU-sched read-side
77 * critical section unless it can prove otherwise. Note that disabling
78 * of preemption (including disabling irqs) counts as an RCU-sched
79 * read-side critical section. This is useful for debug checks in functions
80 * that required that they be called within an RCU-sched read-side
81 * critical section.
82 *
83 * Check debug_lockdep_rcu_enabled() to prevent false positives during boot
84 * and while lockdep is disabled.
85 *
86 * Note that if the CPU is in the idle loop from an RCU point of
87 * view (ie: that we are in the section between rcu_idle_enter() and
88 * rcu_idle_exit()) then rcu_read_lock_held() returns false even if the CPU
89 * did an rcu_read_lock(). The reason for this is that RCU ignores CPUs
90 * that are in such a section, considering these as in extended quiescent
91 * state, so such a CPU is effectively never in an RCU read-side critical
92 * section regardless of what RCU primitives it invokes. This state of
93 * affairs is required --- we need to keep an RCU-free window in idle
94 * where the CPU may possibly enter into low power mode. This way we can
95 * notice an extended quiescent state to other CPUs that started a grace
96 * period. Otherwise we would delay any grace period as long as we run in
97 * the idle task.
98 *
99 * Similarly, we avoid claiming an SRCU read lock held if the current
100 * CPU is offline.
101 */
102 int rcu_read_lock_sched_held(void)
103 {
104 int lockdep_opinion = 0;
105
106 if (!debug_lockdep_rcu_enabled())
107 return 1;
108 if (!rcu_is_watching())
109 return 0;
110 if (!rcu_lockdep_current_cpu_online())
111 return 0;
112 if (debug_locks)
113 lockdep_opinion = lock_is_held(&rcu_sched_lock_map);
114 return lockdep_opinion || !preemptible();
115 }
116 EXPORT_SYMBOL(rcu_read_lock_sched_held);
117 #endif
118
119 #ifndef CONFIG_TINY_RCU
120
121 /*
122 * Should expedited grace-period primitives always fall back to their
123 * non-expedited counterparts? Intended for use within RCU. Note
124 * that if the user specifies both rcu_expedited and rcu_normal, then
125 * rcu_normal wins. (Except during the time period during boot from
126 * when the first task is spawned until the rcu_exp_runtime_mode()
127 * core_initcall() is invoked, at which point everything is expedited.)
128 */
129 bool rcu_gp_is_normal(void)
130 {
131 return READ_ONCE(rcu_normal) &&
132 rcu_scheduler_active != RCU_SCHEDULER_INIT;
133 }
134 EXPORT_SYMBOL_GPL(rcu_gp_is_normal);
135
136 static atomic_t rcu_expedited_nesting = ATOMIC_INIT(1);
137
138 /*
139 * Should normal grace-period primitives be expedited? Intended for
140 * use within RCU. Note that this function takes the rcu_expedited
141 * sysfs/boot variable and rcu_scheduler_active into account as well
142 * as the rcu_expedite_gp() nesting. So looping on rcu_unexpedite_gp()
143 * until rcu_gp_is_expedited() returns false is a -really- bad idea.
144 */
145 bool rcu_gp_is_expedited(void)
146 {
147 return rcu_expedited || atomic_read(&rcu_expedited_nesting) ||
148 rcu_scheduler_active == RCU_SCHEDULER_INIT;
149 }
150 EXPORT_SYMBOL_GPL(rcu_gp_is_expedited);
151
152 /**
153 * rcu_expedite_gp - Expedite future RCU grace periods
154 *
155 * After a call to this function, future calls to synchronize_rcu() and
156 * friends act as the corresponding synchronize_rcu_expedited() function
157 * had instead been called.
158 */
159 void rcu_expedite_gp(void)
160 {
161 atomic_inc(&rcu_expedited_nesting);
162 }
163 EXPORT_SYMBOL_GPL(rcu_expedite_gp);
164
165 /**
166 * rcu_unexpedite_gp - Cancel prior rcu_expedite_gp() invocation
167 *
168 * Undo a prior call to rcu_expedite_gp(). If all prior calls to
169 * rcu_expedite_gp() are undone by a subsequent call to rcu_unexpedite_gp(),
170 * and if the rcu_expedited sysfs/boot parameter is not set, then all
171 * subsequent calls to synchronize_rcu() and friends will return to
172 * their normal non-expedited behavior.
173 */
174 void rcu_unexpedite_gp(void)
175 {
176 atomic_dec(&rcu_expedited_nesting);
177 }
178 EXPORT_SYMBOL_GPL(rcu_unexpedite_gp);
179
180 /*
181 * Inform RCU of the end of the in-kernel boot sequence.
182 */
183 void rcu_end_inkernel_boot(void)
184 {
185 rcu_unexpedite_gp();
186 if (rcu_normal_after_boot)
187 WRITE_ONCE(rcu_normal, 1);
188 }
189
190 #endif /* #ifndef CONFIG_TINY_RCU */
191
192 #ifdef CONFIG_PREEMPT_RCU
193
194 /*
195 * Preemptible RCU implementation for rcu_read_lock().
196 * Just increment ->rcu_read_lock_nesting, shared state will be updated
197 * if we block.
198 */
199 void __rcu_read_lock(void)
200 {
201 current->rcu_read_lock_nesting++;
202 barrier(); /* critical section after entry code. */
203 }
204 EXPORT_SYMBOL_GPL(__rcu_read_lock);
205
206 /*
207 * Preemptible RCU implementation for rcu_read_unlock().
208 * Decrement ->rcu_read_lock_nesting. If the result is zero (outermost
209 * rcu_read_unlock()) and ->rcu_read_unlock_special is non-zero, then
210 * invoke rcu_read_unlock_special() to clean up after a context switch
211 * in an RCU read-side critical section and other special cases.
212 */
213 void __rcu_read_unlock(void)
214 {
215 struct task_struct *t = current;
216
217 if (t->rcu_read_lock_nesting != 1) {
218 --t->rcu_read_lock_nesting;
219 } else {
220 barrier(); /* critical section before exit code. */
221 t->rcu_read_lock_nesting = INT_MIN;
222 barrier(); /* assign before ->rcu_read_unlock_special load */
223 if (unlikely(READ_ONCE(t->rcu_read_unlock_special.s)))
224 rcu_read_unlock_special(t);
225 barrier(); /* ->rcu_read_unlock_special load before assign */
226 t->rcu_read_lock_nesting = 0;
227 }
228 #ifdef CONFIG_PROVE_LOCKING
229 {
230 int rrln = READ_ONCE(t->rcu_read_lock_nesting);
231
232 WARN_ON_ONCE(rrln < 0 && rrln > INT_MIN / 2);
233 }
234 #endif /* #ifdef CONFIG_PROVE_LOCKING */
235 }
236 EXPORT_SYMBOL_GPL(__rcu_read_unlock);
237
238 #endif /* #ifdef CONFIG_PREEMPT_RCU */
239
240 #ifdef CONFIG_DEBUG_LOCK_ALLOC
241 static struct lock_class_key rcu_lock_key;
242 struct lockdep_map rcu_lock_map =
243 STATIC_LOCKDEP_MAP_INIT("rcu_read_lock", &rcu_lock_key);
244 EXPORT_SYMBOL_GPL(rcu_lock_map);
245
246 static struct lock_class_key rcu_bh_lock_key;
247 struct lockdep_map rcu_bh_lock_map =
248 STATIC_LOCKDEP_MAP_INIT("rcu_read_lock_bh", &rcu_bh_lock_key);
249 EXPORT_SYMBOL_GPL(rcu_bh_lock_map);
250
251 static struct lock_class_key rcu_sched_lock_key;
252 struct lockdep_map rcu_sched_lock_map =
253 STATIC_LOCKDEP_MAP_INIT("rcu_read_lock_sched", &rcu_sched_lock_key);
254 EXPORT_SYMBOL_GPL(rcu_sched_lock_map);
255
256 static struct lock_class_key rcu_callback_key;
257 struct lockdep_map rcu_callback_map =
258 STATIC_LOCKDEP_MAP_INIT("rcu_callback", &rcu_callback_key);
259 EXPORT_SYMBOL_GPL(rcu_callback_map);
260
261 int notrace debug_lockdep_rcu_enabled(void)
262 {
263 return rcu_scheduler_active != RCU_SCHEDULER_INACTIVE && debug_locks &&
264 current->lockdep_recursion == 0;
265 }
266 EXPORT_SYMBOL_GPL(debug_lockdep_rcu_enabled);
267
268 /**
269 * rcu_read_lock_held() - might we be in RCU read-side critical section?
270 *
271 * If CONFIG_DEBUG_LOCK_ALLOC is selected, returns nonzero iff in an RCU
272 * read-side critical section. In absence of CONFIG_DEBUG_LOCK_ALLOC,
273 * this assumes we are in an RCU read-side critical section unless it can
274 * prove otherwise. This is useful for debug checks in functions that
275 * require that they be called within an RCU read-side critical section.
276 *
277 * Checks debug_lockdep_rcu_enabled() to prevent false positives during boot
278 * and while lockdep is disabled.
279 *
280 * Note that rcu_read_lock() and the matching rcu_read_unlock() must
281 * occur in the same context, for example, it is illegal to invoke
282 * rcu_read_unlock() in process context if the matching rcu_read_lock()
283 * was invoked from within an irq handler.
284 *
285 * Note that rcu_read_lock() is disallowed if the CPU is either idle or
286 * offline from an RCU perspective, so check for those as well.
287 */
288 int rcu_read_lock_held(void)
289 {
290 if (!debug_lockdep_rcu_enabled())
291 return 1;
292 if (!rcu_is_watching())
293 return 0;
294 if (!rcu_lockdep_current_cpu_online())
295 return 0;
296 return lock_is_held(&rcu_lock_map);
297 }
298 EXPORT_SYMBOL_GPL(rcu_read_lock_held);
299
300 /**
301 * rcu_read_lock_bh_held() - might we be in RCU-bh read-side critical section?
302 *
303 * Check for bottom half being disabled, which covers both the
304 * CONFIG_PROVE_RCU and not cases. Note that if someone uses
305 * rcu_read_lock_bh(), but then later enables BH, lockdep (if enabled)
306 * will show the situation. This is useful for debug checks in functions
307 * that require that they be called within an RCU read-side critical
308 * section.
309 *
310 * Check debug_lockdep_rcu_enabled() to prevent false positives during boot.
311 *
312 * Note that rcu_read_lock() is disallowed if the CPU is either idle or
313 * offline from an RCU perspective, so check for those as well.
314 */
315 int rcu_read_lock_bh_held(void)
316 {
317 if (!debug_lockdep_rcu_enabled())
318 return 1;
319 if (!rcu_is_watching())
320 return 0;
321 if (!rcu_lockdep_current_cpu_online())
322 return 0;
323 return in_softirq() || irqs_disabled();
324 }
325 EXPORT_SYMBOL_GPL(rcu_read_lock_bh_held);
326
327 #endif /* #ifdef CONFIG_DEBUG_LOCK_ALLOC */
328
329 /**
330 * wakeme_after_rcu() - Callback function to awaken a task after grace period
331 * @head: Pointer to rcu_head member within rcu_synchronize structure
332 *
333 * Awaken the corresponding task now that a grace period has elapsed.
334 */
335 void wakeme_after_rcu(struct rcu_head *head)
336 {
337 struct rcu_synchronize *rcu;
338
339 rcu = container_of(head, struct rcu_synchronize, head);
340 complete(&rcu->completion);
341 }
342 EXPORT_SYMBOL_GPL(wakeme_after_rcu);
343
344 void __wait_rcu_gp(bool checktiny, int n, call_rcu_func_t *crcu_array,
345 struct rcu_synchronize *rs_array)
346 {
347 int i;
348
349 /* Initialize and register callbacks for each flavor specified. */
350 for (i = 0; i < n; i++) {
351 if (checktiny &&
352 (crcu_array[i] == call_rcu ||
353 crcu_array[i] == call_rcu_bh)) {
354 might_sleep();
355 continue;
356 }
357 init_rcu_head_on_stack(&rs_array[i].head);
358 init_completion(&rs_array[i].completion);
359 (crcu_array[i])(&rs_array[i].head, wakeme_after_rcu);
360 }
361
362 /* Wait for all callbacks to be invoked. */
363 for (i = 0; i < n; i++) {
364 if (checktiny &&
365 (crcu_array[i] == call_rcu ||
366 crcu_array[i] == call_rcu_bh))
367 continue;
368 wait_for_completion(&rs_array[i].completion);
369 destroy_rcu_head_on_stack(&rs_array[i].head);
370 }
371 }
372 EXPORT_SYMBOL_GPL(__wait_rcu_gp);
373
374 #ifdef CONFIG_DEBUG_OBJECTS_RCU_HEAD
375 void init_rcu_head(struct rcu_head *head)
376 {
377 debug_object_init(head, &rcuhead_debug_descr);
378 }
379
380 void destroy_rcu_head(struct rcu_head *head)
381 {
382 debug_object_free(head, &rcuhead_debug_descr);
383 }
384
385 static bool rcuhead_is_static_object(void *addr)
386 {
387 return true;
388 }
389
390 /**
391 * init_rcu_head_on_stack() - initialize on-stack rcu_head for debugobjects
392 * @head: pointer to rcu_head structure to be initialized
393 *
394 * This function informs debugobjects of a new rcu_head structure that
395 * has been allocated as an auto variable on the stack. This function
396 * is not required for rcu_head structures that are statically defined or
397 * that are dynamically allocated on the heap. This function has no
398 * effect for !CONFIG_DEBUG_OBJECTS_RCU_HEAD kernel builds.
399 */
400 void init_rcu_head_on_stack(struct rcu_head *head)
401 {
402 debug_object_init_on_stack(head, &rcuhead_debug_descr);
403 }
404 EXPORT_SYMBOL_GPL(init_rcu_head_on_stack);
405
406 /**
407 * destroy_rcu_head_on_stack() - destroy on-stack rcu_head for debugobjects
408 * @head: pointer to rcu_head structure to be initialized
409 *
410 * This function informs debugobjects that an on-stack rcu_head structure
411 * is about to go out of scope. As with init_rcu_head_on_stack(), this
412 * function is not required for rcu_head structures that are statically
413 * defined or that are dynamically allocated on the heap. Also as with
414 * init_rcu_head_on_stack(), this function has no effect for
415 * !CONFIG_DEBUG_OBJECTS_RCU_HEAD kernel builds.
416 */
417 void destroy_rcu_head_on_stack(struct rcu_head *head)
418 {
419 debug_object_free(head, &rcuhead_debug_descr);
420 }
421 EXPORT_SYMBOL_GPL(destroy_rcu_head_on_stack);
422
423 struct debug_obj_descr rcuhead_debug_descr = {
424 .name = "rcu_head",
425 .is_static_object = rcuhead_is_static_object,
426 };
427 EXPORT_SYMBOL_GPL(rcuhead_debug_descr);
428 #endif /* #ifdef CONFIG_DEBUG_OBJECTS_RCU_HEAD */
429
430 #if defined(CONFIG_TREE_RCU) || defined(CONFIG_PREEMPT_RCU) || defined(CONFIG_RCU_TRACE)
431 void do_trace_rcu_torture_read(const char *rcutorturename, struct rcu_head *rhp,
432 unsigned long secs,
433 unsigned long c_old, unsigned long c)
434 {
435 trace_rcu_torture_read(rcutorturename, rhp, secs, c_old, c);
436 }
437 EXPORT_SYMBOL_GPL(do_trace_rcu_torture_read);
438 #else
439 #define do_trace_rcu_torture_read(rcutorturename, rhp, secs, c_old, c) \
440 do { } while (0)
441 #endif
442
443 #ifdef CONFIG_RCU_STALL_COMMON
444
445 #ifdef CONFIG_PROVE_RCU
446 #define RCU_STALL_DELAY_DELTA (5 * HZ)
447 #else
448 #define RCU_STALL_DELAY_DELTA 0
449 #endif
450
451 int rcu_cpu_stall_suppress __read_mostly; /* 1 = suppress stall warnings. */
452 static int rcu_cpu_stall_timeout __read_mostly = CONFIG_RCU_CPU_STALL_TIMEOUT;
453
454 module_param(rcu_cpu_stall_suppress, int, 0644);
455 module_param(rcu_cpu_stall_timeout, int, 0644);
456
457 int rcu_jiffies_till_stall_check(void)
458 {
459 int till_stall_check = READ_ONCE(rcu_cpu_stall_timeout);
460
461 /*
462 * Limit check must be consistent with the Kconfig limits
463 * for CONFIG_RCU_CPU_STALL_TIMEOUT.
464 */
465 if (till_stall_check < 3) {
466 WRITE_ONCE(rcu_cpu_stall_timeout, 3);
467 till_stall_check = 3;
468 } else if (till_stall_check > 300) {
469 WRITE_ONCE(rcu_cpu_stall_timeout, 300);
470 till_stall_check = 300;
471 }
472 return till_stall_check * HZ + RCU_STALL_DELAY_DELTA;
473 }
474
475 void rcu_sysrq_start(void)
476 {
477 if (!rcu_cpu_stall_suppress)
478 rcu_cpu_stall_suppress = 2;
479 }
480
481 void rcu_sysrq_end(void)
482 {
483 if (rcu_cpu_stall_suppress == 2)
484 rcu_cpu_stall_suppress = 0;
485 }
486
487 static int rcu_panic(struct notifier_block *this, unsigned long ev, void *ptr)
488 {
489 rcu_cpu_stall_suppress = 1;
490 return NOTIFY_DONE;
491 }
492
493 static struct notifier_block rcu_panic_block = {
494 .notifier_call = rcu_panic,
495 };
496
497 static int __init check_cpu_stall_init(void)
498 {
499 atomic_notifier_chain_register(&panic_notifier_list, &rcu_panic_block);
500 return 0;
501 }
502 early_initcall(check_cpu_stall_init);
503
504 #endif /* #ifdef CONFIG_RCU_STALL_COMMON */
505
506 #ifdef CONFIG_TASKS_RCU
507
508 /*
509 * Simple variant of RCU whose quiescent states are voluntary context switch,
510 * user-space execution, and idle. As such, grace periods can take one good
511 * long time. There are no read-side primitives similar to rcu_read_lock()
512 * and rcu_read_unlock() because this implementation is intended to get
513 * the system into a safe state for some of the manipulations involved in
514 * tracing and the like. Finally, this implementation does not support
515 * high call_rcu_tasks() rates from multiple CPUs. If this is required,
516 * per-CPU callback lists will be needed.
517 */
518
519 /* Global list of callbacks and associated lock. */
520 static struct rcu_head *rcu_tasks_cbs_head;
521 static struct rcu_head **rcu_tasks_cbs_tail = &rcu_tasks_cbs_head;
522 static DECLARE_WAIT_QUEUE_HEAD(rcu_tasks_cbs_wq);
523 static DEFINE_RAW_SPINLOCK(rcu_tasks_cbs_lock);
524
525 /* Track exiting tasks in order to allow them to be waited for. */
526 DEFINE_SRCU(tasks_rcu_exit_srcu);
527
528 /* Control stall timeouts. Disable with <= 0, otherwise jiffies till stall. */
529 static int rcu_task_stall_timeout __read_mostly = HZ * 60 * 10;
530 module_param(rcu_task_stall_timeout, int, 0644);
531
532 static void rcu_spawn_tasks_kthread(void);
533 static struct task_struct *rcu_tasks_kthread_ptr;
534
535 /*
536 * Post an RCU-tasks callback. First call must be from process context
537 * after the scheduler if fully operational.
538 */
539 void call_rcu_tasks(struct rcu_head *rhp, rcu_callback_t func)
540 {
541 unsigned long flags;
542 bool needwake;
543 bool havetask = READ_ONCE(rcu_tasks_kthread_ptr);
544
545 rhp->next = NULL;
546 rhp->func = func;
547 raw_spin_lock_irqsave(&rcu_tasks_cbs_lock, flags);
548 needwake = !rcu_tasks_cbs_head;
549 *rcu_tasks_cbs_tail = rhp;
550 rcu_tasks_cbs_tail = &rhp->next;
551 raw_spin_unlock_irqrestore(&rcu_tasks_cbs_lock, flags);
552 /* We can't create the thread unless interrupts are enabled. */
553 if ((needwake && havetask) ||
554 (!havetask && !irqs_disabled_flags(flags))) {
555 rcu_spawn_tasks_kthread();
556 wake_up(&rcu_tasks_cbs_wq);
557 }
558 }
559 EXPORT_SYMBOL_GPL(call_rcu_tasks);
560
561 /**
562 * synchronize_rcu_tasks - wait until an rcu-tasks grace period has elapsed.
563 *
564 * Control will return to the caller some time after a full rcu-tasks
565 * grace period has elapsed, in other words after all currently
566 * executing rcu-tasks read-side critical sections have elapsed. These
567 * read-side critical sections are delimited by calls to schedule(),
568 * cond_resched_rcu_qs(), idle execution, userspace execution, calls
569 * to synchronize_rcu_tasks(), and (in theory, anyway) cond_resched().
570 *
571 * This is a very specialized primitive, intended only for a few uses in
572 * tracing and other situations requiring manipulation of function
573 * preambles and profiling hooks. The synchronize_rcu_tasks() function
574 * is not (yet) intended for heavy use from multiple CPUs.
575 *
576 * Note that this guarantee implies further memory-ordering guarantees.
577 * On systems with more than one CPU, when synchronize_rcu_tasks() returns,
578 * each CPU is guaranteed to have executed a full memory barrier since the
579 * end of its last RCU-tasks read-side critical section whose beginning
580 * preceded the call to synchronize_rcu_tasks(). In addition, each CPU
581 * having an RCU-tasks read-side critical section that extends beyond
582 * the return from synchronize_rcu_tasks() is guaranteed to have executed
583 * a full memory barrier after the beginning of synchronize_rcu_tasks()
584 * and before the beginning of that RCU-tasks read-side critical section.
585 * Note that these guarantees include CPUs that are offline, idle, or
586 * executing in user mode, as well as CPUs that are executing in the kernel.
587 *
588 * Furthermore, if CPU A invoked synchronize_rcu_tasks(), which returned
589 * to its caller on CPU B, then both CPU A and CPU B are guaranteed
590 * to have executed a full memory barrier during the execution of
591 * synchronize_rcu_tasks() -- even if CPU A and CPU B are the same CPU
592 * (but again only if the system has more than one CPU).
593 */
594 void synchronize_rcu_tasks(void)
595 {
596 /* Complain if the scheduler has not started. */
597 RCU_LOCKDEP_WARN(rcu_scheduler_active == RCU_SCHEDULER_INACTIVE,
598 "synchronize_rcu_tasks called too soon");
599
600 /* Wait for the grace period. */
601 wait_rcu_gp(call_rcu_tasks);
602 }
603 EXPORT_SYMBOL_GPL(synchronize_rcu_tasks);
604
605 /**
606 * rcu_barrier_tasks - Wait for in-flight call_rcu_tasks() callbacks.
607 *
608 * Although the current implementation is guaranteed to wait, it is not
609 * obligated to, for example, if there are no pending callbacks.
610 */
611 void rcu_barrier_tasks(void)
612 {
613 /* There is only one callback queue, so this is easy. ;-) */
614 synchronize_rcu_tasks();
615 }
616 EXPORT_SYMBOL_GPL(rcu_barrier_tasks);
617
618 /* See if tasks are still holding out, complain if so. */
619 static void check_holdout_task(struct task_struct *t,
620 bool needreport, bool *firstreport)
621 {
622 int cpu;
623
624 if (!READ_ONCE(t->rcu_tasks_holdout) ||
625 t->rcu_tasks_nvcsw != READ_ONCE(t->nvcsw) ||
626 !READ_ONCE(t->on_rq) ||
627 (IS_ENABLED(CONFIG_NO_HZ_FULL) &&
628 !is_idle_task(t) && t->rcu_tasks_idle_cpu >= 0)) {
629 WRITE_ONCE(t->rcu_tasks_holdout, false);
630 list_del_init(&t->rcu_tasks_holdout_list);
631 put_task_struct(t);
632 return;
633 }
634 if (!needreport)
635 return;
636 if (*firstreport) {
637 pr_err("INFO: rcu_tasks detected stalls on tasks:\n");
638 *firstreport = false;
639 }
640 cpu = task_cpu(t);
641 pr_alert("%p: %c%c nvcsw: %lu/%lu holdout: %d idle_cpu: %d/%d\n",
642 t, ".I"[is_idle_task(t)],
643 "N."[cpu < 0 || !tick_nohz_full_cpu(cpu)],
644 t->rcu_tasks_nvcsw, t->nvcsw, t->rcu_tasks_holdout,
645 t->rcu_tasks_idle_cpu, cpu);
646 sched_show_task(t);
647 }
648
649 /* RCU-tasks kthread that detects grace periods and invokes callbacks. */
650 static int __noreturn rcu_tasks_kthread(void *arg)
651 {
652 unsigned long flags;
653 struct task_struct *g, *t;
654 unsigned long lastreport;
655 struct rcu_head *list;
656 struct rcu_head *next;
657 LIST_HEAD(rcu_tasks_holdouts);
658
659 /* Run on housekeeping CPUs by default. Sysadm can move if desired. */
660 housekeeping_affine(current);
661
662 /*
663 * Each pass through the following loop makes one check for
664 * newly arrived callbacks, and, if there are some, waits for
665 * one RCU-tasks grace period and then invokes the callbacks.
666 * This loop is terminated by the system going down. ;-)
667 */
668 for (;;) {
669
670 /* Pick up any new callbacks. */
671 raw_spin_lock_irqsave(&rcu_tasks_cbs_lock, flags);
672 list = rcu_tasks_cbs_head;
673 rcu_tasks_cbs_head = NULL;
674 rcu_tasks_cbs_tail = &rcu_tasks_cbs_head;
675 raw_spin_unlock_irqrestore(&rcu_tasks_cbs_lock, flags);
676
677 /* If there were none, wait a bit and start over. */
678 if (!list) {
679 wait_event_interruptible(rcu_tasks_cbs_wq,
680 rcu_tasks_cbs_head);
681 if (!rcu_tasks_cbs_head) {
682 WARN_ON(signal_pending(current));
683 schedule_timeout_interruptible(HZ/10);
684 }
685 continue;
686 }
687
688 /*
689 * Wait for all pre-existing t->on_rq and t->nvcsw
690 * transitions to complete. Invoking synchronize_sched()
691 * suffices because all these transitions occur with
692 * interrupts disabled. Without this synchronize_sched(),
693 * a read-side critical section that started before the
694 * grace period might be incorrectly seen as having started
695 * after the grace period.
696 *
697 * This synchronize_sched() also dispenses with the
698 * need for a memory barrier on the first store to
699 * ->rcu_tasks_holdout, as it forces the store to happen
700 * after the beginning of the grace period.
701 */
702 synchronize_sched();
703
704 /*
705 * There were callbacks, so we need to wait for an
706 * RCU-tasks grace period. Start off by scanning
707 * the task list for tasks that are not already
708 * voluntarily blocked. Mark these tasks and make
709 * a list of them in rcu_tasks_holdouts.
710 */
711 rcu_read_lock();
712 for_each_process_thread(g, t) {
713 if (t != current && READ_ONCE(t->on_rq) &&
714 !is_idle_task(t)) {
715 get_task_struct(t);
716 t->rcu_tasks_nvcsw = READ_ONCE(t->nvcsw);
717 WRITE_ONCE(t->rcu_tasks_holdout, true);
718 list_add(&t->rcu_tasks_holdout_list,
719 &rcu_tasks_holdouts);
720 }
721 }
722 rcu_read_unlock();
723
724 /*
725 * Wait for tasks that are in the process of exiting.
726 * This does only part of the job, ensuring that all
727 * tasks that were previously exiting reach the point
728 * where they have disabled preemption, allowing the
729 * later synchronize_sched() to finish the job.
730 */
731 synchronize_srcu(&tasks_rcu_exit_srcu);
732
733 /*
734 * Each pass through the following loop scans the list
735 * of holdout tasks, removing any that are no longer
736 * holdouts. When the list is empty, we are done.
737 */
738 lastreport = jiffies;
739 while (!list_empty(&rcu_tasks_holdouts)) {
740 bool firstreport;
741 bool needreport;
742 int rtst;
743 struct task_struct *t1;
744
745 schedule_timeout_interruptible(HZ);
746 rtst = READ_ONCE(rcu_task_stall_timeout);
747 needreport = rtst > 0 &&
748 time_after(jiffies, lastreport + rtst);
749 if (needreport)
750 lastreport = jiffies;
751 firstreport = true;
752 WARN_ON(signal_pending(current));
753 list_for_each_entry_safe(t, t1, &rcu_tasks_holdouts,
754 rcu_tasks_holdout_list) {
755 check_holdout_task(t, needreport, &firstreport);
756 cond_resched();
757 }
758 }
759
760 /*
761 * Because ->on_rq and ->nvcsw are not guaranteed
762 * to have a full memory barriers prior to them in the
763 * schedule() path, memory reordering on other CPUs could
764 * cause their RCU-tasks read-side critical sections to
765 * extend past the end of the grace period. However,
766 * because these ->nvcsw updates are carried out with
767 * interrupts disabled, we can use synchronize_sched()
768 * to force the needed ordering on all such CPUs.
769 *
770 * This synchronize_sched() also confines all
771 * ->rcu_tasks_holdout accesses to be within the grace
772 * period, avoiding the need for memory barriers for
773 * ->rcu_tasks_holdout accesses.
774 *
775 * In addition, this synchronize_sched() waits for exiting
776 * tasks to complete their final preempt_disable() region
777 * of execution, cleaning up after the synchronize_srcu()
778 * above.
779 */
780 synchronize_sched();
781
782 /* Invoke the callbacks. */
783 while (list) {
784 next = list->next;
785 local_bh_disable();
786 list->func(list);
787 local_bh_enable();
788 list = next;
789 cond_resched();
790 }
791 schedule_timeout_uninterruptible(HZ/10);
792 }
793 }
794
795 /* Spawn rcu_tasks_kthread() at first call to call_rcu_tasks(). */
796 static void rcu_spawn_tasks_kthread(void)
797 {
798 static DEFINE_MUTEX(rcu_tasks_kthread_mutex);
799 struct task_struct *t;
800
801 if (READ_ONCE(rcu_tasks_kthread_ptr)) {
802 smp_mb(); /* Ensure caller sees full kthread. */
803 return;
804 }
805 mutex_lock(&rcu_tasks_kthread_mutex);
806 if (rcu_tasks_kthread_ptr) {
807 mutex_unlock(&rcu_tasks_kthread_mutex);
808 return;
809 }
810 t = kthread_run(rcu_tasks_kthread, NULL, "rcu_tasks_kthread");
811 BUG_ON(IS_ERR(t));
812 smp_mb(); /* Ensure others see full kthread. */
813 WRITE_ONCE(rcu_tasks_kthread_ptr, t);
814 mutex_unlock(&rcu_tasks_kthread_mutex);
815 }
816
817 #endif /* #ifdef CONFIG_TASKS_RCU */
818
819 /*
820 * Test each non-SRCU synchronous grace-period wait API. This is
821 * useful just after a change in mode for these primitives, and
822 * during early boot.
823 */
824 void rcu_test_sync_prims(void)
825 {
826 if (!IS_ENABLED(CONFIG_PROVE_RCU))
827 return;
828 synchronize_rcu();
829 synchronize_rcu_bh();
830 synchronize_sched();
831 synchronize_rcu_expedited();
832 synchronize_rcu_bh_expedited();
833 synchronize_sched_expedited();
834 }
835
836 #ifdef CONFIG_PROVE_RCU
837
838 /*
839 * Early boot self test parameters, one for each flavor
840 */
841 static bool rcu_self_test;
842 static bool rcu_self_test_bh;
843 static bool rcu_self_test_sched;
844
845 module_param(rcu_self_test, bool, 0444);
846 module_param(rcu_self_test_bh, bool, 0444);
847 module_param(rcu_self_test_sched, bool, 0444);
848
849 static int rcu_self_test_counter;
850
851 static void test_callback(struct rcu_head *r)
852 {
853 rcu_self_test_counter++;
854 pr_info("RCU test callback executed %d\n", rcu_self_test_counter);
855 }
856
857 static void early_boot_test_call_rcu(void)
858 {
859 static struct rcu_head head;
860
861 call_rcu(&head, test_callback);
862 }
863
864 static void early_boot_test_call_rcu_bh(void)
865 {
866 static struct rcu_head head;
867
868 call_rcu_bh(&head, test_callback);
869 }
870
871 static void early_boot_test_call_rcu_sched(void)
872 {
873 static struct rcu_head head;
874
875 call_rcu_sched(&head, test_callback);
876 }
877
878 void rcu_early_boot_tests(void)
879 {
880 pr_info("Running RCU self tests\n");
881
882 if (rcu_self_test)
883 early_boot_test_call_rcu();
884 if (rcu_self_test_bh)
885 early_boot_test_call_rcu_bh();
886 if (rcu_self_test_sched)
887 early_boot_test_call_rcu_sched();
888 rcu_test_sync_prims();
889 }
890
891 static int rcu_verify_early_boot_tests(void)
892 {
893 int ret = 0;
894 int early_boot_test_counter = 0;
895
896 if (rcu_self_test) {
897 early_boot_test_counter++;
898 rcu_barrier();
899 }
900 if (rcu_self_test_bh) {
901 early_boot_test_counter++;
902 rcu_barrier_bh();
903 }
904 if (rcu_self_test_sched) {
905 early_boot_test_counter++;
906 rcu_barrier_sched();
907 }
908
909 if (rcu_self_test_counter != early_boot_test_counter) {
910 WARN_ON(1);
911 ret = -1;
912 }
913
914 return ret;
915 }
916 late_initcall(rcu_verify_early_boot_tests);
917 #else
918 void rcu_early_boot_tests(void) {}
919 #endif /* CONFIG_PROVE_RCU */