]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - kernel/resource.c
x86/kexec: Remove walk_iomem_res() call with GART type
[mirror_ubuntu-bionic-kernel.git] / kernel / resource.c
1 /*
2 * linux/kernel/resource.c
3 *
4 * Copyright (C) 1999 Linus Torvalds
5 * Copyright (C) 1999 Martin Mares <mj@ucw.cz>
6 *
7 * Arbitrary resource management.
8 */
9
10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
11
12 #include <linux/export.h>
13 #include <linux/errno.h>
14 #include <linux/ioport.h>
15 #include <linux/init.h>
16 #include <linux/slab.h>
17 #include <linux/spinlock.h>
18 #include <linux/fs.h>
19 #include <linux/proc_fs.h>
20 #include <linux/sched.h>
21 #include <linux/seq_file.h>
22 #include <linux/device.h>
23 #include <linux/pfn.h>
24 #include <linux/mm.h>
25 #include <linux/resource_ext.h>
26 #include <asm/io.h>
27
28
29 struct resource ioport_resource = {
30 .name = "PCI IO",
31 .start = 0,
32 .end = IO_SPACE_LIMIT,
33 .flags = IORESOURCE_IO,
34 };
35 EXPORT_SYMBOL(ioport_resource);
36
37 struct resource iomem_resource = {
38 .name = "PCI mem",
39 .start = 0,
40 .end = -1,
41 .flags = IORESOURCE_MEM,
42 };
43 EXPORT_SYMBOL(iomem_resource);
44
45 /* constraints to be met while allocating resources */
46 struct resource_constraint {
47 resource_size_t min, max, align;
48 resource_size_t (*alignf)(void *, const struct resource *,
49 resource_size_t, resource_size_t);
50 void *alignf_data;
51 };
52
53 static DEFINE_RWLOCK(resource_lock);
54
55 /*
56 * For memory hotplug, there is no way to free resource entries allocated
57 * by boot mem after the system is up. So for reusing the resource entry
58 * we need to remember the resource.
59 */
60 static struct resource *bootmem_resource_free;
61 static DEFINE_SPINLOCK(bootmem_resource_lock);
62
63 static struct resource *next_resource(struct resource *p, bool sibling_only)
64 {
65 /* Caller wants to traverse through siblings only */
66 if (sibling_only)
67 return p->sibling;
68
69 if (p->child)
70 return p->child;
71 while (!p->sibling && p->parent)
72 p = p->parent;
73 return p->sibling;
74 }
75
76 static void *r_next(struct seq_file *m, void *v, loff_t *pos)
77 {
78 struct resource *p = v;
79 (*pos)++;
80 return (void *)next_resource(p, false);
81 }
82
83 #ifdef CONFIG_PROC_FS
84
85 enum { MAX_IORES_LEVEL = 5 };
86
87 static void *r_start(struct seq_file *m, loff_t *pos)
88 __acquires(resource_lock)
89 {
90 struct resource *p = m->private;
91 loff_t l = 0;
92 read_lock(&resource_lock);
93 for (p = p->child; p && l < *pos; p = r_next(m, p, &l))
94 ;
95 return p;
96 }
97
98 static void r_stop(struct seq_file *m, void *v)
99 __releases(resource_lock)
100 {
101 read_unlock(&resource_lock);
102 }
103
104 static int r_show(struct seq_file *m, void *v)
105 {
106 struct resource *root = m->private;
107 struct resource *r = v, *p;
108 int width = root->end < 0x10000 ? 4 : 8;
109 int depth;
110
111 for (depth = 0, p = r; depth < MAX_IORES_LEVEL; depth++, p = p->parent)
112 if (p->parent == root)
113 break;
114 seq_printf(m, "%*s%0*llx-%0*llx : %s\n",
115 depth * 2, "",
116 width, (unsigned long long) r->start,
117 width, (unsigned long long) r->end,
118 r->name ? r->name : "<BAD>");
119 return 0;
120 }
121
122 static const struct seq_operations resource_op = {
123 .start = r_start,
124 .next = r_next,
125 .stop = r_stop,
126 .show = r_show,
127 };
128
129 static int ioports_open(struct inode *inode, struct file *file)
130 {
131 int res = seq_open(file, &resource_op);
132 if (!res) {
133 struct seq_file *m = file->private_data;
134 m->private = &ioport_resource;
135 }
136 return res;
137 }
138
139 static int iomem_open(struct inode *inode, struct file *file)
140 {
141 int res = seq_open(file, &resource_op);
142 if (!res) {
143 struct seq_file *m = file->private_data;
144 m->private = &iomem_resource;
145 }
146 return res;
147 }
148
149 static const struct file_operations proc_ioports_operations = {
150 .open = ioports_open,
151 .read = seq_read,
152 .llseek = seq_lseek,
153 .release = seq_release,
154 };
155
156 static const struct file_operations proc_iomem_operations = {
157 .open = iomem_open,
158 .read = seq_read,
159 .llseek = seq_lseek,
160 .release = seq_release,
161 };
162
163 static int __init ioresources_init(void)
164 {
165 proc_create("ioports", 0, NULL, &proc_ioports_operations);
166 proc_create("iomem", 0, NULL, &proc_iomem_operations);
167 return 0;
168 }
169 __initcall(ioresources_init);
170
171 #endif /* CONFIG_PROC_FS */
172
173 static void free_resource(struct resource *res)
174 {
175 if (!res)
176 return;
177
178 if (!PageSlab(virt_to_head_page(res))) {
179 spin_lock(&bootmem_resource_lock);
180 res->sibling = bootmem_resource_free;
181 bootmem_resource_free = res;
182 spin_unlock(&bootmem_resource_lock);
183 } else {
184 kfree(res);
185 }
186 }
187
188 static struct resource *alloc_resource(gfp_t flags)
189 {
190 struct resource *res = NULL;
191
192 spin_lock(&bootmem_resource_lock);
193 if (bootmem_resource_free) {
194 res = bootmem_resource_free;
195 bootmem_resource_free = res->sibling;
196 }
197 spin_unlock(&bootmem_resource_lock);
198
199 if (res)
200 memset(res, 0, sizeof(struct resource));
201 else
202 res = kzalloc(sizeof(struct resource), flags);
203
204 return res;
205 }
206
207 /* Return the conflict entry if you can't request it */
208 static struct resource * __request_resource(struct resource *root, struct resource *new)
209 {
210 resource_size_t start = new->start;
211 resource_size_t end = new->end;
212 struct resource *tmp, **p;
213
214 if (end < start)
215 return root;
216 if (start < root->start)
217 return root;
218 if (end > root->end)
219 return root;
220 p = &root->child;
221 for (;;) {
222 tmp = *p;
223 if (!tmp || tmp->start > end) {
224 new->sibling = tmp;
225 *p = new;
226 new->parent = root;
227 return NULL;
228 }
229 p = &tmp->sibling;
230 if (tmp->end < start)
231 continue;
232 return tmp;
233 }
234 }
235
236 static int __release_resource(struct resource *old)
237 {
238 struct resource *tmp, **p;
239
240 p = &old->parent->child;
241 for (;;) {
242 tmp = *p;
243 if (!tmp)
244 break;
245 if (tmp == old) {
246 *p = tmp->sibling;
247 old->parent = NULL;
248 return 0;
249 }
250 p = &tmp->sibling;
251 }
252 return -EINVAL;
253 }
254
255 static void __release_child_resources(struct resource *r)
256 {
257 struct resource *tmp, *p;
258 resource_size_t size;
259
260 p = r->child;
261 r->child = NULL;
262 while (p) {
263 tmp = p;
264 p = p->sibling;
265
266 tmp->parent = NULL;
267 tmp->sibling = NULL;
268 __release_child_resources(tmp);
269
270 printk(KERN_DEBUG "release child resource %pR\n", tmp);
271 /* need to restore size, and keep flags */
272 size = resource_size(tmp);
273 tmp->start = 0;
274 tmp->end = size - 1;
275 }
276 }
277
278 void release_child_resources(struct resource *r)
279 {
280 write_lock(&resource_lock);
281 __release_child_resources(r);
282 write_unlock(&resource_lock);
283 }
284
285 /**
286 * request_resource_conflict - request and reserve an I/O or memory resource
287 * @root: root resource descriptor
288 * @new: resource descriptor desired by caller
289 *
290 * Returns 0 for success, conflict resource on error.
291 */
292 struct resource *request_resource_conflict(struct resource *root, struct resource *new)
293 {
294 struct resource *conflict;
295
296 write_lock(&resource_lock);
297 conflict = __request_resource(root, new);
298 write_unlock(&resource_lock);
299 return conflict;
300 }
301
302 /**
303 * request_resource - request and reserve an I/O or memory resource
304 * @root: root resource descriptor
305 * @new: resource descriptor desired by caller
306 *
307 * Returns 0 for success, negative error code on error.
308 */
309 int request_resource(struct resource *root, struct resource *new)
310 {
311 struct resource *conflict;
312
313 conflict = request_resource_conflict(root, new);
314 return conflict ? -EBUSY : 0;
315 }
316
317 EXPORT_SYMBOL(request_resource);
318
319 /**
320 * release_resource - release a previously reserved resource
321 * @old: resource pointer
322 */
323 int release_resource(struct resource *old)
324 {
325 int retval;
326
327 write_lock(&resource_lock);
328 retval = __release_resource(old);
329 write_unlock(&resource_lock);
330 return retval;
331 }
332
333 EXPORT_SYMBOL(release_resource);
334
335 /*
336 * Finds the lowest iomem resource existing within [res->start.res->end).
337 * The caller must specify res->start, res->end, res->flags, and optionally
338 * desc and "name". If found, returns 0, res is overwritten, if not found,
339 * returns -1.
340 * This function walks the whole tree and not just first level children until
341 * and unless first_level_children_only is true.
342 */
343 static int find_next_iomem_res(struct resource *res, unsigned long desc,
344 char *name, bool first_level_children_only)
345 {
346 resource_size_t start, end;
347 struct resource *p;
348 bool sibling_only = false;
349
350 BUG_ON(!res);
351
352 start = res->start;
353 end = res->end;
354 BUG_ON(start >= end);
355
356 if (first_level_children_only)
357 sibling_only = true;
358
359 read_lock(&resource_lock);
360
361 for (p = iomem_resource.child; p; p = next_resource(p, sibling_only)) {
362 if ((p->flags & res->flags) != res->flags)
363 continue;
364 if ((desc != IORES_DESC_NONE) && (desc != p->desc))
365 continue;
366 if (name && strcmp(p->name, name))
367 continue;
368 if (p->start > end) {
369 p = NULL;
370 break;
371 }
372 if ((p->end >= start) && (p->start < end))
373 break;
374 }
375
376 read_unlock(&resource_lock);
377 if (!p)
378 return -1;
379 /* copy data */
380 if (res->start < p->start)
381 res->start = p->start;
382 if (res->end > p->end)
383 res->end = p->end;
384 return 0;
385 }
386
387 /*
388 * Walks through iomem resources and calls func() with matching resource
389 * ranges. This walks through whole tree and not just first level children.
390 * All the memory ranges which overlap start,end and also match flags and
391 * desc are valid candidates.
392 *
393 * @desc: I/O resource descriptor. Use IORES_DESC_NONE to skip @desc check.
394 * @flags: I/O resource flags
395 * @start: start addr
396 * @end: end addr
397 *
398 * NOTE: For a new descriptor search, define a new IORES_DESC in
399 * <linux/ioport.h> and set it in 'desc' of a target resource entry.
400 */
401 int walk_iomem_res_desc(unsigned long desc, unsigned long flags, u64 start,
402 u64 end, void *arg, int (*func)(u64, u64, void *))
403 {
404 struct resource res;
405 u64 orig_end;
406 int ret = -1;
407
408 res.start = start;
409 res.end = end;
410 res.flags = flags;
411 orig_end = res.end;
412
413 while ((res.start < res.end) &&
414 (!find_next_iomem_res(&res, desc, NULL, false))) {
415
416 ret = (*func)(res.start, res.end, arg);
417 if (ret)
418 break;
419
420 res.start = res.end + 1;
421 res.end = orig_end;
422 }
423
424 return ret;
425 }
426
427 /*
428 * Walks through iomem resources and calls @func with matching resource
429 * ranges. This walks the whole tree and not just first level children.
430 * All the memory ranges which overlap start,end and also match flags and
431 * name are valid candidates.
432 *
433 * @name: name of resource
434 * @flags: resource flags
435 * @start: start addr
436 * @end: end addr
437 *
438 * NOTE: This function is deprecated and should not be used in new code.
439 * Use walk_iomem_res_desc(), instead.
440 */
441 int walk_iomem_res(char *name, unsigned long flags, u64 start, u64 end,
442 void *arg, int (*func)(u64, u64, void *))
443 {
444 struct resource res;
445 u64 orig_end;
446 int ret = -1;
447
448 res.start = start;
449 res.end = end;
450 res.flags = flags;
451 orig_end = res.end;
452 while ((res.start < res.end) &&
453 (!find_next_iomem_res(&res, IORES_DESC_NONE, name, false))) {
454 ret = (*func)(res.start, res.end, arg);
455 if (ret)
456 break;
457 res.start = res.end + 1;
458 res.end = orig_end;
459 }
460 return ret;
461 }
462
463 /*
464 * This function calls the @func callback against all memory ranges of type
465 * System RAM which are marked as IORESOURCE_SYSTEM_RAM and IORESOUCE_BUSY.
466 * Now, this function is only for System RAM, it deals with full ranges and
467 * not PFNs. If resources are not PFN-aligned, dealing with PFNs can truncate
468 * ranges.
469 */
470 int walk_system_ram_res(u64 start, u64 end, void *arg,
471 int (*func)(u64, u64, void *))
472 {
473 struct resource res;
474 u64 orig_end;
475 int ret = -1;
476
477 res.start = start;
478 res.end = end;
479 res.flags = IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY;
480 orig_end = res.end;
481 while ((res.start < res.end) &&
482 (!find_next_iomem_res(&res, IORES_DESC_NONE, NULL, true))) {
483 ret = (*func)(res.start, res.end, arg);
484 if (ret)
485 break;
486 res.start = res.end + 1;
487 res.end = orig_end;
488 }
489 return ret;
490 }
491
492 #if !defined(CONFIG_ARCH_HAS_WALK_MEMORY)
493
494 /*
495 * This function calls the @func callback against all memory ranges of type
496 * System RAM which are marked as IORESOURCE_SYSTEM_RAM and IORESOUCE_BUSY.
497 * It is to be used only for System RAM.
498 */
499 int walk_system_ram_range(unsigned long start_pfn, unsigned long nr_pages,
500 void *arg, int (*func)(unsigned long, unsigned long, void *))
501 {
502 struct resource res;
503 unsigned long pfn, end_pfn;
504 u64 orig_end;
505 int ret = -1;
506
507 res.start = (u64) start_pfn << PAGE_SHIFT;
508 res.end = ((u64)(start_pfn + nr_pages) << PAGE_SHIFT) - 1;
509 res.flags = IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY;
510 orig_end = res.end;
511 while ((res.start < res.end) &&
512 (find_next_iomem_res(&res, IORES_DESC_NONE, NULL, true) >= 0)) {
513 pfn = (res.start + PAGE_SIZE - 1) >> PAGE_SHIFT;
514 end_pfn = (res.end + 1) >> PAGE_SHIFT;
515 if (end_pfn > pfn)
516 ret = (*func)(pfn, end_pfn - pfn, arg);
517 if (ret)
518 break;
519 res.start = res.end + 1;
520 res.end = orig_end;
521 }
522 return ret;
523 }
524
525 #endif
526
527 static int __is_ram(unsigned long pfn, unsigned long nr_pages, void *arg)
528 {
529 return 1;
530 }
531 /*
532 * This generic page_is_ram() returns true if specified address is
533 * registered as System RAM in iomem_resource list.
534 */
535 int __weak page_is_ram(unsigned long pfn)
536 {
537 return walk_system_ram_range(pfn, 1, NULL, __is_ram) == 1;
538 }
539 EXPORT_SYMBOL_GPL(page_is_ram);
540
541 /**
542 * region_intersects() - determine intersection of region with known resources
543 * @start: region start address
544 * @size: size of region
545 * @flags: flags of resource (in iomem_resource)
546 * @desc: descriptor of resource (in iomem_resource) or IORES_DESC_NONE
547 *
548 * Check if the specified region partially overlaps or fully eclipses a
549 * resource identified by @flags and @desc (optional with IORES_DESC_NONE).
550 * Return REGION_DISJOINT if the region does not overlap @flags/@desc,
551 * return REGION_MIXED if the region overlaps @flags/@desc and another
552 * resource, and return REGION_INTERSECTS if the region overlaps @flags/@desc
553 * and no other defined resource. Note that REGION_INTERSECTS is also
554 * returned in the case when the specified region overlaps RAM and undefined
555 * memory holes.
556 *
557 * region_intersect() is used by memory remapping functions to ensure
558 * the user is not remapping RAM and is a vast speed up over walking
559 * through the resource table page by page.
560 */
561 int region_intersects(resource_size_t start, size_t size, unsigned long flags,
562 unsigned long desc)
563 {
564 resource_size_t end = start + size - 1;
565 int type = 0; int other = 0;
566 struct resource *p;
567
568 read_lock(&resource_lock);
569 for (p = iomem_resource.child; p ; p = p->sibling) {
570 bool is_type = (((p->flags & flags) == flags) &&
571 ((desc == IORES_DESC_NONE) ||
572 (desc == p->desc)));
573
574 if (start >= p->start && start <= p->end)
575 is_type ? type++ : other++;
576 if (end >= p->start && end <= p->end)
577 is_type ? type++ : other++;
578 if (p->start >= start && p->end <= end)
579 is_type ? type++ : other++;
580 }
581 read_unlock(&resource_lock);
582
583 if (other == 0)
584 return type ? REGION_INTERSECTS : REGION_DISJOINT;
585
586 if (type)
587 return REGION_MIXED;
588
589 return REGION_DISJOINT;
590 }
591 EXPORT_SYMBOL_GPL(region_intersects);
592
593 void __weak arch_remove_reservations(struct resource *avail)
594 {
595 }
596
597 static resource_size_t simple_align_resource(void *data,
598 const struct resource *avail,
599 resource_size_t size,
600 resource_size_t align)
601 {
602 return avail->start;
603 }
604
605 static void resource_clip(struct resource *res, resource_size_t min,
606 resource_size_t max)
607 {
608 if (res->start < min)
609 res->start = min;
610 if (res->end > max)
611 res->end = max;
612 }
613
614 /*
615 * Find empty slot in the resource tree with the given range and
616 * alignment constraints
617 */
618 static int __find_resource(struct resource *root, struct resource *old,
619 struct resource *new,
620 resource_size_t size,
621 struct resource_constraint *constraint)
622 {
623 struct resource *this = root->child;
624 struct resource tmp = *new, avail, alloc;
625
626 tmp.start = root->start;
627 /*
628 * Skip past an allocated resource that starts at 0, since the assignment
629 * of this->start - 1 to tmp->end below would cause an underflow.
630 */
631 if (this && this->start == root->start) {
632 tmp.start = (this == old) ? old->start : this->end + 1;
633 this = this->sibling;
634 }
635 for(;;) {
636 if (this)
637 tmp.end = (this == old) ? this->end : this->start - 1;
638 else
639 tmp.end = root->end;
640
641 if (tmp.end < tmp.start)
642 goto next;
643
644 resource_clip(&tmp, constraint->min, constraint->max);
645 arch_remove_reservations(&tmp);
646
647 /* Check for overflow after ALIGN() */
648 avail.start = ALIGN(tmp.start, constraint->align);
649 avail.end = tmp.end;
650 avail.flags = new->flags & ~IORESOURCE_UNSET;
651 if (avail.start >= tmp.start) {
652 alloc.flags = avail.flags;
653 alloc.start = constraint->alignf(constraint->alignf_data, &avail,
654 size, constraint->align);
655 alloc.end = alloc.start + size - 1;
656 if (resource_contains(&avail, &alloc)) {
657 new->start = alloc.start;
658 new->end = alloc.end;
659 return 0;
660 }
661 }
662
663 next: if (!this || this->end == root->end)
664 break;
665
666 if (this != old)
667 tmp.start = this->end + 1;
668 this = this->sibling;
669 }
670 return -EBUSY;
671 }
672
673 /*
674 * Find empty slot in the resource tree given range and alignment.
675 */
676 static int find_resource(struct resource *root, struct resource *new,
677 resource_size_t size,
678 struct resource_constraint *constraint)
679 {
680 return __find_resource(root, NULL, new, size, constraint);
681 }
682
683 /**
684 * reallocate_resource - allocate a slot in the resource tree given range & alignment.
685 * The resource will be relocated if the new size cannot be reallocated in the
686 * current location.
687 *
688 * @root: root resource descriptor
689 * @old: resource descriptor desired by caller
690 * @newsize: new size of the resource descriptor
691 * @constraint: the size and alignment constraints to be met.
692 */
693 static int reallocate_resource(struct resource *root, struct resource *old,
694 resource_size_t newsize,
695 struct resource_constraint *constraint)
696 {
697 int err=0;
698 struct resource new = *old;
699 struct resource *conflict;
700
701 write_lock(&resource_lock);
702
703 if ((err = __find_resource(root, old, &new, newsize, constraint)))
704 goto out;
705
706 if (resource_contains(&new, old)) {
707 old->start = new.start;
708 old->end = new.end;
709 goto out;
710 }
711
712 if (old->child) {
713 err = -EBUSY;
714 goto out;
715 }
716
717 if (resource_contains(old, &new)) {
718 old->start = new.start;
719 old->end = new.end;
720 } else {
721 __release_resource(old);
722 *old = new;
723 conflict = __request_resource(root, old);
724 BUG_ON(conflict);
725 }
726 out:
727 write_unlock(&resource_lock);
728 return err;
729 }
730
731
732 /**
733 * allocate_resource - allocate empty slot in the resource tree given range & alignment.
734 * The resource will be reallocated with a new size if it was already allocated
735 * @root: root resource descriptor
736 * @new: resource descriptor desired by caller
737 * @size: requested resource region size
738 * @min: minimum boundary to allocate
739 * @max: maximum boundary to allocate
740 * @align: alignment requested, in bytes
741 * @alignf: alignment function, optional, called if not NULL
742 * @alignf_data: arbitrary data to pass to the @alignf function
743 */
744 int allocate_resource(struct resource *root, struct resource *new,
745 resource_size_t size, resource_size_t min,
746 resource_size_t max, resource_size_t align,
747 resource_size_t (*alignf)(void *,
748 const struct resource *,
749 resource_size_t,
750 resource_size_t),
751 void *alignf_data)
752 {
753 int err;
754 struct resource_constraint constraint;
755
756 if (!alignf)
757 alignf = simple_align_resource;
758
759 constraint.min = min;
760 constraint.max = max;
761 constraint.align = align;
762 constraint.alignf = alignf;
763 constraint.alignf_data = alignf_data;
764
765 if ( new->parent ) {
766 /* resource is already allocated, try reallocating with
767 the new constraints */
768 return reallocate_resource(root, new, size, &constraint);
769 }
770
771 write_lock(&resource_lock);
772 err = find_resource(root, new, size, &constraint);
773 if (err >= 0 && __request_resource(root, new))
774 err = -EBUSY;
775 write_unlock(&resource_lock);
776 return err;
777 }
778
779 EXPORT_SYMBOL(allocate_resource);
780
781 /**
782 * lookup_resource - find an existing resource by a resource start address
783 * @root: root resource descriptor
784 * @start: resource start address
785 *
786 * Returns a pointer to the resource if found, NULL otherwise
787 */
788 struct resource *lookup_resource(struct resource *root, resource_size_t start)
789 {
790 struct resource *res;
791
792 read_lock(&resource_lock);
793 for (res = root->child; res; res = res->sibling) {
794 if (res->start == start)
795 break;
796 }
797 read_unlock(&resource_lock);
798
799 return res;
800 }
801
802 /*
803 * Insert a resource into the resource tree. If successful, return NULL,
804 * otherwise return the conflicting resource (compare to __request_resource())
805 */
806 static struct resource * __insert_resource(struct resource *parent, struct resource *new)
807 {
808 struct resource *first, *next;
809
810 for (;; parent = first) {
811 first = __request_resource(parent, new);
812 if (!first)
813 return first;
814
815 if (first == parent)
816 return first;
817 if (WARN_ON(first == new)) /* duplicated insertion */
818 return first;
819
820 if ((first->start > new->start) || (first->end < new->end))
821 break;
822 if ((first->start == new->start) && (first->end == new->end))
823 break;
824 }
825
826 for (next = first; ; next = next->sibling) {
827 /* Partial overlap? Bad, and unfixable */
828 if (next->start < new->start || next->end > new->end)
829 return next;
830 if (!next->sibling)
831 break;
832 if (next->sibling->start > new->end)
833 break;
834 }
835
836 new->parent = parent;
837 new->sibling = next->sibling;
838 new->child = first;
839
840 next->sibling = NULL;
841 for (next = first; next; next = next->sibling)
842 next->parent = new;
843
844 if (parent->child == first) {
845 parent->child = new;
846 } else {
847 next = parent->child;
848 while (next->sibling != first)
849 next = next->sibling;
850 next->sibling = new;
851 }
852 return NULL;
853 }
854
855 /**
856 * insert_resource_conflict - Inserts resource in the resource tree
857 * @parent: parent of the new resource
858 * @new: new resource to insert
859 *
860 * Returns 0 on success, conflict resource if the resource can't be inserted.
861 *
862 * This function is equivalent to request_resource_conflict when no conflict
863 * happens. If a conflict happens, and the conflicting resources
864 * entirely fit within the range of the new resource, then the new
865 * resource is inserted and the conflicting resources become children of
866 * the new resource.
867 */
868 struct resource *insert_resource_conflict(struct resource *parent, struct resource *new)
869 {
870 struct resource *conflict;
871
872 write_lock(&resource_lock);
873 conflict = __insert_resource(parent, new);
874 write_unlock(&resource_lock);
875 return conflict;
876 }
877
878 /**
879 * insert_resource - Inserts a resource in the resource tree
880 * @parent: parent of the new resource
881 * @new: new resource to insert
882 *
883 * Returns 0 on success, -EBUSY if the resource can't be inserted.
884 */
885 int insert_resource(struct resource *parent, struct resource *new)
886 {
887 struct resource *conflict;
888
889 conflict = insert_resource_conflict(parent, new);
890 return conflict ? -EBUSY : 0;
891 }
892
893 /**
894 * insert_resource_expand_to_fit - Insert a resource into the resource tree
895 * @root: root resource descriptor
896 * @new: new resource to insert
897 *
898 * Insert a resource into the resource tree, possibly expanding it in order
899 * to make it encompass any conflicting resources.
900 */
901 void insert_resource_expand_to_fit(struct resource *root, struct resource *new)
902 {
903 if (new->parent)
904 return;
905
906 write_lock(&resource_lock);
907 for (;;) {
908 struct resource *conflict;
909
910 conflict = __insert_resource(root, new);
911 if (!conflict)
912 break;
913 if (conflict == root)
914 break;
915
916 /* Ok, expand resource to cover the conflict, then try again .. */
917 if (conflict->start < new->start)
918 new->start = conflict->start;
919 if (conflict->end > new->end)
920 new->end = conflict->end;
921
922 printk("Expanded resource %s due to conflict with %s\n", new->name, conflict->name);
923 }
924 write_unlock(&resource_lock);
925 }
926
927 static int __adjust_resource(struct resource *res, resource_size_t start,
928 resource_size_t size)
929 {
930 struct resource *tmp, *parent = res->parent;
931 resource_size_t end = start + size - 1;
932 int result = -EBUSY;
933
934 if (!parent)
935 goto skip;
936
937 if ((start < parent->start) || (end > parent->end))
938 goto out;
939
940 if (res->sibling && (res->sibling->start <= end))
941 goto out;
942
943 tmp = parent->child;
944 if (tmp != res) {
945 while (tmp->sibling != res)
946 tmp = tmp->sibling;
947 if (start <= tmp->end)
948 goto out;
949 }
950
951 skip:
952 for (tmp = res->child; tmp; tmp = tmp->sibling)
953 if ((tmp->start < start) || (tmp->end > end))
954 goto out;
955
956 res->start = start;
957 res->end = end;
958 result = 0;
959
960 out:
961 return result;
962 }
963
964 /**
965 * adjust_resource - modify a resource's start and size
966 * @res: resource to modify
967 * @start: new start value
968 * @size: new size
969 *
970 * Given an existing resource, change its start and size to match the
971 * arguments. Returns 0 on success, -EBUSY if it can't fit.
972 * Existing children of the resource are assumed to be immutable.
973 */
974 int adjust_resource(struct resource *res, resource_size_t start,
975 resource_size_t size)
976 {
977 int result;
978
979 write_lock(&resource_lock);
980 result = __adjust_resource(res, start, size);
981 write_unlock(&resource_lock);
982 return result;
983 }
984 EXPORT_SYMBOL(adjust_resource);
985
986 static void __init __reserve_region_with_split(struct resource *root,
987 resource_size_t start, resource_size_t end,
988 const char *name)
989 {
990 struct resource *parent = root;
991 struct resource *conflict;
992 struct resource *res = alloc_resource(GFP_ATOMIC);
993 struct resource *next_res = NULL;
994
995 if (!res)
996 return;
997
998 res->name = name;
999 res->start = start;
1000 res->end = end;
1001 res->flags = IORESOURCE_BUSY;
1002 res->desc = IORES_DESC_NONE;
1003
1004 while (1) {
1005
1006 conflict = __request_resource(parent, res);
1007 if (!conflict) {
1008 if (!next_res)
1009 break;
1010 res = next_res;
1011 next_res = NULL;
1012 continue;
1013 }
1014
1015 /* conflict covered whole area */
1016 if (conflict->start <= res->start &&
1017 conflict->end >= res->end) {
1018 free_resource(res);
1019 WARN_ON(next_res);
1020 break;
1021 }
1022
1023 /* failed, split and try again */
1024 if (conflict->start > res->start) {
1025 end = res->end;
1026 res->end = conflict->start - 1;
1027 if (conflict->end < end) {
1028 next_res = alloc_resource(GFP_ATOMIC);
1029 if (!next_res) {
1030 free_resource(res);
1031 break;
1032 }
1033 next_res->name = name;
1034 next_res->start = conflict->end + 1;
1035 next_res->end = end;
1036 next_res->flags = IORESOURCE_BUSY;
1037 next_res->desc = IORES_DESC_NONE;
1038 }
1039 } else {
1040 res->start = conflict->end + 1;
1041 }
1042 }
1043
1044 }
1045
1046 void __init reserve_region_with_split(struct resource *root,
1047 resource_size_t start, resource_size_t end,
1048 const char *name)
1049 {
1050 int abort = 0;
1051
1052 write_lock(&resource_lock);
1053 if (root->start > start || root->end < end) {
1054 pr_err("requested range [0x%llx-0x%llx] not in root %pr\n",
1055 (unsigned long long)start, (unsigned long long)end,
1056 root);
1057 if (start > root->end || end < root->start)
1058 abort = 1;
1059 else {
1060 if (end > root->end)
1061 end = root->end;
1062 if (start < root->start)
1063 start = root->start;
1064 pr_err("fixing request to [0x%llx-0x%llx]\n",
1065 (unsigned long long)start,
1066 (unsigned long long)end);
1067 }
1068 dump_stack();
1069 }
1070 if (!abort)
1071 __reserve_region_with_split(root, start, end, name);
1072 write_unlock(&resource_lock);
1073 }
1074
1075 /**
1076 * resource_alignment - calculate resource's alignment
1077 * @res: resource pointer
1078 *
1079 * Returns alignment on success, 0 (invalid alignment) on failure.
1080 */
1081 resource_size_t resource_alignment(struct resource *res)
1082 {
1083 switch (res->flags & (IORESOURCE_SIZEALIGN | IORESOURCE_STARTALIGN)) {
1084 case IORESOURCE_SIZEALIGN:
1085 return resource_size(res);
1086 case IORESOURCE_STARTALIGN:
1087 return res->start;
1088 default:
1089 return 0;
1090 }
1091 }
1092
1093 /*
1094 * This is compatibility stuff for IO resources.
1095 *
1096 * Note how this, unlike the above, knows about
1097 * the IO flag meanings (busy etc).
1098 *
1099 * request_region creates a new busy region.
1100 *
1101 * release_region releases a matching busy region.
1102 */
1103
1104 static DECLARE_WAIT_QUEUE_HEAD(muxed_resource_wait);
1105
1106 /**
1107 * __request_region - create a new busy resource region
1108 * @parent: parent resource descriptor
1109 * @start: resource start address
1110 * @n: resource region size
1111 * @name: reserving caller's ID string
1112 * @flags: IO resource flags
1113 */
1114 struct resource * __request_region(struct resource *parent,
1115 resource_size_t start, resource_size_t n,
1116 const char *name, int flags)
1117 {
1118 DECLARE_WAITQUEUE(wait, current);
1119 struct resource *res = alloc_resource(GFP_KERNEL);
1120
1121 if (!res)
1122 return NULL;
1123
1124 res->name = name;
1125 res->start = start;
1126 res->end = start + n - 1;
1127 res->flags = resource_type(parent) | resource_ext_type(parent);
1128 res->flags |= IORESOURCE_BUSY | flags;
1129 res->desc = IORES_DESC_NONE;
1130
1131 write_lock(&resource_lock);
1132
1133 for (;;) {
1134 struct resource *conflict;
1135
1136 conflict = __request_resource(parent, res);
1137 if (!conflict)
1138 break;
1139 if (conflict != parent) {
1140 parent = conflict;
1141 if (!(conflict->flags & IORESOURCE_BUSY))
1142 continue;
1143 }
1144 if (conflict->flags & flags & IORESOURCE_MUXED) {
1145 add_wait_queue(&muxed_resource_wait, &wait);
1146 write_unlock(&resource_lock);
1147 set_current_state(TASK_UNINTERRUPTIBLE);
1148 schedule();
1149 remove_wait_queue(&muxed_resource_wait, &wait);
1150 write_lock(&resource_lock);
1151 continue;
1152 }
1153 /* Uhhuh, that didn't work out.. */
1154 free_resource(res);
1155 res = NULL;
1156 break;
1157 }
1158 write_unlock(&resource_lock);
1159 return res;
1160 }
1161 EXPORT_SYMBOL(__request_region);
1162
1163 /**
1164 * __release_region - release a previously reserved resource region
1165 * @parent: parent resource descriptor
1166 * @start: resource start address
1167 * @n: resource region size
1168 *
1169 * The described resource region must match a currently busy region.
1170 */
1171 void __release_region(struct resource *parent, resource_size_t start,
1172 resource_size_t n)
1173 {
1174 struct resource **p;
1175 resource_size_t end;
1176
1177 p = &parent->child;
1178 end = start + n - 1;
1179
1180 write_lock(&resource_lock);
1181
1182 for (;;) {
1183 struct resource *res = *p;
1184
1185 if (!res)
1186 break;
1187 if (res->start <= start && res->end >= end) {
1188 if (!(res->flags & IORESOURCE_BUSY)) {
1189 p = &res->child;
1190 continue;
1191 }
1192 if (res->start != start || res->end != end)
1193 break;
1194 *p = res->sibling;
1195 write_unlock(&resource_lock);
1196 if (res->flags & IORESOURCE_MUXED)
1197 wake_up(&muxed_resource_wait);
1198 free_resource(res);
1199 return;
1200 }
1201 p = &res->sibling;
1202 }
1203
1204 write_unlock(&resource_lock);
1205
1206 printk(KERN_WARNING "Trying to free nonexistent resource "
1207 "<%016llx-%016llx>\n", (unsigned long long)start,
1208 (unsigned long long)end);
1209 }
1210 EXPORT_SYMBOL(__release_region);
1211
1212 #ifdef CONFIG_MEMORY_HOTREMOVE
1213 /**
1214 * release_mem_region_adjustable - release a previously reserved memory region
1215 * @parent: parent resource descriptor
1216 * @start: resource start address
1217 * @size: resource region size
1218 *
1219 * This interface is intended for memory hot-delete. The requested region
1220 * is released from a currently busy memory resource. The requested region
1221 * must either match exactly or fit into a single busy resource entry. In
1222 * the latter case, the remaining resource is adjusted accordingly.
1223 * Existing children of the busy memory resource must be immutable in the
1224 * request.
1225 *
1226 * Note:
1227 * - Additional release conditions, such as overlapping region, can be
1228 * supported after they are confirmed as valid cases.
1229 * - When a busy memory resource gets split into two entries, the code
1230 * assumes that all children remain in the lower address entry for
1231 * simplicity. Enhance this logic when necessary.
1232 */
1233 int release_mem_region_adjustable(struct resource *parent,
1234 resource_size_t start, resource_size_t size)
1235 {
1236 struct resource **p;
1237 struct resource *res;
1238 struct resource *new_res;
1239 resource_size_t end;
1240 int ret = -EINVAL;
1241
1242 end = start + size - 1;
1243 if ((start < parent->start) || (end > parent->end))
1244 return ret;
1245
1246 /* The alloc_resource() result gets checked later */
1247 new_res = alloc_resource(GFP_KERNEL);
1248
1249 p = &parent->child;
1250 write_lock(&resource_lock);
1251
1252 while ((res = *p)) {
1253 if (res->start >= end)
1254 break;
1255
1256 /* look for the next resource if it does not fit into */
1257 if (res->start > start || res->end < end) {
1258 p = &res->sibling;
1259 continue;
1260 }
1261
1262 if (!(res->flags & IORESOURCE_MEM))
1263 break;
1264
1265 if (!(res->flags & IORESOURCE_BUSY)) {
1266 p = &res->child;
1267 continue;
1268 }
1269
1270 /* found the target resource; let's adjust accordingly */
1271 if (res->start == start && res->end == end) {
1272 /* free the whole entry */
1273 *p = res->sibling;
1274 free_resource(res);
1275 ret = 0;
1276 } else if (res->start == start && res->end != end) {
1277 /* adjust the start */
1278 ret = __adjust_resource(res, end + 1,
1279 res->end - end);
1280 } else if (res->start != start && res->end == end) {
1281 /* adjust the end */
1282 ret = __adjust_resource(res, res->start,
1283 start - res->start);
1284 } else {
1285 /* split into two entries */
1286 if (!new_res) {
1287 ret = -ENOMEM;
1288 break;
1289 }
1290 new_res->name = res->name;
1291 new_res->start = end + 1;
1292 new_res->end = res->end;
1293 new_res->flags = res->flags;
1294 new_res->desc = res->desc;
1295 new_res->parent = res->parent;
1296 new_res->sibling = res->sibling;
1297 new_res->child = NULL;
1298
1299 ret = __adjust_resource(res, res->start,
1300 start - res->start);
1301 if (ret)
1302 break;
1303 res->sibling = new_res;
1304 new_res = NULL;
1305 }
1306
1307 break;
1308 }
1309
1310 write_unlock(&resource_lock);
1311 free_resource(new_res);
1312 return ret;
1313 }
1314 #endif /* CONFIG_MEMORY_HOTREMOVE */
1315
1316 /*
1317 * Managed region resource
1318 */
1319 static void devm_resource_release(struct device *dev, void *ptr)
1320 {
1321 struct resource **r = ptr;
1322
1323 release_resource(*r);
1324 }
1325
1326 /**
1327 * devm_request_resource() - request and reserve an I/O or memory resource
1328 * @dev: device for which to request the resource
1329 * @root: root of the resource tree from which to request the resource
1330 * @new: descriptor of the resource to request
1331 *
1332 * This is a device-managed version of request_resource(). There is usually
1333 * no need to release resources requested by this function explicitly since
1334 * that will be taken care of when the device is unbound from its driver.
1335 * If for some reason the resource needs to be released explicitly, because
1336 * of ordering issues for example, drivers must call devm_release_resource()
1337 * rather than the regular release_resource().
1338 *
1339 * When a conflict is detected between any existing resources and the newly
1340 * requested resource, an error message will be printed.
1341 *
1342 * Returns 0 on success or a negative error code on failure.
1343 */
1344 int devm_request_resource(struct device *dev, struct resource *root,
1345 struct resource *new)
1346 {
1347 struct resource *conflict, **ptr;
1348
1349 ptr = devres_alloc(devm_resource_release, sizeof(*ptr), GFP_KERNEL);
1350 if (!ptr)
1351 return -ENOMEM;
1352
1353 *ptr = new;
1354
1355 conflict = request_resource_conflict(root, new);
1356 if (conflict) {
1357 dev_err(dev, "resource collision: %pR conflicts with %s %pR\n",
1358 new, conflict->name, conflict);
1359 devres_free(ptr);
1360 return -EBUSY;
1361 }
1362
1363 devres_add(dev, ptr);
1364 return 0;
1365 }
1366 EXPORT_SYMBOL(devm_request_resource);
1367
1368 static int devm_resource_match(struct device *dev, void *res, void *data)
1369 {
1370 struct resource **ptr = res;
1371
1372 return *ptr == data;
1373 }
1374
1375 /**
1376 * devm_release_resource() - release a previously requested resource
1377 * @dev: device for which to release the resource
1378 * @new: descriptor of the resource to release
1379 *
1380 * Releases a resource previously requested using devm_request_resource().
1381 */
1382 void devm_release_resource(struct device *dev, struct resource *new)
1383 {
1384 WARN_ON(devres_release(dev, devm_resource_release, devm_resource_match,
1385 new));
1386 }
1387 EXPORT_SYMBOL(devm_release_resource);
1388
1389 struct region_devres {
1390 struct resource *parent;
1391 resource_size_t start;
1392 resource_size_t n;
1393 };
1394
1395 static void devm_region_release(struct device *dev, void *res)
1396 {
1397 struct region_devres *this = res;
1398
1399 __release_region(this->parent, this->start, this->n);
1400 }
1401
1402 static int devm_region_match(struct device *dev, void *res, void *match_data)
1403 {
1404 struct region_devres *this = res, *match = match_data;
1405
1406 return this->parent == match->parent &&
1407 this->start == match->start && this->n == match->n;
1408 }
1409
1410 struct resource * __devm_request_region(struct device *dev,
1411 struct resource *parent, resource_size_t start,
1412 resource_size_t n, const char *name)
1413 {
1414 struct region_devres *dr = NULL;
1415 struct resource *res;
1416
1417 dr = devres_alloc(devm_region_release, sizeof(struct region_devres),
1418 GFP_KERNEL);
1419 if (!dr)
1420 return NULL;
1421
1422 dr->parent = parent;
1423 dr->start = start;
1424 dr->n = n;
1425
1426 res = __request_region(parent, start, n, name, 0);
1427 if (res)
1428 devres_add(dev, dr);
1429 else
1430 devres_free(dr);
1431
1432 return res;
1433 }
1434 EXPORT_SYMBOL(__devm_request_region);
1435
1436 void __devm_release_region(struct device *dev, struct resource *parent,
1437 resource_size_t start, resource_size_t n)
1438 {
1439 struct region_devres match_data = { parent, start, n };
1440
1441 __release_region(parent, start, n);
1442 WARN_ON(devres_destroy(dev, devm_region_release, devm_region_match,
1443 &match_data));
1444 }
1445 EXPORT_SYMBOL(__devm_release_region);
1446
1447 /*
1448 * Called from init/main.c to reserve IO ports.
1449 */
1450 #define MAXRESERVE 4
1451 static int __init reserve_setup(char *str)
1452 {
1453 static int reserved;
1454 static struct resource reserve[MAXRESERVE];
1455
1456 for (;;) {
1457 unsigned int io_start, io_num;
1458 int x = reserved;
1459
1460 if (get_option (&str, &io_start) != 2)
1461 break;
1462 if (get_option (&str, &io_num) == 0)
1463 break;
1464 if (x < MAXRESERVE) {
1465 struct resource *res = reserve + x;
1466 res->name = "reserved";
1467 res->start = io_start;
1468 res->end = io_start + io_num - 1;
1469 res->flags = IORESOURCE_BUSY;
1470 res->desc = IORES_DESC_NONE;
1471 res->child = NULL;
1472 if (request_resource(res->start >= 0x10000 ? &iomem_resource : &ioport_resource, res) == 0)
1473 reserved = x+1;
1474 }
1475 }
1476 return 1;
1477 }
1478
1479 __setup("reserve=", reserve_setup);
1480
1481 /*
1482 * Check if the requested addr and size spans more than any slot in the
1483 * iomem resource tree.
1484 */
1485 int iomem_map_sanity_check(resource_size_t addr, unsigned long size)
1486 {
1487 struct resource *p = &iomem_resource;
1488 int err = 0;
1489 loff_t l;
1490
1491 read_lock(&resource_lock);
1492 for (p = p->child; p ; p = r_next(NULL, p, &l)) {
1493 /*
1494 * We can probably skip the resources without
1495 * IORESOURCE_IO attribute?
1496 */
1497 if (p->start >= addr + size)
1498 continue;
1499 if (p->end < addr)
1500 continue;
1501 if (PFN_DOWN(p->start) <= PFN_DOWN(addr) &&
1502 PFN_DOWN(p->end) >= PFN_DOWN(addr + size - 1))
1503 continue;
1504 /*
1505 * if a resource is "BUSY", it's not a hardware resource
1506 * but a driver mapping of such a resource; we don't want
1507 * to warn for those; some drivers legitimately map only
1508 * partial hardware resources. (example: vesafb)
1509 */
1510 if (p->flags & IORESOURCE_BUSY)
1511 continue;
1512
1513 printk(KERN_WARNING "resource sanity check: requesting [mem %#010llx-%#010llx], which spans more than %s %pR\n",
1514 (unsigned long long)addr,
1515 (unsigned long long)(addr + size - 1),
1516 p->name, p);
1517 err = -1;
1518 break;
1519 }
1520 read_unlock(&resource_lock);
1521
1522 return err;
1523 }
1524
1525 #ifdef CONFIG_STRICT_DEVMEM
1526 static int strict_iomem_checks = 1;
1527 #else
1528 static int strict_iomem_checks;
1529 #endif
1530
1531 /*
1532 * check if an address is reserved in the iomem resource tree
1533 * returns 1 if reserved, 0 if not reserved.
1534 */
1535 int iomem_is_exclusive(u64 addr)
1536 {
1537 struct resource *p = &iomem_resource;
1538 int err = 0;
1539 loff_t l;
1540 int size = PAGE_SIZE;
1541
1542 if (!strict_iomem_checks)
1543 return 0;
1544
1545 addr = addr & PAGE_MASK;
1546
1547 read_lock(&resource_lock);
1548 for (p = p->child; p ; p = r_next(NULL, p, &l)) {
1549 /*
1550 * We can probably skip the resources without
1551 * IORESOURCE_IO attribute?
1552 */
1553 if (p->start >= addr + size)
1554 break;
1555 if (p->end < addr)
1556 continue;
1557 /*
1558 * A resource is exclusive if IORESOURCE_EXCLUSIVE is set
1559 * or CONFIG_IO_STRICT_DEVMEM is enabled and the
1560 * resource is busy.
1561 */
1562 if ((p->flags & IORESOURCE_BUSY) == 0)
1563 continue;
1564 if (IS_ENABLED(CONFIG_IO_STRICT_DEVMEM)
1565 || p->flags & IORESOURCE_EXCLUSIVE) {
1566 err = 1;
1567 break;
1568 }
1569 }
1570 read_unlock(&resource_lock);
1571
1572 return err;
1573 }
1574
1575 struct resource_entry *resource_list_create_entry(struct resource *res,
1576 size_t extra_size)
1577 {
1578 struct resource_entry *entry;
1579
1580 entry = kzalloc(sizeof(*entry) + extra_size, GFP_KERNEL);
1581 if (entry) {
1582 INIT_LIST_HEAD(&entry->node);
1583 entry->res = res ? res : &entry->__res;
1584 }
1585
1586 return entry;
1587 }
1588 EXPORT_SYMBOL(resource_list_create_entry);
1589
1590 void resource_list_free(struct list_head *head)
1591 {
1592 struct resource_entry *entry, *tmp;
1593
1594 list_for_each_entry_safe(entry, tmp, head, node)
1595 resource_list_destroy_entry(entry);
1596 }
1597 EXPORT_SYMBOL(resource_list_free);
1598
1599 static int __init strict_iomem(char *str)
1600 {
1601 if (strstr(str, "relaxed"))
1602 strict_iomem_checks = 0;
1603 if (strstr(str, "strict"))
1604 strict_iomem_checks = 1;
1605 return 1;
1606 }
1607
1608 __setup("iomem=", strict_iomem);