]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - kernel/sched/core.c
sched: replace PF_THREAD_BOUND with PF_NO_SETAFFINITY
[mirror_ubuntu-zesty-kernel.git] / kernel / sched / core.c
1 /*
2 * kernel/sched/core.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
27 */
28
29 #include <linux/mm.h>
30 #include <linux/module.h>
31 #include <linux/nmi.h>
32 #include <linux/init.h>
33 #include <linux/uaccess.h>
34 #include <linux/highmem.h>
35 #include <asm/mmu_context.h>
36 #include <linux/interrupt.h>
37 #include <linux/capability.h>
38 #include <linux/completion.h>
39 #include <linux/kernel_stat.h>
40 #include <linux/debug_locks.h>
41 #include <linux/perf_event.h>
42 #include <linux/security.h>
43 #include <linux/notifier.h>
44 #include <linux/profile.h>
45 #include <linux/freezer.h>
46 #include <linux/vmalloc.h>
47 #include <linux/blkdev.h>
48 #include <linux/delay.h>
49 #include <linux/pid_namespace.h>
50 #include <linux/smp.h>
51 #include <linux/threads.h>
52 #include <linux/timer.h>
53 #include <linux/rcupdate.h>
54 #include <linux/cpu.h>
55 #include <linux/cpuset.h>
56 #include <linux/percpu.h>
57 #include <linux/proc_fs.h>
58 #include <linux/seq_file.h>
59 #include <linux/sysctl.h>
60 #include <linux/syscalls.h>
61 #include <linux/times.h>
62 #include <linux/tsacct_kern.h>
63 #include <linux/kprobes.h>
64 #include <linux/delayacct.h>
65 #include <linux/unistd.h>
66 #include <linux/pagemap.h>
67 #include <linux/hrtimer.h>
68 #include <linux/tick.h>
69 #include <linux/debugfs.h>
70 #include <linux/ctype.h>
71 #include <linux/ftrace.h>
72 #include <linux/slab.h>
73 #include <linux/init_task.h>
74 #include <linux/binfmts.h>
75 #include <linux/context_tracking.h>
76
77 #include <asm/switch_to.h>
78 #include <asm/tlb.h>
79 #include <asm/irq_regs.h>
80 #include <asm/mutex.h>
81 #ifdef CONFIG_PARAVIRT
82 #include <asm/paravirt.h>
83 #endif
84
85 #include "sched.h"
86 #include "../workqueue_internal.h"
87 #include "../smpboot.h"
88
89 #define CREATE_TRACE_POINTS
90 #include <trace/events/sched.h>
91
92 void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period)
93 {
94 unsigned long delta;
95 ktime_t soft, hard, now;
96
97 for (;;) {
98 if (hrtimer_active(period_timer))
99 break;
100
101 now = hrtimer_cb_get_time(period_timer);
102 hrtimer_forward(period_timer, now, period);
103
104 soft = hrtimer_get_softexpires(period_timer);
105 hard = hrtimer_get_expires(period_timer);
106 delta = ktime_to_ns(ktime_sub(hard, soft));
107 __hrtimer_start_range_ns(period_timer, soft, delta,
108 HRTIMER_MODE_ABS_PINNED, 0);
109 }
110 }
111
112 DEFINE_MUTEX(sched_domains_mutex);
113 DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
114
115 static void update_rq_clock_task(struct rq *rq, s64 delta);
116
117 void update_rq_clock(struct rq *rq)
118 {
119 s64 delta;
120
121 if (rq->skip_clock_update > 0)
122 return;
123
124 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
125 rq->clock += delta;
126 update_rq_clock_task(rq, delta);
127 }
128
129 /*
130 * Debugging: various feature bits
131 */
132
133 #define SCHED_FEAT(name, enabled) \
134 (1UL << __SCHED_FEAT_##name) * enabled |
135
136 const_debug unsigned int sysctl_sched_features =
137 #include "features.h"
138 0;
139
140 #undef SCHED_FEAT
141
142 #ifdef CONFIG_SCHED_DEBUG
143 #define SCHED_FEAT(name, enabled) \
144 #name ,
145
146 static const char * const sched_feat_names[] = {
147 #include "features.h"
148 };
149
150 #undef SCHED_FEAT
151
152 static int sched_feat_show(struct seq_file *m, void *v)
153 {
154 int i;
155
156 for (i = 0; i < __SCHED_FEAT_NR; i++) {
157 if (!(sysctl_sched_features & (1UL << i)))
158 seq_puts(m, "NO_");
159 seq_printf(m, "%s ", sched_feat_names[i]);
160 }
161 seq_puts(m, "\n");
162
163 return 0;
164 }
165
166 #ifdef HAVE_JUMP_LABEL
167
168 #define jump_label_key__true STATIC_KEY_INIT_TRUE
169 #define jump_label_key__false STATIC_KEY_INIT_FALSE
170
171 #define SCHED_FEAT(name, enabled) \
172 jump_label_key__##enabled ,
173
174 struct static_key sched_feat_keys[__SCHED_FEAT_NR] = {
175 #include "features.h"
176 };
177
178 #undef SCHED_FEAT
179
180 static void sched_feat_disable(int i)
181 {
182 if (static_key_enabled(&sched_feat_keys[i]))
183 static_key_slow_dec(&sched_feat_keys[i]);
184 }
185
186 static void sched_feat_enable(int i)
187 {
188 if (!static_key_enabled(&sched_feat_keys[i]))
189 static_key_slow_inc(&sched_feat_keys[i]);
190 }
191 #else
192 static void sched_feat_disable(int i) { };
193 static void sched_feat_enable(int i) { };
194 #endif /* HAVE_JUMP_LABEL */
195
196 static int sched_feat_set(char *cmp)
197 {
198 int i;
199 int neg = 0;
200
201 if (strncmp(cmp, "NO_", 3) == 0) {
202 neg = 1;
203 cmp += 3;
204 }
205
206 for (i = 0; i < __SCHED_FEAT_NR; i++) {
207 if (strcmp(cmp, sched_feat_names[i]) == 0) {
208 if (neg) {
209 sysctl_sched_features &= ~(1UL << i);
210 sched_feat_disable(i);
211 } else {
212 sysctl_sched_features |= (1UL << i);
213 sched_feat_enable(i);
214 }
215 break;
216 }
217 }
218
219 return i;
220 }
221
222 static ssize_t
223 sched_feat_write(struct file *filp, const char __user *ubuf,
224 size_t cnt, loff_t *ppos)
225 {
226 char buf[64];
227 char *cmp;
228 int i;
229
230 if (cnt > 63)
231 cnt = 63;
232
233 if (copy_from_user(&buf, ubuf, cnt))
234 return -EFAULT;
235
236 buf[cnt] = 0;
237 cmp = strstrip(buf);
238
239 i = sched_feat_set(cmp);
240 if (i == __SCHED_FEAT_NR)
241 return -EINVAL;
242
243 *ppos += cnt;
244
245 return cnt;
246 }
247
248 static int sched_feat_open(struct inode *inode, struct file *filp)
249 {
250 return single_open(filp, sched_feat_show, NULL);
251 }
252
253 static const struct file_operations sched_feat_fops = {
254 .open = sched_feat_open,
255 .write = sched_feat_write,
256 .read = seq_read,
257 .llseek = seq_lseek,
258 .release = single_release,
259 };
260
261 static __init int sched_init_debug(void)
262 {
263 debugfs_create_file("sched_features", 0644, NULL, NULL,
264 &sched_feat_fops);
265
266 return 0;
267 }
268 late_initcall(sched_init_debug);
269 #endif /* CONFIG_SCHED_DEBUG */
270
271 /*
272 * Number of tasks to iterate in a single balance run.
273 * Limited because this is done with IRQs disabled.
274 */
275 const_debug unsigned int sysctl_sched_nr_migrate = 32;
276
277 /*
278 * period over which we average the RT time consumption, measured
279 * in ms.
280 *
281 * default: 1s
282 */
283 const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
284
285 /*
286 * period over which we measure -rt task cpu usage in us.
287 * default: 1s
288 */
289 unsigned int sysctl_sched_rt_period = 1000000;
290
291 __read_mostly int scheduler_running;
292
293 /*
294 * part of the period that we allow rt tasks to run in us.
295 * default: 0.95s
296 */
297 int sysctl_sched_rt_runtime = 950000;
298
299
300
301 /*
302 * __task_rq_lock - lock the rq @p resides on.
303 */
304 static inline struct rq *__task_rq_lock(struct task_struct *p)
305 __acquires(rq->lock)
306 {
307 struct rq *rq;
308
309 lockdep_assert_held(&p->pi_lock);
310
311 for (;;) {
312 rq = task_rq(p);
313 raw_spin_lock(&rq->lock);
314 if (likely(rq == task_rq(p)))
315 return rq;
316 raw_spin_unlock(&rq->lock);
317 }
318 }
319
320 /*
321 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
322 */
323 static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
324 __acquires(p->pi_lock)
325 __acquires(rq->lock)
326 {
327 struct rq *rq;
328
329 for (;;) {
330 raw_spin_lock_irqsave(&p->pi_lock, *flags);
331 rq = task_rq(p);
332 raw_spin_lock(&rq->lock);
333 if (likely(rq == task_rq(p)))
334 return rq;
335 raw_spin_unlock(&rq->lock);
336 raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
337 }
338 }
339
340 static void __task_rq_unlock(struct rq *rq)
341 __releases(rq->lock)
342 {
343 raw_spin_unlock(&rq->lock);
344 }
345
346 static inline void
347 task_rq_unlock(struct rq *rq, struct task_struct *p, unsigned long *flags)
348 __releases(rq->lock)
349 __releases(p->pi_lock)
350 {
351 raw_spin_unlock(&rq->lock);
352 raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
353 }
354
355 /*
356 * this_rq_lock - lock this runqueue and disable interrupts.
357 */
358 static struct rq *this_rq_lock(void)
359 __acquires(rq->lock)
360 {
361 struct rq *rq;
362
363 local_irq_disable();
364 rq = this_rq();
365 raw_spin_lock(&rq->lock);
366
367 return rq;
368 }
369
370 #ifdef CONFIG_SCHED_HRTICK
371 /*
372 * Use HR-timers to deliver accurate preemption points.
373 *
374 * Its all a bit involved since we cannot program an hrt while holding the
375 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
376 * reschedule event.
377 *
378 * When we get rescheduled we reprogram the hrtick_timer outside of the
379 * rq->lock.
380 */
381
382 static void hrtick_clear(struct rq *rq)
383 {
384 if (hrtimer_active(&rq->hrtick_timer))
385 hrtimer_cancel(&rq->hrtick_timer);
386 }
387
388 /*
389 * High-resolution timer tick.
390 * Runs from hardirq context with interrupts disabled.
391 */
392 static enum hrtimer_restart hrtick(struct hrtimer *timer)
393 {
394 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
395
396 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
397
398 raw_spin_lock(&rq->lock);
399 update_rq_clock(rq);
400 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
401 raw_spin_unlock(&rq->lock);
402
403 return HRTIMER_NORESTART;
404 }
405
406 #ifdef CONFIG_SMP
407 /*
408 * called from hardirq (IPI) context
409 */
410 static void __hrtick_start(void *arg)
411 {
412 struct rq *rq = arg;
413
414 raw_spin_lock(&rq->lock);
415 hrtimer_restart(&rq->hrtick_timer);
416 rq->hrtick_csd_pending = 0;
417 raw_spin_unlock(&rq->lock);
418 }
419
420 /*
421 * Called to set the hrtick timer state.
422 *
423 * called with rq->lock held and irqs disabled
424 */
425 void hrtick_start(struct rq *rq, u64 delay)
426 {
427 struct hrtimer *timer = &rq->hrtick_timer;
428 ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
429
430 hrtimer_set_expires(timer, time);
431
432 if (rq == this_rq()) {
433 hrtimer_restart(timer);
434 } else if (!rq->hrtick_csd_pending) {
435 __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
436 rq->hrtick_csd_pending = 1;
437 }
438 }
439
440 static int
441 hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
442 {
443 int cpu = (int)(long)hcpu;
444
445 switch (action) {
446 case CPU_UP_CANCELED:
447 case CPU_UP_CANCELED_FROZEN:
448 case CPU_DOWN_PREPARE:
449 case CPU_DOWN_PREPARE_FROZEN:
450 case CPU_DEAD:
451 case CPU_DEAD_FROZEN:
452 hrtick_clear(cpu_rq(cpu));
453 return NOTIFY_OK;
454 }
455
456 return NOTIFY_DONE;
457 }
458
459 static __init void init_hrtick(void)
460 {
461 hotcpu_notifier(hotplug_hrtick, 0);
462 }
463 #else
464 /*
465 * Called to set the hrtick timer state.
466 *
467 * called with rq->lock held and irqs disabled
468 */
469 void hrtick_start(struct rq *rq, u64 delay)
470 {
471 __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
472 HRTIMER_MODE_REL_PINNED, 0);
473 }
474
475 static inline void init_hrtick(void)
476 {
477 }
478 #endif /* CONFIG_SMP */
479
480 static void init_rq_hrtick(struct rq *rq)
481 {
482 #ifdef CONFIG_SMP
483 rq->hrtick_csd_pending = 0;
484
485 rq->hrtick_csd.flags = 0;
486 rq->hrtick_csd.func = __hrtick_start;
487 rq->hrtick_csd.info = rq;
488 #endif
489
490 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
491 rq->hrtick_timer.function = hrtick;
492 }
493 #else /* CONFIG_SCHED_HRTICK */
494 static inline void hrtick_clear(struct rq *rq)
495 {
496 }
497
498 static inline void init_rq_hrtick(struct rq *rq)
499 {
500 }
501
502 static inline void init_hrtick(void)
503 {
504 }
505 #endif /* CONFIG_SCHED_HRTICK */
506
507 /*
508 * resched_task - mark a task 'to be rescheduled now'.
509 *
510 * On UP this means the setting of the need_resched flag, on SMP it
511 * might also involve a cross-CPU call to trigger the scheduler on
512 * the target CPU.
513 */
514 #ifdef CONFIG_SMP
515
516 #ifndef tsk_is_polling
517 #define tsk_is_polling(t) 0
518 #endif
519
520 void resched_task(struct task_struct *p)
521 {
522 int cpu;
523
524 assert_raw_spin_locked(&task_rq(p)->lock);
525
526 if (test_tsk_need_resched(p))
527 return;
528
529 set_tsk_need_resched(p);
530
531 cpu = task_cpu(p);
532 if (cpu == smp_processor_id())
533 return;
534
535 /* NEED_RESCHED must be visible before we test polling */
536 smp_mb();
537 if (!tsk_is_polling(p))
538 smp_send_reschedule(cpu);
539 }
540
541 void resched_cpu(int cpu)
542 {
543 struct rq *rq = cpu_rq(cpu);
544 unsigned long flags;
545
546 if (!raw_spin_trylock_irqsave(&rq->lock, flags))
547 return;
548 resched_task(cpu_curr(cpu));
549 raw_spin_unlock_irqrestore(&rq->lock, flags);
550 }
551
552 #ifdef CONFIG_NO_HZ
553 /*
554 * In the semi idle case, use the nearest busy cpu for migrating timers
555 * from an idle cpu. This is good for power-savings.
556 *
557 * We don't do similar optimization for completely idle system, as
558 * selecting an idle cpu will add more delays to the timers than intended
559 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
560 */
561 int get_nohz_timer_target(void)
562 {
563 int cpu = smp_processor_id();
564 int i;
565 struct sched_domain *sd;
566
567 rcu_read_lock();
568 for_each_domain(cpu, sd) {
569 for_each_cpu(i, sched_domain_span(sd)) {
570 if (!idle_cpu(i)) {
571 cpu = i;
572 goto unlock;
573 }
574 }
575 }
576 unlock:
577 rcu_read_unlock();
578 return cpu;
579 }
580 /*
581 * When add_timer_on() enqueues a timer into the timer wheel of an
582 * idle CPU then this timer might expire before the next timer event
583 * which is scheduled to wake up that CPU. In case of a completely
584 * idle system the next event might even be infinite time into the
585 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
586 * leaves the inner idle loop so the newly added timer is taken into
587 * account when the CPU goes back to idle and evaluates the timer
588 * wheel for the next timer event.
589 */
590 void wake_up_idle_cpu(int cpu)
591 {
592 struct rq *rq = cpu_rq(cpu);
593
594 if (cpu == smp_processor_id())
595 return;
596
597 /*
598 * This is safe, as this function is called with the timer
599 * wheel base lock of (cpu) held. When the CPU is on the way
600 * to idle and has not yet set rq->curr to idle then it will
601 * be serialized on the timer wheel base lock and take the new
602 * timer into account automatically.
603 */
604 if (rq->curr != rq->idle)
605 return;
606
607 /*
608 * We can set TIF_RESCHED on the idle task of the other CPU
609 * lockless. The worst case is that the other CPU runs the
610 * idle task through an additional NOOP schedule()
611 */
612 set_tsk_need_resched(rq->idle);
613
614 /* NEED_RESCHED must be visible before we test polling */
615 smp_mb();
616 if (!tsk_is_polling(rq->idle))
617 smp_send_reschedule(cpu);
618 }
619
620 static inline bool got_nohz_idle_kick(void)
621 {
622 int cpu = smp_processor_id();
623 return idle_cpu(cpu) && test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
624 }
625
626 #else /* CONFIG_NO_HZ */
627
628 static inline bool got_nohz_idle_kick(void)
629 {
630 return false;
631 }
632
633 #endif /* CONFIG_NO_HZ */
634
635 void sched_avg_update(struct rq *rq)
636 {
637 s64 period = sched_avg_period();
638
639 while ((s64)(rq->clock - rq->age_stamp) > period) {
640 /*
641 * Inline assembly required to prevent the compiler
642 * optimising this loop into a divmod call.
643 * See __iter_div_u64_rem() for another example of this.
644 */
645 asm("" : "+rm" (rq->age_stamp));
646 rq->age_stamp += period;
647 rq->rt_avg /= 2;
648 }
649 }
650
651 #else /* !CONFIG_SMP */
652 void resched_task(struct task_struct *p)
653 {
654 assert_raw_spin_locked(&task_rq(p)->lock);
655 set_tsk_need_resched(p);
656 }
657 #endif /* CONFIG_SMP */
658
659 #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
660 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
661 /*
662 * Iterate task_group tree rooted at *from, calling @down when first entering a
663 * node and @up when leaving it for the final time.
664 *
665 * Caller must hold rcu_lock or sufficient equivalent.
666 */
667 int walk_tg_tree_from(struct task_group *from,
668 tg_visitor down, tg_visitor up, void *data)
669 {
670 struct task_group *parent, *child;
671 int ret;
672
673 parent = from;
674
675 down:
676 ret = (*down)(parent, data);
677 if (ret)
678 goto out;
679 list_for_each_entry_rcu(child, &parent->children, siblings) {
680 parent = child;
681 goto down;
682
683 up:
684 continue;
685 }
686 ret = (*up)(parent, data);
687 if (ret || parent == from)
688 goto out;
689
690 child = parent;
691 parent = parent->parent;
692 if (parent)
693 goto up;
694 out:
695 return ret;
696 }
697
698 int tg_nop(struct task_group *tg, void *data)
699 {
700 return 0;
701 }
702 #endif
703
704 static void set_load_weight(struct task_struct *p)
705 {
706 int prio = p->static_prio - MAX_RT_PRIO;
707 struct load_weight *load = &p->se.load;
708
709 /*
710 * SCHED_IDLE tasks get minimal weight:
711 */
712 if (p->policy == SCHED_IDLE) {
713 load->weight = scale_load(WEIGHT_IDLEPRIO);
714 load->inv_weight = WMULT_IDLEPRIO;
715 return;
716 }
717
718 load->weight = scale_load(prio_to_weight[prio]);
719 load->inv_weight = prio_to_wmult[prio];
720 }
721
722 static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
723 {
724 update_rq_clock(rq);
725 sched_info_queued(p);
726 p->sched_class->enqueue_task(rq, p, flags);
727 }
728
729 static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
730 {
731 update_rq_clock(rq);
732 sched_info_dequeued(p);
733 p->sched_class->dequeue_task(rq, p, flags);
734 }
735
736 void activate_task(struct rq *rq, struct task_struct *p, int flags)
737 {
738 if (task_contributes_to_load(p))
739 rq->nr_uninterruptible--;
740
741 enqueue_task(rq, p, flags);
742 }
743
744 void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
745 {
746 if (task_contributes_to_load(p))
747 rq->nr_uninterruptible++;
748
749 dequeue_task(rq, p, flags);
750 }
751
752 static void update_rq_clock_task(struct rq *rq, s64 delta)
753 {
754 /*
755 * In theory, the compile should just see 0 here, and optimize out the call
756 * to sched_rt_avg_update. But I don't trust it...
757 */
758 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
759 s64 steal = 0, irq_delta = 0;
760 #endif
761 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
762 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
763
764 /*
765 * Since irq_time is only updated on {soft,}irq_exit, we might run into
766 * this case when a previous update_rq_clock() happened inside a
767 * {soft,}irq region.
768 *
769 * When this happens, we stop ->clock_task and only update the
770 * prev_irq_time stamp to account for the part that fit, so that a next
771 * update will consume the rest. This ensures ->clock_task is
772 * monotonic.
773 *
774 * It does however cause some slight miss-attribution of {soft,}irq
775 * time, a more accurate solution would be to update the irq_time using
776 * the current rq->clock timestamp, except that would require using
777 * atomic ops.
778 */
779 if (irq_delta > delta)
780 irq_delta = delta;
781
782 rq->prev_irq_time += irq_delta;
783 delta -= irq_delta;
784 #endif
785 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
786 if (static_key_false((&paravirt_steal_rq_enabled))) {
787 u64 st;
788
789 steal = paravirt_steal_clock(cpu_of(rq));
790 steal -= rq->prev_steal_time_rq;
791
792 if (unlikely(steal > delta))
793 steal = delta;
794
795 st = steal_ticks(steal);
796 steal = st * TICK_NSEC;
797
798 rq->prev_steal_time_rq += steal;
799
800 delta -= steal;
801 }
802 #endif
803
804 rq->clock_task += delta;
805
806 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
807 if ((irq_delta + steal) && sched_feat(NONTASK_POWER))
808 sched_rt_avg_update(rq, irq_delta + steal);
809 #endif
810 }
811
812 void sched_set_stop_task(int cpu, struct task_struct *stop)
813 {
814 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
815 struct task_struct *old_stop = cpu_rq(cpu)->stop;
816
817 if (stop) {
818 /*
819 * Make it appear like a SCHED_FIFO task, its something
820 * userspace knows about and won't get confused about.
821 *
822 * Also, it will make PI more or less work without too
823 * much confusion -- but then, stop work should not
824 * rely on PI working anyway.
825 */
826 sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
827
828 stop->sched_class = &stop_sched_class;
829 }
830
831 cpu_rq(cpu)->stop = stop;
832
833 if (old_stop) {
834 /*
835 * Reset it back to a normal scheduling class so that
836 * it can die in pieces.
837 */
838 old_stop->sched_class = &rt_sched_class;
839 }
840 }
841
842 /*
843 * __normal_prio - return the priority that is based on the static prio
844 */
845 static inline int __normal_prio(struct task_struct *p)
846 {
847 return p->static_prio;
848 }
849
850 /*
851 * Calculate the expected normal priority: i.e. priority
852 * without taking RT-inheritance into account. Might be
853 * boosted by interactivity modifiers. Changes upon fork,
854 * setprio syscalls, and whenever the interactivity
855 * estimator recalculates.
856 */
857 static inline int normal_prio(struct task_struct *p)
858 {
859 int prio;
860
861 if (task_has_rt_policy(p))
862 prio = MAX_RT_PRIO-1 - p->rt_priority;
863 else
864 prio = __normal_prio(p);
865 return prio;
866 }
867
868 /*
869 * Calculate the current priority, i.e. the priority
870 * taken into account by the scheduler. This value might
871 * be boosted by RT tasks, or might be boosted by
872 * interactivity modifiers. Will be RT if the task got
873 * RT-boosted. If not then it returns p->normal_prio.
874 */
875 static int effective_prio(struct task_struct *p)
876 {
877 p->normal_prio = normal_prio(p);
878 /*
879 * If we are RT tasks or we were boosted to RT priority,
880 * keep the priority unchanged. Otherwise, update priority
881 * to the normal priority:
882 */
883 if (!rt_prio(p->prio))
884 return p->normal_prio;
885 return p->prio;
886 }
887
888 /**
889 * task_curr - is this task currently executing on a CPU?
890 * @p: the task in question.
891 */
892 inline int task_curr(const struct task_struct *p)
893 {
894 return cpu_curr(task_cpu(p)) == p;
895 }
896
897 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
898 const struct sched_class *prev_class,
899 int oldprio)
900 {
901 if (prev_class != p->sched_class) {
902 if (prev_class->switched_from)
903 prev_class->switched_from(rq, p);
904 p->sched_class->switched_to(rq, p);
905 } else if (oldprio != p->prio)
906 p->sched_class->prio_changed(rq, p, oldprio);
907 }
908
909 void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
910 {
911 const struct sched_class *class;
912
913 if (p->sched_class == rq->curr->sched_class) {
914 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
915 } else {
916 for_each_class(class) {
917 if (class == rq->curr->sched_class)
918 break;
919 if (class == p->sched_class) {
920 resched_task(rq->curr);
921 break;
922 }
923 }
924 }
925
926 /*
927 * A queue event has occurred, and we're going to schedule. In
928 * this case, we can save a useless back to back clock update.
929 */
930 if (rq->curr->on_rq && test_tsk_need_resched(rq->curr))
931 rq->skip_clock_update = 1;
932 }
933
934 static ATOMIC_NOTIFIER_HEAD(task_migration_notifier);
935
936 void register_task_migration_notifier(struct notifier_block *n)
937 {
938 atomic_notifier_chain_register(&task_migration_notifier, n);
939 }
940
941 #ifdef CONFIG_SMP
942 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
943 {
944 #ifdef CONFIG_SCHED_DEBUG
945 /*
946 * We should never call set_task_cpu() on a blocked task,
947 * ttwu() will sort out the placement.
948 */
949 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
950 !(task_thread_info(p)->preempt_count & PREEMPT_ACTIVE));
951
952 #ifdef CONFIG_LOCKDEP
953 /*
954 * The caller should hold either p->pi_lock or rq->lock, when changing
955 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
956 *
957 * sched_move_task() holds both and thus holding either pins the cgroup,
958 * see task_group().
959 *
960 * Furthermore, all task_rq users should acquire both locks, see
961 * task_rq_lock().
962 */
963 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
964 lockdep_is_held(&task_rq(p)->lock)));
965 #endif
966 #endif
967
968 trace_sched_migrate_task(p, new_cpu);
969
970 if (task_cpu(p) != new_cpu) {
971 struct task_migration_notifier tmn;
972
973 if (p->sched_class->migrate_task_rq)
974 p->sched_class->migrate_task_rq(p, new_cpu);
975 p->se.nr_migrations++;
976 perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, NULL, 0);
977
978 tmn.task = p;
979 tmn.from_cpu = task_cpu(p);
980 tmn.to_cpu = new_cpu;
981
982 atomic_notifier_call_chain(&task_migration_notifier, 0, &tmn);
983 }
984
985 __set_task_cpu(p, new_cpu);
986 }
987
988 struct migration_arg {
989 struct task_struct *task;
990 int dest_cpu;
991 };
992
993 static int migration_cpu_stop(void *data);
994
995 /*
996 * wait_task_inactive - wait for a thread to unschedule.
997 *
998 * If @match_state is nonzero, it's the @p->state value just checked and
999 * not expected to change. If it changes, i.e. @p might have woken up,
1000 * then return zero. When we succeed in waiting for @p to be off its CPU,
1001 * we return a positive number (its total switch count). If a second call
1002 * a short while later returns the same number, the caller can be sure that
1003 * @p has remained unscheduled the whole time.
1004 *
1005 * The caller must ensure that the task *will* unschedule sometime soon,
1006 * else this function might spin for a *long* time. This function can't
1007 * be called with interrupts off, or it may introduce deadlock with
1008 * smp_call_function() if an IPI is sent by the same process we are
1009 * waiting to become inactive.
1010 */
1011 unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1012 {
1013 unsigned long flags;
1014 int running, on_rq;
1015 unsigned long ncsw;
1016 struct rq *rq;
1017
1018 for (;;) {
1019 /*
1020 * We do the initial early heuristics without holding
1021 * any task-queue locks at all. We'll only try to get
1022 * the runqueue lock when things look like they will
1023 * work out!
1024 */
1025 rq = task_rq(p);
1026
1027 /*
1028 * If the task is actively running on another CPU
1029 * still, just relax and busy-wait without holding
1030 * any locks.
1031 *
1032 * NOTE! Since we don't hold any locks, it's not
1033 * even sure that "rq" stays as the right runqueue!
1034 * But we don't care, since "task_running()" will
1035 * return false if the runqueue has changed and p
1036 * is actually now running somewhere else!
1037 */
1038 while (task_running(rq, p)) {
1039 if (match_state && unlikely(p->state != match_state))
1040 return 0;
1041 cpu_relax();
1042 }
1043
1044 /*
1045 * Ok, time to look more closely! We need the rq
1046 * lock now, to be *sure*. If we're wrong, we'll
1047 * just go back and repeat.
1048 */
1049 rq = task_rq_lock(p, &flags);
1050 trace_sched_wait_task(p);
1051 running = task_running(rq, p);
1052 on_rq = p->on_rq;
1053 ncsw = 0;
1054 if (!match_state || p->state == match_state)
1055 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
1056 task_rq_unlock(rq, p, &flags);
1057
1058 /*
1059 * If it changed from the expected state, bail out now.
1060 */
1061 if (unlikely(!ncsw))
1062 break;
1063
1064 /*
1065 * Was it really running after all now that we
1066 * checked with the proper locks actually held?
1067 *
1068 * Oops. Go back and try again..
1069 */
1070 if (unlikely(running)) {
1071 cpu_relax();
1072 continue;
1073 }
1074
1075 /*
1076 * It's not enough that it's not actively running,
1077 * it must be off the runqueue _entirely_, and not
1078 * preempted!
1079 *
1080 * So if it was still runnable (but just not actively
1081 * running right now), it's preempted, and we should
1082 * yield - it could be a while.
1083 */
1084 if (unlikely(on_rq)) {
1085 ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
1086
1087 set_current_state(TASK_UNINTERRUPTIBLE);
1088 schedule_hrtimeout(&to, HRTIMER_MODE_REL);
1089 continue;
1090 }
1091
1092 /*
1093 * Ahh, all good. It wasn't running, and it wasn't
1094 * runnable, which means that it will never become
1095 * running in the future either. We're all done!
1096 */
1097 break;
1098 }
1099
1100 return ncsw;
1101 }
1102
1103 /***
1104 * kick_process - kick a running thread to enter/exit the kernel
1105 * @p: the to-be-kicked thread
1106 *
1107 * Cause a process which is running on another CPU to enter
1108 * kernel-mode, without any delay. (to get signals handled.)
1109 *
1110 * NOTE: this function doesn't have to take the runqueue lock,
1111 * because all it wants to ensure is that the remote task enters
1112 * the kernel. If the IPI races and the task has been migrated
1113 * to another CPU then no harm is done and the purpose has been
1114 * achieved as well.
1115 */
1116 void kick_process(struct task_struct *p)
1117 {
1118 int cpu;
1119
1120 preempt_disable();
1121 cpu = task_cpu(p);
1122 if ((cpu != smp_processor_id()) && task_curr(p))
1123 smp_send_reschedule(cpu);
1124 preempt_enable();
1125 }
1126 EXPORT_SYMBOL_GPL(kick_process);
1127 #endif /* CONFIG_SMP */
1128
1129 #ifdef CONFIG_SMP
1130 /*
1131 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
1132 */
1133 static int select_fallback_rq(int cpu, struct task_struct *p)
1134 {
1135 int nid = cpu_to_node(cpu);
1136 const struct cpumask *nodemask = NULL;
1137 enum { cpuset, possible, fail } state = cpuset;
1138 int dest_cpu;
1139
1140 /*
1141 * If the node that the cpu is on has been offlined, cpu_to_node()
1142 * will return -1. There is no cpu on the node, and we should
1143 * select the cpu on the other node.
1144 */
1145 if (nid != -1) {
1146 nodemask = cpumask_of_node(nid);
1147
1148 /* Look for allowed, online CPU in same node. */
1149 for_each_cpu(dest_cpu, nodemask) {
1150 if (!cpu_online(dest_cpu))
1151 continue;
1152 if (!cpu_active(dest_cpu))
1153 continue;
1154 if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
1155 return dest_cpu;
1156 }
1157 }
1158
1159 for (;;) {
1160 /* Any allowed, online CPU? */
1161 for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) {
1162 if (!cpu_online(dest_cpu))
1163 continue;
1164 if (!cpu_active(dest_cpu))
1165 continue;
1166 goto out;
1167 }
1168
1169 switch (state) {
1170 case cpuset:
1171 /* No more Mr. Nice Guy. */
1172 cpuset_cpus_allowed_fallback(p);
1173 state = possible;
1174 break;
1175
1176 case possible:
1177 do_set_cpus_allowed(p, cpu_possible_mask);
1178 state = fail;
1179 break;
1180
1181 case fail:
1182 BUG();
1183 break;
1184 }
1185 }
1186
1187 out:
1188 if (state != cpuset) {
1189 /*
1190 * Don't tell them about moving exiting tasks or
1191 * kernel threads (both mm NULL), since they never
1192 * leave kernel.
1193 */
1194 if (p->mm && printk_ratelimit()) {
1195 printk_sched("process %d (%s) no longer affine to cpu%d\n",
1196 task_pid_nr(p), p->comm, cpu);
1197 }
1198 }
1199
1200 return dest_cpu;
1201 }
1202
1203 /*
1204 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
1205 */
1206 static inline
1207 int select_task_rq(struct task_struct *p, int sd_flags, int wake_flags)
1208 {
1209 int cpu = p->sched_class->select_task_rq(p, sd_flags, wake_flags);
1210
1211 /*
1212 * In order not to call set_task_cpu() on a blocking task we need
1213 * to rely on ttwu() to place the task on a valid ->cpus_allowed
1214 * cpu.
1215 *
1216 * Since this is common to all placement strategies, this lives here.
1217 *
1218 * [ this allows ->select_task() to simply return task_cpu(p) and
1219 * not worry about this generic constraint ]
1220 */
1221 if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
1222 !cpu_online(cpu)))
1223 cpu = select_fallback_rq(task_cpu(p), p);
1224
1225 return cpu;
1226 }
1227
1228 static void update_avg(u64 *avg, u64 sample)
1229 {
1230 s64 diff = sample - *avg;
1231 *avg += diff >> 3;
1232 }
1233 #endif
1234
1235 static void
1236 ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
1237 {
1238 #ifdef CONFIG_SCHEDSTATS
1239 struct rq *rq = this_rq();
1240
1241 #ifdef CONFIG_SMP
1242 int this_cpu = smp_processor_id();
1243
1244 if (cpu == this_cpu) {
1245 schedstat_inc(rq, ttwu_local);
1246 schedstat_inc(p, se.statistics.nr_wakeups_local);
1247 } else {
1248 struct sched_domain *sd;
1249
1250 schedstat_inc(p, se.statistics.nr_wakeups_remote);
1251 rcu_read_lock();
1252 for_each_domain(this_cpu, sd) {
1253 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
1254 schedstat_inc(sd, ttwu_wake_remote);
1255 break;
1256 }
1257 }
1258 rcu_read_unlock();
1259 }
1260
1261 if (wake_flags & WF_MIGRATED)
1262 schedstat_inc(p, se.statistics.nr_wakeups_migrate);
1263
1264 #endif /* CONFIG_SMP */
1265
1266 schedstat_inc(rq, ttwu_count);
1267 schedstat_inc(p, se.statistics.nr_wakeups);
1268
1269 if (wake_flags & WF_SYNC)
1270 schedstat_inc(p, se.statistics.nr_wakeups_sync);
1271
1272 #endif /* CONFIG_SCHEDSTATS */
1273 }
1274
1275 static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
1276 {
1277 activate_task(rq, p, en_flags);
1278 p->on_rq = 1;
1279
1280 /* if a worker is waking up, notify workqueue */
1281 if (p->flags & PF_WQ_WORKER)
1282 wq_worker_waking_up(p, cpu_of(rq));
1283 }
1284
1285 /*
1286 * Mark the task runnable and perform wakeup-preemption.
1287 */
1288 static void
1289 ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
1290 {
1291 trace_sched_wakeup(p, true);
1292 check_preempt_curr(rq, p, wake_flags);
1293
1294 p->state = TASK_RUNNING;
1295 #ifdef CONFIG_SMP
1296 if (p->sched_class->task_woken)
1297 p->sched_class->task_woken(rq, p);
1298
1299 if (rq->idle_stamp) {
1300 u64 delta = rq->clock - rq->idle_stamp;
1301 u64 max = 2*sysctl_sched_migration_cost;
1302
1303 if (delta > max)
1304 rq->avg_idle = max;
1305 else
1306 update_avg(&rq->avg_idle, delta);
1307 rq->idle_stamp = 0;
1308 }
1309 #endif
1310 }
1311
1312 static void
1313 ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
1314 {
1315 #ifdef CONFIG_SMP
1316 if (p->sched_contributes_to_load)
1317 rq->nr_uninterruptible--;
1318 #endif
1319
1320 ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
1321 ttwu_do_wakeup(rq, p, wake_flags);
1322 }
1323
1324 /*
1325 * Called in case the task @p isn't fully descheduled from its runqueue,
1326 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
1327 * since all we need to do is flip p->state to TASK_RUNNING, since
1328 * the task is still ->on_rq.
1329 */
1330 static int ttwu_remote(struct task_struct *p, int wake_flags)
1331 {
1332 struct rq *rq;
1333 int ret = 0;
1334
1335 rq = __task_rq_lock(p);
1336 if (p->on_rq) {
1337 ttwu_do_wakeup(rq, p, wake_flags);
1338 ret = 1;
1339 }
1340 __task_rq_unlock(rq);
1341
1342 return ret;
1343 }
1344
1345 #ifdef CONFIG_SMP
1346 static void sched_ttwu_pending(void)
1347 {
1348 struct rq *rq = this_rq();
1349 struct llist_node *llist = llist_del_all(&rq->wake_list);
1350 struct task_struct *p;
1351
1352 raw_spin_lock(&rq->lock);
1353
1354 while (llist) {
1355 p = llist_entry(llist, struct task_struct, wake_entry);
1356 llist = llist_next(llist);
1357 ttwu_do_activate(rq, p, 0);
1358 }
1359
1360 raw_spin_unlock(&rq->lock);
1361 }
1362
1363 void scheduler_ipi(void)
1364 {
1365 if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
1366 return;
1367
1368 /*
1369 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
1370 * traditionally all their work was done from the interrupt return
1371 * path. Now that we actually do some work, we need to make sure
1372 * we do call them.
1373 *
1374 * Some archs already do call them, luckily irq_enter/exit nest
1375 * properly.
1376 *
1377 * Arguably we should visit all archs and update all handlers,
1378 * however a fair share of IPIs are still resched only so this would
1379 * somewhat pessimize the simple resched case.
1380 */
1381 irq_enter();
1382 sched_ttwu_pending();
1383
1384 /*
1385 * Check if someone kicked us for doing the nohz idle load balance.
1386 */
1387 if (unlikely(got_nohz_idle_kick() && !need_resched())) {
1388 this_rq()->idle_balance = 1;
1389 raise_softirq_irqoff(SCHED_SOFTIRQ);
1390 }
1391 irq_exit();
1392 }
1393
1394 static void ttwu_queue_remote(struct task_struct *p, int cpu)
1395 {
1396 if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list))
1397 smp_send_reschedule(cpu);
1398 }
1399
1400 bool cpus_share_cache(int this_cpu, int that_cpu)
1401 {
1402 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
1403 }
1404 #endif /* CONFIG_SMP */
1405
1406 static void ttwu_queue(struct task_struct *p, int cpu)
1407 {
1408 struct rq *rq = cpu_rq(cpu);
1409
1410 #if defined(CONFIG_SMP)
1411 if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
1412 sched_clock_cpu(cpu); /* sync clocks x-cpu */
1413 ttwu_queue_remote(p, cpu);
1414 return;
1415 }
1416 #endif
1417
1418 raw_spin_lock(&rq->lock);
1419 ttwu_do_activate(rq, p, 0);
1420 raw_spin_unlock(&rq->lock);
1421 }
1422
1423 /**
1424 * try_to_wake_up - wake up a thread
1425 * @p: the thread to be awakened
1426 * @state: the mask of task states that can be woken
1427 * @wake_flags: wake modifier flags (WF_*)
1428 *
1429 * Put it on the run-queue if it's not already there. The "current"
1430 * thread is always on the run-queue (except when the actual
1431 * re-schedule is in progress), and as such you're allowed to do
1432 * the simpler "current->state = TASK_RUNNING" to mark yourself
1433 * runnable without the overhead of this.
1434 *
1435 * Returns %true if @p was woken up, %false if it was already running
1436 * or @state didn't match @p's state.
1437 */
1438 static int
1439 try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
1440 {
1441 unsigned long flags;
1442 int cpu, success = 0;
1443
1444 smp_wmb();
1445 raw_spin_lock_irqsave(&p->pi_lock, flags);
1446 if (!(p->state & state))
1447 goto out;
1448
1449 success = 1; /* we're going to change ->state */
1450 cpu = task_cpu(p);
1451
1452 if (p->on_rq && ttwu_remote(p, wake_flags))
1453 goto stat;
1454
1455 #ifdef CONFIG_SMP
1456 /*
1457 * If the owning (remote) cpu is still in the middle of schedule() with
1458 * this task as prev, wait until its done referencing the task.
1459 */
1460 while (p->on_cpu)
1461 cpu_relax();
1462 /*
1463 * Pairs with the smp_wmb() in finish_lock_switch().
1464 */
1465 smp_rmb();
1466
1467 p->sched_contributes_to_load = !!task_contributes_to_load(p);
1468 p->state = TASK_WAKING;
1469
1470 if (p->sched_class->task_waking)
1471 p->sched_class->task_waking(p);
1472
1473 cpu = select_task_rq(p, SD_BALANCE_WAKE, wake_flags);
1474 if (task_cpu(p) != cpu) {
1475 wake_flags |= WF_MIGRATED;
1476 set_task_cpu(p, cpu);
1477 }
1478 #endif /* CONFIG_SMP */
1479
1480 ttwu_queue(p, cpu);
1481 stat:
1482 ttwu_stat(p, cpu, wake_flags);
1483 out:
1484 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1485
1486 return success;
1487 }
1488
1489 /**
1490 * try_to_wake_up_local - try to wake up a local task with rq lock held
1491 * @p: the thread to be awakened
1492 *
1493 * Put @p on the run-queue if it's not already there. The caller must
1494 * ensure that this_rq() is locked, @p is bound to this_rq() and not
1495 * the current task.
1496 */
1497 static void try_to_wake_up_local(struct task_struct *p)
1498 {
1499 struct rq *rq = task_rq(p);
1500
1501 BUG_ON(rq != this_rq());
1502 BUG_ON(p == current);
1503 lockdep_assert_held(&rq->lock);
1504
1505 if (!raw_spin_trylock(&p->pi_lock)) {
1506 raw_spin_unlock(&rq->lock);
1507 raw_spin_lock(&p->pi_lock);
1508 raw_spin_lock(&rq->lock);
1509 }
1510
1511 if (!(p->state & TASK_NORMAL))
1512 goto out;
1513
1514 if (!p->on_rq)
1515 ttwu_activate(rq, p, ENQUEUE_WAKEUP);
1516
1517 ttwu_do_wakeup(rq, p, 0);
1518 ttwu_stat(p, smp_processor_id(), 0);
1519 out:
1520 raw_spin_unlock(&p->pi_lock);
1521 }
1522
1523 /**
1524 * wake_up_process - Wake up a specific process
1525 * @p: The process to be woken up.
1526 *
1527 * Attempt to wake up the nominated process and move it to the set of runnable
1528 * processes. Returns 1 if the process was woken up, 0 if it was already
1529 * running.
1530 *
1531 * It may be assumed that this function implies a write memory barrier before
1532 * changing the task state if and only if any tasks are woken up.
1533 */
1534 int wake_up_process(struct task_struct *p)
1535 {
1536 WARN_ON(task_is_stopped_or_traced(p));
1537 return try_to_wake_up(p, TASK_NORMAL, 0);
1538 }
1539 EXPORT_SYMBOL(wake_up_process);
1540
1541 int wake_up_state(struct task_struct *p, unsigned int state)
1542 {
1543 return try_to_wake_up(p, state, 0);
1544 }
1545
1546 /*
1547 * Perform scheduler related setup for a newly forked process p.
1548 * p is forked by current.
1549 *
1550 * __sched_fork() is basic setup used by init_idle() too:
1551 */
1552 static void __sched_fork(struct task_struct *p)
1553 {
1554 p->on_rq = 0;
1555
1556 p->se.on_rq = 0;
1557 p->se.exec_start = 0;
1558 p->se.sum_exec_runtime = 0;
1559 p->se.prev_sum_exec_runtime = 0;
1560 p->se.nr_migrations = 0;
1561 p->se.vruntime = 0;
1562 INIT_LIST_HEAD(&p->se.group_node);
1563
1564 /*
1565 * Load-tracking only depends on SMP, FAIR_GROUP_SCHED dependency below may be
1566 * removed when useful for applications beyond shares distribution (e.g.
1567 * load-balance).
1568 */
1569 #if defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)
1570 p->se.avg.runnable_avg_period = 0;
1571 p->se.avg.runnable_avg_sum = 0;
1572 #endif
1573 #ifdef CONFIG_SCHEDSTATS
1574 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
1575 #endif
1576
1577 INIT_LIST_HEAD(&p->rt.run_list);
1578
1579 #ifdef CONFIG_PREEMPT_NOTIFIERS
1580 INIT_HLIST_HEAD(&p->preempt_notifiers);
1581 #endif
1582
1583 #ifdef CONFIG_NUMA_BALANCING
1584 if (p->mm && atomic_read(&p->mm->mm_users) == 1) {
1585 p->mm->numa_next_scan = jiffies;
1586 p->mm->numa_next_reset = jiffies;
1587 p->mm->numa_scan_seq = 0;
1588 }
1589
1590 p->node_stamp = 0ULL;
1591 p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0;
1592 p->numa_migrate_seq = p->mm ? p->mm->numa_scan_seq - 1 : 0;
1593 p->numa_scan_period = sysctl_numa_balancing_scan_delay;
1594 p->numa_work.next = &p->numa_work;
1595 #endif /* CONFIG_NUMA_BALANCING */
1596 }
1597
1598 #ifdef CONFIG_NUMA_BALANCING
1599 #ifdef CONFIG_SCHED_DEBUG
1600 void set_numabalancing_state(bool enabled)
1601 {
1602 if (enabled)
1603 sched_feat_set("NUMA");
1604 else
1605 sched_feat_set("NO_NUMA");
1606 }
1607 #else
1608 __read_mostly bool numabalancing_enabled;
1609
1610 void set_numabalancing_state(bool enabled)
1611 {
1612 numabalancing_enabled = enabled;
1613 }
1614 #endif /* CONFIG_SCHED_DEBUG */
1615 #endif /* CONFIG_NUMA_BALANCING */
1616
1617 /*
1618 * fork()/clone()-time setup:
1619 */
1620 void sched_fork(struct task_struct *p)
1621 {
1622 unsigned long flags;
1623 int cpu = get_cpu();
1624
1625 __sched_fork(p);
1626 /*
1627 * We mark the process as running here. This guarantees that
1628 * nobody will actually run it, and a signal or other external
1629 * event cannot wake it up and insert it on the runqueue either.
1630 */
1631 p->state = TASK_RUNNING;
1632
1633 /*
1634 * Make sure we do not leak PI boosting priority to the child.
1635 */
1636 p->prio = current->normal_prio;
1637
1638 /*
1639 * Revert to default priority/policy on fork if requested.
1640 */
1641 if (unlikely(p->sched_reset_on_fork)) {
1642 if (task_has_rt_policy(p)) {
1643 p->policy = SCHED_NORMAL;
1644 p->static_prio = NICE_TO_PRIO(0);
1645 p->rt_priority = 0;
1646 } else if (PRIO_TO_NICE(p->static_prio) < 0)
1647 p->static_prio = NICE_TO_PRIO(0);
1648
1649 p->prio = p->normal_prio = __normal_prio(p);
1650 set_load_weight(p);
1651
1652 /*
1653 * We don't need the reset flag anymore after the fork. It has
1654 * fulfilled its duty:
1655 */
1656 p->sched_reset_on_fork = 0;
1657 }
1658
1659 if (!rt_prio(p->prio))
1660 p->sched_class = &fair_sched_class;
1661
1662 if (p->sched_class->task_fork)
1663 p->sched_class->task_fork(p);
1664
1665 /*
1666 * The child is not yet in the pid-hash so no cgroup attach races,
1667 * and the cgroup is pinned to this child due to cgroup_fork()
1668 * is ran before sched_fork().
1669 *
1670 * Silence PROVE_RCU.
1671 */
1672 raw_spin_lock_irqsave(&p->pi_lock, flags);
1673 set_task_cpu(p, cpu);
1674 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1675
1676 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1677 if (likely(sched_info_on()))
1678 memset(&p->sched_info, 0, sizeof(p->sched_info));
1679 #endif
1680 #if defined(CONFIG_SMP)
1681 p->on_cpu = 0;
1682 #endif
1683 #ifdef CONFIG_PREEMPT_COUNT
1684 /* Want to start with kernel preemption disabled. */
1685 task_thread_info(p)->preempt_count = 1;
1686 #endif
1687 #ifdef CONFIG_SMP
1688 plist_node_init(&p->pushable_tasks, MAX_PRIO);
1689 #endif
1690
1691 put_cpu();
1692 }
1693
1694 /*
1695 * wake_up_new_task - wake up a newly created task for the first time.
1696 *
1697 * This function will do some initial scheduler statistics housekeeping
1698 * that must be done for every newly created context, then puts the task
1699 * on the runqueue and wakes it.
1700 */
1701 void wake_up_new_task(struct task_struct *p)
1702 {
1703 unsigned long flags;
1704 struct rq *rq;
1705
1706 raw_spin_lock_irqsave(&p->pi_lock, flags);
1707 #ifdef CONFIG_SMP
1708 /*
1709 * Fork balancing, do it here and not earlier because:
1710 * - cpus_allowed can change in the fork path
1711 * - any previously selected cpu might disappear through hotplug
1712 */
1713 set_task_cpu(p, select_task_rq(p, SD_BALANCE_FORK, 0));
1714 #endif
1715
1716 rq = __task_rq_lock(p);
1717 activate_task(rq, p, 0);
1718 p->on_rq = 1;
1719 trace_sched_wakeup_new(p, true);
1720 check_preempt_curr(rq, p, WF_FORK);
1721 #ifdef CONFIG_SMP
1722 if (p->sched_class->task_woken)
1723 p->sched_class->task_woken(rq, p);
1724 #endif
1725 task_rq_unlock(rq, p, &flags);
1726 }
1727
1728 #ifdef CONFIG_PREEMPT_NOTIFIERS
1729
1730 /**
1731 * preempt_notifier_register - tell me when current is being preempted & rescheduled
1732 * @notifier: notifier struct to register
1733 */
1734 void preempt_notifier_register(struct preempt_notifier *notifier)
1735 {
1736 hlist_add_head(&notifier->link, &current->preempt_notifiers);
1737 }
1738 EXPORT_SYMBOL_GPL(preempt_notifier_register);
1739
1740 /**
1741 * preempt_notifier_unregister - no longer interested in preemption notifications
1742 * @notifier: notifier struct to unregister
1743 *
1744 * This is safe to call from within a preemption notifier.
1745 */
1746 void preempt_notifier_unregister(struct preempt_notifier *notifier)
1747 {
1748 hlist_del(&notifier->link);
1749 }
1750 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
1751
1752 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1753 {
1754 struct preempt_notifier *notifier;
1755
1756 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
1757 notifier->ops->sched_in(notifier, raw_smp_processor_id());
1758 }
1759
1760 static void
1761 fire_sched_out_preempt_notifiers(struct task_struct *curr,
1762 struct task_struct *next)
1763 {
1764 struct preempt_notifier *notifier;
1765
1766 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
1767 notifier->ops->sched_out(notifier, next);
1768 }
1769
1770 #else /* !CONFIG_PREEMPT_NOTIFIERS */
1771
1772 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1773 {
1774 }
1775
1776 static void
1777 fire_sched_out_preempt_notifiers(struct task_struct *curr,
1778 struct task_struct *next)
1779 {
1780 }
1781
1782 #endif /* CONFIG_PREEMPT_NOTIFIERS */
1783
1784 /**
1785 * prepare_task_switch - prepare to switch tasks
1786 * @rq: the runqueue preparing to switch
1787 * @prev: the current task that is being switched out
1788 * @next: the task we are going to switch to.
1789 *
1790 * This is called with the rq lock held and interrupts off. It must
1791 * be paired with a subsequent finish_task_switch after the context
1792 * switch.
1793 *
1794 * prepare_task_switch sets up locking and calls architecture specific
1795 * hooks.
1796 */
1797 static inline void
1798 prepare_task_switch(struct rq *rq, struct task_struct *prev,
1799 struct task_struct *next)
1800 {
1801 trace_sched_switch(prev, next);
1802 sched_info_switch(prev, next);
1803 perf_event_task_sched_out(prev, next);
1804 fire_sched_out_preempt_notifiers(prev, next);
1805 prepare_lock_switch(rq, next);
1806 prepare_arch_switch(next);
1807 }
1808
1809 /**
1810 * finish_task_switch - clean up after a task-switch
1811 * @rq: runqueue associated with task-switch
1812 * @prev: the thread we just switched away from.
1813 *
1814 * finish_task_switch must be called after the context switch, paired
1815 * with a prepare_task_switch call before the context switch.
1816 * finish_task_switch will reconcile locking set up by prepare_task_switch,
1817 * and do any other architecture-specific cleanup actions.
1818 *
1819 * Note that we may have delayed dropping an mm in context_switch(). If
1820 * so, we finish that here outside of the runqueue lock. (Doing it
1821 * with the lock held can cause deadlocks; see schedule() for
1822 * details.)
1823 */
1824 static void finish_task_switch(struct rq *rq, struct task_struct *prev)
1825 __releases(rq->lock)
1826 {
1827 struct mm_struct *mm = rq->prev_mm;
1828 long prev_state;
1829
1830 rq->prev_mm = NULL;
1831
1832 /*
1833 * A task struct has one reference for the use as "current".
1834 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
1835 * schedule one last time. The schedule call will never return, and
1836 * the scheduled task must drop that reference.
1837 * The test for TASK_DEAD must occur while the runqueue locks are
1838 * still held, otherwise prev could be scheduled on another cpu, die
1839 * there before we look at prev->state, and then the reference would
1840 * be dropped twice.
1841 * Manfred Spraul <manfred@colorfullife.com>
1842 */
1843 prev_state = prev->state;
1844 vtime_task_switch(prev);
1845 finish_arch_switch(prev);
1846 perf_event_task_sched_in(prev, current);
1847 finish_lock_switch(rq, prev);
1848 finish_arch_post_lock_switch();
1849
1850 fire_sched_in_preempt_notifiers(current);
1851 if (mm)
1852 mmdrop(mm);
1853 if (unlikely(prev_state == TASK_DEAD)) {
1854 /*
1855 * Remove function-return probe instances associated with this
1856 * task and put them back on the free list.
1857 */
1858 kprobe_flush_task(prev);
1859 put_task_struct(prev);
1860 }
1861 }
1862
1863 #ifdef CONFIG_SMP
1864
1865 /* assumes rq->lock is held */
1866 static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
1867 {
1868 if (prev->sched_class->pre_schedule)
1869 prev->sched_class->pre_schedule(rq, prev);
1870 }
1871
1872 /* rq->lock is NOT held, but preemption is disabled */
1873 static inline void post_schedule(struct rq *rq)
1874 {
1875 if (rq->post_schedule) {
1876 unsigned long flags;
1877
1878 raw_spin_lock_irqsave(&rq->lock, flags);
1879 if (rq->curr->sched_class->post_schedule)
1880 rq->curr->sched_class->post_schedule(rq);
1881 raw_spin_unlock_irqrestore(&rq->lock, flags);
1882
1883 rq->post_schedule = 0;
1884 }
1885 }
1886
1887 #else
1888
1889 static inline void pre_schedule(struct rq *rq, struct task_struct *p)
1890 {
1891 }
1892
1893 static inline void post_schedule(struct rq *rq)
1894 {
1895 }
1896
1897 #endif
1898
1899 /**
1900 * schedule_tail - first thing a freshly forked thread must call.
1901 * @prev: the thread we just switched away from.
1902 */
1903 asmlinkage void schedule_tail(struct task_struct *prev)
1904 __releases(rq->lock)
1905 {
1906 struct rq *rq = this_rq();
1907
1908 finish_task_switch(rq, prev);
1909
1910 /*
1911 * FIXME: do we need to worry about rq being invalidated by the
1912 * task_switch?
1913 */
1914 post_schedule(rq);
1915
1916 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
1917 /* In this case, finish_task_switch does not reenable preemption */
1918 preempt_enable();
1919 #endif
1920 if (current->set_child_tid)
1921 put_user(task_pid_vnr(current), current->set_child_tid);
1922 }
1923
1924 /*
1925 * context_switch - switch to the new MM and the new
1926 * thread's register state.
1927 */
1928 static inline void
1929 context_switch(struct rq *rq, struct task_struct *prev,
1930 struct task_struct *next)
1931 {
1932 struct mm_struct *mm, *oldmm;
1933
1934 prepare_task_switch(rq, prev, next);
1935
1936 mm = next->mm;
1937 oldmm = prev->active_mm;
1938 /*
1939 * For paravirt, this is coupled with an exit in switch_to to
1940 * combine the page table reload and the switch backend into
1941 * one hypercall.
1942 */
1943 arch_start_context_switch(prev);
1944
1945 if (!mm) {
1946 next->active_mm = oldmm;
1947 atomic_inc(&oldmm->mm_count);
1948 enter_lazy_tlb(oldmm, next);
1949 } else
1950 switch_mm(oldmm, mm, next);
1951
1952 if (!prev->mm) {
1953 prev->active_mm = NULL;
1954 rq->prev_mm = oldmm;
1955 }
1956 /*
1957 * Since the runqueue lock will be released by the next
1958 * task (which is an invalid locking op but in the case
1959 * of the scheduler it's an obvious special-case), so we
1960 * do an early lockdep release here:
1961 */
1962 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
1963 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
1964 #endif
1965
1966 context_tracking_task_switch(prev, next);
1967 /* Here we just switch the register state and the stack. */
1968 switch_to(prev, next, prev);
1969
1970 barrier();
1971 /*
1972 * this_rq must be evaluated again because prev may have moved
1973 * CPUs since it called schedule(), thus the 'rq' on its stack
1974 * frame will be invalid.
1975 */
1976 finish_task_switch(this_rq(), prev);
1977 }
1978
1979 /*
1980 * nr_running and nr_context_switches:
1981 *
1982 * externally visible scheduler statistics: current number of runnable
1983 * threads, total number of context switches performed since bootup.
1984 */
1985 unsigned long nr_running(void)
1986 {
1987 unsigned long i, sum = 0;
1988
1989 for_each_online_cpu(i)
1990 sum += cpu_rq(i)->nr_running;
1991
1992 return sum;
1993 }
1994
1995 unsigned long long nr_context_switches(void)
1996 {
1997 int i;
1998 unsigned long long sum = 0;
1999
2000 for_each_possible_cpu(i)
2001 sum += cpu_rq(i)->nr_switches;
2002
2003 return sum;
2004 }
2005
2006 unsigned long nr_iowait(void)
2007 {
2008 unsigned long i, sum = 0;
2009
2010 for_each_possible_cpu(i)
2011 sum += atomic_read(&cpu_rq(i)->nr_iowait);
2012
2013 return sum;
2014 }
2015
2016 unsigned long nr_iowait_cpu(int cpu)
2017 {
2018 struct rq *this = cpu_rq(cpu);
2019 return atomic_read(&this->nr_iowait);
2020 }
2021
2022 unsigned long this_cpu_load(void)
2023 {
2024 struct rq *this = this_rq();
2025 return this->cpu_load[0];
2026 }
2027
2028
2029 /*
2030 * Global load-average calculations
2031 *
2032 * We take a distributed and async approach to calculating the global load-avg
2033 * in order to minimize overhead.
2034 *
2035 * The global load average is an exponentially decaying average of nr_running +
2036 * nr_uninterruptible.
2037 *
2038 * Once every LOAD_FREQ:
2039 *
2040 * nr_active = 0;
2041 * for_each_possible_cpu(cpu)
2042 * nr_active += cpu_of(cpu)->nr_running + cpu_of(cpu)->nr_uninterruptible;
2043 *
2044 * avenrun[n] = avenrun[0] * exp_n + nr_active * (1 - exp_n)
2045 *
2046 * Due to a number of reasons the above turns in the mess below:
2047 *
2048 * - for_each_possible_cpu() is prohibitively expensive on machines with
2049 * serious number of cpus, therefore we need to take a distributed approach
2050 * to calculating nr_active.
2051 *
2052 * \Sum_i x_i(t) = \Sum_i x_i(t) - x_i(t_0) | x_i(t_0) := 0
2053 * = \Sum_i { \Sum_j=1 x_i(t_j) - x_i(t_j-1) }
2054 *
2055 * So assuming nr_active := 0 when we start out -- true per definition, we
2056 * can simply take per-cpu deltas and fold those into a global accumulate
2057 * to obtain the same result. See calc_load_fold_active().
2058 *
2059 * Furthermore, in order to avoid synchronizing all per-cpu delta folding
2060 * across the machine, we assume 10 ticks is sufficient time for every
2061 * cpu to have completed this task.
2062 *
2063 * This places an upper-bound on the IRQ-off latency of the machine. Then
2064 * again, being late doesn't loose the delta, just wrecks the sample.
2065 *
2066 * - cpu_rq()->nr_uninterruptible isn't accurately tracked per-cpu because
2067 * this would add another cross-cpu cacheline miss and atomic operation
2068 * to the wakeup path. Instead we increment on whatever cpu the task ran
2069 * when it went into uninterruptible state and decrement on whatever cpu
2070 * did the wakeup. This means that only the sum of nr_uninterruptible over
2071 * all cpus yields the correct result.
2072 *
2073 * This covers the NO_HZ=n code, for extra head-aches, see the comment below.
2074 */
2075
2076 /* Variables and functions for calc_load */
2077 static atomic_long_t calc_load_tasks;
2078 static unsigned long calc_load_update;
2079 unsigned long avenrun[3];
2080 EXPORT_SYMBOL(avenrun); /* should be removed */
2081
2082 /**
2083 * get_avenrun - get the load average array
2084 * @loads: pointer to dest load array
2085 * @offset: offset to add
2086 * @shift: shift count to shift the result left
2087 *
2088 * These values are estimates at best, so no need for locking.
2089 */
2090 void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
2091 {
2092 loads[0] = (avenrun[0] + offset) << shift;
2093 loads[1] = (avenrun[1] + offset) << shift;
2094 loads[2] = (avenrun[2] + offset) << shift;
2095 }
2096
2097 static long calc_load_fold_active(struct rq *this_rq)
2098 {
2099 long nr_active, delta = 0;
2100
2101 nr_active = this_rq->nr_running;
2102 nr_active += (long) this_rq->nr_uninterruptible;
2103
2104 if (nr_active != this_rq->calc_load_active) {
2105 delta = nr_active - this_rq->calc_load_active;
2106 this_rq->calc_load_active = nr_active;
2107 }
2108
2109 return delta;
2110 }
2111
2112 /*
2113 * a1 = a0 * e + a * (1 - e)
2114 */
2115 static unsigned long
2116 calc_load(unsigned long load, unsigned long exp, unsigned long active)
2117 {
2118 load *= exp;
2119 load += active * (FIXED_1 - exp);
2120 load += 1UL << (FSHIFT - 1);
2121 return load >> FSHIFT;
2122 }
2123
2124 #ifdef CONFIG_NO_HZ
2125 /*
2126 * Handle NO_HZ for the global load-average.
2127 *
2128 * Since the above described distributed algorithm to compute the global
2129 * load-average relies on per-cpu sampling from the tick, it is affected by
2130 * NO_HZ.
2131 *
2132 * The basic idea is to fold the nr_active delta into a global idle-delta upon
2133 * entering NO_HZ state such that we can include this as an 'extra' cpu delta
2134 * when we read the global state.
2135 *
2136 * Obviously reality has to ruin such a delightfully simple scheme:
2137 *
2138 * - When we go NO_HZ idle during the window, we can negate our sample
2139 * contribution, causing under-accounting.
2140 *
2141 * We avoid this by keeping two idle-delta counters and flipping them
2142 * when the window starts, thus separating old and new NO_HZ load.
2143 *
2144 * The only trick is the slight shift in index flip for read vs write.
2145 *
2146 * 0s 5s 10s 15s
2147 * +10 +10 +10 +10
2148 * |-|-----------|-|-----------|-|-----------|-|
2149 * r:0 0 1 1 0 0 1 1 0
2150 * w:0 1 1 0 0 1 1 0 0
2151 *
2152 * This ensures we'll fold the old idle contribution in this window while
2153 * accumlating the new one.
2154 *
2155 * - When we wake up from NO_HZ idle during the window, we push up our
2156 * contribution, since we effectively move our sample point to a known
2157 * busy state.
2158 *
2159 * This is solved by pushing the window forward, and thus skipping the
2160 * sample, for this cpu (effectively using the idle-delta for this cpu which
2161 * was in effect at the time the window opened). This also solves the issue
2162 * of having to deal with a cpu having been in NOHZ idle for multiple
2163 * LOAD_FREQ intervals.
2164 *
2165 * When making the ILB scale, we should try to pull this in as well.
2166 */
2167 static atomic_long_t calc_load_idle[2];
2168 static int calc_load_idx;
2169
2170 static inline int calc_load_write_idx(void)
2171 {
2172 int idx = calc_load_idx;
2173
2174 /*
2175 * See calc_global_nohz(), if we observe the new index, we also
2176 * need to observe the new update time.
2177 */
2178 smp_rmb();
2179
2180 /*
2181 * If the folding window started, make sure we start writing in the
2182 * next idle-delta.
2183 */
2184 if (!time_before(jiffies, calc_load_update))
2185 idx++;
2186
2187 return idx & 1;
2188 }
2189
2190 static inline int calc_load_read_idx(void)
2191 {
2192 return calc_load_idx & 1;
2193 }
2194
2195 void calc_load_enter_idle(void)
2196 {
2197 struct rq *this_rq = this_rq();
2198 long delta;
2199
2200 /*
2201 * We're going into NOHZ mode, if there's any pending delta, fold it
2202 * into the pending idle delta.
2203 */
2204 delta = calc_load_fold_active(this_rq);
2205 if (delta) {
2206 int idx = calc_load_write_idx();
2207 atomic_long_add(delta, &calc_load_idle[idx]);
2208 }
2209 }
2210
2211 void calc_load_exit_idle(void)
2212 {
2213 struct rq *this_rq = this_rq();
2214
2215 /*
2216 * If we're still before the sample window, we're done.
2217 */
2218 if (time_before(jiffies, this_rq->calc_load_update))
2219 return;
2220
2221 /*
2222 * We woke inside or after the sample window, this means we're already
2223 * accounted through the nohz accounting, so skip the entire deal and
2224 * sync up for the next window.
2225 */
2226 this_rq->calc_load_update = calc_load_update;
2227 if (time_before(jiffies, this_rq->calc_load_update + 10))
2228 this_rq->calc_load_update += LOAD_FREQ;
2229 }
2230
2231 static long calc_load_fold_idle(void)
2232 {
2233 int idx = calc_load_read_idx();
2234 long delta = 0;
2235
2236 if (atomic_long_read(&calc_load_idle[idx]))
2237 delta = atomic_long_xchg(&calc_load_idle[idx], 0);
2238
2239 return delta;
2240 }
2241
2242 /**
2243 * fixed_power_int - compute: x^n, in O(log n) time
2244 *
2245 * @x: base of the power
2246 * @frac_bits: fractional bits of @x
2247 * @n: power to raise @x to.
2248 *
2249 * By exploiting the relation between the definition of the natural power
2250 * function: x^n := x*x*...*x (x multiplied by itself for n times), and
2251 * the binary encoding of numbers used by computers: n := \Sum n_i * 2^i,
2252 * (where: n_i \elem {0, 1}, the binary vector representing n),
2253 * we find: x^n := x^(\Sum n_i * 2^i) := \Prod x^(n_i * 2^i), which is
2254 * of course trivially computable in O(log_2 n), the length of our binary
2255 * vector.
2256 */
2257 static unsigned long
2258 fixed_power_int(unsigned long x, unsigned int frac_bits, unsigned int n)
2259 {
2260 unsigned long result = 1UL << frac_bits;
2261
2262 if (n) for (;;) {
2263 if (n & 1) {
2264 result *= x;
2265 result += 1UL << (frac_bits - 1);
2266 result >>= frac_bits;
2267 }
2268 n >>= 1;
2269 if (!n)
2270 break;
2271 x *= x;
2272 x += 1UL << (frac_bits - 1);
2273 x >>= frac_bits;
2274 }
2275
2276 return result;
2277 }
2278
2279 /*
2280 * a1 = a0 * e + a * (1 - e)
2281 *
2282 * a2 = a1 * e + a * (1 - e)
2283 * = (a0 * e + a * (1 - e)) * e + a * (1 - e)
2284 * = a0 * e^2 + a * (1 - e) * (1 + e)
2285 *
2286 * a3 = a2 * e + a * (1 - e)
2287 * = (a0 * e^2 + a * (1 - e) * (1 + e)) * e + a * (1 - e)
2288 * = a0 * e^3 + a * (1 - e) * (1 + e + e^2)
2289 *
2290 * ...
2291 *
2292 * an = a0 * e^n + a * (1 - e) * (1 + e + ... + e^n-1) [1]
2293 * = a0 * e^n + a * (1 - e) * (1 - e^n)/(1 - e)
2294 * = a0 * e^n + a * (1 - e^n)
2295 *
2296 * [1] application of the geometric series:
2297 *
2298 * n 1 - x^(n+1)
2299 * S_n := \Sum x^i = -------------
2300 * i=0 1 - x
2301 */
2302 static unsigned long
2303 calc_load_n(unsigned long load, unsigned long exp,
2304 unsigned long active, unsigned int n)
2305 {
2306
2307 return calc_load(load, fixed_power_int(exp, FSHIFT, n), active);
2308 }
2309
2310 /*
2311 * NO_HZ can leave us missing all per-cpu ticks calling
2312 * calc_load_account_active(), but since an idle CPU folds its delta into
2313 * calc_load_tasks_idle per calc_load_account_idle(), all we need to do is fold
2314 * in the pending idle delta if our idle period crossed a load cycle boundary.
2315 *
2316 * Once we've updated the global active value, we need to apply the exponential
2317 * weights adjusted to the number of cycles missed.
2318 */
2319 static void calc_global_nohz(void)
2320 {
2321 long delta, active, n;
2322
2323 if (!time_before(jiffies, calc_load_update + 10)) {
2324 /*
2325 * Catch-up, fold however many we are behind still
2326 */
2327 delta = jiffies - calc_load_update - 10;
2328 n = 1 + (delta / LOAD_FREQ);
2329
2330 active = atomic_long_read(&calc_load_tasks);
2331 active = active > 0 ? active * FIXED_1 : 0;
2332
2333 avenrun[0] = calc_load_n(avenrun[0], EXP_1, active, n);
2334 avenrun[1] = calc_load_n(avenrun[1], EXP_5, active, n);
2335 avenrun[2] = calc_load_n(avenrun[2], EXP_15, active, n);
2336
2337 calc_load_update += n * LOAD_FREQ;
2338 }
2339
2340 /*
2341 * Flip the idle index...
2342 *
2343 * Make sure we first write the new time then flip the index, so that
2344 * calc_load_write_idx() will see the new time when it reads the new
2345 * index, this avoids a double flip messing things up.
2346 */
2347 smp_wmb();
2348 calc_load_idx++;
2349 }
2350 #else /* !CONFIG_NO_HZ */
2351
2352 static inline long calc_load_fold_idle(void) { return 0; }
2353 static inline void calc_global_nohz(void) { }
2354
2355 #endif /* CONFIG_NO_HZ */
2356
2357 /*
2358 * calc_load - update the avenrun load estimates 10 ticks after the
2359 * CPUs have updated calc_load_tasks.
2360 */
2361 void calc_global_load(unsigned long ticks)
2362 {
2363 long active, delta;
2364
2365 if (time_before(jiffies, calc_load_update + 10))
2366 return;
2367
2368 /*
2369 * Fold the 'old' idle-delta to include all NO_HZ cpus.
2370 */
2371 delta = calc_load_fold_idle();
2372 if (delta)
2373 atomic_long_add(delta, &calc_load_tasks);
2374
2375 active = atomic_long_read(&calc_load_tasks);
2376 active = active > 0 ? active * FIXED_1 : 0;
2377
2378 avenrun[0] = calc_load(avenrun[0], EXP_1, active);
2379 avenrun[1] = calc_load(avenrun[1], EXP_5, active);
2380 avenrun[2] = calc_load(avenrun[2], EXP_15, active);
2381
2382 calc_load_update += LOAD_FREQ;
2383
2384 /*
2385 * In case we idled for multiple LOAD_FREQ intervals, catch up in bulk.
2386 */
2387 calc_global_nohz();
2388 }
2389
2390 /*
2391 * Called from update_cpu_load() to periodically update this CPU's
2392 * active count.
2393 */
2394 static void calc_load_account_active(struct rq *this_rq)
2395 {
2396 long delta;
2397
2398 if (time_before(jiffies, this_rq->calc_load_update))
2399 return;
2400
2401 delta = calc_load_fold_active(this_rq);
2402 if (delta)
2403 atomic_long_add(delta, &calc_load_tasks);
2404
2405 this_rq->calc_load_update += LOAD_FREQ;
2406 }
2407
2408 /*
2409 * End of global load-average stuff
2410 */
2411
2412 /*
2413 * The exact cpuload at various idx values, calculated at every tick would be
2414 * load = (2^idx - 1) / 2^idx * load + 1 / 2^idx * cur_load
2415 *
2416 * If a cpu misses updates for n-1 ticks (as it was idle) and update gets called
2417 * on nth tick when cpu may be busy, then we have:
2418 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
2419 * load = (2^idx - 1) / 2^idx) * load + 1 / 2^idx * cur_load
2420 *
2421 * decay_load_missed() below does efficient calculation of
2422 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
2423 * avoiding 0..n-1 loop doing load = ((2^idx - 1) / 2^idx) * load
2424 *
2425 * The calculation is approximated on a 128 point scale.
2426 * degrade_zero_ticks is the number of ticks after which load at any
2427 * particular idx is approximated to be zero.
2428 * degrade_factor is a precomputed table, a row for each load idx.
2429 * Each column corresponds to degradation factor for a power of two ticks,
2430 * based on 128 point scale.
2431 * Example:
2432 * row 2, col 3 (=12) says that the degradation at load idx 2 after
2433 * 8 ticks is 12/128 (which is an approximation of exact factor 3^8/4^8).
2434 *
2435 * With this power of 2 load factors, we can degrade the load n times
2436 * by looking at 1 bits in n and doing as many mult/shift instead of
2437 * n mult/shifts needed by the exact degradation.
2438 */
2439 #define DEGRADE_SHIFT 7
2440 static const unsigned char
2441 degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
2442 static const unsigned char
2443 degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
2444 {0, 0, 0, 0, 0, 0, 0, 0},
2445 {64, 32, 8, 0, 0, 0, 0, 0},
2446 {96, 72, 40, 12, 1, 0, 0},
2447 {112, 98, 75, 43, 15, 1, 0},
2448 {120, 112, 98, 76, 45, 16, 2} };
2449
2450 /*
2451 * Update cpu_load for any missed ticks, due to tickless idle. The backlog
2452 * would be when CPU is idle and so we just decay the old load without
2453 * adding any new load.
2454 */
2455 static unsigned long
2456 decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
2457 {
2458 int j = 0;
2459
2460 if (!missed_updates)
2461 return load;
2462
2463 if (missed_updates >= degrade_zero_ticks[idx])
2464 return 0;
2465
2466 if (idx == 1)
2467 return load >> missed_updates;
2468
2469 while (missed_updates) {
2470 if (missed_updates % 2)
2471 load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;
2472
2473 missed_updates >>= 1;
2474 j++;
2475 }
2476 return load;
2477 }
2478
2479 /*
2480 * Update rq->cpu_load[] statistics. This function is usually called every
2481 * scheduler tick (TICK_NSEC). With tickless idle this will not be called
2482 * every tick. We fix it up based on jiffies.
2483 */
2484 static void __update_cpu_load(struct rq *this_rq, unsigned long this_load,
2485 unsigned long pending_updates)
2486 {
2487 int i, scale;
2488
2489 this_rq->nr_load_updates++;
2490
2491 /* Update our load: */
2492 this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
2493 for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
2494 unsigned long old_load, new_load;
2495
2496 /* scale is effectively 1 << i now, and >> i divides by scale */
2497
2498 old_load = this_rq->cpu_load[i];
2499 old_load = decay_load_missed(old_load, pending_updates - 1, i);
2500 new_load = this_load;
2501 /*
2502 * Round up the averaging division if load is increasing. This
2503 * prevents us from getting stuck on 9 if the load is 10, for
2504 * example.
2505 */
2506 if (new_load > old_load)
2507 new_load += scale - 1;
2508
2509 this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
2510 }
2511
2512 sched_avg_update(this_rq);
2513 }
2514
2515 #ifdef CONFIG_NO_HZ
2516 /*
2517 * There is no sane way to deal with nohz on smp when using jiffies because the
2518 * cpu doing the jiffies update might drift wrt the cpu doing the jiffy reading
2519 * causing off-by-one errors in observed deltas; {0,2} instead of {1,1}.
2520 *
2521 * Therefore we cannot use the delta approach from the regular tick since that
2522 * would seriously skew the load calculation. However we'll make do for those
2523 * updates happening while idle (nohz_idle_balance) or coming out of idle
2524 * (tick_nohz_idle_exit).
2525 *
2526 * This means we might still be one tick off for nohz periods.
2527 */
2528
2529 /*
2530 * Called from nohz_idle_balance() to update the load ratings before doing the
2531 * idle balance.
2532 */
2533 void update_idle_cpu_load(struct rq *this_rq)
2534 {
2535 unsigned long curr_jiffies = ACCESS_ONCE(jiffies);
2536 unsigned long load = this_rq->load.weight;
2537 unsigned long pending_updates;
2538
2539 /*
2540 * bail if there's load or we're actually up-to-date.
2541 */
2542 if (load || curr_jiffies == this_rq->last_load_update_tick)
2543 return;
2544
2545 pending_updates = curr_jiffies - this_rq->last_load_update_tick;
2546 this_rq->last_load_update_tick = curr_jiffies;
2547
2548 __update_cpu_load(this_rq, load, pending_updates);
2549 }
2550
2551 /*
2552 * Called from tick_nohz_idle_exit() -- try and fix up the ticks we missed.
2553 */
2554 void update_cpu_load_nohz(void)
2555 {
2556 struct rq *this_rq = this_rq();
2557 unsigned long curr_jiffies = ACCESS_ONCE(jiffies);
2558 unsigned long pending_updates;
2559
2560 if (curr_jiffies == this_rq->last_load_update_tick)
2561 return;
2562
2563 raw_spin_lock(&this_rq->lock);
2564 pending_updates = curr_jiffies - this_rq->last_load_update_tick;
2565 if (pending_updates) {
2566 this_rq->last_load_update_tick = curr_jiffies;
2567 /*
2568 * We were idle, this means load 0, the current load might be
2569 * !0 due to remote wakeups and the sort.
2570 */
2571 __update_cpu_load(this_rq, 0, pending_updates);
2572 }
2573 raw_spin_unlock(&this_rq->lock);
2574 }
2575 #endif /* CONFIG_NO_HZ */
2576
2577 /*
2578 * Called from scheduler_tick()
2579 */
2580 static void update_cpu_load_active(struct rq *this_rq)
2581 {
2582 /*
2583 * See the mess around update_idle_cpu_load() / update_cpu_load_nohz().
2584 */
2585 this_rq->last_load_update_tick = jiffies;
2586 __update_cpu_load(this_rq, this_rq->load.weight, 1);
2587
2588 calc_load_account_active(this_rq);
2589 }
2590
2591 #ifdef CONFIG_SMP
2592
2593 /*
2594 * sched_exec - execve() is a valuable balancing opportunity, because at
2595 * this point the task has the smallest effective memory and cache footprint.
2596 */
2597 void sched_exec(void)
2598 {
2599 struct task_struct *p = current;
2600 unsigned long flags;
2601 int dest_cpu;
2602
2603 raw_spin_lock_irqsave(&p->pi_lock, flags);
2604 dest_cpu = p->sched_class->select_task_rq(p, SD_BALANCE_EXEC, 0);
2605 if (dest_cpu == smp_processor_id())
2606 goto unlock;
2607
2608 if (likely(cpu_active(dest_cpu))) {
2609 struct migration_arg arg = { p, dest_cpu };
2610
2611 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2612 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
2613 return;
2614 }
2615 unlock:
2616 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2617 }
2618
2619 #endif
2620
2621 DEFINE_PER_CPU(struct kernel_stat, kstat);
2622 DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
2623
2624 EXPORT_PER_CPU_SYMBOL(kstat);
2625 EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
2626
2627 /*
2628 * Return any ns on the sched_clock that have not yet been accounted in
2629 * @p in case that task is currently running.
2630 *
2631 * Called with task_rq_lock() held on @rq.
2632 */
2633 static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
2634 {
2635 u64 ns = 0;
2636
2637 if (task_current(rq, p)) {
2638 update_rq_clock(rq);
2639 ns = rq->clock_task - p->se.exec_start;
2640 if ((s64)ns < 0)
2641 ns = 0;
2642 }
2643
2644 return ns;
2645 }
2646
2647 unsigned long long task_delta_exec(struct task_struct *p)
2648 {
2649 unsigned long flags;
2650 struct rq *rq;
2651 u64 ns = 0;
2652
2653 rq = task_rq_lock(p, &flags);
2654 ns = do_task_delta_exec(p, rq);
2655 task_rq_unlock(rq, p, &flags);
2656
2657 return ns;
2658 }
2659
2660 /*
2661 * Return accounted runtime for the task.
2662 * In case the task is currently running, return the runtime plus current's
2663 * pending runtime that have not been accounted yet.
2664 */
2665 unsigned long long task_sched_runtime(struct task_struct *p)
2666 {
2667 unsigned long flags;
2668 struct rq *rq;
2669 u64 ns = 0;
2670
2671 rq = task_rq_lock(p, &flags);
2672 ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
2673 task_rq_unlock(rq, p, &flags);
2674
2675 return ns;
2676 }
2677
2678 /*
2679 * This function gets called by the timer code, with HZ frequency.
2680 * We call it with interrupts disabled.
2681 */
2682 void scheduler_tick(void)
2683 {
2684 int cpu = smp_processor_id();
2685 struct rq *rq = cpu_rq(cpu);
2686 struct task_struct *curr = rq->curr;
2687
2688 sched_clock_tick();
2689
2690 raw_spin_lock(&rq->lock);
2691 update_rq_clock(rq);
2692 update_cpu_load_active(rq);
2693 curr->sched_class->task_tick(rq, curr, 0);
2694 raw_spin_unlock(&rq->lock);
2695
2696 perf_event_task_tick();
2697
2698 #ifdef CONFIG_SMP
2699 rq->idle_balance = idle_cpu(cpu);
2700 trigger_load_balance(rq, cpu);
2701 #endif
2702 }
2703
2704 notrace unsigned long get_parent_ip(unsigned long addr)
2705 {
2706 if (in_lock_functions(addr)) {
2707 addr = CALLER_ADDR2;
2708 if (in_lock_functions(addr))
2709 addr = CALLER_ADDR3;
2710 }
2711 return addr;
2712 }
2713
2714 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
2715 defined(CONFIG_PREEMPT_TRACER))
2716
2717 void __kprobes add_preempt_count(int val)
2718 {
2719 #ifdef CONFIG_DEBUG_PREEMPT
2720 /*
2721 * Underflow?
2722 */
2723 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
2724 return;
2725 #endif
2726 preempt_count() += val;
2727 #ifdef CONFIG_DEBUG_PREEMPT
2728 /*
2729 * Spinlock count overflowing soon?
2730 */
2731 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
2732 PREEMPT_MASK - 10);
2733 #endif
2734 if (preempt_count() == val)
2735 trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
2736 }
2737 EXPORT_SYMBOL(add_preempt_count);
2738
2739 void __kprobes sub_preempt_count(int val)
2740 {
2741 #ifdef CONFIG_DEBUG_PREEMPT
2742 /*
2743 * Underflow?
2744 */
2745 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
2746 return;
2747 /*
2748 * Is the spinlock portion underflowing?
2749 */
2750 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
2751 !(preempt_count() & PREEMPT_MASK)))
2752 return;
2753 #endif
2754
2755 if (preempt_count() == val)
2756 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
2757 preempt_count() -= val;
2758 }
2759 EXPORT_SYMBOL(sub_preempt_count);
2760
2761 #endif
2762
2763 /*
2764 * Print scheduling while atomic bug:
2765 */
2766 static noinline void __schedule_bug(struct task_struct *prev)
2767 {
2768 if (oops_in_progress)
2769 return;
2770
2771 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
2772 prev->comm, prev->pid, preempt_count());
2773
2774 debug_show_held_locks(prev);
2775 print_modules();
2776 if (irqs_disabled())
2777 print_irqtrace_events(prev);
2778 dump_stack();
2779 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
2780 }
2781
2782 /*
2783 * Various schedule()-time debugging checks and statistics:
2784 */
2785 static inline void schedule_debug(struct task_struct *prev)
2786 {
2787 /*
2788 * Test if we are atomic. Since do_exit() needs to call into
2789 * schedule() atomically, we ignore that path for now.
2790 * Otherwise, whine if we are scheduling when we should not be.
2791 */
2792 if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
2793 __schedule_bug(prev);
2794 rcu_sleep_check();
2795
2796 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
2797
2798 schedstat_inc(this_rq(), sched_count);
2799 }
2800
2801 static void put_prev_task(struct rq *rq, struct task_struct *prev)
2802 {
2803 if (prev->on_rq || rq->skip_clock_update < 0)
2804 update_rq_clock(rq);
2805 prev->sched_class->put_prev_task(rq, prev);
2806 }
2807
2808 /*
2809 * Pick up the highest-prio task:
2810 */
2811 static inline struct task_struct *
2812 pick_next_task(struct rq *rq)
2813 {
2814 const struct sched_class *class;
2815 struct task_struct *p;
2816
2817 /*
2818 * Optimization: we know that if all tasks are in
2819 * the fair class we can call that function directly:
2820 */
2821 if (likely(rq->nr_running == rq->cfs.h_nr_running)) {
2822 p = fair_sched_class.pick_next_task(rq);
2823 if (likely(p))
2824 return p;
2825 }
2826
2827 for_each_class(class) {
2828 p = class->pick_next_task(rq);
2829 if (p)
2830 return p;
2831 }
2832
2833 BUG(); /* the idle class will always have a runnable task */
2834 }
2835
2836 /*
2837 * __schedule() is the main scheduler function.
2838 *
2839 * The main means of driving the scheduler and thus entering this function are:
2840 *
2841 * 1. Explicit blocking: mutex, semaphore, waitqueue, etc.
2842 *
2843 * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
2844 * paths. For example, see arch/x86/entry_64.S.
2845 *
2846 * To drive preemption between tasks, the scheduler sets the flag in timer
2847 * interrupt handler scheduler_tick().
2848 *
2849 * 3. Wakeups don't really cause entry into schedule(). They add a
2850 * task to the run-queue and that's it.
2851 *
2852 * Now, if the new task added to the run-queue preempts the current
2853 * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
2854 * called on the nearest possible occasion:
2855 *
2856 * - If the kernel is preemptible (CONFIG_PREEMPT=y):
2857 *
2858 * - in syscall or exception context, at the next outmost
2859 * preempt_enable(). (this might be as soon as the wake_up()'s
2860 * spin_unlock()!)
2861 *
2862 * - in IRQ context, return from interrupt-handler to
2863 * preemptible context
2864 *
2865 * - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
2866 * then at the next:
2867 *
2868 * - cond_resched() call
2869 * - explicit schedule() call
2870 * - return from syscall or exception to user-space
2871 * - return from interrupt-handler to user-space
2872 */
2873 static void __sched __schedule(void)
2874 {
2875 struct task_struct *prev, *next;
2876 unsigned long *switch_count;
2877 struct rq *rq;
2878 int cpu;
2879
2880 need_resched:
2881 preempt_disable();
2882 cpu = smp_processor_id();
2883 rq = cpu_rq(cpu);
2884 rcu_note_context_switch(cpu);
2885 prev = rq->curr;
2886
2887 schedule_debug(prev);
2888
2889 if (sched_feat(HRTICK))
2890 hrtick_clear(rq);
2891
2892 raw_spin_lock_irq(&rq->lock);
2893
2894 switch_count = &prev->nivcsw;
2895 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
2896 if (unlikely(signal_pending_state(prev->state, prev))) {
2897 prev->state = TASK_RUNNING;
2898 } else {
2899 deactivate_task(rq, prev, DEQUEUE_SLEEP);
2900 prev->on_rq = 0;
2901
2902 /*
2903 * If a worker went to sleep, notify and ask workqueue
2904 * whether it wants to wake up a task to maintain
2905 * concurrency.
2906 */
2907 if (prev->flags & PF_WQ_WORKER) {
2908 struct task_struct *to_wakeup;
2909
2910 to_wakeup = wq_worker_sleeping(prev, cpu);
2911 if (to_wakeup)
2912 try_to_wake_up_local(to_wakeup);
2913 }
2914 }
2915 switch_count = &prev->nvcsw;
2916 }
2917
2918 pre_schedule(rq, prev);
2919
2920 if (unlikely(!rq->nr_running))
2921 idle_balance(cpu, rq);
2922
2923 put_prev_task(rq, prev);
2924 next = pick_next_task(rq);
2925 clear_tsk_need_resched(prev);
2926 rq->skip_clock_update = 0;
2927
2928 if (likely(prev != next)) {
2929 rq->nr_switches++;
2930 rq->curr = next;
2931 ++*switch_count;
2932
2933 context_switch(rq, prev, next); /* unlocks the rq */
2934 /*
2935 * The context switch have flipped the stack from under us
2936 * and restored the local variables which were saved when
2937 * this task called schedule() in the past. prev == current
2938 * is still correct, but it can be moved to another cpu/rq.
2939 */
2940 cpu = smp_processor_id();
2941 rq = cpu_rq(cpu);
2942 } else
2943 raw_spin_unlock_irq(&rq->lock);
2944
2945 post_schedule(rq);
2946
2947 sched_preempt_enable_no_resched();
2948 if (need_resched())
2949 goto need_resched;
2950 }
2951
2952 static inline void sched_submit_work(struct task_struct *tsk)
2953 {
2954 if (!tsk->state || tsk_is_pi_blocked(tsk))
2955 return;
2956 /*
2957 * If we are going to sleep and we have plugged IO queued,
2958 * make sure to submit it to avoid deadlocks.
2959 */
2960 if (blk_needs_flush_plug(tsk))
2961 blk_schedule_flush_plug(tsk);
2962 }
2963
2964 asmlinkage void __sched schedule(void)
2965 {
2966 struct task_struct *tsk = current;
2967
2968 sched_submit_work(tsk);
2969 __schedule();
2970 }
2971 EXPORT_SYMBOL(schedule);
2972
2973 #ifdef CONFIG_CONTEXT_TRACKING
2974 asmlinkage void __sched schedule_user(void)
2975 {
2976 /*
2977 * If we come here after a random call to set_need_resched(),
2978 * or we have been woken up remotely but the IPI has not yet arrived,
2979 * we haven't yet exited the RCU idle mode. Do it here manually until
2980 * we find a better solution.
2981 */
2982 user_exit();
2983 schedule();
2984 user_enter();
2985 }
2986 #endif
2987
2988 /**
2989 * schedule_preempt_disabled - called with preemption disabled
2990 *
2991 * Returns with preemption disabled. Note: preempt_count must be 1
2992 */
2993 void __sched schedule_preempt_disabled(void)
2994 {
2995 sched_preempt_enable_no_resched();
2996 schedule();
2997 preempt_disable();
2998 }
2999
3000 #ifdef CONFIG_MUTEX_SPIN_ON_OWNER
3001
3002 static inline bool owner_running(struct mutex *lock, struct task_struct *owner)
3003 {
3004 if (lock->owner != owner)
3005 return false;
3006
3007 /*
3008 * Ensure we emit the owner->on_cpu, dereference _after_ checking
3009 * lock->owner still matches owner, if that fails, owner might
3010 * point to free()d memory, if it still matches, the rcu_read_lock()
3011 * ensures the memory stays valid.
3012 */
3013 barrier();
3014
3015 return owner->on_cpu;
3016 }
3017
3018 /*
3019 * Look out! "owner" is an entirely speculative pointer
3020 * access and not reliable.
3021 */
3022 int mutex_spin_on_owner(struct mutex *lock, struct task_struct *owner)
3023 {
3024 if (!sched_feat(OWNER_SPIN))
3025 return 0;
3026
3027 rcu_read_lock();
3028 while (owner_running(lock, owner)) {
3029 if (need_resched())
3030 break;
3031
3032 arch_mutex_cpu_relax();
3033 }
3034 rcu_read_unlock();
3035
3036 /*
3037 * We break out the loop above on need_resched() and when the
3038 * owner changed, which is a sign for heavy contention. Return
3039 * success only when lock->owner is NULL.
3040 */
3041 return lock->owner == NULL;
3042 }
3043 #endif
3044
3045 #ifdef CONFIG_PREEMPT
3046 /*
3047 * this is the entry point to schedule() from in-kernel preemption
3048 * off of preempt_enable. Kernel preemptions off return from interrupt
3049 * occur there and call schedule directly.
3050 */
3051 asmlinkage void __sched notrace preempt_schedule(void)
3052 {
3053 struct thread_info *ti = current_thread_info();
3054
3055 /*
3056 * If there is a non-zero preempt_count or interrupts are disabled,
3057 * we do not want to preempt the current task. Just return..
3058 */
3059 if (likely(ti->preempt_count || irqs_disabled()))
3060 return;
3061
3062 do {
3063 add_preempt_count_notrace(PREEMPT_ACTIVE);
3064 __schedule();
3065 sub_preempt_count_notrace(PREEMPT_ACTIVE);
3066
3067 /*
3068 * Check again in case we missed a preemption opportunity
3069 * between schedule and now.
3070 */
3071 barrier();
3072 } while (need_resched());
3073 }
3074 EXPORT_SYMBOL(preempt_schedule);
3075
3076 /*
3077 * this is the entry point to schedule() from kernel preemption
3078 * off of irq context.
3079 * Note, that this is called and return with irqs disabled. This will
3080 * protect us against recursive calling from irq.
3081 */
3082 asmlinkage void __sched preempt_schedule_irq(void)
3083 {
3084 struct thread_info *ti = current_thread_info();
3085
3086 /* Catch callers which need to be fixed */
3087 BUG_ON(ti->preempt_count || !irqs_disabled());
3088
3089 user_exit();
3090 do {
3091 add_preempt_count(PREEMPT_ACTIVE);
3092 local_irq_enable();
3093 __schedule();
3094 local_irq_disable();
3095 sub_preempt_count(PREEMPT_ACTIVE);
3096
3097 /*
3098 * Check again in case we missed a preemption opportunity
3099 * between schedule and now.
3100 */
3101 barrier();
3102 } while (need_resched());
3103 }
3104
3105 #endif /* CONFIG_PREEMPT */
3106
3107 int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
3108 void *key)
3109 {
3110 return try_to_wake_up(curr->private, mode, wake_flags);
3111 }
3112 EXPORT_SYMBOL(default_wake_function);
3113
3114 /*
3115 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
3116 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
3117 * number) then we wake all the non-exclusive tasks and one exclusive task.
3118 *
3119 * There are circumstances in which we can try to wake a task which has already
3120 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
3121 * zero in this (rare) case, and we handle it by continuing to scan the queue.
3122 */
3123 static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
3124 int nr_exclusive, int wake_flags, void *key)
3125 {
3126 wait_queue_t *curr, *next;
3127
3128 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
3129 unsigned flags = curr->flags;
3130
3131 if (curr->func(curr, mode, wake_flags, key) &&
3132 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
3133 break;
3134 }
3135 }
3136
3137 /**
3138 * __wake_up - wake up threads blocked on a waitqueue.
3139 * @q: the waitqueue
3140 * @mode: which threads
3141 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3142 * @key: is directly passed to the wakeup function
3143 *
3144 * It may be assumed that this function implies a write memory barrier before
3145 * changing the task state if and only if any tasks are woken up.
3146 */
3147 void __wake_up(wait_queue_head_t *q, unsigned int mode,
3148 int nr_exclusive, void *key)
3149 {
3150 unsigned long flags;
3151
3152 spin_lock_irqsave(&q->lock, flags);
3153 __wake_up_common(q, mode, nr_exclusive, 0, key);
3154 spin_unlock_irqrestore(&q->lock, flags);
3155 }
3156 EXPORT_SYMBOL(__wake_up);
3157
3158 /*
3159 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
3160 */
3161 void __wake_up_locked(wait_queue_head_t *q, unsigned int mode, int nr)
3162 {
3163 __wake_up_common(q, mode, nr, 0, NULL);
3164 }
3165 EXPORT_SYMBOL_GPL(__wake_up_locked);
3166
3167 void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
3168 {
3169 __wake_up_common(q, mode, 1, 0, key);
3170 }
3171 EXPORT_SYMBOL_GPL(__wake_up_locked_key);
3172
3173 /**
3174 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
3175 * @q: the waitqueue
3176 * @mode: which threads
3177 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3178 * @key: opaque value to be passed to wakeup targets
3179 *
3180 * The sync wakeup differs that the waker knows that it will schedule
3181 * away soon, so while the target thread will be woken up, it will not
3182 * be migrated to another CPU - ie. the two threads are 'synchronized'
3183 * with each other. This can prevent needless bouncing between CPUs.
3184 *
3185 * On UP it can prevent extra preemption.
3186 *
3187 * It may be assumed that this function implies a write memory barrier before
3188 * changing the task state if and only if any tasks are woken up.
3189 */
3190 void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
3191 int nr_exclusive, void *key)
3192 {
3193 unsigned long flags;
3194 int wake_flags = WF_SYNC;
3195
3196 if (unlikely(!q))
3197 return;
3198
3199 if (unlikely(!nr_exclusive))
3200 wake_flags = 0;
3201
3202 spin_lock_irqsave(&q->lock, flags);
3203 __wake_up_common(q, mode, nr_exclusive, wake_flags, key);
3204 spin_unlock_irqrestore(&q->lock, flags);
3205 }
3206 EXPORT_SYMBOL_GPL(__wake_up_sync_key);
3207
3208 /*
3209 * __wake_up_sync - see __wake_up_sync_key()
3210 */
3211 void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
3212 {
3213 __wake_up_sync_key(q, mode, nr_exclusive, NULL);
3214 }
3215 EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
3216
3217 /**
3218 * complete: - signals a single thread waiting on this completion
3219 * @x: holds the state of this particular completion
3220 *
3221 * This will wake up a single thread waiting on this completion. Threads will be
3222 * awakened in the same order in which they were queued.
3223 *
3224 * See also complete_all(), wait_for_completion() and related routines.
3225 *
3226 * It may be assumed that this function implies a write memory barrier before
3227 * changing the task state if and only if any tasks are woken up.
3228 */
3229 void complete(struct completion *x)
3230 {
3231 unsigned long flags;
3232
3233 spin_lock_irqsave(&x->wait.lock, flags);
3234 x->done++;
3235 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
3236 spin_unlock_irqrestore(&x->wait.lock, flags);
3237 }
3238 EXPORT_SYMBOL(complete);
3239
3240 /**
3241 * complete_all: - signals all threads waiting on this completion
3242 * @x: holds the state of this particular completion
3243 *
3244 * This will wake up all threads waiting on this particular completion event.
3245 *
3246 * It may be assumed that this function implies a write memory barrier before
3247 * changing the task state if and only if any tasks are woken up.
3248 */
3249 void complete_all(struct completion *x)
3250 {
3251 unsigned long flags;
3252
3253 spin_lock_irqsave(&x->wait.lock, flags);
3254 x->done += UINT_MAX/2;
3255 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
3256 spin_unlock_irqrestore(&x->wait.lock, flags);
3257 }
3258 EXPORT_SYMBOL(complete_all);
3259
3260 static inline long __sched
3261 do_wait_for_common(struct completion *x,
3262 long (*action)(long), long timeout, int state)
3263 {
3264 if (!x->done) {
3265 DECLARE_WAITQUEUE(wait, current);
3266
3267 __add_wait_queue_tail_exclusive(&x->wait, &wait);
3268 do {
3269 if (signal_pending_state(state, current)) {
3270 timeout = -ERESTARTSYS;
3271 break;
3272 }
3273 __set_current_state(state);
3274 spin_unlock_irq(&x->wait.lock);
3275 timeout = action(timeout);
3276 spin_lock_irq(&x->wait.lock);
3277 } while (!x->done && timeout);
3278 __remove_wait_queue(&x->wait, &wait);
3279 if (!x->done)
3280 return timeout;
3281 }
3282 x->done--;
3283 return timeout ?: 1;
3284 }
3285
3286 static inline long __sched
3287 __wait_for_common(struct completion *x,
3288 long (*action)(long), long timeout, int state)
3289 {
3290 might_sleep();
3291
3292 spin_lock_irq(&x->wait.lock);
3293 timeout = do_wait_for_common(x, action, timeout, state);
3294 spin_unlock_irq(&x->wait.lock);
3295 return timeout;
3296 }
3297
3298 static long __sched
3299 wait_for_common(struct completion *x, long timeout, int state)
3300 {
3301 return __wait_for_common(x, schedule_timeout, timeout, state);
3302 }
3303
3304 static long __sched
3305 wait_for_common_io(struct completion *x, long timeout, int state)
3306 {
3307 return __wait_for_common(x, io_schedule_timeout, timeout, state);
3308 }
3309
3310 /**
3311 * wait_for_completion: - waits for completion of a task
3312 * @x: holds the state of this particular completion
3313 *
3314 * This waits to be signaled for completion of a specific task. It is NOT
3315 * interruptible and there is no timeout.
3316 *
3317 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
3318 * and interrupt capability. Also see complete().
3319 */
3320 void __sched wait_for_completion(struct completion *x)
3321 {
3322 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
3323 }
3324 EXPORT_SYMBOL(wait_for_completion);
3325
3326 /**
3327 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
3328 * @x: holds the state of this particular completion
3329 * @timeout: timeout value in jiffies
3330 *
3331 * This waits for either a completion of a specific task to be signaled or for a
3332 * specified timeout to expire. The timeout is in jiffies. It is not
3333 * interruptible.
3334 *
3335 * The return value is 0 if timed out, and positive (at least 1, or number of
3336 * jiffies left till timeout) if completed.
3337 */
3338 unsigned long __sched
3339 wait_for_completion_timeout(struct completion *x, unsigned long timeout)
3340 {
3341 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
3342 }
3343 EXPORT_SYMBOL(wait_for_completion_timeout);
3344
3345 /**
3346 * wait_for_completion_io: - waits for completion of a task
3347 * @x: holds the state of this particular completion
3348 *
3349 * This waits to be signaled for completion of a specific task. It is NOT
3350 * interruptible and there is no timeout. The caller is accounted as waiting
3351 * for IO.
3352 */
3353 void __sched wait_for_completion_io(struct completion *x)
3354 {
3355 wait_for_common_io(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
3356 }
3357 EXPORT_SYMBOL(wait_for_completion_io);
3358
3359 /**
3360 * wait_for_completion_io_timeout: - waits for completion of a task (w/timeout)
3361 * @x: holds the state of this particular completion
3362 * @timeout: timeout value in jiffies
3363 *
3364 * This waits for either a completion of a specific task to be signaled or for a
3365 * specified timeout to expire. The timeout is in jiffies. It is not
3366 * interruptible. The caller is accounted as waiting for IO.
3367 *
3368 * The return value is 0 if timed out, and positive (at least 1, or number of
3369 * jiffies left till timeout) if completed.
3370 */
3371 unsigned long __sched
3372 wait_for_completion_io_timeout(struct completion *x, unsigned long timeout)
3373 {
3374 return wait_for_common_io(x, timeout, TASK_UNINTERRUPTIBLE);
3375 }
3376 EXPORT_SYMBOL(wait_for_completion_io_timeout);
3377
3378 /**
3379 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
3380 * @x: holds the state of this particular completion
3381 *
3382 * This waits for completion of a specific task to be signaled. It is
3383 * interruptible.
3384 *
3385 * The return value is -ERESTARTSYS if interrupted, 0 if completed.
3386 */
3387 int __sched wait_for_completion_interruptible(struct completion *x)
3388 {
3389 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
3390 if (t == -ERESTARTSYS)
3391 return t;
3392 return 0;
3393 }
3394 EXPORT_SYMBOL(wait_for_completion_interruptible);
3395
3396 /**
3397 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
3398 * @x: holds the state of this particular completion
3399 * @timeout: timeout value in jiffies
3400 *
3401 * This waits for either a completion of a specific task to be signaled or for a
3402 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
3403 *
3404 * The return value is -ERESTARTSYS if interrupted, 0 if timed out,
3405 * positive (at least 1, or number of jiffies left till timeout) if completed.
3406 */
3407 long __sched
3408 wait_for_completion_interruptible_timeout(struct completion *x,
3409 unsigned long timeout)
3410 {
3411 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
3412 }
3413 EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
3414
3415 /**
3416 * wait_for_completion_killable: - waits for completion of a task (killable)
3417 * @x: holds the state of this particular completion
3418 *
3419 * This waits to be signaled for completion of a specific task. It can be
3420 * interrupted by a kill signal.
3421 *
3422 * The return value is -ERESTARTSYS if interrupted, 0 if completed.
3423 */
3424 int __sched wait_for_completion_killable(struct completion *x)
3425 {
3426 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
3427 if (t == -ERESTARTSYS)
3428 return t;
3429 return 0;
3430 }
3431 EXPORT_SYMBOL(wait_for_completion_killable);
3432
3433 /**
3434 * wait_for_completion_killable_timeout: - waits for completion of a task (w/(to,killable))
3435 * @x: holds the state of this particular completion
3436 * @timeout: timeout value in jiffies
3437 *
3438 * This waits for either a completion of a specific task to be
3439 * signaled or for a specified timeout to expire. It can be
3440 * interrupted by a kill signal. The timeout is in jiffies.
3441 *
3442 * The return value is -ERESTARTSYS if interrupted, 0 if timed out,
3443 * positive (at least 1, or number of jiffies left till timeout) if completed.
3444 */
3445 long __sched
3446 wait_for_completion_killable_timeout(struct completion *x,
3447 unsigned long timeout)
3448 {
3449 return wait_for_common(x, timeout, TASK_KILLABLE);
3450 }
3451 EXPORT_SYMBOL(wait_for_completion_killable_timeout);
3452
3453 /**
3454 * try_wait_for_completion - try to decrement a completion without blocking
3455 * @x: completion structure
3456 *
3457 * Returns: 0 if a decrement cannot be done without blocking
3458 * 1 if a decrement succeeded.
3459 *
3460 * If a completion is being used as a counting completion,
3461 * attempt to decrement the counter without blocking. This
3462 * enables us to avoid waiting if the resource the completion
3463 * is protecting is not available.
3464 */
3465 bool try_wait_for_completion(struct completion *x)
3466 {
3467 unsigned long flags;
3468 int ret = 1;
3469
3470 spin_lock_irqsave(&x->wait.lock, flags);
3471 if (!x->done)
3472 ret = 0;
3473 else
3474 x->done--;
3475 spin_unlock_irqrestore(&x->wait.lock, flags);
3476 return ret;
3477 }
3478 EXPORT_SYMBOL(try_wait_for_completion);
3479
3480 /**
3481 * completion_done - Test to see if a completion has any waiters
3482 * @x: completion structure
3483 *
3484 * Returns: 0 if there are waiters (wait_for_completion() in progress)
3485 * 1 if there are no waiters.
3486 *
3487 */
3488 bool completion_done(struct completion *x)
3489 {
3490 unsigned long flags;
3491 int ret = 1;
3492
3493 spin_lock_irqsave(&x->wait.lock, flags);
3494 if (!x->done)
3495 ret = 0;
3496 spin_unlock_irqrestore(&x->wait.lock, flags);
3497 return ret;
3498 }
3499 EXPORT_SYMBOL(completion_done);
3500
3501 static long __sched
3502 sleep_on_common(wait_queue_head_t *q, int state, long timeout)
3503 {
3504 unsigned long flags;
3505 wait_queue_t wait;
3506
3507 init_waitqueue_entry(&wait, current);
3508
3509 __set_current_state(state);
3510
3511 spin_lock_irqsave(&q->lock, flags);
3512 __add_wait_queue(q, &wait);
3513 spin_unlock(&q->lock);
3514 timeout = schedule_timeout(timeout);
3515 spin_lock_irq(&q->lock);
3516 __remove_wait_queue(q, &wait);
3517 spin_unlock_irqrestore(&q->lock, flags);
3518
3519 return timeout;
3520 }
3521
3522 void __sched interruptible_sleep_on(wait_queue_head_t *q)
3523 {
3524 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
3525 }
3526 EXPORT_SYMBOL(interruptible_sleep_on);
3527
3528 long __sched
3529 interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
3530 {
3531 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
3532 }
3533 EXPORT_SYMBOL(interruptible_sleep_on_timeout);
3534
3535 void __sched sleep_on(wait_queue_head_t *q)
3536 {
3537 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
3538 }
3539 EXPORT_SYMBOL(sleep_on);
3540
3541 long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
3542 {
3543 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
3544 }
3545 EXPORT_SYMBOL(sleep_on_timeout);
3546
3547 #ifdef CONFIG_RT_MUTEXES
3548
3549 /*
3550 * rt_mutex_setprio - set the current priority of a task
3551 * @p: task
3552 * @prio: prio value (kernel-internal form)
3553 *
3554 * This function changes the 'effective' priority of a task. It does
3555 * not touch ->normal_prio like __setscheduler().
3556 *
3557 * Used by the rt_mutex code to implement priority inheritance logic.
3558 */
3559 void rt_mutex_setprio(struct task_struct *p, int prio)
3560 {
3561 int oldprio, on_rq, running;
3562 struct rq *rq;
3563 const struct sched_class *prev_class;
3564
3565 BUG_ON(prio < 0 || prio > MAX_PRIO);
3566
3567 rq = __task_rq_lock(p);
3568
3569 /*
3570 * Idle task boosting is a nono in general. There is one
3571 * exception, when PREEMPT_RT and NOHZ is active:
3572 *
3573 * The idle task calls get_next_timer_interrupt() and holds
3574 * the timer wheel base->lock on the CPU and another CPU wants
3575 * to access the timer (probably to cancel it). We can safely
3576 * ignore the boosting request, as the idle CPU runs this code
3577 * with interrupts disabled and will complete the lock
3578 * protected section without being interrupted. So there is no
3579 * real need to boost.
3580 */
3581 if (unlikely(p == rq->idle)) {
3582 WARN_ON(p != rq->curr);
3583 WARN_ON(p->pi_blocked_on);
3584 goto out_unlock;
3585 }
3586
3587 trace_sched_pi_setprio(p, prio);
3588 oldprio = p->prio;
3589 prev_class = p->sched_class;
3590 on_rq = p->on_rq;
3591 running = task_current(rq, p);
3592 if (on_rq)
3593 dequeue_task(rq, p, 0);
3594 if (running)
3595 p->sched_class->put_prev_task(rq, p);
3596
3597 if (rt_prio(prio))
3598 p->sched_class = &rt_sched_class;
3599 else
3600 p->sched_class = &fair_sched_class;
3601
3602 p->prio = prio;
3603
3604 if (running)
3605 p->sched_class->set_curr_task(rq);
3606 if (on_rq)
3607 enqueue_task(rq, p, oldprio < prio ? ENQUEUE_HEAD : 0);
3608
3609 check_class_changed(rq, p, prev_class, oldprio);
3610 out_unlock:
3611 __task_rq_unlock(rq);
3612 }
3613 #endif
3614 void set_user_nice(struct task_struct *p, long nice)
3615 {
3616 int old_prio, delta, on_rq;
3617 unsigned long flags;
3618 struct rq *rq;
3619
3620 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
3621 return;
3622 /*
3623 * We have to be careful, if called from sys_setpriority(),
3624 * the task might be in the middle of scheduling on another CPU.
3625 */
3626 rq = task_rq_lock(p, &flags);
3627 /*
3628 * The RT priorities are set via sched_setscheduler(), but we still
3629 * allow the 'normal' nice value to be set - but as expected
3630 * it wont have any effect on scheduling until the task is
3631 * SCHED_FIFO/SCHED_RR:
3632 */
3633 if (task_has_rt_policy(p)) {
3634 p->static_prio = NICE_TO_PRIO(nice);
3635 goto out_unlock;
3636 }
3637 on_rq = p->on_rq;
3638 if (on_rq)
3639 dequeue_task(rq, p, 0);
3640
3641 p->static_prio = NICE_TO_PRIO(nice);
3642 set_load_weight(p);
3643 old_prio = p->prio;
3644 p->prio = effective_prio(p);
3645 delta = p->prio - old_prio;
3646
3647 if (on_rq) {
3648 enqueue_task(rq, p, 0);
3649 /*
3650 * If the task increased its priority or is running and
3651 * lowered its priority, then reschedule its CPU:
3652 */
3653 if (delta < 0 || (delta > 0 && task_running(rq, p)))
3654 resched_task(rq->curr);
3655 }
3656 out_unlock:
3657 task_rq_unlock(rq, p, &flags);
3658 }
3659 EXPORT_SYMBOL(set_user_nice);
3660
3661 /*
3662 * can_nice - check if a task can reduce its nice value
3663 * @p: task
3664 * @nice: nice value
3665 */
3666 int can_nice(const struct task_struct *p, const int nice)
3667 {
3668 /* convert nice value [19,-20] to rlimit style value [1,40] */
3669 int nice_rlim = 20 - nice;
3670
3671 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
3672 capable(CAP_SYS_NICE));
3673 }
3674
3675 #ifdef __ARCH_WANT_SYS_NICE
3676
3677 /*
3678 * sys_nice - change the priority of the current process.
3679 * @increment: priority increment
3680 *
3681 * sys_setpriority is a more generic, but much slower function that
3682 * does similar things.
3683 */
3684 SYSCALL_DEFINE1(nice, int, increment)
3685 {
3686 long nice, retval;
3687
3688 /*
3689 * Setpriority might change our priority at the same moment.
3690 * We don't have to worry. Conceptually one call occurs first
3691 * and we have a single winner.
3692 */
3693 if (increment < -40)
3694 increment = -40;
3695 if (increment > 40)
3696 increment = 40;
3697
3698 nice = TASK_NICE(current) + increment;
3699 if (nice < -20)
3700 nice = -20;
3701 if (nice > 19)
3702 nice = 19;
3703
3704 if (increment < 0 && !can_nice(current, nice))
3705 return -EPERM;
3706
3707 retval = security_task_setnice(current, nice);
3708 if (retval)
3709 return retval;
3710
3711 set_user_nice(current, nice);
3712 return 0;
3713 }
3714
3715 #endif
3716
3717 /**
3718 * task_prio - return the priority value of a given task.
3719 * @p: the task in question.
3720 *
3721 * This is the priority value as seen by users in /proc.
3722 * RT tasks are offset by -200. Normal tasks are centered
3723 * around 0, value goes from -16 to +15.
3724 */
3725 int task_prio(const struct task_struct *p)
3726 {
3727 return p->prio - MAX_RT_PRIO;
3728 }
3729
3730 /**
3731 * task_nice - return the nice value of a given task.
3732 * @p: the task in question.
3733 */
3734 int task_nice(const struct task_struct *p)
3735 {
3736 return TASK_NICE(p);
3737 }
3738 EXPORT_SYMBOL(task_nice);
3739
3740 /**
3741 * idle_cpu - is a given cpu idle currently?
3742 * @cpu: the processor in question.
3743 */
3744 int idle_cpu(int cpu)
3745 {
3746 struct rq *rq = cpu_rq(cpu);
3747
3748 if (rq->curr != rq->idle)
3749 return 0;
3750
3751 if (rq->nr_running)
3752 return 0;
3753
3754 #ifdef CONFIG_SMP
3755 if (!llist_empty(&rq->wake_list))
3756 return 0;
3757 #endif
3758
3759 return 1;
3760 }
3761
3762 /**
3763 * idle_task - return the idle task for a given cpu.
3764 * @cpu: the processor in question.
3765 */
3766 struct task_struct *idle_task(int cpu)
3767 {
3768 return cpu_rq(cpu)->idle;
3769 }
3770
3771 /**
3772 * find_process_by_pid - find a process with a matching PID value.
3773 * @pid: the pid in question.
3774 */
3775 static struct task_struct *find_process_by_pid(pid_t pid)
3776 {
3777 return pid ? find_task_by_vpid(pid) : current;
3778 }
3779
3780 /* Actually do priority change: must hold rq lock. */
3781 static void
3782 __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
3783 {
3784 p->policy = policy;
3785 p->rt_priority = prio;
3786 p->normal_prio = normal_prio(p);
3787 /* we are holding p->pi_lock already */
3788 p->prio = rt_mutex_getprio(p);
3789 if (rt_prio(p->prio))
3790 p->sched_class = &rt_sched_class;
3791 else
3792 p->sched_class = &fair_sched_class;
3793 set_load_weight(p);
3794 }
3795
3796 /*
3797 * check the target process has a UID that matches the current process's
3798 */
3799 static bool check_same_owner(struct task_struct *p)
3800 {
3801 const struct cred *cred = current_cred(), *pcred;
3802 bool match;
3803
3804 rcu_read_lock();
3805 pcred = __task_cred(p);
3806 match = (uid_eq(cred->euid, pcred->euid) ||
3807 uid_eq(cred->euid, pcred->uid));
3808 rcu_read_unlock();
3809 return match;
3810 }
3811
3812 static int __sched_setscheduler(struct task_struct *p, int policy,
3813 const struct sched_param *param, bool user)
3814 {
3815 int retval, oldprio, oldpolicy = -1, on_rq, running;
3816 unsigned long flags;
3817 const struct sched_class *prev_class;
3818 struct rq *rq;
3819 int reset_on_fork;
3820
3821 /* may grab non-irq protected spin_locks */
3822 BUG_ON(in_interrupt());
3823 recheck:
3824 /* double check policy once rq lock held */
3825 if (policy < 0) {
3826 reset_on_fork = p->sched_reset_on_fork;
3827 policy = oldpolicy = p->policy;
3828 } else {
3829 reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
3830 policy &= ~SCHED_RESET_ON_FORK;
3831
3832 if (policy != SCHED_FIFO && policy != SCHED_RR &&
3833 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
3834 policy != SCHED_IDLE)
3835 return -EINVAL;
3836 }
3837
3838 /*
3839 * Valid priorities for SCHED_FIFO and SCHED_RR are
3840 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
3841 * SCHED_BATCH and SCHED_IDLE is 0.
3842 */
3843 if (param->sched_priority < 0 ||
3844 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
3845 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
3846 return -EINVAL;
3847 if (rt_policy(policy) != (param->sched_priority != 0))
3848 return -EINVAL;
3849
3850 /*
3851 * Allow unprivileged RT tasks to decrease priority:
3852 */
3853 if (user && !capable(CAP_SYS_NICE)) {
3854 if (rt_policy(policy)) {
3855 unsigned long rlim_rtprio =
3856 task_rlimit(p, RLIMIT_RTPRIO);
3857
3858 /* can't set/change the rt policy */
3859 if (policy != p->policy && !rlim_rtprio)
3860 return -EPERM;
3861
3862 /* can't increase priority */
3863 if (param->sched_priority > p->rt_priority &&
3864 param->sched_priority > rlim_rtprio)
3865 return -EPERM;
3866 }
3867
3868 /*
3869 * Treat SCHED_IDLE as nice 20. Only allow a switch to
3870 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
3871 */
3872 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
3873 if (!can_nice(p, TASK_NICE(p)))
3874 return -EPERM;
3875 }
3876
3877 /* can't change other user's priorities */
3878 if (!check_same_owner(p))
3879 return -EPERM;
3880
3881 /* Normal users shall not reset the sched_reset_on_fork flag */
3882 if (p->sched_reset_on_fork && !reset_on_fork)
3883 return -EPERM;
3884 }
3885
3886 if (user) {
3887 retval = security_task_setscheduler(p);
3888 if (retval)
3889 return retval;
3890 }
3891
3892 /*
3893 * make sure no PI-waiters arrive (or leave) while we are
3894 * changing the priority of the task:
3895 *
3896 * To be able to change p->policy safely, the appropriate
3897 * runqueue lock must be held.
3898 */
3899 rq = task_rq_lock(p, &flags);
3900
3901 /*
3902 * Changing the policy of the stop threads its a very bad idea
3903 */
3904 if (p == rq->stop) {
3905 task_rq_unlock(rq, p, &flags);
3906 return -EINVAL;
3907 }
3908
3909 /*
3910 * If not changing anything there's no need to proceed further:
3911 */
3912 if (unlikely(policy == p->policy && (!rt_policy(policy) ||
3913 param->sched_priority == p->rt_priority))) {
3914 task_rq_unlock(rq, p, &flags);
3915 return 0;
3916 }
3917
3918 #ifdef CONFIG_RT_GROUP_SCHED
3919 if (user) {
3920 /*
3921 * Do not allow realtime tasks into groups that have no runtime
3922 * assigned.
3923 */
3924 if (rt_bandwidth_enabled() && rt_policy(policy) &&
3925 task_group(p)->rt_bandwidth.rt_runtime == 0 &&
3926 !task_group_is_autogroup(task_group(p))) {
3927 task_rq_unlock(rq, p, &flags);
3928 return -EPERM;
3929 }
3930 }
3931 #endif
3932
3933 /* recheck policy now with rq lock held */
3934 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
3935 policy = oldpolicy = -1;
3936 task_rq_unlock(rq, p, &flags);
3937 goto recheck;
3938 }
3939 on_rq = p->on_rq;
3940 running = task_current(rq, p);
3941 if (on_rq)
3942 dequeue_task(rq, p, 0);
3943 if (running)
3944 p->sched_class->put_prev_task(rq, p);
3945
3946 p->sched_reset_on_fork = reset_on_fork;
3947
3948 oldprio = p->prio;
3949 prev_class = p->sched_class;
3950 __setscheduler(rq, p, policy, param->sched_priority);
3951
3952 if (running)
3953 p->sched_class->set_curr_task(rq);
3954 if (on_rq)
3955 enqueue_task(rq, p, 0);
3956
3957 check_class_changed(rq, p, prev_class, oldprio);
3958 task_rq_unlock(rq, p, &flags);
3959
3960 rt_mutex_adjust_pi(p);
3961
3962 return 0;
3963 }
3964
3965 /**
3966 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
3967 * @p: the task in question.
3968 * @policy: new policy.
3969 * @param: structure containing the new RT priority.
3970 *
3971 * NOTE that the task may be already dead.
3972 */
3973 int sched_setscheduler(struct task_struct *p, int policy,
3974 const struct sched_param *param)
3975 {
3976 return __sched_setscheduler(p, policy, param, true);
3977 }
3978 EXPORT_SYMBOL_GPL(sched_setscheduler);
3979
3980 /**
3981 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
3982 * @p: the task in question.
3983 * @policy: new policy.
3984 * @param: structure containing the new RT priority.
3985 *
3986 * Just like sched_setscheduler, only don't bother checking if the
3987 * current context has permission. For example, this is needed in
3988 * stop_machine(): we create temporary high priority worker threads,
3989 * but our caller might not have that capability.
3990 */
3991 int sched_setscheduler_nocheck(struct task_struct *p, int policy,
3992 const struct sched_param *param)
3993 {
3994 return __sched_setscheduler(p, policy, param, false);
3995 }
3996
3997 static int
3998 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
3999 {
4000 struct sched_param lparam;
4001 struct task_struct *p;
4002 int retval;
4003
4004 if (!param || pid < 0)
4005 return -EINVAL;
4006 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4007 return -EFAULT;
4008
4009 rcu_read_lock();
4010 retval = -ESRCH;
4011 p = find_process_by_pid(pid);
4012 if (p != NULL)
4013 retval = sched_setscheduler(p, policy, &lparam);
4014 rcu_read_unlock();
4015
4016 return retval;
4017 }
4018
4019 /**
4020 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4021 * @pid: the pid in question.
4022 * @policy: new policy.
4023 * @param: structure containing the new RT priority.
4024 */
4025 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
4026 struct sched_param __user *, param)
4027 {
4028 /* negative values for policy are not valid */
4029 if (policy < 0)
4030 return -EINVAL;
4031
4032 return do_sched_setscheduler(pid, policy, param);
4033 }
4034
4035 /**
4036 * sys_sched_setparam - set/change the RT priority of a thread
4037 * @pid: the pid in question.
4038 * @param: structure containing the new RT priority.
4039 */
4040 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
4041 {
4042 return do_sched_setscheduler(pid, -1, param);
4043 }
4044
4045 /**
4046 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4047 * @pid: the pid in question.
4048 */
4049 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
4050 {
4051 struct task_struct *p;
4052 int retval;
4053
4054 if (pid < 0)
4055 return -EINVAL;
4056
4057 retval = -ESRCH;
4058 rcu_read_lock();
4059 p = find_process_by_pid(pid);
4060 if (p) {
4061 retval = security_task_getscheduler(p);
4062 if (!retval)
4063 retval = p->policy
4064 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
4065 }
4066 rcu_read_unlock();
4067 return retval;
4068 }
4069
4070 /**
4071 * sys_sched_getparam - get the RT priority of a thread
4072 * @pid: the pid in question.
4073 * @param: structure containing the RT priority.
4074 */
4075 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
4076 {
4077 struct sched_param lp;
4078 struct task_struct *p;
4079 int retval;
4080
4081 if (!param || pid < 0)
4082 return -EINVAL;
4083
4084 rcu_read_lock();
4085 p = find_process_by_pid(pid);
4086 retval = -ESRCH;
4087 if (!p)
4088 goto out_unlock;
4089
4090 retval = security_task_getscheduler(p);
4091 if (retval)
4092 goto out_unlock;
4093
4094 lp.sched_priority = p->rt_priority;
4095 rcu_read_unlock();
4096
4097 /*
4098 * This one might sleep, we cannot do it with a spinlock held ...
4099 */
4100 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4101
4102 return retval;
4103
4104 out_unlock:
4105 rcu_read_unlock();
4106 return retval;
4107 }
4108
4109 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
4110 {
4111 cpumask_var_t cpus_allowed, new_mask;
4112 struct task_struct *p;
4113 int retval;
4114
4115 get_online_cpus();
4116 rcu_read_lock();
4117
4118 p = find_process_by_pid(pid);
4119 if (!p) {
4120 rcu_read_unlock();
4121 put_online_cpus();
4122 return -ESRCH;
4123 }
4124
4125 /* Prevent p going away */
4126 get_task_struct(p);
4127 rcu_read_unlock();
4128
4129 if (p->flags & PF_NO_SETAFFINITY) {
4130 retval = -EINVAL;
4131 goto out_put_task;
4132 }
4133 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
4134 retval = -ENOMEM;
4135 goto out_put_task;
4136 }
4137 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
4138 retval = -ENOMEM;
4139 goto out_free_cpus_allowed;
4140 }
4141 retval = -EPERM;
4142 if (!check_same_owner(p)) {
4143 rcu_read_lock();
4144 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
4145 rcu_read_unlock();
4146 goto out_unlock;
4147 }
4148 rcu_read_unlock();
4149 }
4150
4151 retval = security_task_setscheduler(p);
4152 if (retval)
4153 goto out_unlock;
4154
4155 cpuset_cpus_allowed(p, cpus_allowed);
4156 cpumask_and(new_mask, in_mask, cpus_allowed);
4157 again:
4158 retval = set_cpus_allowed_ptr(p, new_mask);
4159
4160 if (!retval) {
4161 cpuset_cpus_allowed(p, cpus_allowed);
4162 if (!cpumask_subset(new_mask, cpus_allowed)) {
4163 /*
4164 * We must have raced with a concurrent cpuset
4165 * update. Just reset the cpus_allowed to the
4166 * cpuset's cpus_allowed
4167 */
4168 cpumask_copy(new_mask, cpus_allowed);
4169 goto again;
4170 }
4171 }
4172 out_unlock:
4173 free_cpumask_var(new_mask);
4174 out_free_cpus_allowed:
4175 free_cpumask_var(cpus_allowed);
4176 out_put_task:
4177 put_task_struct(p);
4178 put_online_cpus();
4179 return retval;
4180 }
4181
4182 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4183 struct cpumask *new_mask)
4184 {
4185 if (len < cpumask_size())
4186 cpumask_clear(new_mask);
4187 else if (len > cpumask_size())
4188 len = cpumask_size();
4189
4190 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4191 }
4192
4193 /**
4194 * sys_sched_setaffinity - set the cpu affinity of a process
4195 * @pid: pid of the process
4196 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4197 * @user_mask_ptr: user-space pointer to the new cpu mask
4198 */
4199 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
4200 unsigned long __user *, user_mask_ptr)
4201 {
4202 cpumask_var_t new_mask;
4203 int retval;
4204
4205 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
4206 return -ENOMEM;
4207
4208 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
4209 if (retval == 0)
4210 retval = sched_setaffinity(pid, new_mask);
4211 free_cpumask_var(new_mask);
4212 return retval;
4213 }
4214
4215 long sched_getaffinity(pid_t pid, struct cpumask *mask)
4216 {
4217 struct task_struct *p;
4218 unsigned long flags;
4219 int retval;
4220
4221 get_online_cpus();
4222 rcu_read_lock();
4223
4224 retval = -ESRCH;
4225 p = find_process_by_pid(pid);
4226 if (!p)
4227 goto out_unlock;
4228
4229 retval = security_task_getscheduler(p);
4230 if (retval)
4231 goto out_unlock;
4232
4233 raw_spin_lock_irqsave(&p->pi_lock, flags);
4234 cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
4235 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4236
4237 out_unlock:
4238 rcu_read_unlock();
4239 put_online_cpus();
4240
4241 return retval;
4242 }
4243
4244 /**
4245 * sys_sched_getaffinity - get the cpu affinity of a process
4246 * @pid: pid of the process
4247 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4248 * @user_mask_ptr: user-space pointer to hold the current cpu mask
4249 */
4250 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
4251 unsigned long __user *, user_mask_ptr)
4252 {
4253 int ret;
4254 cpumask_var_t mask;
4255
4256 if ((len * BITS_PER_BYTE) < nr_cpu_ids)
4257 return -EINVAL;
4258 if (len & (sizeof(unsigned long)-1))
4259 return -EINVAL;
4260
4261 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
4262 return -ENOMEM;
4263
4264 ret = sched_getaffinity(pid, mask);
4265 if (ret == 0) {
4266 size_t retlen = min_t(size_t, len, cpumask_size());
4267
4268 if (copy_to_user(user_mask_ptr, mask, retlen))
4269 ret = -EFAULT;
4270 else
4271 ret = retlen;
4272 }
4273 free_cpumask_var(mask);
4274
4275 return ret;
4276 }
4277
4278 /**
4279 * sys_sched_yield - yield the current processor to other threads.
4280 *
4281 * This function yields the current CPU to other tasks. If there are no
4282 * other threads running on this CPU then this function will return.
4283 */
4284 SYSCALL_DEFINE0(sched_yield)
4285 {
4286 struct rq *rq = this_rq_lock();
4287
4288 schedstat_inc(rq, yld_count);
4289 current->sched_class->yield_task(rq);
4290
4291 /*
4292 * Since we are going to call schedule() anyway, there's
4293 * no need to preempt or enable interrupts:
4294 */
4295 __release(rq->lock);
4296 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
4297 do_raw_spin_unlock(&rq->lock);
4298 sched_preempt_enable_no_resched();
4299
4300 schedule();
4301
4302 return 0;
4303 }
4304
4305 static inline int should_resched(void)
4306 {
4307 return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
4308 }
4309
4310 static void __cond_resched(void)
4311 {
4312 add_preempt_count(PREEMPT_ACTIVE);
4313 __schedule();
4314 sub_preempt_count(PREEMPT_ACTIVE);
4315 }
4316
4317 int __sched _cond_resched(void)
4318 {
4319 if (should_resched()) {
4320 __cond_resched();
4321 return 1;
4322 }
4323 return 0;
4324 }
4325 EXPORT_SYMBOL(_cond_resched);
4326
4327 /*
4328 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
4329 * call schedule, and on return reacquire the lock.
4330 *
4331 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4332 * operations here to prevent schedule() from being called twice (once via
4333 * spin_unlock(), once by hand).
4334 */
4335 int __cond_resched_lock(spinlock_t *lock)
4336 {
4337 int resched = should_resched();
4338 int ret = 0;
4339
4340 lockdep_assert_held(lock);
4341
4342 if (spin_needbreak(lock) || resched) {
4343 spin_unlock(lock);
4344 if (resched)
4345 __cond_resched();
4346 else
4347 cpu_relax();
4348 ret = 1;
4349 spin_lock(lock);
4350 }
4351 return ret;
4352 }
4353 EXPORT_SYMBOL(__cond_resched_lock);
4354
4355 int __sched __cond_resched_softirq(void)
4356 {
4357 BUG_ON(!in_softirq());
4358
4359 if (should_resched()) {
4360 local_bh_enable();
4361 __cond_resched();
4362 local_bh_disable();
4363 return 1;
4364 }
4365 return 0;
4366 }
4367 EXPORT_SYMBOL(__cond_resched_softirq);
4368
4369 /**
4370 * yield - yield the current processor to other threads.
4371 *
4372 * Do not ever use this function, there's a 99% chance you're doing it wrong.
4373 *
4374 * The scheduler is at all times free to pick the calling task as the most
4375 * eligible task to run, if removing the yield() call from your code breaks
4376 * it, its already broken.
4377 *
4378 * Typical broken usage is:
4379 *
4380 * while (!event)
4381 * yield();
4382 *
4383 * where one assumes that yield() will let 'the other' process run that will
4384 * make event true. If the current task is a SCHED_FIFO task that will never
4385 * happen. Never use yield() as a progress guarantee!!
4386 *
4387 * If you want to use yield() to wait for something, use wait_event().
4388 * If you want to use yield() to be 'nice' for others, use cond_resched().
4389 * If you still want to use yield(), do not!
4390 */
4391 void __sched yield(void)
4392 {
4393 set_current_state(TASK_RUNNING);
4394 sys_sched_yield();
4395 }
4396 EXPORT_SYMBOL(yield);
4397
4398 /**
4399 * yield_to - yield the current processor to another thread in
4400 * your thread group, or accelerate that thread toward the
4401 * processor it's on.
4402 * @p: target task
4403 * @preempt: whether task preemption is allowed or not
4404 *
4405 * It's the caller's job to ensure that the target task struct
4406 * can't go away on us before we can do any checks.
4407 *
4408 * Returns:
4409 * true (>0) if we indeed boosted the target task.
4410 * false (0) if we failed to boost the target.
4411 * -ESRCH if there's no task to yield to.
4412 */
4413 bool __sched yield_to(struct task_struct *p, bool preempt)
4414 {
4415 struct task_struct *curr = current;
4416 struct rq *rq, *p_rq;
4417 unsigned long flags;
4418 int yielded = 0;
4419
4420 local_irq_save(flags);
4421 rq = this_rq();
4422
4423 again:
4424 p_rq = task_rq(p);
4425 /*
4426 * If we're the only runnable task on the rq and target rq also
4427 * has only one task, there's absolutely no point in yielding.
4428 */
4429 if (rq->nr_running == 1 && p_rq->nr_running == 1) {
4430 yielded = -ESRCH;
4431 goto out_irq;
4432 }
4433
4434 double_rq_lock(rq, p_rq);
4435 while (task_rq(p) != p_rq) {
4436 double_rq_unlock(rq, p_rq);
4437 goto again;
4438 }
4439
4440 if (!curr->sched_class->yield_to_task)
4441 goto out_unlock;
4442
4443 if (curr->sched_class != p->sched_class)
4444 goto out_unlock;
4445
4446 if (task_running(p_rq, p) || p->state)
4447 goto out_unlock;
4448
4449 yielded = curr->sched_class->yield_to_task(rq, p, preempt);
4450 if (yielded) {
4451 schedstat_inc(rq, yld_count);
4452 /*
4453 * Make p's CPU reschedule; pick_next_entity takes care of
4454 * fairness.
4455 */
4456 if (preempt && rq != p_rq)
4457 resched_task(p_rq->curr);
4458 }
4459
4460 out_unlock:
4461 double_rq_unlock(rq, p_rq);
4462 out_irq:
4463 local_irq_restore(flags);
4464
4465 if (yielded > 0)
4466 schedule();
4467
4468 return yielded;
4469 }
4470 EXPORT_SYMBOL_GPL(yield_to);
4471
4472 /*
4473 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
4474 * that process accounting knows that this is a task in IO wait state.
4475 */
4476 void __sched io_schedule(void)
4477 {
4478 struct rq *rq = raw_rq();
4479
4480 delayacct_blkio_start();
4481 atomic_inc(&rq->nr_iowait);
4482 blk_flush_plug(current);
4483 current->in_iowait = 1;
4484 schedule();
4485 current->in_iowait = 0;
4486 atomic_dec(&rq->nr_iowait);
4487 delayacct_blkio_end();
4488 }
4489 EXPORT_SYMBOL(io_schedule);
4490
4491 long __sched io_schedule_timeout(long timeout)
4492 {
4493 struct rq *rq = raw_rq();
4494 long ret;
4495
4496 delayacct_blkio_start();
4497 atomic_inc(&rq->nr_iowait);
4498 blk_flush_plug(current);
4499 current->in_iowait = 1;
4500 ret = schedule_timeout(timeout);
4501 current->in_iowait = 0;
4502 atomic_dec(&rq->nr_iowait);
4503 delayacct_blkio_end();
4504 return ret;
4505 }
4506
4507 /**
4508 * sys_sched_get_priority_max - return maximum RT priority.
4509 * @policy: scheduling class.
4510 *
4511 * this syscall returns the maximum rt_priority that can be used
4512 * by a given scheduling class.
4513 */
4514 SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
4515 {
4516 int ret = -EINVAL;
4517
4518 switch (policy) {
4519 case SCHED_FIFO:
4520 case SCHED_RR:
4521 ret = MAX_USER_RT_PRIO-1;
4522 break;
4523 case SCHED_NORMAL:
4524 case SCHED_BATCH:
4525 case SCHED_IDLE:
4526 ret = 0;
4527 break;
4528 }
4529 return ret;
4530 }
4531
4532 /**
4533 * sys_sched_get_priority_min - return minimum RT priority.
4534 * @policy: scheduling class.
4535 *
4536 * this syscall returns the minimum rt_priority that can be used
4537 * by a given scheduling class.
4538 */
4539 SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
4540 {
4541 int ret = -EINVAL;
4542
4543 switch (policy) {
4544 case SCHED_FIFO:
4545 case SCHED_RR:
4546 ret = 1;
4547 break;
4548 case SCHED_NORMAL:
4549 case SCHED_BATCH:
4550 case SCHED_IDLE:
4551 ret = 0;
4552 }
4553 return ret;
4554 }
4555
4556 /**
4557 * sys_sched_rr_get_interval - return the default timeslice of a process.
4558 * @pid: pid of the process.
4559 * @interval: userspace pointer to the timeslice value.
4560 *
4561 * this syscall writes the default timeslice value of a given process
4562 * into the user-space timespec buffer. A value of '0' means infinity.
4563 */
4564 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
4565 struct timespec __user *, interval)
4566 {
4567 struct task_struct *p;
4568 unsigned int time_slice;
4569 unsigned long flags;
4570 struct rq *rq;
4571 int retval;
4572 struct timespec t;
4573
4574 if (pid < 0)
4575 return -EINVAL;
4576
4577 retval = -ESRCH;
4578 rcu_read_lock();
4579 p = find_process_by_pid(pid);
4580 if (!p)
4581 goto out_unlock;
4582
4583 retval = security_task_getscheduler(p);
4584 if (retval)
4585 goto out_unlock;
4586
4587 rq = task_rq_lock(p, &flags);
4588 time_slice = p->sched_class->get_rr_interval(rq, p);
4589 task_rq_unlock(rq, p, &flags);
4590
4591 rcu_read_unlock();
4592 jiffies_to_timespec(time_slice, &t);
4593 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
4594 return retval;
4595
4596 out_unlock:
4597 rcu_read_unlock();
4598 return retval;
4599 }
4600
4601 static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
4602
4603 void sched_show_task(struct task_struct *p)
4604 {
4605 unsigned long free = 0;
4606 int ppid;
4607 unsigned state;
4608
4609 state = p->state ? __ffs(p->state) + 1 : 0;
4610 printk(KERN_INFO "%-15.15s %c", p->comm,
4611 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4612 #if BITS_PER_LONG == 32
4613 if (state == TASK_RUNNING)
4614 printk(KERN_CONT " running ");
4615 else
4616 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
4617 #else
4618 if (state == TASK_RUNNING)
4619 printk(KERN_CONT " running task ");
4620 else
4621 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
4622 #endif
4623 #ifdef CONFIG_DEBUG_STACK_USAGE
4624 free = stack_not_used(p);
4625 #endif
4626 rcu_read_lock();
4627 ppid = task_pid_nr(rcu_dereference(p->real_parent));
4628 rcu_read_unlock();
4629 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
4630 task_pid_nr(p), ppid,
4631 (unsigned long)task_thread_info(p)->flags);
4632
4633 show_stack(p, NULL);
4634 }
4635
4636 void show_state_filter(unsigned long state_filter)
4637 {
4638 struct task_struct *g, *p;
4639
4640 #if BITS_PER_LONG == 32
4641 printk(KERN_INFO
4642 " task PC stack pid father\n");
4643 #else
4644 printk(KERN_INFO
4645 " task PC stack pid father\n");
4646 #endif
4647 rcu_read_lock();
4648 do_each_thread(g, p) {
4649 /*
4650 * reset the NMI-timeout, listing all files on a slow
4651 * console might take a lot of time:
4652 */
4653 touch_nmi_watchdog();
4654 if (!state_filter || (p->state & state_filter))
4655 sched_show_task(p);
4656 } while_each_thread(g, p);
4657
4658 touch_all_softlockup_watchdogs();
4659
4660 #ifdef CONFIG_SCHED_DEBUG
4661 sysrq_sched_debug_show();
4662 #endif
4663 rcu_read_unlock();
4664 /*
4665 * Only show locks if all tasks are dumped:
4666 */
4667 if (!state_filter)
4668 debug_show_all_locks();
4669 }
4670
4671 void __cpuinit init_idle_bootup_task(struct task_struct *idle)
4672 {
4673 idle->sched_class = &idle_sched_class;
4674 }
4675
4676 /**
4677 * init_idle - set up an idle thread for a given CPU
4678 * @idle: task in question
4679 * @cpu: cpu the idle task belongs to
4680 *
4681 * NOTE: this function does not set the idle thread's NEED_RESCHED
4682 * flag, to make booting more robust.
4683 */
4684 void __cpuinit init_idle(struct task_struct *idle, int cpu)
4685 {
4686 struct rq *rq = cpu_rq(cpu);
4687 unsigned long flags;
4688
4689 raw_spin_lock_irqsave(&rq->lock, flags);
4690
4691 __sched_fork(idle);
4692 idle->state = TASK_RUNNING;
4693 idle->se.exec_start = sched_clock();
4694
4695 do_set_cpus_allowed(idle, cpumask_of(cpu));
4696 /*
4697 * We're having a chicken and egg problem, even though we are
4698 * holding rq->lock, the cpu isn't yet set to this cpu so the
4699 * lockdep check in task_group() will fail.
4700 *
4701 * Similar case to sched_fork(). / Alternatively we could
4702 * use task_rq_lock() here and obtain the other rq->lock.
4703 *
4704 * Silence PROVE_RCU
4705 */
4706 rcu_read_lock();
4707 __set_task_cpu(idle, cpu);
4708 rcu_read_unlock();
4709
4710 rq->curr = rq->idle = idle;
4711 #if defined(CONFIG_SMP)
4712 idle->on_cpu = 1;
4713 #endif
4714 raw_spin_unlock_irqrestore(&rq->lock, flags);
4715
4716 /* Set the preempt count _outside_ the spinlocks! */
4717 task_thread_info(idle)->preempt_count = 0;
4718
4719 /*
4720 * The idle tasks have their own, simple scheduling class:
4721 */
4722 idle->sched_class = &idle_sched_class;
4723 ftrace_graph_init_idle_task(idle, cpu);
4724 vtime_init_idle(idle);
4725 #if defined(CONFIG_SMP)
4726 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
4727 #endif
4728 }
4729
4730 #ifdef CONFIG_SMP
4731 void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
4732 {
4733 if (p->sched_class && p->sched_class->set_cpus_allowed)
4734 p->sched_class->set_cpus_allowed(p, new_mask);
4735
4736 cpumask_copy(&p->cpus_allowed, new_mask);
4737 p->nr_cpus_allowed = cpumask_weight(new_mask);
4738 }
4739
4740 /*
4741 * This is how migration works:
4742 *
4743 * 1) we invoke migration_cpu_stop() on the target CPU using
4744 * stop_one_cpu().
4745 * 2) stopper starts to run (implicitly forcing the migrated thread
4746 * off the CPU)
4747 * 3) it checks whether the migrated task is still in the wrong runqueue.
4748 * 4) if it's in the wrong runqueue then the migration thread removes
4749 * it and puts it into the right queue.
4750 * 5) stopper completes and stop_one_cpu() returns and the migration
4751 * is done.
4752 */
4753
4754 /*
4755 * Change a given task's CPU affinity. Migrate the thread to a
4756 * proper CPU and schedule it away if the CPU it's executing on
4757 * is removed from the allowed bitmask.
4758 *
4759 * NOTE: the caller must have a valid reference to the task, the
4760 * task must not exit() & deallocate itself prematurely. The
4761 * call is not atomic; no spinlocks may be held.
4762 */
4763 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
4764 {
4765 unsigned long flags;
4766 struct rq *rq;
4767 unsigned int dest_cpu;
4768 int ret = 0;
4769
4770 rq = task_rq_lock(p, &flags);
4771
4772 if (cpumask_equal(&p->cpus_allowed, new_mask))
4773 goto out;
4774
4775 if (!cpumask_intersects(new_mask, cpu_active_mask)) {
4776 ret = -EINVAL;
4777 goto out;
4778 }
4779
4780 do_set_cpus_allowed(p, new_mask);
4781
4782 /* Can the task run on the task's current CPU? If so, we're done */
4783 if (cpumask_test_cpu(task_cpu(p), new_mask))
4784 goto out;
4785
4786 dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
4787 if (p->on_rq) {
4788 struct migration_arg arg = { p, dest_cpu };
4789 /* Need help from migration thread: drop lock and wait. */
4790 task_rq_unlock(rq, p, &flags);
4791 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
4792 tlb_migrate_finish(p->mm);
4793 return 0;
4794 }
4795 out:
4796 task_rq_unlock(rq, p, &flags);
4797
4798 return ret;
4799 }
4800 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
4801
4802 /*
4803 * Move (not current) task off this cpu, onto dest cpu. We're doing
4804 * this because either it can't run here any more (set_cpus_allowed()
4805 * away from this CPU, or CPU going down), or because we're
4806 * attempting to rebalance this task on exec (sched_exec).
4807 *
4808 * So we race with normal scheduler movements, but that's OK, as long
4809 * as the task is no longer on this CPU.
4810 *
4811 * Returns non-zero if task was successfully migrated.
4812 */
4813 static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
4814 {
4815 struct rq *rq_dest, *rq_src;
4816 int ret = 0;
4817
4818 if (unlikely(!cpu_active(dest_cpu)))
4819 return ret;
4820
4821 rq_src = cpu_rq(src_cpu);
4822 rq_dest = cpu_rq(dest_cpu);
4823
4824 raw_spin_lock(&p->pi_lock);
4825 double_rq_lock(rq_src, rq_dest);
4826 /* Already moved. */
4827 if (task_cpu(p) != src_cpu)
4828 goto done;
4829 /* Affinity changed (again). */
4830 if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
4831 goto fail;
4832
4833 /*
4834 * If we're not on a rq, the next wake-up will ensure we're
4835 * placed properly.
4836 */
4837 if (p->on_rq) {
4838 dequeue_task(rq_src, p, 0);
4839 set_task_cpu(p, dest_cpu);
4840 enqueue_task(rq_dest, p, 0);
4841 check_preempt_curr(rq_dest, p, 0);
4842 }
4843 done:
4844 ret = 1;
4845 fail:
4846 double_rq_unlock(rq_src, rq_dest);
4847 raw_spin_unlock(&p->pi_lock);
4848 return ret;
4849 }
4850
4851 /*
4852 * migration_cpu_stop - this will be executed by a highprio stopper thread
4853 * and performs thread migration by bumping thread off CPU then
4854 * 'pushing' onto another runqueue.
4855 */
4856 static int migration_cpu_stop(void *data)
4857 {
4858 struct migration_arg *arg = data;
4859
4860 /*
4861 * The original target cpu might have gone down and we might
4862 * be on another cpu but it doesn't matter.
4863 */
4864 local_irq_disable();
4865 __migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
4866 local_irq_enable();
4867 return 0;
4868 }
4869
4870 #ifdef CONFIG_HOTPLUG_CPU
4871
4872 /*
4873 * Ensures that the idle task is using init_mm right before its cpu goes
4874 * offline.
4875 */
4876 void idle_task_exit(void)
4877 {
4878 struct mm_struct *mm = current->active_mm;
4879
4880 BUG_ON(cpu_online(smp_processor_id()));
4881
4882 if (mm != &init_mm)
4883 switch_mm(mm, &init_mm, current);
4884 mmdrop(mm);
4885 }
4886
4887 /*
4888 * Since this CPU is going 'away' for a while, fold any nr_active delta
4889 * we might have. Assumes we're called after migrate_tasks() so that the
4890 * nr_active count is stable.
4891 *
4892 * Also see the comment "Global load-average calculations".
4893 */
4894 static void calc_load_migrate(struct rq *rq)
4895 {
4896 long delta = calc_load_fold_active(rq);
4897 if (delta)
4898 atomic_long_add(delta, &calc_load_tasks);
4899 }
4900
4901 /*
4902 * Migrate all tasks from the rq, sleeping tasks will be migrated by
4903 * try_to_wake_up()->select_task_rq().
4904 *
4905 * Called with rq->lock held even though we'er in stop_machine() and
4906 * there's no concurrency possible, we hold the required locks anyway
4907 * because of lock validation efforts.
4908 */
4909 static void migrate_tasks(unsigned int dead_cpu)
4910 {
4911 struct rq *rq = cpu_rq(dead_cpu);
4912 struct task_struct *next, *stop = rq->stop;
4913 int dest_cpu;
4914
4915 /*
4916 * Fudge the rq selection such that the below task selection loop
4917 * doesn't get stuck on the currently eligible stop task.
4918 *
4919 * We're currently inside stop_machine() and the rq is either stuck
4920 * in the stop_machine_cpu_stop() loop, or we're executing this code,
4921 * either way we should never end up calling schedule() until we're
4922 * done here.
4923 */
4924 rq->stop = NULL;
4925
4926 for ( ; ; ) {
4927 /*
4928 * There's this thread running, bail when that's the only
4929 * remaining thread.
4930 */
4931 if (rq->nr_running == 1)
4932 break;
4933
4934 next = pick_next_task(rq);
4935 BUG_ON(!next);
4936 next->sched_class->put_prev_task(rq, next);
4937
4938 /* Find suitable destination for @next, with force if needed. */
4939 dest_cpu = select_fallback_rq(dead_cpu, next);
4940 raw_spin_unlock(&rq->lock);
4941
4942 __migrate_task(next, dead_cpu, dest_cpu);
4943
4944 raw_spin_lock(&rq->lock);
4945 }
4946
4947 rq->stop = stop;
4948 }
4949
4950 #endif /* CONFIG_HOTPLUG_CPU */
4951
4952 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
4953
4954 static struct ctl_table sd_ctl_dir[] = {
4955 {
4956 .procname = "sched_domain",
4957 .mode = 0555,
4958 },
4959 {}
4960 };
4961
4962 static struct ctl_table sd_ctl_root[] = {
4963 {
4964 .procname = "kernel",
4965 .mode = 0555,
4966 .child = sd_ctl_dir,
4967 },
4968 {}
4969 };
4970
4971 static struct ctl_table *sd_alloc_ctl_entry(int n)
4972 {
4973 struct ctl_table *entry =
4974 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
4975
4976 return entry;
4977 }
4978
4979 static void sd_free_ctl_entry(struct ctl_table **tablep)
4980 {
4981 struct ctl_table *entry;
4982
4983 /*
4984 * In the intermediate directories, both the child directory and
4985 * procname are dynamically allocated and could fail but the mode
4986 * will always be set. In the lowest directory the names are
4987 * static strings and all have proc handlers.
4988 */
4989 for (entry = *tablep; entry->mode; entry++) {
4990 if (entry->child)
4991 sd_free_ctl_entry(&entry->child);
4992 if (entry->proc_handler == NULL)
4993 kfree(entry->procname);
4994 }
4995
4996 kfree(*tablep);
4997 *tablep = NULL;
4998 }
4999
5000 static int min_load_idx = 0;
5001 static int max_load_idx = CPU_LOAD_IDX_MAX;
5002
5003 static void
5004 set_table_entry(struct ctl_table *entry,
5005 const char *procname, void *data, int maxlen,
5006 umode_t mode, proc_handler *proc_handler,
5007 bool load_idx)
5008 {
5009 entry->procname = procname;
5010 entry->data = data;
5011 entry->maxlen = maxlen;
5012 entry->mode = mode;
5013 entry->proc_handler = proc_handler;
5014
5015 if (load_idx) {
5016 entry->extra1 = &min_load_idx;
5017 entry->extra2 = &max_load_idx;
5018 }
5019 }
5020
5021 static struct ctl_table *
5022 sd_alloc_ctl_domain_table(struct sched_domain *sd)
5023 {
5024 struct ctl_table *table = sd_alloc_ctl_entry(13);
5025
5026 if (table == NULL)
5027 return NULL;
5028
5029 set_table_entry(&table[0], "min_interval", &sd->min_interval,
5030 sizeof(long), 0644, proc_doulongvec_minmax, false);
5031 set_table_entry(&table[1], "max_interval", &sd->max_interval,
5032 sizeof(long), 0644, proc_doulongvec_minmax, false);
5033 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
5034 sizeof(int), 0644, proc_dointvec_minmax, true);
5035 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
5036 sizeof(int), 0644, proc_dointvec_minmax, true);
5037 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
5038 sizeof(int), 0644, proc_dointvec_minmax, true);
5039 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
5040 sizeof(int), 0644, proc_dointvec_minmax, true);
5041 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
5042 sizeof(int), 0644, proc_dointvec_minmax, true);
5043 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
5044 sizeof(int), 0644, proc_dointvec_minmax, false);
5045 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
5046 sizeof(int), 0644, proc_dointvec_minmax, false);
5047 set_table_entry(&table[9], "cache_nice_tries",
5048 &sd->cache_nice_tries,
5049 sizeof(int), 0644, proc_dointvec_minmax, false);
5050 set_table_entry(&table[10], "flags", &sd->flags,
5051 sizeof(int), 0644, proc_dointvec_minmax, false);
5052 set_table_entry(&table[11], "name", sd->name,
5053 CORENAME_MAX_SIZE, 0444, proc_dostring, false);
5054 /* &table[12] is terminator */
5055
5056 return table;
5057 }
5058
5059 static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
5060 {
5061 struct ctl_table *entry, *table;
5062 struct sched_domain *sd;
5063 int domain_num = 0, i;
5064 char buf[32];
5065
5066 for_each_domain(cpu, sd)
5067 domain_num++;
5068 entry = table = sd_alloc_ctl_entry(domain_num + 1);
5069 if (table == NULL)
5070 return NULL;
5071
5072 i = 0;
5073 for_each_domain(cpu, sd) {
5074 snprintf(buf, 32, "domain%d", i);
5075 entry->procname = kstrdup(buf, GFP_KERNEL);
5076 entry->mode = 0555;
5077 entry->child = sd_alloc_ctl_domain_table(sd);
5078 entry++;
5079 i++;
5080 }
5081 return table;
5082 }
5083
5084 static struct ctl_table_header *sd_sysctl_header;
5085 static void register_sched_domain_sysctl(void)
5086 {
5087 int i, cpu_num = num_possible_cpus();
5088 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
5089 char buf[32];
5090
5091 WARN_ON(sd_ctl_dir[0].child);
5092 sd_ctl_dir[0].child = entry;
5093
5094 if (entry == NULL)
5095 return;
5096
5097 for_each_possible_cpu(i) {
5098 snprintf(buf, 32, "cpu%d", i);
5099 entry->procname = kstrdup(buf, GFP_KERNEL);
5100 entry->mode = 0555;
5101 entry->child = sd_alloc_ctl_cpu_table(i);
5102 entry++;
5103 }
5104
5105 WARN_ON(sd_sysctl_header);
5106 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
5107 }
5108
5109 /* may be called multiple times per register */
5110 static void unregister_sched_domain_sysctl(void)
5111 {
5112 if (sd_sysctl_header)
5113 unregister_sysctl_table(sd_sysctl_header);
5114 sd_sysctl_header = NULL;
5115 if (sd_ctl_dir[0].child)
5116 sd_free_ctl_entry(&sd_ctl_dir[0].child);
5117 }
5118 #else
5119 static void register_sched_domain_sysctl(void)
5120 {
5121 }
5122 static void unregister_sched_domain_sysctl(void)
5123 {
5124 }
5125 #endif
5126
5127 static void set_rq_online(struct rq *rq)
5128 {
5129 if (!rq->online) {
5130 const struct sched_class *class;
5131
5132 cpumask_set_cpu(rq->cpu, rq->rd->online);
5133 rq->online = 1;
5134
5135 for_each_class(class) {
5136 if (class->rq_online)
5137 class->rq_online(rq);
5138 }
5139 }
5140 }
5141
5142 static void set_rq_offline(struct rq *rq)
5143 {
5144 if (rq->online) {
5145 const struct sched_class *class;
5146
5147 for_each_class(class) {
5148 if (class->rq_offline)
5149 class->rq_offline(rq);
5150 }
5151
5152 cpumask_clear_cpu(rq->cpu, rq->rd->online);
5153 rq->online = 0;
5154 }
5155 }
5156
5157 /*
5158 * migration_call - callback that gets triggered when a CPU is added.
5159 * Here we can start up the necessary migration thread for the new CPU.
5160 */
5161 static int __cpuinit
5162 migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
5163 {
5164 int cpu = (long)hcpu;
5165 unsigned long flags;
5166 struct rq *rq = cpu_rq(cpu);
5167
5168 switch (action & ~CPU_TASKS_FROZEN) {
5169
5170 case CPU_UP_PREPARE:
5171 rq->calc_load_update = calc_load_update;
5172 break;
5173
5174 case CPU_ONLINE:
5175 /* Update our root-domain */
5176 raw_spin_lock_irqsave(&rq->lock, flags);
5177 if (rq->rd) {
5178 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5179
5180 set_rq_online(rq);
5181 }
5182 raw_spin_unlock_irqrestore(&rq->lock, flags);
5183 break;
5184
5185 #ifdef CONFIG_HOTPLUG_CPU
5186 case CPU_DYING:
5187 sched_ttwu_pending();
5188 /* Update our root-domain */
5189 raw_spin_lock_irqsave(&rq->lock, flags);
5190 if (rq->rd) {
5191 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5192 set_rq_offline(rq);
5193 }
5194 migrate_tasks(cpu);
5195 BUG_ON(rq->nr_running != 1); /* the migration thread */
5196 raw_spin_unlock_irqrestore(&rq->lock, flags);
5197 break;
5198
5199 case CPU_DEAD:
5200 calc_load_migrate(rq);
5201 break;
5202 #endif
5203 }
5204
5205 update_max_interval();
5206
5207 return NOTIFY_OK;
5208 }
5209
5210 /*
5211 * Register at high priority so that task migration (migrate_all_tasks)
5212 * happens before everything else. This has to be lower priority than
5213 * the notifier in the perf_event subsystem, though.
5214 */
5215 static struct notifier_block __cpuinitdata migration_notifier = {
5216 .notifier_call = migration_call,
5217 .priority = CPU_PRI_MIGRATION,
5218 };
5219
5220 static int __cpuinit sched_cpu_active(struct notifier_block *nfb,
5221 unsigned long action, void *hcpu)
5222 {
5223 switch (action & ~CPU_TASKS_FROZEN) {
5224 case CPU_STARTING:
5225 case CPU_DOWN_FAILED:
5226 set_cpu_active((long)hcpu, true);
5227 return NOTIFY_OK;
5228 default:
5229 return NOTIFY_DONE;
5230 }
5231 }
5232
5233 static int __cpuinit sched_cpu_inactive(struct notifier_block *nfb,
5234 unsigned long action, void *hcpu)
5235 {
5236 switch (action & ~CPU_TASKS_FROZEN) {
5237 case CPU_DOWN_PREPARE:
5238 set_cpu_active((long)hcpu, false);
5239 return NOTIFY_OK;
5240 default:
5241 return NOTIFY_DONE;
5242 }
5243 }
5244
5245 static int __init migration_init(void)
5246 {
5247 void *cpu = (void *)(long)smp_processor_id();
5248 int err;
5249
5250 /* Initialize migration for the boot CPU */
5251 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5252 BUG_ON(err == NOTIFY_BAD);
5253 migration_call(&migration_notifier, CPU_ONLINE, cpu);
5254 register_cpu_notifier(&migration_notifier);
5255
5256 /* Register cpu active notifiers */
5257 cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
5258 cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
5259
5260 return 0;
5261 }
5262 early_initcall(migration_init);
5263 #endif
5264
5265 #ifdef CONFIG_SMP
5266
5267 static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
5268
5269 #ifdef CONFIG_SCHED_DEBUG
5270
5271 static __read_mostly int sched_debug_enabled;
5272
5273 static int __init sched_debug_setup(char *str)
5274 {
5275 sched_debug_enabled = 1;
5276
5277 return 0;
5278 }
5279 early_param("sched_debug", sched_debug_setup);
5280
5281 static inline bool sched_debug(void)
5282 {
5283 return sched_debug_enabled;
5284 }
5285
5286 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
5287 struct cpumask *groupmask)
5288 {
5289 struct sched_group *group = sd->groups;
5290 char str[256];
5291
5292 cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
5293 cpumask_clear(groupmask);
5294
5295 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
5296
5297 if (!(sd->flags & SD_LOAD_BALANCE)) {
5298 printk("does not load-balance\n");
5299 if (sd->parent)
5300 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5301 " has parent");
5302 return -1;
5303 }
5304
5305 printk(KERN_CONT "span %s level %s\n", str, sd->name);
5306
5307 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
5308 printk(KERN_ERR "ERROR: domain->span does not contain "
5309 "CPU%d\n", cpu);
5310 }
5311 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
5312 printk(KERN_ERR "ERROR: domain->groups does not contain"
5313 " CPU%d\n", cpu);
5314 }
5315
5316 printk(KERN_DEBUG "%*s groups:", level + 1, "");
5317 do {
5318 if (!group) {
5319 printk("\n");
5320 printk(KERN_ERR "ERROR: group is NULL\n");
5321 break;
5322 }
5323
5324 /*
5325 * Even though we initialize ->power to something semi-sane,
5326 * we leave power_orig unset. This allows us to detect if
5327 * domain iteration is still funny without causing /0 traps.
5328 */
5329 if (!group->sgp->power_orig) {
5330 printk(KERN_CONT "\n");
5331 printk(KERN_ERR "ERROR: domain->cpu_power not "
5332 "set\n");
5333 break;
5334 }
5335
5336 if (!cpumask_weight(sched_group_cpus(group))) {
5337 printk(KERN_CONT "\n");
5338 printk(KERN_ERR "ERROR: empty group\n");
5339 break;
5340 }
5341
5342 if (!(sd->flags & SD_OVERLAP) &&
5343 cpumask_intersects(groupmask, sched_group_cpus(group))) {
5344 printk(KERN_CONT "\n");
5345 printk(KERN_ERR "ERROR: repeated CPUs\n");
5346 break;
5347 }
5348
5349 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
5350
5351 cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
5352
5353 printk(KERN_CONT " %s", str);
5354 if (group->sgp->power != SCHED_POWER_SCALE) {
5355 printk(KERN_CONT " (cpu_power = %d)",
5356 group->sgp->power);
5357 }
5358
5359 group = group->next;
5360 } while (group != sd->groups);
5361 printk(KERN_CONT "\n");
5362
5363 if (!cpumask_equal(sched_domain_span(sd), groupmask))
5364 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
5365
5366 if (sd->parent &&
5367 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
5368 printk(KERN_ERR "ERROR: parent span is not a superset "
5369 "of domain->span\n");
5370 return 0;
5371 }
5372
5373 static void sched_domain_debug(struct sched_domain *sd, int cpu)
5374 {
5375 int level = 0;
5376
5377 if (!sched_debug_enabled)
5378 return;
5379
5380 if (!sd) {
5381 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5382 return;
5383 }
5384
5385 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5386
5387 for (;;) {
5388 if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
5389 break;
5390 level++;
5391 sd = sd->parent;
5392 if (!sd)
5393 break;
5394 }
5395 }
5396 #else /* !CONFIG_SCHED_DEBUG */
5397 # define sched_domain_debug(sd, cpu) do { } while (0)
5398 static inline bool sched_debug(void)
5399 {
5400 return false;
5401 }
5402 #endif /* CONFIG_SCHED_DEBUG */
5403
5404 static int sd_degenerate(struct sched_domain *sd)
5405 {
5406 if (cpumask_weight(sched_domain_span(sd)) == 1)
5407 return 1;
5408
5409 /* Following flags need at least 2 groups */
5410 if (sd->flags & (SD_LOAD_BALANCE |
5411 SD_BALANCE_NEWIDLE |
5412 SD_BALANCE_FORK |
5413 SD_BALANCE_EXEC |
5414 SD_SHARE_CPUPOWER |
5415 SD_SHARE_PKG_RESOURCES)) {
5416 if (sd->groups != sd->groups->next)
5417 return 0;
5418 }
5419
5420 /* Following flags don't use groups */
5421 if (sd->flags & (SD_WAKE_AFFINE))
5422 return 0;
5423
5424 return 1;
5425 }
5426
5427 static int
5428 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
5429 {
5430 unsigned long cflags = sd->flags, pflags = parent->flags;
5431
5432 if (sd_degenerate(parent))
5433 return 1;
5434
5435 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
5436 return 0;
5437
5438 /* Flags needing groups don't count if only 1 group in parent */
5439 if (parent->groups == parent->groups->next) {
5440 pflags &= ~(SD_LOAD_BALANCE |
5441 SD_BALANCE_NEWIDLE |
5442 SD_BALANCE_FORK |
5443 SD_BALANCE_EXEC |
5444 SD_SHARE_CPUPOWER |
5445 SD_SHARE_PKG_RESOURCES);
5446 if (nr_node_ids == 1)
5447 pflags &= ~SD_SERIALIZE;
5448 }
5449 if (~cflags & pflags)
5450 return 0;
5451
5452 return 1;
5453 }
5454
5455 static void free_rootdomain(struct rcu_head *rcu)
5456 {
5457 struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
5458
5459 cpupri_cleanup(&rd->cpupri);
5460 free_cpumask_var(rd->rto_mask);
5461 free_cpumask_var(rd->online);
5462 free_cpumask_var(rd->span);
5463 kfree(rd);
5464 }
5465
5466 static void rq_attach_root(struct rq *rq, struct root_domain *rd)
5467 {
5468 struct root_domain *old_rd = NULL;
5469 unsigned long flags;
5470
5471 raw_spin_lock_irqsave(&rq->lock, flags);
5472
5473 if (rq->rd) {
5474 old_rd = rq->rd;
5475
5476 if (cpumask_test_cpu(rq->cpu, old_rd->online))
5477 set_rq_offline(rq);
5478
5479 cpumask_clear_cpu(rq->cpu, old_rd->span);
5480
5481 /*
5482 * If we dont want to free the old_rt yet then
5483 * set old_rd to NULL to skip the freeing later
5484 * in this function:
5485 */
5486 if (!atomic_dec_and_test(&old_rd->refcount))
5487 old_rd = NULL;
5488 }
5489
5490 atomic_inc(&rd->refcount);
5491 rq->rd = rd;
5492
5493 cpumask_set_cpu(rq->cpu, rd->span);
5494 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
5495 set_rq_online(rq);
5496
5497 raw_spin_unlock_irqrestore(&rq->lock, flags);
5498
5499 if (old_rd)
5500 call_rcu_sched(&old_rd->rcu, free_rootdomain);
5501 }
5502
5503 static int init_rootdomain(struct root_domain *rd)
5504 {
5505 memset(rd, 0, sizeof(*rd));
5506
5507 if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
5508 goto out;
5509 if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
5510 goto free_span;
5511 if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
5512 goto free_online;
5513
5514 if (cpupri_init(&rd->cpupri) != 0)
5515 goto free_rto_mask;
5516 return 0;
5517
5518 free_rto_mask:
5519 free_cpumask_var(rd->rto_mask);
5520 free_online:
5521 free_cpumask_var(rd->online);
5522 free_span:
5523 free_cpumask_var(rd->span);
5524 out:
5525 return -ENOMEM;
5526 }
5527
5528 /*
5529 * By default the system creates a single root-domain with all cpus as
5530 * members (mimicking the global state we have today).
5531 */
5532 struct root_domain def_root_domain;
5533
5534 static void init_defrootdomain(void)
5535 {
5536 init_rootdomain(&def_root_domain);
5537
5538 atomic_set(&def_root_domain.refcount, 1);
5539 }
5540
5541 static struct root_domain *alloc_rootdomain(void)
5542 {
5543 struct root_domain *rd;
5544
5545 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
5546 if (!rd)
5547 return NULL;
5548
5549 if (init_rootdomain(rd) != 0) {
5550 kfree(rd);
5551 return NULL;
5552 }
5553
5554 return rd;
5555 }
5556
5557 static void free_sched_groups(struct sched_group *sg, int free_sgp)
5558 {
5559 struct sched_group *tmp, *first;
5560
5561 if (!sg)
5562 return;
5563
5564 first = sg;
5565 do {
5566 tmp = sg->next;
5567
5568 if (free_sgp && atomic_dec_and_test(&sg->sgp->ref))
5569 kfree(sg->sgp);
5570
5571 kfree(sg);
5572 sg = tmp;
5573 } while (sg != first);
5574 }
5575
5576 static void free_sched_domain(struct rcu_head *rcu)
5577 {
5578 struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
5579
5580 /*
5581 * If its an overlapping domain it has private groups, iterate and
5582 * nuke them all.
5583 */
5584 if (sd->flags & SD_OVERLAP) {
5585 free_sched_groups(sd->groups, 1);
5586 } else if (atomic_dec_and_test(&sd->groups->ref)) {
5587 kfree(sd->groups->sgp);
5588 kfree(sd->groups);
5589 }
5590 kfree(sd);
5591 }
5592
5593 static void destroy_sched_domain(struct sched_domain *sd, int cpu)
5594 {
5595 call_rcu(&sd->rcu, free_sched_domain);
5596 }
5597
5598 static void destroy_sched_domains(struct sched_domain *sd, int cpu)
5599 {
5600 for (; sd; sd = sd->parent)
5601 destroy_sched_domain(sd, cpu);
5602 }
5603
5604 /*
5605 * Keep a special pointer to the highest sched_domain that has
5606 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
5607 * allows us to avoid some pointer chasing select_idle_sibling().
5608 *
5609 * Also keep a unique ID per domain (we use the first cpu number in
5610 * the cpumask of the domain), this allows us to quickly tell if
5611 * two cpus are in the same cache domain, see cpus_share_cache().
5612 */
5613 DEFINE_PER_CPU(struct sched_domain *, sd_llc);
5614 DEFINE_PER_CPU(int, sd_llc_id);
5615
5616 static void update_top_cache_domain(int cpu)
5617 {
5618 struct sched_domain *sd;
5619 int id = cpu;
5620
5621 sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
5622 if (sd)
5623 id = cpumask_first(sched_domain_span(sd));
5624
5625 rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
5626 per_cpu(sd_llc_id, cpu) = id;
5627 }
5628
5629 /*
5630 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
5631 * hold the hotplug lock.
5632 */
5633 static void
5634 cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
5635 {
5636 struct rq *rq = cpu_rq(cpu);
5637 struct sched_domain *tmp;
5638
5639 /* Remove the sched domains which do not contribute to scheduling. */
5640 for (tmp = sd; tmp; ) {
5641 struct sched_domain *parent = tmp->parent;
5642 if (!parent)
5643 break;
5644
5645 if (sd_parent_degenerate(tmp, parent)) {
5646 tmp->parent = parent->parent;
5647 if (parent->parent)
5648 parent->parent->child = tmp;
5649 destroy_sched_domain(parent, cpu);
5650 } else
5651 tmp = tmp->parent;
5652 }
5653
5654 if (sd && sd_degenerate(sd)) {
5655 tmp = sd;
5656 sd = sd->parent;
5657 destroy_sched_domain(tmp, cpu);
5658 if (sd)
5659 sd->child = NULL;
5660 }
5661
5662 sched_domain_debug(sd, cpu);
5663
5664 rq_attach_root(rq, rd);
5665 tmp = rq->sd;
5666 rcu_assign_pointer(rq->sd, sd);
5667 destroy_sched_domains(tmp, cpu);
5668
5669 update_top_cache_domain(cpu);
5670 }
5671
5672 /* cpus with isolated domains */
5673 static cpumask_var_t cpu_isolated_map;
5674
5675 /* Setup the mask of cpus configured for isolated domains */
5676 static int __init isolated_cpu_setup(char *str)
5677 {
5678 alloc_bootmem_cpumask_var(&cpu_isolated_map);
5679 cpulist_parse(str, cpu_isolated_map);
5680 return 1;
5681 }
5682
5683 __setup("isolcpus=", isolated_cpu_setup);
5684
5685 static const struct cpumask *cpu_cpu_mask(int cpu)
5686 {
5687 return cpumask_of_node(cpu_to_node(cpu));
5688 }
5689
5690 struct sd_data {
5691 struct sched_domain **__percpu sd;
5692 struct sched_group **__percpu sg;
5693 struct sched_group_power **__percpu sgp;
5694 };
5695
5696 struct s_data {
5697 struct sched_domain ** __percpu sd;
5698 struct root_domain *rd;
5699 };
5700
5701 enum s_alloc {
5702 sa_rootdomain,
5703 sa_sd,
5704 sa_sd_storage,
5705 sa_none,
5706 };
5707
5708 struct sched_domain_topology_level;
5709
5710 typedef struct sched_domain *(*sched_domain_init_f)(struct sched_domain_topology_level *tl, int cpu);
5711 typedef const struct cpumask *(*sched_domain_mask_f)(int cpu);
5712
5713 #define SDTL_OVERLAP 0x01
5714
5715 struct sched_domain_topology_level {
5716 sched_domain_init_f init;
5717 sched_domain_mask_f mask;
5718 int flags;
5719 int numa_level;
5720 struct sd_data data;
5721 };
5722
5723 /*
5724 * Build an iteration mask that can exclude certain CPUs from the upwards
5725 * domain traversal.
5726 *
5727 * Asymmetric node setups can result in situations where the domain tree is of
5728 * unequal depth, make sure to skip domains that already cover the entire
5729 * range.
5730 *
5731 * In that case build_sched_domains() will have terminated the iteration early
5732 * and our sibling sd spans will be empty. Domains should always include the
5733 * cpu they're built on, so check that.
5734 *
5735 */
5736 static void build_group_mask(struct sched_domain *sd, struct sched_group *sg)
5737 {
5738 const struct cpumask *span = sched_domain_span(sd);
5739 struct sd_data *sdd = sd->private;
5740 struct sched_domain *sibling;
5741 int i;
5742
5743 for_each_cpu(i, span) {
5744 sibling = *per_cpu_ptr(sdd->sd, i);
5745 if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
5746 continue;
5747
5748 cpumask_set_cpu(i, sched_group_mask(sg));
5749 }
5750 }
5751
5752 /*
5753 * Return the canonical balance cpu for this group, this is the first cpu
5754 * of this group that's also in the iteration mask.
5755 */
5756 int group_balance_cpu(struct sched_group *sg)
5757 {
5758 return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg));
5759 }
5760
5761 static int
5762 build_overlap_sched_groups(struct sched_domain *sd, int cpu)
5763 {
5764 struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
5765 const struct cpumask *span = sched_domain_span(sd);
5766 struct cpumask *covered = sched_domains_tmpmask;
5767 struct sd_data *sdd = sd->private;
5768 struct sched_domain *child;
5769 int i;
5770
5771 cpumask_clear(covered);
5772
5773 for_each_cpu(i, span) {
5774 struct cpumask *sg_span;
5775
5776 if (cpumask_test_cpu(i, covered))
5777 continue;
5778
5779 child = *per_cpu_ptr(sdd->sd, i);
5780
5781 /* See the comment near build_group_mask(). */
5782 if (!cpumask_test_cpu(i, sched_domain_span(child)))
5783 continue;
5784
5785 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
5786 GFP_KERNEL, cpu_to_node(cpu));
5787
5788 if (!sg)
5789 goto fail;
5790
5791 sg_span = sched_group_cpus(sg);
5792 if (child->child) {
5793 child = child->child;
5794 cpumask_copy(sg_span, sched_domain_span(child));
5795 } else
5796 cpumask_set_cpu(i, sg_span);
5797
5798 cpumask_or(covered, covered, sg_span);
5799
5800 sg->sgp = *per_cpu_ptr(sdd->sgp, i);
5801 if (atomic_inc_return(&sg->sgp->ref) == 1)
5802 build_group_mask(sd, sg);
5803
5804 /*
5805 * Initialize sgp->power such that even if we mess up the
5806 * domains and no possible iteration will get us here, we won't
5807 * die on a /0 trap.
5808 */
5809 sg->sgp->power = SCHED_POWER_SCALE * cpumask_weight(sg_span);
5810
5811 /*
5812 * Make sure the first group of this domain contains the
5813 * canonical balance cpu. Otherwise the sched_domain iteration
5814 * breaks. See update_sg_lb_stats().
5815 */
5816 if ((!groups && cpumask_test_cpu(cpu, sg_span)) ||
5817 group_balance_cpu(sg) == cpu)
5818 groups = sg;
5819
5820 if (!first)
5821 first = sg;
5822 if (last)
5823 last->next = sg;
5824 last = sg;
5825 last->next = first;
5826 }
5827 sd->groups = groups;
5828
5829 return 0;
5830
5831 fail:
5832 free_sched_groups(first, 0);
5833
5834 return -ENOMEM;
5835 }
5836
5837 static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
5838 {
5839 struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
5840 struct sched_domain *child = sd->child;
5841
5842 if (child)
5843 cpu = cpumask_first(sched_domain_span(child));
5844
5845 if (sg) {
5846 *sg = *per_cpu_ptr(sdd->sg, cpu);
5847 (*sg)->sgp = *per_cpu_ptr(sdd->sgp, cpu);
5848 atomic_set(&(*sg)->sgp->ref, 1); /* for claim_allocations */
5849 }
5850
5851 return cpu;
5852 }
5853
5854 /*
5855 * build_sched_groups will build a circular linked list of the groups
5856 * covered by the given span, and will set each group's ->cpumask correctly,
5857 * and ->cpu_power to 0.
5858 *
5859 * Assumes the sched_domain tree is fully constructed
5860 */
5861 static int
5862 build_sched_groups(struct sched_domain *sd, int cpu)
5863 {
5864 struct sched_group *first = NULL, *last = NULL;
5865 struct sd_data *sdd = sd->private;
5866 const struct cpumask *span = sched_domain_span(sd);
5867 struct cpumask *covered;
5868 int i;
5869
5870 get_group(cpu, sdd, &sd->groups);
5871 atomic_inc(&sd->groups->ref);
5872
5873 if (cpu != cpumask_first(sched_domain_span(sd)))
5874 return 0;
5875
5876 lockdep_assert_held(&sched_domains_mutex);
5877 covered = sched_domains_tmpmask;
5878
5879 cpumask_clear(covered);
5880
5881 for_each_cpu(i, span) {
5882 struct sched_group *sg;
5883 int group = get_group(i, sdd, &sg);
5884 int j;
5885
5886 if (cpumask_test_cpu(i, covered))
5887 continue;
5888
5889 cpumask_clear(sched_group_cpus(sg));
5890 sg->sgp->power = 0;
5891 cpumask_setall(sched_group_mask(sg));
5892
5893 for_each_cpu(j, span) {
5894 if (get_group(j, sdd, NULL) != group)
5895 continue;
5896
5897 cpumask_set_cpu(j, covered);
5898 cpumask_set_cpu(j, sched_group_cpus(sg));
5899 }
5900
5901 if (!first)
5902 first = sg;
5903 if (last)
5904 last->next = sg;
5905 last = sg;
5906 }
5907 last->next = first;
5908
5909 return 0;
5910 }
5911
5912 /*
5913 * Initialize sched groups cpu_power.
5914 *
5915 * cpu_power indicates the capacity of sched group, which is used while
5916 * distributing the load between different sched groups in a sched domain.
5917 * Typically cpu_power for all the groups in a sched domain will be same unless
5918 * there are asymmetries in the topology. If there are asymmetries, group
5919 * having more cpu_power will pickup more load compared to the group having
5920 * less cpu_power.
5921 */
5922 static void init_sched_groups_power(int cpu, struct sched_domain *sd)
5923 {
5924 struct sched_group *sg = sd->groups;
5925
5926 WARN_ON(!sd || !sg);
5927
5928 do {
5929 sg->group_weight = cpumask_weight(sched_group_cpus(sg));
5930 sg = sg->next;
5931 } while (sg != sd->groups);
5932
5933 if (cpu != group_balance_cpu(sg))
5934 return;
5935
5936 update_group_power(sd, cpu);
5937 atomic_set(&sg->sgp->nr_busy_cpus, sg->group_weight);
5938 }
5939
5940 int __weak arch_sd_sibling_asym_packing(void)
5941 {
5942 return 0*SD_ASYM_PACKING;
5943 }
5944
5945 /*
5946 * Initializers for schedule domains
5947 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
5948 */
5949
5950 #ifdef CONFIG_SCHED_DEBUG
5951 # define SD_INIT_NAME(sd, type) sd->name = #type
5952 #else
5953 # define SD_INIT_NAME(sd, type) do { } while (0)
5954 #endif
5955
5956 #define SD_INIT_FUNC(type) \
5957 static noinline struct sched_domain * \
5958 sd_init_##type(struct sched_domain_topology_level *tl, int cpu) \
5959 { \
5960 struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu); \
5961 *sd = SD_##type##_INIT; \
5962 SD_INIT_NAME(sd, type); \
5963 sd->private = &tl->data; \
5964 return sd; \
5965 }
5966
5967 SD_INIT_FUNC(CPU)
5968 #ifdef CONFIG_SCHED_SMT
5969 SD_INIT_FUNC(SIBLING)
5970 #endif
5971 #ifdef CONFIG_SCHED_MC
5972 SD_INIT_FUNC(MC)
5973 #endif
5974 #ifdef CONFIG_SCHED_BOOK
5975 SD_INIT_FUNC(BOOK)
5976 #endif
5977
5978 static int default_relax_domain_level = -1;
5979 int sched_domain_level_max;
5980
5981 static int __init setup_relax_domain_level(char *str)
5982 {
5983 if (kstrtoint(str, 0, &default_relax_domain_level))
5984 pr_warn("Unable to set relax_domain_level\n");
5985
5986 return 1;
5987 }
5988 __setup("relax_domain_level=", setup_relax_domain_level);
5989
5990 static void set_domain_attribute(struct sched_domain *sd,
5991 struct sched_domain_attr *attr)
5992 {
5993 int request;
5994
5995 if (!attr || attr->relax_domain_level < 0) {
5996 if (default_relax_domain_level < 0)
5997 return;
5998 else
5999 request = default_relax_domain_level;
6000 } else
6001 request = attr->relax_domain_level;
6002 if (request < sd->level) {
6003 /* turn off idle balance on this domain */
6004 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6005 } else {
6006 /* turn on idle balance on this domain */
6007 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6008 }
6009 }
6010
6011 static void __sdt_free(const struct cpumask *cpu_map);
6012 static int __sdt_alloc(const struct cpumask *cpu_map);
6013
6014 static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
6015 const struct cpumask *cpu_map)
6016 {
6017 switch (what) {
6018 case sa_rootdomain:
6019 if (!atomic_read(&d->rd->refcount))
6020 free_rootdomain(&d->rd->rcu); /* fall through */
6021 case sa_sd:
6022 free_percpu(d->sd); /* fall through */
6023 case sa_sd_storage:
6024 __sdt_free(cpu_map); /* fall through */
6025 case sa_none:
6026 break;
6027 }
6028 }
6029
6030 static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
6031 const struct cpumask *cpu_map)
6032 {
6033 memset(d, 0, sizeof(*d));
6034
6035 if (__sdt_alloc(cpu_map))
6036 return sa_sd_storage;
6037 d->sd = alloc_percpu(struct sched_domain *);
6038 if (!d->sd)
6039 return sa_sd_storage;
6040 d->rd = alloc_rootdomain();
6041 if (!d->rd)
6042 return sa_sd;
6043 return sa_rootdomain;
6044 }
6045
6046 /*
6047 * NULL the sd_data elements we've used to build the sched_domain and
6048 * sched_group structure so that the subsequent __free_domain_allocs()
6049 * will not free the data we're using.
6050 */
6051 static void claim_allocations(int cpu, struct sched_domain *sd)
6052 {
6053 struct sd_data *sdd = sd->private;
6054
6055 WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
6056 *per_cpu_ptr(sdd->sd, cpu) = NULL;
6057
6058 if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
6059 *per_cpu_ptr(sdd->sg, cpu) = NULL;
6060
6061 if (atomic_read(&(*per_cpu_ptr(sdd->sgp, cpu))->ref))
6062 *per_cpu_ptr(sdd->sgp, cpu) = NULL;
6063 }
6064
6065 #ifdef CONFIG_SCHED_SMT
6066 static const struct cpumask *cpu_smt_mask(int cpu)
6067 {
6068 return topology_thread_cpumask(cpu);
6069 }
6070 #endif
6071
6072 /*
6073 * Topology list, bottom-up.
6074 */
6075 static struct sched_domain_topology_level default_topology[] = {
6076 #ifdef CONFIG_SCHED_SMT
6077 { sd_init_SIBLING, cpu_smt_mask, },
6078 #endif
6079 #ifdef CONFIG_SCHED_MC
6080 { sd_init_MC, cpu_coregroup_mask, },
6081 #endif
6082 #ifdef CONFIG_SCHED_BOOK
6083 { sd_init_BOOK, cpu_book_mask, },
6084 #endif
6085 { sd_init_CPU, cpu_cpu_mask, },
6086 { NULL, },
6087 };
6088
6089 static struct sched_domain_topology_level *sched_domain_topology = default_topology;
6090
6091 #ifdef CONFIG_NUMA
6092
6093 static int sched_domains_numa_levels;
6094 static int *sched_domains_numa_distance;
6095 static struct cpumask ***sched_domains_numa_masks;
6096 static int sched_domains_curr_level;
6097
6098 static inline int sd_local_flags(int level)
6099 {
6100 if (sched_domains_numa_distance[level] > RECLAIM_DISTANCE)
6101 return 0;
6102
6103 return SD_BALANCE_EXEC | SD_BALANCE_FORK | SD_WAKE_AFFINE;
6104 }
6105
6106 static struct sched_domain *
6107 sd_numa_init(struct sched_domain_topology_level *tl, int cpu)
6108 {
6109 struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);
6110 int level = tl->numa_level;
6111 int sd_weight = cpumask_weight(
6112 sched_domains_numa_masks[level][cpu_to_node(cpu)]);
6113
6114 *sd = (struct sched_domain){
6115 .min_interval = sd_weight,
6116 .max_interval = 2*sd_weight,
6117 .busy_factor = 32,
6118 .imbalance_pct = 125,
6119 .cache_nice_tries = 2,
6120 .busy_idx = 3,
6121 .idle_idx = 2,
6122 .newidle_idx = 0,
6123 .wake_idx = 0,
6124 .forkexec_idx = 0,
6125
6126 .flags = 1*SD_LOAD_BALANCE
6127 | 1*SD_BALANCE_NEWIDLE
6128 | 0*SD_BALANCE_EXEC
6129 | 0*SD_BALANCE_FORK
6130 | 0*SD_BALANCE_WAKE
6131 | 0*SD_WAKE_AFFINE
6132 | 0*SD_SHARE_CPUPOWER
6133 | 0*SD_SHARE_PKG_RESOURCES
6134 | 1*SD_SERIALIZE
6135 | 0*SD_PREFER_SIBLING
6136 | sd_local_flags(level)
6137 ,
6138 .last_balance = jiffies,
6139 .balance_interval = sd_weight,
6140 };
6141 SD_INIT_NAME(sd, NUMA);
6142 sd->private = &tl->data;
6143
6144 /*
6145 * Ugly hack to pass state to sd_numa_mask()...
6146 */
6147 sched_domains_curr_level = tl->numa_level;
6148
6149 return sd;
6150 }
6151
6152 static const struct cpumask *sd_numa_mask(int cpu)
6153 {
6154 return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
6155 }
6156
6157 static void sched_numa_warn(const char *str)
6158 {
6159 static int done = false;
6160 int i,j;
6161
6162 if (done)
6163 return;
6164
6165 done = true;
6166
6167 printk(KERN_WARNING "ERROR: %s\n\n", str);
6168
6169 for (i = 0; i < nr_node_ids; i++) {
6170 printk(KERN_WARNING " ");
6171 for (j = 0; j < nr_node_ids; j++)
6172 printk(KERN_CONT "%02d ", node_distance(i,j));
6173 printk(KERN_CONT "\n");
6174 }
6175 printk(KERN_WARNING "\n");
6176 }
6177
6178 static bool find_numa_distance(int distance)
6179 {
6180 int i;
6181
6182 if (distance == node_distance(0, 0))
6183 return true;
6184
6185 for (i = 0; i < sched_domains_numa_levels; i++) {
6186 if (sched_domains_numa_distance[i] == distance)
6187 return true;
6188 }
6189
6190 return false;
6191 }
6192
6193 static void sched_init_numa(void)
6194 {
6195 int next_distance, curr_distance = node_distance(0, 0);
6196 struct sched_domain_topology_level *tl;
6197 int level = 0;
6198 int i, j, k;
6199
6200 sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
6201 if (!sched_domains_numa_distance)
6202 return;
6203
6204 /*
6205 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
6206 * unique distances in the node_distance() table.
6207 *
6208 * Assumes node_distance(0,j) includes all distances in
6209 * node_distance(i,j) in order to avoid cubic time.
6210 */
6211 next_distance = curr_distance;
6212 for (i = 0; i < nr_node_ids; i++) {
6213 for (j = 0; j < nr_node_ids; j++) {
6214 for (k = 0; k < nr_node_ids; k++) {
6215 int distance = node_distance(i, k);
6216
6217 if (distance > curr_distance &&
6218 (distance < next_distance ||
6219 next_distance == curr_distance))
6220 next_distance = distance;
6221
6222 /*
6223 * While not a strong assumption it would be nice to know
6224 * about cases where if node A is connected to B, B is not
6225 * equally connected to A.
6226 */
6227 if (sched_debug() && node_distance(k, i) != distance)
6228 sched_numa_warn("Node-distance not symmetric");
6229
6230 if (sched_debug() && i && !find_numa_distance(distance))
6231 sched_numa_warn("Node-0 not representative");
6232 }
6233 if (next_distance != curr_distance) {
6234 sched_domains_numa_distance[level++] = next_distance;
6235 sched_domains_numa_levels = level;
6236 curr_distance = next_distance;
6237 } else break;
6238 }
6239
6240 /*
6241 * In case of sched_debug() we verify the above assumption.
6242 */
6243 if (!sched_debug())
6244 break;
6245 }
6246 /*
6247 * 'level' contains the number of unique distances, excluding the
6248 * identity distance node_distance(i,i).
6249 *
6250 * The sched_domains_nume_distance[] array includes the actual distance
6251 * numbers.
6252 */
6253
6254 /*
6255 * Here, we should temporarily reset sched_domains_numa_levels to 0.
6256 * If it fails to allocate memory for array sched_domains_numa_masks[][],
6257 * the array will contain less then 'level' members. This could be
6258 * dangerous when we use it to iterate array sched_domains_numa_masks[][]
6259 * in other functions.
6260 *
6261 * We reset it to 'level' at the end of this function.
6262 */
6263 sched_domains_numa_levels = 0;
6264
6265 sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
6266 if (!sched_domains_numa_masks)
6267 return;
6268
6269 /*
6270 * Now for each level, construct a mask per node which contains all
6271 * cpus of nodes that are that many hops away from us.
6272 */
6273 for (i = 0; i < level; i++) {
6274 sched_domains_numa_masks[i] =
6275 kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
6276 if (!sched_domains_numa_masks[i])
6277 return;
6278
6279 for (j = 0; j < nr_node_ids; j++) {
6280 struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
6281 if (!mask)
6282 return;
6283
6284 sched_domains_numa_masks[i][j] = mask;
6285
6286 for (k = 0; k < nr_node_ids; k++) {
6287 if (node_distance(j, k) > sched_domains_numa_distance[i])
6288 continue;
6289
6290 cpumask_or(mask, mask, cpumask_of_node(k));
6291 }
6292 }
6293 }
6294
6295 tl = kzalloc((ARRAY_SIZE(default_topology) + level) *
6296 sizeof(struct sched_domain_topology_level), GFP_KERNEL);
6297 if (!tl)
6298 return;
6299
6300 /*
6301 * Copy the default topology bits..
6302 */
6303 for (i = 0; default_topology[i].init; i++)
6304 tl[i] = default_topology[i];
6305
6306 /*
6307 * .. and append 'j' levels of NUMA goodness.
6308 */
6309 for (j = 0; j < level; i++, j++) {
6310 tl[i] = (struct sched_domain_topology_level){
6311 .init = sd_numa_init,
6312 .mask = sd_numa_mask,
6313 .flags = SDTL_OVERLAP,
6314 .numa_level = j,
6315 };
6316 }
6317
6318 sched_domain_topology = tl;
6319
6320 sched_domains_numa_levels = level;
6321 }
6322
6323 static void sched_domains_numa_masks_set(int cpu)
6324 {
6325 int i, j;
6326 int node = cpu_to_node(cpu);
6327
6328 for (i = 0; i < sched_domains_numa_levels; i++) {
6329 for (j = 0; j < nr_node_ids; j++) {
6330 if (node_distance(j, node) <= sched_domains_numa_distance[i])
6331 cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
6332 }
6333 }
6334 }
6335
6336 static void sched_domains_numa_masks_clear(int cpu)
6337 {
6338 int i, j;
6339 for (i = 0; i < sched_domains_numa_levels; i++) {
6340 for (j = 0; j < nr_node_ids; j++)
6341 cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
6342 }
6343 }
6344
6345 /*
6346 * Update sched_domains_numa_masks[level][node] array when new cpus
6347 * are onlined.
6348 */
6349 static int sched_domains_numa_masks_update(struct notifier_block *nfb,
6350 unsigned long action,
6351 void *hcpu)
6352 {
6353 int cpu = (long)hcpu;
6354
6355 switch (action & ~CPU_TASKS_FROZEN) {
6356 case CPU_ONLINE:
6357 sched_domains_numa_masks_set(cpu);
6358 break;
6359
6360 case CPU_DEAD:
6361 sched_domains_numa_masks_clear(cpu);
6362 break;
6363
6364 default:
6365 return NOTIFY_DONE;
6366 }
6367
6368 return NOTIFY_OK;
6369 }
6370 #else
6371 static inline void sched_init_numa(void)
6372 {
6373 }
6374
6375 static int sched_domains_numa_masks_update(struct notifier_block *nfb,
6376 unsigned long action,
6377 void *hcpu)
6378 {
6379 return 0;
6380 }
6381 #endif /* CONFIG_NUMA */
6382
6383 static int __sdt_alloc(const struct cpumask *cpu_map)
6384 {
6385 struct sched_domain_topology_level *tl;
6386 int j;
6387
6388 for (tl = sched_domain_topology; tl->init; tl++) {
6389 struct sd_data *sdd = &tl->data;
6390
6391 sdd->sd = alloc_percpu(struct sched_domain *);
6392 if (!sdd->sd)
6393 return -ENOMEM;
6394
6395 sdd->sg = alloc_percpu(struct sched_group *);
6396 if (!sdd->sg)
6397 return -ENOMEM;
6398
6399 sdd->sgp = alloc_percpu(struct sched_group_power *);
6400 if (!sdd->sgp)
6401 return -ENOMEM;
6402
6403 for_each_cpu(j, cpu_map) {
6404 struct sched_domain *sd;
6405 struct sched_group *sg;
6406 struct sched_group_power *sgp;
6407
6408 sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
6409 GFP_KERNEL, cpu_to_node(j));
6410 if (!sd)
6411 return -ENOMEM;
6412
6413 *per_cpu_ptr(sdd->sd, j) = sd;
6414
6415 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
6416 GFP_KERNEL, cpu_to_node(j));
6417 if (!sg)
6418 return -ENOMEM;
6419
6420 sg->next = sg;
6421
6422 *per_cpu_ptr(sdd->sg, j) = sg;
6423
6424 sgp = kzalloc_node(sizeof(struct sched_group_power) + cpumask_size(),
6425 GFP_KERNEL, cpu_to_node(j));
6426 if (!sgp)
6427 return -ENOMEM;
6428
6429 *per_cpu_ptr(sdd->sgp, j) = sgp;
6430 }
6431 }
6432
6433 return 0;
6434 }
6435
6436 static void __sdt_free(const struct cpumask *cpu_map)
6437 {
6438 struct sched_domain_topology_level *tl;
6439 int j;
6440
6441 for (tl = sched_domain_topology; tl->init; tl++) {
6442 struct sd_data *sdd = &tl->data;
6443
6444 for_each_cpu(j, cpu_map) {
6445 struct sched_domain *sd;
6446
6447 if (sdd->sd) {
6448 sd = *per_cpu_ptr(sdd->sd, j);
6449 if (sd && (sd->flags & SD_OVERLAP))
6450 free_sched_groups(sd->groups, 0);
6451 kfree(*per_cpu_ptr(sdd->sd, j));
6452 }
6453
6454 if (sdd->sg)
6455 kfree(*per_cpu_ptr(sdd->sg, j));
6456 if (sdd->sgp)
6457 kfree(*per_cpu_ptr(sdd->sgp, j));
6458 }
6459 free_percpu(sdd->sd);
6460 sdd->sd = NULL;
6461 free_percpu(sdd->sg);
6462 sdd->sg = NULL;
6463 free_percpu(sdd->sgp);
6464 sdd->sgp = NULL;
6465 }
6466 }
6467
6468 struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
6469 struct s_data *d, const struct cpumask *cpu_map,
6470 struct sched_domain_attr *attr, struct sched_domain *child,
6471 int cpu)
6472 {
6473 struct sched_domain *sd = tl->init(tl, cpu);
6474 if (!sd)
6475 return child;
6476
6477 cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
6478 if (child) {
6479 sd->level = child->level + 1;
6480 sched_domain_level_max = max(sched_domain_level_max, sd->level);
6481 child->parent = sd;
6482 }
6483 sd->child = child;
6484 set_domain_attribute(sd, attr);
6485
6486 return sd;
6487 }
6488
6489 /*
6490 * Build sched domains for a given set of cpus and attach the sched domains
6491 * to the individual cpus
6492 */
6493 static int build_sched_domains(const struct cpumask *cpu_map,
6494 struct sched_domain_attr *attr)
6495 {
6496 enum s_alloc alloc_state = sa_none;
6497 struct sched_domain *sd;
6498 struct s_data d;
6499 int i, ret = -ENOMEM;
6500
6501 alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
6502 if (alloc_state != sa_rootdomain)
6503 goto error;
6504
6505 /* Set up domains for cpus specified by the cpu_map. */
6506 for_each_cpu(i, cpu_map) {
6507 struct sched_domain_topology_level *tl;
6508
6509 sd = NULL;
6510 for (tl = sched_domain_topology; tl->init; tl++) {
6511 sd = build_sched_domain(tl, &d, cpu_map, attr, sd, i);
6512 if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
6513 sd->flags |= SD_OVERLAP;
6514 if (cpumask_equal(cpu_map, sched_domain_span(sd)))
6515 break;
6516 }
6517
6518 while (sd->child)
6519 sd = sd->child;
6520
6521 *per_cpu_ptr(d.sd, i) = sd;
6522 }
6523
6524 /* Build the groups for the domains */
6525 for_each_cpu(i, cpu_map) {
6526 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6527 sd->span_weight = cpumask_weight(sched_domain_span(sd));
6528 if (sd->flags & SD_OVERLAP) {
6529 if (build_overlap_sched_groups(sd, i))
6530 goto error;
6531 } else {
6532 if (build_sched_groups(sd, i))
6533 goto error;
6534 }
6535 }
6536 }
6537
6538 /* Calculate CPU power for physical packages and nodes */
6539 for (i = nr_cpumask_bits-1; i >= 0; i--) {
6540 if (!cpumask_test_cpu(i, cpu_map))
6541 continue;
6542
6543 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6544 claim_allocations(i, sd);
6545 init_sched_groups_power(i, sd);
6546 }
6547 }
6548
6549 /* Attach the domains */
6550 rcu_read_lock();
6551 for_each_cpu(i, cpu_map) {
6552 sd = *per_cpu_ptr(d.sd, i);
6553 cpu_attach_domain(sd, d.rd, i);
6554 }
6555 rcu_read_unlock();
6556
6557 ret = 0;
6558 error:
6559 __free_domain_allocs(&d, alloc_state, cpu_map);
6560 return ret;
6561 }
6562
6563 static cpumask_var_t *doms_cur; /* current sched domains */
6564 static int ndoms_cur; /* number of sched domains in 'doms_cur' */
6565 static struct sched_domain_attr *dattr_cur;
6566 /* attribues of custom domains in 'doms_cur' */
6567
6568 /*
6569 * Special case: If a kmalloc of a doms_cur partition (array of
6570 * cpumask) fails, then fallback to a single sched domain,
6571 * as determined by the single cpumask fallback_doms.
6572 */
6573 static cpumask_var_t fallback_doms;
6574
6575 /*
6576 * arch_update_cpu_topology lets virtualized architectures update the
6577 * cpu core maps. It is supposed to return 1 if the topology changed
6578 * or 0 if it stayed the same.
6579 */
6580 int __attribute__((weak)) arch_update_cpu_topology(void)
6581 {
6582 return 0;
6583 }
6584
6585 cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
6586 {
6587 int i;
6588 cpumask_var_t *doms;
6589
6590 doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
6591 if (!doms)
6592 return NULL;
6593 for (i = 0; i < ndoms; i++) {
6594 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
6595 free_sched_domains(doms, i);
6596 return NULL;
6597 }
6598 }
6599 return doms;
6600 }
6601
6602 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
6603 {
6604 unsigned int i;
6605 for (i = 0; i < ndoms; i++)
6606 free_cpumask_var(doms[i]);
6607 kfree(doms);
6608 }
6609
6610 /*
6611 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
6612 * For now this just excludes isolated cpus, but could be used to
6613 * exclude other special cases in the future.
6614 */
6615 static int init_sched_domains(const struct cpumask *cpu_map)
6616 {
6617 int err;
6618
6619 arch_update_cpu_topology();
6620 ndoms_cur = 1;
6621 doms_cur = alloc_sched_domains(ndoms_cur);
6622 if (!doms_cur)
6623 doms_cur = &fallback_doms;
6624 cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
6625 err = build_sched_domains(doms_cur[0], NULL);
6626 register_sched_domain_sysctl();
6627
6628 return err;
6629 }
6630
6631 /*
6632 * Detach sched domains from a group of cpus specified in cpu_map
6633 * These cpus will now be attached to the NULL domain
6634 */
6635 static void detach_destroy_domains(const struct cpumask *cpu_map)
6636 {
6637 int i;
6638
6639 rcu_read_lock();
6640 for_each_cpu(i, cpu_map)
6641 cpu_attach_domain(NULL, &def_root_domain, i);
6642 rcu_read_unlock();
6643 }
6644
6645 /* handle null as "default" */
6646 static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
6647 struct sched_domain_attr *new, int idx_new)
6648 {
6649 struct sched_domain_attr tmp;
6650
6651 /* fast path */
6652 if (!new && !cur)
6653 return 1;
6654
6655 tmp = SD_ATTR_INIT;
6656 return !memcmp(cur ? (cur + idx_cur) : &tmp,
6657 new ? (new + idx_new) : &tmp,
6658 sizeof(struct sched_domain_attr));
6659 }
6660
6661 /*
6662 * Partition sched domains as specified by the 'ndoms_new'
6663 * cpumasks in the array doms_new[] of cpumasks. This compares
6664 * doms_new[] to the current sched domain partitioning, doms_cur[].
6665 * It destroys each deleted domain and builds each new domain.
6666 *
6667 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
6668 * The masks don't intersect (don't overlap.) We should setup one
6669 * sched domain for each mask. CPUs not in any of the cpumasks will
6670 * not be load balanced. If the same cpumask appears both in the
6671 * current 'doms_cur' domains and in the new 'doms_new', we can leave
6672 * it as it is.
6673 *
6674 * The passed in 'doms_new' should be allocated using
6675 * alloc_sched_domains. This routine takes ownership of it and will
6676 * free_sched_domains it when done with it. If the caller failed the
6677 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
6678 * and partition_sched_domains() will fallback to the single partition
6679 * 'fallback_doms', it also forces the domains to be rebuilt.
6680 *
6681 * If doms_new == NULL it will be replaced with cpu_online_mask.
6682 * ndoms_new == 0 is a special case for destroying existing domains,
6683 * and it will not create the default domain.
6684 *
6685 * Call with hotplug lock held
6686 */
6687 void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
6688 struct sched_domain_attr *dattr_new)
6689 {
6690 int i, j, n;
6691 int new_topology;
6692
6693 mutex_lock(&sched_domains_mutex);
6694
6695 /* always unregister in case we don't destroy any domains */
6696 unregister_sched_domain_sysctl();
6697
6698 /* Let architecture update cpu core mappings. */
6699 new_topology = arch_update_cpu_topology();
6700
6701 n = doms_new ? ndoms_new : 0;
6702
6703 /* Destroy deleted domains */
6704 for (i = 0; i < ndoms_cur; i++) {
6705 for (j = 0; j < n && !new_topology; j++) {
6706 if (cpumask_equal(doms_cur[i], doms_new[j])
6707 && dattrs_equal(dattr_cur, i, dattr_new, j))
6708 goto match1;
6709 }
6710 /* no match - a current sched domain not in new doms_new[] */
6711 detach_destroy_domains(doms_cur[i]);
6712 match1:
6713 ;
6714 }
6715
6716 if (doms_new == NULL) {
6717 ndoms_cur = 0;
6718 doms_new = &fallback_doms;
6719 cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
6720 WARN_ON_ONCE(dattr_new);
6721 }
6722
6723 /* Build new domains */
6724 for (i = 0; i < ndoms_new; i++) {
6725 for (j = 0; j < ndoms_cur && !new_topology; j++) {
6726 if (cpumask_equal(doms_new[i], doms_cur[j])
6727 && dattrs_equal(dattr_new, i, dattr_cur, j))
6728 goto match2;
6729 }
6730 /* no match - add a new doms_new */
6731 build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
6732 match2:
6733 ;
6734 }
6735
6736 /* Remember the new sched domains */
6737 if (doms_cur != &fallback_doms)
6738 free_sched_domains(doms_cur, ndoms_cur);
6739 kfree(dattr_cur); /* kfree(NULL) is safe */
6740 doms_cur = doms_new;
6741 dattr_cur = dattr_new;
6742 ndoms_cur = ndoms_new;
6743
6744 register_sched_domain_sysctl();
6745
6746 mutex_unlock(&sched_domains_mutex);
6747 }
6748
6749 static int num_cpus_frozen; /* used to mark begin/end of suspend/resume */
6750
6751 /*
6752 * Update cpusets according to cpu_active mask. If cpusets are
6753 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
6754 * around partition_sched_domains().
6755 *
6756 * If we come here as part of a suspend/resume, don't touch cpusets because we
6757 * want to restore it back to its original state upon resume anyway.
6758 */
6759 static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
6760 void *hcpu)
6761 {
6762 switch (action) {
6763 case CPU_ONLINE_FROZEN:
6764 case CPU_DOWN_FAILED_FROZEN:
6765
6766 /*
6767 * num_cpus_frozen tracks how many CPUs are involved in suspend
6768 * resume sequence. As long as this is not the last online
6769 * operation in the resume sequence, just build a single sched
6770 * domain, ignoring cpusets.
6771 */
6772 num_cpus_frozen--;
6773 if (likely(num_cpus_frozen)) {
6774 partition_sched_domains(1, NULL, NULL);
6775 break;
6776 }
6777
6778 /*
6779 * This is the last CPU online operation. So fall through and
6780 * restore the original sched domains by considering the
6781 * cpuset configurations.
6782 */
6783
6784 case CPU_ONLINE:
6785 case CPU_DOWN_FAILED:
6786 cpuset_update_active_cpus(true);
6787 break;
6788 default:
6789 return NOTIFY_DONE;
6790 }
6791 return NOTIFY_OK;
6792 }
6793
6794 static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
6795 void *hcpu)
6796 {
6797 switch (action) {
6798 case CPU_DOWN_PREPARE:
6799 cpuset_update_active_cpus(false);
6800 break;
6801 case CPU_DOWN_PREPARE_FROZEN:
6802 num_cpus_frozen++;
6803 partition_sched_domains(1, NULL, NULL);
6804 break;
6805 default:
6806 return NOTIFY_DONE;
6807 }
6808 return NOTIFY_OK;
6809 }
6810
6811 void __init sched_init_smp(void)
6812 {
6813 cpumask_var_t non_isolated_cpus;
6814
6815 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
6816 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
6817
6818 sched_init_numa();
6819
6820 get_online_cpus();
6821 mutex_lock(&sched_domains_mutex);
6822 init_sched_domains(cpu_active_mask);
6823 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
6824 if (cpumask_empty(non_isolated_cpus))
6825 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
6826 mutex_unlock(&sched_domains_mutex);
6827 put_online_cpus();
6828
6829 hotcpu_notifier(sched_domains_numa_masks_update, CPU_PRI_SCHED_ACTIVE);
6830 hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
6831 hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
6832
6833 /* RT runtime code needs to handle some hotplug events */
6834 hotcpu_notifier(update_runtime, 0);
6835
6836 init_hrtick();
6837
6838 /* Move init over to a non-isolated CPU */
6839 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
6840 BUG();
6841 sched_init_granularity();
6842 free_cpumask_var(non_isolated_cpus);
6843
6844 init_sched_rt_class();
6845 }
6846 #else
6847 void __init sched_init_smp(void)
6848 {
6849 sched_init_granularity();
6850 }
6851 #endif /* CONFIG_SMP */
6852
6853 const_debug unsigned int sysctl_timer_migration = 1;
6854
6855 int in_sched_functions(unsigned long addr)
6856 {
6857 return in_lock_functions(addr) ||
6858 (addr >= (unsigned long)__sched_text_start
6859 && addr < (unsigned long)__sched_text_end);
6860 }
6861
6862 #ifdef CONFIG_CGROUP_SCHED
6863 struct task_group root_task_group;
6864 LIST_HEAD(task_groups);
6865 #endif
6866
6867 DECLARE_PER_CPU(cpumask_var_t, load_balance_tmpmask);
6868
6869 void __init sched_init(void)
6870 {
6871 int i, j;
6872 unsigned long alloc_size = 0, ptr;
6873
6874 #ifdef CONFIG_FAIR_GROUP_SCHED
6875 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
6876 #endif
6877 #ifdef CONFIG_RT_GROUP_SCHED
6878 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
6879 #endif
6880 #ifdef CONFIG_CPUMASK_OFFSTACK
6881 alloc_size += num_possible_cpus() * cpumask_size();
6882 #endif
6883 if (alloc_size) {
6884 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
6885
6886 #ifdef CONFIG_FAIR_GROUP_SCHED
6887 root_task_group.se = (struct sched_entity **)ptr;
6888 ptr += nr_cpu_ids * sizeof(void **);
6889
6890 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
6891 ptr += nr_cpu_ids * sizeof(void **);
6892
6893 #endif /* CONFIG_FAIR_GROUP_SCHED */
6894 #ifdef CONFIG_RT_GROUP_SCHED
6895 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
6896 ptr += nr_cpu_ids * sizeof(void **);
6897
6898 root_task_group.rt_rq = (struct rt_rq **)ptr;
6899 ptr += nr_cpu_ids * sizeof(void **);
6900
6901 #endif /* CONFIG_RT_GROUP_SCHED */
6902 #ifdef CONFIG_CPUMASK_OFFSTACK
6903 for_each_possible_cpu(i) {
6904 per_cpu(load_balance_tmpmask, i) = (void *)ptr;
6905 ptr += cpumask_size();
6906 }
6907 #endif /* CONFIG_CPUMASK_OFFSTACK */
6908 }
6909
6910 #ifdef CONFIG_SMP
6911 init_defrootdomain();
6912 #endif
6913
6914 init_rt_bandwidth(&def_rt_bandwidth,
6915 global_rt_period(), global_rt_runtime());
6916
6917 #ifdef CONFIG_RT_GROUP_SCHED
6918 init_rt_bandwidth(&root_task_group.rt_bandwidth,
6919 global_rt_period(), global_rt_runtime());
6920 #endif /* CONFIG_RT_GROUP_SCHED */
6921
6922 #ifdef CONFIG_CGROUP_SCHED
6923 list_add(&root_task_group.list, &task_groups);
6924 INIT_LIST_HEAD(&root_task_group.children);
6925 INIT_LIST_HEAD(&root_task_group.siblings);
6926 autogroup_init(&init_task);
6927
6928 #endif /* CONFIG_CGROUP_SCHED */
6929
6930 #ifdef CONFIG_CGROUP_CPUACCT
6931 root_cpuacct.cpustat = &kernel_cpustat;
6932 root_cpuacct.cpuusage = alloc_percpu(u64);
6933 /* Too early, not expected to fail */
6934 BUG_ON(!root_cpuacct.cpuusage);
6935 #endif
6936 for_each_possible_cpu(i) {
6937 struct rq *rq;
6938
6939 rq = cpu_rq(i);
6940 raw_spin_lock_init(&rq->lock);
6941 rq->nr_running = 0;
6942 rq->calc_load_active = 0;
6943 rq->calc_load_update = jiffies + LOAD_FREQ;
6944 init_cfs_rq(&rq->cfs);
6945 init_rt_rq(&rq->rt, rq);
6946 #ifdef CONFIG_FAIR_GROUP_SCHED
6947 root_task_group.shares = ROOT_TASK_GROUP_LOAD;
6948 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
6949 /*
6950 * How much cpu bandwidth does root_task_group get?
6951 *
6952 * In case of task-groups formed thr' the cgroup filesystem, it
6953 * gets 100% of the cpu resources in the system. This overall
6954 * system cpu resource is divided among the tasks of
6955 * root_task_group and its child task-groups in a fair manner,
6956 * based on each entity's (task or task-group's) weight
6957 * (se->load.weight).
6958 *
6959 * In other words, if root_task_group has 10 tasks of weight
6960 * 1024) and two child groups A0 and A1 (of weight 1024 each),
6961 * then A0's share of the cpu resource is:
6962 *
6963 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
6964 *
6965 * We achieve this by letting root_task_group's tasks sit
6966 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
6967 */
6968 init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
6969 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
6970 #endif /* CONFIG_FAIR_GROUP_SCHED */
6971
6972 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
6973 #ifdef CONFIG_RT_GROUP_SCHED
6974 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
6975 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
6976 #endif
6977
6978 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
6979 rq->cpu_load[j] = 0;
6980
6981 rq->last_load_update_tick = jiffies;
6982
6983 #ifdef CONFIG_SMP
6984 rq->sd = NULL;
6985 rq->rd = NULL;
6986 rq->cpu_power = SCHED_POWER_SCALE;
6987 rq->post_schedule = 0;
6988 rq->active_balance = 0;
6989 rq->next_balance = jiffies;
6990 rq->push_cpu = 0;
6991 rq->cpu = i;
6992 rq->online = 0;
6993 rq->idle_stamp = 0;
6994 rq->avg_idle = 2*sysctl_sched_migration_cost;
6995
6996 INIT_LIST_HEAD(&rq->cfs_tasks);
6997
6998 rq_attach_root(rq, &def_root_domain);
6999 #ifdef CONFIG_NO_HZ
7000 rq->nohz_flags = 0;
7001 #endif
7002 #endif
7003 init_rq_hrtick(rq);
7004 atomic_set(&rq->nr_iowait, 0);
7005 }
7006
7007 set_load_weight(&init_task);
7008
7009 #ifdef CONFIG_PREEMPT_NOTIFIERS
7010 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
7011 #endif
7012
7013 #ifdef CONFIG_RT_MUTEXES
7014 plist_head_init(&init_task.pi_waiters);
7015 #endif
7016
7017 /*
7018 * The boot idle thread does lazy MMU switching as well:
7019 */
7020 atomic_inc(&init_mm.mm_count);
7021 enter_lazy_tlb(&init_mm, current);
7022
7023 /*
7024 * Make us the idle thread. Technically, schedule() should not be
7025 * called from this thread, however somewhere below it might be,
7026 * but because we are the idle thread, we just pick up running again
7027 * when this runqueue becomes "idle".
7028 */
7029 init_idle(current, smp_processor_id());
7030
7031 calc_load_update = jiffies + LOAD_FREQ;
7032
7033 /*
7034 * During early bootup we pretend to be a normal task:
7035 */
7036 current->sched_class = &fair_sched_class;
7037
7038 #ifdef CONFIG_SMP
7039 zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
7040 /* May be allocated at isolcpus cmdline parse time */
7041 if (cpu_isolated_map == NULL)
7042 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
7043 idle_thread_set_boot_cpu();
7044 #endif
7045 init_sched_fair_class();
7046
7047 scheduler_running = 1;
7048 }
7049
7050 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
7051 static inline int preempt_count_equals(int preempt_offset)
7052 {
7053 int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
7054
7055 return (nested == preempt_offset);
7056 }
7057
7058 void __might_sleep(const char *file, int line, int preempt_offset)
7059 {
7060 static unsigned long prev_jiffy; /* ratelimiting */
7061
7062 rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
7063 if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
7064 system_state != SYSTEM_RUNNING || oops_in_progress)
7065 return;
7066 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
7067 return;
7068 prev_jiffy = jiffies;
7069
7070 printk(KERN_ERR
7071 "BUG: sleeping function called from invalid context at %s:%d\n",
7072 file, line);
7073 printk(KERN_ERR
7074 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
7075 in_atomic(), irqs_disabled(),
7076 current->pid, current->comm);
7077
7078 debug_show_held_locks(current);
7079 if (irqs_disabled())
7080 print_irqtrace_events(current);
7081 dump_stack();
7082 }
7083 EXPORT_SYMBOL(__might_sleep);
7084 #endif
7085
7086 #ifdef CONFIG_MAGIC_SYSRQ
7087 static void normalize_task(struct rq *rq, struct task_struct *p)
7088 {
7089 const struct sched_class *prev_class = p->sched_class;
7090 int old_prio = p->prio;
7091 int on_rq;
7092
7093 on_rq = p->on_rq;
7094 if (on_rq)
7095 dequeue_task(rq, p, 0);
7096 __setscheduler(rq, p, SCHED_NORMAL, 0);
7097 if (on_rq) {
7098 enqueue_task(rq, p, 0);
7099 resched_task(rq->curr);
7100 }
7101
7102 check_class_changed(rq, p, prev_class, old_prio);
7103 }
7104
7105 void normalize_rt_tasks(void)
7106 {
7107 struct task_struct *g, *p;
7108 unsigned long flags;
7109 struct rq *rq;
7110
7111 read_lock_irqsave(&tasklist_lock, flags);
7112 do_each_thread(g, p) {
7113 /*
7114 * Only normalize user tasks:
7115 */
7116 if (!p->mm)
7117 continue;
7118
7119 p->se.exec_start = 0;
7120 #ifdef CONFIG_SCHEDSTATS
7121 p->se.statistics.wait_start = 0;
7122 p->se.statistics.sleep_start = 0;
7123 p->se.statistics.block_start = 0;
7124 #endif
7125
7126 if (!rt_task(p)) {
7127 /*
7128 * Renice negative nice level userspace
7129 * tasks back to 0:
7130 */
7131 if (TASK_NICE(p) < 0 && p->mm)
7132 set_user_nice(p, 0);
7133 continue;
7134 }
7135
7136 raw_spin_lock(&p->pi_lock);
7137 rq = __task_rq_lock(p);
7138
7139 normalize_task(rq, p);
7140
7141 __task_rq_unlock(rq);
7142 raw_spin_unlock(&p->pi_lock);
7143 } while_each_thread(g, p);
7144
7145 read_unlock_irqrestore(&tasklist_lock, flags);
7146 }
7147
7148 #endif /* CONFIG_MAGIC_SYSRQ */
7149
7150 #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
7151 /*
7152 * These functions are only useful for the IA64 MCA handling, or kdb.
7153 *
7154 * They can only be called when the whole system has been
7155 * stopped - every CPU needs to be quiescent, and no scheduling
7156 * activity can take place. Using them for anything else would
7157 * be a serious bug, and as a result, they aren't even visible
7158 * under any other configuration.
7159 */
7160
7161 /**
7162 * curr_task - return the current task for a given cpu.
7163 * @cpu: the processor in question.
7164 *
7165 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7166 */
7167 struct task_struct *curr_task(int cpu)
7168 {
7169 return cpu_curr(cpu);
7170 }
7171
7172 #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
7173
7174 #ifdef CONFIG_IA64
7175 /**
7176 * set_curr_task - set the current task for a given cpu.
7177 * @cpu: the processor in question.
7178 * @p: the task pointer to set.
7179 *
7180 * Description: This function must only be used when non-maskable interrupts
7181 * are serviced on a separate stack. It allows the architecture to switch the
7182 * notion of the current task on a cpu in a non-blocking manner. This function
7183 * must be called with all CPU's synchronized, and interrupts disabled, the
7184 * and caller must save the original value of the current task (see
7185 * curr_task() above) and restore that value before reenabling interrupts and
7186 * re-starting the system.
7187 *
7188 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7189 */
7190 void set_curr_task(int cpu, struct task_struct *p)
7191 {
7192 cpu_curr(cpu) = p;
7193 }
7194
7195 #endif
7196
7197 #ifdef CONFIG_CGROUP_SCHED
7198 /* task_group_lock serializes the addition/removal of task groups */
7199 static DEFINE_SPINLOCK(task_group_lock);
7200
7201 static void free_sched_group(struct task_group *tg)
7202 {
7203 free_fair_sched_group(tg);
7204 free_rt_sched_group(tg);
7205 autogroup_free(tg);
7206 kfree(tg);
7207 }
7208
7209 /* allocate runqueue etc for a new task group */
7210 struct task_group *sched_create_group(struct task_group *parent)
7211 {
7212 struct task_group *tg;
7213
7214 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
7215 if (!tg)
7216 return ERR_PTR(-ENOMEM);
7217
7218 if (!alloc_fair_sched_group(tg, parent))
7219 goto err;
7220
7221 if (!alloc_rt_sched_group(tg, parent))
7222 goto err;
7223
7224 return tg;
7225
7226 err:
7227 free_sched_group(tg);
7228 return ERR_PTR(-ENOMEM);
7229 }
7230
7231 void sched_online_group(struct task_group *tg, struct task_group *parent)
7232 {
7233 unsigned long flags;
7234
7235 spin_lock_irqsave(&task_group_lock, flags);
7236 list_add_rcu(&tg->list, &task_groups);
7237
7238 WARN_ON(!parent); /* root should already exist */
7239
7240 tg->parent = parent;
7241 INIT_LIST_HEAD(&tg->children);
7242 list_add_rcu(&tg->siblings, &parent->children);
7243 spin_unlock_irqrestore(&task_group_lock, flags);
7244 }
7245
7246 /* rcu callback to free various structures associated with a task group */
7247 static void free_sched_group_rcu(struct rcu_head *rhp)
7248 {
7249 /* now it should be safe to free those cfs_rqs */
7250 free_sched_group(container_of(rhp, struct task_group, rcu));
7251 }
7252
7253 /* Destroy runqueue etc associated with a task group */
7254 void sched_destroy_group(struct task_group *tg)
7255 {
7256 /* wait for possible concurrent references to cfs_rqs complete */
7257 call_rcu(&tg->rcu, free_sched_group_rcu);
7258 }
7259
7260 void sched_offline_group(struct task_group *tg)
7261 {
7262 unsigned long flags;
7263 int i;
7264
7265 /* end participation in shares distribution */
7266 for_each_possible_cpu(i)
7267 unregister_fair_sched_group(tg, i);
7268
7269 spin_lock_irqsave(&task_group_lock, flags);
7270 list_del_rcu(&tg->list);
7271 list_del_rcu(&tg->siblings);
7272 spin_unlock_irqrestore(&task_group_lock, flags);
7273 }
7274
7275 /* change task's runqueue when it moves between groups.
7276 * The caller of this function should have put the task in its new group
7277 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
7278 * reflect its new group.
7279 */
7280 void sched_move_task(struct task_struct *tsk)
7281 {
7282 struct task_group *tg;
7283 int on_rq, running;
7284 unsigned long flags;
7285 struct rq *rq;
7286
7287 rq = task_rq_lock(tsk, &flags);
7288
7289 running = task_current(rq, tsk);
7290 on_rq = tsk->on_rq;
7291
7292 if (on_rq)
7293 dequeue_task(rq, tsk, 0);
7294 if (unlikely(running))
7295 tsk->sched_class->put_prev_task(rq, tsk);
7296
7297 tg = container_of(task_subsys_state_check(tsk, cpu_cgroup_subsys_id,
7298 lockdep_is_held(&tsk->sighand->siglock)),
7299 struct task_group, css);
7300 tg = autogroup_task_group(tsk, tg);
7301 tsk->sched_task_group = tg;
7302
7303 #ifdef CONFIG_FAIR_GROUP_SCHED
7304 if (tsk->sched_class->task_move_group)
7305 tsk->sched_class->task_move_group(tsk, on_rq);
7306 else
7307 #endif
7308 set_task_rq(tsk, task_cpu(tsk));
7309
7310 if (unlikely(running))
7311 tsk->sched_class->set_curr_task(rq);
7312 if (on_rq)
7313 enqueue_task(rq, tsk, 0);
7314
7315 task_rq_unlock(rq, tsk, &flags);
7316 }
7317 #endif /* CONFIG_CGROUP_SCHED */
7318
7319 #if defined(CONFIG_RT_GROUP_SCHED) || defined(CONFIG_CFS_BANDWIDTH)
7320 static unsigned long to_ratio(u64 period, u64 runtime)
7321 {
7322 if (runtime == RUNTIME_INF)
7323 return 1ULL << 20;
7324
7325 return div64_u64(runtime << 20, period);
7326 }
7327 #endif
7328
7329 #ifdef CONFIG_RT_GROUP_SCHED
7330 /*
7331 * Ensure that the real time constraints are schedulable.
7332 */
7333 static DEFINE_MUTEX(rt_constraints_mutex);
7334
7335 /* Must be called with tasklist_lock held */
7336 static inline int tg_has_rt_tasks(struct task_group *tg)
7337 {
7338 struct task_struct *g, *p;
7339
7340 do_each_thread(g, p) {
7341 if (rt_task(p) && task_rq(p)->rt.tg == tg)
7342 return 1;
7343 } while_each_thread(g, p);
7344
7345 return 0;
7346 }
7347
7348 struct rt_schedulable_data {
7349 struct task_group *tg;
7350 u64 rt_period;
7351 u64 rt_runtime;
7352 };
7353
7354 static int tg_rt_schedulable(struct task_group *tg, void *data)
7355 {
7356 struct rt_schedulable_data *d = data;
7357 struct task_group *child;
7358 unsigned long total, sum = 0;
7359 u64 period, runtime;
7360
7361 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7362 runtime = tg->rt_bandwidth.rt_runtime;
7363
7364 if (tg == d->tg) {
7365 period = d->rt_period;
7366 runtime = d->rt_runtime;
7367 }
7368
7369 /*
7370 * Cannot have more runtime than the period.
7371 */
7372 if (runtime > period && runtime != RUNTIME_INF)
7373 return -EINVAL;
7374
7375 /*
7376 * Ensure we don't starve existing RT tasks.
7377 */
7378 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
7379 return -EBUSY;
7380
7381 total = to_ratio(period, runtime);
7382
7383 /*
7384 * Nobody can have more than the global setting allows.
7385 */
7386 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
7387 return -EINVAL;
7388
7389 /*
7390 * The sum of our children's runtime should not exceed our own.
7391 */
7392 list_for_each_entry_rcu(child, &tg->children, siblings) {
7393 period = ktime_to_ns(child->rt_bandwidth.rt_period);
7394 runtime = child->rt_bandwidth.rt_runtime;
7395
7396 if (child == d->tg) {
7397 period = d->rt_period;
7398 runtime = d->rt_runtime;
7399 }
7400
7401 sum += to_ratio(period, runtime);
7402 }
7403
7404 if (sum > total)
7405 return -EINVAL;
7406
7407 return 0;
7408 }
7409
7410 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
7411 {
7412 int ret;
7413
7414 struct rt_schedulable_data data = {
7415 .tg = tg,
7416 .rt_period = period,
7417 .rt_runtime = runtime,
7418 };
7419
7420 rcu_read_lock();
7421 ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
7422 rcu_read_unlock();
7423
7424 return ret;
7425 }
7426
7427 static int tg_set_rt_bandwidth(struct task_group *tg,
7428 u64 rt_period, u64 rt_runtime)
7429 {
7430 int i, err = 0;
7431
7432 mutex_lock(&rt_constraints_mutex);
7433 read_lock(&tasklist_lock);
7434 err = __rt_schedulable(tg, rt_period, rt_runtime);
7435 if (err)
7436 goto unlock;
7437
7438 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
7439 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
7440 tg->rt_bandwidth.rt_runtime = rt_runtime;
7441
7442 for_each_possible_cpu(i) {
7443 struct rt_rq *rt_rq = tg->rt_rq[i];
7444
7445 raw_spin_lock(&rt_rq->rt_runtime_lock);
7446 rt_rq->rt_runtime = rt_runtime;
7447 raw_spin_unlock(&rt_rq->rt_runtime_lock);
7448 }
7449 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
7450 unlock:
7451 read_unlock(&tasklist_lock);
7452 mutex_unlock(&rt_constraints_mutex);
7453
7454 return err;
7455 }
7456
7457 int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
7458 {
7459 u64 rt_runtime, rt_period;
7460
7461 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7462 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
7463 if (rt_runtime_us < 0)
7464 rt_runtime = RUNTIME_INF;
7465
7466 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7467 }
7468
7469 long sched_group_rt_runtime(struct task_group *tg)
7470 {
7471 u64 rt_runtime_us;
7472
7473 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
7474 return -1;
7475
7476 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
7477 do_div(rt_runtime_us, NSEC_PER_USEC);
7478 return rt_runtime_us;
7479 }
7480
7481 int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
7482 {
7483 u64 rt_runtime, rt_period;
7484
7485 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
7486 rt_runtime = tg->rt_bandwidth.rt_runtime;
7487
7488 if (rt_period == 0)
7489 return -EINVAL;
7490
7491 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7492 }
7493
7494 long sched_group_rt_period(struct task_group *tg)
7495 {
7496 u64 rt_period_us;
7497
7498 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
7499 do_div(rt_period_us, NSEC_PER_USEC);
7500 return rt_period_us;
7501 }
7502
7503 static int sched_rt_global_constraints(void)
7504 {
7505 u64 runtime, period;
7506 int ret = 0;
7507
7508 if (sysctl_sched_rt_period <= 0)
7509 return -EINVAL;
7510
7511 runtime = global_rt_runtime();
7512 period = global_rt_period();
7513
7514 /*
7515 * Sanity check on the sysctl variables.
7516 */
7517 if (runtime > period && runtime != RUNTIME_INF)
7518 return -EINVAL;
7519
7520 mutex_lock(&rt_constraints_mutex);
7521 read_lock(&tasklist_lock);
7522 ret = __rt_schedulable(NULL, 0, 0);
7523 read_unlock(&tasklist_lock);
7524 mutex_unlock(&rt_constraints_mutex);
7525
7526 return ret;
7527 }
7528
7529 int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
7530 {
7531 /* Don't accept realtime tasks when there is no way for them to run */
7532 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
7533 return 0;
7534
7535 return 1;
7536 }
7537
7538 #else /* !CONFIG_RT_GROUP_SCHED */
7539 static int sched_rt_global_constraints(void)
7540 {
7541 unsigned long flags;
7542 int i;
7543
7544 if (sysctl_sched_rt_period <= 0)
7545 return -EINVAL;
7546
7547 /*
7548 * There's always some RT tasks in the root group
7549 * -- migration, kstopmachine etc..
7550 */
7551 if (sysctl_sched_rt_runtime == 0)
7552 return -EBUSY;
7553
7554 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
7555 for_each_possible_cpu(i) {
7556 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
7557
7558 raw_spin_lock(&rt_rq->rt_runtime_lock);
7559 rt_rq->rt_runtime = global_rt_runtime();
7560 raw_spin_unlock(&rt_rq->rt_runtime_lock);
7561 }
7562 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
7563
7564 return 0;
7565 }
7566 #endif /* CONFIG_RT_GROUP_SCHED */
7567
7568 int sched_rr_handler(struct ctl_table *table, int write,
7569 void __user *buffer, size_t *lenp,
7570 loff_t *ppos)
7571 {
7572 int ret;
7573 static DEFINE_MUTEX(mutex);
7574
7575 mutex_lock(&mutex);
7576 ret = proc_dointvec(table, write, buffer, lenp, ppos);
7577 /* make sure that internally we keep jiffies */
7578 /* also, writing zero resets timeslice to default */
7579 if (!ret && write) {
7580 sched_rr_timeslice = sched_rr_timeslice <= 0 ?
7581 RR_TIMESLICE : msecs_to_jiffies(sched_rr_timeslice);
7582 }
7583 mutex_unlock(&mutex);
7584 return ret;
7585 }
7586
7587 int sched_rt_handler(struct ctl_table *table, int write,
7588 void __user *buffer, size_t *lenp,
7589 loff_t *ppos)
7590 {
7591 int ret;
7592 int old_period, old_runtime;
7593 static DEFINE_MUTEX(mutex);
7594
7595 mutex_lock(&mutex);
7596 old_period = sysctl_sched_rt_period;
7597 old_runtime = sysctl_sched_rt_runtime;
7598
7599 ret = proc_dointvec(table, write, buffer, lenp, ppos);
7600
7601 if (!ret && write) {
7602 ret = sched_rt_global_constraints();
7603 if (ret) {
7604 sysctl_sched_rt_period = old_period;
7605 sysctl_sched_rt_runtime = old_runtime;
7606 } else {
7607 def_rt_bandwidth.rt_runtime = global_rt_runtime();
7608 def_rt_bandwidth.rt_period =
7609 ns_to_ktime(global_rt_period());
7610 }
7611 }
7612 mutex_unlock(&mutex);
7613
7614 return ret;
7615 }
7616
7617 #ifdef CONFIG_CGROUP_SCHED
7618
7619 /* return corresponding task_group object of a cgroup */
7620 static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
7621 {
7622 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
7623 struct task_group, css);
7624 }
7625
7626 static struct cgroup_subsys_state *cpu_cgroup_css_alloc(struct cgroup *cgrp)
7627 {
7628 struct task_group *tg, *parent;
7629
7630 if (!cgrp->parent) {
7631 /* This is early initialization for the top cgroup */
7632 return &root_task_group.css;
7633 }
7634
7635 parent = cgroup_tg(cgrp->parent);
7636 tg = sched_create_group(parent);
7637 if (IS_ERR(tg))
7638 return ERR_PTR(-ENOMEM);
7639
7640 return &tg->css;
7641 }
7642
7643 static int cpu_cgroup_css_online(struct cgroup *cgrp)
7644 {
7645 struct task_group *tg = cgroup_tg(cgrp);
7646 struct task_group *parent;
7647
7648 if (!cgrp->parent)
7649 return 0;
7650
7651 parent = cgroup_tg(cgrp->parent);
7652 sched_online_group(tg, parent);
7653 return 0;
7654 }
7655
7656 static void cpu_cgroup_css_free(struct cgroup *cgrp)
7657 {
7658 struct task_group *tg = cgroup_tg(cgrp);
7659
7660 sched_destroy_group(tg);
7661 }
7662
7663 static void cpu_cgroup_css_offline(struct cgroup *cgrp)
7664 {
7665 struct task_group *tg = cgroup_tg(cgrp);
7666
7667 sched_offline_group(tg);
7668 }
7669
7670 static int cpu_cgroup_can_attach(struct cgroup *cgrp,
7671 struct cgroup_taskset *tset)
7672 {
7673 struct task_struct *task;
7674
7675 cgroup_taskset_for_each(task, cgrp, tset) {
7676 #ifdef CONFIG_RT_GROUP_SCHED
7677 if (!sched_rt_can_attach(cgroup_tg(cgrp), task))
7678 return -EINVAL;
7679 #else
7680 /* We don't support RT-tasks being in separate groups */
7681 if (task->sched_class != &fair_sched_class)
7682 return -EINVAL;
7683 #endif
7684 }
7685 return 0;
7686 }
7687
7688 static void cpu_cgroup_attach(struct cgroup *cgrp,
7689 struct cgroup_taskset *tset)
7690 {
7691 struct task_struct *task;
7692
7693 cgroup_taskset_for_each(task, cgrp, tset)
7694 sched_move_task(task);
7695 }
7696
7697 static void
7698 cpu_cgroup_exit(struct cgroup *cgrp, struct cgroup *old_cgrp,
7699 struct task_struct *task)
7700 {
7701 /*
7702 * cgroup_exit() is called in the copy_process() failure path.
7703 * Ignore this case since the task hasn't ran yet, this avoids
7704 * trying to poke a half freed task state from generic code.
7705 */
7706 if (!(task->flags & PF_EXITING))
7707 return;
7708
7709 sched_move_task(task);
7710 }
7711
7712 #ifdef CONFIG_FAIR_GROUP_SCHED
7713 static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
7714 u64 shareval)
7715 {
7716 return sched_group_set_shares(cgroup_tg(cgrp), scale_load(shareval));
7717 }
7718
7719 static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
7720 {
7721 struct task_group *tg = cgroup_tg(cgrp);
7722
7723 return (u64) scale_load_down(tg->shares);
7724 }
7725
7726 #ifdef CONFIG_CFS_BANDWIDTH
7727 static DEFINE_MUTEX(cfs_constraints_mutex);
7728
7729 const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
7730 const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
7731
7732 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
7733
7734 static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
7735 {
7736 int i, ret = 0, runtime_enabled, runtime_was_enabled;
7737 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7738
7739 if (tg == &root_task_group)
7740 return -EINVAL;
7741
7742 /*
7743 * Ensure we have at some amount of bandwidth every period. This is
7744 * to prevent reaching a state of large arrears when throttled via
7745 * entity_tick() resulting in prolonged exit starvation.
7746 */
7747 if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
7748 return -EINVAL;
7749
7750 /*
7751 * Likewise, bound things on the otherside by preventing insane quota
7752 * periods. This also allows us to normalize in computing quota
7753 * feasibility.
7754 */
7755 if (period > max_cfs_quota_period)
7756 return -EINVAL;
7757
7758 mutex_lock(&cfs_constraints_mutex);
7759 ret = __cfs_schedulable(tg, period, quota);
7760 if (ret)
7761 goto out_unlock;
7762
7763 runtime_enabled = quota != RUNTIME_INF;
7764 runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
7765 account_cfs_bandwidth_used(runtime_enabled, runtime_was_enabled);
7766 raw_spin_lock_irq(&cfs_b->lock);
7767 cfs_b->period = ns_to_ktime(period);
7768 cfs_b->quota = quota;
7769
7770 __refill_cfs_bandwidth_runtime(cfs_b);
7771 /* restart the period timer (if active) to handle new period expiry */
7772 if (runtime_enabled && cfs_b->timer_active) {
7773 /* force a reprogram */
7774 cfs_b->timer_active = 0;
7775 __start_cfs_bandwidth(cfs_b);
7776 }
7777 raw_spin_unlock_irq(&cfs_b->lock);
7778
7779 for_each_possible_cpu(i) {
7780 struct cfs_rq *cfs_rq = tg->cfs_rq[i];
7781 struct rq *rq = cfs_rq->rq;
7782
7783 raw_spin_lock_irq(&rq->lock);
7784 cfs_rq->runtime_enabled = runtime_enabled;
7785 cfs_rq->runtime_remaining = 0;
7786
7787 if (cfs_rq->throttled)
7788 unthrottle_cfs_rq(cfs_rq);
7789 raw_spin_unlock_irq(&rq->lock);
7790 }
7791 out_unlock:
7792 mutex_unlock(&cfs_constraints_mutex);
7793
7794 return ret;
7795 }
7796
7797 int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
7798 {
7799 u64 quota, period;
7800
7801 period = ktime_to_ns(tg->cfs_bandwidth.period);
7802 if (cfs_quota_us < 0)
7803 quota = RUNTIME_INF;
7804 else
7805 quota = (u64)cfs_quota_us * NSEC_PER_USEC;
7806
7807 return tg_set_cfs_bandwidth(tg, period, quota);
7808 }
7809
7810 long tg_get_cfs_quota(struct task_group *tg)
7811 {
7812 u64 quota_us;
7813
7814 if (tg->cfs_bandwidth.quota == RUNTIME_INF)
7815 return -1;
7816
7817 quota_us = tg->cfs_bandwidth.quota;
7818 do_div(quota_us, NSEC_PER_USEC);
7819
7820 return quota_us;
7821 }
7822
7823 int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
7824 {
7825 u64 quota, period;
7826
7827 period = (u64)cfs_period_us * NSEC_PER_USEC;
7828 quota = tg->cfs_bandwidth.quota;
7829
7830 return tg_set_cfs_bandwidth(tg, period, quota);
7831 }
7832
7833 long tg_get_cfs_period(struct task_group *tg)
7834 {
7835 u64 cfs_period_us;
7836
7837 cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
7838 do_div(cfs_period_us, NSEC_PER_USEC);
7839
7840 return cfs_period_us;
7841 }
7842
7843 static s64 cpu_cfs_quota_read_s64(struct cgroup *cgrp, struct cftype *cft)
7844 {
7845 return tg_get_cfs_quota(cgroup_tg(cgrp));
7846 }
7847
7848 static int cpu_cfs_quota_write_s64(struct cgroup *cgrp, struct cftype *cftype,
7849 s64 cfs_quota_us)
7850 {
7851 return tg_set_cfs_quota(cgroup_tg(cgrp), cfs_quota_us);
7852 }
7853
7854 static u64 cpu_cfs_period_read_u64(struct cgroup *cgrp, struct cftype *cft)
7855 {
7856 return tg_get_cfs_period(cgroup_tg(cgrp));
7857 }
7858
7859 static int cpu_cfs_period_write_u64(struct cgroup *cgrp, struct cftype *cftype,
7860 u64 cfs_period_us)
7861 {
7862 return tg_set_cfs_period(cgroup_tg(cgrp), cfs_period_us);
7863 }
7864
7865 struct cfs_schedulable_data {
7866 struct task_group *tg;
7867 u64 period, quota;
7868 };
7869
7870 /*
7871 * normalize group quota/period to be quota/max_period
7872 * note: units are usecs
7873 */
7874 static u64 normalize_cfs_quota(struct task_group *tg,
7875 struct cfs_schedulable_data *d)
7876 {
7877 u64 quota, period;
7878
7879 if (tg == d->tg) {
7880 period = d->period;
7881 quota = d->quota;
7882 } else {
7883 period = tg_get_cfs_period(tg);
7884 quota = tg_get_cfs_quota(tg);
7885 }
7886
7887 /* note: these should typically be equivalent */
7888 if (quota == RUNTIME_INF || quota == -1)
7889 return RUNTIME_INF;
7890
7891 return to_ratio(period, quota);
7892 }
7893
7894 static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
7895 {
7896 struct cfs_schedulable_data *d = data;
7897 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7898 s64 quota = 0, parent_quota = -1;
7899
7900 if (!tg->parent) {
7901 quota = RUNTIME_INF;
7902 } else {
7903 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
7904
7905 quota = normalize_cfs_quota(tg, d);
7906 parent_quota = parent_b->hierarchal_quota;
7907
7908 /*
7909 * ensure max(child_quota) <= parent_quota, inherit when no
7910 * limit is set
7911 */
7912 if (quota == RUNTIME_INF)
7913 quota = parent_quota;
7914 else if (parent_quota != RUNTIME_INF && quota > parent_quota)
7915 return -EINVAL;
7916 }
7917 cfs_b->hierarchal_quota = quota;
7918
7919 return 0;
7920 }
7921
7922 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
7923 {
7924 int ret;
7925 struct cfs_schedulable_data data = {
7926 .tg = tg,
7927 .period = period,
7928 .quota = quota,
7929 };
7930
7931 if (quota != RUNTIME_INF) {
7932 do_div(data.period, NSEC_PER_USEC);
7933 do_div(data.quota, NSEC_PER_USEC);
7934 }
7935
7936 rcu_read_lock();
7937 ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
7938 rcu_read_unlock();
7939
7940 return ret;
7941 }
7942
7943 static int cpu_stats_show(struct cgroup *cgrp, struct cftype *cft,
7944 struct cgroup_map_cb *cb)
7945 {
7946 struct task_group *tg = cgroup_tg(cgrp);
7947 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7948
7949 cb->fill(cb, "nr_periods", cfs_b->nr_periods);
7950 cb->fill(cb, "nr_throttled", cfs_b->nr_throttled);
7951 cb->fill(cb, "throttled_time", cfs_b->throttled_time);
7952
7953 return 0;
7954 }
7955 #endif /* CONFIG_CFS_BANDWIDTH */
7956 #endif /* CONFIG_FAIR_GROUP_SCHED */
7957
7958 #ifdef CONFIG_RT_GROUP_SCHED
7959 static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
7960 s64 val)
7961 {
7962 return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
7963 }
7964
7965 static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
7966 {
7967 return sched_group_rt_runtime(cgroup_tg(cgrp));
7968 }
7969
7970 static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
7971 u64 rt_period_us)
7972 {
7973 return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
7974 }
7975
7976 static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
7977 {
7978 return sched_group_rt_period(cgroup_tg(cgrp));
7979 }
7980 #endif /* CONFIG_RT_GROUP_SCHED */
7981
7982 static struct cftype cpu_files[] = {
7983 #ifdef CONFIG_FAIR_GROUP_SCHED
7984 {
7985 .name = "shares",
7986 .read_u64 = cpu_shares_read_u64,
7987 .write_u64 = cpu_shares_write_u64,
7988 },
7989 #endif
7990 #ifdef CONFIG_CFS_BANDWIDTH
7991 {
7992 .name = "cfs_quota_us",
7993 .read_s64 = cpu_cfs_quota_read_s64,
7994 .write_s64 = cpu_cfs_quota_write_s64,
7995 },
7996 {
7997 .name = "cfs_period_us",
7998 .read_u64 = cpu_cfs_period_read_u64,
7999 .write_u64 = cpu_cfs_period_write_u64,
8000 },
8001 {
8002 .name = "stat",
8003 .read_map = cpu_stats_show,
8004 },
8005 #endif
8006 #ifdef CONFIG_RT_GROUP_SCHED
8007 {
8008 .name = "rt_runtime_us",
8009 .read_s64 = cpu_rt_runtime_read,
8010 .write_s64 = cpu_rt_runtime_write,
8011 },
8012 {
8013 .name = "rt_period_us",
8014 .read_u64 = cpu_rt_period_read_uint,
8015 .write_u64 = cpu_rt_period_write_uint,
8016 },
8017 #endif
8018 { } /* terminate */
8019 };
8020
8021 struct cgroup_subsys cpu_cgroup_subsys = {
8022 .name = "cpu",
8023 .css_alloc = cpu_cgroup_css_alloc,
8024 .css_free = cpu_cgroup_css_free,
8025 .css_online = cpu_cgroup_css_online,
8026 .css_offline = cpu_cgroup_css_offline,
8027 .can_attach = cpu_cgroup_can_attach,
8028 .attach = cpu_cgroup_attach,
8029 .exit = cpu_cgroup_exit,
8030 .subsys_id = cpu_cgroup_subsys_id,
8031 .base_cftypes = cpu_files,
8032 .early_init = 1,
8033 };
8034
8035 #endif /* CONFIG_CGROUP_SCHED */
8036
8037 #ifdef CONFIG_CGROUP_CPUACCT
8038
8039 /*
8040 * CPU accounting code for task groups.
8041 *
8042 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
8043 * (balbir@in.ibm.com).
8044 */
8045
8046 struct cpuacct root_cpuacct;
8047
8048 /* create a new cpu accounting group */
8049 static struct cgroup_subsys_state *cpuacct_css_alloc(struct cgroup *cgrp)
8050 {
8051 struct cpuacct *ca;
8052
8053 if (!cgrp->parent)
8054 return &root_cpuacct.css;
8055
8056 ca = kzalloc(sizeof(*ca), GFP_KERNEL);
8057 if (!ca)
8058 goto out;
8059
8060 ca->cpuusage = alloc_percpu(u64);
8061 if (!ca->cpuusage)
8062 goto out_free_ca;
8063
8064 ca->cpustat = alloc_percpu(struct kernel_cpustat);
8065 if (!ca->cpustat)
8066 goto out_free_cpuusage;
8067
8068 return &ca->css;
8069
8070 out_free_cpuusage:
8071 free_percpu(ca->cpuusage);
8072 out_free_ca:
8073 kfree(ca);
8074 out:
8075 return ERR_PTR(-ENOMEM);
8076 }
8077
8078 /* destroy an existing cpu accounting group */
8079 static void cpuacct_css_free(struct cgroup *cgrp)
8080 {
8081 struct cpuacct *ca = cgroup_ca(cgrp);
8082
8083 free_percpu(ca->cpustat);
8084 free_percpu(ca->cpuusage);
8085 kfree(ca);
8086 }
8087
8088 static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
8089 {
8090 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
8091 u64 data;
8092
8093 #ifndef CONFIG_64BIT
8094 /*
8095 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
8096 */
8097 raw_spin_lock_irq(&cpu_rq(cpu)->lock);
8098 data = *cpuusage;
8099 raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
8100 #else
8101 data = *cpuusage;
8102 #endif
8103
8104 return data;
8105 }
8106
8107 static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
8108 {
8109 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
8110
8111 #ifndef CONFIG_64BIT
8112 /*
8113 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
8114 */
8115 raw_spin_lock_irq(&cpu_rq(cpu)->lock);
8116 *cpuusage = val;
8117 raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
8118 #else
8119 *cpuusage = val;
8120 #endif
8121 }
8122
8123 /* return total cpu usage (in nanoseconds) of a group */
8124 static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
8125 {
8126 struct cpuacct *ca = cgroup_ca(cgrp);
8127 u64 totalcpuusage = 0;
8128 int i;
8129
8130 for_each_present_cpu(i)
8131 totalcpuusage += cpuacct_cpuusage_read(ca, i);
8132
8133 return totalcpuusage;
8134 }
8135
8136 static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
8137 u64 reset)
8138 {
8139 struct cpuacct *ca = cgroup_ca(cgrp);
8140 int err = 0;
8141 int i;
8142
8143 if (reset) {
8144 err = -EINVAL;
8145 goto out;
8146 }
8147
8148 for_each_present_cpu(i)
8149 cpuacct_cpuusage_write(ca, i, 0);
8150
8151 out:
8152 return err;
8153 }
8154
8155 static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
8156 struct seq_file *m)
8157 {
8158 struct cpuacct *ca = cgroup_ca(cgroup);
8159 u64 percpu;
8160 int i;
8161
8162 for_each_present_cpu(i) {
8163 percpu = cpuacct_cpuusage_read(ca, i);
8164 seq_printf(m, "%llu ", (unsigned long long) percpu);
8165 }
8166 seq_printf(m, "\n");
8167 return 0;
8168 }
8169
8170 static const char *cpuacct_stat_desc[] = {
8171 [CPUACCT_STAT_USER] = "user",
8172 [CPUACCT_STAT_SYSTEM] = "system",
8173 };
8174
8175 static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
8176 struct cgroup_map_cb *cb)
8177 {
8178 struct cpuacct *ca = cgroup_ca(cgrp);
8179 int cpu;
8180 s64 val = 0;
8181
8182 for_each_online_cpu(cpu) {
8183 struct kernel_cpustat *kcpustat = per_cpu_ptr(ca->cpustat, cpu);
8184 val += kcpustat->cpustat[CPUTIME_USER];
8185 val += kcpustat->cpustat[CPUTIME_NICE];
8186 }
8187 val = cputime64_to_clock_t(val);
8188 cb->fill(cb, cpuacct_stat_desc[CPUACCT_STAT_USER], val);
8189
8190 val = 0;
8191 for_each_online_cpu(cpu) {
8192 struct kernel_cpustat *kcpustat = per_cpu_ptr(ca->cpustat, cpu);
8193 val += kcpustat->cpustat[CPUTIME_SYSTEM];
8194 val += kcpustat->cpustat[CPUTIME_IRQ];
8195 val += kcpustat->cpustat[CPUTIME_SOFTIRQ];
8196 }
8197
8198 val = cputime64_to_clock_t(val);
8199 cb->fill(cb, cpuacct_stat_desc[CPUACCT_STAT_SYSTEM], val);
8200
8201 return 0;
8202 }
8203
8204 static struct cftype files[] = {
8205 {
8206 .name = "usage",
8207 .read_u64 = cpuusage_read,
8208 .write_u64 = cpuusage_write,
8209 },
8210 {
8211 .name = "usage_percpu",
8212 .read_seq_string = cpuacct_percpu_seq_read,
8213 },
8214 {
8215 .name = "stat",
8216 .read_map = cpuacct_stats_show,
8217 },
8218 { } /* terminate */
8219 };
8220
8221 /*
8222 * charge this task's execution time to its accounting group.
8223 *
8224 * called with rq->lock held.
8225 */
8226 void cpuacct_charge(struct task_struct *tsk, u64 cputime)
8227 {
8228 struct cpuacct *ca;
8229 int cpu;
8230
8231 if (unlikely(!cpuacct_subsys.active))
8232 return;
8233
8234 cpu = task_cpu(tsk);
8235
8236 rcu_read_lock();
8237
8238 ca = task_ca(tsk);
8239
8240 for (; ca; ca = parent_ca(ca)) {
8241 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
8242 *cpuusage += cputime;
8243 }
8244
8245 rcu_read_unlock();
8246 }
8247
8248 struct cgroup_subsys cpuacct_subsys = {
8249 .name = "cpuacct",
8250 .css_alloc = cpuacct_css_alloc,
8251 .css_free = cpuacct_css_free,
8252 .subsys_id = cpuacct_subsys_id,
8253 .base_cftypes = files,
8254 };
8255 #endif /* CONFIG_CGROUP_CPUACCT */
8256
8257 void dump_cpu_task(int cpu)
8258 {
8259 pr_info("Task dump for CPU %d:\n", cpu);
8260 sched_show_task(cpu_curr(cpu));
8261 }