]> git.proxmox.com Git - mirror_ubuntu-kernels.git/blob - kernel/sched/fair.c
sched/core: Implement new approach to scale select_idle_cpu()
[mirror_ubuntu-kernels.git] / kernel / sched / fair.c
1 /*
2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
3 *
4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
5 *
6 * Interactivity improvements by Mike Galbraith
7 * (C) 2007 Mike Galbraith <efault@gmx.de>
8 *
9 * Various enhancements by Dmitry Adamushko.
10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
11 *
12 * Group scheduling enhancements by Srivatsa Vaddagiri
13 * Copyright IBM Corporation, 2007
14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
15 *
16 * Scaled math optimizations by Thomas Gleixner
17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
18 *
19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
21 */
22
23 #include <linux/sched/mm.h>
24 #include <linux/sched/topology.h>
25
26 #include <linux/latencytop.h>
27 #include <linux/cpumask.h>
28 #include <linux/cpuidle.h>
29 #include <linux/slab.h>
30 #include <linux/profile.h>
31 #include <linux/interrupt.h>
32 #include <linux/mempolicy.h>
33 #include <linux/migrate.h>
34 #include <linux/task_work.h>
35
36 #include <trace/events/sched.h>
37
38 #include "sched.h"
39
40 /*
41 * Targeted preemption latency for CPU-bound tasks:
42 *
43 * NOTE: this latency value is not the same as the concept of
44 * 'timeslice length' - timeslices in CFS are of variable length
45 * and have no persistent notion like in traditional, time-slice
46 * based scheduling concepts.
47 *
48 * (to see the precise effective timeslice length of your workload,
49 * run vmstat and monitor the context-switches (cs) field)
50 *
51 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
52 */
53 unsigned int sysctl_sched_latency = 6000000ULL;
54 unsigned int normalized_sysctl_sched_latency = 6000000ULL;
55
56 /*
57 * The initial- and re-scaling of tunables is configurable
58 *
59 * Options are:
60 *
61 * SCHED_TUNABLESCALING_NONE - unscaled, always *1
62 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
63 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
64 *
65 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
66 */
67 enum sched_tunable_scaling sysctl_sched_tunable_scaling = SCHED_TUNABLESCALING_LOG;
68
69 /*
70 * Minimal preemption granularity for CPU-bound tasks:
71 *
72 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
73 */
74 unsigned int sysctl_sched_min_granularity = 750000ULL;
75 unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
76
77 /*
78 * This value is kept at sysctl_sched_latency/sysctl_sched_min_granularity
79 */
80 static unsigned int sched_nr_latency = 8;
81
82 /*
83 * After fork, child runs first. If set to 0 (default) then
84 * parent will (try to) run first.
85 */
86 unsigned int sysctl_sched_child_runs_first __read_mostly;
87
88 /*
89 * SCHED_OTHER wake-up granularity.
90 *
91 * This option delays the preemption effects of decoupled workloads
92 * and reduces their over-scheduling. Synchronous workloads will still
93 * have immediate wakeup/sleep latencies.
94 *
95 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
96 */
97 unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
98 unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
99
100 const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
101
102 #ifdef CONFIG_SMP
103 /*
104 * For asym packing, by default the lower numbered cpu has higher priority.
105 */
106 int __weak arch_asym_cpu_priority(int cpu)
107 {
108 return -cpu;
109 }
110 #endif
111
112 #ifdef CONFIG_CFS_BANDWIDTH
113 /*
114 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
115 * each time a cfs_rq requests quota.
116 *
117 * Note: in the case that the slice exceeds the runtime remaining (either due
118 * to consumption or the quota being specified to be smaller than the slice)
119 * we will always only issue the remaining available time.
120 *
121 * (default: 5 msec, units: microseconds)
122 */
123 unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL;
124 #endif
125
126 /*
127 * The margin used when comparing utilization with CPU capacity:
128 * util * margin < capacity * 1024
129 *
130 * (default: ~20%)
131 */
132 unsigned int capacity_margin = 1280;
133
134 static inline void update_load_add(struct load_weight *lw, unsigned long inc)
135 {
136 lw->weight += inc;
137 lw->inv_weight = 0;
138 }
139
140 static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
141 {
142 lw->weight -= dec;
143 lw->inv_weight = 0;
144 }
145
146 static inline void update_load_set(struct load_weight *lw, unsigned long w)
147 {
148 lw->weight = w;
149 lw->inv_weight = 0;
150 }
151
152 /*
153 * Increase the granularity value when there are more CPUs,
154 * because with more CPUs the 'effective latency' as visible
155 * to users decreases. But the relationship is not linear,
156 * so pick a second-best guess by going with the log2 of the
157 * number of CPUs.
158 *
159 * This idea comes from the SD scheduler of Con Kolivas:
160 */
161 static unsigned int get_update_sysctl_factor(void)
162 {
163 unsigned int cpus = min_t(unsigned int, num_online_cpus(), 8);
164 unsigned int factor;
165
166 switch (sysctl_sched_tunable_scaling) {
167 case SCHED_TUNABLESCALING_NONE:
168 factor = 1;
169 break;
170 case SCHED_TUNABLESCALING_LINEAR:
171 factor = cpus;
172 break;
173 case SCHED_TUNABLESCALING_LOG:
174 default:
175 factor = 1 + ilog2(cpus);
176 break;
177 }
178
179 return factor;
180 }
181
182 static void update_sysctl(void)
183 {
184 unsigned int factor = get_update_sysctl_factor();
185
186 #define SET_SYSCTL(name) \
187 (sysctl_##name = (factor) * normalized_sysctl_##name)
188 SET_SYSCTL(sched_min_granularity);
189 SET_SYSCTL(sched_latency);
190 SET_SYSCTL(sched_wakeup_granularity);
191 #undef SET_SYSCTL
192 }
193
194 void sched_init_granularity(void)
195 {
196 update_sysctl();
197 }
198
199 #define WMULT_CONST (~0U)
200 #define WMULT_SHIFT 32
201
202 static void __update_inv_weight(struct load_weight *lw)
203 {
204 unsigned long w;
205
206 if (likely(lw->inv_weight))
207 return;
208
209 w = scale_load_down(lw->weight);
210
211 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
212 lw->inv_weight = 1;
213 else if (unlikely(!w))
214 lw->inv_weight = WMULT_CONST;
215 else
216 lw->inv_weight = WMULT_CONST / w;
217 }
218
219 /*
220 * delta_exec * weight / lw.weight
221 * OR
222 * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT
223 *
224 * Either weight := NICE_0_LOAD and lw \e sched_prio_to_wmult[], in which case
225 * we're guaranteed shift stays positive because inv_weight is guaranteed to
226 * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22.
227 *
228 * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus
229 * weight/lw.weight <= 1, and therefore our shift will also be positive.
230 */
231 static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw)
232 {
233 u64 fact = scale_load_down(weight);
234 int shift = WMULT_SHIFT;
235
236 __update_inv_weight(lw);
237
238 if (unlikely(fact >> 32)) {
239 while (fact >> 32) {
240 fact >>= 1;
241 shift--;
242 }
243 }
244
245 /* hint to use a 32x32->64 mul */
246 fact = (u64)(u32)fact * lw->inv_weight;
247
248 while (fact >> 32) {
249 fact >>= 1;
250 shift--;
251 }
252
253 return mul_u64_u32_shr(delta_exec, fact, shift);
254 }
255
256
257 const struct sched_class fair_sched_class;
258
259 /**************************************************************
260 * CFS operations on generic schedulable entities:
261 */
262
263 #ifdef CONFIG_FAIR_GROUP_SCHED
264
265 /* cpu runqueue to which this cfs_rq is attached */
266 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
267 {
268 return cfs_rq->rq;
269 }
270
271 /* An entity is a task if it doesn't "own" a runqueue */
272 #define entity_is_task(se) (!se->my_q)
273
274 static inline struct task_struct *task_of(struct sched_entity *se)
275 {
276 SCHED_WARN_ON(!entity_is_task(se));
277 return container_of(se, struct task_struct, se);
278 }
279
280 /* Walk up scheduling entities hierarchy */
281 #define for_each_sched_entity(se) \
282 for (; se; se = se->parent)
283
284 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
285 {
286 return p->se.cfs_rq;
287 }
288
289 /* runqueue on which this entity is (to be) queued */
290 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
291 {
292 return se->cfs_rq;
293 }
294
295 /* runqueue "owned" by this group */
296 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
297 {
298 return grp->my_q;
299 }
300
301 static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
302 {
303 if (!cfs_rq->on_list) {
304 struct rq *rq = rq_of(cfs_rq);
305 int cpu = cpu_of(rq);
306 /*
307 * Ensure we either appear before our parent (if already
308 * enqueued) or force our parent to appear after us when it is
309 * enqueued. The fact that we always enqueue bottom-up
310 * reduces this to two cases and a special case for the root
311 * cfs_rq. Furthermore, it also means that we will always reset
312 * tmp_alone_branch either when the branch is connected
313 * to a tree or when we reach the beg of the tree
314 */
315 if (cfs_rq->tg->parent &&
316 cfs_rq->tg->parent->cfs_rq[cpu]->on_list) {
317 /*
318 * If parent is already on the list, we add the child
319 * just before. Thanks to circular linked property of
320 * the list, this means to put the child at the tail
321 * of the list that starts by parent.
322 */
323 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
324 &(cfs_rq->tg->parent->cfs_rq[cpu]->leaf_cfs_rq_list));
325 /*
326 * The branch is now connected to its tree so we can
327 * reset tmp_alone_branch to the beginning of the
328 * list.
329 */
330 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
331 } else if (!cfs_rq->tg->parent) {
332 /*
333 * cfs rq without parent should be put
334 * at the tail of the list.
335 */
336 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
337 &rq->leaf_cfs_rq_list);
338 /*
339 * We have reach the beg of a tree so we can reset
340 * tmp_alone_branch to the beginning of the list.
341 */
342 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
343 } else {
344 /*
345 * The parent has not already been added so we want to
346 * make sure that it will be put after us.
347 * tmp_alone_branch points to the beg of the branch
348 * where we will add parent.
349 */
350 list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
351 rq->tmp_alone_branch);
352 /*
353 * update tmp_alone_branch to points to the new beg
354 * of the branch
355 */
356 rq->tmp_alone_branch = &cfs_rq->leaf_cfs_rq_list;
357 }
358
359 cfs_rq->on_list = 1;
360 }
361 }
362
363 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
364 {
365 if (cfs_rq->on_list) {
366 list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
367 cfs_rq->on_list = 0;
368 }
369 }
370
371 /* Iterate thr' all leaf cfs_rq's on a runqueue */
372 #define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) \
373 list_for_each_entry_safe(cfs_rq, pos, &rq->leaf_cfs_rq_list, \
374 leaf_cfs_rq_list)
375
376 /* Do the two (enqueued) entities belong to the same group ? */
377 static inline struct cfs_rq *
378 is_same_group(struct sched_entity *se, struct sched_entity *pse)
379 {
380 if (se->cfs_rq == pse->cfs_rq)
381 return se->cfs_rq;
382
383 return NULL;
384 }
385
386 static inline struct sched_entity *parent_entity(struct sched_entity *se)
387 {
388 return se->parent;
389 }
390
391 static void
392 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
393 {
394 int se_depth, pse_depth;
395
396 /*
397 * preemption test can be made between sibling entities who are in the
398 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
399 * both tasks until we find their ancestors who are siblings of common
400 * parent.
401 */
402
403 /* First walk up until both entities are at same depth */
404 se_depth = (*se)->depth;
405 pse_depth = (*pse)->depth;
406
407 while (se_depth > pse_depth) {
408 se_depth--;
409 *se = parent_entity(*se);
410 }
411
412 while (pse_depth > se_depth) {
413 pse_depth--;
414 *pse = parent_entity(*pse);
415 }
416
417 while (!is_same_group(*se, *pse)) {
418 *se = parent_entity(*se);
419 *pse = parent_entity(*pse);
420 }
421 }
422
423 #else /* !CONFIG_FAIR_GROUP_SCHED */
424
425 static inline struct task_struct *task_of(struct sched_entity *se)
426 {
427 return container_of(se, struct task_struct, se);
428 }
429
430 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
431 {
432 return container_of(cfs_rq, struct rq, cfs);
433 }
434
435 #define entity_is_task(se) 1
436
437 #define for_each_sched_entity(se) \
438 for (; se; se = NULL)
439
440 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
441 {
442 return &task_rq(p)->cfs;
443 }
444
445 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
446 {
447 struct task_struct *p = task_of(se);
448 struct rq *rq = task_rq(p);
449
450 return &rq->cfs;
451 }
452
453 /* runqueue "owned" by this group */
454 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
455 {
456 return NULL;
457 }
458
459 static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
460 {
461 }
462
463 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
464 {
465 }
466
467 #define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) \
468 for (cfs_rq = &rq->cfs, pos = NULL; cfs_rq; cfs_rq = pos)
469
470 static inline struct sched_entity *parent_entity(struct sched_entity *se)
471 {
472 return NULL;
473 }
474
475 static inline void
476 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
477 {
478 }
479
480 #endif /* CONFIG_FAIR_GROUP_SCHED */
481
482 static __always_inline
483 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec);
484
485 /**************************************************************
486 * Scheduling class tree data structure manipulation methods:
487 */
488
489 static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
490 {
491 s64 delta = (s64)(vruntime - max_vruntime);
492 if (delta > 0)
493 max_vruntime = vruntime;
494
495 return max_vruntime;
496 }
497
498 static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
499 {
500 s64 delta = (s64)(vruntime - min_vruntime);
501 if (delta < 0)
502 min_vruntime = vruntime;
503
504 return min_vruntime;
505 }
506
507 static inline int entity_before(struct sched_entity *a,
508 struct sched_entity *b)
509 {
510 return (s64)(a->vruntime - b->vruntime) < 0;
511 }
512
513 static void update_min_vruntime(struct cfs_rq *cfs_rq)
514 {
515 struct sched_entity *curr = cfs_rq->curr;
516
517 u64 vruntime = cfs_rq->min_vruntime;
518
519 if (curr) {
520 if (curr->on_rq)
521 vruntime = curr->vruntime;
522 else
523 curr = NULL;
524 }
525
526 if (cfs_rq->rb_leftmost) {
527 struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
528 struct sched_entity,
529 run_node);
530
531 if (!curr)
532 vruntime = se->vruntime;
533 else
534 vruntime = min_vruntime(vruntime, se->vruntime);
535 }
536
537 /* ensure we never gain time by being placed backwards. */
538 cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
539 #ifndef CONFIG_64BIT
540 smp_wmb();
541 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
542 #endif
543 }
544
545 /*
546 * Enqueue an entity into the rb-tree:
547 */
548 static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
549 {
550 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
551 struct rb_node *parent = NULL;
552 struct sched_entity *entry;
553 int leftmost = 1;
554
555 /*
556 * Find the right place in the rbtree:
557 */
558 while (*link) {
559 parent = *link;
560 entry = rb_entry(parent, struct sched_entity, run_node);
561 /*
562 * We dont care about collisions. Nodes with
563 * the same key stay together.
564 */
565 if (entity_before(se, entry)) {
566 link = &parent->rb_left;
567 } else {
568 link = &parent->rb_right;
569 leftmost = 0;
570 }
571 }
572
573 /*
574 * Maintain a cache of leftmost tree entries (it is frequently
575 * used):
576 */
577 if (leftmost)
578 cfs_rq->rb_leftmost = &se->run_node;
579
580 rb_link_node(&se->run_node, parent, link);
581 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
582 }
583
584 static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
585 {
586 if (cfs_rq->rb_leftmost == &se->run_node) {
587 struct rb_node *next_node;
588
589 next_node = rb_next(&se->run_node);
590 cfs_rq->rb_leftmost = next_node;
591 }
592
593 rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
594 }
595
596 struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
597 {
598 struct rb_node *left = cfs_rq->rb_leftmost;
599
600 if (!left)
601 return NULL;
602
603 return rb_entry(left, struct sched_entity, run_node);
604 }
605
606 static struct sched_entity *__pick_next_entity(struct sched_entity *se)
607 {
608 struct rb_node *next = rb_next(&se->run_node);
609
610 if (!next)
611 return NULL;
612
613 return rb_entry(next, struct sched_entity, run_node);
614 }
615
616 #ifdef CONFIG_SCHED_DEBUG
617 struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
618 {
619 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
620
621 if (!last)
622 return NULL;
623
624 return rb_entry(last, struct sched_entity, run_node);
625 }
626
627 /**************************************************************
628 * Scheduling class statistics methods:
629 */
630
631 int sched_proc_update_handler(struct ctl_table *table, int write,
632 void __user *buffer, size_t *lenp,
633 loff_t *ppos)
634 {
635 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
636 unsigned int factor = get_update_sysctl_factor();
637
638 if (ret || !write)
639 return ret;
640
641 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
642 sysctl_sched_min_granularity);
643
644 #define WRT_SYSCTL(name) \
645 (normalized_sysctl_##name = sysctl_##name / (factor))
646 WRT_SYSCTL(sched_min_granularity);
647 WRT_SYSCTL(sched_latency);
648 WRT_SYSCTL(sched_wakeup_granularity);
649 #undef WRT_SYSCTL
650
651 return 0;
652 }
653 #endif
654
655 /*
656 * delta /= w
657 */
658 static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se)
659 {
660 if (unlikely(se->load.weight != NICE_0_LOAD))
661 delta = __calc_delta(delta, NICE_0_LOAD, &se->load);
662
663 return delta;
664 }
665
666 /*
667 * The idea is to set a period in which each task runs once.
668 *
669 * When there are too many tasks (sched_nr_latency) we have to stretch
670 * this period because otherwise the slices get too small.
671 *
672 * p = (nr <= nl) ? l : l*nr/nl
673 */
674 static u64 __sched_period(unsigned long nr_running)
675 {
676 if (unlikely(nr_running > sched_nr_latency))
677 return nr_running * sysctl_sched_min_granularity;
678 else
679 return sysctl_sched_latency;
680 }
681
682 /*
683 * We calculate the wall-time slice from the period by taking a part
684 * proportional to the weight.
685 *
686 * s = p*P[w/rw]
687 */
688 static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
689 {
690 u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
691
692 for_each_sched_entity(se) {
693 struct load_weight *load;
694 struct load_weight lw;
695
696 cfs_rq = cfs_rq_of(se);
697 load = &cfs_rq->load;
698
699 if (unlikely(!se->on_rq)) {
700 lw = cfs_rq->load;
701
702 update_load_add(&lw, se->load.weight);
703 load = &lw;
704 }
705 slice = __calc_delta(slice, se->load.weight, load);
706 }
707 return slice;
708 }
709
710 /*
711 * We calculate the vruntime slice of a to-be-inserted task.
712 *
713 * vs = s/w
714 */
715 static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
716 {
717 return calc_delta_fair(sched_slice(cfs_rq, se), se);
718 }
719
720 #ifdef CONFIG_SMP
721
722 #include "sched-pelt.h"
723
724 static int select_idle_sibling(struct task_struct *p, int prev_cpu, int cpu);
725 static unsigned long task_h_load(struct task_struct *p);
726
727 /* Give new sched_entity start runnable values to heavy its load in infant time */
728 void init_entity_runnable_average(struct sched_entity *se)
729 {
730 struct sched_avg *sa = &se->avg;
731
732 sa->last_update_time = 0;
733 /*
734 * sched_avg's period_contrib should be strictly less then 1024, so
735 * we give it 1023 to make sure it is almost a period (1024us), and
736 * will definitely be update (after enqueue).
737 */
738 sa->period_contrib = 1023;
739 /*
740 * Tasks are intialized with full load to be seen as heavy tasks until
741 * they get a chance to stabilize to their real load level.
742 * Group entities are intialized with zero load to reflect the fact that
743 * nothing has been attached to the task group yet.
744 */
745 if (entity_is_task(se))
746 sa->load_avg = scale_load_down(se->load.weight);
747 sa->load_sum = sa->load_avg * LOAD_AVG_MAX;
748 /*
749 * At this point, util_avg won't be used in select_task_rq_fair anyway
750 */
751 sa->util_avg = 0;
752 sa->util_sum = 0;
753 /* when this task enqueue'ed, it will contribute to its cfs_rq's load_avg */
754 }
755
756 static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq);
757 static void attach_entity_cfs_rq(struct sched_entity *se);
758
759 /*
760 * With new tasks being created, their initial util_avgs are extrapolated
761 * based on the cfs_rq's current util_avg:
762 *
763 * util_avg = cfs_rq->util_avg / (cfs_rq->load_avg + 1) * se.load.weight
764 *
765 * However, in many cases, the above util_avg does not give a desired
766 * value. Moreover, the sum of the util_avgs may be divergent, such
767 * as when the series is a harmonic series.
768 *
769 * To solve this problem, we also cap the util_avg of successive tasks to
770 * only 1/2 of the left utilization budget:
771 *
772 * util_avg_cap = (1024 - cfs_rq->avg.util_avg) / 2^n
773 *
774 * where n denotes the nth task.
775 *
776 * For example, a simplest series from the beginning would be like:
777 *
778 * task util_avg: 512, 256, 128, 64, 32, 16, 8, ...
779 * cfs_rq util_avg: 512, 768, 896, 960, 992, 1008, 1016, ...
780 *
781 * Finally, that extrapolated util_avg is clamped to the cap (util_avg_cap)
782 * if util_avg > util_avg_cap.
783 */
784 void post_init_entity_util_avg(struct sched_entity *se)
785 {
786 struct cfs_rq *cfs_rq = cfs_rq_of(se);
787 struct sched_avg *sa = &se->avg;
788 long cap = (long)(SCHED_CAPACITY_SCALE - cfs_rq->avg.util_avg) / 2;
789
790 if (cap > 0) {
791 if (cfs_rq->avg.util_avg != 0) {
792 sa->util_avg = cfs_rq->avg.util_avg * se->load.weight;
793 sa->util_avg /= (cfs_rq->avg.load_avg + 1);
794
795 if (sa->util_avg > cap)
796 sa->util_avg = cap;
797 } else {
798 sa->util_avg = cap;
799 }
800 sa->util_sum = sa->util_avg * LOAD_AVG_MAX;
801 }
802
803 if (entity_is_task(se)) {
804 struct task_struct *p = task_of(se);
805 if (p->sched_class != &fair_sched_class) {
806 /*
807 * For !fair tasks do:
808 *
809 update_cfs_rq_load_avg(now, cfs_rq, false);
810 attach_entity_load_avg(cfs_rq, se);
811 switched_from_fair(rq, p);
812 *
813 * such that the next switched_to_fair() has the
814 * expected state.
815 */
816 se->avg.last_update_time = cfs_rq_clock_task(cfs_rq);
817 return;
818 }
819 }
820
821 attach_entity_cfs_rq(se);
822 }
823
824 #else /* !CONFIG_SMP */
825 void init_entity_runnable_average(struct sched_entity *se)
826 {
827 }
828 void post_init_entity_util_avg(struct sched_entity *se)
829 {
830 }
831 static void update_tg_load_avg(struct cfs_rq *cfs_rq, int force)
832 {
833 }
834 #endif /* CONFIG_SMP */
835
836 /*
837 * Update the current task's runtime statistics.
838 */
839 static void update_curr(struct cfs_rq *cfs_rq)
840 {
841 struct sched_entity *curr = cfs_rq->curr;
842 u64 now = rq_clock_task(rq_of(cfs_rq));
843 u64 delta_exec;
844
845 if (unlikely(!curr))
846 return;
847
848 delta_exec = now - curr->exec_start;
849 if (unlikely((s64)delta_exec <= 0))
850 return;
851
852 curr->exec_start = now;
853
854 schedstat_set(curr->statistics.exec_max,
855 max(delta_exec, curr->statistics.exec_max));
856
857 curr->sum_exec_runtime += delta_exec;
858 schedstat_add(cfs_rq->exec_clock, delta_exec);
859
860 curr->vruntime += calc_delta_fair(delta_exec, curr);
861 update_min_vruntime(cfs_rq);
862
863 if (entity_is_task(curr)) {
864 struct task_struct *curtask = task_of(curr);
865
866 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
867 cpuacct_charge(curtask, delta_exec);
868 account_group_exec_runtime(curtask, delta_exec);
869 }
870
871 account_cfs_rq_runtime(cfs_rq, delta_exec);
872 }
873
874 static void update_curr_fair(struct rq *rq)
875 {
876 update_curr(cfs_rq_of(&rq->curr->se));
877 }
878
879 static inline void
880 update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
881 {
882 u64 wait_start, prev_wait_start;
883
884 if (!schedstat_enabled())
885 return;
886
887 wait_start = rq_clock(rq_of(cfs_rq));
888 prev_wait_start = schedstat_val(se->statistics.wait_start);
889
890 if (entity_is_task(se) && task_on_rq_migrating(task_of(se)) &&
891 likely(wait_start > prev_wait_start))
892 wait_start -= prev_wait_start;
893
894 schedstat_set(se->statistics.wait_start, wait_start);
895 }
896
897 static inline void
898 update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
899 {
900 struct task_struct *p;
901 u64 delta;
902
903 if (!schedstat_enabled())
904 return;
905
906 delta = rq_clock(rq_of(cfs_rq)) - schedstat_val(se->statistics.wait_start);
907
908 if (entity_is_task(se)) {
909 p = task_of(se);
910 if (task_on_rq_migrating(p)) {
911 /*
912 * Preserve migrating task's wait time so wait_start
913 * time stamp can be adjusted to accumulate wait time
914 * prior to migration.
915 */
916 schedstat_set(se->statistics.wait_start, delta);
917 return;
918 }
919 trace_sched_stat_wait(p, delta);
920 }
921
922 schedstat_set(se->statistics.wait_max,
923 max(schedstat_val(se->statistics.wait_max), delta));
924 schedstat_inc(se->statistics.wait_count);
925 schedstat_add(se->statistics.wait_sum, delta);
926 schedstat_set(se->statistics.wait_start, 0);
927 }
928
929 static inline void
930 update_stats_enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
931 {
932 struct task_struct *tsk = NULL;
933 u64 sleep_start, block_start;
934
935 if (!schedstat_enabled())
936 return;
937
938 sleep_start = schedstat_val(se->statistics.sleep_start);
939 block_start = schedstat_val(se->statistics.block_start);
940
941 if (entity_is_task(se))
942 tsk = task_of(se);
943
944 if (sleep_start) {
945 u64 delta = rq_clock(rq_of(cfs_rq)) - sleep_start;
946
947 if ((s64)delta < 0)
948 delta = 0;
949
950 if (unlikely(delta > schedstat_val(se->statistics.sleep_max)))
951 schedstat_set(se->statistics.sleep_max, delta);
952
953 schedstat_set(se->statistics.sleep_start, 0);
954 schedstat_add(se->statistics.sum_sleep_runtime, delta);
955
956 if (tsk) {
957 account_scheduler_latency(tsk, delta >> 10, 1);
958 trace_sched_stat_sleep(tsk, delta);
959 }
960 }
961 if (block_start) {
962 u64 delta = rq_clock(rq_of(cfs_rq)) - block_start;
963
964 if ((s64)delta < 0)
965 delta = 0;
966
967 if (unlikely(delta > schedstat_val(se->statistics.block_max)))
968 schedstat_set(se->statistics.block_max, delta);
969
970 schedstat_set(se->statistics.block_start, 0);
971 schedstat_add(se->statistics.sum_sleep_runtime, delta);
972
973 if (tsk) {
974 if (tsk->in_iowait) {
975 schedstat_add(se->statistics.iowait_sum, delta);
976 schedstat_inc(se->statistics.iowait_count);
977 trace_sched_stat_iowait(tsk, delta);
978 }
979
980 trace_sched_stat_blocked(tsk, delta);
981
982 /*
983 * Blocking time is in units of nanosecs, so shift by
984 * 20 to get a milliseconds-range estimation of the
985 * amount of time that the task spent sleeping:
986 */
987 if (unlikely(prof_on == SLEEP_PROFILING)) {
988 profile_hits(SLEEP_PROFILING,
989 (void *)get_wchan(tsk),
990 delta >> 20);
991 }
992 account_scheduler_latency(tsk, delta >> 10, 0);
993 }
994 }
995 }
996
997 /*
998 * Task is being enqueued - update stats:
999 */
1000 static inline void
1001 update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
1002 {
1003 if (!schedstat_enabled())
1004 return;
1005
1006 /*
1007 * Are we enqueueing a waiting task? (for current tasks
1008 * a dequeue/enqueue event is a NOP)
1009 */
1010 if (se != cfs_rq->curr)
1011 update_stats_wait_start(cfs_rq, se);
1012
1013 if (flags & ENQUEUE_WAKEUP)
1014 update_stats_enqueue_sleeper(cfs_rq, se);
1015 }
1016
1017 static inline void
1018 update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
1019 {
1020
1021 if (!schedstat_enabled())
1022 return;
1023
1024 /*
1025 * Mark the end of the wait period if dequeueing a
1026 * waiting task:
1027 */
1028 if (se != cfs_rq->curr)
1029 update_stats_wait_end(cfs_rq, se);
1030
1031 if ((flags & DEQUEUE_SLEEP) && entity_is_task(se)) {
1032 struct task_struct *tsk = task_of(se);
1033
1034 if (tsk->state & TASK_INTERRUPTIBLE)
1035 schedstat_set(se->statistics.sleep_start,
1036 rq_clock(rq_of(cfs_rq)));
1037 if (tsk->state & TASK_UNINTERRUPTIBLE)
1038 schedstat_set(se->statistics.block_start,
1039 rq_clock(rq_of(cfs_rq)));
1040 }
1041 }
1042
1043 /*
1044 * We are picking a new current task - update its stats:
1045 */
1046 static inline void
1047 update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
1048 {
1049 /*
1050 * We are starting a new run period:
1051 */
1052 se->exec_start = rq_clock_task(rq_of(cfs_rq));
1053 }
1054
1055 /**************************************************
1056 * Scheduling class queueing methods:
1057 */
1058
1059 #ifdef CONFIG_NUMA_BALANCING
1060 /*
1061 * Approximate time to scan a full NUMA task in ms. The task scan period is
1062 * calculated based on the tasks virtual memory size and
1063 * numa_balancing_scan_size.
1064 */
1065 unsigned int sysctl_numa_balancing_scan_period_min = 1000;
1066 unsigned int sysctl_numa_balancing_scan_period_max = 60000;
1067
1068 /* Portion of address space to scan in MB */
1069 unsigned int sysctl_numa_balancing_scan_size = 256;
1070
1071 /* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
1072 unsigned int sysctl_numa_balancing_scan_delay = 1000;
1073
1074 static unsigned int task_nr_scan_windows(struct task_struct *p)
1075 {
1076 unsigned long rss = 0;
1077 unsigned long nr_scan_pages;
1078
1079 /*
1080 * Calculations based on RSS as non-present and empty pages are skipped
1081 * by the PTE scanner and NUMA hinting faults should be trapped based
1082 * on resident pages
1083 */
1084 nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT);
1085 rss = get_mm_rss(p->mm);
1086 if (!rss)
1087 rss = nr_scan_pages;
1088
1089 rss = round_up(rss, nr_scan_pages);
1090 return rss / nr_scan_pages;
1091 }
1092
1093 /* For sanitys sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
1094 #define MAX_SCAN_WINDOW 2560
1095
1096 static unsigned int task_scan_min(struct task_struct *p)
1097 {
1098 unsigned int scan_size = READ_ONCE(sysctl_numa_balancing_scan_size);
1099 unsigned int scan, floor;
1100 unsigned int windows = 1;
1101
1102 if (scan_size < MAX_SCAN_WINDOW)
1103 windows = MAX_SCAN_WINDOW / scan_size;
1104 floor = 1000 / windows;
1105
1106 scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
1107 return max_t(unsigned int, floor, scan);
1108 }
1109
1110 static unsigned int task_scan_max(struct task_struct *p)
1111 {
1112 unsigned int smin = task_scan_min(p);
1113 unsigned int smax;
1114
1115 /* Watch for min being lower than max due to floor calculations */
1116 smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);
1117 return max(smin, smax);
1118 }
1119
1120 static void account_numa_enqueue(struct rq *rq, struct task_struct *p)
1121 {
1122 rq->nr_numa_running += (p->numa_preferred_nid != -1);
1123 rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p));
1124 }
1125
1126 static void account_numa_dequeue(struct rq *rq, struct task_struct *p)
1127 {
1128 rq->nr_numa_running -= (p->numa_preferred_nid != -1);
1129 rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p));
1130 }
1131
1132 struct numa_group {
1133 atomic_t refcount;
1134
1135 spinlock_t lock; /* nr_tasks, tasks */
1136 int nr_tasks;
1137 pid_t gid;
1138 int active_nodes;
1139
1140 struct rcu_head rcu;
1141 unsigned long total_faults;
1142 unsigned long max_faults_cpu;
1143 /*
1144 * Faults_cpu is used to decide whether memory should move
1145 * towards the CPU. As a consequence, these stats are weighted
1146 * more by CPU use than by memory faults.
1147 */
1148 unsigned long *faults_cpu;
1149 unsigned long faults[0];
1150 };
1151
1152 /* Shared or private faults. */
1153 #define NR_NUMA_HINT_FAULT_TYPES 2
1154
1155 /* Memory and CPU locality */
1156 #define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2)
1157
1158 /* Averaged statistics, and temporary buffers. */
1159 #define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2)
1160
1161 pid_t task_numa_group_id(struct task_struct *p)
1162 {
1163 return p->numa_group ? p->numa_group->gid : 0;
1164 }
1165
1166 /*
1167 * The averaged statistics, shared & private, memory & cpu,
1168 * occupy the first half of the array. The second half of the
1169 * array is for current counters, which are averaged into the
1170 * first set by task_numa_placement.
1171 */
1172 static inline int task_faults_idx(enum numa_faults_stats s, int nid, int priv)
1173 {
1174 return NR_NUMA_HINT_FAULT_TYPES * (s * nr_node_ids + nid) + priv;
1175 }
1176
1177 static inline unsigned long task_faults(struct task_struct *p, int nid)
1178 {
1179 if (!p->numa_faults)
1180 return 0;
1181
1182 return p->numa_faults[task_faults_idx(NUMA_MEM, nid, 0)] +
1183 p->numa_faults[task_faults_idx(NUMA_MEM, nid, 1)];
1184 }
1185
1186 static inline unsigned long group_faults(struct task_struct *p, int nid)
1187 {
1188 if (!p->numa_group)
1189 return 0;
1190
1191 return p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 0)] +
1192 p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 1)];
1193 }
1194
1195 static inline unsigned long group_faults_cpu(struct numa_group *group, int nid)
1196 {
1197 return group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 0)] +
1198 group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 1)];
1199 }
1200
1201 /*
1202 * A node triggering more than 1/3 as many NUMA faults as the maximum is
1203 * considered part of a numa group's pseudo-interleaving set. Migrations
1204 * between these nodes are slowed down, to allow things to settle down.
1205 */
1206 #define ACTIVE_NODE_FRACTION 3
1207
1208 static bool numa_is_active_node(int nid, struct numa_group *ng)
1209 {
1210 return group_faults_cpu(ng, nid) * ACTIVE_NODE_FRACTION > ng->max_faults_cpu;
1211 }
1212
1213 /* Handle placement on systems where not all nodes are directly connected. */
1214 static unsigned long score_nearby_nodes(struct task_struct *p, int nid,
1215 int maxdist, bool task)
1216 {
1217 unsigned long score = 0;
1218 int node;
1219
1220 /*
1221 * All nodes are directly connected, and the same distance
1222 * from each other. No need for fancy placement algorithms.
1223 */
1224 if (sched_numa_topology_type == NUMA_DIRECT)
1225 return 0;
1226
1227 /*
1228 * This code is called for each node, introducing N^2 complexity,
1229 * which should be ok given the number of nodes rarely exceeds 8.
1230 */
1231 for_each_online_node(node) {
1232 unsigned long faults;
1233 int dist = node_distance(nid, node);
1234
1235 /*
1236 * The furthest away nodes in the system are not interesting
1237 * for placement; nid was already counted.
1238 */
1239 if (dist == sched_max_numa_distance || node == nid)
1240 continue;
1241
1242 /*
1243 * On systems with a backplane NUMA topology, compare groups
1244 * of nodes, and move tasks towards the group with the most
1245 * memory accesses. When comparing two nodes at distance
1246 * "hoplimit", only nodes closer by than "hoplimit" are part
1247 * of each group. Skip other nodes.
1248 */
1249 if (sched_numa_topology_type == NUMA_BACKPLANE &&
1250 dist > maxdist)
1251 continue;
1252
1253 /* Add up the faults from nearby nodes. */
1254 if (task)
1255 faults = task_faults(p, node);
1256 else
1257 faults = group_faults(p, node);
1258
1259 /*
1260 * On systems with a glueless mesh NUMA topology, there are
1261 * no fixed "groups of nodes". Instead, nodes that are not
1262 * directly connected bounce traffic through intermediate
1263 * nodes; a numa_group can occupy any set of nodes.
1264 * The further away a node is, the less the faults count.
1265 * This seems to result in good task placement.
1266 */
1267 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
1268 faults *= (sched_max_numa_distance - dist);
1269 faults /= (sched_max_numa_distance - LOCAL_DISTANCE);
1270 }
1271
1272 score += faults;
1273 }
1274
1275 return score;
1276 }
1277
1278 /*
1279 * These return the fraction of accesses done by a particular task, or
1280 * task group, on a particular numa node. The group weight is given a
1281 * larger multiplier, in order to group tasks together that are almost
1282 * evenly spread out between numa nodes.
1283 */
1284 static inline unsigned long task_weight(struct task_struct *p, int nid,
1285 int dist)
1286 {
1287 unsigned long faults, total_faults;
1288
1289 if (!p->numa_faults)
1290 return 0;
1291
1292 total_faults = p->total_numa_faults;
1293
1294 if (!total_faults)
1295 return 0;
1296
1297 faults = task_faults(p, nid);
1298 faults += score_nearby_nodes(p, nid, dist, true);
1299
1300 return 1000 * faults / total_faults;
1301 }
1302
1303 static inline unsigned long group_weight(struct task_struct *p, int nid,
1304 int dist)
1305 {
1306 unsigned long faults, total_faults;
1307
1308 if (!p->numa_group)
1309 return 0;
1310
1311 total_faults = p->numa_group->total_faults;
1312
1313 if (!total_faults)
1314 return 0;
1315
1316 faults = group_faults(p, nid);
1317 faults += score_nearby_nodes(p, nid, dist, false);
1318
1319 return 1000 * faults / total_faults;
1320 }
1321
1322 bool should_numa_migrate_memory(struct task_struct *p, struct page * page,
1323 int src_nid, int dst_cpu)
1324 {
1325 struct numa_group *ng = p->numa_group;
1326 int dst_nid = cpu_to_node(dst_cpu);
1327 int last_cpupid, this_cpupid;
1328
1329 this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid);
1330
1331 /*
1332 * Multi-stage node selection is used in conjunction with a periodic
1333 * migration fault to build a temporal task<->page relation. By using
1334 * a two-stage filter we remove short/unlikely relations.
1335 *
1336 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate
1337 * a task's usage of a particular page (n_p) per total usage of this
1338 * page (n_t) (in a given time-span) to a probability.
1339 *
1340 * Our periodic faults will sample this probability and getting the
1341 * same result twice in a row, given these samples are fully
1342 * independent, is then given by P(n)^2, provided our sample period
1343 * is sufficiently short compared to the usage pattern.
1344 *
1345 * This quadric squishes small probabilities, making it less likely we
1346 * act on an unlikely task<->page relation.
1347 */
1348 last_cpupid = page_cpupid_xchg_last(page, this_cpupid);
1349 if (!cpupid_pid_unset(last_cpupid) &&
1350 cpupid_to_nid(last_cpupid) != dst_nid)
1351 return false;
1352
1353 /* Always allow migrate on private faults */
1354 if (cpupid_match_pid(p, last_cpupid))
1355 return true;
1356
1357 /* A shared fault, but p->numa_group has not been set up yet. */
1358 if (!ng)
1359 return true;
1360
1361 /*
1362 * Destination node is much more heavily used than the source
1363 * node? Allow migration.
1364 */
1365 if (group_faults_cpu(ng, dst_nid) > group_faults_cpu(ng, src_nid) *
1366 ACTIVE_NODE_FRACTION)
1367 return true;
1368
1369 /*
1370 * Distribute memory according to CPU & memory use on each node,
1371 * with 3/4 hysteresis to avoid unnecessary memory migrations:
1372 *
1373 * faults_cpu(dst) 3 faults_cpu(src)
1374 * --------------- * - > ---------------
1375 * faults_mem(dst) 4 faults_mem(src)
1376 */
1377 return group_faults_cpu(ng, dst_nid) * group_faults(p, src_nid) * 3 >
1378 group_faults_cpu(ng, src_nid) * group_faults(p, dst_nid) * 4;
1379 }
1380
1381 static unsigned long weighted_cpuload(const int cpu);
1382 static unsigned long source_load(int cpu, int type);
1383 static unsigned long target_load(int cpu, int type);
1384 static unsigned long capacity_of(int cpu);
1385 static long effective_load(struct task_group *tg, int cpu, long wl, long wg);
1386
1387 /* Cached statistics for all CPUs within a node */
1388 struct numa_stats {
1389 unsigned long nr_running;
1390 unsigned long load;
1391
1392 /* Total compute capacity of CPUs on a node */
1393 unsigned long compute_capacity;
1394
1395 /* Approximate capacity in terms of runnable tasks on a node */
1396 unsigned long task_capacity;
1397 int has_free_capacity;
1398 };
1399
1400 /*
1401 * XXX borrowed from update_sg_lb_stats
1402 */
1403 static void update_numa_stats(struct numa_stats *ns, int nid)
1404 {
1405 int smt, cpu, cpus = 0;
1406 unsigned long capacity;
1407
1408 memset(ns, 0, sizeof(*ns));
1409 for_each_cpu(cpu, cpumask_of_node(nid)) {
1410 struct rq *rq = cpu_rq(cpu);
1411
1412 ns->nr_running += rq->nr_running;
1413 ns->load += weighted_cpuload(cpu);
1414 ns->compute_capacity += capacity_of(cpu);
1415
1416 cpus++;
1417 }
1418
1419 /*
1420 * If we raced with hotplug and there are no CPUs left in our mask
1421 * the @ns structure is NULL'ed and task_numa_compare() will
1422 * not find this node attractive.
1423 *
1424 * We'll either bail at !has_free_capacity, or we'll detect a huge
1425 * imbalance and bail there.
1426 */
1427 if (!cpus)
1428 return;
1429
1430 /* smt := ceil(cpus / capacity), assumes: 1 < smt_power < 2 */
1431 smt = DIV_ROUND_UP(SCHED_CAPACITY_SCALE * cpus, ns->compute_capacity);
1432 capacity = cpus / smt; /* cores */
1433
1434 ns->task_capacity = min_t(unsigned, capacity,
1435 DIV_ROUND_CLOSEST(ns->compute_capacity, SCHED_CAPACITY_SCALE));
1436 ns->has_free_capacity = (ns->nr_running < ns->task_capacity);
1437 }
1438
1439 struct task_numa_env {
1440 struct task_struct *p;
1441
1442 int src_cpu, src_nid;
1443 int dst_cpu, dst_nid;
1444
1445 struct numa_stats src_stats, dst_stats;
1446
1447 int imbalance_pct;
1448 int dist;
1449
1450 struct task_struct *best_task;
1451 long best_imp;
1452 int best_cpu;
1453 };
1454
1455 static void task_numa_assign(struct task_numa_env *env,
1456 struct task_struct *p, long imp)
1457 {
1458 if (env->best_task)
1459 put_task_struct(env->best_task);
1460 if (p)
1461 get_task_struct(p);
1462
1463 env->best_task = p;
1464 env->best_imp = imp;
1465 env->best_cpu = env->dst_cpu;
1466 }
1467
1468 static bool load_too_imbalanced(long src_load, long dst_load,
1469 struct task_numa_env *env)
1470 {
1471 long imb, old_imb;
1472 long orig_src_load, orig_dst_load;
1473 long src_capacity, dst_capacity;
1474
1475 /*
1476 * The load is corrected for the CPU capacity available on each node.
1477 *
1478 * src_load dst_load
1479 * ------------ vs ---------
1480 * src_capacity dst_capacity
1481 */
1482 src_capacity = env->src_stats.compute_capacity;
1483 dst_capacity = env->dst_stats.compute_capacity;
1484
1485 /* We care about the slope of the imbalance, not the direction. */
1486 if (dst_load < src_load)
1487 swap(dst_load, src_load);
1488
1489 /* Is the difference below the threshold? */
1490 imb = dst_load * src_capacity * 100 -
1491 src_load * dst_capacity * env->imbalance_pct;
1492 if (imb <= 0)
1493 return false;
1494
1495 /*
1496 * The imbalance is above the allowed threshold.
1497 * Compare it with the old imbalance.
1498 */
1499 orig_src_load = env->src_stats.load;
1500 orig_dst_load = env->dst_stats.load;
1501
1502 if (orig_dst_load < orig_src_load)
1503 swap(orig_dst_load, orig_src_load);
1504
1505 old_imb = orig_dst_load * src_capacity * 100 -
1506 orig_src_load * dst_capacity * env->imbalance_pct;
1507
1508 /* Would this change make things worse? */
1509 return (imb > old_imb);
1510 }
1511
1512 /*
1513 * This checks if the overall compute and NUMA accesses of the system would
1514 * be improved if the source tasks was migrated to the target dst_cpu taking
1515 * into account that it might be best if task running on the dst_cpu should
1516 * be exchanged with the source task
1517 */
1518 static void task_numa_compare(struct task_numa_env *env,
1519 long taskimp, long groupimp)
1520 {
1521 struct rq *src_rq = cpu_rq(env->src_cpu);
1522 struct rq *dst_rq = cpu_rq(env->dst_cpu);
1523 struct task_struct *cur;
1524 long src_load, dst_load;
1525 long load;
1526 long imp = env->p->numa_group ? groupimp : taskimp;
1527 long moveimp = imp;
1528 int dist = env->dist;
1529
1530 rcu_read_lock();
1531 cur = task_rcu_dereference(&dst_rq->curr);
1532 if (cur && ((cur->flags & PF_EXITING) || is_idle_task(cur)))
1533 cur = NULL;
1534
1535 /*
1536 * Because we have preemption enabled we can get migrated around and
1537 * end try selecting ourselves (current == env->p) as a swap candidate.
1538 */
1539 if (cur == env->p)
1540 goto unlock;
1541
1542 /*
1543 * "imp" is the fault differential for the source task between the
1544 * source and destination node. Calculate the total differential for
1545 * the source task and potential destination task. The more negative
1546 * the value is, the more rmeote accesses that would be expected to
1547 * be incurred if the tasks were swapped.
1548 */
1549 if (cur) {
1550 /* Skip this swap candidate if cannot move to the source cpu */
1551 if (!cpumask_test_cpu(env->src_cpu, &cur->cpus_allowed))
1552 goto unlock;
1553
1554 /*
1555 * If dst and source tasks are in the same NUMA group, or not
1556 * in any group then look only at task weights.
1557 */
1558 if (cur->numa_group == env->p->numa_group) {
1559 imp = taskimp + task_weight(cur, env->src_nid, dist) -
1560 task_weight(cur, env->dst_nid, dist);
1561 /*
1562 * Add some hysteresis to prevent swapping the
1563 * tasks within a group over tiny differences.
1564 */
1565 if (cur->numa_group)
1566 imp -= imp/16;
1567 } else {
1568 /*
1569 * Compare the group weights. If a task is all by
1570 * itself (not part of a group), use the task weight
1571 * instead.
1572 */
1573 if (cur->numa_group)
1574 imp += group_weight(cur, env->src_nid, dist) -
1575 group_weight(cur, env->dst_nid, dist);
1576 else
1577 imp += task_weight(cur, env->src_nid, dist) -
1578 task_weight(cur, env->dst_nid, dist);
1579 }
1580 }
1581
1582 if (imp <= env->best_imp && moveimp <= env->best_imp)
1583 goto unlock;
1584
1585 if (!cur) {
1586 /* Is there capacity at our destination? */
1587 if (env->src_stats.nr_running <= env->src_stats.task_capacity &&
1588 !env->dst_stats.has_free_capacity)
1589 goto unlock;
1590
1591 goto balance;
1592 }
1593
1594 /* Balance doesn't matter much if we're running a task per cpu */
1595 if (imp > env->best_imp && src_rq->nr_running == 1 &&
1596 dst_rq->nr_running == 1)
1597 goto assign;
1598
1599 /*
1600 * In the overloaded case, try and keep the load balanced.
1601 */
1602 balance:
1603 load = task_h_load(env->p);
1604 dst_load = env->dst_stats.load + load;
1605 src_load = env->src_stats.load - load;
1606
1607 if (moveimp > imp && moveimp > env->best_imp) {
1608 /*
1609 * If the improvement from just moving env->p direction is
1610 * better than swapping tasks around, check if a move is
1611 * possible. Store a slightly smaller score than moveimp,
1612 * so an actually idle CPU will win.
1613 */
1614 if (!load_too_imbalanced(src_load, dst_load, env)) {
1615 imp = moveimp - 1;
1616 cur = NULL;
1617 goto assign;
1618 }
1619 }
1620
1621 if (imp <= env->best_imp)
1622 goto unlock;
1623
1624 if (cur) {
1625 load = task_h_load(cur);
1626 dst_load -= load;
1627 src_load += load;
1628 }
1629
1630 if (load_too_imbalanced(src_load, dst_load, env))
1631 goto unlock;
1632
1633 /*
1634 * One idle CPU per node is evaluated for a task numa move.
1635 * Call select_idle_sibling to maybe find a better one.
1636 */
1637 if (!cur) {
1638 /*
1639 * select_idle_siblings() uses an per-cpu cpumask that
1640 * can be used from IRQ context.
1641 */
1642 local_irq_disable();
1643 env->dst_cpu = select_idle_sibling(env->p, env->src_cpu,
1644 env->dst_cpu);
1645 local_irq_enable();
1646 }
1647
1648 assign:
1649 task_numa_assign(env, cur, imp);
1650 unlock:
1651 rcu_read_unlock();
1652 }
1653
1654 static void task_numa_find_cpu(struct task_numa_env *env,
1655 long taskimp, long groupimp)
1656 {
1657 int cpu;
1658
1659 for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) {
1660 /* Skip this CPU if the source task cannot migrate */
1661 if (!cpumask_test_cpu(cpu, &env->p->cpus_allowed))
1662 continue;
1663
1664 env->dst_cpu = cpu;
1665 task_numa_compare(env, taskimp, groupimp);
1666 }
1667 }
1668
1669 /* Only move tasks to a NUMA node less busy than the current node. */
1670 static bool numa_has_capacity(struct task_numa_env *env)
1671 {
1672 struct numa_stats *src = &env->src_stats;
1673 struct numa_stats *dst = &env->dst_stats;
1674
1675 if (src->has_free_capacity && !dst->has_free_capacity)
1676 return false;
1677
1678 /*
1679 * Only consider a task move if the source has a higher load
1680 * than the destination, corrected for CPU capacity on each node.
1681 *
1682 * src->load dst->load
1683 * --------------------- vs ---------------------
1684 * src->compute_capacity dst->compute_capacity
1685 */
1686 if (src->load * dst->compute_capacity * env->imbalance_pct >
1687
1688 dst->load * src->compute_capacity * 100)
1689 return true;
1690
1691 return false;
1692 }
1693
1694 static int task_numa_migrate(struct task_struct *p)
1695 {
1696 struct task_numa_env env = {
1697 .p = p,
1698
1699 .src_cpu = task_cpu(p),
1700 .src_nid = task_node(p),
1701
1702 .imbalance_pct = 112,
1703
1704 .best_task = NULL,
1705 .best_imp = 0,
1706 .best_cpu = -1,
1707 };
1708 struct sched_domain *sd;
1709 unsigned long taskweight, groupweight;
1710 int nid, ret, dist;
1711 long taskimp, groupimp;
1712
1713 /*
1714 * Pick the lowest SD_NUMA domain, as that would have the smallest
1715 * imbalance and would be the first to start moving tasks about.
1716 *
1717 * And we want to avoid any moving of tasks about, as that would create
1718 * random movement of tasks -- counter the numa conditions we're trying
1719 * to satisfy here.
1720 */
1721 rcu_read_lock();
1722 sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu));
1723 if (sd)
1724 env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2;
1725 rcu_read_unlock();
1726
1727 /*
1728 * Cpusets can break the scheduler domain tree into smaller
1729 * balance domains, some of which do not cross NUMA boundaries.
1730 * Tasks that are "trapped" in such domains cannot be migrated
1731 * elsewhere, so there is no point in (re)trying.
1732 */
1733 if (unlikely(!sd)) {
1734 p->numa_preferred_nid = task_node(p);
1735 return -EINVAL;
1736 }
1737
1738 env.dst_nid = p->numa_preferred_nid;
1739 dist = env.dist = node_distance(env.src_nid, env.dst_nid);
1740 taskweight = task_weight(p, env.src_nid, dist);
1741 groupweight = group_weight(p, env.src_nid, dist);
1742 update_numa_stats(&env.src_stats, env.src_nid);
1743 taskimp = task_weight(p, env.dst_nid, dist) - taskweight;
1744 groupimp = group_weight(p, env.dst_nid, dist) - groupweight;
1745 update_numa_stats(&env.dst_stats, env.dst_nid);
1746
1747 /* Try to find a spot on the preferred nid. */
1748 if (numa_has_capacity(&env))
1749 task_numa_find_cpu(&env, taskimp, groupimp);
1750
1751 /*
1752 * Look at other nodes in these cases:
1753 * - there is no space available on the preferred_nid
1754 * - the task is part of a numa_group that is interleaved across
1755 * multiple NUMA nodes; in order to better consolidate the group,
1756 * we need to check other locations.
1757 */
1758 if (env.best_cpu == -1 || (p->numa_group && p->numa_group->active_nodes > 1)) {
1759 for_each_online_node(nid) {
1760 if (nid == env.src_nid || nid == p->numa_preferred_nid)
1761 continue;
1762
1763 dist = node_distance(env.src_nid, env.dst_nid);
1764 if (sched_numa_topology_type == NUMA_BACKPLANE &&
1765 dist != env.dist) {
1766 taskweight = task_weight(p, env.src_nid, dist);
1767 groupweight = group_weight(p, env.src_nid, dist);
1768 }
1769
1770 /* Only consider nodes where both task and groups benefit */
1771 taskimp = task_weight(p, nid, dist) - taskweight;
1772 groupimp = group_weight(p, nid, dist) - groupweight;
1773 if (taskimp < 0 && groupimp < 0)
1774 continue;
1775
1776 env.dist = dist;
1777 env.dst_nid = nid;
1778 update_numa_stats(&env.dst_stats, env.dst_nid);
1779 if (numa_has_capacity(&env))
1780 task_numa_find_cpu(&env, taskimp, groupimp);
1781 }
1782 }
1783
1784 /*
1785 * If the task is part of a workload that spans multiple NUMA nodes,
1786 * and is migrating into one of the workload's active nodes, remember
1787 * this node as the task's preferred numa node, so the workload can
1788 * settle down.
1789 * A task that migrated to a second choice node will be better off
1790 * trying for a better one later. Do not set the preferred node here.
1791 */
1792 if (p->numa_group) {
1793 struct numa_group *ng = p->numa_group;
1794
1795 if (env.best_cpu == -1)
1796 nid = env.src_nid;
1797 else
1798 nid = env.dst_nid;
1799
1800 if (ng->active_nodes > 1 && numa_is_active_node(env.dst_nid, ng))
1801 sched_setnuma(p, env.dst_nid);
1802 }
1803
1804 /* No better CPU than the current one was found. */
1805 if (env.best_cpu == -1)
1806 return -EAGAIN;
1807
1808 /*
1809 * Reset the scan period if the task is being rescheduled on an
1810 * alternative node to recheck if the tasks is now properly placed.
1811 */
1812 p->numa_scan_period = task_scan_min(p);
1813
1814 if (env.best_task == NULL) {
1815 ret = migrate_task_to(p, env.best_cpu);
1816 if (ret != 0)
1817 trace_sched_stick_numa(p, env.src_cpu, env.best_cpu);
1818 return ret;
1819 }
1820
1821 ret = migrate_swap(p, env.best_task);
1822 if (ret != 0)
1823 trace_sched_stick_numa(p, env.src_cpu, task_cpu(env.best_task));
1824 put_task_struct(env.best_task);
1825 return ret;
1826 }
1827
1828 /* Attempt to migrate a task to a CPU on the preferred node. */
1829 static void numa_migrate_preferred(struct task_struct *p)
1830 {
1831 unsigned long interval = HZ;
1832
1833 /* This task has no NUMA fault statistics yet */
1834 if (unlikely(p->numa_preferred_nid == -1 || !p->numa_faults))
1835 return;
1836
1837 /* Periodically retry migrating the task to the preferred node */
1838 interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16);
1839 p->numa_migrate_retry = jiffies + interval;
1840
1841 /* Success if task is already running on preferred CPU */
1842 if (task_node(p) == p->numa_preferred_nid)
1843 return;
1844
1845 /* Otherwise, try migrate to a CPU on the preferred node */
1846 task_numa_migrate(p);
1847 }
1848
1849 /*
1850 * Find out how many nodes on the workload is actively running on. Do this by
1851 * tracking the nodes from which NUMA hinting faults are triggered. This can
1852 * be different from the set of nodes where the workload's memory is currently
1853 * located.
1854 */
1855 static void numa_group_count_active_nodes(struct numa_group *numa_group)
1856 {
1857 unsigned long faults, max_faults = 0;
1858 int nid, active_nodes = 0;
1859
1860 for_each_online_node(nid) {
1861 faults = group_faults_cpu(numa_group, nid);
1862 if (faults > max_faults)
1863 max_faults = faults;
1864 }
1865
1866 for_each_online_node(nid) {
1867 faults = group_faults_cpu(numa_group, nid);
1868 if (faults * ACTIVE_NODE_FRACTION > max_faults)
1869 active_nodes++;
1870 }
1871
1872 numa_group->max_faults_cpu = max_faults;
1873 numa_group->active_nodes = active_nodes;
1874 }
1875
1876 /*
1877 * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS
1878 * increments. The more local the fault statistics are, the higher the scan
1879 * period will be for the next scan window. If local/(local+remote) ratio is
1880 * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS)
1881 * the scan period will decrease. Aim for 70% local accesses.
1882 */
1883 #define NUMA_PERIOD_SLOTS 10
1884 #define NUMA_PERIOD_THRESHOLD 7
1885
1886 /*
1887 * Increase the scan period (slow down scanning) if the majority of
1888 * our memory is already on our local node, or if the majority of
1889 * the page accesses are shared with other processes.
1890 * Otherwise, decrease the scan period.
1891 */
1892 static void update_task_scan_period(struct task_struct *p,
1893 unsigned long shared, unsigned long private)
1894 {
1895 unsigned int period_slot;
1896 int ratio;
1897 int diff;
1898
1899 unsigned long remote = p->numa_faults_locality[0];
1900 unsigned long local = p->numa_faults_locality[1];
1901
1902 /*
1903 * If there were no record hinting faults then either the task is
1904 * completely idle or all activity is areas that are not of interest
1905 * to automatic numa balancing. Related to that, if there were failed
1906 * migration then it implies we are migrating too quickly or the local
1907 * node is overloaded. In either case, scan slower
1908 */
1909 if (local + shared == 0 || p->numa_faults_locality[2]) {
1910 p->numa_scan_period = min(p->numa_scan_period_max,
1911 p->numa_scan_period << 1);
1912
1913 p->mm->numa_next_scan = jiffies +
1914 msecs_to_jiffies(p->numa_scan_period);
1915
1916 return;
1917 }
1918
1919 /*
1920 * Prepare to scale scan period relative to the current period.
1921 * == NUMA_PERIOD_THRESHOLD scan period stays the same
1922 * < NUMA_PERIOD_THRESHOLD scan period decreases (scan faster)
1923 * >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower)
1924 */
1925 period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS);
1926 ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote);
1927 if (ratio >= NUMA_PERIOD_THRESHOLD) {
1928 int slot = ratio - NUMA_PERIOD_THRESHOLD;
1929 if (!slot)
1930 slot = 1;
1931 diff = slot * period_slot;
1932 } else {
1933 diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot;
1934
1935 /*
1936 * Scale scan rate increases based on sharing. There is an
1937 * inverse relationship between the degree of sharing and
1938 * the adjustment made to the scanning period. Broadly
1939 * speaking the intent is that there is little point
1940 * scanning faster if shared accesses dominate as it may
1941 * simply bounce migrations uselessly
1942 */
1943 ratio = DIV_ROUND_UP(private * NUMA_PERIOD_SLOTS, (private + shared + 1));
1944 diff = (diff * ratio) / NUMA_PERIOD_SLOTS;
1945 }
1946
1947 p->numa_scan_period = clamp(p->numa_scan_period + diff,
1948 task_scan_min(p), task_scan_max(p));
1949 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
1950 }
1951
1952 /*
1953 * Get the fraction of time the task has been running since the last
1954 * NUMA placement cycle. The scheduler keeps similar statistics, but
1955 * decays those on a 32ms period, which is orders of magnitude off
1956 * from the dozens-of-seconds NUMA balancing period. Use the scheduler
1957 * stats only if the task is so new there are no NUMA statistics yet.
1958 */
1959 static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period)
1960 {
1961 u64 runtime, delta, now;
1962 /* Use the start of this time slice to avoid calculations. */
1963 now = p->se.exec_start;
1964 runtime = p->se.sum_exec_runtime;
1965
1966 if (p->last_task_numa_placement) {
1967 delta = runtime - p->last_sum_exec_runtime;
1968 *period = now - p->last_task_numa_placement;
1969 } else {
1970 delta = p->se.avg.load_sum / p->se.load.weight;
1971 *period = LOAD_AVG_MAX;
1972 }
1973
1974 p->last_sum_exec_runtime = runtime;
1975 p->last_task_numa_placement = now;
1976
1977 return delta;
1978 }
1979
1980 /*
1981 * Determine the preferred nid for a task in a numa_group. This needs to
1982 * be done in a way that produces consistent results with group_weight,
1983 * otherwise workloads might not converge.
1984 */
1985 static int preferred_group_nid(struct task_struct *p, int nid)
1986 {
1987 nodemask_t nodes;
1988 int dist;
1989
1990 /* Direct connections between all NUMA nodes. */
1991 if (sched_numa_topology_type == NUMA_DIRECT)
1992 return nid;
1993
1994 /*
1995 * On a system with glueless mesh NUMA topology, group_weight
1996 * scores nodes according to the number of NUMA hinting faults on
1997 * both the node itself, and on nearby nodes.
1998 */
1999 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
2000 unsigned long score, max_score = 0;
2001 int node, max_node = nid;
2002
2003 dist = sched_max_numa_distance;
2004
2005 for_each_online_node(node) {
2006 score = group_weight(p, node, dist);
2007 if (score > max_score) {
2008 max_score = score;
2009 max_node = node;
2010 }
2011 }
2012 return max_node;
2013 }
2014
2015 /*
2016 * Finding the preferred nid in a system with NUMA backplane
2017 * interconnect topology is more involved. The goal is to locate
2018 * tasks from numa_groups near each other in the system, and
2019 * untangle workloads from different sides of the system. This requires
2020 * searching down the hierarchy of node groups, recursively searching
2021 * inside the highest scoring group of nodes. The nodemask tricks
2022 * keep the complexity of the search down.
2023 */
2024 nodes = node_online_map;
2025 for (dist = sched_max_numa_distance; dist > LOCAL_DISTANCE; dist--) {
2026 unsigned long max_faults = 0;
2027 nodemask_t max_group = NODE_MASK_NONE;
2028 int a, b;
2029
2030 /* Are there nodes at this distance from each other? */
2031 if (!find_numa_distance(dist))
2032 continue;
2033
2034 for_each_node_mask(a, nodes) {
2035 unsigned long faults = 0;
2036 nodemask_t this_group;
2037 nodes_clear(this_group);
2038
2039 /* Sum group's NUMA faults; includes a==b case. */
2040 for_each_node_mask(b, nodes) {
2041 if (node_distance(a, b) < dist) {
2042 faults += group_faults(p, b);
2043 node_set(b, this_group);
2044 node_clear(b, nodes);
2045 }
2046 }
2047
2048 /* Remember the top group. */
2049 if (faults > max_faults) {
2050 max_faults = faults;
2051 max_group = this_group;
2052 /*
2053 * subtle: at the smallest distance there is
2054 * just one node left in each "group", the
2055 * winner is the preferred nid.
2056 */
2057 nid = a;
2058 }
2059 }
2060 /* Next round, evaluate the nodes within max_group. */
2061 if (!max_faults)
2062 break;
2063 nodes = max_group;
2064 }
2065 return nid;
2066 }
2067
2068 static void task_numa_placement(struct task_struct *p)
2069 {
2070 int seq, nid, max_nid = -1, max_group_nid = -1;
2071 unsigned long max_faults = 0, max_group_faults = 0;
2072 unsigned long fault_types[2] = { 0, 0 };
2073 unsigned long total_faults;
2074 u64 runtime, period;
2075 spinlock_t *group_lock = NULL;
2076
2077 /*
2078 * The p->mm->numa_scan_seq field gets updated without
2079 * exclusive access. Use READ_ONCE() here to ensure
2080 * that the field is read in a single access:
2081 */
2082 seq = READ_ONCE(p->mm->numa_scan_seq);
2083 if (p->numa_scan_seq == seq)
2084 return;
2085 p->numa_scan_seq = seq;
2086 p->numa_scan_period_max = task_scan_max(p);
2087
2088 total_faults = p->numa_faults_locality[0] +
2089 p->numa_faults_locality[1];
2090 runtime = numa_get_avg_runtime(p, &period);
2091
2092 /* If the task is part of a group prevent parallel updates to group stats */
2093 if (p->numa_group) {
2094 group_lock = &p->numa_group->lock;
2095 spin_lock_irq(group_lock);
2096 }
2097
2098 /* Find the node with the highest number of faults */
2099 for_each_online_node(nid) {
2100 /* Keep track of the offsets in numa_faults array */
2101 int mem_idx, membuf_idx, cpu_idx, cpubuf_idx;
2102 unsigned long faults = 0, group_faults = 0;
2103 int priv;
2104
2105 for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) {
2106 long diff, f_diff, f_weight;
2107
2108 mem_idx = task_faults_idx(NUMA_MEM, nid, priv);
2109 membuf_idx = task_faults_idx(NUMA_MEMBUF, nid, priv);
2110 cpu_idx = task_faults_idx(NUMA_CPU, nid, priv);
2111 cpubuf_idx = task_faults_idx(NUMA_CPUBUF, nid, priv);
2112
2113 /* Decay existing window, copy faults since last scan */
2114 diff = p->numa_faults[membuf_idx] - p->numa_faults[mem_idx] / 2;
2115 fault_types[priv] += p->numa_faults[membuf_idx];
2116 p->numa_faults[membuf_idx] = 0;
2117
2118 /*
2119 * Normalize the faults_from, so all tasks in a group
2120 * count according to CPU use, instead of by the raw
2121 * number of faults. Tasks with little runtime have
2122 * little over-all impact on throughput, and thus their
2123 * faults are less important.
2124 */
2125 f_weight = div64_u64(runtime << 16, period + 1);
2126 f_weight = (f_weight * p->numa_faults[cpubuf_idx]) /
2127 (total_faults + 1);
2128 f_diff = f_weight - p->numa_faults[cpu_idx] / 2;
2129 p->numa_faults[cpubuf_idx] = 0;
2130
2131 p->numa_faults[mem_idx] += diff;
2132 p->numa_faults[cpu_idx] += f_diff;
2133 faults += p->numa_faults[mem_idx];
2134 p->total_numa_faults += diff;
2135 if (p->numa_group) {
2136 /*
2137 * safe because we can only change our own group
2138 *
2139 * mem_idx represents the offset for a given
2140 * nid and priv in a specific region because it
2141 * is at the beginning of the numa_faults array.
2142 */
2143 p->numa_group->faults[mem_idx] += diff;
2144 p->numa_group->faults_cpu[mem_idx] += f_diff;
2145 p->numa_group->total_faults += diff;
2146 group_faults += p->numa_group->faults[mem_idx];
2147 }
2148 }
2149
2150 if (faults > max_faults) {
2151 max_faults = faults;
2152 max_nid = nid;
2153 }
2154
2155 if (group_faults > max_group_faults) {
2156 max_group_faults = group_faults;
2157 max_group_nid = nid;
2158 }
2159 }
2160
2161 update_task_scan_period(p, fault_types[0], fault_types[1]);
2162
2163 if (p->numa_group) {
2164 numa_group_count_active_nodes(p->numa_group);
2165 spin_unlock_irq(group_lock);
2166 max_nid = preferred_group_nid(p, max_group_nid);
2167 }
2168
2169 if (max_faults) {
2170 /* Set the new preferred node */
2171 if (max_nid != p->numa_preferred_nid)
2172 sched_setnuma(p, max_nid);
2173
2174 if (task_node(p) != p->numa_preferred_nid)
2175 numa_migrate_preferred(p);
2176 }
2177 }
2178
2179 static inline int get_numa_group(struct numa_group *grp)
2180 {
2181 return atomic_inc_not_zero(&grp->refcount);
2182 }
2183
2184 static inline void put_numa_group(struct numa_group *grp)
2185 {
2186 if (atomic_dec_and_test(&grp->refcount))
2187 kfree_rcu(grp, rcu);
2188 }
2189
2190 static void task_numa_group(struct task_struct *p, int cpupid, int flags,
2191 int *priv)
2192 {
2193 struct numa_group *grp, *my_grp;
2194 struct task_struct *tsk;
2195 bool join = false;
2196 int cpu = cpupid_to_cpu(cpupid);
2197 int i;
2198
2199 if (unlikely(!p->numa_group)) {
2200 unsigned int size = sizeof(struct numa_group) +
2201 4*nr_node_ids*sizeof(unsigned long);
2202
2203 grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
2204 if (!grp)
2205 return;
2206
2207 atomic_set(&grp->refcount, 1);
2208 grp->active_nodes = 1;
2209 grp->max_faults_cpu = 0;
2210 spin_lock_init(&grp->lock);
2211 grp->gid = p->pid;
2212 /* Second half of the array tracks nids where faults happen */
2213 grp->faults_cpu = grp->faults + NR_NUMA_HINT_FAULT_TYPES *
2214 nr_node_ids;
2215
2216 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
2217 grp->faults[i] = p->numa_faults[i];
2218
2219 grp->total_faults = p->total_numa_faults;
2220
2221 grp->nr_tasks++;
2222 rcu_assign_pointer(p->numa_group, grp);
2223 }
2224
2225 rcu_read_lock();
2226 tsk = READ_ONCE(cpu_rq(cpu)->curr);
2227
2228 if (!cpupid_match_pid(tsk, cpupid))
2229 goto no_join;
2230
2231 grp = rcu_dereference(tsk->numa_group);
2232 if (!grp)
2233 goto no_join;
2234
2235 my_grp = p->numa_group;
2236 if (grp == my_grp)
2237 goto no_join;
2238
2239 /*
2240 * Only join the other group if its bigger; if we're the bigger group,
2241 * the other task will join us.
2242 */
2243 if (my_grp->nr_tasks > grp->nr_tasks)
2244 goto no_join;
2245
2246 /*
2247 * Tie-break on the grp address.
2248 */
2249 if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp)
2250 goto no_join;
2251
2252 /* Always join threads in the same process. */
2253 if (tsk->mm == current->mm)
2254 join = true;
2255
2256 /* Simple filter to avoid false positives due to PID collisions */
2257 if (flags & TNF_SHARED)
2258 join = true;
2259
2260 /* Update priv based on whether false sharing was detected */
2261 *priv = !join;
2262
2263 if (join && !get_numa_group(grp))
2264 goto no_join;
2265
2266 rcu_read_unlock();
2267
2268 if (!join)
2269 return;
2270
2271 BUG_ON(irqs_disabled());
2272 double_lock_irq(&my_grp->lock, &grp->lock);
2273
2274 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) {
2275 my_grp->faults[i] -= p->numa_faults[i];
2276 grp->faults[i] += p->numa_faults[i];
2277 }
2278 my_grp->total_faults -= p->total_numa_faults;
2279 grp->total_faults += p->total_numa_faults;
2280
2281 my_grp->nr_tasks--;
2282 grp->nr_tasks++;
2283
2284 spin_unlock(&my_grp->lock);
2285 spin_unlock_irq(&grp->lock);
2286
2287 rcu_assign_pointer(p->numa_group, grp);
2288
2289 put_numa_group(my_grp);
2290 return;
2291
2292 no_join:
2293 rcu_read_unlock();
2294 return;
2295 }
2296
2297 void task_numa_free(struct task_struct *p)
2298 {
2299 struct numa_group *grp = p->numa_group;
2300 void *numa_faults = p->numa_faults;
2301 unsigned long flags;
2302 int i;
2303
2304 if (grp) {
2305 spin_lock_irqsave(&grp->lock, flags);
2306 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
2307 grp->faults[i] -= p->numa_faults[i];
2308 grp->total_faults -= p->total_numa_faults;
2309
2310 grp->nr_tasks--;
2311 spin_unlock_irqrestore(&grp->lock, flags);
2312 RCU_INIT_POINTER(p->numa_group, NULL);
2313 put_numa_group(grp);
2314 }
2315
2316 p->numa_faults = NULL;
2317 kfree(numa_faults);
2318 }
2319
2320 /*
2321 * Got a PROT_NONE fault for a page on @node.
2322 */
2323 void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags)
2324 {
2325 struct task_struct *p = current;
2326 bool migrated = flags & TNF_MIGRATED;
2327 int cpu_node = task_node(current);
2328 int local = !!(flags & TNF_FAULT_LOCAL);
2329 struct numa_group *ng;
2330 int priv;
2331
2332 if (!static_branch_likely(&sched_numa_balancing))
2333 return;
2334
2335 /* for example, ksmd faulting in a user's mm */
2336 if (!p->mm)
2337 return;
2338
2339 /* Allocate buffer to track faults on a per-node basis */
2340 if (unlikely(!p->numa_faults)) {
2341 int size = sizeof(*p->numa_faults) *
2342 NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids;
2343
2344 p->numa_faults = kzalloc(size, GFP_KERNEL|__GFP_NOWARN);
2345 if (!p->numa_faults)
2346 return;
2347
2348 p->total_numa_faults = 0;
2349 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
2350 }
2351
2352 /*
2353 * First accesses are treated as private, otherwise consider accesses
2354 * to be private if the accessing pid has not changed
2355 */
2356 if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) {
2357 priv = 1;
2358 } else {
2359 priv = cpupid_match_pid(p, last_cpupid);
2360 if (!priv && !(flags & TNF_NO_GROUP))
2361 task_numa_group(p, last_cpupid, flags, &priv);
2362 }
2363
2364 /*
2365 * If a workload spans multiple NUMA nodes, a shared fault that
2366 * occurs wholly within the set of nodes that the workload is
2367 * actively using should be counted as local. This allows the
2368 * scan rate to slow down when a workload has settled down.
2369 */
2370 ng = p->numa_group;
2371 if (!priv && !local && ng && ng->active_nodes > 1 &&
2372 numa_is_active_node(cpu_node, ng) &&
2373 numa_is_active_node(mem_node, ng))
2374 local = 1;
2375
2376 task_numa_placement(p);
2377
2378 /*
2379 * Retry task to preferred node migration periodically, in case it
2380 * case it previously failed, or the scheduler moved us.
2381 */
2382 if (time_after(jiffies, p->numa_migrate_retry))
2383 numa_migrate_preferred(p);
2384
2385 if (migrated)
2386 p->numa_pages_migrated += pages;
2387 if (flags & TNF_MIGRATE_FAIL)
2388 p->numa_faults_locality[2] += pages;
2389
2390 p->numa_faults[task_faults_idx(NUMA_MEMBUF, mem_node, priv)] += pages;
2391 p->numa_faults[task_faults_idx(NUMA_CPUBUF, cpu_node, priv)] += pages;
2392 p->numa_faults_locality[local] += pages;
2393 }
2394
2395 static void reset_ptenuma_scan(struct task_struct *p)
2396 {
2397 /*
2398 * We only did a read acquisition of the mmap sem, so
2399 * p->mm->numa_scan_seq is written to without exclusive access
2400 * and the update is not guaranteed to be atomic. That's not
2401 * much of an issue though, since this is just used for
2402 * statistical sampling. Use READ_ONCE/WRITE_ONCE, which are not
2403 * expensive, to avoid any form of compiler optimizations:
2404 */
2405 WRITE_ONCE(p->mm->numa_scan_seq, READ_ONCE(p->mm->numa_scan_seq) + 1);
2406 p->mm->numa_scan_offset = 0;
2407 }
2408
2409 /*
2410 * The expensive part of numa migration is done from task_work context.
2411 * Triggered from task_tick_numa().
2412 */
2413 void task_numa_work(struct callback_head *work)
2414 {
2415 unsigned long migrate, next_scan, now = jiffies;
2416 struct task_struct *p = current;
2417 struct mm_struct *mm = p->mm;
2418 u64 runtime = p->se.sum_exec_runtime;
2419 struct vm_area_struct *vma;
2420 unsigned long start, end;
2421 unsigned long nr_pte_updates = 0;
2422 long pages, virtpages;
2423
2424 SCHED_WARN_ON(p != container_of(work, struct task_struct, numa_work));
2425
2426 work->next = work; /* protect against double add */
2427 /*
2428 * Who cares about NUMA placement when they're dying.
2429 *
2430 * NOTE: make sure not to dereference p->mm before this check,
2431 * exit_task_work() happens _after_ exit_mm() so we could be called
2432 * without p->mm even though we still had it when we enqueued this
2433 * work.
2434 */
2435 if (p->flags & PF_EXITING)
2436 return;
2437
2438 if (!mm->numa_next_scan) {
2439 mm->numa_next_scan = now +
2440 msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
2441 }
2442
2443 /*
2444 * Enforce maximal scan/migration frequency..
2445 */
2446 migrate = mm->numa_next_scan;
2447 if (time_before(now, migrate))
2448 return;
2449
2450 if (p->numa_scan_period == 0) {
2451 p->numa_scan_period_max = task_scan_max(p);
2452 p->numa_scan_period = task_scan_min(p);
2453 }
2454
2455 next_scan = now + msecs_to_jiffies(p->numa_scan_period);
2456 if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate)
2457 return;
2458
2459 /*
2460 * Delay this task enough that another task of this mm will likely win
2461 * the next time around.
2462 */
2463 p->node_stamp += 2 * TICK_NSEC;
2464
2465 start = mm->numa_scan_offset;
2466 pages = sysctl_numa_balancing_scan_size;
2467 pages <<= 20 - PAGE_SHIFT; /* MB in pages */
2468 virtpages = pages * 8; /* Scan up to this much virtual space */
2469 if (!pages)
2470 return;
2471
2472
2473 if (!down_read_trylock(&mm->mmap_sem))
2474 return;
2475 vma = find_vma(mm, start);
2476 if (!vma) {
2477 reset_ptenuma_scan(p);
2478 start = 0;
2479 vma = mm->mmap;
2480 }
2481 for (; vma; vma = vma->vm_next) {
2482 if (!vma_migratable(vma) || !vma_policy_mof(vma) ||
2483 is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_MIXEDMAP)) {
2484 continue;
2485 }
2486
2487 /*
2488 * Shared library pages mapped by multiple processes are not
2489 * migrated as it is expected they are cache replicated. Avoid
2490 * hinting faults in read-only file-backed mappings or the vdso
2491 * as migrating the pages will be of marginal benefit.
2492 */
2493 if (!vma->vm_mm ||
2494 (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ)))
2495 continue;
2496
2497 /*
2498 * Skip inaccessible VMAs to avoid any confusion between
2499 * PROT_NONE and NUMA hinting ptes
2500 */
2501 if (!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)))
2502 continue;
2503
2504 do {
2505 start = max(start, vma->vm_start);
2506 end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
2507 end = min(end, vma->vm_end);
2508 nr_pte_updates = change_prot_numa(vma, start, end);
2509
2510 /*
2511 * Try to scan sysctl_numa_balancing_size worth of
2512 * hpages that have at least one present PTE that
2513 * is not already pte-numa. If the VMA contains
2514 * areas that are unused or already full of prot_numa
2515 * PTEs, scan up to virtpages, to skip through those
2516 * areas faster.
2517 */
2518 if (nr_pte_updates)
2519 pages -= (end - start) >> PAGE_SHIFT;
2520 virtpages -= (end - start) >> PAGE_SHIFT;
2521
2522 start = end;
2523 if (pages <= 0 || virtpages <= 0)
2524 goto out;
2525
2526 cond_resched();
2527 } while (end != vma->vm_end);
2528 }
2529
2530 out:
2531 /*
2532 * It is possible to reach the end of the VMA list but the last few
2533 * VMAs are not guaranteed to the vma_migratable. If they are not, we
2534 * would find the !migratable VMA on the next scan but not reset the
2535 * scanner to the start so check it now.
2536 */
2537 if (vma)
2538 mm->numa_scan_offset = start;
2539 else
2540 reset_ptenuma_scan(p);
2541 up_read(&mm->mmap_sem);
2542
2543 /*
2544 * Make sure tasks use at least 32x as much time to run other code
2545 * than they used here, to limit NUMA PTE scanning overhead to 3% max.
2546 * Usually update_task_scan_period slows down scanning enough; on an
2547 * overloaded system we need to limit overhead on a per task basis.
2548 */
2549 if (unlikely(p->se.sum_exec_runtime != runtime)) {
2550 u64 diff = p->se.sum_exec_runtime - runtime;
2551 p->node_stamp += 32 * diff;
2552 }
2553 }
2554
2555 /*
2556 * Drive the periodic memory faults..
2557 */
2558 void task_tick_numa(struct rq *rq, struct task_struct *curr)
2559 {
2560 struct callback_head *work = &curr->numa_work;
2561 u64 period, now;
2562
2563 /*
2564 * We don't care about NUMA placement if we don't have memory.
2565 */
2566 if (!curr->mm || (curr->flags & PF_EXITING) || work->next != work)
2567 return;
2568
2569 /*
2570 * Using runtime rather than walltime has the dual advantage that
2571 * we (mostly) drive the selection from busy threads and that the
2572 * task needs to have done some actual work before we bother with
2573 * NUMA placement.
2574 */
2575 now = curr->se.sum_exec_runtime;
2576 period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;
2577
2578 if (now > curr->node_stamp + period) {
2579 if (!curr->node_stamp)
2580 curr->numa_scan_period = task_scan_min(curr);
2581 curr->node_stamp += period;
2582
2583 if (!time_before(jiffies, curr->mm->numa_next_scan)) {
2584 init_task_work(work, task_numa_work); /* TODO: move this into sched_fork() */
2585 task_work_add(curr, work, true);
2586 }
2587 }
2588 }
2589 #else
2590 static void task_tick_numa(struct rq *rq, struct task_struct *curr)
2591 {
2592 }
2593
2594 static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p)
2595 {
2596 }
2597
2598 static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p)
2599 {
2600 }
2601 #endif /* CONFIG_NUMA_BALANCING */
2602
2603 static void
2604 account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2605 {
2606 update_load_add(&cfs_rq->load, se->load.weight);
2607 if (!parent_entity(se))
2608 update_load_add(&rq_of(cfs_rq)->load, se->load.weight);
2609 #ifdef CONFIG_SMP
2610 if (entity_is_task(se)) {
2611 struct rq *rq = rq_of(cfs_rq);
2612
2613 account_numa_enqueue(rq, task_of(se));
2614 list_add(&se->group_node, &rq->cfs_tasks);
2615 }
2616 #endif
2617 cfs_rq->nr_running++;
2618 }
2619
2620 static void
2621 account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2622 {
2623 update_load_sub(&cfs_rq->load, se->load.weight);
2624 if (!parent_entity(se))
2625 update_load_sub(&rq_of(cfs_rq)->load, se->load.weight);
2626 #ifdef CONFIG_SMP
2627 if (entity_is_task(se)) {
2628 account_numa_dequeue(rq_of(cfs_rq), task_of(se));
2629 list_del_init(&se->group_node);
2630 }
2631 #endif
2632 cfs_rq->nr_running--;
2633 }
2634
2635 #ifdef CONFIG_FAIR_GROUP_SCHED
2636 # ifdef CONFIG_SMP
2637 static long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
2638 {
2639 long tg_weight, load, shares;
2640
2641 /*
2642 * This really should be: cfs_rq->avg.load_avg, but instead we use
2643 * cfs_rq->load.weight, which is its upper bound. This helps ramp up
2644 * the shares for small weight interactive tasks.
2645 */
2646 load = scale_load_down(cfs_rq->load.weight);
2647
2648 tg_weight = atomic_long_read(&tg->load_avg);
2649
2650 /* Ensure tg_weight >= load */
2651 tg_weight -= cfs_rq->tg_load_avg_contrib;
2652 tg_weight += load;
2653
2654 shares = (tg->shares * load);
2655 if (tg_weight)
2656 shares /= tg_weight;
2657
2658 /*
2659 * MIN_SHARES has to be unscaled here to support per-CPU partitioning
2660 * of a group with small tg->shares value. It is a floor value which is
2661 * assigned as a minimum load.weight to the sched_entity representing
2662 * the group on a CPU.
2663 *
2664 * E.g. on 64-bit for a group with tg->shares of scale_load(15)=15*1024
2665 * on an 8-core system with 8 tasks each runnable on one CPU shares has
2666 * to be 15*1024*1/8=1920 instead of scale_load(MIN_SHARES)=2*1024. In
2667 * case no task is runnable on a CPU MIN_SHARES=2 should be returned
2668 * instead of 0.
2669 */
2670 if (shares < MIN_SHARES)
2671 shares = MIN_SHARES;
2672 if (shares > tg->shares)
2673 shares = tg->shares;
2674
2675 return shares;
2676 }
2677 # else /* CONFIG_SMP */
2678 static inline long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
2679 {
2680 return tg->shares;
2681 }
2682 # endif /* CONFIG_SMP */
2683
2684 static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
2685 unsigned long weight)
2686 {
2687 if (se->on_rq) {
2688 /* commit outstanding execution time */
2689 if (cfs_rq->curr == se)
2690 update_curr(cfs_rq);
2691 account_entity_dequeue(cfs_rq, se);
2692 }
2693
2694 update_load_set(&se->load, weight);
2695
2696 if (se->on_rq)
2697 account_entity_enqueue(cfs_rq, se);
2698 }
2699
2700 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
2701
2702 static void update_cfs_shares(struct sched_entity *se)
2703 {
2704 struct cfs_rq *cfs_rq = group_cfs_rq(se);
2705 struct task_group *tg;
2706 long shares;
2707
2708 if (!cfs_rq)
2709 return;
2710
2711 if (throttled_hierarchy(cfs_rq))
2712 return;
2713
2714 tg = cfs_rq->tg;
2715
2716 #ifndef CONFIG_SMP
2717 if (likely(se->load.weight == tg->shares))
2718 return;
2719 #endif
2720 shares = calc_cfs_shares(cfs_rq, tg);
2721
2722 reweight_entity(cfs_rq_of(se), se, shares);
2723 }
2724
2725 #else /* CONFIG_FAIR_GROUP_SCHED */
2726 static inline void update_cfs_shares(struct sched_entity *se)
2727 {
2728 }
2729 #endif /* CONFIG_FAIR_GROUP_SCHED */
2730
2731 #ifdef CONFIG_SMP
2732 /*
2733 * Approximate:
2734 * val * y^n, where y^32 ~= 0.5 (~1 scheduling period)
2735 */
2736 static u64 decay_load(u64 val, u64 n)
2737 {
2738 unsigned int local_n;
2739
2740 if (unlikely(n > LOAD_AVG_PERIOD * 63))
2741 return 0;
2742
2743 /* after bounds checking we can collapse to 32-bit */
2744 local_n = n;
2745
2746 /*
2747 * As y^PERIOD = 1/2, we can combine
2748 * y^n = 1/2^(n/PERIOD) * y^(n%PERIOD)
2749 * With a look-up table which covers y^n (n<PERIOD)
2750 *
2751 * To achieve constant time decay_load.
2752 */
2753 if (unlikely(local_n >= LOAD_AVG_PERIOD)) {
2754 val >>= local_n / LOAD_AVG_PERIOD;
2755 local_n %= LOAD_AVG_PERIOD;
2756 }
2757
2758 val = mul_u64_u32_shr(val, runnable_avg_yN_inv[local_n], 32);
2759 return val;
2760 }
2761
2762 static u32 __accumulate_pelt_segments(u64 periods, u32 d1, u32 d3)
2763 {
2764 u32 c1, c2, c3 = d3; /* y^0 == 1 */
2765
2766 /*
2767 * c1 = d1 y^p
2768 */
2769 c1 = decay_load((u64)d1, periods);
2770
2771 /*
2772 * p-1
2773 * c2 = 1024 \Sum y^n
2774 * n=1
2775 *
2776 * inf inf
2777 * = 1024 ( \Sum y^n - \Sum y^n - y^0 )
2778 * n=0 n=p
2779 */
2780 c2 = LOAD_AVG_MAX - decay_load(LOAD_AVG_MAX, periods) - 1024;
2781
2782 return c1 + c2 + c3;
2783 }
2784
2785 #define cap_scale(v, s) ((v)*(s) >> SCHED_CAPACITY_SHIFT)
2786
2787 /*
2788 * Accumulate the three separate parts of the sum; d1 the remainder
2789 * of the last (incomplete) period, d2 the span of full periods and d3
2790 * the remainder of the (incomplete) current period.
2791 *
2792 * d1 d2 d3
2793 * ^ ^ ^
2794 * | | |
2795 * |<->|<----------------->|<--->|
2796 * ... |---x---|------| ... |------|-----x (now)
2797 *
2798 * p-1
2799 * u' = (u + d1) y^p + 1024 \Sum y^n + d3 y^0
2800 * n=1
2801 *
2802 * = u y^p + (Step 1)
2803 *
2804 * p-1
2805 * d1 y^p + 1024 \Sum y^n + d3 y^0 (Step 2)
2806 * n=1
2807 */
2808 static __always_inline u32
2809 accumulate_sum(u64 delta, int cpu, struct sched_avg *sa,
2810 unsigned long weight, int running, struct cfs_rq *cfs_rq)
2811 {
2812 unsigned long scale_freq, scale_cpu;
2813 u32 contrib = (u32)delta; /* p == 0 -> delta < 1024 */
2814 u64 periods;
2815
2816 scale_freq = arch_scale_freq_capacity(NULL, cpu);
2817 scale_cpu = arch_scale_cpu_capacity(NULL, cpu);
2818
2819 delta += sa->period_contrib;
2820 periods = delta / 1024; /* A period is 1024us (~1ms) */
2821
2822 /*
2823 * Step 1: decay old *_sum if we crossed period boundaries.
2824 */
2825 if (periods) {
2826 sa->load_sum = decay_load(sa->load_sum, periods);
2827 if (cfs_rq) {
2828 cfs_rq->runnable_load_sum =
2829 decay_load(cfs_rq->runnable_load_sum, periods);
2830 }
2831 sa->util_sum = decay_load((u64)(sa->util_sum), periods);
2832
2833 /*
2834 * Step 2
2835 */
2836 delta %= 1024;
2837 contrib = __accumulate_pelt_segments(periods,
2838 1024 - sa->period_contrib, delta);
2839 }
2840 sa->period_contrib = delta;
2841
2842 contrib = cap_scale(contrib, scale_freq);
2843 if (weight) {
2844 sa->load_sum += weight * contrib;
2845 if (cfs_rq)
2846 cfs_rq->runnable_load_sum += weight * contrib;
2847 }
2848 if (running)
2849 sa->util_sum += contrib * scale_cpu;
2850
2851 return periods;
2852 }
2853
2854 /*
2855 * We can represent the historical contribution to runnable average as the
2856 * coefficients of a geometric series. To do this we sub-divide our runnable
2857 * history into segments of approximately 1ms (1024us); label the segment that
2858 * occurred N-ms ago p_N, with p_0 corresponding to the current period, e.g.
2859 *
2860 * [<- 1024us ->|<- 1024us ->|<- 1024us ->| ...
2861 * p0 p1 p2
2862 * (now) (~1ms ago) (~2ms ago)
2863 *
2864 * Let u_i denote the fraction of p_i that the entity was runnable.
2865 *
2866 * We then designate the fractions u_i as our co-efficients, yielding the
2867 * following representation of historical load:
2868 * u_0 + u_1*y + u_2*y^2 + u_3*y^3 + ...
2869 *
2870 * We choose y based on the with of a reasonably scheduling period, fixing:
2871 * y^32 = 0.5
2872 *
2873 * This means that the contribution to load ~32ms ago (u_32) will be weighted
2874 * approximately half as much as the contribution to load within the last ms
2875 * (u_0).
2876 *
2877 * When a period "rolls over" and we have new u_0`, multiplying the previous
2878 * sum again by y is sufficient to update:
2879 * load_avg = u_0` + y*(u_0 + u_1*y + u_2*y^2 + ... )
2880 * = u_0 + u_1*y + u_2*y^2 + ... [re-labeling u_i --> u_{i+1}]
2881 */
2882 static __always_inline int
2883 ___update_load_avg(u64 now, int cpu, struct sched_avg *sa,
2884 unsigned long weight, int running, struct cfs_rq *cfs_rq)
2885 {
2886 u64 delta;
2887
2888 delta = now - sa->last_update_time;
2889 /*
2890 * This should only happen when time goes backwards, which it
2891 * unfortunately does during sched clock init when we swap over to TSC.
2892 */
2893 if ((s64)delta < 0) {
2894 sa->last_update_time = now;
2895 return 0;
2896 }
2897
2898 /*
2899 * Use 1024ns as the unit of measurement since it's a reasonable
2900 * approximation of 1us and fast to compute.
2901 */
2902 delta >>= 10;
2903 if (!delta)
2904 return 0;
2905
2906 sa->last_update_time += delta << 10;
2907
2908 /*
2909 * Now we know we crossed measurement unit boundaries. The *_avg
2910 * accrues by two steps:
2911 *
2912 * Step 1: accumulate *_sum since last_update_time. If we haven't
2913 * crossed period boundaries, finish.
2914 */
2915 if (!accumulate_sum(delta, cpu, sa, weight, running, cfs_rq))
2916 return 0;
2917
2918 /*
2919 * Step 2: update *_avg.
2920 */
2921 sa->load_avg = div_u64(sa->load_sum, LOAD_AVG_MAX - 1024 + sa->period_contrib);
2922 if (cfs_rq) {
2923 cfs_rq->runnable_load_avg =
2924 div_u64(cfs_rq->runnable_load_sum, LOAD_AVG_MAX - 1024 + sa->period_contrib);
2925 }
2926 sa->util_avg = sa->util_sum / (LOAD_AVG_MAX - 1024 + sa->period_contrib);
2927
2928 return 1;
2929 }
2930
2931 static int
2932 __update_load_avg_blocked_se(u64 now, int cpu, struct sched_entity *se)
2933 {
2934 return ___update_load_avg(now, cpu, &se->avg, 0, 0, NULL);
2935 }
2936
2937 static int
2938 __update_load_avg_se(u64 now, int cpu, struct cfs_rq *cfs_rq, struct sched_entity *se)
2939 {
2940 return ___update_load_avg(now, cpu, &se->avg,
2941 se->on_rq * scale_load_down(se->load.weight),
2942 cfs_rq->curr == se, NULL);
2943 }
2944
2945 static int
2946 __update_load_avg_cfs_rq(u64 now, int cpu, struct cfs_rq *cfs_rq)
2947 {
2948 return ___update_load_avg(now, cpu, &cfs_rq->avg,
2949 scale_load_down(cfs_rq->load.weight),
2950 cfs_rq->curr != NULL, cfs_rq);
2951 }
2952
2953 /*
2954 * Signed add and clamp on underflow.
2955 *
2956 * Explicitly do a load-store to ensure the intermediate value never hits
2957 * memory. This allows lockless observations without ever seeing the negative
2958 * values.
2959 */
2960 #define add_positive(_ptr, _val) do { \
2961 typeof(_ptr) ptr = (_ptr); \
2962 typeof(_val) val = (_val); \
2963 typeof(*ptr) res, var = READ_ONCE(*ptr); \
2964 \
2965 res = var + val; \
2966 \
2967 if (val < 0 && res > var) \
2968 res = 0; \
2969 \
2970 WRITE_ONCE(*ptr, res); \
2971 } while (0)
2972
2973 #ifdef CONFIG_FAIR_GROUP_SCHED
2974 /**
2975 * update_tg_load_avg - update the tg's load avg
2976 * @cfs_rq: the cfs_rq whose avg changed
2977 * @force: update regardless of how small the difference
2978 *
2979 * This function 'ensures': tg->load_avg := \Sum tg->cfs_rq[]->avg.load.
2980 * However, because tg->load_avg is a global value there are performance
2981 * considerations.
2982 *
2983 * In order to avoid having to look at the other cfs_rq's, we use a
2984 * differential update where we store the last value we propagated. This in
2985 * turn allows skipping updates if the differential is 'small'.
2986 *
2987 * Updating tg's load_avg is necessary before update_cfs_share() (which is
2988 * done) and effective_load() (which is not done because it is too costly).
2989 */
2990 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force)
2991 {
2992 long delta = cfs_rq->avg.load_avg - cfs_rq->tg_load_avg_contrib;
2993
2994 /*
2995 * No need to update load_avg for root_task_group as it is not used.
2996 */
2997 if (cfs_rq->tg == &root_task_group)
2998 return;
2999
3000 if (force || abs(delta) > cfs_rq->tg_load_avg_contrib / 64) {
3001 atomic_long_add(delta, &cfs_rq->tg->load_avg);
3002 cfs_rq->tg_load_avg_contrib = cfs_rq->avg.load_avg;
3003 }
3004 }
3005
3006 /*
3007 * Called within set_task_rq() right before setting a task's cpu. The
3008 * caller only guarantees p->pi_lock is held; no other assumptions,
3009 * including the state of rq->lock, should be made.
3010 */
3011 void set_task_rq_fair(struct sched_entity *se,
3012 struct cfs_rq *prev, struct cfs_rq *next)
3013 {
3014 u64 p_last_update_time;
3015 u64 n_last_update_time;
3016
3017 if (!sched_feat(ATTACH_AGE_LOAD))
3018 return;
3019
3020 /*
3021 * We are supposed to update the task to "current" time, then its up to
3022 * date and ready to go to new CPU/cfs_rq. But we have difficulty in
3023 * getting what current time is, so simply throw away the out-of-date
3024 * time. This will result in the wakee task is less decayed, but giving
3025 * the wakee more load sounds not bad.
3026 */
3027 if (!(se->avg.last_update_time && prev))
3028 return;
3029
3030 #ifndef CONFIG_64BIT
3031 {
3032 u64 p_last_update_time_copy;
3033 u64 n_last_update_time_copy;
3034
3035 do {
3036 p_last_update_time_copy = prev->load_last_update_time_copy;
3037 n_last_update_time_copy = next->load_last_update_time_copy;
3038
3039 smp_rmb();
3040
3041 p_last_update_time = prev->avg.last_update_time;
3042 n_last_update_time = next->avg.last_update_time;
3043
3044 } while (p_last_update_time != p_last_update_time_copy ||
3045 n_last_update_time != n_last_update_time_copy);
3046 }
3047 #else
3048 p_last_update_time = prev->avg.last_update_time;
3049 n_last_update_time = next->avg.last_update_time;
3050 #endif
3051 __update_load_avg_blocked_se(p_last_update_time, cpu_of(rq_of(prev)), se);
3052 se->avg.last_update_time = n_last_update_time;
3053 }
3054
3055 /* Take into account change of utilization of a child task group */
3056 static inline void
3057 update_tg_cfs_util(struct cfs_rq *cfs_rq, struct sched_entity *se)
3058 {
3059 struct cfs_rq *gcfs_rq = group_cfs_rq(se);
3060 long delta = gcfs_rq->avg.util_avg - se->avg.util_avg;
3061
3062 /* Nothing to update */
3063 if (!delta)
3064 return;
3065
3066 /* Set new sched_entity's utilization */
3067 se->avg.util_avg = gcfs_rq->avg.util_avg;
3068 se->avg.util_sum = se->avg.util_avg * LOAD_AVG_MAX;
3069
3070 /* Update parent cfs_rq utilization */
3071 add_positive(&cfs_rq->avg.util_avg, delta);
3072 cfs_rq->avg.util_sum = cfs_rq->avg.util_avg * LOAD_AVG_MAX;
3073 }
3074
3075 /* Take into account change of load of a child task group */
3076 static inline void
3077 update_tg_cfs_load(struct cfs_rq *cfs_rq, struct sched_entity *se)
3078 {
3079 struct cfs_rq *gcfs_rq = group_cfs_rq(se);
3080 long delta, load = gcfs_rq->avg.load_avg;
3081
3082 /*
3083 * If the load of group cfs_rq is null, the load of the
3084 * sched_entity will also be null so we can skip the formula
3085 */
3086 if (load) {
3087 long tg_load;
3088
3089 /* Get tg's load and ensure tg_load > 0 */
3090 tg_load = atomic_long_read(&gcfs_rq->tg->load_avg) + 1;
3091
3092 /* Ensure tg_load >= load and updated with current load*/
3093 tg_load -= gcfs_rq->tg_load_avg_contrib;
3094 tg_load += load;
3095
3096 /*
3097 * We need to compute a correction term in the case that the
3098 * task group is consuming more CPU than a task of equal
3099 * weight. A task with a weight equals to tg->shares will have
3100 * a load less or equal to scale_load_down(tg->shares).
3101 * Similarly, the sched_entities that represent the task group
3102 * at parent level, can't have a load higher than
3103 * scale_load_down(tg->shares). And the Sum of sched_entities'
3104 * load must be <= scale_load_down(tg->shares).
3105 */
3106 if (tg_load > scale_load_down(gcfs_rq->tg->shares)) {
3107 /* scale gcfs_rq's load into tg's shares*/
3108 load *= scale_load_down(gcfs_rq->tg->shares);
3109 load /= tg_load;
3110 }
3111 }
3112
3113 delta = load - se->avg.load_avg;
3114
3115 /* Nothing to update */
3116 if (!delta)
3117 return;
3118
3119 /* Set new sched_entity's load */
3120 se->avg.load_avg = load;
3121 se->avg.load_sum = se->avg.load_avg * LOAD_AVG_MAX;
3122
3123 /* Update parent cfs_rq load */
3124 add_positive(&cfs_rq->avg.load_avg, delta);
3125 cfs_rq->avg.load_sum = cfs_rq->avg.load_avg * LOAD_AVG_MAX;
3126
3127 /*
3128 * If the sched_entity is already enqueued, we also have to update the
3129 * runnable load avg.
3130 */
3131 if (se->on_rq) {
3132 /* Update parent cfs_rq runnable_load_avg */
3133 add_positive(&cfs_rq->runnable_load_avg, delta);
3134 cfs_rq->runnable_load_sum = cfs_rq->runnable_load_avg * LOAD_AVG_MAX;
3135 }
3136 }
3137
3138 static inline void set_tg_cfs_propagate(struct cfs_rq *cfs_rq)
3139 {
3140 cfs_rq->propagate_avg = 1;
3141 }
3142
3143 static inline int test_and_clear_tg_cfs_propagate(struct sched_entity *se)
3144 {
3145 struct cfs_rq *cfs_rq = group_cfs_rq(se);
3146
3147 if (!cfs_rq->propagate_avg)
3148 return 0;
3149
3150 cfs_rq->propagate_avg = 0;
3151 return 1;
3152 }
3153
3154 /* Update task and its cfs_rq load average */
3155 static inline int propagate_entity_load_avg(struct sched_entity *se)
3156 {
3157 struct cfs_rq *cfs_rq;
3158
3159 if (entity_is_task(se))
3160 return 0;
3161
3162 if (!test_and_clear_tg_cfs_propagate(se))
3163 return 0;
3164
3165 cfs_rq = cfs_rq_of(se);
3166
3167 set_tg_cfs_propagate(cfs_rq);
3168
3169 update_tg_cfs_util(cfs_rq, se);
3170 update_tg_cfs_load(cfs_rq, se);
3171
3172 return 1;
3173 }
3174
3175 /*
3176 * Check if we need to update the load and the utilization of a blocked
3177 * group_entity:
3178 */
3179 static inline bool skip_blocked_update(struct sched_entity *se)
3180 {
3181 struct cfs_rq *gcfs_rq = group_cfs_rq(se);
3182
3183 /*
3184 * If sched_entity still have not zero load or utilization, we have to
3185 * decay it:
3186 */
3187 if (se->avg.load_avg || se->avg.util_avg)
3188 return false;
3189
3190 /*
3191 * If there is a pending propagation, we have to update the load and
3192 * the utilization of the sched_entity:
3193 */
3194 if (gcfs_rq->propagate_avg)
3195 return false;
3196
3197 /*
3198 * Otherwise, the load and the utilization of the sched_entity is
3199 * already zero and there is no pending propagation, so it will be a
3200 * waste of time to try to decay it:
3201 */
3202 return true;
3203 }
3204
3205 #else /* CONFIG_FAIR_GROUP_SCHED */
3206
3207 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force) {}
3208
3209 static inline int propagate_entity_load_avg(struct sched_entity *se)
3210 {
3211 return 0;
3212 }
3213
3214 static inline void set_tg_cfs_propagate(struct cfs_rq *cfs_rq) {}
3215
3216 #endif /* CONFIG_FAIR_GROUP_SCHED */
3217
3218 static inline void cfs_rq_util_change(struct cfs_rq *cfs_rq)
3219 {
3220 if (&this_rq()->cfs == cfs_rq) {
3221 /*
3222 * There are a few boundary cases this might miss but it should
3223 * get called often enough that that should (hopefully) not be
3224 * a real problem -- added to that it only calls on the local
3225 * CPU, so if we enqueue remotely we'll miss an update, but
3226 * the next tick/schedule should update.
3227 *
3228 * It will not get called when we go idle, because the idle
3229 * thread is a different class (!fair), nor will the utilization
3230 * number include things like RT tasks.
3231 *
3232 * As is, the util number is not freq-invariant (we'd have to
3233 * implement arch_scale_freq_capacity() for that).
3234 *
3235 * See cpu_util().
3236 */
3237 cpufreq_update_util(rq_of(cfs_rq), 0);
3238 }
3239 }
3240
3241 /*
3242 * Unsigned subtract and clamp on underflow.
3243 *
3244 * Explicitly do a load-store to ensure the intermediate value never hits
3245 * memory. This allows lockless observations without ever seeing the negative
3246 * values.
3247 */
3248 #define sub_positive(_ptr, _val) do { \
3249 typeof(_ptr) ptr = (_ptr); \
3250 typeof(*ptr) val = (_val); \
3251 typeof(*ptr) res, var = READ_ONCE(*ptr); \
3252 res = var - val; \
3253 if (res > var) \
3254 res = 0; \
3255 WRITE_ONCE(*ptr, res); \
3256 } while (0)
3257
3258 /**
3259 * update_cfs_rq_load_avg - update the cfs_rq's load/util averages
3260 * @now: current time, as per cfs_rq_clock_task()
3261 * @cfs_rq: cfs_rq to update
3262 * @update_freq: should we call cfs_rq_util_change() or will the call do so
3263 *
3264 * The cfs_rq avg is the direct sum of all its entities (blocked and runnable)
3265 * avg. The immediate corollary is that all (fair) tasks must be attached, see
3266 * post_init_entity_util_avg().
3267 *
3268 * cfs_rq->avg is used for task_h_load() and update_cfs_share() for example.
3269 *
3270 * Returns true if the load decayed or we removed load.
3271 *
3272 * Since both these conditions indicate a changed cfs_rq->avg.load we should
3273 * call update_tg_load_avg() when this function returns true.
3274 */
3275 static inline int
3276 update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq, bool update_freq)
3277 {
3278 struct sched_avg *sa = &cfs_rq->avg;
3279 int decayed, removed_load = 0, removed_util = 0;
3280
3281 if (atomic_long_read(&cfs_rq->removed_load_avg)) {
3282 s64 r = atomic_long_xchg(&cfs_rq->removed_load_avg, 0);
3283 sub_positive(&sa->load_avg, r);
3284 sub_positive(&sa->load_sum, r * LOAD_AVG_MAX);
3285 removed_load = 1;
3286 set_tg_cfs_propagate(cfs_rq);
3287 }
3288
3289 if (atomic_long_read(&cfs_rq->removed_util_avg)) {
3290 long r = atomic_long_xchg(&cfs_rq->removed_util_avg, 0);
3291 sub_positive(&sa->util_avg, r);
3292 sub_positive(&sa->util_sum, r * LOAD_AVG_MAX);
3293 removed_util = 1;
3294 set_tg_cfs_propagate(cfs_rq);
3295 }
3296
3297 decayed = __update_load_avg_cfs_rq(now, cpu_of(rq_of(cfs_rq)), cfs_rq);
3298
3299 #ifndef CONFIG_64BIT
3300 smp_wmb();
3301 cfs_rq->load_last_update_time_copy = sa->last_update_time;
3302 #endif
3303
3304 if (update_freq && (decayed || removed_util))
3305 cfs_rq_util_change(cfs_rq);
3306
3307 return decayed || removed_load;
3308 }
3309
3310 /*
3311 * Optional action to be done while updating the load average
3312 */
3313 #define UPDATE_TG 0x1
3314 #define SKIP_AGE_LOAD 0x2
3315
3316 /* Update task and its cfs_rq load average */
3317 static inline void update_load_avg(struct sched_entity *se, int flags)
3318 {
3319 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3320 u64 now = cfs_rq_clock_task(cfs_rq);
3321 struct rq *rq = rq_of(cfs_rq);
3322 int cpu = cpu_of(rq);
3323 int decayed;
3324
3325 /*
3326 * Track task load average for carrying it to new CPU after migrated, and
3327 * track group sched_entity load average for task_h_load calc in migration
3328 */
3329 if (se->avg.last_update_time && !(flags & SKIP_AGE_LOAD))
3330 __update_load_avg_se(now, cpu, cfs_rq, se);
3331
3332 decayed = update_cfs_rq_load_avg(now, cfs_rq, true);
3333 decayed |= propagate_entity_load_avg(se);
3334
3335 if (decayed && (flags & UPDATE_TG))
3336 update_tg_load_avg(cfs_rq, 0);
3337 }
3338
3339 /**
3340 * attach_entity_load_avg - attach this entity to its cfs_rq load avg
3341 * @cfs_rq: cfs_rq to attach to
3342 * @se: sched_entity to attach
3343 *
3344 * Must call update_cfs_rq_load_avg() before this, since we rely on
3345 * cfs_rq->avg.last_update_time being current.
3346 */
3347 static void attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3348 {
3349 se->avg.last_update_time = cfs_rq->avg.last_update_time;
3350 cfs_rq->avg.load_avg += se->avg.load_avg;
3351 cfs_rq->avg.load_sum += se->avg.load_sum;
3352 cfs_rq->avg.util_avg += se->avg.util_avg;
3353 cfs_rq->avg.util_sum += se->avg.util_sum;
3354 set_tg_cfs_propagate(cfs_rq);
3355
3356 cfs_rq_util_change(cfs_rq);
3357 }
3358
3359 /**
3360 * detach_entity_load_avg - detach this entity from its cfs_rq load avg
3361 * @cfs_rq: cfs_rq to detach from
3362 * @se: sched_entity to detach
3363 *
3364 * Must call update_cfs_rq_load_avg() before this, since we rely on
3365 * cfs_rq->avg.last_update_time being current.
3366 */
3367 static void detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3368 {
3369
3370 sub_positive(&cfs_rq->avg.load_avg, se->avg.load_avg);
3371 sub_positive(&cfs_rq->avg.load_sum, se->avg.load_sum);
3372 sub_positive(&cfs_rq->avg.util_avg, se->avg.util_avg);
3373 sub_positive(&cfs_rq->avg.util_sum, se->avg.util_sum);
3374 set_tg_cfs_propagate(cfs_rq);
3375
3376 cfs_rq_util_change(cfs_rq);
3377 }
3378
3379 /* Add the load generated by se into cfs_rq's load average */
3380 static inline void
3381 enqueue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3382 {
3383 struct sched_avg *sa = &se->avg;
3384
3385 cfs_rq->runnable_load_avg += sa->load_avg;
3386 cfs_rq->runnable_load_sum += sa->load_sum;
3387
3388 if (!sa->last_update_time) {
3389 attach_entity_load_avg(cfs_rq, se);
3390 update_tg_load_avg(cfs_rq, 0);
3391 }
3392 }
3393
3394 /* Remove the runnable load generated by se from cfs_rq's runnable load average */
3395 static inline void
3396 dequeue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3397 {
3398 cfs_rq->runnable_load_avg =
3399 max_t(long, cfs_rq->runnable_load_avg - se->avg.load_avg, 0);
3400 cfs_rq->runnable_load_sum =
3401 max_t(s64, cfs_rq->runnable_load_sum - se->avg.load_sum, 0);
3402 }
3403
3404 #ifndef CONFIG_64BIT
3405 static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
3406 {
3407 u64 last_update_time_copy;
3408 u64 last_update_time;
3409
3410 do {
3411 last_update_time_copy = cfs_rq->load_last_update_time_copy;
3412 smp_rmb();
3413 last_update_time = cfs_rq->avg.last_update_time;
3414 } while (last_update_time != last_update_time_copy);
3415
3416 return last_update_time;
3417 }
3418 #else
3419 static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
3420 {
3421 return cfs_rq->avg.last_update_time;
3422 }
3423 #endif
3424
3425 /*
3426 * Synchronize entity load avg of dequeued entity without locking
3427 * the previous rq.
3428 */
3429 void sync_entity_load_avg(struct sched_entity *se)
3430 {
3431 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3432 u64 last_update_time;
3433
3434 last_update_time = cfs_rq_last_update_time(cfs_rq);
3435 __update_load_avg_blocked_se(last_update_time, cpu_of(rq_of(cfs_rq)), se);
3436 }
3437
3438 /*
3439 * Task first catches up with cfs_rq, and then subtract
3440 * itself from the cfs_rq (task must be off the queue now).
3441 */
3442 void remove_entity_load_avg(struct sched_entity *se)
3443 {
3444 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3445
3446 /*
3447 * tasks cannot exit without having gone through wake_up_new_task() ->
3448 * post_init_entity_util_avg() which will have added things to the
3449 * cfs_rq, so we can remove unconditionally.
3450 *
3451 * Similarly for groups, they will have passed through
3452 * post_init_entity_util_avg() before unregister_sched_fair_group()
3453 * calls this.
3454 */
3455
3456 sync_entity_load_avg(se);
3457 atomic_long_add(se->avg.load_avg, &cfs_rq->removed_load_avg);
3458 atomic_long_add(se->avg.util_avg, &cfs_rq->removed_util_avg);
3459 }
3460
3461 static inline unsigned long cfs_rq_runnable_load_avg(struct cfs_rq *cfs_rq)
3462 {
3463 return cfs_rq->runnable_load_avg;
3464 }
3465
3466 static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq)
3467 {
3468 return cfs_rq->avg.load_avg;
3469 }
3470
3471 static int idle_balance(struct rq *this_rq, struct rq_flags *rf);
3472
3473 #else /* CONFIG_SMP */
3474
3475 static inline int
3476 update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq, bool update_freq)
3477 {
3478 return 0;
3479 }
3480
3481 #define UPDATE_TG 0x0
3482 #define SKIP_AGE_LOAD 0x0
3483
3484 static inline void update_load_avg(struct sched_entity *se, int not_used1)
3485 {
3486 cpufreq_update_util(rq_of(cfs_rq_of(se)), 0);
3487 }
3488
3489 static inline void
3490 enqueue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
3491 static inline void
3492 dequeue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
3493 static inline void remove_entity_load_avg(struct sched_entity *se) {}
3494
3495 static inline void
3496 attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
3497 static inline void
3498 detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
3499
3500 static inline int idle_balance(struct rq *rq, struct rq_flags *rf)
3501 {
3502 return 0;
3503 }
3504
3505 #endif /* CONFIG_SMP */
3506
3507 static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
3508 {
3509 #ifdef CONFIG_SCHED_DEBUG
3510 s64 d = se->vruntime - cfs_rq->min_vruntime;
3511
3512 if (d < 0)
3513 d = -d;
3514
3515 if (d > 3*sysctl_sched_latency)
3516 schedstat_inc(cfs_rq->nr_spread_over);
3517 #endif
3518 }
3519
3520 static void
3521 place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
3522 {
3523 u64 vruntime = cfs_rq->min_vruntime;
3524
3525 /*
3526 * The 'current' period is already promised to the current tasks,
3527 * however the extra weight of the new task will slow them down a
3528 * little, place the new task so that it fits in the slot that
3529 * stays open at the end.
3530 */
3531 if (initial && sched_feat(START_DEBIT))
3532 vruntime += sched_vslice(cfs_rq, se);
3533
3534 /* sleeps up to a single latency don't count. */
3535 if (!initial) {
3536 unsigned long thresh = sysctl_sched_latency;
3537
3538 /*
3539 * Halve their sleep time's effect, to allow
3540 * for a gentler effect of sleepers:
3541 */
3542 if (sched_feat(GENTLE_FAIR_SLEEPERS))
3543 thresh >>= 1;
3544
3545 vruntime -= thresh;
3546 }
3547
3548 /* ensure we never gain time by being placed backwards. */
3549 se->vruntime = max_vruntime(se->vruntime, vruntime);
3550 }
3551
3552 static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
3553
3554 static inline void check_schedstat_required(void)
3555 {
3556 #ifdef CONFIG_SCHEDSTATS
3557 if (schedstat_enabled())
3558 return;
3559
3560 /* Force schedstat enabled if a dependent tracepoint is active */
3561 if (trace_sched_stat_wait_enabled() ||
3562 trace_sched_stat_sleep_enabled() ||
3563 trace_sched_stat_iowait_enabled() ||
3564 trace_sched_stat_blocked_enabled() ||
3565 trace_sched_stat_runtime_enabled()) {
3566 printk_deferred_once("Scheduler tracepoints stat_sleep, stat_iowait, "
3567 "stat_blocked and stat_runtime require the "
3568 "kernel parameter schedstats=enabled or "
3569 "kernel.sched_schedstats=1\n");
3570 }
3571 #endif
3572 }
3573
3574
3575 /*
3576 * MIGRATION
3577 *
3578 * dequeue
3579 * update_curr()
3580 * update_min_vruntime()
3581 * vruntime -= min_vruntime
3582 *
3583 * enqueue
3584 * update_curr()
3585 * update_min_vruntime()
3586 * vruntime += min_vruntime
3587 *
3588 * this way the vruntime transition between RQs is done when both
3589 * min_vruntime are up-to-date.
3590 *
3591 * WAKEUP (remote)
3592 *
3593 * ->migrate_task_rq_fair() (p->state == TASK_WAKING)
3594 * vruntime -= min_vruntime
3595 *
3596 * enqueue
3597 * update_curr()
3598 * update_min_vruntime()
3599 * vruntime += min_vruntime
3600 *
3601 * this way we don't have the most up-to-date min_vruntime on the originating
3602 * CPU and an up-to-date min_vruntime on the destination CPU.
3603 */
3604
3605 static void
3606 enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
3607 {
3608 bool renorm = !(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_MIGRATED);
3609 bool curr = cfs_rq->curr == se;
3610
3611 /*
3612 * If we're the current task, we must renormalise before calling
3613 * update_curr().
3614 */
3615 if (renorm && curr)
3616 se->vruntime += cfs_rq->min_vruntime;
3617
3618 update_curr(cfs_rq);
3619
3620 /*
3621 * Otherwise, renormalise after, such that we're placed at the current
3622 * moment in time, instead of some random moment in the past. Being
3623 * placed in the past could significantly boost this task to the
3624 * fairness detriment of existing tasks.
3625 */
3626 if (renorm && !curr)
3627 se->vruntime += cfs_rq->min_vruntime;
3628
3629 /*
3630 * When enqueuing a sched_entity, we must:
3631 * - Update loads to have both entity and cfs_rq synced with now.
3632 * - Add its load to cfs_rq->runnable_avg
3633 * - For group_entity, update its weight to reflect the new share of
3634 * its group cfs_rq
3635 * - Add its new weight to cfs_rq->load.weight
3636 */
3637 update_load_avg(se, UPDATE_TG);
3638 enqueue_entity_load_avg(cfs_rq, se);
3639 update_cfs_shares(se);
3640 account_entity_enqueue(cfs_rq, se);
3641
3642 if (flags & ENQUEUE_WAKEUP)
3643 place_entity(cfs_rq, se, 0);
3644
3645 check_schedstat_required();
3646 update_stats_enqueue(cfs_rq, se, flags);
3647 check_spread(cfs_rq, se);
3648 if (!curr)
3649 __enqueue_entity(cfs_rq, se);
3650 se->on_rq = 1;
3651
3652 if (cfs_rq->nr_running == 1) {
3653 list_add_leaf_cfs_rq(cfs_rq);
3654 check_enqueue_throttle(cfs_rq);
3655 }
3656 }
3657
3658 static void __clear_buddies_last(struct sched_entity *se)
3659 {
3660 for_each_sched_entity(se) {
3661 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3662 if (cfs_rq->last != se)
3663 break;
3664
3665 cfs_rq->last = NULL;
3666 }
3667 }
3668
3669 static void __clear_buddies_next(struct sched_entity *se)
3670 {
3671 for_each_sched_entity(se) {
3672 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3673 if (cfs_rq->next != se)
3674 break;
3675
3676 cfs_rq->next = NULL;
3677 }
3678 }
3679
3680 static void __clear_buddies_skip(struct sched_entity *se)
3681 {
3682 for_each_sched_entity(se) {
3683 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3684 if (cfs_rq->skip != se)
3685 break;
3686
3687 cfs_rq->skip = NULL;
3688 }
3689 }
3690
3691 static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
3692 {
3693 if (cfs_rq->last == se)
3694 __clear_buddies_last(se);
3695
3696 if (cfs_rq->next == se)
3697 __clear_buddies_next(se);
3698
3699 if (cfs_rq->skip == se)
3700 __clear_buddies_skip(se);
3701 }
3702
3703 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
3704
3705 static void
3706 dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
3707 {
3708 /*
3709 * Update run-time statistics of the 'current'.
3710 */
3711 update_curr(cfs_rq);
3712
3713 /*
3714 * When dequeuing a sched_entity, we must:
3715 * - Update loads to have both entity and cfs_rq synced with now.
3716 * - Substract its load from the cfs_rq->runnable_avg.
3717 * - Substract its previous weight from cfs_rq->load.weight.
3718 * - For group entity, update its weight to reflect the new share
3719 * of its group cfs_rq.
3720 */
3721 update_load_avg(se, UPDATE_TG);
3722 dequeue_entity_load_avg(cfs_rq, se);
3723
3724 update_stats_dequeue(cfs_rq, se, flags);
3725
3726 clear_buddies(cfs_rq, se);
3727
3728 if (se != cfs_rq->curr)
3729 __dequeue_entity(cfs_rq, se);
3730 se->on_rq = 0;
3731 account_entity_dequeue(cfs_rq, se);
3732
3733 /*
3734 * Normalize after update_curr(); which will also have moved
3735 * min_vruntime if @se is the one holding it back. But before doing
3736 * update_min_vruntime() again, which will discount @se's position and
3737 * can move min_vruntime forward still more.
3738 */
3739 if (!(flags & DEQUEUE_SLEEP))
3740 se->vruntime -= cfs_rq->min_vruntime;
3741
3742 /* return excess runtime on last dequeue */
3743 return_cfs_rq_runtime(cfs_rq);
3744
3745 update_cfs_shares(se);
3746
3747 /*
3748 * Now advance min_vruntime if @se was the entity holding it back,
3749 * except when: DEQUEUE_SAVE && !DEQUEUE_MOVE, in this case we'll be
3750 * put back on, and if we advance min_vruntime, we'll be placed back
3751 * further than we started -- ie. we'll be penalized.
3752 */
3753 if ((flags & (DEQUEUE_SAVE | DEQUEUE_MOVE)) == DEQUEUE_SAVE)
3754 update_min_vruntime(cfs_rq);
3755 }
3756
3757 /*
3758 * Preempt the current task with a newly woken task if needed:
3759 */
3760 static void
3761 check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
3762 {
3763 unsigned long ideal_runtime, delta_exec;
3764 struct sched_entity *se;
3765 s64 delta;
3766
3767 ideal_runtime = sched_slice(cfs_rq, curr);
3768 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
3769 if (delta_exec > ideal_runtime) {
3770 resched_curr(rq_of(cfs_rq));
3771 /*
3772 * The current task ran long enough, ensure it doesn't get
3773 * re-elected due to buddy favours.
3774 */
3775 clear_buddies(cfs_rq, curr);
3776 return;
3777 }
3778
3779 /*
3780 * Ensure that a task that missed wakeup preemption by a
3781 * narrow margin doesn't have to wait for a full slice.
3782 * This also mitigates buddy induced latencies under load.
3783 */
3784 if (delta_exec < sysctl_sched_min_granularity)
3785 return;
3786
3787 se = __pick_first_entity(cfs_rq);
3788 delta = curr->vruntime - se->vruntime;
3789
3790 if (delta < 0)
3791 return;
3792
3793 if (delta > ideal_runtime)
3794 resched_curr(rq_of(cfs_rq));
3795 }
3796
3797 static void
3798 set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
3799 {
3800 /* 'current' is not kept within the tree. */
3801 if (se->on_rq) {
3802 /*
3803 * Any task has to be enqueued before it get to execute on
3804 * a CPU. So account for the time it spent waiting on the
3805 * runqueue.
3806 */
3807 update_stats_wait_end(cfs_rq, se);
3808 __dequeue_entity(cfs_rq, se);
3809 update_load_avg(se, UPDATE_TG);
3810 }
3811
3812 update_stats_curr_start(cfs_rq, se);
3813 cfs_rq->curr = se;
3814
3815 /*
3816 * Track our maximum slice length, if the CPU's load is at
3817 * least twice that of our own weight (i.e. dont track it
3818 * when there are only lesser-weight tasks around):
3819 */
3820 if (schedstat_enabled() && rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
3821 schedstat_set(se->statistics.slice_max,
3822 max((u64)schedstat_val(se->statistics.slice_max),
3823 se->sum_exec_runtime - se->prev_sum_exec_runtime));
3824 }
3825
3826 se->prev_sum_exec_runtime = se->sum_exec_runtime;
3827 }
3828
3829 static int
3830 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
3831
3832 /*
3833 * Pick the next process, keeping these things in mind, in this order:
3834 * 1) keep things fair between processes/task groups
3835 * 2) pick the "next" process, since someone really wants that to run
3836 * 3) pick the "last" process, for cache locality
3837 * 4) do not run the "skip" process, if something else is available
3838 */
3839 static struct sched_entity *
3840 pick_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *curr)
3841 {
3842 struct sched_entity *left = __pick_first_entity(cfs_rq);
3843 struct sched_entity *se;
3844
3845 /*
3846 * If curr is set we have to see if its left of the leftmost entity
3847 * still in the tree, provided there was anything in the tree at all.
3848 */
3849 if (!left || (curr && entity_before(curr, left)))
3850 left = curr;
3851
3852 se = left; /* ideally we run the leftmost entity */
3853
3854 /*
3855 * Avoid running the skip buddy, if running something else can
3856 * be done without getting too unfair.
3857 */
3858 if (cfs_rq->skip == se) {
3859 struct sched_entity *second;
3860
3861 if (se == curr) {
3862 second = __pick_first_entity(cfs_rq);
3863 } else {
3864 second = __pick_next_entity(se);
3865 if (!second || (curr && entity_before(curr, second)))
3866 second = curr;
3867 }
3868
3869 if (second && wakeup_preempt_entity(second, left) < 1)
3870 se = second;
3871 }
3872
3873 /*
3874 * Prefer last buddy, try to return the CPU to a preempted task.
3875 */
3876 if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
3877 se = cfs_rq->last;
3878
3879 /*
3880 * Someone really wants this to run. If it's not unfair, run it.
3881 */
3882 if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
3883 se = cfs_rq->next;
3884
3885 clear_buddies(cfs_rq, se);
3886
3887 return se;
3888 }
3889
3890 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
3891
3892 static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
3893 {
3894 /*
3895 * If still on the runqueue then deactivate_task()
3896 * was not called and update_curr() has to be done:
3897 */
3898 if (prev->on_rq)
3899 update_curr(cfs_rq);
3900
3901 /* throttle cfs_rqs exceeding runtime */
3902 check_cfs_rq_runtime(cfs_rq);
3903
3904 check_spread(cfs_rq, prev);
3905
3906 if (prev->on_rq) {
3907 update_stats_wait_start(cfs_rq, prev);
3908 /* Put 'current' back into the tree. */
3909 __enqueue_entity(cfs_rq, prev);
3910 /* in !on_rq case, update occurred at dequeue */
3911 update_load_avg(prev, 0);
3912 }
3913 cfs_rq->curr = NULL;
3914 }
3915
3916 static void
3917 entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
3918 {
3919 /*
3920 * Update run-time statistics of the 'current'.
3921 */
3922 update_curr(cfs_rq);
3923
3924 /*
3925 * Ensure that runnable average is periodically updated.
3926 */
3927 update_load_avg(curr, UPDATE_TG);
3928 update_cfs_shares(curr);
3929
3930 #ifdef CONFIG_SCHED_HRTICK
3931 /*
3932 * queued ticks are scheduled to match the slice, so don't bother
3933 * validating it and just reschedule.
3934 */
3935 if (queued) {
3936 resched_curr(rq_of(cfs_rq));
3937 return;
3938 }
3939 /*
3940 * don't let the period tick interfere with the hrtick preemption
3941 */
3942 if (!sched_feat(DOUBLE_TICK) &&
3943 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
3944 return;
3945 #endif
3946
3947 if (cfs_rq->nr_running > 1)
3948 check_preempt_tick(cfs_rq, curr);
3949 }
3950
3951
3952 /**************************************************
3953 * CFS bandwidth control machinery
3954 */
3955
3956 #ifdef CONFIG_CFS_BANDWIDTH
3957
3958 #ifdef HAVE_JUMP_LABEL
3959 static struct static_key __cfs_bandwidth_used;
3960
3961 static inline bool cfs_bandwidth_used(void)
3962 {
3963 return static_key_false(&__cfs_bandwidth_used);
3964 }
3965
3966 void cfs_bandwidth_usage_inc(void)
3967 {
3968 static_key_slow_inc(&__cfs_bandwidth_used);
3969 }
3970
3971 void cfs_bandwidth_usage_dec(void)
3972 {
3973 static_key_slow_dec(&__cfs_bandwidth_used);
3974 }
3975 #else /* HAVE_JUMP_LABEL */
3976 static bool cfs_bandwidth_used(void)
3977 {
3978 return true;
3979 }
3980
3981 void cfs_bandwidth_usage_inc(void) {}
3982 void cfs_bandwidth_usage_dec(void) {}
3983 #endif /* HAVE_JUMP_LABEL */
3984
3985 /*
3986 * default period for cfs group bandwidth.
3987 * default: 0.1s, units: nanoseconds
3988 */
3989 static inline u64 default_cfs_period(void)
3990 {
3991 return 100000000ULL;
3992 }
3993
3994 static inline u64 sched_cfs_bandwidth_slice(void)
3995 {
3996 return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
3997 }
3998
3999 /*
4000 * Replenish runtime according to assigned quota and update expiration time.
4001 * We use sched_clock_cpu directly instead of rq->clock to avoid adding
4002 * additional synchronization around rq->lock.
4003 *
4004 * requires cfs_b->lock
4005 */
4006 void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
4007 {
4008 u64 now;
4009
4010 if (cfs_b->quota == RUNTIME_INF)
4011 return;
4012
4013 now = sched_clock_cpu(smp_processor_id());
4014 cfs_b->runtime = cfs_b->quota;
4015 cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period);
4016 }
4017
4018 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
4019 {
4020 return &tg->cfs_bandwidth;
4021 }
4022
4023 /* rq->task_clock normalized against any time this cfs_rq has spent throttled */
4024 static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
4025 {
4026 if (unlikely(cfs_rq->throttle_count))
4027 return cfs_rq->throttled_clock_task - cfs_rq->throttled_clock_task_time;
4028
4029 return rq_clock_task(rq_of(cfs_rq)) - cfs_rq->throttled_clock_task_time;
4030 }
4031
4032 /* returns 0 on failure to allocate runtime */
4033 static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4034 {
4035 struct task_group *tg = cfs_rq->tg;
4036 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
4037 u64 amount = 0, min_amount, expires;
4038
4039 /* note: this is a positive sum as runtime_remaining <= 0 */
4040 min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining;
4041
4042 raw_spin_lock(&cfs_b->lock);
4043 if (cfs_b->quota == RUNTIME_INF)
4044 amount = min_amount;
4045 else {
4046 start_cfs_bandwidth(cfs_b);
4047
4048 if (cfs_b->runtime > 0) {
4049 amount = min(cfs_b->runtime, min_amount);
4050 cfs_b->runtime -= amount;
4051 cfs_b->idle = 0;
4052 }
4053 }
4054 expires = cfs_b->runtime_expires;
4055 raw_spin_unlock(&cfs_b->lock);
4056
4057 cfs_rq->runtime_remaining += amount;
4058 /*
4059 * we may have advanced our local expiration to account for allowed
4060 * spread between our sched_clock and the one on which runtime was
4061 * issued.
4062 */
4063 if ((s64)(expires - cfs_rq->runtime_expires) > 0)
4064 cfs_rq->runtime_expires = expires;
4065
4066 return cfs_rq->runtime_remaining > 0;
4067 }
4068
4069 /*
4070 * Note: This depends on the synchronization provided by sched_clock and the
4071 * fact that rq->clock snapshots this value.
4072 */
4073 static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4074 {
4075 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
4076
4077 /* if the deadline is ahead of our clock, nothing to do */
4078 if (likely((s64)(rq_clock(rq_of(cfs_rq)) - cfs_rq->runtime_expires) < 0))
4079 return;
4080
4081 if (cfs_rq->runtime_remaining < 0)
4082 return;
4083
4084 /*
4085 * If the local deadline has passed we have to consider the
4086 * possibility that our sched_clock is 'fast' and the global deadline
4087 * has not truly expired.
4088 *
4089 * Fortunately we can check determine whether this the case by checking
4090 * whether the global deadline has advanced. It is valid to compare
4091 * cfs_b->runtime_expires without any locks since we only care about
4092 * exact equality, so a partial write will still work.
4093 */
4094
4095 if (cfs_rq->runtime_expires != cfs_b->runtime_expires) {
4096 /* extend local deadline, drift is bounded above by 2 ticks */
4097 cfs_rq->runtime_expires += TICK_NSEC;
4098 } else {
4099 /* global deadline is ahead, expiration has passed */
4100 cfs_rq->runtime_remaining = 0;
4101 }
4102 }
4103
4104 static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
4105 {
4106 /* dock delta_exec before expiring quota (as it could span periods) */
4107 cfs_rq->runtime_remaining -= delta_exec;
4108 expire_cfs_rq_runtime(cfs_rq);
4109
4110 if (likely(cfs_rq->runtime_remaining > 0))
4111 return;
4112
4113 /*
4114 * if we're unable to extend our runtime we resched so that the active
4115 * hierarchy can be throttled
4116 */
4117 if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
4118 resched_curr(rq_of(cfs_rq));
4119 }
4120
4121 static __always_inline
4122 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
4123 {
4124 if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
4125 return;
4126
4127 __account_cfs_rq_runtime(cfs_rq, delta_exec);
4128 }
4129
4130 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
4131 {
4132 return cfs_bandwidth_used() && cfs_rq->throttled;
4133 }
4134
4135 /* check whether cfs_rq, or any parent, is throttled */
4136 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
4137 {
4138 return cfs_bandwidth_used() && cfs_rq->throttle_count;
4139 }
4140
4141 /*
4142 * Ensure that neither of the group entities corresponding to src_cpu or
4143 * dest_cpu are members of a throttled hierarchy when performing group
4144 * load-balance operations.
4145 */
4146 static inline int throttled_lb_pair(struct task_group *tg,
4147 int src_cpu, int dest_cpu)
4148 {
4149 struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
4150
4151 src_cfs_rq = tg->cfs_rq[src_cpu];
4152 dest_cfs_rq = tg->cfs_rq[dest_cpu];
4153
4154 return throttled_hierarchy(src_cfs_rq) ||
4155 throttled_hierarchy(dest_cfs_rq);
4156 }
4157
4158 /* updated child weight may affect parent so we have to do this bottom up */
4159 static int tg_unthrottle_up(struct task_group *tg, void *data)
4160 {
4161 struct rq *rq = data;
4162 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
4163
4164 cfs_rq->throttle_count--;
4165 if (!cfs_rq->throttle_count) {
4166 /* adjust cfs_rq_clock_task() */
4167 cfs_rq->throttled_clock_task_time += rq_clock_task(rq) -
4168 cfs_rq->throttled_clock_task;
4169 }
4170
4171 return 0;
4172 }
4173
4174 static int tg_throttle_down(struct task_group *tg, void *data)
4175 {
4176 struct rq *rq = data;
4177 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
4178
4179 /* group is entering throttled state, stop time */
4180 if (!cfs_rq->throttle_count)
4181 cfs_rq->throttled_clock_task = rq_clock_task(rq);
4182 cfs_rq->throttle_count++;
4183
4184 return 0;
4185 }
4186
4187 static void throttle_cfs_rq(struct cfs_rq *cfs_rq)
4188 {
4189 struct rq *rq = rq_of(cfs_rq);
4190 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
4191 struct sched_entity *se;
4192 long task_delta, dequeue = 1;
4193 bool empty;
4194
4195 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
4196
4197 /* freeze hierarchy runnable averages while throttled */
4198 rcu_read_lock();
4199 walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
4200 rcu_read_unlock();
4201
4202 task_delta = cfs_rq->h_nr_running;
4203 for_each_sched_entity(se) {
4204 struct cfs_rq *qcfs_rq = cfs_rq_of(se);
4205 /* throttled entity or throttle-on-deactivate */
4206 if (!se->on_rq)
4207 break;
4208
4209 if (dequeue)
4210 dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
4211 qcfs_rq->h_nr_running -= task_delta;
4212
4213 if (qcfs_rq->load.weight)
4214 dequeue = 0;
4215 }
4216
4217 if (!se)
4218 sub_nr_running(rq, task_delta);
4219
4220 cfs_rq->throttled = 1;
4221 cfs_rq->throttled_clock = rq_clock(rq);
4222 raw_spin_lock(&cfs_b->lock);
4223 empty = list_empty(&cfs_b->throttled_cfs_rq);
4224
4225 /*
4226 * Add to the _head_ of the list, so that an already-started
4227 * distribute_cfs_runtime will not see us
4228 */
4229 list_add_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
4230
4231 /*
4232 * If we're the first throttled task, make sure the bandwidth
4233 * timer is running.
4234 */
4235 if (empty)
4236 start_cfs_bandwidth(cfs_b);
4237
4238 raw_spin_unlock(&cfs_b->lock);
4239 }
4240
4241 void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
4242 {
4243 struct rq *rq = rq_of(cfs_rq);
4244 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
4245 struct sched_entity *se;
4246 int enqueue = 1;
4247 long task_delta;
4248
4249 se = cfs_rq->tg->se[cpu_of(rq)];
4250
4251 cfs_rq->throttled = 0;
4252
4253 update_rq_clock(rq);
4254
4255 raw_spin_lock(&cfs_b->lock);
4256 cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
4257 list_del_rcu(&cfs_rq->throttled_list);
4258 raw_spin_unlock(&cfs_b->lock);
4259
4260 /* update hierarchical throttle state */
4261 walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
4262
4263 if (!cfs_rq->load.weight)
4264 return;
4265
4266 task_delta = cfs_rq->h_nr_running;
4267 for_each_sched_entity(se) {
4268 if (se->on_rq)
4269 enqueue = 0;
4270
4271 cfs_rq = cfs_rq_of(se);
4272 if (enqueue)
4273 enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
4274 cfs_rq->h_nr_running += task_delta;
4275
4276 if (cfs_rq_throttled(cfs_rq))
4277 break;
4278 }
4279
4280 if (!se)
4281 add_nr_running(rq, task_delta);
4282
4283 /* determine whether we need to wake up potentially idle cpu */
4284 if (rq->curr == rq->idle && rq->cfs.nr_running)
4285 resched_curr(rq);
4286 }
4287
4288 static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b,
4289 u64 remaining, u64 expires)
4290 {
4291 struct cfs_rq *cfs_rq;
4292 u64 runtime;
4293 u64 starting_runtime = remaining;
4294
4295 rcu_read_lock();
4296 list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
4297 throttled_list) {
4298 struct rq *rq = rq_of(cfs_rq);
4299 struct rq_flags rf;
4300
4301 rq_lock(rq, &rf);
4302 if (!cfs_rq_throttled(cfs_rq))
4303 goto next;
4304
4305 runtime = -cfs_rq->runtime_remaining + 1;
4306 if (runtime > remaining)
4307 runtime = remaining;
4308 remaining -= runtime;
4309
4310 cfs_rq->runtime_remaining += runtime;
4311 cfs_rq->runtime_expires = expires;
4312
4313 /* we check whether we're throttled above */
4314 if (cfs_rq->runtime_remaining > 0)
4315 unthrottle_cfs_rq(cfs_rq);
4316
4317 next:
4318 rq_unlock(rq, &rf);
4319
4320 if (!remaining)
4321 break;
4322 }
4323 rcu_read_unlock();
4324
4325 return starting_runtime - remaining;
4326 }
4327
4328 /*
4329 * Responsible for refilling a task_group's bandwidth and unthrottling its
4330 * cfs_rqs as appropriate. If there has been no activity within the last
4331 * period the timer is deactivated until scheduling resumes; cfs_b->idle is
4332 * used to track this state.
4333 */
4334 static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun)
4335 {
4336 u64 runtime, runtime_expires;
4337 int throttled;
4338
4339 /* no need to continue the timer with no bandwidth constraint */
4340 if (cfs_b->quota == RUNTIME_INF)
4341 goto out_deactivate;
4342
4343 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
4344 cfs_b->nr_periods += overrun;
4345
4346 /*
4347 * idle depends on !throttled (for the case of a large deficit), and if
4348 * we're going inactive then everything else can be deferred
4349 */
4350 if (cfs_b->idle && !throttled)
4351 goto out_deactivate;
4352
4353 __refill_cfs_bandwidth_runtime(cfs_b);
4354
4355 if (!throttled) {
4356 /* mark as potentially idle for the upcoming period */
4357 cfs_b->idle = 1;
4358 return 0;
4359 }
4360
4361 /* account preceding periods in which throttling occurred */
4362 cfs_b->nr_throttled += overrun;
4363
4364 runtime_expires = cfs_b->runtime_expires;
4365
4366 /*
4367 * This check is repeated as we are holding onto the new bandwidth while
4368 * we unthrottle. This can potentially race with an unthrottled group
4369 * trying to acquire new bandwidth from the global pool. This can result
4370 * in us over-using our runtime if it is all used during this loop, but
4371 * only by limited amounts in that extreme case.
4372 */
4373 while (throttled && cfs_b->runtime > 0) {
4374 runtime = cfs_b->runtime;
4375 raw_spin_unlock(&cfs_b->lock);
4376 /* we can't nest cfs_b->lock while distributing bandwidth */
4377 runtime = distribute_cfs_runtime(cfs_b, runtime,
4378 runtime_expires);
4379 raw_spin_lock(&cfs_b->lock);
4380
4381 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
4382
4383 cfs_b->runtime -= min(runtime, cfs_b->runtime);
4384 }
4385
4386 /*
4387 * While we are ensured activity in the period following an
4388 * unthrottle, this also covers the case in which the new bandwidth is
4389 * insufficient to cover the existing bandwidth deficit. (Forcing the
4390 * timer to remain active while there are any throttled entities.)
4391 */
4392 cfs_b->idle = 0;
4393
4394 return 0;
4395
4396 out_deactivate:
4397 return 1;
4398 }
4399
4400 /* a cfs_rq won't donate quota below this amount */
4401 static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
4402 /* minimum remaining period time to redistribute slack quota */
4403 static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
4404 /* how long we wait to gather additional slack before distributing */
4405 static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
4406
4407 /*
4408 * Are we near the end of the current quota period?
4409 *
4410 * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the
4411 * hrtimer base being cleared by hrtimer_start. In the case of
4412 * migrate_hrtimers, base is never cleared, so we are fine.
4413 */
4414 static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
4415 {
4416 struct hrtimer *refresh_timer = &cfs_b->period_timer;
4417 u64 remaining;
4418
4419 /* if the call-back is running a quota refresh is already occurring */
4420 if (hrtimer_callback_running(refresh_timer))
4421 return 1;
4422
4423 /* is a quota refresh about to occur? */
4424 remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
4425 if (remaining < min_expire)
4426 return 1;
4427
4428 return 0;
4429 }
4430
4431 static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
4432 {
4433 u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
4434
4435 /* if there's a quota refresh soon don't bother with slack */
4436 if (runtime_refresh_within(cfs_b, min_left))
4437 return;
4438
4439 hrtimer_start(&cfs_b->slack_timer,
4440 ns_to_ktime(cfs_bandwidth_slack_period),
4441 HRTIMER_MODE_REL);
4442 }
4443
4444 /* we know any runtime found here is valid as update_curr() precedes return */
4445 static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4446 {
4447 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
4448 s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
4449
4450 if (slack_runtime <= 0)
4451 return;
4452
4453 raw_spin_lock(&cfs_b->lock);
4454 if (cfs_b->quota != RUNTIME_INF &&
4455 cfs_rq->runtime_expires == cfs_b->runtime_expires) {
4456 cfs_b->runtime += slack_runtime;
4457
4458 /* we are under rq->lock, defer unthrottling using a timer */
4459 if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
4460 !list_empty(&cfs_b->throttled_cfs_rq))
4461 start_cfs_slack_bandwidth(cfs_b);
4462 }
4463 raw_spin_unlock(&cfs_b->lock);
4464
4465 /* even if it's not valid for return we don't want to try again */
4466 cfs_rq->runtime_remaining -= slack_runtime;
4467 }
4468
4469 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4470 {
4471 if (!cfs_bandwidth_used())
4472 return;
4473
4474 if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
4475 return;
4476
4477 __return_cfs_rq_runtime(cfs_rq);
4478 }
4479
4480 /*
4481 * This is done with a timer (instead of inline with bandwidth return) since
4482 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
4483 */
4484 static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
4485 {
4486 u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
4487 u64 expires;
4488
4489 /* confirm we're still not at a refresh boundary */
4490 raw_spin_lock(&cfs_b->lock);
4491 if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) {
4492 raw_spin_unlock(&cfs_b->lock);
4493 return;
4494 }
4495
4496 if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice)
4497 runtime = cfs_b->runtime;
4498
4499 expires = cfs_b->runtime_expires;
4500 raw_spin_unlock(&cfs_b->lock);
4501
4502 if (!runtime)
4503 return;
4504
4505 runtime = distribute_cfs_runtime(cfs_b, runtime, expires);
4506
4507 raw_spin_lock(&cfs_b->lock);
4508 if (expires == cfs_b->runtime_expires)
4509 cfs_b->runtime -= min(runtime, cfs_b->runtime);
4510 raw_spin_unlock(&cfs_b->lock);
4511 }
4512
4513 /*
4514 * When a group wakes up we want to make sure that its quota is not already
4515 * expired/exceeded, otherwise it may be allowed to steal additional ticks of
4516 * runtime as update_curr() throttling can not not trigger until it's on-rq.
4517 */
4518 static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
4519 {
4520 if (!cfs_bandwidth_used())
4521 return;
4522
4523 /* an active group must be handled by the update_curr()->put() path */
4524 if (!cfs_rq->runtime_enabled || cfs_rq->curr)
4525 return;
4526
4527 /* ensure the group is not already throttled */
4528 if (cfs_rq_throttled(cfs_rq))
4529 return;
4530
4531 /* update runtime allocation */
4532 account_cfs_rq_runtime(cfs_rq, 0);
4533 if (cfs_rq->runtime_remaining <= 0)
4534 throttle_cfs_rq(cfs_rq);
4535 }
4536
4537 static void sync_throttle(struct task_group *tg, int cpu)
4538 {
4539 struct cfs_rq *pcfs_rq, *cfs_rq;
4540
4541 if (!cfs_bandwidth_used())
4542 return;
4543
4544 if (!tg->parent)
4545 return;
4546
4547 cfs_rq = tg->cfs_rq[cpu];
4548 pcfs_rq = tg->parent->cfs_rq[cpu];
4549
4550 cfs_rq->throttle_count = pcfs_rq->throttle_count;
4551 cfs_rq->throttled_clock_task = rq_clock_task(cpu_rq(cpu));
4552 }
4553
4554 /* conditionally throttle active cfs_rq's from put_prev_entity() */
4555 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4556 {
4557 if (!cfs_bandwidth_used())
4558 return false;
4559
4560 if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
4561 return false;
4562
4563 /*
4564 * it's possible for a throttled entity to be forced into a running
4565 * state (e.g. set_curr_task), in this case we're finished.
4566 */
4567 if (cfs_rq_throttled(cfs_rq))
4568 return true;
4569
4570 throttle_cfs_rq(cfs_rq);
4571 return true;
4572 }
4573
4574 static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
4575 {
4576 struct cfs_bandwidth *cfs_b =
4577 container_of(timer, struct cfs_bandwidth, slack_timer);
4578
4579 do_sched_cfs_slack_timer(cfs_b);
4580
4581 return HRTIMER_NORESTART;
4582 }
4583
4584 static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
4585 {
4586 struct cfs_bandwidth *cfs_b =
4587 container_of(timer, struct cfs_bandwidth, period_timer);
4588 int overrun;
4589 int idle = 0;
4590
4591 raw_spin_lock(&cfs_b->lock);
4592 for (;;) {
4593 overrun = hrtimer_forward_now(timer, cfs_b->period);
4594 if (!overrun)
4595 break;
4596
4597 idle = do_sched_cfs_period_timer(cfs_b, overrun);
4598 }
4599 if (idle)
4600 cfs_b->period_active = 0;
4601 raw_spin_unlock(&cfs_b->lock);
4602
4603 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
4604 }
4605
4606 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
4607 {
4608 raw_spin_lock_init(&cfs_b->lock);
4609 cfs_b->runtime = 0;
4610 cfs_b->quota = RUNTIME_INF;
4611 cfs_b->period = ns_to_ktime(default_cfs_period());
4612
4613 INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
4614 hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
4615 cfs_b->period_timer.function = sched_cfs_period_timer;
4616 hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
4617 cfs_b->slack_timer.function = sched_cfs_slack_timer;
4618 }
4619
4620 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4621 {
4622 cfs_rq->runtime_enabled = 0;
4623 INIT_LIST_HEAD(&cfs_rq->throttled_list);
4624 }
4625
4626 void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
4627 {
4628 lockdep_assert_held(&cfs_b->lock);
4629
4630 if (!cfs_b->period_active) {
4631 cfs_b->period_active = 1;
4632 hrtimer_forward_now(&cfs_b->period_timer, cfs_b->period);
4633 hrtimer_start_expires(&cfs_b->period_timer, HRTIMER_MODE_ABS_PINNED);
4634 }
4635 }
4636
4637 static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
4638 {
4639 /* init_cfs_bandwidth() was not called */
4640 if (!cfs_b->throttled_cfs_rq.next)
4641 return;
4642
4643 hrtimer_cancel(&cfs_b->period_timer);
4644 hrtimer_cancel(&cfs_b->slack_timer);
4645 }
4646
4647 /*
4648 * Both these cpu hotplug callbacks race against unregister_fair_sched_group()
4649 *
4650 * The race is harmless, since modifying bandwidth settings of unhooked group
4651 * bits doesn't do much.
4652 */
4653
4654 /* cpu online calback */
4655 static void __maybe_unused update_runtime_enabled(struct rq *rq)
4656 {
4657 struct task_group *tg;
4658
4659 lockdep_assert_held(&rq->lock);
4660
4661 rcu_read_lock();
4662 list_for_each_entry_rcu(tg, &task_groups, list) {
4663 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
4664 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
4665
4666 raw_spin_lock(&cfs_b->lock);
4667 cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF;
4668 raw_spin_unlock(&cfs_b->lock);
4669 }
4670 rcu_read_unlock();
4671 }
4672
4673 /* cpu offline callback */
4674 static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
4675 {
4676 struct task_group *tg;
4677
4678 lockdep_assert_held(&rq->lock);
4679
4680 rcu_read_lock();
4681 list_for_each_entry_rcu(tg, &task_groups, list) {
4682 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
4683
4684 if (!cfs_rq->runtime_enabled)
4685 continue;
4686
4687 /*
4688 * clock_task is not advancing so we just need to make sure
4689 * there's some valid quota amount
4690 */
4691 cfs_rq->runtime_remaining = 1;
4692 /*
4693 * Offline rq is schedulable till cpu is completely disabled
4694 * in take_cpu_down(), so we prevent new cfs throttling here.
4695 */
4696 cfs_rq->runtime_enabled = 0;
4697
4698 if (cfs_rq_throttled(cfs_rq))
4699 unthrottle_cfs_rq(cfs_rq);
4700 }
4701 rcu_read_unlock();
4702 }
4703
4704 #else /* CONFIG_CFS_BANDWIDTH */
4705 static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
4706 {
4707 return rq_clock_task(rq_of(cfs_rq));
4708 }
4709
4710 static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {}
4711 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; }
4712 static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
4713 static inline void sync_throttle(struct task_group *tg, int cpu) {}
4714 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
4715
4716 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
4717 {
4718 return 0;
4719 }
4720
4721 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
4722 {
4723 return 0;
4724 }
4725
4726 static inline int throttled_lb_pair(struct task_group *tg,
4727 int src_cpu, int dest_cpu)
4728 {
4729 return 0;
4730 }
4731
4732 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
4733
4734 #ifdef CONFIG_FAIR_GROUP_SCHED
4735 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
4736 #endif
4737
4738 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
4739 {
4740 return NULL;
4741 }
4742 static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
4743 static inline void update_runtime_enabled(struct rq *rq) {}
4744 static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
4745
4746 #endif /* CONFIG_CFS_BANDWIDTH */
4747
4748 /**************************************************
4749 * CFS operations on tasks:
4750 */
4751
4752 #ifdef CONFIG_SCHED_HRTICK
4753 static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
4754 {
4755 struct sched_entity *se = &p->se;
4756 struct cfs_rq *cfs_rq = cfs_rq_of(se);
4757
4758 SCHED_WARN_ON(task_rq(p) != rq);
4759
4760 if (rq->cfs.h_nr_running > 1) {
4761 u64 slice = sched_slice(cfs_rq, se);
4762 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
4763 s64 delta = slice - ran;
4764
4765 if (delta < 0) {
4766 if (rq->curr == p)
4767 resched_curr(rq);
4768 return;
4769 }
4770 hrtick_start(rq, delta);
4771 }
4772 }
4773
4774 /*
4775 * called from enqueue/dequeue and updates the hrtick when the
4776 * current task is from our class and nr_running is low enough
4777 * to matter.
4778 */
4779 static void hrtick_update(struct rq *rq)
4780 {
4781 struct task_struct *curr = rq->curr;
4782
4783 if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class)
4784 return;
4785
4786 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
4787 hrtick_start_fair(rq, curr);
4788 }
4789 #else /* !CONFIG_SCHED_HRTICK */
4790 static inline void
4791 hrtick_start_fair(struct rq *rq, struct task_struct *p)
4792 {
4793 }
4794
4795 static inline void hrtick_update(struct rq *rq)
4796 {
4797 }
4798 #endif
4799
4800 /*
4801 * The enqueue_task method is called before nr_running is
4802 * increased. Here we update the fair scheduling stats and
4803 * then put the task into the rbtree:
4804 */
4805 static void
4806 enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
4807 {
4808 struct cfs_rq *cfs_rq;
4809 struct sched_entity *se = &p->se;
4810
4811 /*
4812 * If in_iowait is set, the code below may not trigger any cpufreq
4813 * utilization updates, so do it here explicitly with the IOWAIT flag
4814 * passed.
4815 */
4816 if (p->in_iowait)
4817 cpufreq_update_this_cpu(rq, SCHED_CPUFREQ_IOWAIT);
4818
4819 for_each_sched_entity(se) {
4820 if (se->on_rq)
4821 break;
4822 cfs_rq = cfs_rq_of(se);
4823 enqueue_entity(cfs_rq, se, flags);
4824
4825 /*
4826 * end evaluation on encountering a throttled cfs_rq
4827 *
4828 * note: in the case of encountering a throttled cfs_rq we will
4829 * post the final h_nr_running increment below.
4830 */
4831 if (cfs_rq_throttled(cfs_rq))
4832 break;
4833 cfs_rq->h_nr_running++;
4834
4835 flags = ENQUEUE_WAKEUP;
4836 }
4837
4838 for_each_sched_entity(se) {
4839 cfs_rq = cfs_rq_of(se);
4840 cfs_rq->h_nr_running++;
4841
4842 if (cfs_rq_throttled(cfs_rq))
4843 break;
4844
4845 update_load_avg(se, UPDATE_TG);
4846 update_cfs_shares(se);
4847 }
4848
4849 if (!se)
4850 add_nr_running(rq, 1);
4851
4852 hrtick_update(rq);
4853 }
4854
4855 static void set_next_buddy(struct sched_entity *se);
4856
4857 /*
4858 * The dequeue_task method is called before nr_running is
4859 * decreased. We remove the task from the rbtree and
4860 * update the fair scheduling stats:
4861 */
4862 static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
4863 {
4864 struct cfs_rq *cfs_rq;
4865 struct sched_entity *se = &p->se;
4866 int task_sleep = flags & DEQUEUE_SLEEP;
4867
4868 for_each_sched_entity(se) {
4869 cfs_rq = cfs_rq_of(se);
4870 dequeue_entity(cfs_rq, se, flags);
4871
4872 /*
4873 * end evaluation on encountering a throttled cfs_rq
4874 *
4875 * note: in the case of encountering a throttled cfs_rq we will
4876 * post the final h_nr_running decrement below.
4877 */
4878 if (cfs_rq_throttled(cfs_rq))
4879 break;
4880 cfs_rq->h_nr_running--;
4881
4882 /* Don't dequeue parent if it has other entities besides us */
4883 if (cfs_rq->load.weight) {
4884 /* Avoid re-evaluating load for this entity: */
4885 se = parent_entity(se);
4886 /*
4887 * Bias pick_next to pick a task from this cfs_rq, as
4888 * p is sleeping when it is within its sched_slice.
4889 */
4890 if (task_sleep && se && !throttled_hierarchy(cfs_rq))
4891 set_next_buddy(se);
4892 break;
4893 }
4894 flags |= DEQUEUE_SLEEP;
4895 }
4896
4897 for_each_sched_entity(se) {
4898 cfs_rq = cfs_rq_of(se);
4899 cfs_rq->h_nr_running--;
4900
4901 if (cfs_rq_throttled(cfs_rq))
4902 break;
4903
4904 update_load_avg(se, UPDATE_TG);
4905 update_cfs_shares(se);
4906 }
4907
4908 if (!se)
4909 sub_nr_running(rq, 1);
4910
4911 hrtick_update(rq);
4912 }
4913
4914 #ifdef CONFIG_SMP
4915
4916 /* Working cpumask for: load_balance, load_balance_newidle. */
4917 DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
4918 DEFINE_PER_CPU(cpumask_var_t, select_idle_mask);
4919
4920 #ifdef CONFIG_NO_HZ_COMMON
4921 /*
4922 * per rq 'load' arrray crap; XXX kill this.
4923 */
4924
4925 /*
4926 * The exact cpuload calculated at every tick would be:
4927 *
4928 * load' = (1 - 1/2^i) * load + (1/2^i) * cur_load
4929 *
4930 * If a cpu misses updates for n ticks (as it was idle) and update gets
4931 * called on the n+1-th tick when cpu may be busy, then we have:
4932 *
4933 * load_n = (1 - 1/2^i)^n * load_0
4934 * load_n+1 = (1 - 1/2^i) * load_n + (1/2^i) * cur_load
4935 *
4936 * decay_load_missed() below does efficient calculation of
4937 *
4938 * load' = (1 - 1/2^i)^n * load
4939 *
4940 * Because x^(n+m) := x^n * x^m we can decompose any x^n in power-of-2 factors.
4941 * This allows us to precompute the above in said factors, thereby allowing the
4942 * reduction of an arbitrary n in O(log_2 n) steps. (See also
4943 * fixed_power_int())
4944 *
4945 * The calculation is approximated on a 128 point scale.
4946 */
4947 #define DEGRADE_SHIFT 7
4948
4949 static const u8 degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
4950 static const u8 degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
4951 { 0, 0, 0, 0, 0, 0, 0, 0 },
4952 { 64, 32, 8, 0, 0, 0, 0, 0 },
4953 { 96, 72, 40, 12, 1, 0, 0, 0 },
4954 { 112, 98, 75, 43, 15, 1, 0, 0 },
4955 { 120, 112, 98, 76, 45, 16, 2, 0 }
4956 };
4957
4958 /*
4959 * Update cpu_load for any missed ticks, due to tickless idle. The backlog
4960 * would be when CPU is idle and so we just decay the old load without
4961 * adding any new load.
4962 */
4963 static unsigned long
4964 decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
4965 {
4966 int j = 0;
4967
4968 if (!missed_updates)
4969 return load;
4970
4971 if (missed_updates >= degrade_zero_ticks[idx])
4972 return 0;
4973
4974 if (idx == 1)
4975 return load >> missed_updates;
4976
4977 while (missed_updates) {
4978 if (missed_updates % 2)
4979 load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;
4980
4981 missed_updates >>= 1;
4982 j++;
4983 }
4984 return load;
4985 }
4986 #endif /* CONFIG_NO_HZ_COMMON */
4987
4988 /**
4989 * __cpu_load_update - update the rq->cpu_load[] statistics
4990 * @this_rq: The rq to update statistics for
4991 * @this_load: The current load
4992 * @pending_updates: The number of missed updates
4993 *
4994 * Update rq->cpu_load[] statistics. This function is usually called every
4995 * scheduler tick (TICK_NSEC).
4996 *
4997 * This function computes a decaying average:
4998 *
4999 * load[i]' = (1 - 1/2^i) * load[i] + (1/2^i) * load
5000 *
5001 * Because of NOHZ it might not get called on every tick which gives need for
5002 * the @pending_updates argument.
5003 *
5004 * load[i]_n = (1 - 1/2^i) * load[i]_n-1 + (1/2^i) * load_n-1
5005 * = A * load[i]_n-1 + B ; A := (1 - 1/2^i), B := (1/2^i) * load
5006 * = A * (A * load[i]_n-2 + B) + B
5007 * = A * (A * (A * load[i]_n-3 + B) + B) + B
5008 * = A^3 * load[i]_n-3 + (A^2 + A + 1) * B
5009 * = A^n * load[i]_0 + (A^(n-1) + A^(n-2) + ... + 1) * B
5010 * = A^n * load[i]_0 + ((1 - A^n) / (1 - A)) * B
5011 * = (1 - 1/2^i)^n * (load[i]_0 - load) + load
5012 *
5013 * In the above we've assumed load_n := load, which is true for NOHZ_FULL as
5014 * any change in load would have resulted in the tick being turned back on.
5015 *
5016 * For regular NOHZ, this reduces to:
5017 *
5018 * load[i]_n = (1 - 1/2^i)^n * load[i]_0
5019 *
5020 * see decay_load_misses(). For NOHZ_FULL we get to subtract and add the extra
5021 * term.
5022 */
5023 static void cpu_load_update(struct rq *this_rq, unsigned long this_load,
5024 unsigned long pending_updates)
5025 {
5026 unsigned long __maybe_unused tickless_load = this_rq->cpu_load[0];
5027 int i, scale;
5028
5029 this_rq->nr_load_updates++;
5030
5031 /* Update our load: */
5032 this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
5033 for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
5034 unsigned long old_load, new_load;
5035
5036 /* scale is effectively 1 << i now, and >> i divides by scale */
5037
5038 old_load = this_rq->cpu_load[i];
5039 #ifdef CONFIG_NO_HZ_COMMON
5040 old_load = decay_load_missed(old_load, pending_updates - 1, i);
5041 if (tickless_load) {
5042 old_load -= decay_load_missed(tickless_load, pending_updates - 1, i);
5043 /*
5044 * old_load can never be a negative value because a
5045 * decayed tickless_load cannot be greater than the
5046 * original tickless_load.
5047 */
5048 old_load += tickless_load;
5049 }
5050 #endif
5051 new_load = this_load;
5052 /*
5053 * Round up the averaging division if load is increasing. This
5054 * prevents us from getting stuck on 9 if the load is 10, for
5055 * example.
5056 */
5057 if (new_load > old_load)
5058 new_load += scale - 1;
5059
5060 this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
5061 }
5062
5063 sched_avg_update(this_rq);
5064 }
5065
5066 /* Used instead of source_load when we know the type == 0 */
5067 static unsigned long weighted_cpuload(const int cpu)
5068 {
5069 return cfs_rq_runnable_load_avg(&cpu_rq(cpu)->cfs);
5070 }
5071
5072 #ifdef CONFIG_NO_HZ_COMMON
5073 /*
5074 * There is no sane way to deal with nohz on smp when using jiffies because the
5075 * cpu doing the jiffies update might drift wrt the cpu doing the jiffy reading
5076 * causing off-by-one errors in observed deltas; {0,2} instead of {1,1}.
5077 *
5078 * Therefore we need to avoid the delta approach from the regular tick when
5079 * possible since that would seriously skew the load calculation. This is why we
5080 * use cpu_load_update_periodic() for CPUs out of nohz. However we'll rely on
5081 * jiffies deltas for updates happening while in nohz mode (idle ticks, idle
5082 * loop exit, nohz_idle_balance, nohz full exit...)
5083 *
5084 * This means we might still be one tick off for nohz periods.
5085 */
5086
5087 static void cpu_load_update_nohz(struct rq *this_rq,
5088 unsigned long curr_jiffies,
5089 unsigned long load)
5090 {
5091 unsigned long pending_updates;
5092
5093 pending_updates = curr_jiffies - this_rq->last_load_update_tick;
5094 if (pending_updates) {
5095 this_rq->last_load_update_tick = curr_jiffies;
5096 /*
5097 * In the regular NOHZ case, we were idle, this means load 0.
5098 * In the NOHZ_FULL case, we were non-idle, we should consider
5099 * its weighted load.
5100 */
5101 cpu_load_update(this_rq, load, pending_updates);
5102 }
5103 }
5104
5105 /*
5106 * Called from nohz_idle_balance() to update the load ratings before doing the
5107 * idle balance.
5108 */
5109 static void cpu_load_update_idle(struct rq *this_rq)
5110 {
5111 /*
5112 * bail if there's load or we're actually up-to-date.
5113 */
5114 if (weighted_cpuload(cpu_of(this_rq)))
5115 return;
5116
5117 cpu_load_update_nohz(this_rq, READ_ONCE(jiffies), 0);
5118 }
5119
5120 /*
5121 * Record CPU load on nohz entry so we know the tickless load to account
5122 * on nohz exit. cpu_load[0] happens then to be updated more frequently
5123 * than other cpu_load[idx] but it should be fine as cpu_load readers
5124 * shouldn't rely into synchronized cpu_load[*] updates.
5125 */
5126 void cpu_load_update_nohz_start(void)
5127 {
5128 struct rq *this_rq = this_rq();
5129
5130 /*
5131 * This is all lockless but should be fine. If weighted_cpuload changes
5132 * concurrently we'll exit nohz. And cpu_load write can race with
5133 * cpu_load_update_idle() but both updater would be writing the same.
5134 */
5135 this_rq->cpu_load[0] = weighted_cpuload(cpu_of(this_rq));
5136 }
5137
5138 /*
5139 * Account the tickless load in the end of a nohz frame.
5140 */
5141 void cpu_load_update_nohz_stop(void)
5142 {
5143 unsigned long curr_jiffies = READ_ONCE(jiffies);
5144 struct rq *this_rq = this_rq();
5145 unsigned long load;
5146 struct rq_flags rf;
5147
5148 if (curr_jiffies == this_rq->last_load_update_tick)
5149 return;
5150
5151 load = weighted_cpuload(cpu_of(this_rq));
5152 rq_lock(this_rq, &rf);
5153 update_rq_clock(this_rq);
5154 cpu_load_update_nohz(this_rq, curr_jiffies, load);
5155 rq_unlock(this_rq, &rf);
5156 }
5157 #else /* !CONFIG_NO_HZ_COMMON */
5158 static inline void cpu_load_update_nohz(struct rq *this_rq,
5159 unsigned long curr_jiffies,
5160 unsigned long load) { }
5161 #endif /* CONFIG_NO_HZ_COMMON */
5162
5163 static void cpu_load_update_periodic(struct rq *this_rq, unsigned long load)
5164 {
5165 #ifdef CONFIG_NO_HZ_COMMON
5166 /* See the mess around cpu_load_update_nohz(). */
5167 this_rq->last_load_update_tick = READ_ONCE(jiffies);
5168 #endif
5169 cpu_load_update(this_rq, load, 1);
5170 }
5171
5172 /*
5173 * Called from scheduler_tick()
5174 */
5175 void cpu_load_update_active(struct rq *this_rq)
5176 {
5177 unsigned long load = weighted_cpuload(cpu_of(this_rq));
5178
5179 if (tick_nohz_tick_stopped())
5180 cpu_load_update_nohz(this_rq, READ_ONCE(jiffies), load);
5181 else
5182 cpu_load_update_periodic(this_rq, load);
5183 }
5184
5185 /*
5186 * Return a low guess at the load of a migration-source cpu weighted
5187 * according to the scheduling class and "nice" value.
5188 *
5189 * We want to under-estimate the load of migration sources, to
5190 * balance conservatively.
5191 */
5192 static unsigned long source_load(int cpu, int type)
5193 {
5194 struct rq *rq = cpu_rq(cpu);
5195 unsigned long total = weighted_cpuload(cpu);
5196
5197 if (type == 0 || !sched_feat(LB_BIAS))
5198 return total;
5199
5200 return min(rq->cpu_load[type-1], total);
5201 }
5202
5203 /*
5204 * Return a high guess at the load of a migration-target cpu weighted
5205 * according to the scheduling class and "nice" value.
5206 */
5207 static unsigned long target_load(int cpu, int type)
5208 {
5209 struct rq *rq = cpu_rq(cpu);
5210 unsigned long total = weighted_cpuload(cpu);
5211
5212 if (type == 0 || !sched_feat(LB_BIAS))
5213 return total;
5214
5215 return max(rq->cpu_load[type-1], total);
5216 }
5217
5218 static unsigned long capacity_of(int cpu)
5219 {
5220 return cpu_rq(cpu)->cpu_capacity;
5221 }
5222
5223 static unsigned long capacity_orig_of(int cpu)
5224 {
5225 return cpu_rq(cpu)->cpu_capacity_orig;
5226 }
5227
5228 static unsigned long cpu_avg_load_per_task(int cpu)
5229 {
5230 struct rq *rq = cpu_rq(cpu);
5231 unsigned long nr_running = READ_ONCE(rq->cfs.h_nr_running);
5232 unsigned long load_avg = weighted_cpuload(cpu);
5233
5234 if (nr_running)
5235 return load_avg / nr_running;
5236
5237 return 0;
5238 }
5239
5240 #ifdef CONFIG_FAIR_GROUP_SCHED
5241 /*
5242 * effective_load() calculates the load change as seen from the root_task_group
5243 *
5244 * Adding load to a group doesn't make a group heavier, but can cause movement
5245 * of group shares between cpus. Assuming the shares were perfectly aligned one
5246 * can calculate the shift in shares.
5247 *
5248 * Calculate the effective load difference if @wl is added (subtracted) to @tg
5249 * on this @cpu and results in a total addition (subtraction) of @wg to the
5250 * total group weight.
5251 *
5252 * Given a runqueue weight distribution (rw_i) we can compute a shares
5253 * distribution (s_i) using:
5254 *
5255 * s_i = rw_i / \Sum rw_j (1)
5256 *
5257 * Suppose we have 4 CPUs and our @tg is a direct child of the root group and
5258 * has 7 equal weight tasks, distributed as below (rw_i), with the resulting
5259 * shares distribution (s_i):
5260 *
5261 * rw_i = { 2, 4, 1, 0 }
5262 * s_i = { 2/7, 4/7, 1/7, 0 }
5263 *
5264 * As per wake_affine() we're interested in the load of two CPUs (the CPU the
5265 * task used to run on and the CPU the waker is running on), we need to
5266 * compute the effect of waking a task on either CPU and, in case of a sync
5267 * wakeup, compute the effect of the current task going to sleep.
5268 *
5269 * So for a change of @wl to the local @cpu with an overall group weight change
5270 * of @wl we can compute the new shares distribution (s'_i) using:
5271 *
5272 * s'_i = (rw_i + @wl) / (@wg + \Sum rw_j) (2)
5273 *
5274 * Suppose we're interested in CPUs 0 and 1, and want to compute the load
5275 * differences in waking a task to CPU 0. The additional task changes the
5276 * weight and shares distributions like:
5277 *
5278 * rw'_i = { 3, 4, 1, 0 }
5279 * s'_i = { 3/8, 4/8, 1/8, 0 }
5280 *
5281 * We can then compute the difference in effective weight by using:
5282 *
5283 * dw_i = S * (s'_i - s_i) (3)
5284 *
5285 * Where 'S' is the group weight as seen by its parent.
5286 *
5287 * Therefore the effective change in loads on CPU 0 would be 5/56 (3/8 - 2/7)
5288 * times the weight of the group. The effect on CPU 1 would be -4/56 (4/8 -
5289 * 4/7) times the weight of the group.
5290 */
5291 static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
5292 {
5293 struct sched_entity *se = tg->se[cpu];
5294
5295 if (!tg->parent) /* the trivial, non-cgroup case */
5296 return wl;
5297
5298 for_each_sched_entity(se) {
5299 struct cfs_rq *cfs_rq = se->my_q;
5300 long W, w = cfs_rq_load_avg(cfs_rq);
5301
5302 tg = cfs_rq->tg;
5303
5304 /*
5305 * W = @wg + \Sum rw_j
5306 */
5307 W = wg + atomic_long_read(&tg->load_avg);
5308
5309 /* Ensure \Sum rw_j >= rw_i */
5310 W -= cfs_rq->tg_load_avg_contrib;
5311 W += w;
5312
5313 /*
5314 * w = rw_i + @wl
5315 */
5316 w += wl;
5317
5318 /*
5319 * wl = S * s'_i; see (2)
5320 */
5321 if (W > 0 && w < W)
5322 wl = (w * (long)scale_load_down(tg->shares)) / W;
5323 else
5324 wl = scale_load_down(tg->shares);
5325
5326 /*
5327 * Per the above, wl is the new se->load.weight value; since
5328 * those are clipped to [MIN_SHARES, ...) do so now. See
5329 * calc_cfs_shares().
5330 */
5331 if (wl < MIN_SHARES)
5332 wl = MIN_SHARES;
5333
5334 /*
5335 * wl = dw_i = S * (s'_i - s_i); see (3)
5336 */
5337 wl -= se->avg.load_avg;
5338
5339 /*
5340 * Recursively apply this logic to all parent groups to compute
5341 * the final effective load change on the root group. Since
5342 * only the @tg group gets extra weight, all parent groups can
5343 * only redistribute existing shares. @wl is the shift in shares
5344 * resulting from this level per the above.
5345 */
5346 wg = 0;
5347 }
5348
5349 return wl;
5350 }
5351 #else
5352
5353 static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
5354 {
5355 return wl;
5356 }
5357
5358 #endif
5359
5360 static void record_wakee(struct task_struct *p)
5361 {
5362 /*
5363 * Only decay a single time; tasks that have less then 1 wakeup per
5364 * jiffy will not have built up many flips.
5365 */
5366 if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) {
5367 current->wakee_flips >>= 1;
5368 current->wakee_flip_decay_ts = jiffies;
5369 }
5370
5371 if (current->last_wakee != p) {
5372 current->last_wakee = p;
5373 current->wakee_flips++;
5374 }
5375 }
5376
5377 /*
5378 * Detect M:N waker/wakee relationships via a switching-frequency heuristic.
5379 *
5380 * A waker of many should wake a different task than the one last awakened
5381 * at a frequency roughly N times higher than one of its wakees.
5382 *
5383 * In order to determine whether we should let the load spread vs consolidating
5384 * to shared cache, we look for a minimum 'flip' frequency of llc_size in one
5385 * partner, and a factor of lls_size higher frequency in the other.
5386 *
5387 * With both conditions met, we can be relatively sure that the relationship is
5388 * non-monogamous, with partner count exceeding socket size.
5389 *
5390 * Waker/wakee being client/server, worker/dispatcher, interrupt source or
5391 * whatever is irrelevant, spread criteria is apparent partner count exceeds
5392 * socket size.
5393 */
5394 static int wake_wide(struct task_struct *p)
5395 {
5396 unsigned int master = current->wakee_flips;
5397 unsigned int slave = p->wakee_flips;
5398 int factor = this_cpu_read(sd_llc_size);
5399
5400 if (master < slave)
5401 swap(master, slave);
5402 if (slave < factor || master < slave * factor)
5403 return 0;
5404 return 1;
5405 }
5406
5407 static int wake_affine(struct sched_domain *sd, struct task_struct *p,
5408 int prev_cpu, int sync)
5409 {
5410 s64 this_load, load;
5411 s64 this_eff_load, prev_eff_load;
5412 int idx, this_cpu;
5413 struct task_group *tg;
5414 unsigned long weight;
5415 int balanced;
5416
5417 idx = sd->wake_idx;
5418 this_cpu = smp_processor_id();
5419 load = source_load(prev_cpu, idx);
5420 this_load = target_load(this_cpu, idx);
5421
5422 /*
5423 * If sync wakeup then subtract the (maximum possible)
5424 * effect of the currently running task from the load
5425 * of the current CPU:
5426 */
5427 if (sync) {
5428 tg = task_group(current);
5429 weight = current->se.avg.load_avg;
5430
5431 this_load += effective_load(tg, this_cpu, -weight, -weight);
5432 load += effective_load(tg, prev_cpu, 0, -weight);
5433 }
5434
5435 tg = task_group(p);
5436 weight = p->se.avg.load_avg;
5437
5438 /*
5439 * In low-load situations, where prev_cpu is idle and this_cpu is idle
5440 * due to the sync cause above having dropped this_load to 0, we'll
5441 * always have an imbalance, but there's really nothing you can do
5442 * about that, so that's good too.
5443 *
5444 * Otherwise check if either cpus are near enough in load to allow this
5445 * task to be woken on this_cpu.
5446 */
5447 this_eff_load = 100;
5448 this_eff_load *= capacity_of(prev_cpu);
5449
5450 prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2;
5451 prev_eff_load *= capacity_of(this_cpu);
5452
5453 if (this_load > 0) {
5454 this_eff_load *= this_load +
5455 effective_load(tg, this_cpu, weight, weight);
5456
5457 prev_eff_load *= load + effective_load(tg, prev_cpu, 0, weight);
5458 }
5459
5460 balanced = this_eff_load <= prev_eff_load;
5461
5462 schedstat_inc(p->se.statistics.nr_wakeups_affine_attempts);
5463
5464 if (!balanced)
5465 return 0;
5466
5467 schedstat_inc(sd->ttwu_move_affine);
5468 schedstat_inc(p->se.statistics.nr_wakeups_affine);
5469
5470 return 1;
5471 }
5472
5473 static inline int task_util(struct task_struct *p);
5474 static int cpu_util_wake(int cpu, struct task_struct *p);
5475
5476 static unsigned long capacity_spare_wake(int cpu, struct task_struct *p)
5477 {
5478 return capacity_orig_of(cpu) - cpu_util_wake(cpu, p);
5479 }
5480
5481 /*
5482 * find_idlest_group finds and returns the least busy CPU group within the
5483 * domain.
5484 */
5485 static struct sched_group *
5486 find_idlest_group(struct sched_domain *sd, struct task_struct *p,
5487 int this_cpu, int sd_flag)
5488 {
5489 struct sched_group *idlest = NULL, *group = sd->groups;
5490 struct sched_group *most_spare_sg = NULL;
5491 unsigned long min_runnable_load = ULONG_MAX, this_runnable_load = 0;
5492 unsigned long min_avg_load = ULONG_MAX, this_avg_load = 0;
5493 unsigned long most_spare = 0, this_spare = 0;
5494 int load_idx = sd->forkexec_idx;
5495 int imbalance_scale = 100 + (sd->imbalance_pct-100)/2;
5496 unsigned long imbalance = scale_load_down(NICE_0_LOAD) *
5497 (sd->imbalance_pct-100) / 100;
5498
5499 if (sd_flag & SD_BALANCE_WAKE)
5500 load_idx = sd->wake_idx;
5501
5502 do {
5503 unsigned long load, avg_load, runnable_load;
5504 unsigned long spare_cap, max_spare_cap;
5505 int local_group;
5506 int i;
5507
5508 /* Skip over this group if it has no CPUs allowed */
5509 if (!cpumask_intersects(sched_group_span(group),
5510 &p->cpus_allowed))
5511 continue;
5512
5513 local_group = cpumask_test_cpu(this_cpu,
5514 sched_group_span(group));
5515
5516 /*
5517 * Tally up the load of all CPUs in the group and find
5518 * the group containing the CPU with most spare capacity.
5519 */
5520 avg_load = 0;
5521 runnable_load = 0;
5522 max_spare_cap = 0;
5523
5524 for_each_cpu(i, sched_group_span(group)) {
5525 /* Bias balancing toward cpus of our domain */
5526 if (local_group)
5527 load = source_load(i, load_idx);
5528 else
5529 load = target_load(i, load_idx);
5530
5531 runnable_load += load;
5532
5533 avg_load += cfs_rq_load_avg(&cpu_rq(i)->cfs);
5534
5535 spare_cap = capacity_spare_wake(i, p);
5536
5537 if (spare_cap > max_spare_cap)
5538 max_spare_cap = spare_cap;
5539 }
5540
5541 /* Adjust by relative CPU capacity of the group */
5542 avg_load = (avg_load * SCHED_CAPACITY_SCALE) /
5543 group->sgc->capacity;
5544 runnable_load = (runnable_load * SCHED_CAPACITY_SCALE) /
5545 group->sgc->capacity;
5546
5547 if (local_group) {
5548 this_runnable_load = runnable_load;
5549 this_avg_load = avg_load;
5550 this_spare = max_spare_cap;
5551 } else {
5552 if (min_runnable_load > (runnable_load + imbalance)) {
5553 /*
5554 * The runnable load is significantly smaller
5555 * so we can pick this new cpu
5556 */
5557 min_runnable_load = runnable_load;
5558 min_avg_load = avg_load;
5559 idlest = group;
5560 } else if ((runnable_load < (min_runnable_load + imbalance)) &&
5561 (100*min_avg_load > imbalance_scale*avg_load)) {
5562 /*
5563 * The runnable loads are close so take the
5564 * blocked load into account through avg_load.
5565 */
5566 min_avg_load = avg_load;
5567 idlest = group;
5568 }
5569
5570 if (most_spare < max_spare_cap) {
5571 most_spare = max_spare_cap;
5572 most_spare_sg = group;
5573 }
5574 }
5575 } while (group = group->next, group != sd->groups);
5576
5577 /*
5578 * The cross-over point between using spare capacity or least load
5579 * is too conservative for high utilization tasks on partially
5580 * utilized systems if we require spare_capacity > task_util(p),
5581 * so we allow for some task stuffing by using
5582 * spare_capacity > task_util(p)/2.
5583 *
5584 * Spare capacity can't be used for fork because the utilization has
5585 * not been set yet, we must first select a rq to compute the initial
5586 * utilization.
5587 */
5588 if (sd_flag & SD_BALANCE_FORK)
5589 goto skip_spare;
5590
5591 if (this_spare > task_util(p) / 2 &&
5592 imbalance_scale*this_spare > 100*most_spare)
5593 return NULL;
5594
5595 if (most_spare > task_util(p) / 2)
5596 return most_spare_sg;
5597
5598 skip_spare:
5599 if (!idlest)
5600 return NULL;
5601
5602 if (min_runnable_load > (this_runnable_load + imbalance))
5603 return NULL;
5604
5605 if ((this_runnable_load < (min_runnable_load + imbalance)) &&
5606 (100*this_avg_load < imbalance_scale*min_avg_load))
5607 return NULL;
5608
5609 return idlest;
5610 }
5611
5612 /*
5613 * find_idlest_cpu - find the idlest cpu among the cpus in group.
5614 */
5615 static int
5616 find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
5617 {
5618 unsigned long load, min_load = ULONG_MAX;
5619 unsigned int min_exit_latency = UINT_MAX;
5620 u64 latest_idle_timestamp = 0;
5621 int least_loaded_cpu = this_cpu;
5622 int shallowest_idle_cpu = -1;
5623 int i;
5624
5625 /* Check if we have any choice: */
5626 if (group->group_weight == 1)
5627 return cpumask_first(sched_group_span(group));
5628
5629 /* Traverse only the allowed CPUs */
5630 for_each_cpu_and(i, sched_group_span(group), &p->cpus_allowed) {
5631 if (idle_cpu(i)) {
5632 struct rq *rq = cpu_rq(i);
5633 struct cpuidle_state *idle = idle_get_state(rq);
5634 if (idle && idle->exit_latency < min_exit_latency) {
5635 /*
5636 * We give priority to a CPU whose idle state
5637 * has the smallest exit latency irrespective
5638 * of any idle timestamp.
5639 */
5640 min_exit_latency = idle->exit_latency;
5641 latest_idle_timestamp = rq->idle_stamp;
5642 shallowest_idle_cpu = i;
5643 } else if ((!idle || idle->exit_latency == min_exit_latency) &&
5644 rq->idle_stamp > latest_idle_timestamp) {
5645 /*
5646 * If equal or no active idle state, then
5647 * the most recently idled CPU might have
5648 * a warmer cache.
5649 */
5650 latest_idle_timestamp = rq->idle_stamp;
5651 shallowest_idle_cpu = i;
5652 }
5653 } else if (shallowest_idle_cpu == -1) {
5654 load = weighted_cpuload(i);
5655 if (load < min_load || (load == min_load && i == this_cpu)) {
5656 min_load = load;
5657 least_loaded_cpu = i;
5658 }
5659 }
5660 }
5661
5662 return shallowest_idle_cpu != -1 ? shallowest_idle_cpu : least_loaded_cpu;
5663 }
5664
5665 #ifdef CONFIG_SCHED_SMT
5666
5667 static inline void set_idle_cores(int cpu, int val)
5668 {
5669 struct sched_domain_shared *sds;
5670
5671 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
5672 if (sds)
5673 WRITE_ONCE(sds->has_idle_cores, val);
5674 }
5675
5676 static inline bool test_idle_cores(int cpu, bool def)
5677 {
5678 struct sched_domain_shared *sds;
5679
5680 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
5681 if (sds)
5682 return READ_ONCE(sds->has_idle_cores);
5683
5684 return def;
5685 }
5686
5687 /*
5688 * Scans the local SMT mask to see if the entire core is idle, and records this
5689 * information in sd_llc_shared->has_idle_cores.
5690 *
5691 * Since SMT siblings share all cache levels, inspecting this limited remote
5692 * state should be fairly cheap.
5693 */
5694 void __update_idle_core(struct rq *rq)
5695 {
5696 int core = cpu_of(rq);
5697 int cpu;
5698
5699 rcu_read_lock();
5700 if (test_idle_cores(core, true))
5701 goto unlock;
5702
5703 for_each_cpu(cpu, cpu_smt_mask(core)) {
5704 if (cpu == core)
5705 continue;
5706
5707 if (!idle_cpu(cpu))
5708 goto unlock;
5709 }
5710
5711 set_idle_cores(core, 1);
5712 unlock:
5713 rcu_read_unlock();
5714 }
5715
5716 /*
5717 * Scan the entire LLC domain for idle cores; this dynamically switches off if
5718 * there are no idle cores left in the system; tracked through
5719 * sd_llc->shared->has_idle_cores and enabled through update_idle_core() above.
5720 */
5721 static int select_idle_core(struct task_struct *p, struct sched_domain *sd, int target)
5722 {
5723 struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_idle_mask);
5724 int core, cpu;
5725
5726 if (!static_branch_likely(&sched_smt_present))
5727 return -1;
5728
5729 if (!test_idle_cores(target, false))
5730 return -1;
5731
5732 cpumask_and(cpus, sched_domain_span(sd), &p->cpus_allowed);
5733
5734 for_each_cpu_wrap(core, cpus, target) {
5735 bool idle = true;
5736
5737 for_each_cpu(cpu, cpu_smt_mask(core)) {
5738 cpumask_clear_cpu(cpu, cpus);
5739 if (!idle_cpu(cpu))
5740 idle = false;
5741 }
5742
5743 if (idle)
5744 return core;
5745 }
5746
5747 /*
5748 * Failed to find an idle core; stop looking for one.
5749 */
5750 set_idle_cores(target, 0);
5751
5752 return -1;
5753 }
5754
5755 /*
5756 * Scan the local SMT mask for idle CPUs.
5757 */
5758 static int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target)
5759 {
5760 int cpu;
5761
5762 if (!static_branch_likely(&sched_smt_present))
5763 return -1;
5764
5765 for_each_cpu(cpu, cpu_smt_mask(target)) {
5766 if (!cpumask_test_cpu(cpu, &p->cpus_allowed))
5767 continue;
5768 if (idle_cpu(cpu))
5769 return cpu;
5770 }
5771
5772 return -1;
5773 }
5774
5775 #else /* CONFIG_SCHED_SMT */
5776
5777 static inline int select_idle_core(struct task_struct *p, struct sched_domain *sd, int target)
5778 {
5779 return -1;
5780 }
5781
5782 static inline int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target)
5783 {
5784 return -1;
5785 }
5786
5787 #endif /* CONFIG_SCHED_SMT */
5788
5789 /*
5790 * Scan the LLC domain for idle CPUs; this is dynamically regulated by
5791 * comparing the average scan cost (tracked in sd->avg_scan_cost) against the
5792 * average idle time for this rq (as found in rq->avg_idle).
5793 */
5794 static int select_idle_cpu(struct task_struct *p, struct sched_domain *sd, int target)
5795 {
5796 struct sched_domain *this_sd;
5797 u64 avg_cost, avg_idle;
5798 u64 time, cost;
5799 s64 delta;
5800 int cpu, nr = INT_MAX;
5801
5802 this_sd = rcu_dereference(*this_cpu_ptr(&sd_llc));
5803 if (!this_sd)
5804 return -1;
5805
5806 /*
5807 * Due to large variance we need a large fuzz factor; hackbench in
5808 * particularly is sensitive here.
5809 */
5810 avg_idle = this_rq()->avg_idle / 512;
5811 avg_cost = this_sd->avg_scan_cost + 1;
5812
5813 if (sched_feat(SIS_AVG_CPU) && avg_idle < avg_cost)
5814 return -1;
5815
5816 if (sched_feat(SIS_PROP)) {
5817 u64 span_avg = sd->span_weight * avg_idle;
5818 if (span_avg > 4*avg_cost)
5819 nr = div_u64(span_avg, avg_cost);
5820 else
5821 nr = 4;
5822 }
5823
5824 time = local_clock();
5825
5826 for_each_cpu_wrap(cpu, sched_domain_span(sd), target) {
5827 if (!--nr)
5828 return -1;
5829 if (!cpumask_test_cpu(cpu, &p->cpus_allowed))
5830 continue;
5831 if (idle_cpu(cpu))
5832 break;
5833 }
5834
5835 time = local_clock() - time;
5836 cost = this_sd->avg_scan_cost;
5837 delta = (s64)(time - cost) / 8;
5838 this_sd->avg_scan_cost += delta;
5839
5840 return cpu;
5841 }
5842
5843 /*
5844 * Try and locate an idle core/thread in the LLC cache domain.
5845 */
5846 static int select_idle_sibling(struct task_struct *p, int prev, int target)
5847 {
5848 struct sched_domain *sd;
5849 int i;
5850
5851 if (idle_cpu(target))
5852 return target;
5853
5854 /*
5855 * If the previous cpu is cache affine and idle, don't be stupid.
5856 */
5857 if (prev != target && cpus_share_cache(prev, target) && idle_cpu(prev))
5858 return prev;
5859
5860 sd = rcu_dereference(per_cpu(sd_llc, target));
5861 if (!sd)
5862 return target;
5863
5864 i = select_idle_core(p, sd, target);
5865 if ((unsigned)i < nr_cpumask_bits)
5866 return i;
5867
5868 i = select_idle_cpu(p, sd, target);
5869 if ((unsigned)i < nr_cpumask_bits)
5870 return i;
5871
5872 i = select_idle_smt(p, sd, target);
5873 if ((unsigned)i < nr_cpumask_bits)
5874 return i;
5875
5876 return target;
5877 }
5878
5879 /*
5880 * cpu_util returns the amount of capacity of a CPU that is used by CFS
5881 * tasks. The unit of the return value must be the one of capacity so we can
5882 * compare the utilization with the capacity of the CPU that is available for
5883 * CFS task (ie cpu_capacity).
5884 *
5885 * cfs_rq.avg.util_avg is the sum of running time of runnable tasks plus the
5886 * recent utilization of currently non-runnable tasks on a CPU. It represents
5887 * the amount of utilization of a CPU in the range [0..capacity_orig] where
5888 * capacity_orig is the cpu_capacity available at the highest frequency
5889 * (arch_scale_freq_capacity()).
5890 * The utilization of a CPU converges towards a sum equal to or less than the
5891 * current capacity (capacity_curr <= capacity_orig) of the CPU because it is
5892 * the running time on this CPU scaled by capacity_curr.
5893 *
5894 * Nevertheless, cfs_rq.avg.util_avg can be higher than capacity_curr or even
5895 * higher than capacity_orig because of unfortunate rounding in
5896 * cfs.avg.util_avg or just after migrating tasks and new task wakeups until
5897 * the average stabilizes with the new running time. We need to check that the
5898 * utilization stays within the range of [0..capacity_orig] and cap it if
5899 * necessary. Without utilization capping, a group could be seen as overloaded
5900 * (CPU0 utilization at 121% + CPU1 utilization at 80%) whereas CPU1 has 20% of
5901 * available capacity. We allow utilization to overshoot capacity_curr (but not
5902 * capacity_orig) as it useful for predicting the capacity required after task
5903 * migrations (scheduler-driven DVFS).
5904 */
5905 static int cpu_util(int cpu)
5906 {
5907 unsigned long util = cpu_rq(cpu)->cfs.avg.util_avg;
5908 unsigned long capacity = capacity_orig_of(cpu);
5909
5910 return (util >= capacity) ? capacity : util;
5911 }
5912
5913 static inline int task_util(struct task_struct *p)
5914 {
5915 return p->se.avg.util_avg;
5916 }
5917
5918 /*
5919 * cpu_util_wake: Compute cpu utilization with any contributions from
5920 * the waking task p removed.
5921 */
5922 static int cpu_util_wake(int cpu, struct task_struct *p)
5923 {
5924 unsigned long util, capacity;
5925
5926 /* Task has no contribution or is new */
5927 if (cpu != task_cpu(p) || !p->se.avg.last_update_time)
5928 return cpu_util(cpu);
5929
5930 capacity = capacity_orig_of(cpu);
5931 util = max_t(long, cpu_rq(cpu)->cfs.avg.util_avg - task_util(p), 0);
5932
5933 return (util >= capacity) ? capacity : util;
5934 }
5935
5936 /*
5937 * Disable WAKE_AFFINE in the case where task @p doesn't fit in the
5938 * capacity of either the waking CPU @cpu or the previous CPU @prev_cpu.
5939 *
5940 * In that case WAKE_AFFINE doesn't make sense and we'll let
5941 * BALANCE_WAKE sort things out.
5942 */
5943 static int wake_cap(struct task_struct *p, int cpu, int prev_cpu)
5944 {
5945 long min_cap, max_cap;
5946
5947 min_cap = min(capacity_orig_of(prev_cpu), capacity_orig_of(cpu));
5948 max_cap = cpu_rq(cpu)->rd->max_cpu_capacity;
5949
5950 /* Minimum capacity is close to max, no need to abort wake_affine */
5951 if (max_cap - min_cap < max_cap >> 3)
5952 return 0;
5953
5954 /* Bring task utilization in sync with prev_cpu */
5955 sync_entity_load_avg(&p->se);
5956
5957 return min_cap * 1024 < task_util(p) * capacity_margin;
5958 }
5959
5960 /*
5961 * select_task_rq_fair: Select target runqueue for the waking task in domains
5962 * that have the 'sd_flag' flag set. In practice, this is SD_BALANCE_WAKE,
5963 * SD_BALANCE_FORK, or SD_BALANCE_EXEC.
5964 *
5965 * Balances load by selecting the idlest cpu in the idlest group, or under
5966 * certain conditions an idle sibling cpu if the domain has SD_WAKE_AFFINE set.
5967 *
5968 * Returns the target cpu number.
5969 *
5970 * preempt must be disabled.
5971 */
5972 static int
5973 select_task_rq_fair(struct task_struct *p, int prev_cpu, int sd_flag, int wake_flags)
5974 {
5975 struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
5976 int cpu = smp_processor_id();
5977 int new_cpu = prev_cpu;
5978 int want_affine = 0;
5979 int sync = wake_flags & WF_SYNC;
5980
5981 if (sd_flag & SD_BALANCE_WAKE) {
5982 record_wakee(p);
5983 want_affine = !wake_wide(p) && !wake_cap(p, cpu, prev_cpu)
5984 && cpumask_test_cpu(cpu, &p->cpus_allowed);
5985 }
5986
5987 rcu_read_lock();
5988 for_each_domain(cpu, tmp) {
5989 if (!(tmp->flags & SD_LOAD_BALANCE))
5990 break;
5991
5992 /*
5993 * If both cpu and prev_cpu are part of this domain,
5994 * cpu is a valid SD_WAKE_AFFINE target.
5995 */
5996 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
5997 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
5998 affine_sd = tmp;
5999 break;
6000 }
6001
6002 if (tmp->flags & sd_flag)
6003 sd = tmp;
6004 else if (!want_affine)
6005 break;
6006 }
6007
6008 if (affine_sd) {
6009 sd = NULL; /* Prefer wake_affine over balance flags */
6010 if (cpu != prev_cpu && wake_affine(affine_sd, p, prev_cpu, sync))
6011 new_cpu = cpu;
6012 }
6013
6014 if (!sd) {
6015 if (sd_flag & SD_BALANCE_WAKE) /* XXX always ? */
6016 new_cpu = select_idle_sibling(p, prev_cpu, new_cpu);
6017
6018 } else while (sd) {
6019 struct sched_group *group;
6020 int weight;
6021
6022 if (!(sd->flags & sd_flag)) {
6023 sd = sd->child;
6024 continue;
6025 }
6026
6027 group = find_idlest_group(sd, p, cpu, sd_flag);
6028 if (!group) {
6029 sd = sd->child;
6030 continue;
6031 }
6032
6033 new_cpu = find_idlest_cpu(group, p, cpu);
6034 if (new_cpu == -1 || new_cpu == cpu) {
6035 /* Now try balancing at a lower domain level of cpu */
6036 sd = sd->child;
6037 continue;
6038 }
6039
6040 /* Now try balancing at a lower domain level of new_cpu */
6041 cpu = new_cpu;
6042 weight = sd->span_weight;
6043 sd = NULL;
6044 for_each_domain(cpu, tmp) {
6045 if (weight <= tmp->span_weight)
6046 break;
6047 if (tmp->flags & sd_flag)
6048 sd = tmp;
6049 }
6050 /* while loop will break here if sd == NULL */
6051 }
6052 rcu_read_unlock();
6053
6054 return new_cpu;
6055 }
6056
6057 /*
6058 * Called immediately before a task is migrated to a new cpu; task_cpu(p) and
6059 * cfs_rq_of(p) references at time of call are still valid and identify the
6060 * previous cpu. The caller guarantees p->pi_lock or task_rq(p)->lock is held.
6061 */
6062 static void migrate_task_rq_fair(struct task_struct *p)
6063 {
6064 /*
6065 * As blocked tasks retain absolute vruntime the migration needs to
6066 * deal with this by subtracting the old and adding the new
6067 * min_vruntime -- the latter is done by enqueue_entity() when placing
6068 * the task on the new runqueue.
6069 */
6070 if (p->state == TASK_WAKING) {
6071 struct sched_entity *se = &p->se;
6072 struct cfs_rq *cfs_rq = cfs_rq_of(se);
6073 u64 min_vruntime;
6074
6075 #ifndef CONFIG_64BIT
6076 u64 min_vruntime_copy;
6077
6078 do {
6079 min_vruntime_copy = cfs_rq->min_vruntime_copy;
6080 smp_rmb();
6081 min_vruntime = cfs_rq->min_vruntime;
6082 } while (min_vruntime != min_vruntime_copy);
6083 #else
6084 min_vruntime = cfs_rq->min_vruntime;
6085 #endif
6086
6087 se->vruntime -= min_vruntime;
6088 }
6089
6090 /*
6091 * We are supposed to update the task to "current" time, then its up to date
6092 * and ready to go to new CPU/cfs_rq. But we have difficulty in getting
6093 * what current time is, so simply throw away the out-of-date time. This
6094 * will result in the wakee task is less decayed, but giving the wakee more
6095 * load sounds not bad.
6096 */
6097 remove_entity_load_avg(&p->se);
6098
6099 /* Tell new CPU we are migrated */
6100 p->se.avg.last_update_time = 0;
6101
6102 /* We have migrated, no longer consider this task hot */
6103 p->se.exec_start = 0;
6104 }
6105
6106 static void task_dead_fair(struct task_struct *p)
6107 {
6108 remove_entity_load_avg(&p->se);
6109 }
6110 #endif /* CONFIG_SMP */
6111
6112 static unsigned long
6113 wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
6114 {
6115 unsigned long gran = sysctl_sched_wakeup_granularity;
6116
6117 /*
6118 * Since its curr running now, convert the gran from real-time
6119 * to virtual-time in his units.
6120 *
6121 * By using 'se' instead of 'curr' we penalize light tasks, so
6122 * they get preempted easier. That is, if 'se' < 'curr' then
6123 * the resulting gran will be larger, therefore penalizing the
6124 * lighter, if otoh 'se' > 'curr' then the resulting gran will
6125 * be smaller, again penalizing the lighter task.
6126 *
6127 * This is especially important for buddies when the leftmost
6128 * task is higher priority than the buddy.
6129 */
6130 return calc_delta_fair(gran, se);
6131 }
6132
6133 /*
6134 * Should 'se' preempt 'curr'.
6135 *
6136 * |s1
6137 * |s2
6138 * |s3
6139 * g
6140 * |<--->|c
6141 *
6142 * w(c, s1) = -1
6143 * w(c, s2) = 0
6144 * w(c, s3) = 1
6145 *
6146 */
6147 static int
6148 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
6149 {
6150 s64 gran, vdiff = curr->vruntime - se->vruntime;
6151
6152 if (vdiff <= 0)
6153 return -1;
6154
6155 gran = wakeup_gran(curr, se);
6156 if (vdiff > gran)
6157 return 1;
6158
6159 return 0;
6160 }
6161
6162 static void set_last_buddy(struct sched_entity *se)
6163 {
6164 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
6165 return;
6166
6167 for_each_sched_entity(se)
6168 cfs_rq_of(se)->last = se;
6169 }
6170
6171 static void set_next_buddy(struct sched_entity *se)
6172 {
6173 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
6174 return;
6175
6176 for_each_sched_entity(se)
6177 cfs_rq_of(se)->next = se;
6178 }
6179
6180 static void set_skip_buddy(struct sched_entity *se)
6181 {
6182 for_each_sched_entity(se)
6183 cfs_rq_of(se)->skip = se;
6184 }
6185
6186 /*
6187 * Preempt the current task with a newly woken task if needed:
6188 */
6189 static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
6190 {
6191 struct task_struct *curr = rq->curr;
6192 struct sched_entity *se = &curr->se, *pse = &p->se;
6193 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
6194 int scale = cfs_rq->nr_running >= sched_nr_latency;
6195 int next_buddy_marked = 0;
6196
6197 if (unlikely(se == pse))
6198 return;
6199
6200 /*
6201 * This is possible from callers such as attach_tasks(), in which we
6202 * unconditionally check_prempt_curr() after an enqueue (which may have
6203 * lead to a throttle). This both saves work and prevents false
6204 * next-buddy nomination below.
6205 */
6206 if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
6207 return;
6208
6209 if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
6210 set_next_buddy(pse);
6211 next_buddy_marked = 1;
6212 }
6213
6214 /*
6215 * We can come here with TIF_NEED_RESCHED already set from new task
6216 * wake up path.
6217 *
6218 * Note: this also catches the edge-case of curr being in a throttled
6219 * group (e.g. via set_curr_task), since update_curr() (in the
6220 * enqueue of curr) will have resulted in resched being set. This
6221 * prevents us from potentially nominating it as a false LAST_BUDDY
6222 * below.
6223 */
6224 if (test_tsk_need_resched(curr))
6225 return;
6226
6227 /* Idle tasks are by definition preempted by non-idle tasks. */
6228 if (unlikely(curr->policy == SCHED_IDLE) &&
6229 likely(p->policy != SCHED_IDLE))
6230 goto preempt;
6231
6232 /*
6233 * Batch and idle tasks do not preempt non-idle tasks (their preemption
6234 * is driven by the tick):
6235 */
6236 if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
6237 return;
6238
6239 find_matching_se(&se, &pse);
6240 update_curr(cfs_rq_of(se));
6241 BUG_ON(!pse);
6242 if (wakeup_preempt_entity(se, pse) == 1) {
6243 /*
6244 * Bias pick_next to pick the sched entity that is
6245 * triggering this preemption.
6246 */
6247 if (!next_buddy_marked)
6248 set_next_buddy(pse);
6249 goto preempt;
6250 }
6251
6252 return;
6253
6254 preempt:
6255 resched_curr(rq);
6256 /*
6257 * Only set the backward buddy when the current task is still
6258 * on the rq. This can happen when a wakeup gets interleaved
6259 * with schedule on the ->pre_schedule() or idle_balance()
6260 * point, either of which can * drop the rq lock.
6261 *
6262 * Also, during early boot the idle thread is in the fair class,
6263 * for obvious reasons its a bad idea to schedule back to it.
6264 */
6265 if (unlikely(!se->on_rq || curr == rq->idle))
6266 return;
6267
6268 if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
6269 set_last_buddy(se);
6270 }
6271
6272 static struct task_struct *
6273 pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
6274 {
6275 struct cfs_rq *cfs_rq = &rq->cfs;
6276 struct sched_entity *se;
6277 struct task_struct *p;
6278 int new_tasks;
6279
6280 again:
6281 #ifdef CONFIG_FAIR_GROUP_SCHED
6282 if (!cfs_rq->nr_running)
6283 goto idle;
6284
6285 if (prev->sched_class != &fair_sched_class)
6286 goto simple;
6287
6288 /*
6289 * Because of the set_next_buddy() in dequeue_task_fair() it is rather
6290 * likely that a next task is from the same cgroup as the current.
6291 *
6292 * Therefore attempt to avoid putting and setting the entire cgroup
6293 * hierarchy, only change the part that actually changes.
6294 */
6295
6296 do {
6297 struct sched_entity *curr = cfs_rq->curr;
6298
6299 /*
6300 * Since we got here without doing put_prev_entity() we also
6301 * have to consider cfs_rq->curr. If it is still a runnable
6302 * entity, update_curr() will update its vruntime, otherwise
6303 * forget we've ever seen it.
6304 */
6305 if (curr) {
6306 if (curr->on_rq)
6307 update_curr(cfs_rq);
6308 else
6309 curr = NULL;
6310
6311 /*
6312 * This call to check_cfs_rq_runtime() will do the
6313 * throttle and dequeue its entity in the parent(s).
6314 * Therefore the 'simple' nr_running test will indeed
6315 * be correct.
6316 */
6317 if (unlikely(check_cfs_rq_runtime(cfs_rq)))
6318 goto simple;
6319 }
6320
6321 se = pick_next_entity(cfs_rq, curr);
6322 cfs_rq = group_cfs_rq(se);
6323 } while (cfs_rq);
6324
6325 p = task_of(se);
6326
6327 /*
6328 * Since we haven't yet done put_prev_entity and if the selected task
6329 * is a different task than we started out with, try and touch the
6330 * least amount of cfs_rqs.
6331 */
6332 if (prev != p) {
6333 struct sched_entity *pse = &prev->se;
6334
6335 while (!(cfs_rq = is_same_group(se, pse))) {
6336 int se_depth = se->depth;
6337 int pse_depth = pse->depth;
6338
6339 if (se_depth <= pse_depth) {
6340 put_prev_entity(cfs_rq_of(pse), pse);
6341 pse = parent_entity(pse);
6342 }
6343 if (se_depth >= pse_depth) {
6344 set_next_entity(cfs_rq_of(se), se);
6345 se = parent_entity(se);
6346 }
6347 }
6348
6349 put_prev_entity(cfs_rq, pse);
6350 set_next_entity(cfs_rq, se);
6351 }
6352
6353 if (hrtick_enabled(rq))
6354 hrtick_start_fair(rq, p);
6355
6356 return p;
6357 simple:
6358 cfs_rq = &rq->cfs;
6359 #endif
6360
6361 if (!cfs_rq->nr_running)
6362 goto idle;
6363
6364 put_prev_task(rq, prev);
6365
6366 do {
6367 se = pick_next_entity(cfs_rq, NULL);
6368 set_next_entity(cfs_rq, se);
6369 cfs_rq = group_cfs_rq(se);
6370 } while (cfs_rq);
6371
6372 p = task_of(se);
6373
6374 if (hrtick_enabled(rq))
6375 hrtick_start_fair(rq, p);
6376
6377 return p;
6378
6379 idle:
6380 new_tasks = idle_balance(rq, rf);
6381
6382 /*
6383 * Because idle_balance() releases (and re-acquires) rq->lock, it is
6384 * possible for any higher priority task to appear. In that case we
6385 * must re-start the pick_next_entity() loop.
6386 */
6387 if (new_tasks < 0)
6388 return RETRY_TASK;
6389
6390 if (new_tasks > 0)
6391 goto again;
6392
6393 return NULL;
6394 }
6395
6396 /*
6397 * Account for a descheduled task:
6398 */
6399 static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
6400 {
6401 struct sched_entity *se = &prev->se;
6402 struct cfs_rq *cfs_rq;
6403
6404 for_each_sched_entity(se) {
6405 cfs_rq = cfs_rq_of(se);
6406 put_prev_entity(cfs_rq, se);
6407 }
6408 }
6409
6410 /*
6411 * sched_yield() is very simple
6412 *
6413 * The magic of dealing with the ->skip buddy is in pick_next_entity.
6414 */
6415 static void yield_task_fair(struct rq *rq)
6416 {
6417 struct task_struct *curr = rq->curr;
6418 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
6419 struct sched_entity *se = &curr->se;
6420
6421 /*
6422 * Are we the only task in the tree?
6423 */
6424 if (unlikely(rq->nr_running == 1))
6425 return;
6426
6427 clear_buddies(cfs_rq, se);
6428
6429 if (curr->policy != SCHED_BATCH) {
6430 update_rq_clock(rq);
6431 /*
6432 * Update run-time statistics of the 'current'.
6433 */
6434 update_curr(cfs_rq);
6435 /*
6436 * Tell update_rq_clock() that we've just updated,
6437 * so we don't do microscopic update in schedule()
6438 * and double the fastpath cost.
6439 */
6440 rq_clock_skip_update(rq, true);
6441 }
6442
6443 set_skip_buddy(se);
6444 }
6445
6446 static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
6447 {
6448 struct sched_entity *se = &p->se;
6449
6450 /* throttled hierarchies are not runnable */
6451 if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
6452 return false;
6453
6454 /* Tell the scheduler that we'd really like pse to run next. */
6455 set_next_buddy(se);
6456
6457 yield_task_fair(rq);
6458
6459 return true;
6460 }
6461
6462 #ifdef CONFIG_SMP
6463 /**************************************************
6464 * Fair scheduling class load-balancing methods.
6465 *
6466 * BASICS
6467 *
6468 * The purpose of load-balancing is to achieve the same basic fairness the
6469 * per-cpu scheduler provides, namely provide a proportional amount of compute
6470 * time to each task. This is expressed in the following equation:
6471 *
6472 * W_i,n/P_i == W_j,n/P_j for all i,j (1)
6473 *
6474 * Where W_i,n is the n-th weight average for cpu i. The instantaneous weight
6475 * W_i,0 is defined as:
6476 *
6477 * W_i,0 = \Sum_j w_i,j (2)
6478 *
6479 * Where w_i,j is the weight of the j-th runnable task on cpu i. This weight
6480 * is derived from the nice value as per sched_prio_to_weight[].
6481 *
6482 * The weight average is an exponential decay average of the instantaneous
6483 * weight:
6484 *
6485 * W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0 (3)
6486 *
6487 * C_i is the compute capacity of cpu i, typically it is the
6488 * fraction of 'recent' time available for SCHED_OTHER task execution. But it
6489 * can also include other factors [XXX].
6490 *
6491 * To achieve this balance we define a measure of imbalance which follows
6492 * directly from (1):
6493 *
6494 * imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j } (4)
6495 *
6496 * We them move tasks around to minimize the imbalance. In the continuous
6497 * function space it is obvious this converges, in the discrete case we get
6498 * a few fun cases generally called infeasible weight scenarios.
6499 *
6500 * [XXX expand on:
6501 * - infeasible weights;
6502 * - local vs global optima in the discrete case. ]
6503 *
6504 *
6505 * SCHED DOMAINS
6506 *
6507 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
6508 * for all i,j solution, we create a tree of cpus that follows the hardware
6509 * topology where each level pairs two lower groups (or better). This results
6510 * in O(log n) layers. Furthermore we reduce the number of cpus going up the
6511 * tree to only the first of the previous level and we decrease the frequency
6512 * of load-balance at each level inv. proportional to the number of cpus in
6513 * the groups.
6514 *
6515 * This yields:
6516 *
6517 * log_2 n 1 n
6518 * \Sum { --- * --- * 2^i } = O(n) (5)
6519 * i = 0 2^i 2^i
6520 * `- size of each group
6521 * | | `- number of cpus doing load-balance
6522 * | `- freq
6523 * `- sum over all levels
6524 *
6525 * Coupled with a limit on how many tasks we can migrate every balance pass,
6526 * this makes (5) the runtime complexity of the balancer.
6527 *
6528 * An important property here is that each CPU is still (indirectly) connected
6529 * to every other cpu in at most O(log n) steps:
6530 *
6531 * The adjacency matrix of the resulting graph is given by:
6532 *
6533 * log_2 n
6534 * A_i,j = \Union (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1) (6)
6535 * k = 0
6536 *
6537 * And you'll find that:
6538 *
6539 * A^(log_2 n)_i,j != 0 for all i,j (7)
6540 *
6541 * Showing there's indeed a path between every cpu in at most O(log n) steps.
6542 * The task movement gives a factor of O(m), giving a convergence complexity
6543 * of:
6544 *
6545 * O(nm log n), n := nr_cpus, m := nr_tasks (8)
6546 *
6547 *
6548 * WORK CONSERVING
6549 *
6550 * In order to avoid CPUs going idle while there's still work to do, new idle
6551 * balancing is more aggressive and has the newly idle cpu iterate up the domain
6552 * tree itself instead of relying on other CPUs to bring it work.
6553 *
6554 * This adds some complexity to both (5) and (8) but it reduces the total idle
6555 * time.
6556 *
6557 * [XXX more?]
6558 *
6559 *
6560 * CGROUPS
6561 *
6562 * Cgroups make a horror show out of (2), instead of a simple sum we get:
6563 *
6564 * s_k,i
6565 * W_i,0 = \Sum_j \Prod_k w_k * ----- (9)
6566 * S_k
6567 *
6568 * Where
6569 *
6570 * s_k,i = \Sum_j w_i,j,k and S_k = \Sum_i s_k,i (10)
6571 *
6572 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on cpu i.
6573 *
6574 * The big problem is S_k, its a global sum needed to compute a local (W_i)
6575 * property.
6576 *
6577 * [XXX write more on how we solve this.. _after_ merging pjt's patches that
6578 * rewrite all of this once again.]
6579 */
6580
6581 static unsigned long __read_mostly max_load_balance_interval = HZ/10;
6582
6583 enum fbq_type { regular, remote, all };
6584
6585 #define LBF_ALL_PINNED 0x01
6586 #define LBF_NEED_BREAK 0x02
6587 #define LBF_DST_PINNED 0x04
6588 #define LBF_SOME_PINNED 0x08
6589
6590 struct lb_env {
6591 struct sched_domain *sd;
6592
6593 struct rq *src_rq;
6594 int src_cpu;
6595
6596 int dst_cpu;
6597 struct rq *dst_rq;
6598
6599 struct cpumask *dst_grpmask;
6600 int new_dst_cpu;
6601 enum cpu_idle_type idle;
6602 long imbalance;
6603 /* The set of CPUs under consideration for load-balancing */
6604 struct cpumask *cpus;
6605
6606 unsigned int flags;
6607
6608 unsigned int loop;
6609 unsigned int loop_break;
6610 unsigned int loop_max;
6611
6612 enum fbq_type fbq_type;
6613 struct list_head tasks;
6614 };
6615
6616 /*
6617 * Is this task likely cache-hot:
6618 */
6619 static int task_hot(struct task_struct *p, struct lb_env *env)
6620 {
6621 s64 delta;
6622
6623 lockdep_assert_held(&env->src_rq->lock);
6624
6625 if (p->sched_class != &fair_sched_class)
6626 return 0;
6627
6628 if (unlikely(p->policy == SCHED_IDLE))
6629 return 0;
6630
6631 /*
6632 * Buddy candidates are cache hot:
6633 */
6634 if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running &&
6635 (&p->se == cfs_rq_of(&p->se)->next ||
6636 &p->se == cfs_rq_of(&p->se)->last))
6637 return 1;
6638
6639 if (sysctl_sched_migration_cost == -1)
6640 return 1;
6641 if (sysctl_sched_migration_cost == 0)
6642 return 0;
6643
6644 delta = rq_clock_task(env->src_rq) - p->se.exec_start;
6645
6646 return delta < (s64)sysctl_sched_migration_cost;
6647 }
6648
6649 #ifdef CONFIG_NUMA_BALANCING
6650 /*
6651 * Returns 1, if task migration degrades locality
6652 * Returns 0, if task migration improves locality i.e migration preferred.
6653 * Returns -1, if task migration is not affected by locality.
6654 */
6655 static int migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
6656 {
6657 struct numa_group *numa_group = rcu_dereference(p->numa_group);
6658 unsigned long src_faults, dst_faults;
6659 int src_nid, dst_nid;
6660
6661 if (!static_branch_likely(&sched_numa_balancing))
6662 return -1;
6663
6664 if (!p->numa_faults || !(env->sd->flags & SD_NUMA))
6665 return -1;
6666
6667 src_nid = cpu_to_node(env->src_cpu);
6668 dst_nid = cpu_to_node(env->dst_cpu);
6669
6670 if (src_nid == dst_nid)
6671 return -1;
6672
6673 /* Migrating away from the preferred node is always bad. */
6674 if (src_nid == p->numa_preferred_nid) {
6675 if (env->src_rq->nr_running > env->src_rq->nr_preferred_running)
6676 return 1;
6677 else
6678 return -1;
6679 }
6680
6681 /* Encourage migration to the preferred node. */
6682 if (dst_nid == p->numa_preferred_nid)
6683 return 0;
6684
6685 if (numa_group) {
6686 src_faults = group_faults(p, src_nid);
6687 dst_faults = group_faults(p, dst_nid);
6688 } else {
6689 src_faults = task_faults(p, src_nid);
6690 dst_faults = task_faults(p, dst_nid);
6691 }
6692
6693 return dst_faults < src_faults;
6694 }
6695
6696 #else
6697 static inline int migrate_degrades_locality(struct task_struct *p,
6698 struct lb_env *env)
6699 {
6700 return -1;
6701 }
6702 #endif
6703
6704 /*
6705 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
6706 */
6707 static
6708 int can_migrate_task(struct task_struct *p, struct lb_env *env)
6709 {
6710 int tsk_cache_hot;
6711
6712 lockdep_assert_held(&env->src_rq->lock);
6713
6714 /*
6715 * We do not migrate tasks that are:
6716 * 1) throttled_lb_pair, or
6717 * 2) cannot be migrated to this CPU due to cpus_allowed, or
6718 * 3) running (obviously), or
6719 * 4) are cache-hot on their current CPU.
6720 */
6721 if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
6722 return 0;
6723
6724 if (!cpumask_test_cpu(env->dst_cpu, &p->cpus_allowed)) {
6725 int cpu;
6726
6727 schedstat_inc(p->se.statistics.nr_failed_migrations_affine);
6728
6729 env->flags |= LBF_SOME_PINNED;
6730
6731 /*
6732 * Remember if this task can be migrated to any other cpu in
6733 * our sched_group. We may want to revisit it if we couldn't
6734 * meet load balance goals by pulling other tasks on src_cpu.
6735 *
6736 * Also avoid computing new_dst_cpu if we have already computed
6737 * one in current iteration.
6738 */
6739 if (!env->dst_grpmask || (env->flags & LBF_DST_PINNED))
6740 return 0;
6741
6742 /* Prevent to re-select dst_cpu via env's cpus */
6743 for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
6744 if (cpumask_test_cpu(cpu, &p->cpus_allowed)) {
6745 env->flags |= LBF_DST_PINNED;
6746 env->new_dst_cpu = cpu;
6747 break;
6748 }
6749 }
6750
6751 return 0;
6752 }
6753
6754 /* Record that we found atleast one task that could run on dst_cpu */
6755 env->flags &= ~LBF_ALL_PINNED;
6756
6757 if (task_running(env->src_rq, p)) {
6758 schedstat_inc(p->se.statistics.nr_failed_migrations_running);
6759 return 0;
6760 }
6761
6762 /*
6763 * Aggressive migration if:
6764 * 1) destination numa is preferred
6765 * 2) task is cache cold, or
6766 * 3) too many balance attempts have failed.
6767 */
6768 tsk_cache_hot = migrate_degrades_locality(p, env);
6769 if (tsk_cache_hot == -1)
6770 tsk_cache_hot = task_hot(p, env);
6771
6772 if (tsk_cache_hot <= 0 ||
6773 env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
6774 if (tsk_cache_hot == 1) {
6775 schedstat_inc(env->sd->lb_hot_gained[env->idle]);
6776 schedstat_inc(p->se.statistics.nr_forced_migrations);
6777 }
6778 return 1;
6779 }
6780
6781 schedstat_inc(p->se.statistics.nr_failed_migrations_hot);
6782 return 0;
6783 }
6784
6785 /*
6786 * detach_task() -- detach the task for the migration specified in env
6787 */
6788 static void detach_task(struct task_struct *p, struct lb_env *env)
6789 {
6790 lockdep_assert_held(&env->src_rq->lock);
6791
6792 p->on_rq = TASK_ON_RQ_MIGRATING;
6793 deactivate_task(env->src_rq, p, DEQUEUE_NOCLOCK);
6794 set_task_cpu(p, env->dst_cpu);
6795 }
6796
6797 /*
6798 * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as
6799 * part of active balancing operations within "domain".
6800 *
6801 * Returns a task if successful and NULL otherwise.
6802 */
6803 static struct task_struct *detach_one_task(struct lb_env *env)
6804 {
6805 struct task_struct *p, *n;
6806
6807 lockdep_assert_held(&env->src_rq->lock);
6808
6809 list_for_each_entry_safe(p, n, &env->src_rq->cfs_tasks, se.group_node) {
6810 if (!can_migrate_task(p, env))
6811 continue;
6812
6813 detach_task(p, env);
6814
6815 /*
6816 * Right now, this is only the second place where
6817 * lb_gained[env->idle] is updated (other is detach_tasks)
6818 * so we can safely collect stats here rather than
6819 * inside detach_tasks().
6820 */
6821 schedstat_inc(env->sd->lb_gained[env->idle]);
6822 return p;
6823 }
6824 return NULL;
6825 }
6826
6827 static const unsigned int sched_nr_migrate_break = 32;
6828
6829 /*
6830 * detach_tasks() -- tries to detach up to imbalance weighted load from
6831 * busiest_rq, as part of a balancing operation within domain "sd".
6832 *
6833 * Returns number of detached tasks if successful and 0 otherwise.
6834 */
6835 static int detach_tasks(struct lb_env *env)
6836 {
6837 struct list_head *tasks = &env->src_rq->cfs_tasks;
6838 struct task_struct *p;
6839 unsigned long load;
6840 int detached = 0;
6841
6842 lockdep_assert_held(&env->src_rq->lock);
6843
6844 if (env->imbalance <= 0)
6845 return 0;
6846
6847 while (!list_empty(tasks)) {
6848 /*
6849 * We don't want to steal all, otherwise we may be treated likewise,
6850 * which could at worst lead to a livelock crash.
6851 */
6852 if (env->idle != CPU_NOT_IDLE && env->src_rq->nr_running <= 1)
6853 break;
6854
6855 p = list_first_entry(tasks, struct task_struct, se.group_node);
6856
6857 env->loop++;
6858 /* We've more or less seen every task there is, call it quits */
6859 if (env->loop > env->loop_max)
6860 break;
6861
6862 /* take a breather every nr_migrate tasks */
6863 if (env->loop > env->loop_break) {
6864 env->loop_break += sched_nr_migrate_break;
6865 env->flags |= LBF_NEED_BREAK;
6866 break;
6867 }
6868
6869 if (!can_migrate_task(p, env))
6870 goto next;
6871
6872 load = task_h_load(p);
6873
6874 if (sched_feat(LB_MIN) && load < 16 && !env->sd->nr_balance_failed)
6875 goto next;
6876
6877 if ((load / 2) > env->imbalance)
6878 goto next;
6879
6880 detach_task(p, env);
6881 list_add(&p->se.group_node, &env->tasks);
6882
6883 detached++;
6884 env->imbalance -= load;
6885
6886 #ifdef CONFIG_PREEMPT
6887 /*
6888 * NEWIDLE balancing is a source of latency, so preemptible
6889 * kernels will stop after the first task is detached to minimize
6890 * the critical section.
6891 */
6892 if (env->idle == CPU_NEWLY_IDLE)
6893 break;
6894 #endif
6895
6896 /*
6897 * We only want to steal up to the prescribed amount of
6898 * weighted load.
6899 */
6900 if (env->imbalance <= 0)
6901 break;
6902
6903 continue;
6904 next:
6905 list_move_tail(&p->se.group_node, tasks);
6906 }
6907
6908 /*
6909 * Right now, this is one of only two places we collect this stat
6910 * so we can safely collect detach_one_task() stats here rather
6911 * than inside detach_one_task().
6912 */
6913 schedstat_add(env->sd->lb_gained[env->idle], detached);
6914
6915 return detached;
6916 }
6917
6918 /*
6919 * attach_task() -- attach the task detached by detach_task() to its new rq.
6920 */
6921 static void attach_task(struct rq *rq, struct task_struct *p)
6922 {
6923 lockdep_assert_held(&rq->lock);
6924
6925 BUG_ON(task_rq(p) != rq);
6926 activate_task(rq, p, ENQUEUE_NOCLOCK);
6927 p->on_rq = TASK_ON_RQ_QUEUED;
6928 check_preempt_curr(rq, p, 0);
6929 }
6930
6931 /*
6932 * attach_one_task() -- attaches the task returned from detach_one_task() to
6933 * its new rq.
6934 */
6935 static void attach_one_task(struct rq *rq, struct task_struct *p)
6936 {
6937 struct rq_flags rf;
6938
6939 rq_lock(rq, &rf);
6940 update_rq_clock(rq);
6941 attach_task(rq, p);
6942 rq_unlock(rq, &rf);
6943 }
6944
6945 /*
6946 * attach_tasks() -- attaches all tasks detached by detach_tasks() to their
6947 * new rq.
6948 */
6949 static void attach_tasks(struct lb_env *env)
6950 {
6951 struct list_head *tasks = &env->tasks;
6952 struct task_struct *p;
6953 struct rq_flags rf;
6954
6955 rq_lock(env->dst_rq, &rf);
6956 update_rq_clock(env->dst_rq);
6957
6958 while (!list_empty(tasks)) {
6959 p = list_first_entry(tasks, struct task_struct, se.group_node);
6960 list_del_init(&p->se.group_node);
6961
6962 attach_task(env->dst_rq, p);
6963 }
6964
6965 rq_unlock(env->dst_rq, &rf);
6966 }
6967
6968 #ifdef CONFIG_FAIR_GROUP_SCHED
6969
6970 static inline bool cfs_rq_is_decayed(struct cfs_rq *cfs_rq)
6971 {
6972 if (cfs_rq->load.weight)
6973 return false;
6974
6975 if (cfs_rq->avg.load_sum)
6976 return false;
6977
6978 if (cfs_rq->avg.util_sum)
6979 return false;
6980
6981 if (cfs_rq->runnable_load_sum)
6982 return false;
6983
6984 return true;
6985 }
6986
6987 static void update_blocked_averages(int cpu)
6988 {
6989 struct rq *rq = cpu_rq(cpu);
6990 struct cfs_rq *cfs_rq, *pos;
6991 struct rq_flags rf;
6992
6993 rq_lock_irqsave(rq, &rf);
6994 update_rq_clock(rq);
6995
6996 /*
6997 * Iterates the task_group tree in a bottom up fashion, see
6998 * list_add_leaf_cfs_rq() for details.
6999 */
7000 for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) {
7001 struct sched_entity *se;
7002
7003 /* throttled entities do not contribute to load */
7004 if (throttled_hierarchy(cfs_rq))
7005 continue;
7006
7007 if (update_cfs_rq_load_avg(cfs_rq_clock_task(cfs_rq), cfs_rq, true))
7008 update_tg_load_avg(cfs_rq, 0);
7009
7010 /* Propagate pending load changes to the parent, if any: */
7011 se = cfs_rq->tg->se[cpu];
7012 if (se && !skip_blocked_update(se))
7013 update_load_avg(se, 0);
7014
7015 /*
7016 * There can be a lot of idle CPU cgroups. Don't let fully
7017 * decayed cfs_rqs linger on the list.
7018 */
7019 if (cfs_rq_is_decayed(cfs_rq))
7020 list_del_leaf_cfs_rq(cfs_rq);
7021 }
7022 rq_unlock_irqrestore(rq, &rf);
7023 }
7024
7025 /*
7026 * Compute the hierarchical load factor for cfs_rq and all its ascendants.
7027 * This needs to be done in a top-down fashion because the load of a child
7028 * group is a fraction of its parents load.
7029 */
7030 static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
7031 {
7032 struct rq *rq = rq_of(cfs_rq);
7033 struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
7034 unsigned long now = jiffies;
7035 unsigned long load;
7036
7037 if (cfs_rq->last_h_load_update == now)
7038 return;
7039
7040 cfs_rq->h_load_next = NULL;
7041 for_each_sched_entity(se) {
7042 cfs_rq = cfs_rq_of(se);
7043 cfs_rq->h_load_next = se;
7044 if (cfs_rq->last_h_load_update == now)
7045 break;
7046 }
7047
7048 if (!se) {
7049 cfs_rq->h_load = cfs_rq_load_avg(cfs_rq);
7050 cfs_rq->last_h_load_update = now;
7051 }
7052
7053 while ((se = cfs_rq->h_load_next) != NULL) {
7054 load = cfs_rq->h_load;
7055 load = div64_ul(load * se->avg.load_avg,
7056 cfs_rq_load_avg(cfs_rq) + 1);
7057 cfs_rq = group_cfs_rq(se);
7058 cfs_rq->h_load = load;
7059 cfs_rq->last_h_load_update = now;
7060 }
7061 }
7062
7063 static unsigned long task_h_load(struct task_struct *p)
7064 {
7065 struct cfs_rq *cfs_rq = task_cfs_rq(p);
7066
7067 update_cfs_rq_h_load(cfs_rq);
7068 return div64_ul(p->se.avg.load_avg * cfs_rq->h_load,
7069 cfs_rq_load_avg(cfs_rq) + 1);
7070 }
7071 #else
7072 static inline void update_blocked_averages(int cpu)
7073 {
7074 struct rq *rq = cpu_rq(cpu);
7075 struct cfs_rq *cfs_rq = &rq->cfs;
7076 struct rq_flags rf;
7077
7078 rq_lock_irqsave(rq, &rf);
7079 update_rq_clock(rq);
7080 update_cfs_rq_load_avg(cfs_rq_clock_task(cfs_rq), cfs_rq, true);
7081 rq_unlock_irqrestore(rq, &rf);
7082 }
7083
7084 static unsigned long task_h_load(struct task_struct *p)
7085 {
7086 return p->se.avg.load_avg;
7087 }
7088 #endif
7089
7090 /********** Helpers for find_busiest_group ************************/
7091
7092 enum group_type {
7093 group_other = 0,
7094 group_imbalanced,
7095 group_overloaded,
7096 };
7097
7098 /*
7099 * sg_lb_stats - stats of a sched_group required for load_balancing
7100 */
7101 struct sg_lb_stats {
7102 unsigned long avg_load; /*Avg load across the CPUs of the group */
7103 unsigned long group_load; /* Total load over the CPUs of the group */
7104 unsigned long sum_weighted_load; /* Weighted load of group's tasks */
7105 unsigned long load_per_task;
7106 unsigned long group_capacity;
7107 unsigned long group_util; /* Total utilization of the group */
7108 unsigned int sum_nr_running; /* Nr tasks running in the group */
7109 unsigned int idle_cpus;
7110 unsigned int group_weight;
7111 enum group_type group_type;
7112 int group_no_capacity;
7113 #ifdef CONFIG_NUMA_BALANCING
7114 unsigned int nr_numa_running;
7115 unsigned int nr_preferred_running;
7116 #endif
7117 };
7118
7119 /*
7120 * sd_lb_stats - Structure to store the statistics of a sched_domain
7121 * during load balancing.
7122 */
7123 struct sd_lb_stats {
7124 struct sched_group *busiest; /* Busiest group in this sd */
7125 struct sched_group *local; /* Local group in this sd */
7126 unsigned long total_load; /* Total load of all groups in sd */
7127 unsigned long total_capacity; /* Total capacity of all groups in sd */
7128 unsigned long avg_load; /* Average load across all groups in sd */
7129
7130 struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */
7131 struct sg_lb_stats local_stat; /* Statistics of the local group */
7132 };
7133
7134 static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
7135 {
7136 /*
7137 * Skimp on the clearing to avoid duplicate work. We can avoid clearing
7138 * local_stat because update_sg_lb_stats() does a full clear/assignment.
7139 * We must however clear busiest_stat::avg_load because
7140 * update_sd_pick_busiest() reads this before assignment.
7141 */
7142 *sds = (struct sd_lb_stats){
7143 .busiest = NULL,
7144 .local = NULL,
7145 .total_load = 0UL,
7146 .total_capacity = 0UL,
7147 .busiest_stat = {
7148 .avg_load = 0UL,
7149 .sum_nr_running = 0,
7150 .group_type = group_other,
7151 },
7152 };
7153 }
7154
7155 /**
7156 * get_sd_load_idx - Obtain the load index for a given sched domain.
7157 * @sd: The sched_domain whose load_idx is to be obtained.
7158 * @idle: The idle status of the CPU for whose sd load_idx is obtained.
7159 *
7160 * Return: The load index.
7161 */
7162 static inline int get_sd_load_idx(struct sched_domain *sd,
7163 enum cpu_idle_type idle)
7164 {
7165 int load_idx;
7166
7167 switch (idle) {
7168 case CPU_NOT_IDLE:
7169 load_idx = sd->busy_idx;
7170 break;
7171
7172 case CPU_NEWLY_IDLE:
7173 load_idx = sd->newidle_idx;
7174 break;
7175 default:
7176 load_idx = sd->idle_idx;
7177 break;
7178 }
7179
7180 return load_idx;
7181 }
7182
7183 static unsigned long scale_rt_capacity(int cpu)
7184 {
7185 struct rq *rq = cpu_rq(cpu);
7186 u64 total, used, age_stamp, avg;
7187 s64 delta;
7188
7189 /*
7190 * Since we're reading these variables without serialization make sure
7191 * we read them once before doing sanity checks on them.
7192 */
7193 age_stamp = READ_ONCE(rq->age_stamp);
7194 avg = READ_ONCE(rq->rt_avg);
7195 delta = __rq_clock_broken(rq) - age_stamp;
7196
7197 if (unlikely(delta < 0))
7198 delta = 0;
7199
7200 total = sched_avg_period() + delta;
7201
7202 used = div_u64(avg, total);
7203
7204 if (likely(used < SCHED_CAPACITY_SCALE))
7205 return SCHED_CAPACITY_SCALE - used;
7206
7207 return 1;
7208 }
7209
7210 static void update_cpu_capacity(struct sched_domain *sd, int cpu)
7211 {
7212 unsigned long capacity = arch_scale_cpu_capacity(sd, cpu);
7213 struct sched_group *sdg = sd->groups;
7214
7215 cpu_rq(cpu)->cpu_capacity_orig = capacity;
7216
7217 capacity *= scale_rt_capacity(cpu);
7218 capacity >>= SCHED_CAPACITY_SHIFT;
7219
7220 if (!capacity)
7221 capacity = 1;
7222
7223 cpu_rq(cpu)->cpu_capacity = capacity;
7224 sdg->sgc->capacity = capacity;
7225 sdg->sgc->min_capacity = capacity;
7226 }
7227
7228 void update_group_capacity(struct sched_domain *sd, int cpu)
7229 {
7230 struct sched_domain *child = sd->child;
7231 struct sched_group *group, *sdg = sd->groups;
7232 unsigned long capacity, min_capacity;
7233 unsigned long interval;
7234
7235 interval = msecs_to_jiffies(sd->balance_interval);
7236 interval = clamp(interval, 1UL, max_load_balance_interval);
7237 sdg->sgc->next_update = jiffies + interval;
7238
7239 if (!child) {
7240 update_cpu_capacity(sd, cpu);
7241 return;
7242 }
7243
7244 capacity = 0;
7245 min_capacity = ULONG_MAX;
7246
7247 if (child->flags & SD_OVERLAP) {
7248 /*
7249 * SD_OVERLAP domains cannot assume that child groups
7250 * span the current group.
7251 */
7252
7253 for_each_cpu(cpu, sched_group_span(sdg)) {
7254 struct sched_group_capacity *sgc;
7255 struct rq *rq = cpu_rq(cpu);
7256
7257 /*
7258 * build_sched_domains() -> init_sched_groups_capacity()
7259 * gets here before we've attached the domains to the
7260 * runqueues.
7261 *
7262 * Use capacity_of(), which is set irrespective of domains
7263 * in update_cpu_capacity().
7264 *
7265 * This avoids capacity from being 0 and
7266 * causing divide-by-zero issues on boot.
7267 */
7268 if (unlikely(!rq->sd)) {
7269 capacity += capacity_of(cpu);
7270 } else {
7271 sgc = rq->sd->groups->sgc;
7272 capacity += sgc->capacity;
7273 }
7274
7275 min_capacity = min(capacity, min_capacity);
7276 }
7277 } else {
7278 /*
7279 * !SD_OVERLAP domains can assume that child groups
7280 * span the current group.
7281 */
7282
7283 group = child->groups;
7284 do {
7285 struct sched_group_capacity *sgc = group->sgc;
7286
7287 capacity += sgc->capacity;
7288 min_capacity = min(sgc->min_capacity, min_capacity);
7289 group = group->next;
7290 } while (group != child->groups);
7291 }
7292
7293 sdg->sgc->capacity = capacity;
7294 sdg->sgc->min_capacity = min_capacity;
7295 }
7296
7297 /*
7298 * Check whether the capacity of the rq has been noticeably reduced by side
7299 * activity. The imbalance_pct is used for the threshold.
7300 * Return true is the capacity is reduced
7301 */
7302 static inline int
7303 check_cpu_capacity(struct rq *rq, struct sched_domain *sd)
7304 {
7305 return ((rq->cpu_capacity * sd->imbalance_pct) <
7306 (rq->cpu_capacity_orig * 100));
7307 }
7308
7309 /*
7310 * Group imbalance indicates (and tries to solve) the problem where balancing
7311 * groups is inadequate due to ->cpus_allowed constraints.
7312 *
7313 * Imagine a situation of two groups of 4 cpus each and 4 tasks each with a
7314 * cpumask covering 1 cpu of the first group and 3 cpus of the second group.
7315 * Something like:
7316 *
7317 * { 0 1 2 3 } { 4 5 6 7 }
7318 * * * * *
7319 *
7320 * If we were to balance group-wise we'd place two tasks in the first group and
7321 * two tasks in the second group. Clearly this is undesired as it will overload
7322 * cpu 3 and leave one of the cpus in the second group unused.
7323 *
7324 * The current solution to this issue is detecting the skew in the first group
7325 * by noticing the lower domain failed to reach balance and had difficulty
7326 * moving tasks due to affinity constraints.
7327 *
7328 * When this is so detected; this group becomes a candidate for busiest; see
7329 * update_sd_pick_busiest(). And calculate_imbalance() and
7330 * find_busiest_group() avoid some of the usual balance conditions to allow it
7331 * to create an effective group imbalance.
7332 *
7333 * This is a somewhat tricky proposition since the next run might not find the
7334 * group imbalance and decide the groups need to be balanced again. A most
7335 * subtle and fragile situation.
7336 */
7337
7338 static inline int sg_imbalanced(struct sched_group *group)
7339 {
7340 return group->sgc->imbalance;
7341 }
7342
7343 /*
7344 * group_has_capacity returns true if the group has spare capacity that could
7345 * be used by some tasks.
7346 * We consider that a group has spare capacity if the * number of task is
7347 * smaller than the number of CPUs or if the utilization is lower than the
7348 * available capacity for CFS tasks.
7349 * For the latter, we use a threshold to stabilize the state, to take into
7350 * account the variance of the tasks' load and to return true if the available
7351 * capacity in meaningful for the load balancer.
7352 * As an example, an available capacity of 1% can appear but it doesn't make
7353 * any benefit for the load balance.
7354 */
7355 static inline bool
7356 group_has_capacity(struct lb_env *env, struct sg_lb_stats *sgs)
7357 {
7358 if (sgs->sum_nr_running < sgs->group_weight)
7359 return true;
7360
7361 if ((sgs->group_capacity * 100) >
7362 (sgs->group_util * env->sd->imbalance_pct))
7363 return true;
7364
7365 return false;
7366 }
7367
7368 /*
7369 * group_is_overloaded returns true if the group has more tasks than it can
7370 * handle.
7371 * group_is_overloaded is not equals to !group_has_capacity because a group
7372 * with the exact right number of tasks, has no more spare capacity but is not
7373 * overloaded so both group_has_capacity and group_is_overloaded return
7374 * false.
7375 */
7376 static inline bool
7377 group_is_overloaded(struct lb_env *env, struct sg_lb_stats *sgs)
7378 {
7379 if (sgs->sum_nr_running <= sgs->group_weight)
7380 return false;
7381
7382 if ((sgs->group_capacity * 100) <
7383 (sgs->group_util * env->sd->imbalance_pct))
7384 return true;
7385
7386 return false;
7387 }
7388
7389 /*
7390 * group_smaller_cpu_capacity: Returns true if sched_group sg has smaller
7391 * per-CPU capacity than sched_group ref.
7392 */
7393 static inline bool
7394 group_smaller_cpu_capacity(struct sched_group *sg, struct sched_group *ref)
7395 {
7396 return sg->sgc->min_capacity * capacity_margin <
7397 ref->sgc->min_capacity * 1024;
7398 }
7399
7400 static inline enum
7401 group_type group_classify(struct sched_group *group,
7402 struct sg_lb_stats *sgs)
7403 {
7404 if (sgs->group_no_capacity)
7405 return group_overloaded;
7406
7407 if (sg_imbalanced(group))
7408 return group_imbalanced;
7409
7410 return group_other;
7411 }
7412
7413 /**
7414 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
7415 * @env: The load balancing environment.
7416 * @group: sched_group whose statistics are to be updated.
7417 * @load_idx: Load index of sched_domain of this_cpu for load calc.
7418 * @local_group: Does group contain this_cpu.
7419 * @sgs: variable to hold the statistics for this group.
7420 * @overload: Indicate more than one runnable task for any CPU.
7421 */
7422 static inline void update_sg_lb_stats(struct lb_env *env,
7423 struct sched_group *group, int load_idx,
7424 int local_group, struct sg_lb_stats *sgs,
7425 bool *overload)
7426 {
7427 unsigned long load;
7428 int i, nr_running;
7429
7430 memset(sgs, 0, sizeof(*sgs));
7431
7432 for_each_cpu_and(i, sched_group_span(group), env->cpus) {
7433 struct rq *rq = cpu_rq(i);
7434
7435 /* Bias balancing toward cpus of our domain */
7436 if (local_group)
7437 load = target_load(i, load_idx);
7438 else
7439 load = source_load(i, load_idx);
7440
7441 sgs->group_load += load;
7442 sgs->group_util += cpu_util(i);
7443 sgs->sum_nr_running += rq->cfs.h_nr_running;
7444
7445 nr_running = rq->nr_running;
7446 if (nr_running > 1)
7447 *overload = true;
7448
7449 #ifdef CONFIG_NUMA_BALANCING
7450 sgs->nr_numa_running += rq->nr_numa_running;
7451 sgs->nr_preferred_running += rq->nr_preferred_running;
7452 #endif
7453 sgs->sum_weighted_load += weighted_cpuload(i);
7454 /*
7455 * No need to call idle_cpu() if nr_running is not 0
7456 */
7457 if (!nr_running && idle_cpu(i))
7458 sgs->idle_cpus++;
7459 }
7460
7461 /* Adjust by relative CPU capacity of the group */
7462 sgs->group_capacity = group->sgc->capacity;
7463 sgs->avg_load = (sgs->group_load*SCHED_CAPACITY_SCALE) / sgs->group_capacity;
7464
7465 if (sgs->sum_nr_running)
7466 sgs->load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
7467
7468 sgs->group_weight = group->group_weight;
7469
7470 sgs->group_no_capacity = group_is_overloaded(env, sgs);
7471 sgs->group_type = group_classify(group, sgs);
7472 }
7473
7474 /**
7475 * update_sd_pick_busiest - return 1 on busiest group
7476 * @env: The load balancing environment.
7477 * @sds: sched_domain statistics
7478 * @sg: sched_group candidate to be checked for being the busiest
7479 * @sgs: sched_group statistics
7480 *
7481 * Determine if @sg is a busier group than the previously selected
7482 * busiest group.
7483 *
7484 * Return: %true if @sg is a busier group than the previously selected
7485 * busiest group. %false otherwise.
7486 */
7487 static bool update_sd_pick_busiest(struct lb_env *env,
7488 struct sd_lb_stats *sds,
7489 struct sched_group *sg,
7490 struct sg_lb_stats *sgs)
7491 {
7492 struct sg_lb_stats *busiest = &sds->busiest_stat;
7493
7494 if (sgs->group_type > busiest->group_type)
7495 return true;
7496
7497 if (sgs->group_type < busiest->group_type)
7498 return false;
7499
7500 if (sgs->avg_load <= busiest->avg_load)
7501 return false;
7502
7503 if (!(env->sd->flags & SD_ASYM_CPUCAPACITY))
7504 goto asym_packing;
7505
7506 /*
7507 * Candidate sg has no more than one task per CPU and
7508 * has higher per-CPU capacity. Migrating tasks to less
7509 * capable CPUs may harm throughput. Maximize throughput,
7510 * power/energy consequences are not considered.
7511 */
7512 if (sgs->sum_nr_running <= sgs->group_weight &&
7513 group_smaller_cpu_capacity(sds->local, sg))
7514 return false;
7515
7516 asym_packing:
7517 /* This is the busiest node in its class. */
7518 if (!(env->sd->flags & SD_ASYM_PACKING))
7519 return true;
7520
7521 /* No ASYM_PACKING if target cpu is already busy */
7522 if (env->idle == CPU_NOT_IDLE)
7523 return true;
7524 /*
7525 * ASYM_PACKING needs to move all the work to the highest
7526 * prority CPUs in the group, therefore mark all groups
7527 * of lower priority than ourself as busy.
7528 */
7529 if (sgs->sum_nr_running &&
7530 sched_asym_prefer(env->dst_cpu, sg->asym_prefer_cpu)) {
7531 if (!sds->busiest)
7532 return true;
7533
7534 /* Prefer to move from lowest priority cpu's work */
7535 if (sched_asym_prefer(sds->busiest->asym_prefer_cpu,
7536 sg->asym_prefer_cpu))
7537 return true;
7538 }
7539
7540 return false;
7541 }
7542
7543 #ifdef CONFIG_NUMA_BALANCING
7544 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
7545 {
7546 if (sgs->sum_nr_running > sgs->nr_numa_running)
7547 return regular;
7548 if (sgs->sum_nr_running > sgs->nr_preferred_running)
7549 return remote;
7550 return all;
7551 }
7552
7553 static inline enum fbq_type fbq_classify_rq(struct rq *rq)
7554 {
7555 if (rq->nr_running > rq->nr_numa_running)
7556 return regular;
7557 if (rq->nr_running > rq->nr_preferred_running)
7558 return remote;
7559 return all;
7560 }
7561 #else
7562 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
7563 {
7564 return all;
7565 }
7566
7567 static inline enum fbq_type fbq_classify_rq(struct rq *rq)
7568 {
7569 return regular;
7570 }
7571 #endif /* CONFIG_NUMA_BALANCING */
7572
7573 /**
7574 * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
7575 * @env: The load balancing environment.
7576 * @sds: variable to hold the statistics for this sched_domain.
7577 */
7578 static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds)
7579 {
7580 struct sched_domain *child = env->sd->child;
7581 struct sched_group *sg = env->sd->groups;
7582 struct sg_lb_stats *local = &sds->local_stat;
7583 struct sg_lb_stats tmp_sgs;
7584 int load_idx, prefer_sibling = 0;
7585 bool overload = false;
7586
7587 if (child && child->flags & SD_PREFER_SIBLING)
7588 prefer_sibling = 1;
7589
7590 load_idx = get_sd_load_idx(env->sd, env->idle);
7591
7592 do {
7593 struct sg_lb_stats *sgs = &tmp_sgs;
7594 int local_group;
7595
7596 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_span(sg));
7597 if (local_group) {
7598 sds->local = sg;
7599 sgs = local;
7600
7601 if (env->idle != CPU_NEWLY_IDLE ||
7602 time_after_eq(jiffies, sg->sgc->next_update))
7603 update_group_capacity(env->sd, env->dst_cpu);
7604 }
7605
7606 update_sg_lb_stats(env, sg, load_idx, local_group, sgs,
7607 &overload);
7608
7609 if (local_group)
7610 goto next_group;
7611
7612 /*
7613 * In case the child domain prefers tasks go to siblings
7614 * first, lower the sg capacity so that we'll try
7615 * and move all the excess tasks away. We lower the capacity
7616 * of a group only if the local group has the capacity to fit
7617 * these excess tasks. The extra check prevents the case where
7618 * you always pull from the heaviest group when it is already
7619 * under-utilized (possible with a large weight task outweighs
7620 * the tasks on the system).
7621 */
7622 if (prefer_sibling && sds->local &&
7623 group_has_capacity(env, local) &&
7624 (sgs->sum_nr_running > local->sum_nr_running + 1)) {
7625 sgs->group_no_capacity = 1;
7626 sgs->group_type = group_classify(sg, sgs);
7627 }
7628
7629 if (update_sd_pick_busiest(env, sds, sg, sgs)) {
7630 sds->busiest = sg;
7631 sds->busiest_stat = *sgs;
7632 }
7633
7634 next_group:
7635 /* Now, start updating sd_lb_stats */
7636 sds->total_load += sgs->group_load;
7637 sds->total_capacity += sgs->group_capacity;
7638
7639 sg = sg->next;
7640 } while (sg != env->sd->groups);
7641
7642 if (env->sd->flags & SD_NUMA)
7643 env->fbq_type = fbq_classify_group(&sds->busiest_stat);
7644
7645 if (!env->sd->parent) {
7646 /* update overload indicator if we are at root domain */
7647 if (env->dst_rq->rd->overload != overload)
7648 env->dst_rq->rd->overload = overload;
7649 }
7650
7651 }
7652
7653 /**
7654 * check_asym_packing - Check to see if the group is packed into the
7655 * sched domain.
7656 *
7657 * This is primarily intended to used at the sibling level. Some
7658 * cores like POWER7 prefer to use lower numbered SMT threads. In the
7659 * case of POWER7, it can move to lower SMT modes only when higher
7660 * threads are idle. When in lower SMT modes, the threads will
7661 * perform better since they share less core resources. Hence when we
7662 * have idle threads, we want them to be the higher ones.
7663 *
7664 * This packing function is run on idle threads. It checks to see if
7665 * the busiest CPU in this domain (core in the P7 case) has a higher
7666 * CPU number than the packing function is being run on. Here we are
7667 * assuming lower CPU number will be equivalent to lower a SMT thread
7668 * number.
7669 *
7670 * Return: 1 when packing is required and a task should be moved to
7671 * this CPU. The amount of the imbalance is returned in *imbalance.
7672 *
7673 * @env: The load balancing environment.
7674 * @sds: Statistics of the sched_domain which is to be packed
7675 */
7676 static int check_asym_packing(struct lb_env *env, struct sd_lb_stats *sds)
7677 {
7678 int busiest_cpu;
7679
7680 if (!(env->sd->flags & SD_ASYM_PACKING))
7681 return 0;
7682
7683 if (env->idle == CPU_NOT_IDLE)
7684 return 0;
7685
7686 if (!sds->busiest)
7687 return 0;
7688
7689 busiest_cpu = sds->busiest->asym_prefer_cpu;
7690 if (sched_asym_prefer(busiest_cpu, env->dst_cpu))
7691 return 0;
7692
7693 env->imbalance = DIV_ROUND_CLOSEST(
7694 sds->busiest_stat.avg_load * sds->busiest_stat.group_capacity,
7695 SCHED_CAPACITY_SCALE);
7696
7697 return 1;
7698 }
7699
7700 /**
7701 * fix_small_imbalance - Calculate the minor imbalance that exists
7702 * amongst the groups of a sched_domain, during
7703 * load balancing.
7704 * @env: The load balancing environment.
7705 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
7706 */
7707 static inline
7708 void fix_small_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
7709 {
7710 unsigned long tmp, capa_now = 0, capa_move = 0;
7711 unsigned int imbn = 2;
7712 unsigned long scaled_busy_load_per_task;
7713 struct sg_lb_stats *local, *busiest;
7714
7715 local = &sds->local_stat;
7716 busiest = &sds->busiest_stat;
7717
7718 if (!local->sum_nr_running)
7719 local->load_per_task = cpu_avg_load_per_task(env->dst_cpu);
7720 else if (busiest->load_per_task > local->load_per_task)
7721 imbn = 1;
7722
7723 scaled_busy_load_per_task =
7724 (busiest->load_per_task * SCHED_CAPACITY_SCALE) /
7725 busiest->group_capacity;
7726
7727 if (busiest->avg_load + scaled_busy_load_per_task >=
7728 local->avg_load + (scaled_busy_load_per_task * imbn)) {
7729 env->imbalance = busiest->load_per_task;
7730 return;
7731 }
7732
7733 /*
7734 * OK, we don't have enough imbalance to justify moving tasks,
7735 * however we may be able to increase total CPU capacity used by
7736 * moving them.
7737 */
7738
7739 capa_now += busiest->group_capacity *
7740 min(busiest->load_per_task, busiest->avg_load);
7741 capa_now += local->group_capacity *
7742 min(local->load_per_task, local->avg_load);
7743 capa_now /= SCHED_CAPACITY_SCALE;
7744
7745 /* Amount of load we'd subtract */
7746 if (busiest->avg_load > scaled_busy_load_per_task) {
7747 capa_move += busiest->group_capacity *
7748 min(busiest->load_per_task,
7749 busiest->avg_load - scaled_busy_load_per_task);
7750 }
7751
7752 /* Amount of load we'd add */
7753 if (busiest->avg_load * busiest->group_capacity <
7754 busiest->load_per_task * SCHED_CAPACITY_SCALE) {
7755 tmp = (busiest->avg_load * busiest->group_capacity) /
7756 local->group_capacity;
7757 } else {
7758 tmp = (busiest->load_per_task * SCHED_CAPACITY_SCALE) /
7759 local->group_capacity;
7760 }
7761 capa_move += local->group_capacity *
7762 min(local->load_per_task, local->avg_load + tmp);
7763 capa_move /= SCHED_CAPACITY_SCALE;
7764
7765 /* Move if we gain throughput */
7766 if (capa_move > capa_now)
7767 env->imbalance = busiest->load_per_task;
7768 }
7769
7770 /**
7771 * calculate_imbalance - Calculate the amount of imbalance present within the
7772 * groups of a given sched_domain during load balance.
7773 * @env: load balance environment
7774 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
7775 */
7776 static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
7777 {
7778 unsigned long max_pull, load_above_capacity = ~0UL;
7779 struct sg_lb_stats *local, *busiest;
7780
7781 local = &sds->local_stat;
7782 busiest = &sds->busiest_stat;
7783
7784 if (busiest->group_type == group_imbalanced) {
7785 /*
7786 * In the group_imb case we cannot rely on group-wide averages
7787 * to ensure cpu-load equilibrium, look at wider averages. XXX
7788 */
7789 busiest->load_per_task =
7790 min(busiest->load_per_task, sds->avg_load);
7791 }
7792
7793 /*
7794 * Avg load of busiest sg can be less and avg load of local sg can
7795 * be greater than avg load across all sgs of sd because avg load
7796 * factors in sg capacity and sgs with smaller group_type are
7797 * skipped when updating the busiest sg:
7798 */
7799 if (busiest->avg_load <= sds->avg_load ||
7800 local->avg_load >= sds->avg_load) {
7801 env->imbalance = 0;
7802 return fix_small_imbalance(env, sds);
7803 }
7804
7805 /*
7806 * If there aren't any idle cpus, avoid creating some.
7807 */
7808 if (busiest->group_type == group_overloaded &&
7809 local->group_type == group_overloaded) {
7810 load_above_capacity = busiest->sum_nr_running * SCHED_CAPACITY_SCALE;
7811 if (load_above_capacity > busiest->group_capacity) {
7812 load_above_capacity -= busiest->group_capacity;
7813 load_above_capacity *= scale_load_down(NICE_0_LOAD);
7814 load_above_capacity /= busiest->group_capacity;
7815 } else
7816 load_above_capacity = ~0UL;
7817 }
7818
7819 /*
7820 * We're trying to get all the cpus to the average_load, so we don't
7821 * want to push ourselves above the average load, nor do we wish to
7822 * reduce the max loaded cpu below the average load. At the same time,
7823 * we also don't want to reduce the group load below the group
7824 * capacity. Thus we look for the minimum possible imbalance.
7825 */
7826 max_pull = min(busiest->avg_load - sds->avg_load, load_above_capacity);
7827
7828 /* How much load to actually move to equalise the imbalance */
7829 env->imbalance = min(
7830 max_pull * busiest->group_capacity,
7831 (sds->avg_load - local->avg_load) * local->group_capacity
7832 ) / SCHED_CAPACITY_SCALE;
7833
7834 /*
7835 * if *imbalance is less than the average load per runnable task
7836 * there is no guarantee that any tasks will be moved so we'll have
7837 * a think about bumping its value to force at least one task to be
7838 * moved
7839 */
7840 if (env->imbalance < busiest->load_per_task)
7841 return fix_small_imbalance(env, sds);
7842 }
7843
7844 /******* find_busiest_group() helpers end here *********************/
7845
7846 /**
7847 * find_busiest_group - Returns the busiest group within the sched_domain
7848 * if there is an imbalance.
7849 *
7850 * Also calculates the amount of weighted load which should be moved
7851 * to restore balance.
7852 *
7853 * @env: The load balancing environment.
7854 *
7855 * Return: - The busiest group if imbalance exists.
7856 */
7857 static struct sched_group *find_busiest_group(struct lb_env *env)
7858 {
7859 struct sg_lb_stats *local, *busiest;
7860 struct sd_lb_stats sds;
7861
7862 init_sd_lb_stats(&sds);
7863
7864 /*
7865 * Compute the various statistics relavent for load balancing at
7866 * this level.
7867 */
7868 update_sd_lb_stats(env, &sds);
7869 local = &sds.local_stat;
7870 busiest = &sds.busiest_stat;
7871
7872 /* ASYM feature bypasses nice load balance check */
7873 if (check_asym_packing(env, &sds))
7874 return sds.busiest;
7875
7876 /* There is no busy sibling group to pull tasks from */
7877 if (!sds.busiest || busiest->sum_nr_running == 0)
7878 goto out_balanced;
7879
7880 sds.avg_load = (SCHED_CAPACITY_SCALE * sds.total_load)
7881 / sds.total_capacity;
7882
7883 /*
7884 * If the busiest group is imbalanced the below checks don't
7885 * work because they assume all things are equal, which typically
7886 * isn't true due to cpus_allowed constraints and the like.
7887 */
7888 if (busiest->group_type == group_imbalanced)
7889 goto force_balance;
7890
7891 /* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */
7892 if (env->idle == CPU_NEWLY_IDLE && group_has_capacity(env, local) &&
7893 busiest->group_no_capacity)
7894 goto force_balance;
7895
7896 /*
7897 * If the local group is busier than the selected busiest group
7898 * don't try and pull any tasks.
7899 */
7900 if (local->avg_load >= busiest->avg_load)
7901 goto out_balanced;
7902
7903 /*
7904 * Don't pull any tasks if this group is already above the domain
7905 * average load.
7906 */
7907 if (local->avg_load >= sds.avg_load)
7908 goto out_balanced;
7909
7910 if (env->idle == CPU_IDLE) {
7911 /*
7912 * This cpu is idle. If the busiest group is not overloaded
7913 * and there is no imbalance between this and busiest group
7914 * wrt idle cpus, it is balanced. The imbalance becomes
7915 * significant if the diff is greater than 1 otherwise we
7916 * might end up to just move the imbalance on another group
7917 */
7918 if ((busiest->group_type != group_overloaded) &&
7919 (local->idle_cpus <= (busiest->idle_cpus + 1)))
7920 goto out_balanced;
7921 } else {
7922 /*
7923 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
7924 * imbalance_pct to be conservative.
7925 */
7926 if (100 * busiest->avg_load <=
7927 env->sd->imbalance_pct * local->avg_load)
7928 goto out_balanced;
7929 }
7930
7931 force_balance:
7932 /* Looks like there is an imbalance. Compute it */
7933 calculate_imbalance(env, &sds);
7934 return sds.busiest;
7935
7936 out_balanced:
7937 env->imbalance = 0;
7938 return NULL;
7939 }
7940
7941 /*
7942 * find_busiest_queue - find the busiest runqueue among the cpus in group.
7943 */
7944 static struct rq *find_busiest_queue(struct lb_env *env,
7945 struct sched_group *group)
7946 {
7947 struct rq *busiest = NULL, *rq;
7948 unsigned long busiest_load = 0, busiest_capacity = 1;
7949 int i;
7950
7951 for_each_cpu_and(i, sched_group_span(group), env->cpus) {
7952 unsigned long capacity, wl;
7953 enum fbq_type rt;
7954
7955 rq = cpu_rq(i);
7956 rt = fbq_classify_rq(rq);
7957
7958 /*
7959 * We classify groups/runqueues into three groups:
7960 * - regular: there are !numa tasks
7961 * - remote: there are numa tasks that run on the 'wrong' node
7962 * - all: there is no distinction
7963 *
7964 * In order to avoid migrating ideally placed numa tasks,
7965 * ignore those when there's better options.
7966 *
7967 * If we ignore the actual busiest queue to migrate another
7968 * task, the next balance pass can still reduce the busiest
7969 * queue by moving tasks around inside the node.
7970 *
7971 * If we cannot move enough load due to this classification
7972 * the next pass will adjust the group classification and
7973 * allow migration of more tasks.
7974 *
7975 * Both cases only affect the total convergence complexity.
7976 */
7977 if (rt > env->fbq_type)
7978 continue;
7979
7980 capacity = capacity_of(i);
7981
7982 wl = weighted_cpuload(i);
7983
7984 /*
7985 * When comparing with imbalance, use weighted_cpuload()
7986 * which is not scaled with the cpu capacity.
7987 */
7988
7989 if (rq->nr_running == 1 && wl > env->imbalance &&
7990 !check_cpu_capacity(rq, env->sd))
7991 continue;
7992
7993 /*
7994 * For the load comparisons with the other cpu's, consider
7995 * the weighted_cpuload() scaled with the cpu capacity, so
7996 * that the load can be moved away from the cpu that is
7997 * potentially running at a lower capacity.
7998 *
7999 * Thus we're looking for max(wl_i / capacity_i), crosswise
8000 * multiplication to rid ourselves of the division works out
8001 * to: wl_i * capacity_j > wl_j * capacity_i; where j is
8002 * our previous maximum.
8003 */
8004 if (wl * busiest_capacity > busiest_load * capacity) {
8005 busiest_load = wl;
8006 busiest_capacity = capacity;
8007 busiest = rq;
8008 }
8009 }
8010
8011 return busiest;
8012 }
8013
8014 /*
8015 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
8016 * so long as it is large enough.
8017 */
8018 #define MAX_PINNED_INTERVAL 512
8019
8020 static int need_active_balance(struct lb_env *env)
8021 {
8022 struct sched_domain *sd = env->sd;
8023
8024 if (env->idle == CPU_NEWLY_IDLE) {
8025
8026 /*
8027 * ASYM_PACKING needs to force migrate tasks from busy but
8028 * lower priority CPUs in order to pack all tasks in the
8029 * highest priority CPUs.
8030 */
8031 if ((sd->flags & SD_ASYM_PACKING) &&
8032 sched_asym_prefer(env->dst_cpu, env->src_cpu))
8033 return 1;
8034 }
8035
8036 /*
8037 * The dst_cpu is idle and the src_cpu CPU has only 1 CFS task.
8038 * It's worth migrating the task if the src_cpu's capacity is reduced
8039 * because of other sched_class or IRQs if more capacity stays
8040 * available on dst_cpu.
8041 */
8042 if ((env->idle != CPU_NOT_IDLE) &&
8043 (env->src_rq->cfs.h_nr_running == 1)) {
8044 if ((check_cpu_capacity(env->src_rq, sd)) &&
8045 (capacity_of(env->src_cpu)*sd->imbalance_pct < capacity_of(env->dst_cpu)*100))
8046 return 1;
8047 }
8048
8049 return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
8050 }
8051
8052 static int active_load_balance_cpu_stop(void *data);
8053
8054 static int should_we_balance(struct lb_env *env)
8055 {
8056 struct sched_group *sg = env->sd->groups;
8057 int cpu, balance_cpu = -1;
8058
8059 /*
8060 * In the newly idle case, we will allow all the cpu's
8061 * to do the newly idle load balance.
8062 */
8063 if (env->idle == CPU_NEWLY_IDLE)
8064 return 1;
8065
8066 /* Try to find first idle cpu */
8067 for_each_cpu_and(cpu, group_balance_mask(sg), env->cpus) {
8068 if (!idle_cpu(cpu))
8069 continue;
8070
8071 balance_cpu = cpu;
8072 break;
8073 }
8074
8075 if (balance_cpu == -1)
8076 balance_cpu = group_balance_cpu(sg);
8077
8078 /*
8079 * First idle cpu or the first cpu(busiest) in this sched group
8080 * is eligible for doing load balancing at this and above domains.
8081 */
8082 return balance_cpu == env->dst_cpu;
8083 }
8084
8085 /*
8086 * Check this_cpu to ensure it is balanced within domain. Attempt to move
8087 * tasks if there is an imbalance.
8088 */
8089 static int load_balance(int this_cpu, struct rq *this_rq,
8090 struct sched_domain *sd, enum cpu_idle_type idle,
8091 int *continue_balancing)
8092 {
8093 int ld_moved, cur_ld_moved, active_balance = 0;
8094 struct sched_domain *sd_parent = sd->parent;
8095 struct sched_group *group;
8096 struct rq *busiest;
8097 struct rq_flags rf;
8098 struct cpumask *cpus = this_cpu_cpumask_var_ptr(load_balance_mask);
8099
8100 struct lb_env env = {
8101 .sd = sd,
8102 .dst_cpu = this_cpu,
8103 .dst_rq = this_rq,
8104 .dst_grpmask = sched_group_span(sd->groups),
8105 .idle = idle,
8106 .loop_break = sched_nr_migrate_break,
8107 .cpus = cpus,
8108 .fbq_type = all,
8109 .tasks = LIST_HEAD_INIT(env.tasks),
8110 };
8111
8112 /*
8113 * For NEWLY_IDLE load_balancing, we don't need to consider
8114 * other cpus in our group
8115 */
8116 if (idle == CPU_NEWLY_IDLE)
8117 env.dst_grpmask = NULL;
8118
8119 cpumask_copy(cpus, cpu_active_mask);
8120
8121 schedstat_inc(sd->lb_count[idle]);
8122
8123 redo:
8124 if (!should_we_balance(&env)) {
8125 *continue_balancing = 0;
8126 goto out_balanced;
8127 }
8128
8129 group = find_busiest_group(&env);
8130 if (!group) {
8131 schedstat_inc(sd->lb_nobusyg[idle]);
8132 goto out_balanced;
8133 }
8134
8135 busiest = find_busiest_queue(&env, group);
8136 if (!busiest) {
8137 schedstat_inc(sd->lb_nobusyq[idle]);
8138 goto out_balanced;
8139 }
8140
8141 BUG_ON(busiest == env.dst_rq);
8142
8143 schedstat_add(sd->lb_imbalance[idle], env.imbalance);
8144
8145 env.src_cpu = busiest->cpu;
8146 env.src_rq = busiest;
8147
8148 ld_moved = 0;
8149 if (busiest->nr_running > 1) {
8150 /*
8151 * Attempt to move tasks. If find_busiest_group has found
8152 * an imbalance but busiest->nr_running <= 1, the group is
8153 * still unbalanced. ld_moved simply stays zero, so it is
8154 * correctly treated as an imbalance.
8155 */
8156 env.flags |= LBF_ALL_PINNED;
8157 env.loop_max = min(sysctl_sched_nr_migrate, busiest->nr_running);
8158
8159 more_balance:
8160 rq_lock_irqsave(busiest, &rf);
8161 update_rq_clock(busiest);
8162
8163 /*
8164 * cur_ld_moved - load moved in current iteration
8165 * ld_moved - cumulative load moved across iterations
8166 */
8167 cur_ld_moved = detach_tasks(&env);
8168
8169 /*
8170 * We've detached some tasks from busiest_rq. Every
8171 * task is masked "TASK_ON_RQ_MIGRATING", so we can safely
8172 * unlock busiest->lock, and we are able to be sure
8173 * that nobody can manipulate the tasks in parallel.
8174 * See task_rq_lock() family for the details.
8175 */
8176
8177 rq_unlock(busiest, &rf);
8178
8179 if (cur_ld_moved) {
8180 attach_tasks(&env);
8181 ld_moved += cur_ld_moved;
8182 }
8183
8184 local_irq_restore(rf.flags);
8185
8186 if (env.flags & LBF_NEED_BREAK) {
8187 env.flags &= ~LBF_NEED_BREAK;
8188 goto more_balance;
8189 }
8190
8191 /*
8192 * Revisit (affine) tasks on src_cpu that couldn't be moved to
8193 * us and move them to an alternate dst_cpu in our sched_group
8194 * where they can run. The upper limit on how many times we
8195 * iterate on same src_cpu is dependent on number of cpus in our
8196 * sched_group.
8197 *
8198 * This changes load balance semantics a bit on who can move
8199 * load to a given_cpu. In addition to the given_cpu itself
8200 * (or a ilb_cpu acting on its behalf where given_cpu is
8201 * nohz-idle), we now have balance_cpu in a position to move
8202 * load to given_cpu. In rare situations, this may cause
8203 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
8204 * _independently_ and at _same_ time to move some load to
8205 * given_cpu) causing exceess load to be moved to given_cpu.
8206 * This however should not happen so much in practice and
8207 * moreover subsequent load balance cycles should correct the
8208 * excess load moved.
8209 */
8210 if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
8211
8212 /* Prevent to re-select dst_cpu via env's cpus */
8213 cpumask_clear_cpu(env.dst_cpu, env.cpus);
8214
8215 env.dst_rq = cpu_rq(env.new_dst_cpu);
8216 env.dst_cpu = env.new_dst_cpu;
8217 env.flags &= ~LBF_DST_PINNED;
8218 env.loop = 0;
8219 env.loop_break = sched_nr_migrate_break;
8220
8221 /*
8222 * Go back to "more_balance" rather than "redo" since we
8223 * need to continue with same src_cpu.
8224 */
8225 goto more_balance;
8226 }
8227
8228 /*
8229 * We failed to reach balance because of affinity.
8230 */
8231 if (sd_parent) {
8232 int *group_imbalance = &sd_parent->groups->sgc->imbalance;
8233
8234 if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0)
8235 *group_imbalance = 1;
8236 }
8237
8238 /* All tasks on this runqueue were pinned by CPU affinity */
8239 if (unlikely(env.flags & LBF_ALL_PINNED)) {
8240 cpumask_clear_cpu(cpu_of(busiest), cpus);
8241 if (!cpumask_empty(cpus)) {
8242 env.loop = 0;
8243 env.loop_break = sched_nr_migrate_break;
8244 goto redo;
8245 }
8246 goto out_all_pinned;
8247 }
8248 }
8249
8250 if (!ld_moved) {
8251 schedstat_inc(sd->lb_failed[idle]);
8252 /*
8253 * Increment the failure counter only on periodic balance.
8254 * We do not want newidle balance, which can be very
8255 * frequent, pollute the failure counter causing
8256 * excessive cache_hot migrations and active balances.
8257 */
8258 if (idle != CPU_NEWLY_IDLE)
8259 sd->nr_balance_failed++;
8260
8261 if (need_active_balance(&env)) {
8262 unsigned long flags;
8263
8264 raw_spin_lock_irqsave(&busiest->lock, flags);
8265
8266 /* don't kick the active_load_balance_cpu_stop,
8267 * if the curr task on busiest cpu can't be
8268 * moved to this_cpu
8269 */
8270 if (!cpumask_test_cpu(this_cpu, &busiest->curr->cpus_allowed)) {
8271 raw_spin_unlock_irqrestore(&busiest->lock,
8272 flags);
8273 env.flags |= LBF_ALL_PINNED;
8274 goto out_one_pinned;
8275 }
8276
8277 /*
8278 * ->active_balance synchronizes accesses to
8279 * ->active_balance_work. Once set, it's cleared
8280 * only after active load balance is finished.
8281 */
8282 if (!busiest->active_balance) {
8283 busiest->active_balance = 1;
8284 busiest->push_cpu = this_cpu;
8285 active_balance = 1;
8286 }
8287 raw_spin_unlock_irqrestore(&busiest->lock, flags);
8288
8289 if (active_balance) {
8290 stop_one_cpu_nowait(cpu_of(busiest),
8291 active_load_balance_cpu_stop, busiest,
8292 &busiest->active_balance_work);
8293 }
8294
8295 /* We've kicked active balancing, force task migration. */
8296 sd->nr_balance_failed = sd->cache_nice_tries+1;
8297 }
8298 } else
8299 sd->nr_balance_failed = 0;
8300
8301 if (likely(!active_balance)) {
8302 /* We were unbalanced, so reset the balancing interval */
8303 sd->balance_interval = sd->min_interval;
8304 } else {
8305 /*
8306 * If we've begun active balancing, start to back off. This
8307 * case may not be covered by the all_pinned logic if there
8308 * is only 1 task on the busy runqueue (because we don't call
8309 * detach_tasks).
8310 */
8311 if (sd->balance_interval < sd->max_interval)
8312 sd->balance_interval *= 2;
8313 }
8314
8315 goto out;
8316
8317 out_balanced:
8318 /*
8319 * We reach balance although we may have faced some affinity
8320 * constraints. Clear the imbalance flag if it was set.
8321 */
8322 if (sd_parent) {
8323 int *group_imbalance = &sd_parent->groups->sgc->imbalance;
8324
8325 if (*group_imbalance)
8326 *group_imbalance = 0;
8327 }
8328
8329 out_all_pinned:
8330 /*
8331 * We reach balance because all tasks are pinned at this level so
8332 * we can't migrate them. Let the imbalance flag set so parent level
8333 * can try to migrate them.
8334 */
8335 schedstat_inc(sd->lb_balanced[idle]);
8336
8337 sd->nr_balance_failed = 0;
8338
8339 out_one_pinned:
8340 /* tune up the balancing interval */
8341 if (((env.flags & LBF_ALL_PINNED) &&
8342 sd->balance_interval < MAX_PINNED_INTERVAL) ||
8343 (sd->balance_interval < sd->max_interval))
8344 sd->balance_interval *= 2;
8345
8346 ld_moved = 0;
8347 out:
8348 return ld_moved;
8349 }
8350
8351 static inline unsigned long
8352 get_sd_balance_interval(struct sched_domain *sd, int cpu_busy)
8353 {
8354 unsigned long interval = sd->balance_interval;
8355
8356 if (cpu_busy)
8357 interval *= sd->busy_factor;
8358
8359 /* scale ms to jiffies */
8360 interval = msecs_to_jiffies(interval);
8361 interval = clamp(interval, 1UL, max_load_balance_interval);
8362
8363 return interval;
8364 }
8365
8366 static inline void
8367 update_next_balance(struct sched_domain *sd, unsigned long *next_balance)
8368 {
8369 unsigned long interval, next;
8370
8371 /* used by idle balance, so cpu_busy = 0 */
8372 interval = get_sd_balance_interval(sd, 0);
8373 next = sd->last_balance + interval;
8374
8375 if (time_after(*next_balance, next))
8376 *next_balance = next;
8377 }
8378
8379 /*
8380 * idle_balance is called by schedule() if this_cpu is about to become
8381 * idle. Attempts to pull tasks from other CPUs.
8382 */
8383 static int idle_balance(struct rq *this_rq, struct rq_flags *rf)
8384 {
8385 unsigned long next_balance = jiffies + HZ;
8386 int this_cpu = this_rq->cpu;
8387 struct sched_domain *sd;
8388 int pulled_task = 0;
8389 u64 curr_cost = 0;
8390
8391 /*
8392 * We must set idle_stamp _before_ calling idle_balance(), such that we
8393 * measure the duration of idle_balance() as idle time.
8394 */
8395 this_rq->idle_stamp = rq_clock(this_rq);
8396
8397 /*
8398 * This is OK, because current is on_cpu, which avoids it being picked
8399 * for load-balance and preemption/IRQs are still disabled avoiding
8400 * further scheduler activity on it and we're being very careful to
8401 * re-start the picking loop.
8402 */
8403 rq_unpin_lock(this_rq, rf);
8404
8405 if (this_rq->avg_idle < sysctl_sched_migration_cost ||
8406 !this_rq->rd->overload) {
8407 rcu_read_lock();
8408 sd = rcu_dereference_check_sched_domain(this_rq->sd);
8409 if (sd)
8410 update_next_balance(sd, &next_balance);
8411 rcu_read_unlock();
8412
8413 goto out;
8414 }
8415
8416 raw_spin_unlock(&this_rq->lock);
8417
8418 update_blocked_averages(this_cpu);
8419 rcu_read_lock();
8420 for_each_domain(this_cpu, sd) {
8421 int continue_balancing = 1;
8422 u64 t0, domain_cost;
8423
8424 if (!(sd->flags & SD_LOAD_BALANCE))
8425 continue;
8426
8427 if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost) {
8428 update_next_balance(sd, &next_balance);
8429 break;
8430 }
8431
8432 if (sd->flags & SD_BALANCE_NEWIDLE) {
8433 t0 = sched_clock_cpu(this_cpu);
8434
8435 pulled_task = load_balance(this_cpu, this_rq,
8436 sd, CPU_NEWLY_IDLE,
8437 &continue_balancing);
8438
8439 domain_cost = sched_clock_cpu(this_cpu) - t0;
8440 if (domain_cost > sd->max_newidle_lb_cost)
8441 sd->max_newidle_lb_cost = domain_cost;
8442
8443 curr_cost += domain_cost;
8444 }
8445
8446 update_next_balance(sd, &next_balance);
8447
8448 /*
8449 * Stop searching for tasks to pull if there are
8450 * now runnable tasks on this rq.
8451 */
8452 if (pulled_task || this_rq->nr_running > 0)
8453 break;
8454 }
8455 rcu_read_unlock();
8456
8457 raw_spin_lock(&this_rq->lock);
8458
8459 if (curr_cost > this_rq->max_idle_balance_cost)
8460 this_rq->max_idle_balance_cost = curr_cost;
8461
8462 /*
8463 * While browsing the domains, we released the rq lock, a task could
8464 * have been enqueued in the meantime. Since we're not going idle,
8465 * pretend we pulled a task.
8466 */
8467 if (this_rq->cfs.h_nr_running && !pulled_task)
8468 pulled_task = 1;
8469
8470 out:
8471 /* Move the next balance forward */
8472 if (time_after(this_rq->next_balance, next_balance))
8473 this_rq->next_balance = next_balance;
8474
8475 /* Is there a task of a high priority class? */
8476 if (this_rq->nr_running != this_rq->cfs.h_nr_running)
8477 pulled_task = -1;
8478
8479 if (pulled_task)
8480 this_rq->idle_stamp = 0;
8481
8482 rq_repin_lock(this_rq, rf);
8483
8484 return pulled_task;
8485 }
8486
8487 /*
8488 * active_load_balance_cpu_stop is run by cpu stopper. It pushes
8489 * running tasks off the busiest CPU onto idle CPUs. It requires at
8490 * least 1 task to be running on each physical CPU where possible, and
8491 * avoids physical / logical imbalances.
8492 */
8493 static int active_load_balance_cpu_stop(void *data)
8494 {
8495 struct rq *busiest_rq = data;
8496 int busiest_cpu = cpu_of(busiest_rq);
8497 int target_cpu = busiest_rq->push_cpu;
8498 struct rq *target_rq = cpu_rq(target_cpu);
8499 struct sched_domain *sd;
8500 struct task_struct *p = NULL;
8501 struct rq_flags rf;
8502
8503 rq_lock_irq(busiest_rq, &rf);
8504
8505 /* make sure the requested cpu hasn't gone down in the meantime */
8506 if (unlikely(busiest_cpu != smp_processor_id() ||
8507 !busiest_rq->active_balance))
8508 goto out_unlock;
8509
8510 /* Is there any task to move? */
8511 if (busiest_rq->nr_running <= 1)
8512 goto out_unlock;
8513
8514 /*
8515 * This condition is "impossible", if it occurs
8516 * we need to fix it. Originally reported by
8517 * Bjorn Helgaas on a 128-cpu setup.
8518 */
8519 BUG_ON(busiest_rq == target_rq);
8520
8521 /* Search for an sd spanning us and the target CPU. */
8522 rcu_read_lock();
8523 for_each_domain(target_cpu, sd) {
8524 if ((sd->flags & SD_LOAD_BALANCE) &&
8525 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
8526 break;
8527 }
8528
8529 if (likely(sd)) {
8530 struct lb_env env = {
8531 .sd = sd,
8532 .dst_cpu = target_cpu,
8533 .dst_rq = target_rq,
8534 .src_cpu = busiest_rq->cpu,
8535 .src_rq = busiest_rq,
8536 .idle = CPU_IDLE,
8537 };
8538
8539 schedstat_inc(sd->alb_count);
8540 update_rq_clock(busiest_rq);
8541
8542 p = detach_one_task(&env);
8543 if (p) {
8544 schedstat_inc(sd->alb_pushed);
8545 /* Active balancing done, reset the failure counter. */
8546 sd->nr_balance_failed = 0;
8547 } else {
8548 schedstat_inc(sd->alb_failed);
8549 }
8550 }
8551 rcu_read_unlock();
8552 out_unlock:
8553 busiest_rq->active_balance = 0;
8554 rq_unlock(busiest_rq, &rf);
8555
8556 if (p)
8557 attach_one_task(target_rq, p);
8558
8559 local_irq_enable();
8560
8561 return 0;
8562 }
8563
8564 static inline int on_null_domain(struct rq *rq)
8565 {
8566 return unlikely(!rcu_dereference_sched(rq->sd));
8567 }
8568
8569 #ifdef CONFIG_NO_HZ_COMMON
8570 /*
8571 * idle load balancing details
8572 * - When one of the busy CPUs notice that there may be an idle rebalancing
8573 * needed, they will kick the idle load balancer, which then does idle
8574 * load balancing for all the idle CPUs.
8575 */
8576 static struct {
8577 cpumask_var_t idle_cpus_mask;
8578 atomic_t nr_cpus;
8579 unsigned long next_balance; /* in jiffy units */
8580 } nohz ____cacheline_aligned;
8581
8582 static inline int find_new_ilb(void)
8583 {
8584 int ilb = cpumask_first(nohz.idle_cpus_mask);
8585
8586 if (ilb < nr_cpu_ids && idle_cpu(ilb))
8587 return ilb;
8588
8589 return nr_cpu_ids;
8590 }
8591
8592 /*
8593 * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
8594 * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
8595 * CPU (if there is one).
8596 */
8597 static void nohz_balancer_kick(void)
8598 {
8599 int ilb_cpu;
8600
8601 nohz.next_balance++;
8602
8603 ilb_cpu = find_new_ilb();
8604
8605 if (ilb_cpu >= nr_cpu_ids)
8606 return;
8607
8608 if (test_and_set_bit(NOHZ_BALANCE_KICK, nohz_flags(ilb_cpu)))
8609 return;
8610 /*
8611 * Use smp_send_reschedule() instead of resched_cpu().
8612 * This way we generate a sched IPI on the target cpu which
8613 * is idle. And the softirq performing nohz idle load balance
8614 * will be run before returning from the IPI.
8615 */
8616 smp_send_reschedule(ilb_cpu);
8617 return;
8618 }
8619
8620 void nohz_balance_exit_idle(unsigned int cpu)
8621 {
8622 if (unlikely(test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))) {
8623 /*
8624 * Completely isolated CPUs don't ever set, so we must test.
8625 */
8626 if (likely(cpumask_test_cpu(cpu, nohz.idle_cpus_mask))) {
8627 cpumask_clear_cpu(cpu, nohz.idle_cpus_mask);
8628 atomic_dec(&nohz.nr_cpus);
8629 }
8630 clear_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
8631 }
8632 }
8633
8634 static inline void set_cpu_sd_state_busy(void)
8635 {
8636 struct sched_domain *sd;
8637 int cpu = smp_processor_id();
8638
8639 rcu_read_lock();
8640 sd = rcu_dereference(per_cpu(sd_llc, cpu));
8641
8642 if (!sd || !sd->nohz_idle)
8643 goto unlock;
8644 sd->nohz_idle = 0;
8645
8646 atomic_inc(&sd->shared->nr_busy_cpus);
8647 unlock:
8648 rcu_read_unlock();
8649 }
8650
8651 void set_cpu_sd_state_idle(void)
8652 {
8653 struct sched_domain *sd;
8654 int cpu = smp_processor_id();
8655
8656 rcu_read_lock();
8657 sd = rcu_dereference(per_cpu(sd_llc, cpu));
8658
8659 if (!sd || sd->nohz_idle)
8660 goto unlock;
8661 sd->nohz_idle = 1;
8662
8663 atomic_dec(&sd->shared->nr_busy_cpus);
8664 unlock:
8665 rcu_read_unlock();
8666 }
8667
8668 /*
8669 * This routine will record that the cpu is going idle with tick stopped.
8670 * This info will be used in performing idle load balancing in the future.
8671 */
8672 void nohz_balance_enter_idle(int cpu)
8673 {
8674 /*
8675 * If this cpu is going down, then nothing needs to be done.
8676 */
8677 if (!cpu_active(cpu))
8678 return;
8679
8680 if (test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))
8681 return;
8682
8683 /*
8684 * If we're a completely isolated CPU, we don't play.
8685 */
8686 if (on_null_domain(cpu_rq(cpu)))
8687 return;
8688
8689 cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
8690 atomic_inc(&nohz.nr_cpus);
8691 set_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
8692 }
8693 #endif
8694
8695 static DEFINE_SPINLOCK(balancing);
8696
8697 /*
8698 * Scale the max load_balance interval with the number of CPUs in the system.
8699 * This trades load-balance latency on larger machines for less cross talk.
8700 */
8701 void update_max_interval(void)
8702 {
8703 max_load_balance_interval = HZ*num_online_cpus()/10;
8704 }
8705
8706 /*
8707 * It checks each scheduling domain to see if it is due to be balanced,
8708 * and initiates a balancing operation if so.
8709 *
8710 * Balancing parameters are set up in init_sched_domains.
8711 */
8712 static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle)
8713 {
8714 int continue_balancing = 1;
8715 int cpu = rq->cpu;
8716 unsigned long interval;
8717 struct sched_domain *sd;
8718 /* Earliest time when we have to do rebalance again */
8719 unsigned long next_balance = jiffies + 60*HZ;
8720 int update_next_balance = 0;
8721 int need_serialize, need_decay = 0;
8722 u64 max_cost = 0;
8723
8724 update_blocked_averages(cpu);
8725
8726 rcu_read_lock();
8727 for_each_domain(cpu, sd) {
8728 /*
8729 * Decay the newidle max times here because this is a regular
8730 * visit to all the domains. Decay ~1% per second.
8731 */
8732 if (time_after(jiffies, sd->next_decay_max_lb_cost)) {
8733 sd->max_newidle_lb_cost =
8734 (sd->max_newidle_lb_cost * 253) / 256;
8735 sd->next_decay_max_lb_cost = jiffies + HZ;
8736 need_decay = 1;
8737 }
8738 max_cost += sd->max_newidle_lb_cost;
8739
8740 if (!(sd->flags & SD_LOAD_BALANCE))
8741 continue;
8742
8743 /*
8744 * Stop the load balance at this level. There is another
8745 * CPU in our sched group which is doing load balancing more
8746 * actively.
8747 */
8748 if (!continue_balancing) {
8749 if (need_decay)
8750 continue;
8751 break;
8752 }
8753
8754 interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
8755
8756 need_serialize = sd->flags & SD_SERIALIZE;
8757 if (need_serialize) {
8758 if (!spin_trylock(&balancing))
8759 goto out;
8760 }
8761
8762 if (time_after_eq(jiffies, sd->last_balance + interval)) {
8763 if (load_balance(cpu, rq, sd, idle, &continue_balancing)) {
8764 /*
8765 * The LBF_DST_PINNED logic could have changed
8766 * env->dst_cpu, so we can't know our idle
8767 * state even if we migrated tasks. Update it.
8768 */
8769 idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE;
8770 }
8771 sd->last_balance = jiffies;
8772 interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
8773 }
8774 if (need_serialize)
8775 spin_unlock(&balancing);
8776 out:
8777 if (time_after(next_balance, sd->last_balance + interval)) {
8778 next_balance = sd->last_balance + interval;
8779 update_next_balance = 1;
8780 }
8781 }
8782 if (need_decay) {
8783 /*
8784 * Ensure the rq-wide value also decays but keep it at a
8785 * reasonable floor to avoid funnies with rq->avg_idle.
8786 */
8787 rq->max_idle_balance_cost =
8788 max((u64)sysctl_sched_migration_cost, max_cost);
8789 }
8790 rcu_read_unlock();
8791
8792 /*
8793 * next_balance will be updated only when there is a need.
8794 * When the cpu is attached to null domain for ex, it will not be
8795 * updated.
8796 */
8797 if (likely(update_next_balance)) {
8798 rq->next_balance = next_balance;
8799
8800 #ifdef CONFIG_NO_HZ_COMMON
8801 /*
8802 * If this CPU has been elected to perform the nohz idle
8803 * balance. Other idle CPUs have already rebalanced with
8804 * nohz_idle_balance() and nohz.next_balance has been
8805 * updated accordingly. This CPU is now running the idle load
8806 * balance for itself and we need to update the
8807 * nohz.next_balance accordingly.
8808 */
8809 if ((idle == CPU_IDLE) && time_after(nohz.next_balance, rq->next_balance))
8810 nohz.next_balance = rq->next_balance;
8811 #endif
8812 }
8813 }
8814
8815 #ifdef CONFIG_NO_HZ_COMMON
8816 /*
8817 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
8818 * rebalancing for all the cpus for whom scheduler ticks are stopped.
8819 */
8820 static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
8821 {
8822 int this_cpu = this_rq->cpu;
8823 struct rq *rq;
8824 int balance_cpu;
8825 /* Earliest time when we have to do rebalance again */
8826 unsigned long next_balance = jiffies + 60*HZ;
8827 int update_next_balance = 0;
8828
8829 if (idle != CPU_IDLE ||
8830 !test_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu)))
8831 goto end;
8832
8833 for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
8834 if (balance_cpu == this_cpu || !idle_cpu(balance_cpu))
8835 continue;
8836
8837 /*
8838 * If this cpu gets work to do, stop the load balancing
8839 * work being done for other cpus. Next load
8840 * balancing owner will pick it up.
8841 */
8842 if (need_resched())
8843 break;
8844
8845 rq = cpu_rq(balance_cpu);
8846
8847 /*
8848 * If time for next balance is due,
8849 * do the balance.
8850 */
8851 if (time_after_eq(jiffies, rq->next_balance)) {
8852 struct rq_flags rf;
8853
8854 rq_lock_irq(rq, &rf);
8855 update_rq_clock(rq);
8856 cpu_load_update_idle(rq);
8857 rq_unlock_irq(rq, &rf);
8858
8859 rebalance_domains(rq, CPU_IDLE);
8860 }
8861
8862 if (time_after(next_balance, rq->next_balance)) {
8863 next_balance = rq->next_balance;
8864 update_next_balance = 1;
8865 }
8866 }
8867
8868 /*
8869 * next_balance will be updated only when there is a need.
8870 * When the CPU is attached to null domain for ex, it will not be
8871 * updated.
8872 */
8873 if (likely(update_next_balance))
8874 nohz.next_balance = next_balance;
8875 end:
8876 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu));
8877 }
8878
8879 /*
8880 * Current heuristic for kicking the idle load balancer in the presence
8881 * of an idle cpu in the system.
8882 * - This rq has more than one task.
8883 * - This rq has at least one CFS task and the capacity of the CPU is
8884 * significantly reduced because of RT tasks or IRQs.
8885 * - At parent of LLC scheduler domain level, this cpu's scheduler group has
8886 * multiple busy cpu.
8887 * - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler
8888 * domain span are idle.
8889 */
8890 static inline bool nohz_kick_needed(struct rq *rq)
8891 {
8892 unsigned long now = jiffies;
8893 struct sched_domain_shared *sds;
8894 struct sched_domain *sd;
8895 int nr_busy, i, cpu = rq->cpu;
8896 bool kick = false;
8897
8898 if (unlikely(rq->idle_balance))
8899 return false;
8900
8901 /*
8902 * We may be recently in ticked or tickless idle mode. At the first
8903 * busy tick after returning from idle, we will update the busy stats.
8904 */
8905 set_cpu_sd_state_busy();
8906 nohz_balance_exit_idle(cpu);
8907
8908 /*
8909 * None are in tickless mode and hence no need for NOHZ idle load
8910 * balancing.
8911 */
8912 if (likely(!atomic_read(&nohz.nr_cpus)))
8913 return false;
8914
8915 if (time_before(now, nohz.next_balance))
8916 return false;
8917
8918 if (rq->nr_running >= 2)
8919 return true;
8920
8921 rcu_read_lock();
8922 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
8923 if (sds) {
8924 /*
8925 * XXX: write a coherent comment on why we do this.
8926 * See also: http://lkml.kernel.org/r/20111202010832.602203411@sbsiddha-desk.sc.intel.com
8927 */
8928 nr_busy = atomic_read(&sds->nr_busy_cpus);
8929 if (nr_busy > 1) {
8930 kick = true;
8931 goto unlock;
8932 }
8933
8934 }
8935
8936 sd = rcu_dereference(rq->sd);
8937 if (sd) {
8938 if ((rq->cfs.h_nr_running >= 1) &&
8939 check_cpu_capacity(rq, sd)) {
8940 kick = true;
8941 goto unlock;
8942 }
8943 }
8944
8945 sd = rcu_dereference(per_cpu(sd_asym, cpu));
8946 if (sd) {
8947 for_each_cpu(i, sched_domain_span(sd)) {
8948 if (i == cpu ||
8949 !cpumask_test_cpu(i, nohz.idle_cpus_mask))
8950 continue;
8951
8952 if (sched_asym_prefer(i, cpu)) {
8953 kick = true;
8954 goto unlock;
8955 }
8956 }
8957 }
8958 unlock:
8959 rcu_read_unlock();
8960 return kick;
8961 }
8962 #else
8963 static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) { }
8964 #endif
8965
8966 /*
8967 * run_rebalance_domains is triggered when needed from the scheduler tick.
8968 * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
8969 */
8970 static __latent_entropy void run_rebalance_domains(struct softirq_action *h)
8971 {
8972 struct rq *this_rq = this_rq();
8973 enum cpu_idle_type idle = this_rq->idle_balance ?
8974 CPU_IDLE : CPU_NOT_IDLE;
8975
8976 /*
8977 * If this cpu has a pending nohz_balance_kick, then do the
8978 * balancing on behalf of the other idle cpus whose ticks are
8979 * stopped. Do nohz_idle_balance *before* rebalance_domains to
8980 * give the idle cpus a chance to load balance. Else we may
8981 * load balance only within the local sched_domain hierarchy
8982 * and abort nohz_idle_balance altogether if we pull some load.
8983 */
8984 nohz_idle_balance(this_rq, idle);
8985 rebalance_domains(this_rq, idle);
8986 }
8987
8988 /*
8989 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
8990 */
8991 void trigger_load_balance(struct rq *rq)
8992 {
8993 /* Don't need to rebalance while attached to NULL domain */
8994 if (unlikely(on_null_domain(rq)))
8995 return;
8996
8997 if (time_after_eq(jiffies, rq->next_balance))
8998 raise_softirq(SCHED_SOFTIRQ);
8999 #ifdef CONFIG_NO_HZ_COMMON
9000 if (nohz_kick_needed(rq))
9001 nohz_balancer_kick();
9002 #endif
9003 }
9004
9005 static void rq_online_fair(struct rq *rq)
9006 {
9007 update_sysctl();
9008
9009 update_runtime_enabled(rq);
9010 }
9011
9012 static void rq_offline_fair(struct rq *rq)
9013 {
9014 update_sysctl();
9015
9016 /* Ensure any throttled groups are reachable by pick_next_task */
9017 unthrottle_offline_cfs_rqs(rq);
9018 }
9019
9020 #endif /* CONFIG_SMP */
9021
9022 /*
9023 * scheduler tick hitting a task of our scheduling class:
9024 */
9025 static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
9026 {
9027 struct cfs_rq *cfs_rq;
9028 struct sched_entity *se = &curr->se;
9029
9030 for_each_sched_entity(se) {
9031 cfs_rq = cfs_rq_of(se);
9032 entity_tick(cfs_rq, se, queued);
9033 }
9034
9035 if (static_branch_unlikely(&sched_numa_balancing))
9036 task_tick_numa(rq, curr);
9037 }
9038
9039 /*
9040 * called on fork with the child task as argument from the parent's context
9041 * - child not yet on the tasklist
9042 * - preemption disabled
9043 */
9044 static void task_fork_fair(struct task_struct *p)
9045 {
9046 struct cfs_rq *cfs_rq;
9047 struct sched_entity *se = &p->se, *curr;
9048 struct rq *rq = this_rq();
9049 struct rq_flags rf;
9050
9051 rq_lock(rq, &rf);
9052 update_rq_clock(rq);
9053
9054 cfs_rq = task_cfs_rq(current);
9055 curr = cfs_rq->curr;
9056 if (curr) {
9057 update_curr(cfs_rq);
9058 se->vruntime = curr->vruntime;
9059 }
9060 place_entity(cfs_rq, se, 1);
9061
9062 if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
9063 /*
9064 * Upon rescheduling, sched_class::put_prev_task() will place
9065 * 'current' within the tree based on its new key value.
9066 */
9067 swap(curr->vruntime, se->vruntime);
9068 resched_curr(rq);
9069 }
9070
9071 se->vruntime -= cfs_rq->min_vruntime;
9072 rq_unlock(rq, &rf);
9073 }
9074
9075 /*
9076 * Priority of the task has changed. Check to see if we preempt
9077 * the current task.
9078 */
9079 static void
9080 prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
9081 {
9082 if (!task_on_rq_queued(p))
9083 return;
9084
9085 /*
9086 * Reschedule if we are currently running on this runqueue and
9087 * our priority decreased, or if we are not currently running on
9088 * this runqueue and our priority is higher than the current's
9089 */
9090 if (rq->curr == p) {
9091 if (p->prio > oldprio)
9092 resched_curr(rq);
9093 } else
9094 check_preempt_curr(rq, p, 0);
9095 }
9096
9097 static inline bool vruntime_normalized(struct task_struct *p)
9098 {
9099 struct sched_entity *se = &p->se;
9100
9101 /*
9102 * In both the TASK_ON_RQ_QUEUED and TASK_ON_RQ_MIGRATING cases,
9103 * the dequeue_entity(.flags=0) will already have normalized the
9104 * vruntime.
9105 */
9106 if (p->on_rq)
9107 return true;
9108
9109 /*
9110 * When !on_rq, vruntime of the task has usually NOT been normalized.
9111 * But there are some cases where it has already been normalized:
9112 *
9113 * - A forked child which is waiting for being woken up by
9114 * wake_up_new_task().
9115 * - A task which has been woken up by try_to_wake_up() and
9116 * waiting for actually being woken up by sched_ttwu_pending().
9117 */
9118 if (!se->sum_exec_runtime || p->state == TASK_WAKING)
9119 return true;
9120
9121 return false;
9122 }
9123
9124 #ifdef CONFIG_FAIR_GROUP_SCHED
9125 /*
9126 * Propagate the changes of the sched_entity across the tg tree to make it
9127 * visible to the root
9128 */
9129 static void propagate_entity_cfs_rq(struct sched_entity *se)
9130 {
9131 struct cfs_rq *cfs_rq;
9132
9133 /* Start to propagate at parent */
9134 se = se->parent;
9135
9136 for_each_sched_entity(se) {
9137 cfs_rq = cfs_rq_of(se);
9138
9139 if (cfs_rq_throttled(cfs_rq))
9140 break;
9141
9142 update_load_avg(se, UPDATE_TG);
9143 }
9144 }
9145 #else
9146 static void propagate_entity_cfs_rq(struct sched_entity *se) { }
9147 #endif
9148
9149 static void detach_entity_cfs_rq(struct sched_entity *se)
9150 {
9151 struct cfs_rq *cfs_rq = cfs_rq_of(se);
9152
9153 /* Catch up with the cfs_rq and remove our load when we leave */
9154 update_load_avg(se, 0);
9155 detach_entity_load_avg(cfs_rq, se);
9156 update_tg_load_avg(cfs_rq, false);
9157 propagate_entity_cfs_rq(se);
9158 }
9159
9160 static void attach_entity_cfs_rq(struct sched_entity *se)
9161 {
9162 struct cfs_rq *cfs_rq = cfs_rq_of(se);
9163
9164 #ifdef CONFIG_FAIR_GROUP_SCHED
9165 /*
9166 * Since the real-depth could have been changed (only FAIR
9167 * class maintain depth value), reset depth properly.
9168 */
9169 se->depth = se->parent ? se->parent->depth + 1 : 0;
9170 #endif
9171
9172 /* Synchronize entity with its cfs_rq */
9173 update_load_avg(se, sched_feat(ATTACH_AGE_LOAD) ? 0 : SKIP_AGE_LOAD);
9174 attach_entity_load_avg(cfs_rq, se);
9175 update_tg_load_avg(cfs_rq, false);
9176 propagate_entity_cfs_rq(se);
9177 }
9178
9179 static void detach_task_cfs_rq(struct task_struct *p)
9180 {
9181 struct sched_entity *se = &p->se;
9182 struct cfs_rq *cfs_rq = cfs_rq_of(se);
9183
9184 if (!vruntime_normalized(p)) {
9185 /*
9186 * Fix up our vruntime so that the current sleep doesn't
9187 * cause 'unlimited' sleep bonus.
9188 */
9189 place_entity(cfs_rq, se, 0);
9190 se->vruntime -= cfs_rq->min_vruntime;
9191 }
9192
9193 detach_entity_cfs_rq(se);
9194 }
9195
9196 static void attach_task_cfs_rq(struct task_struct *p)
9197 {
9198 struct sched_entity *se = &p->se;
9199 struct cfs_rq *cfs_rq = cfs_rq_of(se);
9200
9201 attach_entity_cfs_rq(se);
9202
9203 if (!vruntime_normalized(p))
9204 se->vruntime += cfs_rq->min_vruntime;
9205 }
9206
9207 static void switched_from_fair(struct rq *rq, struct task_struct *p)
9208 {
9209 detach_task_cfs_rq(p);
9210 }
9211
9212 static void switched_to_fair(struct rq *rq, struct task_struct *p)
9213 {
9214 attach_task_cfs_rq(p);
9215
9216 if (task_on_rq_queued(p)) {
9217 /*
9218 * We were most likely switched from sched_rt, so
9219 * kick off the schedule if running, otherwise just see
9220 * if we can still preempt the current task.
9221 */
9222 if (rq->curr == p)
9223 resched_curr(rq);
9224 else
9225 check_preempt_curr(rq, p, 0);
9226 }
9227 }
9228
9229 /* Account for a task changing its policy or group.
9230 *
9231 * This routine is mostly called to set cfs_rq->curr field when a task
9232 * migrates between groups/classes.
9233 */
9234 static void set_curr_task_fair(struct rq *rq)
9235 {
9236 struct sched_entity *se = &rq->curr->se;
9237
9238 for_each_sched_entity(se) {
9239 struct cfs_rq *cfs_rq = cfs_rq_of(se);
9240
9241 set_next_entity(cfs_rq, se);
9242 /* ensure bandwidth has been allocated on our new cfs_rq */
9243 account_cfs_rq_runtime(cfs_rq, 0);
9244 }
9245 }
9246
9247 void init_cfs_rq(struct cfs_rq *cfs_rq)
9248 {
9249 cfs_rq->tasks_timeline = RB_ROOT;
9250 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
9251 #ifndef CONFIG_64BIT
9252 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
9253 #endif
9254 #ifdef CONFIG_SMP
9255 #ifdef CONFIG_FAIR_GROUP_SCHED
9256 cfs_rq->propagate_avg = 0;
9257 #endif
9258 atomic_long_set(&cfs_rq->removed_load_avg, 0);
9259 atomic_long_set(&cfs_rq->removed_util_avg, 0);
9260 #endif
9261 }
9262
9263 #ifdef CONFIG_FAIR_GROUP_SCHED
9264 static void task_set_group_fair(struct task_struct *p)
9265 {
9266 struct sched_entity *se = &p->se;
9267
9268 set_task_rq(p, task_cpu(p));
9269 se->depth = se->parent ? se->parent->depth + 1 : 0;
9270 }
9271
9272 static void task_move_group_fair(struct task_struct *p)
9273 {
9274 detach_task_cfs_rq(p);
9275 set_task_rq(p, task_cpu(p));
9276
9277 #ifdef CONFIG_SMP
9278 /* Tell se's cfs_rq has been changed -- migrated */
9279 p->se.avg.last_update_time = 0;
9280 #endif
9281 attach_task_cfs_rq(p);
9282 }
9283
9284 static void task_change_group_fair(struct task_struct *p, int type)
9285 {
9286 switch (type) {
9287 case TASK_SET_GROUP:
9288 task_set_group_fair(p);
9289 break;
9290
9291 case TASK_MOVE_GROUP:
9292 task_move_group_fair(p);
9293 break;
9294 }
9295 }
9296
9297 void free_fair_sched_group(struct task_group *tg)
9298 {
9299 int i;
9300
9301 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
9302
9303 for_each_possible_cpu(i) {
9304 if (tg->cfs_rq)
9305 kfree(tg->cfs_rq[i]);
9306 if (tg->se)
9307 kfree(tg->se[i]);
9308 }
9309
9310 kfree(tg->cfs_rq);
9311 kfree(tg->se);
9312 }
9313
9314 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
9315 {
9316 struct sched_entity *se;
9317 struct cfs_rq *cfs_rq;
9318 int i;
9319
9320 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
9321 if (!tg->cfs_rq)
9322 goto err;
9323 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
9324 if (!tg->se)
9325 goto err;
9326
9327 tg->shares = NICE_0_LOAD;
9328
9329 init_cfs_bandwidth(tg_cfs_bandwidth(tg));
9330
9331 for_each_possible_cpu(i) {
9332 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
9333 GFP_KERNEL, cpu_to_node(i));
9334 if (!cfs_rq)
9335 goto err;
9336
9337 se = kzalloc_node(sizeof(struct sched_entity),
9338 GFP_KERNEL, cpu_to_node(i));
9339 if (!se)
9340 goto err_free_rq;
9341
9342 init_cfs_rq(cfs_rq);
9343 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
9344 init_entity_runnable_average(se);
9345 }
9346
9347 return 1;
9348
9349 err_free_rq:
9350 kfree(cfs_rq);
9351 err:
9352 return 0;
9353 }
9354
9355 void online_fair_sched_group(struct task_group *tg)
9356 {
9357 struct sched_entity *se;
9358 struct rq *rq;
9359 int i;
9360
9361 for_each_possible_cpu(i) {
9362 rq = cpu_rq(i);
9363 se = tg->se[i];
9364
9365 raw_spin_lock_irq(&rq->lock);
9366 update_rq_clock(rq);
9367 attach_entity_cfs_rq(se);
9368 sync_throttle(tg, i);
9369 raw_spin_unlock_irq(&rq->lock);
9370 }
9371 }
9372
9373 void unregister_fair_sched_group(struct task_group *tg)
9374 {
9375 unsigned long flags;
9376 struct rq *rq;
9377 int cpu;
9378
9379 for_each_possible_cpu(cpu) {
9380 if (tg->se[cpu])
9381 remove_entity_load_avg(tg->se[cpu]);
9382
9383 /*
9384 * Only empty task groups can be destroyed; so we can speculatively
9385 * check on_list without danger of it being re-added.
9386 */
9387 if (!tg->cfs_rq[cpu]->on_list)
9388 continue;
9389
9390 rq = cpu_rq(cpu);
9391
9392 raw_spin_lock_irqsave(&rq->lock, flags);
9393 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
9394 raw_spin_unlock_irqrestore(&rq->lock, flags);
9395 }
9396 }
9397
9398 void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
9399 struct sched_entity *se, int cpu,
9400 struct sched_entity *parent)
9401 {
9402 struct rq *rq = cpu_rq(cpu);
9403
9404 cfs_rq->tg = tg;
9405 cfs_rq->rq = rq;
9406 init_cfs_rq_runtime(cfs_rq);
9407
9408 tg->cfs_rq[cpu] = cfs_rq;
9409 tg->se[cpu] = se;
9410
9411 /* se could be NULL for root_task_group */
9412 if (!se)
9413 return;
9414
9415 if (!parent) {
9416 se->cfs_rq = &rq->cfs;
9417 se->depth = 0;
9418 } else {
9419 se->cfs_rq = parent->my_q;
9420 se->depth = parent->depth + 1;
9421 }
9422
9423 se->my_q = cfs_rq;
9424 /* guarantee group entities always have weight */
9425 update_load_set(&se->load, NICE_0_LOAD);
9426 se->parent = parent;
9427 }
9428
9429 static DEFINE_MUTEX(shares_mutex);
9430
9431 int sched_group_set_shares(struct task_group *tg, unsigned long shares)
9432 {
9433 int i;
9434
9435 /*
9436 * We can't change the weight of the root cgroup.
9437 */
9438 if (!tg->se[0])
9439 return -EINVAL;
9440
9441 shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
9442
9443 mutex_lock(&shares_mutex);
9444 if (tg->shares == shares)
9445 goto done;
9446
9447 tg->shares = shares;
9448 for_each_possible_cpu(i) {
9449 struct rq *rq = cpu_rq(i);
9450 struct sched_entity *se = tg->se[i];
9451 struct rq_flags rf;
9452
9453 /* Propagate contribution to hierarchy */
9454 rq_lock_irqsave(rq, &rf);
9455 update_rq_clock(rq);
9456 for_each_sched_entity(se) {
9457 update_load_avg(se, UPDATE_TG);
9458 update_cfs_shares(se);
9459 }
9460 rq_unlock_irqrestore(rq, &rf);
9461 }
9462
9463 done:
9464 mutex_unlock(&shares_mutex);
9465 return 0;
9466 }
9467 #else /* CONFIG_FAIR_GROUP_SCHED */
9468
9469 void free_fair_sched_group(struct task_group *tg) { }
9470
9471 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
9472 {
9473 return 1;
9474 }
9475
9476 void online_fair_sched_group(struct task_group *tg) { }
9477
9478 void unregister_fair_sched_group(struct task_group *tg) { }
9479
9480 #endif /* CONFIG_FAIR_GROUP_SCHED */
9481
9482
9483 static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
9484 {
9485 struct sched_entity *se = &task->se;
9486 unsigned int rr_interval = 0;
9487
9488 /*
9489 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
9490 * idle runqueue:
9491 */
9492 if (rq->cfs.load.weight)
9493 rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
9494
9495 return rr_interval;
9496 }
9497
9498 /*
9499 * All the scheduling class methods:
9500 */
9501 const struct sched_class fair_sched_class = {
9502 .next = &idle_sched_class,
9503 .enqueue_task = enqueue_task_fair,
9504 .dequeue_task = dequeue_task_fair,
9505 .yield_task = yield_task_fair,
9506 .yield_to_task = yield_to_task_fair,
9507
9508 .check_preempt_curr = check_preempt_wakeup,
9509
9510 .pick_next_task = pick_next_task_fair,
9511 .put_prev_task = put_prev_task_fair,
9512
9513 #ifdef CONFIG_SMP
9514 .select_task_rq = select_task_rq_fair,
9515 .migrate_task_rq = migrate_task_rq_fair,
9516
9517 .rq_online = rq_online_fair,
9518 .rq_offline = rq_offline_fair,
9519
9520 .task_dead = task_dead_fair,
9521 .set_cpus_allowed = set_cpus_allowed_common,
9522 #endif
9523
9524 .set_curr_task = set_curr_task_fair,
9525 .task_tick = task_tick_fair,
9526 .task_fork = task_fork_fair,
9527
9528 .prio_changed = prio_changed_fair,
9529 .switched_from = switched_from_fair,
9530 .switched_to = switched_to_fair,
9531
9532 .get_rr_interval = get_rr_interval_fair,
9533
9534 .update_curr = update_curr_fair,
9535
9536 #ifdef CONFIG_FAIR_GROUP_SCHED
9537 .task_change_group = task_change_group_fair,
9538 #endif
9539 };
9540
9541 #ifdef CONFIG_SCHED_DEBUG
9542 void print_cfs_stats(struct seq_file *m, int cpu)
9543 {
9544 struct cfs_rq *cfs_rq, *pos;
9545
9546 rcu_read_lock();
9547 for_each_leaf_cfs_rq_safe(cpu_rq(cpu), cfs_rq, pos)
9548 print_cfs_rq(m, cpu, cfs_rq);
9549 rcu_read_unlock();
9550 }
9551
9552 #ifdef CONFIG_NUMA_BALANCING
9553 void show_numa_stats(struct task_struct *p, struct seq_file *m)
9554 {
9555 int node;
9556 unsigned long tsf = 0, tpf = 0, gsf = 0, gpf = 0;
9557
9558 for_each_online_node(node) {
9559 if (p->numa_faults) {
9560 tsf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 0)];
9561 tpf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 1)];
9562 }
9563 if (p->numa_group) {
9564 gsf = p->numa_group->faults[task_faults_idx(NUMA_MEM, node, 0)],
9565 gpf = p->numa_group->faults[task_faults_idx(NUMA_MEM, node, 1)];
9566 }
9567 print_numa_stats(m, node, tsf, tpf, gsf, gpf);
9568 }
9569 }
9570 #endif /* CONFIG_NUMA_BALANCING */
9571 #endif /* CONFIG_SCHED_DEBUG */
9572
9573 __init void init_sched_fair_class(void)
9574 {
9575 #ifdef CONFIG_SMP
9576 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
9577
9578 #ifdef CONFIG_NO_HZ_COMMON
9579 nohz.next_balance = jiffies;
9580 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
9581 #endif
9582 #endif /* SMP */
9583
9584 }