]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - kernel/resource.c
kernel/resource: remove first_lvl / siblings_only logic
[mirror_ubuntu-jammy-kernel.git] / kernel / resource.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/kernel/resource.c
4 *
5 * Copyright (C) 1999 Linus Torvalds
6 * Copyright (C) 1999 Martin Mares <mj@ucw.cz>
7 *
8 * Arbitrary resource management.
9 */
10
11 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
12
13 #include <linux/export.h>
14 #include <linux/errno.h>
15 #include <linux/ioport.h>
16 #include <linux/init.h>
17 #include <linux/slab.h>
18 #include <linux/spinlock.h>
19 #include <linux/fs.h>
20 #include <linux/proc_fs.h>
21 #include <linux/pseudo_fs.h>
22 #include <linux/sched.h>
23 #include <linux/seq_file.h>
24 #include <linux/device.h>
25 #include <linux/pfn.h>
26 #include <linux/mm.h>
27 #include <linux/mount.h>
28 #include <linux/resource_ext.h>
29 #include <uapi/linux/magic.h>
30 #include <asm/io.h>
31
32
33 struct resource ioport_resource = {
34 .name = "PCI IO",
35 .start = 0,
36 .end = IO_SPACE_LIMIT,
37 .flags = IORESOURCE_IO,
38 };
39 EXPORT_SYMBOL(ioport_resource);
40
41 struct resource iomem_resource = {
42 .name = "PCI mem",
43 .start = 0,
44 .end = -1,
45 .flags = IORESOURCE_MEM,
46 };
47 EXPORT_SYMBOL(iomem_resource);
48
49 /* constraints to be met while allocating resources */
50 struct resource_constraint {
51 resource_size_t min, max, align;
52 resource_size_t (*alignf)(void *, const struct resource *,
53 resource_size_t, resource_size_t);
54 void *alignf_data;
55 };
56
57 static DEFINE_RWLOCK(resource_lock);
58
59 /*
60 * For memory hotplug, there is no way to free resource entries allocated
61 * by boot mem after the system is up. So for reusing the resource entry
62 * we need to remember the resource.
63 */
64 static struct resource *bootmem_resource_free;
65 static DEFINE_SPINLOCK(bootmem_resource_lock);
66
67 static struct resource *next_resource(struct resource *p)
68 {
69 if (p->child)
70 return p->child;
71 while (!p->sibling && p->parent)
72 p = p->parent;
73 return p->sibling;
74 }
75
76 static void *r_next(struct seq_file *m, void *v, loff_t *pos)
77 {
78 struct resource *p = v;
79 (*pos)++;
80 return (void *)next_resource(p);
81 }
82
83 #ifdef CONFIG_PROC_FS
84
85 enum { MAX_IORES_LEVEL = 5 };
86
87 static void *r_start(struct seq_file *m, loff_t *pos)
88 __acquires(resource_lock)
89 {
90 struct resource *p = PDE_DATA(file_inode(m->file));
91 loff_t l = 0;
92 read_lock(&resource_lock);
93 for (p = p->child; p && l < *pos; p = r_next(m, p, &l))
94 ;
95 return p;
96 }
97
98 static void r_stop(struct seq_file *m, void *v)
99 __releases(resource_lock)
100 {
101 read_unlock(&resource_lock);
102 }
103
104 static int r_show(struct seq_file *m, void *v)
105 {
106 struct resource *root = PDE_DATA(file_inode(m->file));
107 struct resource *r = v, *p;
108 unsigned long long start, end;
109 int width = root->end < 0x10000 ? 4 : 8;
110 int depth;
111
112 for (depth = 0, p = r; depth < MAX_IORES_LEVEL; depth++, p = p->parent)
113 if (p->parent == root)
114 break;
115
116 if (file_ns_capable(m->file, &init_user_ns, CAP_SYS_ADMIN)) {
117 start = r->start;
118 end = r->end;
119 } else {
120 start = end = 0;
121 }
122
123 seq_printf(m, "%*s%0*llx-%0*llx : %s\n",
124 depth * 2, "",
125 width, start,
126 width, end,
127 r->name ? r->name : "<BAD>");
128 return 0;
129 }
130
131 static const struct seq_operations resource_op = {
132 .start = r_start,
133 .next = r_next,
134 .stop = r_stop,
135 .show = r_show,
136 };
137
138 static int __init ioresources_init(void)
139 {
140 proc_create_seq_data("ioports", 0, NULL, &resource_op,
141 &ioport_resource);
142 proc_create_seq_data("iomem", 0, NULL, &resource_op, &iomem_resource);
143 return 0;
144 }
145 __initcall(ioresources_init);
146
147 #endif /* CONFIG_PROC_FS */
148
149 static void free_resource(struct resource *res)
150 {
151 if (!res)
152 return;
153
154 if (!PageSlab(virt_to_head_page(res))) {
155 spin_lock(&bootmem_resource_lock);
156 res->sibling = bootmem_resource_free;
157 bootmem_resource_free = res;
158 spin_unlock(&bootmem_resource_lock);
159 } else {
160 kfree(res);
161 }
162 }
163
164 static struct resource *alloc_resource(gfp_t flags)
165 {
166 struct resource *res = NULL;
167
168 spin_lock(&bootmem_resource_lock);
169 if (bootmem_resource_free) {
170 res = bootmem_resource_free;
171 bootmem_resource_free = res->sibling;
172 }
173 spin_unlock(&bootmem_resource_lock);
174
175 if (res)
176 memset(res, 0, sizeof(struct resource));
177 else
178 res = kzalloc(sizeof(struct resource), flags);
179
180 return res;
181 }
182
183 /* Return the conflict entry if you can't request it */
184 static struct resource * __request_resource(struct resource *root, struct resource *new)
185 {
186 resource_size_t start = new->start;
187 resource_size_t end = new->end;
188 struct resource *tmp, **p;
189
190 if (end < start)
191 return root;
192 if (start < root->start)
193 return root;
194 if (end > root->end)
195 return root;
196 p = &root->child;
197 for (;;) {
198 tmp = *p;
199 if (!tmp || tmp->start > end) {
200 new->sibling = tmp;
201 *p = new;
202 new->parent = root;
203 return NULL;
204 }
205 p = &tmp->sibling;
206 if (tmp->end < start)
207 continue;
208 return tmp;
209 }
210 }
211
212 static int __release_resource(struct resource *old, bool release_child)
213 {
214 struct resource *tmp, **p, *chd;
215
216 p = &old->parent->child;
217 for (;;) {
218 tmp = *p;
219 if (!tmp)
220 break;
221 if (tmp == old) {
222 if (release_child || !(tmp->child)) {
223 *p = tmp->sibling;
224 } else {
225 for (chd = tmp->child;; chd = chd->sibling) {
226 chd->parent = tmp->parent;
227 if (!(chd->sibling))
228 break;
229 }
230 *p = tmp->child;
231 chd->sibling = tmp->sibling;
232 }
233 old->parent = NULL;
234 return 0;
235 }
236 p = &tmp->sibling;
237 }
238 return -EINVAL;
239 }
240
241 static void __release_child_resources(struct resource *r)
242 {
243 struct resource *tmp, *p;
244 resource_size_t size;
245
246 p = r->child;
247 r->child = NULL;
248 while (p) {
249 tmp = p;
250 p = p->sibling;
251
252 tmp->parent = NULL;
253 tmp->sibling = NULL;
254 __release_child_resources(tmp);
255
256 printk(KERN_DEBUG "release child resource %pR\n", tmp);
257 /* need to restore size, and keep flags */
258 size = resource_size(tmp);
259 tmp->start = 0;
260 tmp->end = size - 1;
261 }
262 }
263
264 void release_child_resources(struct resource *r)
265 {
266 write_lock(&resource_lock);
267 __release_child_resources(r);
268 write_unlock(&resource_lock);
269 }
270
271 /**
272 * request_resource_conflict - request and reserve an I/O or memory resource
273 * @root: root resource descriptor
274 * @new: resource descriptor desired by caller
275 *
276 * Returns 0 for success, conflict resource on error.
277 */
278 struct resource *request_resource_conflict(struct resource *root, struct resource *new)
279 {
280 struct resource *conflict;
281
282 write_lock(&resource_lock);
283 conflict = __request_resource(root, new);
284 write_unlock(&resource_lock);
285 return conflict;
286 }
287
288 /**
289 * request_resource - request and reserve an I/O or memory resource
290 * @root: root resource descriptor
291 * @new: resource descriptor desired by caller
292 *
293 * Returns 0 for success, negative error code on error.
294 */
295 int request_resource(struct resource *root, struct resource *new)
296 {
297 struct resource *conflict;
298
299 conflict = request_resource_conflict(root, new);
300 return conflict ? -EBUSY : 0;
301 }
302
303 EXPORT_SYMBOL(request_resource);
304
305 /**
306 * release_resource - release a previously reserved resource
307 * @old: resource pointer
308 */
309 int release_resource(struct resource *old)
310 {
311 int retval;
312
313 write_lock(&resource_lock);
314 retval = __release_resource(old, true);
315 write_unlock(&resource_lock);
316 return retval;
317 }
318
319 EXPORT_SYMBOL(release_resource);
320
321 /**
322 * find_next_iomem_res - Finds the lowest iomem resource that covers part of
323 * [@start..@end].
324 *
325 * If a resource is found, returns 0 and @*res is overwritten with the part
326 * of the resource that's within [@start..@end]; if none is found, returns
327 * -ENODEV. Returns -EINVAL for invalid parameters.
328 *
329 * @start: start address of the resource searched for
330 * @end: end address of same resource
331 * @flags: flags which the resource must have
332 * @desc: descriptor the resource must have
333 * @res: return ptr, if resource found
334 *
335 * The caller must specify @start, @end, @flags, and @desc
336 * (which may be IORES_DESC_NONE).
337 */
338 static int find_next_iomem_res(resource_size_t start, resource_size_t end,
339 unsigned long flags, unsigned long desc,
340 struct resource *res)
341 {
342 struct resource *p;
343
344 if (!res)
345 return -EINVAL;
346
347 if (start >= end)
348 return -EINVAL;
349
350 read_lock(&resource_lock);
351
352 for (p = iomem_resource.child; p; p = next_resource(p)) {
353 /* If we passed the resource we are looking for, stop */
354 if (p->start > end) {
355 p = NULL;
356 break;
357 }
358
359 /* Skip until we find a range that matches what we look for */
360 if (p->end < start)
361 continue;
362
363 if ((p->flags & flags) != flags)
364 continue;
365 if ((desc != IORES_DESC_NONE) && (desc != p->desc))
366 continue;
367
368 /* Found a match, break */
369 break;
370 }
371
372 if (p) {
373 /* copy data */
374 *res = (struct resource) {
375 .start = max(start, p->start),
376 .end = min(end, p->end),
377 .flags = p->flags,
378 .desc = p->desc,
379 .parent = p->parent,
380 };
381 }
382
383 read_unlock(&resource_lock);
384 return p ? 0 : -ENODEV;
385 }
386
387 static int __walk_iomem_res_desc(resource_size_t start, resource_size_t end,
388 unsigned long flags, unsigned long desc,
389 void *arg,
390 int (*func)(struct resource *, void *))
391 {
392 struct resource res;
393 int ret = -EINVAL;
394
395 while (start < end &&
396 !find_next_iomem_res(start, end, flags, desc, &res)) {
397 ret = (*func)(&res, arg);
398 if (ret)
399 break;
400
401 start = res.end + 1;
402 }
403
404 return ret;
405 }
406
407 /**
408 * walk_iomem_res_desc - Walks through iomem resources and calls func()
409 * with matching resource ranges.
410 * *
411 * @desc: I/O resource descriptor. Use IORES_DESC_NONE to skip @desc check.
412 * @flags: I/O resource flags
413 * @start: start addr
414 * @end: end addr
415 * @arg: function argument for the callback @func
416 * @func: callback function that is called for each qualifying resource area
417 *
418 * All the memory ranges which overlap start,end and also match flags and
419 * desc are valid candidates.
420 *
421 * NOTE: For a new descriptor search, define a new IORES_DESC in
422 * <linux/ioport.h> and set it in 'desc' of a target resource entry.
423 */
424 int walk_iomem_res_desc(unsigned long desc, unsigned long flags, u64 start,
425 u64 end, void *arg, int (*func)(struct resource *, void *))
426 {
427 return __walk_iomem_res_desc(start, end, flags, desc, arg, func);
428 }
429 EXPORT_SYMBOL_GPL(walk_iomem_res_desc);
430
431 /*
432 * This function calls the @func callback against all memory ranges of type
433 * System RAM which are marked as IORESOURCE_SYSTEM_RAM and IORESOUCE_BUSY.
434 * Now, this function is only for System RAM, it deals with full ranges and
435 * not PFNs. If resources are not PFN-aligned, dealing with PFNs can truncate
436 * ranges.
437 */
438 int walk_system_ram_res(u64 start, u64 end, void *arg,
439 int (*func)(struct resource *, void *))
440 {
441 unsigned long flags = IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY;
442
443 return __walk_iomem_res_desc(start, end, flags, IORES_DESC_NONE, arg,
444 func);
445 }
446
447 /*
448 * This function calls the @func callback against all memory ranges, which
449 * are ranges marked as IORESOURCE_MEM and IORESOUCE_BUSY.
450 */
451 int walk_mem_res(u64 start, u64 end, void *arg,
452 int (*func)(struct resource *, void *))
453 {
454 unsigned long flags = IORESOURCE_MEM | IORESOURCE_BUSY;
455
456 return __walk_iomem_res_desc(start, end, flags, IORES_DESC_NONE, arg,
457 func);
458 }
459
460 /*
461 * This function calls the @func callback against all memory ranges of type
462 * System RAM which are marked as IORESOURCE_SYSTEM_RAM and IORESOUCE_BUSY.
463 * It is to be used only for System RAM.
464 */
465 int walk_system_ram_range(unsigned long start_pfn, unsigned long nr_pages,
466 void *arg, int (*func)(unsigned long, unsigned long, void *))
467 {
468 resource_size_t start, end;
469 unsigned long flags;
470 struct resource res;
471 unsigned long pfn, end_pfn;
472 int ret = -EINVAL;
473
474 start = (u64) start_pfn << PAGE_SHIFT;
475 end = ((u64)(start_pfn + nr_pages) << PAGE_SHIFT) - 1;
476 flags = IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY;
477 while (start < end &&
478 !find_next_iomem_res(start, end, flags, IORES_DESC_NONE, &res)) {
479 pfn = PFN_UP(res.start);
480 end_pfn = PFN_DOWN(res.end + 1);
481 if (end_pfn > pfn)
482 ret = (*func)(pfn, end_pfn - pfn, arg);
483 if (ret)
484 break;
485 start = res.end + 1;
486 }
487 return ret;
488 }
489
490 static int __is_ram(unsigned long pfn, unsigned long nr_pages, void *arg)
491 {
492 return 1;
493 }
494
495 /*
496 * This generic page_is_ram() returns true if specified address is
497 * registered as System RAM in iomem_resource list.
498 */
499 int __weak page_is_ram(unsigned long pfn)
500 {
501 return walk_system_ram_range(pfn, 1, NULL, __is_ram) == 1;
502 }
503 EXPORT_SYMBOL_GPL(page_is_ram);
504
505 /**
506 * region_intersects() - determine intersection of region with known resources
507 * @start: region start address
508 * @size: size of region
509 * @flags: flags of resource (in iomem_resource)
510 * @desc: descriptor of resource (in iomem_resource) or IORES_DESC_NONE
511 *
512 * Check if the specified region partially overlaps or fully eclipses a
513 * resource identified by @flags and @desc (optional with IORES_DESC_NONE).
514 * Return REGION_DISJOINT if the region does not overlap @flags/@desc,
515 * return REGION_MIXED if the region overlaps @flags/@desc and another
516 * resource, and return REGION_INTERSECTS if the region overlaps @flags/@desc
517 * and no other defined resource. Note that REGION_INTERSECTS is also
518 * returned in the case when the specified region overlaps RAM and undefined
519 * memory holes.
520 *
521 * region_intersect() is used by memory remapping functions to ensure
522 * the user is not remapping RAM and is a vast speed up over walking
523 * through the resource table page by page.
524 */
525 int region_intersects(resource_size_t start, size_t size, unsigned long flags,
526 unsigned long desc)
527 {
528 struct resource res;
529 int type = 0; int other = 0;
530 struct resource *p;
531
532 res.start = start;
533 res.end = start + size - 1;
534
535 read_lock(&resource_lock);
536 for (p = iomem_resource.child; p ; p = p->sibling) {
537 bool is_type = (((p->flags & flags) == flags) &&
538 ((desc == IORES_DESC_NONE) ||
539 (desc == p->desc)));
540
541 if (resource_overlaps(p, &res))
542 is_type ? type++ : other++;
543 }
544 read_unlock(&resource_lock);
545
546 if (type == 0)
547 return REGION_DISJOINT;
548
549 if (other == 0)
550 return REGION_INTERSECTS;
551
552 return REGION_MIXED;
553 }
554 EXPORT_SYMBOL_GPL(region_intersects);
555
556 void __weak arch_remove_reservations(struct resource *avail)
557 {
558 }
559
560 static resource_size_t simple_align_resource(void *data,
561 const struct resource *avail,
562 resource_size_t size,
563 resource_size_t align)
564 {
565 return avail->start;
566 }
567
568 static void resource_clip(struct resource *res, resource_size_t min,
569 resource_size_t max)
570 {
571 if (res->start < min)
572 res->start = min;
573 if (res->end > max)
574 res->end = max;
575 }
576
577 /*
578 * Find empty slot in the resource tree with the given range and
579 * alignment constraints
580 */
581 static int __find_resource(struct resource *root, struct resource *old,
582 struct resource *new,
583 resource_size_t size,
584 struct resource_constraint *constraint)
585 {
586 struct resource *this = root->child;
587 struct resource tmp = *new, avail, alloc;
588
589 tmp.start = root->start;
590 /*
591 * Skip past an allocated resource that starts at 0, since the assignment
592 * of this->start - 1 to tmp->end below would cause an underflow.
593 */
594 if (this && this->start == root->start) {
595 tmp.start = (this == old) ? old->start : this->end + 1;
596 this = this->sibling;
597 }
598 for(;;) {
599 if (this)
600 tmp.end = (this == old) ? this->end : this->start - 1;
601 else
602 tmp.end = root->end;
603
604 if (tmp.end < tmp.start)
605 goto next;
606
607 resource_clip(&tmp, constraint->min, constraint->max);
608 arch_remove_reservations(&tmp);
609
610 /* Check for overflow after ALIGN() */
611 avail.start = ALIGN(tmp.start, constraint->align);
612 avail.end = tmp.end;
613 avail.flags = new->flags & ~IORESOURCE_UNSET;
614 if (avail.start >= tmp.start) {
615 alloc.flags = avail.flags;
616 alloc.start = constraint->alignf(constraint->alignf_data, &avail,
617 size, constraint->align);
618 alloc.end = alloc.start + size - 1;
619 if (alloc.start <= alloc.end &&
620 resource_contains(&avail, &alloc)) {
621 new->start = alloc.start;
622 new->end = alloc.end;
623 return 0;
624 }
625 }
626
627 next: if (!this || this->end == root->end)
628 break;
629
630 if (this != old)
631 tmp.start = this->end + 1;
632 this = this->sibling;
633 }
634 return -EBUSY;
635 }
636
637 /*
638 * Find empty slot in the resource tree given range and alignment.
639 */
640 static int find_resource(struct resource *root, struct resource *new,
641 resource_size_t size,
642 struct resource_constraint *constraint)
643 {
644 return __find_resource(root, NULL, new, size, constraint);
645 }
646
647 /**
648 * reallocate_resource - allocate a slot in the resource tree given range & alignment.
649 * The resource will be relocated if the new size cannot be reallocated in the
650 * current location.
651 *
652 * @root: root resource descriptor
653 * @old: resource descriptor desired by caller
654 * @newsize: new size of the resource descriptor
655 * @constraint: the size and alignment constraints to be met.
656 */
657 static int reallocate_resource(struct resource *root, struct resource *old,
658 resource_size_t newsize,
659 struct resource_constraint *constraint)
660 {
661 int err=0;
662 struct resource new = *old;
663 struct resource *conflict;
664
665 write_lock(&resource_lock);
666
667 if ((err = __find_resource(root, old, &new, newsize, constraint)))
668 goto out;
669
670 if (resource_contains(&new, old)) {
671 old->start = new.start;
672 old->end = new.end;
673 goto out;
674 }
675
676 if (old->child) {
677 err = -EBUSY;
678 goto out;
679 }
680
681 if (resource_contains(old, &new)) {
682 old->start = new.start;
683 old->end = new.end;
684 } else {
685 __release_resource(old, true);
686 *old = new;
687 conflict = __request_resource(root, old);
688 BUG_ON(conflict);
689 }
690 out:
691 write_unlock(&resource_lock);
692 return err;
693 }
694
695
696 /**
697 * allocate_resource - allocate empty slot in the resource tree given range & alignment.
698 * The resource will be reallocated with a new size if it was already allocated
699 * @root: root resource descriptor
700 * @new: resource descriptor desired by caller
701 * @size: requested resource region size
702 * @min: minimum boundary to allocate
703 * @max: maximum boundary to allocate
704 * @align: alignment requested, in bytes
705 * @alignf: alignment function, optional, called if not NULL
706 * @alignf_data: arbitrary data to pass to the @alignf function
707 */
708 int allocate_resource(struct resource *root, struct resource *new,
709 resource_size_t size, resource_size_t min,
710 resource_size_t max, resource_size_t align,
711 resource_size_t (*alignf)(void *,
712 const struct resource *,
713 resource_size_t,
714 resource_size_t),
715 void *alignf_data)
716 {
717 int err;
718 struct resource_constraint constraint;
719
720 if (!alignf)
721 alignf = simple_align_resource;
722
723 constraint.min = min;
724 constraint.max = max;
725 constraint.align = align;
726 constraint.alignf = alignf;
727 constraint.alignf_data = alignf_data;
728
729 if ( new->parent ) {
730 /* resource is already allocated, try reallocating with
731 the new constraints */
732 return reallocate_resource(root, new, size, &constraint);
733 }
734
735 write_lock(&resource_lock);
736 err = find_resource(root, new, size, &constraint);
737 if (err >= 0 && __request_resource(root, new))
738 err = -EBUSY;
739 write_unlock(&resource_lock);
740 return err;
741 }
742
743 EXPORT_SYMBOL(allocate_resource);
744
745 /**
746 * lookup_resource - find an existing resource by a resource start address
747 * @root: root resource descriptor
748 * @start: resource start address
749 *
750 * Returns a pointer to the resource if found, NULL otherwise
751 */
752 struct resource *lookup_resource(struct resource *root, resource_size_t start)
753 {
754 struct resource *res;
755
756 read_lock(&resource_lock);
757 for (res = root->child; res; res = res->sibling) {
758 if (res->start == start)
759 break;
760 }
761 read_unlock(&resource_lock);
762
763 return res;
764 }
765
766 /*
767 * Insert a resource into the resource tree. If successful, return NULL,
768 * otherwise return the conflicting resource (compare to __request_resource())
769 */
770 static struct resource * __insert_resource(struct resource *parent, struct resource *new)
771 {
772 struct resource *first, *next;
773
774 for (;; parent = first) {
775 first = __request_resource(parent, new);
776 if (!first)
777 return first;
778
779 if (first == parent)
780 return first;
781 if (WARN_ON(first == new)) /* duplicated insertion */
782 return first;
783
784 if ((first->start > new->start) || (first->end < new->end))
785 break;
786 if ((first->start == new->start) && (first->end == new->end))
787 break;
788 }
789
790 for (next = first; ; next = next->sibling) {
791 /* Partial overlap? Bad, and unfixable */
792 if (next->start < new->start || next->end > new->end)
793 return next;
794 if (!next->sibling)
795 break;
796 if (next->sibling->start > new->end)
797 break;
798 }
799
800 new->parent = parent;
801 new->sibling = next->sibling;
802 new->child = first;
803
804 next->sibling = NULL;
805 for (next = first; next; next = next->sibling)
806 next->parent = new;
807
808 if (parent->child == first) {
809 parent->child = new;
810 } else {
811 next = parent->child;
812 while (next->sibling != first)
813 next = next->sibling;
814 next->sibling = new;
815 }
816 return NULL;
817 }
818
819 /**
820 * insert_resource_conflict - Inserts resource in the resource tree
821 * @parent: parent of the new resource
822 * @new: new resource to insert
823 *
824 * Returns 0 on success, conflict resource if the resource can't be inserted.
825 *
826 * This function is equivalent to request_resource_conflict when no conflict
827 * happens. If a conflict happens, and the conflicting resources
828 * entirely fit within the range of the new resource, then the new
829 * resource is inserted and the conflicting resources become children of
830 * the new resource.
831 *
832 * This function is intended for producers of resources, such as FW modules
833 * and bus drivers.
834 */
835 struct resource *insert_resource_conflict(struct resource *parent, struct resource *new)
836 {
837 struct resource *conflict;
838
839 write_lock(&resource_lock);
840 conflict = __insert_resource(parent, new);
841 write_unlock(&resource_lock);
842 return conflict;
843 }
844
845 /**
846 * insert_resource - Inserts a resource in the resource tree
847 * @parent: parent of the new resource
848 * @new: new resource to insert
849 *
850 * Returns 0 on success, -EBUSY if the resource can't be inserted.
851 *
852 * This function is intended for producers of resources, such as FW modules
853 * and bus drivers.
854 */
855 int insert_resource(struct resource *parent, struct resource *new)
856 {
857 struct resource *conflict;
858
859 conflict = insert_resource_conflict(parent, new);
860 return conflict ? -EBUSY : 0;
861 }
862 EXPORT_SYMBOL_GPL(insert_resource);
863
864 /**
865 * insert_resource_expand_to_fit - Insert a resource into the resource tree
866 * @root: root resource descriptor
867 * @new: new resource to insert
868 *
869 * Insert a resource into the resource tree, possibly expanding it in order
870 * to make it encompass any conflicting resources.
871 */
872 void insert_resource_expand_to_fit(struct resource *root, struct resource *new)
873 {
874 if (new->parent)
875 return;
876
877 write_lock(&resource_lock);
878 for (;;) {
879 struct resource *conflict;
880
881 conflict = __insert_resource(root, new);
882 if (!conflict)
883 break;
884 if (conflict == root)
885 break;
886
887 /* Ok, expand resource to cover the conflict, then try again .. */
888 if (conflict->start < new->start)
889 new->start = conflict->start;
890 if (conflict->end > new->end)
891 new->end = conflict->end;
892
893 printk("Expanded resource %s due to conflict with %s\n", new->name, conflict->name);
894 }
895 write_unlock(&resource_lock);
896 }
897
898 /**
899 * remove_resource - Remove a resource in the resource tree
900 * @old: resource to remove
901 *
902 * Returns 0 on success, -EINVAL if the resource is not valid.
903 *
904 * This function removes a resource previously inserted by insert_resource()
905 * or insert_resource_conflict(), and moves the children (if any) up to
906 * where they were before. insert_resource() and insert_resource_conflict()
907 * insert a new resource, and move any conflicting resources down to the
908 * children of the new resource.
909 *
910 * insert_resource(), insert_resource_conflict() and remove_resource() are
911 * intended for producers of resources, such as FW modules and bus drivers.
912 */
913 int remove_resource(struct resource *old)
914 {
915 int retval;
916
917 write_lock(&resource_lock);
918 retval = __release_resource(old, false);
919 write_unlock(&resource_lock);
920 return retval;
921 }
922 EXPORT_SYMBOL_GPL(remove_resource);
923
924 static int __adjust_resource(struct resource *res, resource_size_t start,
925 resource_size_t size)
926 {
927 struct resource *tmp, *parent = res->parent;
928 resource_size_t end = start + size - 1;
929 int result = -EBUSY;
930
931 if (!parent)
932 goto skip;
933
934 if ((start < parent->start) || (end > parent->end))
935 goto out;
936
937 if (res->sibling && (res->sibling->start <= end))
938 goto out;
939
940 tmp = parent->child;
941 if (tmp != res) {
942 while (tmp->sibling != res)
943 tmp = tmp->sibling;
944 if (start <= tmp->end)
945 goto out;
946 }
947
948 skip:
949 for (tmp = res->child; tmp; tmp = tmp->sibling)
950 if ((tmp->start < start) || (tmp->end > end))
951 goto out;
952
953 res->start = start;
954 res->end = end;
955 result = 0;
956
957 out:
958 return result;
959 }
960
961 /**
962 * adjust_resource - modify a resource's start and size
963 * @res: resource to modify
964 * @start: new start value
965 * @size: new size
966 *
967 * Given an existing resource, change its start and size to match the
968 * arguments. Returns 0 on success, -EBUSY if it can't fit.
969 * Existing children of the resource are assumed to be immutable.
970 */
971 int adjust_resource(struct resource *res, resource_size_t start,
972 resource_size_t size)
973 {
974 int result;
975
976 write_lock(&resource_lock);
977 result = __adjust_resource(res, start, size);
978 write_unlock(&resource_lock);
979 return result;
980 }
981 EXPORT_SYMBOL(adjust_resource);
982
983 static void __init
984 __reserve_region_with_split(struct resource *root, resource_size_t start,
985 resource_size_t end, const char *name)
986 {
987 struct resource *parent = root;
988 struct resource *conflict;
989 struct resource *res = alloc_resource(GFP_ATOMIC);
990 struct resource *next_res = NULL;
991 int type = resource_type(root);
992
993 if (!res)
994 return;
995
996 res->name = name;
997 res->start = start;
998 res->end = end;
999 res->flags = type | IORESOURCE_BUSY;
1000 res->desc = IORES_DESC_NONE;
1001
1002 while (1) {
1003
1004 conflict = __request_resource(parent, res);
1005 if (!conflict) {
1006 if (!next_res)
1007 break;
1008 res = next_res;
1009 next_res = NULL;
1010 continue;
1011 }
1012
1013 /* conflict covered whole area */
1014 if (conflict->start <= res->start &&
1015 conflict->end >= res->end) {
1016 free_resource(res);
1017 WARN_ON(next_res);
1018 break;
1019 }
1020
1021 /* failed, split and try again */
1022 if (conflict->start > res->start) {
1023 end = res->end;
1024 res->end = conflict->start - 1;
1025 if (conflict->end < end) {
1026 next_res = alloc_resource(GFP_ATOMIC);
1027 if (!next_res) {
1028 free_resource(res);
1029 break;
1030 }
1031 next_res->name = name;
1032 next_res->start = conflict->end + 1;
1033 next_res->end = end;
1034 next_res->flags = type | IORESOURCE_BUSY;
1035 next_res->desc = IORES_DESC_NONE;
1036 }
1037 } else {
1038 res->start = conflict->end + 1;
1039 }
1040 }
1041
1042 }
1043
1044 void __init
1045 reserve_region_with_split(struct resource *root, resource_size_t start,
1046 resource_size_t end, const char *name)
1047 {
1048 int abort = 0;
1049
1050 write_lock(&resource_lock);
1051 if (root->start > start || root->end < end) {
1052 pr_err("requested range [0x%llx-0x%llx] not in root %pr\n",
1053 (unsigned long long)start, (unsigned long long)end,
1054 root);
1055 if (start > root->end || end < root->start)
1056 abort = 1;
1057 else {
1058 if (end > root->end)
1059 end = root->end;
1060 if (start < root->start)
1061 start = root->start;
1062 pr_err("fixing request to [0x%llx-0x%llx]\n",
1063 (unsigned long long)start,
1064 (unsigned long long)end);
1065 }
1066 dump_stack();
1067 }
1068 if (!abort)
1069 __reserve_region_with_split(root, start, end, name);
1070 write_unlock(&resource_lock);
1071 }
1072
1073 /**
1074 * resource_alignment - calculate resource's alignment
1075 * @res: resource pointer
1076 *
1077 * Returns alignment on success, 0 (invalid alignment) on failure.
1078 */
1079 resource_size_t resource_alignment(struct resource *res)
1080 {
1081 switch (res->flags & (IORESOURCE_SIZEALIGN | IORESOURCE_STARTALIGN)) {
1082 case IORESOURCE_SIZEALIGN:
1083 return resource_size(res);
1084 case IORESOURCE_STARTALIGN:
1085 return res->start;
1086 default:
1087 return 0;
1088 }
1089 }
1090
1091 /*
1092 * This is compatibility stuff for IO resources.
1093 *
1094 * Note how this, unlike the above, knows about
1095 * the IO flag meanings (busy etc).
1096 *
1097 * request_region creates a new busy region.
1098 *
1099 * release_region releases a matching busy region.
1100 */
1101
1102 static DECLARE_WAIT_QUEUE_HEAD(muxed_resource_wait);
1103
1104 static struct inode *iomem_inode;
1105
1106 #ifdef CONFIG_IO_STRICT_DEVMEM
1107 static void revoke_iomem(struct resource *res)
1108 {
1109 /* pairs with smp_store_release() in iomem_init_inode() */
1110 struct inode *inode = smp_load_acquire(&iomem_inode);
1111
1112 /*
1113 * Check that the initialization has completed. Losing the race
1114 * is ok because it means drivers are claiming resources before
1115 * the fs_initcall level of init and prevent iomem_get_mapping users
1116 * from establishing mappings.
1117 */
1118 if (!inode)
1119 return;
1120
1121 /*
1122 * The expectation is that the driver has successfully marked
1123 * the resource busy by this point, so devmem_is_allowed()
1124 * should start returning false, however for performance this
1125 * does not iterate the entire resource range.
1126 */
1127 if (devmem_is_allowed(PHYS_PFN(res->start)) &&
1128 devmem_is_allowed(PHYS_PFN(res->end))) {
1129 /*
1130 * *cringe* iomem=relaxed says "go ahead, what's the
1131 * worst that can happen?"
1132 */
1133 return;
1134 }
1135
1136 unmap_mapping_range(inode->i_mapping, res->start, resource_size(res), 1);
1137 }
1138 #else
1139 static void revoke_iomem(struct resource *res) {}
1140 #endif
1141
1142 struct address_space *iomem_get_mapping(void)
1143 {
1144 /*
1145 * This function is only called from file open paths, hence guaranteed
1146 * that fs_initcalls have completed and no need to check for NULL. But
1147 * since revoke_iomem can be called before the initcall we still need
1148 * the barrier to appease checkers.
1149 */
1150 return smp_load_acquire(&iomem_inode)->i_mapping;
1151 }
1152
1153 /**
1154 * __request_region - create a new busy resource region
1155 * @parent: parent resource descriptor
1156 * @start: resource start address
1157 * @n: resource region size
1158 * @name: reserving caller's ID string
1159 * @flags: IO resource flags
1160 */
1161 struct resource * __request_region(struct resource *parent,
1162 resource_size_t start, resource_size_t n,
1163 const char *name, int flags)
1164 {
1165 DECLARE_WAITQUEUE(wait, current);
1166 struct resource *res = alloc_resource(GFP_KERNEL);
1167 struct resource *orig_parent = parent;
1168
1169 if (!res)
1170 return NULL;
1171
1172 res->name = name;
1173 res->start = start;
1174 res->end = start + n - 1;
1175
1176 write_lock(&resource_lock);
1177
1178 for (;;) {
1179 struct resource *conflict;
1180
1181 res->flags = resource_type(parent) | resource_ext_type(parent);
1182 res->flags |= IORESOURCE_BUSY | flags;
1183 res->desc = parent->desc;
1184
1185 conflict = __request_resource(parent, res);
1186 if (!conflict)
1187 break;
1188 /*
1189 * mm/hmm.c reserves physical addresses which then
1190 * become unavailable to other users. Conflicts are
1191 * not expected. Warn to aid debugging if encountered.
1192 */
1193 if (conflict->desc == IORES_DESC_DEVICE_PRIVATE_MEMORY) {
1194 pr_warn("Unaddressable device %s %pR conflicts with %pR",
1195 conflict->name, conflict, res);
1196 }
1197 if (conflict != parent) {
1198 if (!(conflict->flags & IORESOURCE_BUSY)) {
1199 parent = conflict;
1200 continue;
1201 }
1202 }
1203 if (conflict->flags & flags & IORESOURCE_MUXED) {
1204 add_wait_queue(&muxed_resource_wait, &wait);
1205 write_unlock(&resource_lock);
1206 set_current_state(TASK_UNINTERRUPTIBLE);
1207 schedule();
1208 remove_wait_queue(&muxed_resource_wait, &wait);
1209 write_lock(&resource_lock);
1210 continue;
1211 }
1212 /* Uhhuh, that didn't work out.. */
1213 free_resource(res);
1214 res = NULL;
1215 break;
1216 }
1217 write_unlock(&resource_lock);
1218
1219 if (res && orig_parent == &iomem_resource)
1220 revoke_iomem(res);
1221
1222 return res;
1223 }
1224 EXPORT_SYMBOL(__request_region);
1225
1226 /**
1227 * __release_region - release a previously reserved resource region
1228 * @parent: parent resource descriptor
1229 * @start: resource start address
1230 * @n: resource region size
1231 *
1232 * The described resource region must match a currently busy region.
1233 */
1234 void __release_region(struct resource *parent, resource_size_t start,
1235 resource_size_t n)
1236 {
1237 struct resource **p;
1238 resource_size_t end;
1239
1240 p = &parent->child;
1241 end = start + n - 1;
1242
1243 write_lock(&resource_lock);
1244
1245 for (;;) {
1246 struct resource *res = *p;
1247
1248 if (!res)
1249 break;
1250 if (res->start <= start && res->end >= end) {
1251 if (!(res->flags & IORESOURCE_BUSY)) {
1252 p = &res->child;
1253 continue;
1254 }
1255 if (res->start != start || res->end != end)
1256 break;
1257 *p = res->sibling;
1258 write_unlock(&resource_lock);
1259 if (res->flags & IORESOURCE_MUXED)
1260 wake_up(&muxed_resource_wait);
1261 free_resource(res);
1262 return;
1263 }
1264 p = &res->sibling;
1265 }
1266
1267 write_unlock(&resource_lock);
1268
1269 printk(KERN_WARNING "Trying to free nonexistent resource "
1270 "<%016llx-%016llx>\n", (unsigned long long)start,
1271 (unsigned long long)end);
1272 }
1273 EXPORT_SYMBOL(__release_region);
1274
1275 #ifdef CONFIG_MEMORY_HOTREMOVE
1276 /**
1277 * release_mem_region_adjustable - release a previously reserved memory region
1278 * @start: resource start address
1279 * @size: resource region size
1280 *
1281 * This interface is intended for memory hot-delete. The requested region
1282 * is released from a currently busy memory resource. The requested region
1283 * must either match exactly or fit into a single busy resource entry. In
1284 * the latter case, the remaining resource is adjusted accordingly.
1285 * Existing children of the busy memory resource must be immutable in the
1286 * request.
1287 *
1288 * Note:
1289 * - Additional release conditions, such as overlapping region, can be
1290 * supported after they are confirmed as valid cases.
1291 * - When a busy memory resource gets split into two entries, the code
1292 * assumes that all children remain in the lower address entry for
1293 * simplicity. Enhance this logic when necessary.
1294 */
1295 void release_mem_region_adjustable(resource_size_t start, resource_size_t size)
1296 {
1297 struct resource *parent = &iomem_resource;
1298 struct resource *new_res = NULL;
1299 bool alloc_nofail = false;
1300 struct resource **p;
1301 struct resource *res;
1302 resource_size_t end;
1303
1304 end = start + size - 1;
1305 if (WARN_ON_ONCE((start < parent->start) || (end > parent->end)))
1306 return;
1307
1308 /*
1309 * We free up quite a lot of memory on memory hotunplug (esp., memap),
1310 * just before releasing the region. This is highly unlikely to
1311 * fail - let's play save and make it never fail as the caller cannot
1312 * perform any error handling (e.g., trying to re-add memory will fail
1313 * similarly).
1314 */
1315 retry:
1316 new_res = alloc_resource(GFP_KERNEL | (alloc_nofail ? __GFP_NOFAIL : 0));
1317
1318 p = &parent->child;
1319 write_lock(&resource_lock);
1320
1321 while ((res = *p)) {
1322 if (res->start >= end)
1323 break;
1324
1325 /* look for the next resource if it does not fit into */
1326 if (res->start > start || res->end < end) {
1327 p = &res->sibling;
1328 continue;
1329 }
1330
1331 /*
1332 * All memory regions added from memory-hotplug path have the
1333 * flag IORESOURCE_SYSTEM_RAM. If the resource does not have
1334 * this flag, we know that we are dealing with a resource coming
1335 * from HMM/devm. HMM/devm use another mechanism to add/release
1336 * a resource. This goes via devm_request_mem_region and
1337 * devm_release_mem_region.
1338 * HMM/devm take care to release their resources when they want,
1339 * so if we are dealing with them, let us just back off here.
1340 */
1341 if (!(res->flags & IORESOURCE_SYSRAM)) {
1342 break;
1343 }
1344
1345 if (!(res->flags & IORESOURCE_MEM))
1346 break;
1347
1348 if (!(res->flags & IORESOURCE_BUSY)) {
1349 p = &res->child;
1350 continue;
1351 }
1352
1353 /* found the target resource; let's adjust accordingly */
1354 if (res->start == start && res->end == end) {
1355 /* free the whole entry */
1356 *p = res->sibling;
1357 free_resource(res);
1358 } else if (res->start == start && res->end != end) {
1359 /* adjust the start */
1360 WARN_ON_ONCE(__adjust_resource(res, end + 1,
1361 res->end - end));
1362 } else if (res->start != start && res->end == end) {
1363 /* adjust the end */
1364 WARN_ON_ONCE(__adjust_resource(res, res->start,
1365 start - res->start));
1366 } else {
1367 /* split into two entries - we need a new resource */
1368 if (!new_res) {
1369 new_res = alloc_resource(GFP_ATOMIC);
1370 if (!new_res) {
1371 alloc_nofail = true;
1372 write_unlock(&resource_lock);
1373 goto retry;
1374 }
1375 }
1376 new_res->name = res->name;
1377 new_res->start = end + 1;
1378 new_res->end = res->end;
1379 new_res->flags = res->flags;
1380 new_res->desc = res->desc;
1381 new_res->parent = res->parent;
1382 new_res->sibling = res->sibling;
1383 new_res->child = NULL;
1384
1385 if (WARN_ON_ONCE(__adjust_resource(res, res->start,
1386 start - res->start)))
1387 break;
1388 res->sibling = new_res;
1389 new_res = NULL;
1390 }
1391
1392 break;
1393 }
1394
1395 write_unlock(&resource_lock);
1396 free_resource(new_res);
1397 }
1398 #endif /* CONFIG_MEMORY_HOTREMOVE */
1399
1400 #ifdef CONFIG_MEMORY_HOTPLUG
1401 static bool system_ram_resources_mergeable(struct resource *r1,
1402 struct resource *r2)
1403 {
1404 /* We assume either r1 or r2 is IORESOURCE_SYSRAM_MERGEABLE. */
1405 return r1->flags == r2->flags && r1->end + 1 == r2->start &&
1406 r1->name == r2->name && r1->desc == r2->desc &&
1407 !r1->child && !r2->child;
1408 }
1409
1410 /**
1411 * merge_system_ram_resource - mark the System RAM resource mergeable and try to
1412 * merge it with adjacent, mergeable resources
1413 * @res: resource descriptor
1414 *
1415 * This interface is intended for memory hotplug, whereby lots of contiguous
1416 * system ram resources are added (e.g., via add_memory*()) by a driver, and
1417 * the actual resource boundaries are not of interest (e.g., it might be
1418 * relevant for DIMMs). Only resources that are marked mergeable, that have the
1419 * same parent, and that don't have any children are considered. All mergeable
1420 * resources must be immutable during the request.
1421 *
1422 * Note:
1423 * - The caller has to make sure that no pointers to resources that are
1424 * marked mergeable are used anymore after this call - the resource might
1425 * be freed and the pointer might be stale!
1426 * - release_mem_region_adjustable() will split on demand on memory hotunplug
1427 */
1428 void merge_system_ram_resource(struct resource *res)
1429 {
1430 const unsigned long flags = IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY;
1431 struct resource *cur;
1432
1433 if (WARN_ON_ONCE((res->flags & flags) != flags))
1434 return;
1435
1436 write_lock(&resource_lock);
1437 res->flags |= IORESOURCE_SYSRAM_MERGEABLE;
1438
1439 /* Try to merge with next item in the list. */
1440 cur = res->sibling;
1441 if (cur && system_ram_resources_mergeable(res, cur)) {
1442 res->end = cur->end;
1443 res->sibling = cur->sibling;
1444 free_resource(cur);
1445 }
1446
1447 /* Try to merge with previous item in the list. */
1448 cur = res->parent->child;
1449 while (cur && cur->sibling != res)
1450 cur = cur->sibling;
1451 if (cur && system_ram_resources_mergeable(cur, res)) {
1452 cur->end = res->end;
1453 cur->sibling = res->sibling;
1454 free_resource(res);
1455 }
1456 write_unlock(&resource_lock);
1457 }
1458 #endif /* CONFIG_MEMORY_HOTPLUG */
1459
1460 /*
1461 * Managed region resource
1462 */
1463 static void devm_resource_release(struct device *dev, void *ptr)
1464 {
1465 struct resource **r = ptr;
1466
1467 release_resource(*r);
1468 }
1469
1470 /**
1471 * devm_request_resource() - request and reserve an I/O or memory resource
1472 * @dev: device for which to request the resource
1473 * @root: root of the resource tree from which to request the resource
1474 * @new: descriptor of the resource to request
1475 *
1476 * This is a device-managed version of request_resource(). There is usually
1477 * no need to release resources requested by this function explicitly since
1478 * that will be taken care of when the device is unbound from its driver.
1479 * If for some reason the resource needs to be released explicitly, because
1480 * of ordering issues for example, drivers must call devm_release_resource()
1481 * rather than the regular release_resource().
1482 *
1483 * When a conflict is detected between any existing resources and the newly
1484 * requested resource, an error message will be printed.
1485 *
1486 * Returns 0 on success or a negative error code on failure.
1487 */
1488 int devm_request_resource(struct device *dev, struct resource *root,
1489 struct resource *new)
1490 {
1491 struct resource *conflict, **ptr;
1492
1493 ptr = devres_alloc(devm_resource_release, sizeof(*ptr), GFP_KERNEL);
1494 if (!ptr)
1495 return -ENOMEM;
1496
1497 *ptr = new;
1498
1499 conflict = request_resource_conflict(root, new);
1500 if (conflict) {
1501 dev_err(dev, "resource collision: %pR conflicts with %s %pR\n",
1502 new, conflict->name, conflict);
1503 devres_free(ptr);
1504 return -EBUSY;
1505 }
1506
1507 devres_add(dev, ptr);
1508 return 0;
1509 }
1510 EXPORT_SYMBOL(devm_request_resource);
1511
1512 static int devm_resource_match(struct device *dev, void *res, void *data)
1513 {
1514 struct resource **ptr = res;
1515
1516 return *ptr == data;
1517 }
1518
1519 /**
1520 * devm_release_resource() - release a previously requested resource
1521 * @dev: device for which to release the resource
1522 * @new: descriptor of the resource to release
1523 *
1524 * Releases a resource previously requested using devm_request_resource().
1525 */
1526 void devm_release_resource(struct device *dev, struct resource *new)
1527 {
1528 WARN_ON(devres_release(dev, devm_resource_release, devm_resource_match,
1529 new));
1530 }
1531 EXPORT_SYMBOL(devm_release_resource);
1532
1533 struct region_devres {
1534 struct resource *parent;
1535 resource_size_t start;
1536 resource_size_t n;
1537 };
1538
1539 static void devm_region_release(struct device *dev, void *res)
1540 {
1541 struct region_devres *this = res;
1542
1543 __release_region(this->parent, this->start, this->n);
1544 }
1545
1546 static int devm_region_match(struct device *dev, void *res, void *match_data)
1547 {
1548 struct region_devres *this = res, *match = match_data;
1549
1550 return this->parent == match->parent &&
1551 this->start == match->start && this->n == match->n;
1552 }
1553
1554 struct resource *
1555 __devm_request_region(struct device *dev, struct resource *parent,
1556 resource_size_t start, resource_size_t n, const char *name)
1557 {
1558 struct region_devres *dr = NULL;
1559 struct resource *res;
1560
1561 dr = devres_alloc(devm_region_release, sizeof(struct region_devres),
1562 GFP_KERNEL);
1563 if (!dr)
1564 return NULL;
1565
1566 dr->parent = parent;
1567 dr->start = start;
1568 dr->n = n;
1569
1570 res = __request_region(parent, start, n, name, 0);
1571 if (res)
1572 devres_add(dev, dr);
1573 else
1574 devres_free(dr);
1575
1576 return res;
1577 }
1578 EXPORT_SYMBOL(__devm_request_region);
1579
1580 void __devm_release_region(struct device *dev, struct resource *parent,
1581 resource_size_t start, resource_size_t n)
1582 {
1583 struct region_devres match_data = { parent, start, n };
1584
1585 __release_region(parent, start, n);
1586 WARN_ON(devres_destroy(dev, devm_region_release, devm_region_match,
1587 &match_data));
1588 }
1589 EXPORT_SYMBOL(__devm_release_region);
1590
1591 /*
1592 * Reserve I/O ports or memory based on "reserve=" kernel parameter.
1593 */
1594 #define MAXRESERVE 4
1595 static int __init reserve_setup(char *str)
1596 {
1597 static int reserved;
1598 static struct resource reserve[MAXRESERVE];
1599
1600 for (;;) {
1601 unsigned int io_start, io_num;
1602 int x = reserved;
1603 struct resource *parent;
1604
1605 if (get_option(&str, &io_start) != 2)
1606 break;
1607 if (get_option(&str, &io_num) == 0)
1608 break;
1609 if (x < MAXRESERVE) {
1610 struct resource *res = reserve + x;
1611
1612 /*
1613 * If the region starts below 0x10000, we assume it's
1614 * I/O port space; otherwise assume it's memory.
1615 */
1616 if (io_start < 0x10000) {
1617 res->flags = IORESOURCE_IO;
1618 parent = &ioport_resource;
1619 } else {
1620 res->flags = IORESOURCE_MEM;
1621 parent = &iomem_resource;
1622 }
1623 res->name = "reserved";
1624 res->start = io_start;
1625 res->end = io_start + io_num - 1;
1626 res->flags |= IORESOURCE_BUSY;
1627 res->desc = IORES_DESC_NONE;
1628 res->child = NULL;
1629 if (request_resource(parent, res) == 0)
1630 reserved = x+1;
1631 }
1632 }
1633 return 1;
1634 }
1635 __setup("reserve=", reserve_setup);
1636
1637 /*
1638 * Check if the requested addr and size spans more than any slot in the
1639 * iomem resource tree.
1640 */
1641 int iomem_map_sanity_check(resource_size_t addr, unsigned long size)
1642 {
1643 struct resource *p = &iomem_resource;
1644 int err = 0;
1645 loff_t l;
1646
1647 read_lock(&resource_lock);
1648 for (p = p->child; p ; p = r_next(NULL, p, &l)) {
1649 /*
1650 * We can probably skip the resources without
1651 * IORESOURCE_IO attribute?
1652 */
1653 if (p->start >= addr + size)
1654 continue;
1655 if (p->end < addr)
1656 continue;
1657 if (PFN_DOWN(p->start) <= PFN_DOWN(addr) &&
1658 PFN_DOWN(p->end) >= PFN_DOWN(addr + size - 1))
1659 continue;
1660 /*
1661 * if a resource is "BUSY", it's not a hardware resource
1662 * but a driver mapping of such a resource; we don't want
1663 * to warn for those; some drivers legitimately map only
1664 * partial hardware resources. (example: vesafb)
1665 */
1666 if (p->flags & IORESOURCE_BUSY)
1667 continue;
1668
1669 printk(KERN_WARNING "resource sanity check: requesting [mem %#010llx-%#010llx], which spans more than %s %pR\n",
1670 (unsigned long long)addr,
1671 (unsigned long long)(addr + size - 1),
1672 p->name, p);
1673 err = -1;
1674 break;
1675 }
1676 read_unlock(&resource_lock);
1677
1678 return err;
1679 }
1680
1681 #ifdef CONFIG_STRICT_DEVMEM
1682 static int strict_iomem_checks = 1;
1683 #else
1684 static int strict_iomem_checks;
1685 #endif
1686
1687 /*
1688 * check if an address is reserved in the iomem resource tree
1689 * returns true if reserved, false if not reserved.
1690 */
1691 bool iomem_is_exclusive(u64 addr)
1692 {
1693 struct resource *p = &iomem_resource;
1694 bool err = false;
1695 loff_t l;
1696 int size = PAGE_SIZE;
1697
1698 if (!strict_iomem_checks)
1699 return false;
1700
1701 addr = addr & PAGE_MASK;
1702
1703 read_lock(&resource_lock);
1704 for (p = p->child; p ; p = r_next(NULL, p, &l)) {
1705 /*
1706 * We can probably skip the resources without
1707 * IORESOURCE_IO attribute?
1708 */
1709 if (p->start >= addr + size)
1710 break;
1711 if (p->end < addr)
1712 continue;
1713 /*
1714 * A resource is exclusive if IORESOURCE_EXCLUSIVE is set
1715 * or CONFIG_IO_STRICT_DEVMEM is enabled and the
1716 * resource is busy.
1717 */
1718 if ((p->flags & IORESOURCE_BUSY) == 0)
1719 continue;
1720 if (IS_ENABLED(CONFIG_IO_STRICT_DEVMEM)
1721 || p->flags & IORESOURCE_EXCLUSIVE) {
1722 err = true;
1723 break;
1724 }
1725 }
1726 read_unlock(&resource_lock);
1727
1728 return err;
1729 }
1730
1731 struct resource_entry *resource_list_create_entry(struct resource *res,
1732 size_t extra_size)
1733 {
1734 struct resource_entry *entry;
1735
1736 entry = kzalloc(sizeof(*entry) + extra_size, GFP_KERNEL);
1737 if (entry) {
1738 INIT_LIST_HEAD(&entry->node);
1739 entry->res = res ? res : &entry->__res;
1740 }
1741
1742 return entry;
1743 }
1744 EXPORT_SYMBOL(resource_list_create_entry);
1745
1746 void resource_list_free(struct list_head *head)
1747 {
1748 struct resource_entry *entry, *tmp;
1749
1750 list_for_each_entry_safe(entry, tmp, head, node)
1751 resource_list_destroy_entry(entry);
1752 }
1753 EXPORT_SYMBOL(resource_list_free);
1754
1755 #ifdef CONFIG_DEVICE_PRIVATE
1756 static struct resource *__request_free_mem_region(struct device *dev,
1757 struct resource *base, unsigned long size, const char *name)
1758 {
1759 resource_size_t end, addr;
1760 struct resource *res;
1761
1762 size = ALIGN(size, 1UL << PA_SECTION_SHIFT);
1763 end = min_t(unsigned long, base->end, (1UL << MAX_PHYSMEM_BITS) - 1);
1764 addr = end - size + 1UL;
1765
1766 for (; addr > size && addr >= base->start; addr -= size) {
1767 if (region_intersects(addr, size, 0, IORES_DESC_NONE) !=
1768 REGION_DISJOINT)
1769 continue;
1770
1771 if (dev)
1772 res = devm_request_mem_region(dev, addr, size, name);
1773 else
1774 res = request_mem_region(addr, size, name);
1775 if (!res)
1776 return ERR_PTR(-ENOMEM);
1777 res->desc = IORES_DESC_DEVICE_PRIVATE_MEMORY;
1778 return res;
1779 }
1780
1781 return ERR_PTR(-ERANGE);
1782 }
1783
1784 /**
1785 * devm_request_free_mem_region - find free region for device private memory
1786 *
1787 * @dev: device struct to bind the resource to
1788 * @size: size in bytes of the device memory to add
1789 * @base: resource tree to look in
1790 *
1791 * This function tries to find an empty range of physical address big enough to
1792 * contain the new resource, so that it can later be hotplugged as ZONE_DEVICE
1793 * memory, which in turn allocates struct pages.
1794 */
1795 struct resource *devm_request_free_mem_region(struct device *dev,
1796 struct resource *base, unsigned long size)
1797 {
1798 return __request_free_mem_region(dev, base, size, dev_name(dev));
1799 }
1800 EXPORT_SYMBOL_GPL(devm_request_free_mem_region);
1801
1802 struct resource *request_free_mem_region(struct resource *base,
1803 unsigned long size, const char *name)
1804 {
1805 return __request_free_mem_region(NULL, base, size, name);
1806 }
1807 EXPORT_SYMBOL_GPL(request_free_mem_region);
1808
1809 #endif /* CONFIG_DEVICE_PRIVATE */
1810
1811 static int __init strict_iomem(char *str)
1812 {
1813 if (strstr(str, "relaxed"))
1814 strict_iomem_checks = 0;
1815 if (strstr(str, "strict"))
1816 strict_iomem_checks = 1;
1817 return 1;
1818 }
1819
1820 static int iomem_fs_init_fs_context(struct fs_context *fc)
1821 {
1822 return init_pseudo(fc, DEVMEM_MAGIC) ? 0 : -ENOMEM;
1823 }
1824
1825 static struct file_system_type iomem_fs_type = {
1826 .name = "iomem",
1827 .owner = THIS_MODULE,
1828 .init_fs_context = iomem_fs_init_fs_context,
1829 .kill_sb = kill_anon_super,
1830 };
1831
1832 static int __init iomem_init_inode(void)
1833 {
1834 static struct vfsmount *iomem_vfs_mount;
1835 static int iomem_fs_cnt;
1836 struct inode *inode;
1837 int rc;
1838
1839 rc = simple_pin_fs(&iomem_fs_type, &iomem_vfs_mount, &iomem_fs_cnt);
1840 if (rc < 0) {
1841 pr_err("Cannot mount iomem pseudo filesystem: %d\n", rc);
1842 return rc;
1843 }
1844
1845 inode = alloc_anon_inode(iomem_vfs_mount->mnt_sb);
1846 if (IS_ERR(inode)) {
1847 rc = PTR_ERR(inode);
1848 pr_err("Cannot allocate inode for iomem: %d\n", rc);
1849 simple_release_fs(&iomem_vfs_mount, &iomem_fs_cnt);
1850 return rc;
1851 }
1852
1853 /*
1854 * Publish iomem revocation inode initialized.
1855 * Pairs with smp_load_acquire() in revoke_iomem().
1856 */
1857 smp_store_release(&iomem_inode, inode);
1858
1859 return 0;
1860 }
1861
1862 fs_initcall(iomem_init_inode);
1863
1864 __setup("iomem=", strict_iomem);