]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - kernel/sched/fair.c
sched: Calculate CPU's usage statistic and put it into struct sg_lb_stats::group_usage
[mirror_ubuntu-bionic-kernel.git] / kernel / sched / fair.c
1 /*
2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
3 *
4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
5 *
6 * Interactivity improvements by Mike Galbraith
7 * (C) 2007 Mike Galbraith <efault@gmx.de>
8 *
9 * Various enhancements by Dmitry Adamushko.
10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
11 *
12 * Group scheduling enhancements by Srivatsa Vaddagiri
13 * Copyright IBM Corporation, 2007
14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
15 *
16 * Scaled math optimizations by Thomas Gleixner
17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
18 *
19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
21 */
22
23 #include <linux/latencytop.h>
24 #include <linux/sched.h>
25 #include <linux/cpumask.h>
26 #include <linux/cpuidle.h>
27 #include <linux/slab.h>
28 #include <linux/profile.h>
29 #include <linux/interrupt.h>
30 #include <linux/mempolicy.h>
31 #include <linux/migrate.h>
32 #include <linux/task_work.h>
33
34 #include <trace/events/sched.h>
35
36 #include "sched.h"
37
38 /*
39 * Targeted preemption latency for CPU-bound tasks:
40 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
41 *
42 * NOTE: this latency value is not the same as the concept of
43 * 'timeslice length' - timeslices in CFS are of variable length
44 * and have no persistent notion like in traditional, time-slice
45 * based scheduling concepts.
46 *
47 * (to see the precise effective timeslice length of your workload,
48 * run vmstat and monitor the context-switches (cs) field)
49 */
50 unsigned int sysctl_sched_latency = 6000000ULL;
51 unsigned int normalized_sysctl_sched_latency = 6000000ULL;
52
53 /*
54 * The initial- and re-scaling of tunables is configurable
55 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
56 *
57 * Options are:
58 * SCHED_TUNABLESCALING_NONE - unscaled, always *1
59 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
60 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
61 */
62 enum sched_tunable_scaling sysctl_sched_tunable_scaling
63 = SCHED_TUNABLESCALING_LOG;
64
65 /*
66 * Minimal preemption granularity for CPU-bound tasks:
67 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
68 */
69 unsigned int sysctl_sched_min_granularity = 750000ULL;
70 unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
71
72 /*
73 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
74 */
75 static unsigned int sched_nr_latency = 8;
76
77 /*
78 * After fork, child runs first. If set to 0 (default) then
79 * parent will (try to) run first.
80 */
81 unsigned int sysctl_sched_child_runs_first __read_mostly;
82
83 /*
84 * SCHED_OTHER wake-up granularity.
85 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
86 *
87 * This option delays the preemption effects of decoupled workloads
88 * and reduces their over-scheduling. Synchronous workloads will still
89 * have immediate wakeup/sleep latencies.
90 */
91 unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
92 unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
93
94 const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
95
96 /*
97 * The exponential sliding window over which load is averaged for shares
98 * distribution.
99 * (default: 10msec)
100 */
101 unsigned int __read_mostly sysctl_sched_shares_window = 10000000UL;
102
103 #ifdef CONFIG_CFS_BANDWIDTH
104 /*
105 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
106 * each time a cfs_rq requests quota.
107 *
108 * Note: in the case that the slice exceeds the runtime remaining (either due
109 * to consumption or the quota being specified to be smaller than the slice)
110 * we will always only issue the remaining available time.
111 *
112 * default: 5 msec, units: microseconds
113 */
114 unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL;
115 #endif
116
117 static inline void update_load_add(struct load_weight *lw, unsigned long inc)
118 {
119 lw->weight += inc;
120 lw->inv_weight = 0;
121 }
122
123 static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
124 {
125 lw->weight -= dec;
126 lw->inv_weight = 0;
127 }
128
129 static inline void update_load_set(struct load_weight *lw, unsigned long w)
130 {
131 lw->weight = w;
132 lw->inv_weight = 0;
133 }
134
135 /*
136 * Increase the granularity value when there are more CPUs,
137 * because with more CPUs the 'effective latency' as visible
138 * to users decreases. But the relationship is not linear,
139 * so pick a second-best guess by going with the log2 of the
140 * number of CPUs.
141 *
142 * This idea comes from the SD scheduler of Con Kolivas:
143 */
144 static int get_update_sysctl_factor(void)
145 {
146 unsigned int cpus = min_t(int, num_online_cpus(), 8);
147 unsigned int factor;
148
149 switch (sysctl_sched_tunable_scaling) {
150 case SCHED_TUNABLESCALING_NONE:
151 factor = 1;
152 break;
153 case SCHED_TUNABLESCALING_LINEAR:
154 factor = cpus;
155 break;
156 case SCHED_TUNABLESCALING_LOG:
157 default:
158 factor = 1 + ilog2(cpus);
159 break;
160 }
161
162 return factor;
163 }
164
165 static void update_sysctl(void)
166 {
167 unsigned int factor = get_update_sysctl_factor();
168
169 #define SET_SYSCTL(name) \
170 (sysctl_##name = (factor) * normalized_sysctl_##name)
171 SET_SYSCTL(sched_min_granularity);
172 SET_SYSCTL(sched_latency);
173 SET_SYSCTL(sched_wakeup_granularity);
174 #undef SET_SYSCTL
175 }
176
177 void sched_init_granularity(void)
178 {
179 update_sysctl();
180 }
181
182 #define WMULT_CONST (~0U)
183 #define WMULT_SHIFT 32
184
185 static void __update_inv_weight(struct load_weight *lw)
186 {
187 unsigned long w;
188
189 if (likely(lw->inv_weight))
190 return;
191
192 w = scale_load_down(lw->weight);
193
194 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
195 lw->inv_weight = 1;
196 else if (unlikely(!w))
197 lw->inv_weight = WMULT_CONST;
198 else
199 lw->inv_weight = WMULT_CONST / w;
200 }
201
202 /*
203 * delta_exec * weight / lw.weight
204 * OR
205 * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT
206 *
207 * Either weight := NICE_0_LOAD and lw \e prio_to_wmult[], in which case
208 * we're guaranteed shift stays positive because inv_weight is guaranteed to
209 * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22.
210 *
211 * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus
212 * weight/lw.weight <= 1, and therefore our shift will also be positive.
213 */
214 static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw)
215 {
216 u64 fact = scale_load_down(weight);
217 int shift = WMULT_SHIFT;
218
219 __update_inv_weight(lw);
220
221 if (unlikely(fact >> 32)) {
222 while (fact >> 32) {
223 fact >>= 1;
224 shift--;
225 }
226 }
227
228 /* hint to use a 32x32->64 mul */
229 fact = (u64)(u32)fact * lw->inv_weight;
230
231 while (fact >> 32) {
232 fact >>= 1;
233 shift--;
234 }
235
236 return mul_u64_u32_shr(delta_exec, fact, shift);
237 }
238
239
240 const struct sched_class fair_sched_class;
241
242 /**************************************************************
243 * CFS operations on generic schedulable entities:
244 */
245
246 #ifdef CONFIG_FAIR_GROUP_SCHED
247
248 /* cpu runqueue to which this cfs_rq is attached */
249 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
250 {
251 return cfs_rq->rq;
252 }
253
254 /* An entity is a task if it doesn't "own" a runqueue */
255 #define entity_is_task(se) (!se->my_q)
256
257 static inline struct task_struct *task_of(struct sched_entity *se)
258 {
259 #ifdef CONFIG_SCHED_DEBUG
260 WARN_ON_ONCE(!entity_is_task(se));
261 #endif
262 return container_of(se, struct task_struct, se);
263 }
264
265 /* Walk up scheduling entities hierarchy */
266 #define for_each_sched_entity(se) \
267 for (; se; se = se->parent)
268
269 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
270 {
271 return p->se.cfs_rq;
272 }
273
274 /* runqueue on which this entity is (to be) queued */
275 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
276 {
277 return se->cfs_rq;
278 }
279
280 /* runqueue "owned" by this group */
281 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
282 {
283 return grp->my_q;
284 }
285
286 static void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq,
287 int force_update);
288
289 static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
290 {
291 if (!cfs_rq->on_list) {
292 /*
293 * Ensure we either appear before our parent (if already
294 * enqueued) or force our parent to appear after us when it is
295 * enqueued. The fact that we always enqueue bottom-up
296 * reduces this to two cases.
297 */
298 if (cfs_rq->tg->parent &&
299 cfs_rq->tg->parent->cfs_rq[cpu_of(rq_of(cfs_rq))]->on_list) {
300 list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
301 &rq_of(cfs_rq)->leaf_cfs_rq_list);
302 } else {
303 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
304 &rq_of(cfs_rq)->leaf_cfs_rq_list);
305 }
306
307 cfs_rq->on_list = 1;
308 /* We should have no load, but we need to update last_decay. */
309 update_cfs_rq_blocked_load(cfs_rq, 0);
310 }
311 }
312
313 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
314 {
315 if (cfs_rq->on_list) {
316 list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
317 cfs_rq->on_list = 0;
318 }
319 }
320
321 /* Iterate thr' all leaf cfs_rq's on a runqueue */
322 #define for_each_leaf_cfs_rq(rq, cfs_rq) \
323 list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
324
325 /* Do the two (enqueued) entities belong to the same group ? */
326 static inline struct cfs_rq *
327 is_same_group(struct sched_entity *se, struct sched_entity *pse)
328 {
329 if (se->cfs_rq == pse->cfs_rq)
330 return se->cfs_rq;
331
332 return NULL;
333 }
334
335 static inline struct sched_entity *parent_entity(struct sched_entity *se)
336 {
337 return se->parent;
338 }
339
340 static void
341 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
342 {
343 int se_depth, pse_depth;
344
345 /*
346 * preemption test can be made between sibling entities who are in the
347 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
348 * both tasks until we find their ancestors who are siblings of common
349 * parent.
350 */
351
352 /* First walk up until both entities are at same depth */
353 se_depth = (*se)->depth;
354 pse_depth = (*pse)->depth;
355
356 while (se_depth > pse_depth) {
357 se_depth--;
358 *se = parent_entity(*se);
359 }
360
361 while (pse_depth > se_depth) {
362 pse_depth--;
363 *pse = parent_entity(*pse);
364 }
365
366 while (!is_same_group(*se, *pse)) {
367 *se = parent_entity(*se);
368 *pse = parent_entity(*pse);
369 }
370 }
371
372 #else /* !CONFIG_FAIR_GROUP_SCHED */
373
374 static inline struct task_struct *task_of(struct sched_entity *se)
375 {
376 return container_of(se, struct task_struct, se);
377 }
378
379 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
380 {
381 return container_of(cfs_rq, struct rq, cfs);
382 }
383
384 #define entity_is_task(se) 1
385
386 #define for_each_sched_entity(se) \
387 for (; se; se = NULL)
388
389 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
390 {
391 return &task_rq(p)->cfs;
392 }
393
394 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
395 {
396 struct task_struct *p = task_of(se);
397 struct rq *rq = task_rq(p);
398
399 return &rq->cfs;
400 }
401
402 /* runqueue "owned" by this group */
403 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
404 {
405 return NULL;
406 }
407
408 static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
409 {
410 }
411
412 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
413 {
414 }
415
416 #define for_each_leaf_cfs_rq(rq, cfs_rq) \
417 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
418
419 static inline struct sched_entity *parent_entity(struct sched_entity *se)
420 {
421 return NULL;
422 }
423
424 static inline void
425 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
426 {
427 }
428
429 #endif /* CONFIG_FAIR_GROUP_SCHED */
430
431 static __always_inline
432 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec);
433
434 /**************************************************************
435 * Scheduling class tree data structure manipulation methods:
436 */
437
438 static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
439 {
440 s64 delta = (s64)(vruntime - max_vruntime);
441 if (delta > 0)
442 max_vruntime = vruntime;
443
444 return max_vruntime;
445 }
446
447 static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
448 {
449 s64 delta = (s64)(vruntime - min_vruntime);
450 if (delta < 0)
451 min_vruntime = vruntime;
452
453 return min_vruntime;
454 }
455
456 static inline int entity_before(struct sched_entity *a,
457 struct sched_entity *b)
458 {
459 return (s64)(a->vruntime - b->vruntime) < 0;
460 }
461
462 static void update_min_vruntime(struct cfs_rq *cfs_rq)
463 {
464 u64 vruntime = cfs_rq->min_vruntime;
465
466 if (cfs_rq->curr)
467 vruntime = cfs_rq->curr->vruntime;
468
469 if (cfs_rq->rb_leftmost) {
470 struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
471 struct sched_entity,
472 run_node);
473
474 if (!cfs_rq->curr)
475 vruntime = se->vruntime;
476 else
477 vruntime = min_vruntime(vruntime, se->vruntime);
478 }
479
480 /* ensure we never gain time by being placed backwards. */
481 cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
482 #ifndef CONFIG_64BIT
483 smp_wmb();
484 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
485 #endif
486 }
487
488 /*
489 * Enqueue an entity into the rb-tree:
490 */
491 static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
492 {
493 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
494 struct rb_node *parent = NULL;
495 struct sched_entity *entry;
496 int leftmost = 1;
497
498 /*
499 * Find the right place in the rbtree:
500 */
501 while (*link) {
502 parent = *link;
503 entry = rb_entry(parent, struct sched_entity, run_node);
504 /*
505 * We dont care about collisions. Nodes with
506 * the same key stay together.
507 */
508 if (entity_before(se, entry)) {
509 link = &parent->rb_left;
510 } else {
511 link = &parent->rb_right;
512 leftmost = 0;
513 }
514 }
515
516 /*
517 * Maintain a cache of leftmost tree entries (it is frequently
518 * used):
519 */
520 if (leftmost)
521 cfs_rq->rb_leftmost = &se->run_node;
522
523 rb_link_node(&se->run_node, parent, link);
524 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
525 }
526
527 static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
528 {
529 if (cfs_rq->rb_leftmost == &se->run_node) {
530 struct rb_node *next_node;
531
532 next_node = rb_next(&se->run_node);
533 cfs_rq->rb_leftmost = next_node;
534 }
535
536 rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
537 }
538
539 struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
540 {
541 struct rb_node *left = cfs_rq->rb_leftmost;
542
543 if (!left)
544 return NULL;
545
546 return rb_entry(left, struct sched_entity, run_node);
547 }
548
549 static struct sched_entity *__pick_next_entity(struct sched_entity *se)
550 {
551 struct rb_node *next = rb_next(&se->run_node);
552
553 if (!next)
554 return NULL;
555
556 return rb_entry(next, struct sched_entity, run_node);
557 }
558
559 #ifdef CONFIG_SCHED_DEBUG
560 struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
561 {
562 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
563
564 if (!last)
565 return NULL;
566
567 return rb_entry(last, struct sched_entity, run_node);
568 }
569
570 /**************************************************************
571 * Scheduling class statistics methods:
572 */
573
574 int sched_proc_update_handler(struct ctl_table *table, int write,
575 void __user *buffer, size_t *lenp,
576 loff_t *ppos)
577 {
578 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
579 int factor = get_update_sysctl_factor();
580
581 if (ret || !write)
582 return ret;
583
584 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
585 sysctl_sched_min_granularity);
586
587 #define WRT_SYSCTL(name) \
588 (normalized_sysctl_##name = sysctl_##name / (factor))
589 WRT_SYSCTL(sched_min_granularity);
590 WRT_SYSCTL(sched_latency);
591 WRT_SYSCTL(sched_wakeup_granularity);
592 #undef WRT_SYSCTL
593
594 return 0;
595 }
596 #endif
597
598 /*
599 * delta /= w
600 */
601 static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se)
602 {
603 if (unlikely(se->load.weight != NICE_0_LOAD))
604 delta = __calc_delta(delta, NICE_0_LOAD, &se->load);
605
606 return delta;
607 }
608
609 /*
610 * The idea is to set a period in which each task runs once.
611 *
612 * When there are too many tasks (sched_nr_latency) we have to stretch
613 * this period because otherwise the slices get too small.
614 *
615 * p = (nr <= nl) ? l : l*nr/nl
616 */
617 static u64 __sched_period(unsigned long nr_running)
618 {
619 u64 period = sysctl_sched_latency;
620 unsigned long nr_latency = sched_nr_latency;
621
622 if (unlikely(nr_running > nr_latency)) {
623 period = sysctl_sched_min_granularity;
624 period *= nr_running;
625 }
626
627 return period;
628 }
629
630 /*
631 * We calculate the wall-time slice from the period by taking a part
632 * proportional to the weight.
633 *
634 * s = p*P[w/rw]
635 */
636 static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
637 {
638 u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
639
640 for_each_sched_entity(se) {
641 struct load_weight *load;
642 struct load_weight lw;
643
644 cfs_rq = cfs_rq_of(se);
645 load = &cfs_rq->load;
646
647 if (unlikely(!se->on_rq)) {
648 lw = cfs_rq->load;
649
650 update_load_add(&lw, se->load.weight);
651 load = &lw;
652 }
653 slice = __calc_delta(slice, se->load.weight, load);
654 }
655 return slice;
656 }
657
658 /*
659 * We calculate the vruntime slice of a to-be-inserted task.
660 *
661 * vs = s/w
662 */
663 static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
664 {
665 return calc_delta_fair(sched_slice(cfs_rq, se), se);
666 }
667
668 #ifdef CONFIG_SMP
669 static int select_idle_sibling(struct task_struct *p, int cpu);
670 static unsigned long task_h_load(struct task_struct *p);
671
672 static inline void __update_task_entity_contrib(struct sched_entity *se);
673 static inline void __update_task_entity_utilization(struct sched_entity *se);
674
675 /* Give new task start runnable values to heavy its load in infant time */
676 void init_task_runnable_average(struct task_struct *p)
677 {
678 u32 slice;
679
680 slice = sched_slice(task_cfs_rq(p), &p->se) >> 10;
681 p->se.avg.runnable_avg_sum = p->se.avg.running_avg_sum = slice;
682 p->se.avg.avg_period = slice;
683 __update_task_entity_contrib(&p->se);
684 __update_task_entity_utilization(&p->se);
685 }
686 #else
687 void init_task_runnable_average(struct task_struct *p)
688 {
689 }
690 #endif
691
692 /*
693 * Update the current task's runtime statistics.
694 */
695 static void update_curr(struct cfs_rq *cfs_rq)
696 {
697 struct sched_entity *curr = cfs_rq->curr;
698 u64 now = rq_clock_task(rq_of(cfs_rq));
699 u64 delta_exec;
700
701 if (unlikely(!curr))
702 return;
703
704 delta_exec = now - curr->exec_start;
705 if (unlikely((s64)delta_exec <= 0))
706 return;
707
708 curr->exec_start = now;
709
710 schedstat_set(curr->statistics.exec_max,
711 max(delta_exec, curr->statistics.exec_max));
712
713 curr->sum_exec_runtime += delta_exec;
714 schedstat_add(cfs_rq, exec_clock, delta_exec);
715
716 curr->vruntime += calc_delta_fair(delta_exec, curr);
717 update_min_vruntime(cfs_rq);
718
719 if (entity_is_task(curr)) {
720 struct task_struct *curtask = task_of(curr);
721
722 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
723 cpuacct_charge(curtask, delta_exec);
724 account_group_exec_runtime(curtask, delta_exec);
725 }
726
727 account_cfs_rq_runtime(cfs_rq, delta_exec);
728 }
729
730 static void update_curr_fair(struct rq *rq)
731 {
732 update_curr(cfs_rq_of(&rq->curr->se));
733 }
734
735 static inline void
736 update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
737 {
738 schedstat_set(se->statistics.wait_start, rq_clock(rq_of(cfs_rq)));
739 }
740
741 /*
742 * Task is being enqueued - update stats:
743 */
744 static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
745 {
746 /*
747 * Are we enqueueing a waiting task? (for current tasks
748 * a dequeue/enqueue event is a NOP)
749 */
750 if (se != cfs_rq->curr)
751 update_stats_wait_start(cfs_rq, se);
752 }
753
754 static void
755 update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
756 {
757 schedstat_set(se->statistics.wait_max, max(se->statistics.wait_max,
758 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start));
759 schedstat_set(se->statistics.wait_count, se->statistics.wait_count + 1);
760 schedstat_set(se->statistics.wait_sum, se->statistics.wait_sum +
761 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start);
762 #ifdef CONFIG_SCHEDSTATS
763 if (entity_is_task(se)) {
764 trace_sched_stat_wait(task_of(se),
765 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start);
766 }
767 #endif
768 schedstat_set(se->statistics.wait_start, 0);
769 }
770
771 static inline void
772 update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
773 {
774 /*
775 * Mark the end of the wait period if dequeueing a
776 * waiting task:
777 */
778 if (se != cfs_rq->curr)
779 update_stats_wait_end(cfs_rq, se);
780 }
781
782 /*
783 * We are picking a new current task - update its stats:
784 */
785 static inline void
786 update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
787 {
788 /*
789 * We are starting a new run period:
790 */
791 se->exec_start = rq_clock_task(rq_of(cfs_rq));
792 }
793
794 /**************************************************
795 * Scheduling class queueing methods:
796 */
797
798 #ifdef CONFIG_NUMA_BALANCING
799 /*
800 * Approximate time to scan a full NUMA task in ms. The task scan period is
801 * calculated based on the tasks virtual memory size and
802 * numa_balancing_scan_size.
803 */
804 unsigned int sysctl_numa_balancing_scan_period_min = 1000;
805 unsigned int sysctl_numa_balancing_scan_period_max = 60000;
806
807 /* Portion of address space to scan in MB */
808 unsigned int sysctl_numa_balancing_scan_size = 256;
809
810 /* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
811 unsigned int sysctl_numa_balancing_scan_delay = 1000;
812
813 static unsigned int task_nr_scan_windows(struct task_struct *p)
814 {
815 unsigned long rss = 0;
816 unsigned long nr_scan_pages;
817
818 /*
819 * Calculations based on RSS as non-present and empty pages are skipped
820 * by the PTE scanner and NUMA hinting faults should be trapped based
821 * on resident pages
822 */
823 nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT);
824 rss = get_mm_rss(p->mm);
825 if (!rss)
826 rss = nr_scan_pages;
827
828 rss = round_up(rss, nr_scan_pages);
829 return rss / nr_scan_pages;
830 }
831
832 /* For sanitys sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
833 #define MAX_SCAN_WINDOW 2560
834
835 static unsigned int task_scan_min(struct task_struct *p)
836 {
837 unsigned int scan_size = ACCESS_ONCE(sysctl_numa_balancing_scan_size);
838 unsigned int scan, floor;
839 unsigned int windows = 1;
840
841 if (scan_size < MAX_SCAN_WINDOW)
842 windows = MAX_SCAN_WINDOW / scan_size;
843 floor = 1000 / windows;
844
845 scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
846 return max_t(unsigned int, floor, scan);
847 }
848
849 static unsigned int task_scan_max(struct task_struct *p)
850 {
851 unsigned int smin = task_scan_min(p);
852 unsigned int smax;
853
854 /* Watch for min being lower than max due to floor calculations */
855 smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);
856 return max(smin, smax);
857 }
858
859 static void account_numa_enqueue(struct rq *rq, struct task_struct *p)
860 {
861 rq->nr_numa_running += (p->numa_preferred_nid != -1);
862 rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p));
863 }
864
865 static void account_numa_dequeue(struct rq *rq, struct task_struct *p)
866 {
867 rq->nr_numa_running -= (p->numa_preferred_nid != -1);
868 rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p));
869 }
870
871 struct numa_group {
872 atomic_t refcount;
873
874 spinlock_t lock; /* nr_tasks, tasks */
875 int nr_tasks;
876 pid_t gid;
877
878 struct rcu_head rcu;
879 nodemask_t active_nodes;
880 unsigned long total_faults;
881 /*
882 * Faults_cpu is used to decide whether memory should move
883 * towards the CPU. As a consequence, these stats are weighted
884 * more by CPU use than by memory faults.
885 */
886 unsigned long *faults_cpu;
887 unsigned long faults[0];
888 };
889
890 /* Shared or private faults. */
891 #define NR_NUMA_HINT_FAULT_TYPES 2
892
893 /* Memory and CPU locality */
894 #define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2)
895
896 /* Averaged statistics, and temporary buffers. */
897 #define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2)
898
899 pid_t task_numa_group_id(struct task_struct *p)
900 {
901 return p->numa_group ? p->numa_group->gid : 0;
902 }
903
904 /*
905 * The averaged statistics, shared & private, memory & cpu,
906 * occupy the first half of the array. The second half of the
907 * array is for current counters, which are averaged into the
908 * first set by task_numa_placement.
909 */
910 static inline int task_faults_idx(enum numa_faults_stats s, int nid, int priv)
911 {
912 return NR_NUMA_HINT_FAULT_TYPES * (s * nr_node_ids + nid) + priv;
913 }
914
915 static inline unsigned long task_faults(struct task_struct *p, int nid)
916 {
917 if (!p->numa_faults)
918 return 0;
919
920 return p->numa_faults[task_faults_idx(NUMA_MEM, nid, 0)] +
921 p->numa_faults[task_faults_idx(NUMA_MEM, nid, 1)];
922 }
923
924 static inline unsigned long group_faults(struct task_struct *p, int nid)
925 {
926 if (!p->numa_group)
927 return 0;
928
929 return p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 0)] +
930 p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 1)];
931 }
932
933 static inline unsigned long group_faults_cpu(struct numa_group *group, int nid)
934 {
935 return group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 0)] +
936 group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 1)];
937 }
938
939 /* Handle placement on systems where not all nodes are directly connected. */
940 static unsigned long score_nearby_nodes(struct task_struct *p, int nid,
941 int maxdist, bool task)
942 {
943 unsigned long score = 0;
944 int node;
945
946 /*
947 * All nodes are directly connected, and the same distance
948 * from each other. No need for fancy placement algorithms.
949 */
950 if (sched_numa_topology_type == NUMA_DIRECT)
951 return 0;
952
953 /*
954 * This code is called for each node, introducing N^2 complexity,
955 * which should be ok given the number of nodes rarely exceeds 8.
956 */
957 for_each_online_node(node) {
958 unsigned long faults;
959 int dist = node_distance(nid, node);
960
961 /*
962 * The furthest away nodes in the system are not interesting
963 * for placement; nid was already counted.
964 */
965 if (dist == sched_max_numa_distance || node == nid)
966 continue;
967
968 /*
969 * On systems with a backplane NUMA topology, compare groups
970 * of nodes, and move tasks towards the group with the most
971 * memory accesses. When comparing two nodes at distance
972 * "hoplimit", only nodes closer by than "hoplimit" are part
973 * of each group. Skip other nodes.
974 */
975 if (sched_numa_topology_type == NUMA_BACKPLANE &&
976 dist > maxdist)
977 continue;
978
979 /* Add up the faults from nearby nodes. */
980 if (task)
981 faults = task_faults(p, node);
982 else
983 faults = group_faults(p, node);
984
985 /*
986 * On systems with a glueless mesh NUMA topology, there are
987 * no fixed "groups of nodes". Instead, nodes that are not
988 * directly connected bounce traffic through intermediate
989 * nodes; a numa_group can occupy any set of nodes.
990 * The further away a node is, the less the faults count.
991 * This seems to result in good task placement.
992 */
993 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
994 faults *= (sched_max_numa_distance - dist);
995 faults /= (sched_max_numa_distance - LOCAL_DISTANCE);
996 }
997
998 score += faults;
999 }
1000
1001 return score;
1002 }
1003
1004 /*
1005 * These return the fraction of accesses done by a particular task, or
1006 * task group, on a particular numa node. The group weight is given a
1007 * larger multiplier, in order to group tasks together that are almost
1008 * evenly spread out between numa nodes.
1009 */
1010 static inline unsigned long task_weight(struct task_struct *p, int nid,
1011 int dist)
1012 {
1013 unsigned long faults, total_faults;
1014
1015 if (!p->numa_faults)
1016 return 0;
1017
1018 total_faults = p->total_numa_faults;
1019
1020 if (!total_faults)
1021 return 0;
1022
1023 faults = task_faults(p, nid);
1024 faults += score_nearby_nodes(p, nid, dist, true);
1025
1026 return 1000 * faults / total_faults;
1027 }
1028
1029 static inline unsigned long group_weight(struct task_struct *p, int nid,
1030 int dist)
1031 {
1032 unsigned long faults, total_faults;
1033
1034 if (!p->numa_group)
1035 return 0;
1036
1037 total_faults = p->numa_group->total_faults;
1038
1039 if (!total_faults)
1040 return 0;
1041
1042 faults = group_faults(p, nid);
1043 faults += score_nearby_nodes(p, nid, dist, false);
1044
1045 return 1000 * faults / total_faults;
1046 }
1047
1048 bool should_numa_migrate_memory(struct task_struct *p, struct page * page,
1049 int src_nid, int dst_cpu)
1050 {
1051 struct numa_group *ng = p->numa_group;
1052 int dst_nid = cpu_to_node(dst_cpu);
1053 int last_cpupid, this_cpupid;
1054
1055 this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid);
1056
1057 /*
1058 * Multi-stage node selection is used in conjunction with a periodic
1059 * migration fault to build a temporal task<->page relation. By using
1060 * a two-stage filter we remove short/unlikely relations.
1061 *
1062 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate
1063 * a task's usage of a particular page (n_p) per total usage of this
1064 * page (n_t) (in a given time-span) to a probability.
1065 *
1066 * Our periodic faults will sample this probability and getting the
1067 * same result twice in a row, given these samples are fully
1068 * independent, is then given by P(n)^2, provided our sample period
1069 * is sufficiently short compared to the usage pattern.
1070 *
1071 * This quadric squishes small probabilities, making it less likely we
1072 * act on an unlikely task<->page relation.
1073 */
1074 last_cpupid = page_cpupid_xchg_last(page, this_cpupid);
1075 if (!cpupid_pid_unset(last_cpupid) &&
1076 cpupid_to_nid(last_cpupid) != dst_nid)
1077 return false;
1078
1079 /* Always allow migrate on private faults */
1080 if (cpupid_match_pid(p, last_cpupid))
1081 return true;
1082
1083 /* A shared fault, but p->numa_group has not been set up yet. */
1084 if (!ng)
1085 return true;
1086
1087 /*
1088 * Do not migrate if the destination is not a node that
1089 * is actively used by this numa group.
1090 */
1091 if (!node_isset(dst_nid, ng->active_nodes))
1092 return false;
1093
1094 /*
1095 * Source is a node that is not actively used by this
1096 * numa group, while the destination is. Migrate.
1097 */
1098 if (!node_isset(src_nid, ng->active_nodes))
1099 return true;
1100
1101 /*
1102 * Both source and destination are nodes in active
1103 * use by this numa group. Maximize memory bandwidth
1104 * by migrating from more heavily used groups, to less
1105 * heavily used ones, spreading the load around.
1106 * Use a 1/4 hysteresis to avoid spurious page movement.
1107 */
1108 return group_faults(p, dst_nid) < (group_faults(p, src_nid) * 3 / 4);
1109 }
1110
1111 static unsigned long weighted_cpuload(const int cpu);
1112 static unsigned long source_load(int cpu, int type);
1113 static unsigned long target_load(int cpu, int type);
1114 static unsigned long capacity_of(int cpu);
1115 static long effective_load(struct task_group *tg, int cpu, long wl, long wg);
1116
1117 /* Cached statistics for all CPUs within a node */
1118 struct numa_stats {
1119 unsigned long nr_running;
1120 unsigned long load;
1121
1122 /* Total compute capacity of CPUs on a node */
1123 unsigned long compute_capacity;
1124
1125 /* Approximate capacity in terms of runnable tasks on a node */
1126 unsigned long task_capacity;
1127 int has_free_capacity;
1128 };
1129
1130 /*
1131 * XXX borrowed from update_sg_lb_stats
1132 */
1133 static void update_numa_stats(struct numa_stats *ns, int nid)
1134 {
1135 int smt, cpu, cpus = 0;
1136 unsigned long capacity;
1137
1138 memset(ns, 0, sizeof(*ns));
1139 for_each_cpu(cpu, cpumask_of_node(nid)) {
1140 struct rq *rq = cpu_rq(cpu);
1141
1142 ns->nr_running += rq->nr_running;
1143 ns->load += weighted_cpuload(cpu);
1144 ns->compute_capacity += capacity_of(cpu);
1145
1146 cpus++;
1147 }
1148
1149 /*
1150 * If we raced with hotplug and there are no CPUs left in our mask
1151 * the @ns structure is NULL'ed and task_numa_compare() will
1152 * not find this node attractive.
1153 *
1154 * We'll either bail at !has_free_capacity, or we'll detect a huge
1155 * imbalance and bail there.
1156 */
1157 if (!cpus)
1158 return;
1159
1160 /* smt := ceil(cpus / capacity), assumes: 1 < smt_power < 2 */
1161 smt = DIV_ROUND_UP(SCHED_CAPACITY_SCALE * cpus, ns->compute_capacity);
1162 capacity = cpus / smt; /* cores */
1163
1164 ns->task_capacity = min_t(unsigned, capacity,
1165 DIV_ROUND_CLOSEST(ns->compute_capacity, SCHED_CAPACITY_SCALE));
1166 ns->has_free_capacity = (ns->nr_running < ns->task_capacity);
1167 }
1168
1169 struct task_numa_env {
1170 struct task_struct *p;
1171
1172 int src_cpu, src_nid;
1173 int dst_cpu, dst_nid;
1174
1175 struct numa_stats src_stats, dst_stats;
1176
1177 int imbalance_pct;
1178 int dist;
1179
1180 struct task_struct *best_task;
1181 long best_imp;
1182 int best_cpu;
1183 };
1184
1185 static void task_numa_assign(struct task_numa_env *env,
1186 struct task_struct *p, long imp)
1187 {
1188 if (env->best_task)
1189 put_task_struct(env->best_task);
1190 if (p)
1191 get_task_struct(p);
1192
1193 env->best_task = p;
1194 env->best_imp = imp;
1195 env->best_cpu = env->dst_cpu;
1196 }
1197
1198 static bool load_too_imbalanced(long src_load, long dst_load,
1199 struct task_numa_env *env)
1200 {
1201 long src_capacity, dst_capacity;
1202 long orig_src_load;
1203 long load_a, load_b;
1204 long moved_load;
1205 long imb;
1206
1207 /*
1208 * The load is corrected for the CPU capacity available on each node.
1209 *
1210 * src_load dst_load
1211 * ------------ vs ---------
1212 * src_capacity dst_capacity
1213 */
1214 src_capacity = env->src_stats.compute_capacity;
1215 dst_capacity = env->dst_stats.compute_capacity;
1216
1217 /* We care about the slope of the imbalance, not the direction. */
1218 load_a = dst_load;
1219 load_b = src_load;
1220 if (load_a < load_b)
1221 swap(load_a, load_b);
1222
1223 /* Is the difference below the threshold? */
1224 imb = load_a * src_capacity * 100 -
1225 load_b * dst_capacity * env->imbalance_pct;
1226 if (imb <= 0)
1227 return false;
1228
1229 /*
1230 * The imbalance is above the allowed threshold.
1231 * Allow a move that brings us closer to a balanced situation,
1232 * without moving things past the point of balance.
1233 */
1234 orig_src_load = env->src_stats.load;
1235
1236 /*
1237 * In a task swap, there will be one load moving from src to dst,
1238 * and another moving back. This is the net sum of both moves.
1239 * A simple task move will always have a positive value.
1240 * Allow the move if it brings the system closer to a balanced
1241 * situation, without crossing over the balance point.
1242 */
1243 moved_load = orig_src_load - src_load;
1244
1245 if (moved_load > 0)
1246 /* Moving src -> dst. Did we overshoot balance? */
1247 return src_load * dst_capacity < dst_load * src_capacity;
1248 else
1249 /* Moving dst -> src. Did we overshoot balance? */
1250 return dst_load * src_capacity < src_load * dst_capacity;
1251 }
1252
1253 /*
1254 * This checks if the overall compute and NUMA accesses of the system would
1255 * be improved if the source tasks was migrated to the target dst_cpu taking
1256 * into account that it might be best if task running on the dst_cpu should
1257 * be exchanged with the source task
1258 */
1259 static void task_numa_compare(struct task_numa_env *env,
1260 long taskimp, long groupimp)
1261 {
1262 struct rq *src_rq = cpu_rq(env->src_cpu);
1263 struct rq *dst_rq = cpu_rq(env->dst_cpu);
1264 struct task_struct *cur;
1265 long src_load, dst_load;
1266 long load;
1267 long imp = env->p->numa_group ? groupimp : taskimp;
1268 long moveimp = imp;
1269 int dist = env->dist;
1270
1271 rcu_read_lock();
1272
1273 raw_spin_lock_irq(&dst_rq->lock);
1274 cur = dst_rq->curr;
1275 /*
1276 * No need to move the exiting task, and this ensures that ->curr
1277 * wasn't reaped and thus get_task_struct() in task_numa_assign()
1278 * is safe under RCU read lock.
1279 * Note that rcu_read_lock() itself can't protect from the final
1280 * put_task_struct() after the last schedule().
1281 */
1282 if ((cur->flags & PF_EXITING) || is_idle_task(cur))
1283 cur = NULL;
1284 raw_spin_unlock_irq(&dst_rq->lock);
1285
1286 /*
1287 * Because we have preemption enabled we can get migrated around and
1288 * end try selecting ourselves (current == env->p) as a swap candidate.
1289 */
1290 if (cur == env->p)
1291 goto unlock;
1292
1293 /*
1294 * "imp" is the fault differential for the source task between the
1295 * source and destination node. Calculate the total differential for
1296 * the source task and potential destination task. The more negative
1297 * the value is, the more rmeote accesses that would be expected to
1298 * be incurred if the tasks were swapped.
1299 */
1300 if (cur) {
1301 /* Skip this swap candidate if cannot move to the source cpu */
1302 if (!cpumask_test_cpu(env->src_cpu, tsk_cpus_allowed(cur)))
1303 goto unlock;
1304
1305 /*
1306 * If dst and source tasks are in the same NUMA group, or not
1307 * in any group then look only at task weights.
1308 */
1309 if (cur->numa_group == env->p->numa_group) {
1310 imp = taskimp + task_weight(cur, env->src_nid, dist) -
1311 task_weight(cur, env->dst_nid, dist);
1312 /*
1313 * Add some hysteresis to prevent swapping the
1314 * tasks within a group over tiny differences.
1315 */
1316 if (cur->numa_group)
1317 imp -= imp/16;
1318 } else {
1319 /*
1320 * Compare the group weights. If a task is all by
1321 * itself (not part of a group), use the task weight
1322 * instead.
1323 */
1324 if (cur->numa_group)
1325 imp += group_weight(cur, env->src_nid, dist) -
1326 group_weight(cur, env->dst_nid, dist);
1327 else
1328 imp += task_weight(cur, env->src_nid, dist) -
1329 task_weight(cur, env->dst_nid, dist);
1330 }
1331 }
1332
1333 if (imp <= env->best_imp && moveimp <= env->best_imp)
1334 goto unlock;
1335
1336 if (!cur) {
1337 /* Is there capacity at our destination? */
1338 if (env->src_stats.nr_running <= env->src_stats.task_capacity &&
1339 !env->dst_stats.has_free_capacity)
1340 goto unlock;
1341
1342 goto balance;
1343 }
1344
1345 /* Balance doesn't matter much if we're running a task per cpu */
1346 if (imp > env->best_imp && src_rq->nr_running == 1 &&
1347 dst_rq->nr_running == 1)
1348 goto assign;
1349
1350 /*
1351 * In the overloaded case, try and keep the load balanced.
1352 */
1353 balance:
1354 load = task_h_load(env->p);
1355 dst_load = env->dst_stats.load + load;
1356 src_load = env->src_stats.load - load;
1357
1358 if (moveimp > imp && moveimp > env->best_imp) {
1359 /*
1360 * If the improvement from just moving env->p direction is
1361 * better than swapping tasks around, check if a move is
1362 * possible. Store a slightly smaller score than moveimp,
1363 * so an actually idle CPU will win.
1364 */
1365 if (!load_too_imbalanced(src_load, dst_load, env)) {
1366 imp = moveimp - 1;
1367 cur = NULL;
1368 goto assign;
1369 }
1370 }
1371
1372 if (imp <= env->best_imp)
1373 goto unlock;
1374
1375 if (cur) {
1376 load = task_h_load(cur);
1377 dst_load -= load;
1378 src_load += load;
1379 }
1380
1381 if (load_too_imbalanced(src_load, dst_load, env))
1382 goto unlock;
1383
1384 /*
1385 * One idle CPU per node is evaluated for a task numa move.
1386 * Call select_idle_sibling to maybe find a better one.
1387 */
1388 if (!cur)
1389 env->dst_cpu = select_idle_sibling(env->p, env->dst_cpu);
1390
1391 assign:
1392 task_numa_assign(env, cur, imp);
1393 unlock:
1394 rcu_read_unlock();
1395 }
1396
1397 static void task_numa_find_cpu(struct task_numa_env *env,
1398 long taskimp, long groupimp)
1399 {
1400 int cpu;
1401
1402 for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) {
1403 /* Skip this CPU if the source task cannot migrate */
1404 if (!cpumask_test_cpu(cpu, tsk_cpus_allowed(env->p)))
1405 continue;
1406
1407 env->dst_cpu = cpu;
1408 task_numa_compare(env, taskimp, groupimp);
1409 }
1410 }
1411
1412 static int task_numa_migrate(struct task_struct *p)
1413 {
1414 struct task_numa_env env = {
1415 .p = p,
1416
1417 .src_cpu = task_cpu(p),
1418 .src_nid = task_node(p),
1419
1420 .imbalance_pct = 112,
1421
1422 .best_task = NULL,
1423 .best_imp = 0,
1424 .best_cpu = -1
1425 };
1426 struct sched_domain *sd;
1427 unsigned long taskweight, groupweight;
1428 int nid, ret, dist;
1429 long taskimp, groupimp;
1430
1431 /*
1432 * Pick the lowest SD_NUMA domain, as that would have the smallest
1433 * imbalance and would be the first to start moving tasks about.
1434 *
1435 * And we want to avoid any moving of tasks about, as that would create
1436 * random movement of tasks -- counter the numa conditions we're trying
1437 * to satisfy here.
1438 */
1439 rcu_read_lock();
1440 sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu));
1441 if (sd)
1442 env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2;
1443 rcu_read_unlock();
1444
1445 /*
1446 * Cpusets can break the scheduler domain tree into smaller
1447 * balance domains, some of which do not cross NUMA boundaries.
1448 * Tasks that are "trapped" in such domains cannot be migrated
1449 * elsewhere, so there is no point in (re)trying.
1450 */
1451 if (unlikely(!sd)) {
1452 p->numa_preferred_nid = task_node(p);
1453 return -EINVAL;
1454 }
1455
1456 env.dst_nid = p->numa_preferred_nid;
1457 dist = env.dist = node_distance(env.src_nid, env.dst_nid);
1458 taskweight = task_weight(p, env.src_nid, dist);
1459 groupweight = group_weight(p, env.src_nid, dist);
1460 update_numa_stats(&env.src_stats, env.src_nid);
1461 taskimp = task_weight(p, env.dst_nid, dist) - taskweight;
1462 groupimp = group_weight(p, env.dst_nid, dist) - groupweight;
1463 update_numa_stats(&env.dst_stats, env.dst_nid);
1464
1465 /* Try to find a spot on the preferred nid. */
1466 task_numa_find_cpu(&env, taskimp, groupimp);
1467
1468 /*
1469 * Look at other nodes in these cases:
1470 * - there is no space available on the preferred_nid
1471 * - the task is part of a numa_group that is interleaved across
1472 * multiple NUMA nodes; in order to better consolidate the group,
1473 * we need to check other locations.
1474 */
1475 if (env.best_cpu == -1 || (p->numa_group &&
1476 nodes_weight(p->numa_group->active_nodes) > 1)) {
1477 for_each_online_node(nid) {
1478 if (nid == env.src_nid || nid == p->numa_preferred_nid)
1479 continue;
1480
1481 dist = node_distance(env.src_nid, env.dst_nid);
1482 if (sched_numa_topology_type == NUMA_BACKPLANE &&
1483 dist != env.dist) {
1484 taskweight = task_weight(p, env.src_nid, dist);
1485 groupweight = group_weight(p, env.src_nid, dist);
1486 }
1487
1488 /* Only consider nodes where both task and groups benefit */
1489 taskimp = task_weight(p, nid, dist) - taskweight;
1490 groupimp = group_weight(p, nid, dist) - groupweight;
1491 if (taskimp < 0 && groupimp < 0)
1492 continue;
1493
1494 env.dist = dist;
1495 env.dst_nid = nid;
1496 update_numa_stats(&env.dst_stats, env.dst_nid);
1497 task_numa_find_cpu(&env, taskimp, groupimp);
1498 }
1499 }
1500
1501 /*
1502 * If the task is part of a workload that spans multiple NUMA nodes,
1503 * and is migrating into one of the workload's active nodes, remember
1504 * this node as the task's preferred numa node, so the workload can
1505 * settle down.
1506 * A task that migrated to a second choice node will be better off
1507 * trying for a better one later. Do not set the preferred node here.
1508 */
1509 if (p->numa_group) {
1510 if (env.best_cpu == -1)
1511 nid = env.src_nid;
1512 else
1513 nid = env.dst_nid;
1514
1515 if (node_isset(nid, p->numa_group->active_nodes))
1516 sched_setnuma(p, env.dst_nid);
1517 }
1518
1519 /* No better CPU than the current one was found. */
1520 if (env.best_cpu == -1)
1521 return -EAGAIN;
1522
1523 /*
1524 * Reset the scan period if the task is being rescheduled on an
1525 * alternative node to recheck if the tasks is now properly placed.
1526 */
1527 p->numa_scan_period = task_scan_min(p);
1528
1529 if (env.best_task == NULL) {
1530 ret = migrate_task_to(p, env.best_cpu);
1531 if (ret != 0)
1532 trace_sched_stick_numa(p, env.src_cpu, env.best_cpu);
1533 return ret;
1534 }
1535
1536 ret = migrate_swap(p, env.best_task);
1537 if (ret != 0)
1538 trace_sched_stick_numa(p, env.src_cpu, task_cpu(env.best_task));
1539 put_task_struct(env.best_task);
1540 return ret;
1541 }
1542
1543 /* Attempt to migrate a task to a CPU on the preferred node. */
1544 static void numa_migrate_preferred(struct task_struct *p)
1545 {
1546 unsigned long interval = HZ;
1547
1548 /* This task has no NUMA fault statistics yet */
1549 if (unlikely(p->numa_preferred_nid == -1 || !p->numa_faults))
1550 return;
1551
1552 /* Periodically retry migrating the task to the preferred node */
1553 interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16);
1554 p->numa_migrate_retry = jiffies + interval;
1555
1556 /* Success if task is already running on preferred CPU */
1557 if (task_node(p) == p->numa_preferred_nid)
1558 return;
1559
1560 /* Otherwise, try migrate to a CPU on the preferred node */
1561 task_numa_migrate(p);
1562 }
1563
1564 /*
1565 * Find the nodes on which the workload is actively running. We do this by
1566 * tracking the nodes from which NUMA hinting faults are triggered. This can
1567 * be different from the set of nodes where the workload's memory is currently
1568 * located.
1569 *
1570 * The bitmask is used to make smarter decisions on when to do NUMA page
1571 * migrations, To prevent flip-flopping, and excessive page migrations, nodes
1572 * are added when they cause over 6/16 of the maximum number of faults, but
1573 * only removed when they drop below 3/16.
1574 */
1575 static void update_numa_active_node_mask(struct numa_group *numa_group)
1576 {
1577 unsigned long faults, max_faults = 0;
1578 int nid;
1579
1580 for_each_online_node(nid) {
1581 faults = group_faults_cpu(numa_group, nid);
1582 if (faults > max_faults)
1583 max_faults = faults;
1584 }
1585
1586 for_each_online_node(nid) {
1587 faults = group_faults_cpu(numa_group, nid);
1588 if (!node_isset(nid, numa_group->active_nodes)) {
1589 if (faults > max_faults * 6 / 16)
1590 node_set(nid, numa_group->active_nodes);
1591 } else if (faults < max_faults * 3 / 16)
1592 node_clear(nid, numa_group->active_nodes);
1593 }
1594 }
1595
1596 /*
1597 * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS
1598 * increments. The more local the fault statistics are, the higher the scan
1599 * period will be for the next scan window. If local/(local+remote) ratio is
1600 * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS)
1601 * the scan period will decrease. Aim for 70% local accesses.
1602 */
1603 #define NUMA_PERIOD_SLOTS 10
1604 #define NUMA_PERIOD_THRESHOLD 7
1605
1606 /*
1607 * Increase the scan period (slow down scanning) if the majority of
1608 * our memory is already on our local node, or if the majority of
1609 * the page accesses are shared with other processes.
1610 * Otherwise, decrease the scan period.
1611 */
1612 static void update_task_scan_period(struct task_struct *p,
1613 unsigned long shared, unsigned long private)
1614 {
1615 unsigned int period_slot;
1616 int ratio;
1617 int diff;
1618
1619 unsigned long remote = p->numa_faults_locality[0];
1620 unsigned long local = p->numa_faults_locality[1];
1621
1622 /*
1623 * If there were no record hinting faults then either the task is
1624 * completely idle or all activity is areas that are not of interest
1625 * to automatic numa balancing. Scan slower
1626 */
1627 if (local + shared == 0) {
1628 p->numa_scan_period = min(p->numa_scan_period_max,
1629 p->numa_scan_period << 1);
1630
1631 p->mm->numa_next_scan = jiffies +
1632 msecs_to_jiffies(p->numa_scan_period);
1633
1634 return;
1635 }
1636
1637 /*
1638 * Prepare to scale scan period relative to the current period.
1639 * == NUMA_PERIOD_THRESHOLD scan period stays the same
1640 * < NUMA_PERIOD_THRESHOLD scan period decreases (scan faster)
1641 * >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower)
1642 */
1643 period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS);
1644 ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote);
1645 if (ratio >= NUMA_PERIOD_THRESHOLD) {
1646 int slot = ratio - NUMA_PERIOD_THRESHOLD;
1647 if (!slot)
1648 slot = 1;
1649 diff = slot * period_slot;
1650 } else {
1651 diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot;
1652
1653 /*
1654 * Scale scan rate increases based on sharing. There is an
1655 * inverse relationship between the degree of sharing and
1656 * the adjustment made to the scanning period. Broadly
1657 * speaking the intent is that there is little point
1658 * scanning faster if shared accesses dominate as it may
1659 * simply bounce migrations uselessly
1660 */
1661 ratio = DIV_ROUND_UP(private * NUMA_PERIOD_SLOTS, (private + shared + 1));
1662 diff = (diff * ratio) / NUMA_PERIOD_SLOTS;
1663 }
1664
1665 p->numa_scan_period = clamp(p->numa_scan_period + diff,
1666 task_scan_min(p), task_scan_max(p));
1667 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
1668 }
1669
1670 /*
1671 * Get the fraction of time the task has been running since the last
1672 * NUMA placement cycle. The scheduler keeps similar statistics, but
1673 * decays those on a 32ms period, which is orders of magnitude off
1674 * from the dozens-of-seconds NUMA balancing period. Use the scheduler
1675 * stats only if the task is so new there are no NUMA statistics yet.
1676 */
1677 static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period)
1678 {
1679 u64 runtime, delta, now;
1680 /* Use the start of this time slice to avoid calculations. */
1681 now = p->se.exec_start;
1682 runtime = p->se.sum_exec_runtime;
1683
1684 if (p->last_task_numa_placement) {
1685 delta = runtime - p->last_sum_exec_runtime;
1686 *period = now - p->last_task_numa_placement;
1687 } else {
1688 delta = p->se.avg.runnable_avg_sum;
1689 *period = p->se.avg.avg_period;
1690 }
1691
1692 p->last_sum_exec_runtime = runtime;
1693 p->last_task_numa_placement = now;
1694
1695 return delta;
1696 }
1697
1698 /*
1699 * Determine the preferred nid for a task in a numa_group. This needs to
1700 * be done in a way that produces consistent results with group_weight,
1701 * otherwise workloads might not converge.
1702 */
1703 static int preferred_group_nid(struct task_struct *p, int nid)
1704 {
1705 nodemask_t nodes;
1706 int dist;
1707
1708 /* Direct connections between all NUMA nodes. */
1709 if (sched_numa_topology_type == NUMA_DIRECT)
1710 return nid;
1711
1712 /*
1713 * On a system with glueless mesh NUMA topology, group_weight
1714 * scores nodes according to the number of NUMA hinting faults on
1715 * both the node itself, and on nearby nodes.
1716 */
1717 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
1718 unsigned long score, max_score = 0;
1719 int node, max_node = nid;
1720
1721 dist = sched_max_numa_distance;
1722
1723 for_each_online_node(node) {
1724 score = group_weight(p, node, dist);
1725 if (score > max_score) {
1726 max_score = score;
1727 max_node = node;
1728 }
1729 }
1730 return max_node;
1731 }
1732
1733 /*
1734 * Finding the preferred nid in a system with NUMA backplane
1735 * interconnect topology is more involved. The goal is to locate
1736 * tasks from numa_groups near each other in the system, and
1737 * untangle workloads from different sides of the system. This requires
1738 * searching down the hierarchy of node groups, recursively searching
1739 * inside the highest scoring group of nodes. The nodemask tricks
1740 * keep the complexity of the search down.
1741 */
1742 nodes = node_online_map;
1743 for (dist = sched_max_numa_distance; dist > LOCAL_DISTANCE; dist--) {
1744 unsigned long max_faults = 0;
1745 nodemask_t max_group = NODE_MASK_NONE;
1746 int a, b;
1747
1748 /* Are there nodes at this distance from each other? */
1749 if (!find_numa_distance(dist))
1750 continue;
1751
1752 for_each_node_mask(a, nodes) {
1753 unsigned long faults = 0;
1754 nodemask_t this_group;
1755 nodes_clear(this_group);
1756
1757 /* Sum group's NUMA faults; includes a==b case. */
1758 for_each_node_mask(b, nodes) {
1759 if (node_distance(a, b) < dist) {
1760 faults += group_faults(p, b);
1761 node_set(b, this_group);
1762 node_clear(b, nodes);
1763 }
1764 }
1765
1766 /* Remember the top group. */
1767 if (faults > max_faults) {
1768 max_faults = faults;
1769 max_group = this_group;
1770 /*
1771 * subtle: at the smallest distance there is
1772 * just one node left in each "group", the
1773 * winner is the preferred nid.
1774 */
1775 nid = a;
1776 }
1777 }
1778 /* Next round, evaluate the nodes within max_group. */
1779 if (!max_faults)
1780 break;
1781 nodes = max_group;
1782 }
1783 return nid;
1784 }
1785
1786 static void task_numa_placement(struct task_struct *p)
1787 {
1788 int seq, nid, max_nid = -1, max_group_nid = -1;
1789 unsigned long max_faults = 0, max_group_faults = 0;
1790 unsigned long fault_types[2] = { 0, 0 };
1791 unsigned long total_faults;
1792 u64 runtime, period;
1793 spinlock_t *group_lock = NULL;
1794
1795 seq = ACCESS_ONCE(p->mm->numa_scan_seq);
1796 if (p->numa_scan_seq == seq)
1797 return;
1798 p->numa_scan_seq = seq;
1799 p->numa_scan_period_max = task_scan_max(p);
1800
1801 total_faults = p->numa_faults_locality[0] +
1802 p->numa_faults_locality[1];
1803 runtime = numa_get_avg_runtime(p, &period);
1804
1805 /* If the task is part of a group prevent parallel updates to group stats */
1806 if (p->numa_group) {
1807 group_lock = &p->numa_group->lock;
1808 spin_lock_irq(group_lock);
1809 }
1810
1811 /* Find the node with the highest number of faults */
1812 for_each_online_node(nid) {
1813 /* Keep track of the offsets in numa_faults array */
1814 int mem_idx, membuf_idx, cpu_idx, cpubuf_idx;
1815 unsigned long faults = 0, group_faults = 0;
1816 int priv;
1817
1818 for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) {
1819 long diff, f_diff, f_weight;
1820
1821 mem_idx = task_faults_idx(NUMA_MEM, nid, priv);
1822 membuf_idx = task_faults_idx(NUMA_MEMBUF, nid, priv);
1823 cpu_idx = task_faults_idx(NUMA_CPU, nid, priv);
1824 cpubuf_idx = task_faults_idx(NUMA_CPUBUF, nid, priv);
1825
1826 /* Decay existing window, copy faults since last scan */
1827 diff = p->numa_faults[membuf_idx] - p->numa_faults[mem_idx] / 2;
1828 fault_types[priv] += p->numa_faults[membuf_idx];
1829 p->numa_faults[membuf_idx] = 0;
1830
1831 /*
1832 * Normalize the faults_from, so all tasks in a group
1833 * count according to CPU use, instead of by the raw
1834 * number of faults. Tasks with little runtime have
1835 * little over-all impact on throughput, and thus their
1836 * faults are less important.
1837 */
1838 f_weight = div64_u64(runtime << 16, period + 1);
1839 f_weight = (f_weight * p->numa_faults[cpubuf_idx]) /
1840 (total_faults + 1);
1841 f_diff = f_weight - p->numa_faults[cpu_idx] / 2;
1842 p->numa_faults[cpubuf_idx] = 0;
1843
1844 p->numa_faults[mem_idx] += diff;
1845 p->numa_faults[cpu_idx] += f_diff;
1846 faults += p->numa_faults[mem_idx];
1847 p->total_numa_faults += diff;
1848 if (p->numa_group) {
1849 /*
1850 * safe because we can only change our own group
1851 *
1852 * mem_idx represents the offset for a given
1853 * nid and priv in a specific region because it
1854 * is at the beginning of the numa_faults array.
1855 */
1856 p->numa_group->faults[mem_idx] += diff;
1857 p->numa_group->faults_cpu[mem_idx] += f_diff;
1858 p->numa_group->total_faults += diff;
1859 group_faults += p->numa_group->faults[mem_idx];
1860 }
1861 }
1862
1863 if (faults > max_faults) {
1864 max_faults = faults;
1865 max_nid = nid;
1866 }
1867
1868 if (group_faults > max_group_faults) {
1869 max_group_faults = group_faults;
1870 max_group_nid = nid;
1871 }
1872 }
1873
1874 update_task_scan_period(p, fault_types[0], fault_types[1]);
1875
1876 if (p->numa_group) {
1877 update_numa_active_node_mask(p->numa_group);
1878 spin_unlock_irq(group_lock);
1879 max_nid = preferred_group_nid(p, max_group_nid);
1880 }
1881
1882 if (max_faults) {
1883 /* Set the new preferred node */
1884 if (max_nid != p->numa_preferred_nid)
1885 sched_setnuma(p, max_nid);
1886
1887 if (task_node(p) != p->numa_preferred_nid)
1888 numa_migrate_preferred(p);
1889 }
1890 }
1891
1892 static inline int get_numa_group(struct numa_group *grp)
1893 {
1894 return atomic_inc_not_zero(&grp->refcount);
1895 }
1896
1897 static inline void put_numa_group(struct numa_group *grp)
1898 {
1899 if (atomic_dec_and_test(&grp->refcount))
1900 kfree_rcu(grp, rcu);
1901 }
1902
1903 static void task_numa_group(struct task_struct *p, int cpupid, int flags,
1904 int *priv)
1905 {
1906 struct numa_group *grp, *my_grp;
1907 struct task_struct *tsk;
1908 bool join = false;
1909 int cpu = cpupid_to_cpu(cpupid);
1910 int i;
1911
1912 if (unlikely(!p->numa_group)) {
1913 unsigned int size = sizeof(struct numa_group) +
1914 4*nr_node_ids*sizeof(unsigned long);
1915
1916 grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
1917 if (!grp)
1918 return;
1919
1920 atomic_set(&grp->refcount, 1);
1921 spin_lock_init(&grp->lock);
1922 grp->gid = p->pid;
1923 /* Second half of the array tracks nids where faults happen */
1924 grp->faults_cpu = grp->faults + NR_NUMA_HINT_FAULT_TYPES *
1925 nr_node_ids;
1926
1927 node_set(task_node(current), grp->active_nodes);
1928
1929 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
1930 grp->faults[i] = p->numa_faults[i];
1931
1932 grp->total_faults = p->total_numa_faults;
1933
1934 grp->nr_tasks++;
1935 rcu_assign_pointer(p->numa_group, grp);
1936 }
1937
1938 rcu_read_lock();
1939 tsk = ACCESS_ONCE(cpu_rq(cpu)->curr);
1940
1941 if (!cpupid_match_pid(tsk, cpupid))
1942 goto no_join;
1943
1944 grp = rcu_dereference(tsk->numa_group);
1945 if (!grp)
1946 goto no_join;
1947
1948 my_grp = p->numa_group;
1949 if (grp == my_grp)
1950 goto no_join;
1951
1952 /*
1953 * Only join the other group if its bigger; if we're the bigger group,
1954 * the other task will join us.
1955 */
1956 if (my_grp->nr_tasks > grp->nr_tasks)
1957 goto no_join;
1958
1959 /*
1960 * Tie-break on the grp address.
1961 */
1962 if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp)
1963 goto no_join;
1964
1965 /* Always join threads in the same process. */
1966 if (tsk->mm == current->mm)
1967 join = true;
1968
1969 /* Simple filter to avoid false positives due to PID collisions */
1970 if (flags & TNF_SHARED)
1971 join = true;
1972
1973 /* Update priv based on whether false sharing was detected */
1974 *priv = !join;
1975
1976 if (join && !get_numa_group(grp))
1977 goto no_join;
1978
1979 rcu_read_unlock();
1980
1981 if (!join)
1982 return;
1983
1984 BUG_ON(irqs_disabled());
1985 double_lock_irq(&my_grp->lock, &grp->lock);
1986
1987 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) {
1988 my_grp->faults[i] -= p->numa_faults[i];
1989 grp->faults[i] += p->numa_faults[i];
1990 }
1991 my_grp->total_faults -= p->total_numa_faults;
1992 grp->total_faults += p->total_numa_faults;
1993
1994 my_grp->nr_tasks--;
1995 grp->nr_tasks++;
1996
1997 spin_unlock(&my_grp->lock);
1998 spin_unlock_irq(&grp->lock);
1999
2000 rcu_assign_pointer(p->numa_group, grp);
2001
2002 put_numa_group(my_grp);
2003 return;
2004
2005 no_join:
2006 rcu_read_unlock();
2007 return;
2008 }
2009
2010 void task_numa_free(struct task_struct *p)
2011 {
2012 struct numa_group *grp = p->numa_group;
2013 void *numa_faults = p->numa_faults;
2014 unsigned long flags;
2015 int i;
2016
2017 if (grp) {
2018 spin_lock_irqsave(&grp->lock, flags);
2019 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
2020 grp->faults[i] -= p->numa_faults[i];
2021 grp->total_faults -= p->total_numa_faults;
2022
2023 grp->nr_tasks--;
2024 spin_unlock_irqrestore(&grp->lock, flags);
2025 RCU_INIT_POINTER(p->numa_group, NULL);
2026 put_numa_group(grp);
2027 }
2028
2029 p->numa_faults = NULL;
2030 kfree(numa_faults);
2031 }
2032
2033 /*
2034 * Got a PROT_NONE fault for a page on @node.
2035 */
2036 void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags)
2037 {
2038 struct task_struct *p = current;
2039 bool migrated = flags & TNF_MIGRATED;
2040 int cpu_node = task_node(current);
2041 int local = !!(flags & TNF_FAULT_LOCAL);
2042 int priv;
2043
2044 if (!numabalancing_enabled)
2045 return;
2046
2047 /* for example, ksmd faulting in a user's mm */
2048 if (!p->mm)
2049 return;
2050
2051 /* Allocate buffer to track faults on a per-node basis */
2052 if (unlikely(!p->numa_faults)) {
2053 int size = sizeof(*p->numa_faults) *
2054 NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids;
2055
2056 p->numa_faults = kzalloc(size, GFP_KERNEL|__GFP_NOWARN);
2057 if (!p->numa_faults)
2058 return;
2059
2060 p->total_numa_faults = 0;
2061 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
2062 }
2063
2064 /*
2065 * First accesses are treated as private, otherwise consider accesses
2066 * to be private if the accessing pid has not changed
2067 */
2068 if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) {
2069 priv = 1;
2070 } else {
2071 priv = cpupid_match_pid(p, last_cpupid);
2072 if (!priv && !(flags & TNF_NO_GROUP))
2073 task_numa_group(p, last_cpupid, flags, &priv);
2074 }
2075
2076 /*
2077 * If a workload spans multiple NUMA nodes, a shared fault that
2078 * occurs wholly within the set of nodes that the workload is
2079 * actively using should be counted as local. This allows the
2080 * scan rate to slow down when a workload has settled down.
2081 */
2082 if (!priv && !local && p->numa_group &&
2083 node_isset(cpu_node, p->numa_group->active_nodes) &&
2084 node_isset(mem_node, p->numa_group->active_nodes))
2085 local = 1;
2086
2087 task_numa_placement(p);
2088
2089 /*
2090 * Retry task to preferred node migration periodically, in case it
2091 * case it previously failed, or the scheduler moved us.
2092 */
2093 if (time_after(jiffies, p->numa_migrate_retry))
2094 numa_migrate_preferred(p);
2095
2096 if (migrated)
2097 p->numa_pages_migrated += pages;
2098
2099 p->numa_faults[task_faults_idx(NUMA_MEMBUF, mem_node, priv)] += pages;
2100 p->numa_faults[task_faults_idx(NUMA_CPUBUF, cpu_node, priv)] += pages;
2101 p->numa_faults_locality[local] += pages;
2102 }
2103
2104 static void reset_ptenuma_scan(struct task_struct *p)
2105 {
2106 ACCESS_ONCE(p->mm->numa_scan_seq)++;
2107 p->mm->numa_scan_offset = 0;
2108 }
2109
2110 /*
2111 * The expensive part of numa migration is done from task_work context.
2112 * Triggered from task_tick_numa().
2113 */
2114 void task_numa_work(struct callback_head *work)
2115 {
2116 unsigned long migrate, next_scan, now = jiffies;
2117 struct task_struct *p = current;
2118 struct mm_struct *mm = p->mm;
2119 struct vm_area_struct *vma;
2120 unsigned long start, end;
2121 unsigned long nr_pte_updates = 0;
2122 long pages;
2123
2124 WARN_ON_ONCE(p != container_of(work, struct task_struct, numa_work));
2125
2126 work->next = work; /* protect against double add */
2127 /*
2128 * Who cares about NUMA placement when they're dying.
2129 *
2130 * NOTE: make sure not to dereference p->mm before this check,
2131 * exit_task_work() happens _after_ exit_mm() so we could be called
2132 * without p->mm even though we still had it when we enqueued this
2133 * work.
2134 */
2135 if (p->flags & PF_EXITING)
2136 return;
2137
2138 if (!mm->numa_next_scan) {
2139 mm->numa_next_scan = now +
2140 msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
2141 }
2142
2143 /*
2144 * Enforce maximal scan/migration frequency..
2145 */
2146 migrate = mm->numa_next_scan;
2147 if (time_before(now, migrate))
2148 return;
2149
2150 if (p->numa_scan_period == 0) {
2151 p->numa_scan_period_max = task_scan_max(p);
2152 p->numa_scan_period = task_scan_min(p);
2153 }
2154
2155 next_scan = now + msecs_to_jiffies(p->numa_scan_period);
2156 if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate)
2157 return;
2158
2159 /*
2160 * Delay this task enough that another task of this mm will likely win
2161 * the next time around.
2162 */
2163 p->node_stamp += 2 * TICK_NSEC;
2164
2165 start = mm->numa_scan_offset;
2166 pages = sysctl_numa_balancing_scan_size;
2167 pages <<= 20 - PAGE_SHIFT; /* MB in pages */
2168 if (!pages)
2169 return;
2170
2171 down_read(&mm->mmap_sem);
2172 vma = find_vma(mm, start);
2173 if (!vma) {
2174 reset_ptenuma_scan(p);
2175 start = 0;
2176 vma = mm->mmap;
2177 }
2178 for (; vma; vma = vma->vm_next) {
2179 if (!vma_migratable(vma) || !vma_policy_mof(vma))
2180 continue;
2181
2182 /*
2183 * Shared library pages mapped by multiple processes are not
2184 * migrated as it is expected they are cache replicated. Avoid
2185 * hinting faults in read-only file-backed mappings or the vdso
2186 * as migrating the pages will be of marginal benefit.
2187 */
2188 if (!vma->vm_mm ||
2189 (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ)))
2190 continue;
2191
2192 /*
2193 * Skip inaccessible VMAs to avoid any confusion between
2194 * PROT_NONE and NUMA hinting ptes
2195 */
2196 if (!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)))
2197 continue;
2198
2199 do {
2200 start = max(start, vma->vm_start);
2201 end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
2202 end = min(end, vma->vm_end);
2203 nr_pte_updates += change_prot_numa(vma, start, end);
2204
2205 /*
2206 * Scan sysctl_numa_balancing_scan_size but ensure that
2207 * at least one PTE is updated so that unused virtual
2208 * address space is quickly skipped.
2209 */
2210 if (nr_pte_updates)
2211 pages -= (end - start) >> PAGE_SHIFT;
2212
2213 start = end;
2214 if (pages <= 0)
2215 goto out;
2216
2217 cond_resched();
2218 } while (end != vma->vm_end);
2219 }
2220
2221 out:
2222 /*
2223 * It is possible to reach the end of the VMA list but the last few
2224 * VMAs are not guaranteed to the vma_migratable. If they are not, we
2225 * would find the !migratable VMA on the next scan but not reset the
2226 * scanner to the start so check it now.
2227 */
2228 if (vma)
2229 mm->numa_scan_offset = start;
2230 else
2231 reset_ptenuma_scan(p);
2232 up_read(&mm->mmap_sem);
2233 }
2234
2235 /*
2236 * Drive the periodic memory faults..
2237 */
2238 void task_tick_numa(struct rq *rq, struct task_struct *curr)
2239 {
2240 struct callback_head *work = &curr->numa_work;
2241 u64 period, now;
2242
2243 /*
2244 * We don't care about NUMA placement if we don't have memory.
2245 */
2246 if (!curr->mm || (curr->flags & PF_EXITING) || work->next != work)
2247 return;
2248
2249 /*
2250 * Using runtime rather than walltime has the dual advantage that
2251 * we (mostly) drive the selection from busy threads and that the
2252 * task needs to have done some actual work before we bother with
2253 * NUMA placement.
2254 */
2255 now = curr->se.sum_exec_runtime;
2256 period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;
2257
2258 if (now - curr->node_stamp > period) {
2259 if (!curr->node_stamp)
2260 curr->numa_scan_period = task_scan_min(curr);
2261 curr->node_stamp += period;
2262
2263 if (!time_before(jiffies, curr->mm->numa_next_scan)) {
2264 init_task_work(work, task_numa_work); /* TODO: move this into sched_fork() */
2265 task_work_add(curr, work, true);
2266 }
2267 }
2268 }
2269 #else
2270 static void task_tick_numa(struct rq *rq, struct task_struct *curr)
2271 {
2272 }
2273
2274 static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p)
2275 {
2276 }
2277
2278 static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p)
2279 {
2280 }
2281 #endif /* CONFIG_NUMA_BALANCING */
2282
2283 static void
2284 account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2285 {
2286 update_load_add(&cfs_rq->load, se->load.weight);
2287 if (!parent_entity(se))
2288 update_load_add(&rq_of(cfs_rq)->load, se->load.weight);
2289 #ifdef CONFIG_SMP
2290 if (entity_is_task(se)) {
2291 struct rq *rq = rq_of(cfs_rq);
2292
2293 account_numa_enqueue(rq, task_of(se));
2294 list_add(&se->group_node, &rq->cfs_tasks);
2295 }
2296 #endif
2297 cfs_rq->nr_running++;
2298 }
2299
2300 static void
2301 account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2302 {
2303 update_load_sub(&cfs_rq->load, se->load.weight);
2304 if (!parent_entity(se))
2305 update_load_sub(&rq_of(cfs_rq)->load, se->load.weight);
2306 if (entity_is_task(se)) {
2307 account_numa_dequeue(rq_of(cfs_rq), task_of(se));
2308 list_del_init(&se->group_node);
2309 }
2310 cfs_rq->nr_running--;
2311 }
2312
2313 #ifdef CONFIG_FAIR_GROUP_SCHED
2314 # ifdef CONFIG_SMP
2315 static inline long calc_tg_weight(struct task_group *tg, struct cfs_rq *cfs_rq)
2316 {
2317 long tg_weight;
2318
2319 /*
2320 * Use this CPU's actual weight instead of the last load_contribution
2321 * to gain a more accurate current total weight. See
2322 * update_cfs_rq_load_contribution().
2323 */
2324 tg_weight = atomic_long_read(&tg->load_avg);
2325 tg_weight -= cfs_rq->tg_load_contrib;
2326 tg_weight += cfs_rq->load.weight;
2327
2328 return tg_weight;
2329 }
2330
2331 static long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
2332 {
2333 long tg_weight, load, shares;
2334
2335 tg_weight = calc_tg_weight(tg, cfs_rq);
2336 load = cfs_rq->load.weight;
2337
2338 shares = (tg->shares * load);
2339 if (tg_weight)
2340 shares /= tg_weight;
2341
2342 if (shares < MIN_SHARES)
2343 shares = MIN_SHARES;
2344 if (shares > tg->shares)
2345 shares = tg->shares;
2346
2347 return shares;
2348 }
2349 # else /* CONFIG_SMP */
2350 static inline long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
2351 {
2352 return tg->shares;
2353 }
2354 # endif /* CONFIG_SMP */
2355 static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
2356 unsigned long weight)
2357 {
2358 if (se->on_rq) {
2359 /* commit outstanding execution time */
2360 if (cfs_rq->curr == se)
2361 update_curr(cfs_rq);
2362 account_entity_dequeue(cfs_rq, se);
2363 }
2364
2365 update_load_set(&se->load, weight);
2366
2367 if (se->on_rq)
2368 account_entity_enqueue(cfs_rq, se);
2369 }
2370
2371 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
2372
2373 static void update_cfs_shares(struct cfs_rq *cfs_rq)
2374 {
2375 struct task_group *tg;
2376 struct sched_entity *se;
2377 long shares;
2378
2379 tg = cfs_rq->tg;
2380 se = tg->se[cpu_of(rq_of(cfs_rq))];
2381 if (!se || throttled_hierarchy(cfs_rq))
2382 return;
2383 #ifndef CONFIG_SMP
2384 if (likely(se->load.weight == tg->shares))
2385 return;
2386 #endif
2387 shares = calc_cfs_shares(cfs_rq, tg);
2388
2389 reweight_entity(cfs_rq_of(se), se, shares);
2390 }
2391 #else /* CONFIG_FAIR_GROUP_SCHED */
2392 static inline void update_cfs_shares(struct cfs_rq *cfs_rq)
2393 {
2394 }
2395 #endif /* CONFIG_FAIR_GROUP_SCHED */
2396
2397 #ifdef CONFIG_SMP
2398 /*
2399 * We choose a half-life close to 1 scheduling period.
2400 * Note: The tables below are dependent on this value.
2401 */
2402 #define LOAD_AVG_PERIOD 32
2403 #define LOAD_AVG_MAX 47742 /* maximum possible load avg */
2404 #define LOAD_AVG_MAX_N 345 /* number of full periods to produce LOAD_MAX_AVG */
2405
2406 /* Precomputed fixed inverse multiplies for multiplication by y^n */
2407 static const u32 runnable_avg_yN_inv[] = {
2408 0xffffffff, 0xfa83b2da, 0xf5257d14, 0xefe4b99a, 0xeac0c6e6, 0xe5b906e6,
2409 0xe0ccdeeb, 0xdbfbb796, 0xd744fcc9, 0xd2a81d91, 0xce248c14, 0xc9b9bd85,
2410 0xc5672a10, 0xc12c4cc9, 0xbd08a39e, 0xb8fbaf46, 0xb504f333, 0xb123f581,
2411 0xad583ee9, 0xa9a15ab4, 0xa5fed6a9, 0xa2704302, 0x9ef5325f, 0x9b8d39b9,
2412 0x9837f050, 0x94f4efa8, 0x91c3d373, 0x8ea4398a, 0x8b95c1e3, 0x88980e80,
2413 0x85aac367, 0x82cd8698,
2414 };
2415
2416 /*
2417 * Precomputed \Sum y^k { 1<=k<=n }. These are floor(true_value) to prevent
2418 * over-estimates when re-combining.
2419 */
2420 static const u32 runnable_avg_yN_sum[] = {
2421 0, 1002, 1982, 2941, 3880, 4798, 5697, 6576, 7437, 8279, 9103,
2422 9909,10698,11470,12226,12966,13690,14398,15091,15769,16433,17082,
2423 17718,18340,18949,19545,20128,20698,21256,21802,22336,22859,23371,
2424 };
2425
2426 /*
2427 * Approximate:
2428 * val * y^n, where y^32 ~= 0.5 (~1 scheduling period)
2429 */
2430 static __always_inline u64 decay_load(u64 val, u64 n)
2431 {
2432 unsigned int local_n;
2433
2434 if (!n)
2435 return val;
2436 else if (unlikely(n > LOAD_AVG_PERIOD * 63))
2437 return 0;
2438
2439 /* after bounds checking we can collapse to 32-bit */
2440 local_n = n;
2441
2442 /*
2443 * As y^PERIOD = 1/2, we can combine
2444 * y^n = 1/2^(n/PERIOD) * y^(n%PERIOD)
2445 * With a look-up table which covers y^n (n<PERIOD)
2446 *
2447 * To achieve constant time decay_load.
2448 */
2449 if (unlikely(local_n >= LOAD_AVG_PERIOD)) {
2450 val >>= local_n / LOAD_AVG_PERIOD;
2451 local_n %= LOAD_AVG_PERIOD;
2452 }
2453
2454 val *= runnable_avg_yN_inv[local_n];
2455 /* We don't use SRR here since we always want to round down. */
2456 return val >> 32;
2457 }
2458
2459 /*
2460 * For updates fully spanning n periods, the contribution to runnable
2461 * average will be: \Sum 1024*y^n
2462 *
2463 * We can compute this reasonably efficiently by combining:
2464 * y^PERIOD = 1/2 with precomputed \Sum 1024*y^n {for n <PERIOD}
2465 */
2466 static u32 __compute_runnable_contrib(u64 n)
2467 {
2468 u32 contrib = 0;
2469
2470 if (likely(n <= LOAD_AVG_PERIOD))
2471 return runnable_avg_yN_sum[n];
2472 else if (unlikely(n >= LOAD_AVG_MAX_N))
2473 return LOAD_AVG_MAX;
2474
2475 /* Compute \Sum k^n combining precomputed values for k^i, \Sum k^j */
2476 do {
2477 contrib /= 2; /* y^LOAD_AVG_PERIOD = 1/2 */
2478 contrib += runnable_avg_yN_sum[LOAD_AVG_PERIOD];
2479
2480 n -= LOAD_AVG_PERIOD;
2481 } while (n > LOAD_AVG_PERIOD);
2482
2483 contrib = decay_load(contrib, n);
2484 return contrib + runnable_avg_yN_sum[n];
2485 }
2486
2487 unsigned long __weak arch_scale_freq_capacity(struct sched_domain *sd, int cpu);
2488
2489 /*
2490 * We can represent the historical contribution to runnable average as the
2491 * coefficients of a geometric series. To do this we sub-divide our runnable
2492 * history into segments of approximately 1ms (1024us); label the segment that
2493 * occurred N-ms ago p_N, with p_0 corresponding to the current period, e.g.
2494 *
2495 * [<- 1024us ->|<- 1024us ->|<- 1024us ->| ...
2496 * p0 p1 p2
2497 * (now) (~1ms ago) (~2ms ago)
2498 *
2499 * Let u_i denote the fraction of p_i that the entity was runnable.
2500 *
2501 * We then designate the fractions u_i as our co-efficients, yielding the
2502 * following representation of historical load:
2503 * u_0 + u_1*y + u_2*y^2 + u_3*y^3 + ...
2504 *
2505 * We choose y based on the with of a reasonably scheduling period, fixing:
2506 * y^32 = 0.5
2507 *
2508 * This means that the contribution to load ~32ms ago (u_32) will be weighted
2509 * approximately half as much as the contribution to load within the last ms
2510 * (u_0).
2511 *
2512 * When a period "rolls over" and we have new u_0`, multiplying the previous
2513 * sum again by y is sufficient to update:
2514 * load_avg = u_0` + y*(u_0 + u_1*y + u_2*y^2 + ... )
2515 * = u_0 + u_1*y + u_2*y^2 + ... [re-labeling u_i --> u_{i+1}]
2516 */
2517 static __always_inline int __update_entity_runnable_avg(u64 now, int cpu,
2518 struct sched_avg *sa,
2519 int runnable,
2520 int running)
2521 {
2522 u64 delta, periods;
2523 u32 runnable_contrib;
2524 int delta_w, decayed = 0;
2525 unsigned long scale_freq = arch_scale_freq_capacity(NULL, cpu);
2526
2527 delta = now - sa->last_runnable_update;
2528 /*
2529 * This should only happen when time goes backwards, which it
2530 * unfortunately does during sched clock init when we swap over to TSC.
2531 */
2532 if ((s64)delta < 0) {
2533 sa->last_runnable_update = now;
2534 return 0;
2535 }
2536
2537 /*
2538 * Use 1024ns as the unit of measurement since it's a reasonable
2539 * approximation of 1us and fast to compute.
2540 */
2541 delta >>= 10;
2542 if (!delta)
2543 return 0;
2544 sa->last_runnable_update = now;
2545
2546 /* delta_w is the amount already accumulated against our next period */
2547 delta_w = sa->avg_period % 1024;
2548 if (delta + delta_w >= 1024) {
2549 /* period roll-over */
2550 decayed = 1;
2551
2552 /*
2553 * Now that we know we're crossing a period boundary, figure
2554 * out how much from delta we need to complete the current
2555 * period and accrue it.
2556 */
2557 delta_w = 1024 - delta_w;
2558 if (runnable)
2559 sa->runnable_avg_sum += delta_w;
2560 if (running)
2561 sa->running_avg_sum += delta_w * scale_freq
2562 >> SCHED_CAPACITY_SHIFT;
2563 sa->avg_period += delta_w;
2564
2565 delta -= delta_w;
2566
2567 /* Figure out how many additional periods this update spans */
2568 periods = delta / 1024;
2569 delta %= 1024;
2570
2571 sa->runnable_avg_sum = decay_load(sa->runnable_avg_sum,
2572 periods + 1);
2573 sa->running_avg_sum = decay_load(sa->running_avg_sum,
2574 periods + 1);
2575 sa->avg_period = decay_load(sa->avg_period,
2576 periods + 1);
2577
2578 /* Efficiently calculate \sum (1..n_period) 1024*y^i */
2579 runnable_contrib = __compute_runnable_contrib(periods);
2580 if (runnable)
2581 sa->runnable_avg_sum += runnable_contrib;
2582 if (running)
2583 sa->running_avg_sum += runnable_contrib * scale_freq
2584 >> SCHED_CAPACITY_SHIFT;
2585 sa->avg_period += runnable_contrib;
2586 }
2587
2588 /* Remainder of delta accrued against u_0` */
2589 if (runnable)
2590 sa->runnable_avg_sum += delta;
2591 if (running)
2592 sa->running_avg_sum += delta * scale_freq
2593 >> SCHED_CAPACITY_SHIFT;
2594 sa->avg_period += delta;
2595
2596 return decayed;
2597 }
2598
2599 /* Synchronize an entity's decay with its parenting cfs_rq.*/
2600 static inline u64 __synchronize_entity_decay(struct sched_entity *se)
2601 {
2602 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2603 u64 decays = atomic64_read(&cfs_rq->decay_counter);
2604
2605 decays -= se->avg.decay_count;
2606 se->avg.decay_count = 0;
2607 if (!decays)
2608 return 0;
2609
2610 se->avg.load_avg_contrib = decay_load(se->avg.load_avg_contrib, decays);
2611 se->avg.utilization_avg_contrib =
2612 decay_load(se->avg.utilization_avg_contrib, decays);
2613
2614 return decays;
2615 }
2616
2617 #ifdef CONFIG_FAIR_GROUP_SCHED
2618 static inline void __update_cfs_rq_tg_load_contrib(struct cfs_rq *cfs_rq,
2619 int force_update)
2620 {
2621 struct task_group *tg = cfs_rq->tg;
2622 long tg_contrib;
2623
2624 tg_contrib = cfs_rq->runnable_load_avg + cfs_rq->blocked_load_avg;
2625 tg_contrib -= cfs_rq->tg_load_contrib;
2626
2627 if (!tg_contrib)
2628 return;
2629
2630 if (force_update || abs(tg_contrib) > cfs_rq->tg_load_contrib / 8) {
2631 atomic_long_add(tg_contrib, &tg->load_avg);
2632 cfs_rq->tg_load_contrib += tg_contrib;
2633 }
2634 }
2635
2636 /*
2637 * Aggregate cfs_rq runnable averages into an equivalent task_group
2638 * representation for computing load contributions.
2639 */
2640 static inline void __update_tg_runnable_avg(struct sched_avg *sa,
2641 struct cfs_rq *cfs_rq)
2642 {
2643 struct task_group *tg = cfs_rq->tg;
2644 long contrib;
2645
2646 /* The fraction of a cpu used by this cfs_rq */
2647 contrib = div_u64((u64)sa->runnable_avg_sum << NICE_0_SHIFT,
2648 sa->avg_period + 1);
2649 contrib -= cfs_rq->tg_runnable_contrib;
2650
2651 if (abs(contrib) > cfs_rq->tg_runnable_contrib / 64) {
2652 atomic_add(contrib, &tg->runnable_avg);
2653 cfs_rq->tg_runnable_contrib += contrib;
2654 }
2655 }
2656
2657 static inline void __update_group_entity_contrib(struct sched_entity *se)
2658 {
2659 struct cfs_rq *cfs_rq = group_cfs_rq(se);
2660 struct task_group *tg = cfs_rq->tg;
2661 int runnable_avg;
2662
2663 u64 contrib;
2664
2665 contrib = cfs_rq->tg_load_contrib * tg->shares;
2666 se->avg.load_avg_contrib = div_u64(contrib,
2667 atomic_long_read(&tg->load_avg) + 1);
2668
2669 /*
2670 * For group entities we need to compute a correction term in the case
2671 * that they are consuming <1 cpu so that we would contribute the same
2672 * load as a task of equal weight.
2673 *
2674 * Explicitly co-ordinating this measurement would be expensive, but
2675 * fortunately the sum of each cpus contribution forms a usable
2676 * lower-bound on the true value.
2677 *
2678 * Consider the aggregate of 2 contributions. Either they are disjoint
2679 * (and the sum represents true value) or they are disjoint and we are
2680 * understating by the aggregate of their overlap.
2681 *
2682 * Extending this to N cpus, for a given overlap, the maximum amount we
2683 * understand is then n_i(n_i+1)/2 * w_i where n_i is the number of
2684 * cpus that overlap for this interval and w_i is the interval width.
2685 *
2686 * On a small machine; the first term is well-bounded which bounds the
2687 * total error since w_i is a subset of the period. Whereas on a
2688 * larger machine, while this first term can be larger, if w_i is the
2689 * of consequential size guaranteed to see n_i*w_i quickly converge to
2690 * our upper bound of 1-cpu.
2691 */
2692 runnable_avg = atomic_read(&tg->runnable_avg);
2693 if (runnable_avg < NICE_0_LOAD) {
2694 se->avg.load_avg_contrib *= runnable_avg;
2695 se->avg.load_avg_contrib >>= NICE_0_SHIFT;
2696 }
2697 }
2698
2699 static inline void update_rq_runnable_avg(struct rq *rq, int runnable)
2700 {
2701 __update_entity_runnable_avg(rq_clock_task(rq), cpu_of(rq), &rq->avg,
2702 runnable, runnable);
2703 __update_tg_runnable_avg(&rq->avg, &rq->cfs);
2704 }
2705 #else /* CONFIG_FAIR_GROUP_SCHED */
2706 static inline void __update_cfs_rq_tg_load_contrib(struct cfs_rq *cfs_rq,
2707 int force_update) {}
2708 static inline void __update_tg_runnable_avg(struct sched_avg *sa,
2709 struct cfs_rq *cfs_rq) {}
2710 static inline void __update_group_entity_contrib(struct sched_entity *se) {}
2711 static inline void update_rq_runnable_avg(struct rq *rq, int runnable) {}
2712 #endif /* CONFIG_FAIR_GROUP_SCHED */
2713
2714 static inline void __update_task_entity_contrib(struct sched_entity *se)
2715 {
2716 u32 contrib;
2717
2718 /* avoid overflowing a 32-bit type w/ SCHED_LOAD_SCALE */
2719 contrib = se->avg.runnable_avg_sum * scale_load_down(se->load.weight);
2720 contrib /= (se->avg.avg_period + 1);
2721 se->avg.load_avg_contrib = scale_load(contrib);
2722 }
2723
2724 /* Compute the current contribution to load_avg by se, return any delta */
2725 static long __update_entity_load_avg_contrib(struct sched_entity *se)
2726 {
2727 long old_contrib = se->avg.load_avg_contrib;
2728
2729 if (entity_is_task(se)) {
2730 __update_task_entity_contrib(se);
2731 } else {
2732 __update_tg_runnable_avg(&se->avg, group_cfs_rq(se));
2733 __update_group_entity_contrib(se);
2734 }
2735
2736 return se->avg.load_avg_contrib - old_contrib;
2737 }
2738
2739
2740 static inline void __update_task_entity_utilization(struct sched_entity *se)
2741 {
2742 u32 contrib;
2743
2744 /* avoid overflowing a 32-bit type w/ SCHED_LOAD_SCALE */
2745 contrib = se->avg.running_avg_sum * scale_load_down(SCHED_LOAD_SCALE);
2746 contrib /= (se->avg.avg_period + 1);
2747 se->avg.utilization_avg_contrib = scale_load(contrib);
2748 }
2749
2750 static long __update_entity_utilization_avg_contrib(struct sched_entity *se)
2751 {
2752 long old_contrib = se->avg.utilization_avg_contrib;
2753
2754 if (entity_is_task(se))
2755 __update_task_entity_utilization(se);
2756 else
2757 se->avg.utilization_avg_contrib =
2758 group_cfs_rq(se)->utilization_load_avg;
2759
2760 return se->avg.utilization_avg_contrib - old_contrib;
2761 }
2762
2763 static inline void subtract_blocked_load_contrib(struct cfs_rq *cfs_rq,
2764 long load_contrib)
2765 {
2766 if (likely(load_contrib < cfs_rq->blocked_load_avg))
2767 cfs_rq->blocked_load_avg -= load_contrib;
2768 else
2769 cfs_rq->blocked_load_avg = 0;
2770 }
2771
2772 static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq);
2773
2774 /* Update a sched_entity's runnable average */
2775 static inline void update_entity_load_avg(struct sched_entity *se,
2776 int update_cfs_rq)
2777 {
2778 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2779 long contrib_delta, utilization_delta;
2780 int cpu = cpu_of(rq_of(cfs_rq));
2781 u64 now;
2782
2783 /*
2784 * For a group entity we need to use their owned cfs_rq_clock_task() in
2785 * case they are the parent of a throttled hierarchy.
2786 */
2787 if (entity_is_task(se))
2788 now = cfs_rq_clock_task(cfs_rq);
2789 else
2790 now = cfs_rq_clock_task(group_cfs_rq(se));
2791
2792 if (!__update_entity_runnable_avg(now, cpu, &se->avg, se->on_rq,
2793 cfs_rq->curr == se))
2794 return;
2795
2796 contrib_delta = __update_entity_load_avg_contrib(se);
2797 utilization_delta = __update_entity_utilization_avg_contrib(se);
2798
2799 if (!update_cfs_rq)
2800 return;
2801
2802 if (se->on_rq) {
2803 cfs_rq->runnable_load_avg += contrib_delta;
2804 cfs_rq->utilization_load_avg += utilization_delta;
2805 } else {
2806 subtract_blocked_load_contrib(cfs_rq, -contrib_delta);
2807 }
2808 }
2809
2810 /*
2811 * Decay the load contributed by all blocked children and account this so that
2812 * their contribution may appropriately discounted when they wake up.
2813 */
2814 static void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq, int force_update)
2815 {
2816 u64 now = cfs_rq_clock_task(cfs_rq) >> 20;
2817 u64 decays;
2818
2819 decays = now - cfs_rq->last_decay;
2820 if (!decays && !force_update)
2821 return;
2822
2823 if (atomic_long_read(&cfs_rq->removed_load)) {
2824 unsigned long removed_load;
2825 removed_load = atomic_long_xchg(&cfs_rq->removed_load, 0);
2826 subtract_blocked_load_contrib(cfs_rq, removed_load);
2827 }
2828
2829 if (decays) {
2830 cfs_rq->blocked_load_avg = decay_load(cfs_rq->blocked_load_avg,
2831 decays);
2832 atomic64_add(decays, &cfs_rq->decay_counter);
2833 cfs_rq->last_decay = now;
2834 }
2835
2836 __update_cfs_rq_tg_load_contrib(cfs_rq, force_update);
2837 }
2838
2839 /* Add the load generated by se into cfs_rq's child load-average */
2840 static inline void enqueue_entity_load_avg(struct cfs_rq *cfs_rq,
2841 struct sched_entity *se,
2842 int wakeup)
2843 {
2844 /*
2845 * We track migrations using entity decay_count <= 0, on a wake-up
2846 * migration we use a negative decay count to track the remote decays
2847 * accumulated while sleeping.
2848 *
2849 * Newly forked tasks are enqueued with se->avg.decay_count == 0, they
2850 * are seen by enqueue_entity_load_avg() as a migration with an already
2851 * constructed load_avg_contrib.
2852 */
2853 if (unlikely(se->avg.decay_count <= 0)) {
2854 se->avg.last_runnable_update = rq_clock_task(rq_of(cfs_rq));
2855 if (se->avg.decay_count) {
2856 /*
2857 * In a wake-up migration we have to approximate the
2858 * time sleeping. This is because we can't synchronize
2859 * clock_task between the two cpus, and it is not
2860 * guaranteed to be read-safe. Instead, we can
2861 * approximate this using our carried decays, which are
2862 * explicitly atomically readable.
2863 */
2864 se->avg.last_runnable_update -= (-se->avg.decay_count)
2865 << 20;
2866 update_entity_load_avg(se, 0);
2867 /* Indicate that we're now synchronized and on-rq */
2868 se->avg.decay_count = 0;
2869 }
2870 wakeup = 0;
2871 } else {
2872 __synchronize_entity_decay(se);
2873 }
2874
2875 /* migrated tasks did not contribute to our blocked load */
2876 if (wakeup) {
2877 subtract_blocked_load_contrib(cfs_rq, se->avg.load_avg_contrib);
2878 update_entity_load_avg(se, 0);
2879 }
2880
2881 cfs_rq->runnable_load_avg += se->avg.load_avg_contrib;
2882 cfs_rq->utilization_load_avg += se->avg.utilization_avg_contrib;
2883 /* we force update consideration on load-balancer moves */
2884 update_cfs_rq_blocked_load(cfs_rq, !wakeup);
2885 }
2886
2887 /*
2888 * Remove se's load from this cfs_rq child load-average, if the entity is
2889 * transitioning to a blocked state we track its projected decay using
2890 * blocked_load_avg.
2891 */
2892 static inline void dequeue_entity_load_avg(struct cfs_rq *cfs_rq,
2893 struct sched_entity *se,
2894 int sleep)
2895 {
2896 update_entity_load_avg(se, 1);
2897 /* we force update consideration on load-balancer moves */
2898 update_cfs_rq_blocked_load(cfs_rq, !sleep);
2899
2900 cfs_rq->runnable_load_avg -= se->avg.load_avg_contrib;
2901 cfs_rq->utilization_load_avg -= se->avg.utilization_avg_contrib;
2902 if (sleep) {
2903 cfs_rq->blocked_load_avg += se->avg.load_avg_contrib;
2904 se->avg.decay_count = atomic64_read(&cfs_rq->decay_counter);
2905 } /* migrations, e.g. sleep=0 leave decay_count == 0 */
2906 }
2907
2908 /*
2909 * Update the rq's load with the elapsed running time before entering
2910 * idle. if the last scheduled task is not a CFS task, idle_enter will
2911 * be the only way to update the runnable statistic.
2912 */
2913 void idle_enter_fair(struct rq *this_rq)
2914 {
2915 update_rq_runnable_avg(this_rq, 1);
2916 }
2917
2918 /*
2919 * Update the rq's load with the elapsed idle time before a task is
2920 * scheduled. if the newly scheduled task is not a CFS task, idle_exit will
2921 * be the only way to update the runnable statistic.
2922 */
2923 void idle_exit_fair(struct rq *this_rq)
2924 {
2925 update_rq_runnable_avg(this_rq, 0);
2926 }
2927
2928 static int idle_balance(struct rq *this_rq);
2929
2930 #else /* CONFIG_SMP */
2931
2932 static inline void update_entity_load_avg(struct sched_entity *se,
2933 int update_cfs_rq) {}
2934 static inline void update_rq_runnable_avg(struct rq *rq, int runnable) {}
2935 static inline void enqueue_entity_load_avg(struct cfs_rq *cfs_rq,
2936 struct sched_entity *se,
2937 int wakeup) {}
2938 static inline void dequeue_entity_load_avg(struct cfs_rq *cfs_rq,
2939 struct sched_entity *se,
2940 int sleep) {}
2941 static inline void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq,
2942 int force_update) {}
2943
2944 static inline int idle_balance(struct rq *rq)
2945 {
2946 return 0;
2947 }
2948
2949 #endif /* CONFIG_SMP */
2950
2951 static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
2952 {
2953 #ifdef CONFIG_SCHEDSTATS
2954 struct task_struct *tsk = NULL;
2955
2956 if (entity_is_task(se))
2957 tsk = task_of(se);
2958
2959 if (se->statistics.sleep_start) {
2960 u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.sleep_start;
2961
2962 if ((s64)delta < 0)
2963 delta = 0;
2964
2965 if (unlikely(delta > se->statistics.sleep_max))
2966 se->statistics.sleep_max = delta;
2967
2968 se->statistics.sleep_start = 0;
2969 se->statistics.sum_sleep_runtime += delta;
2970
2971 if (tsk) {
2972 account_scheduler_latency(tsk, delta >> 10, 1);
2973 trace_sched_stat_sleep(tsk, delta);
2974 }
2975 }
2976 if (se->statistics.block_start) {
2977 u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.block_start;
2978
2979 if ((s64)delta < 0)
2980 delta = 0;
2981
2982 if (unlikely(delta > se->statistics.block_max))
2983 se->statistics.block_max = delta;
2984
2985 se->statistics.block_start = 0;
2986 se->statistics.sum_sleep_runtime += delta;
2987
2988 if (tsk) {
2989 if (tsk->in_iowait) {
2990 se->statistics.iowait_sum += delta;
2991 se->statistics.iowait_count++;
2992 trace_sched_stat_iowait(tsk, delta);
2993 }
2994
2995 trace_sched_stat_blocked(tsk, delta);
2996
2997 /*
2998 * Blocking time is in units of nanosecs, so shift by
2999 * 20 to get a milliseconds-range estimation of the
3000 * amount of time that the task spent sleeping:
3001 */
3002 if (unlikely(prof_on == SLEEP_PROFILING)) {
3003 profile_hits(SLEEP_PROFILING,
3004 (void *)get_wchan(tsk),
3005 delta >> 20);
3006 }
3007 account_scheduler_latency(tsk, delta >> 10, 0);
3008 }
3009 }
3010 #endif
3011 }
3012
3013 static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
3014 {
3015 #ifdef CONFIG_SCHED_DEBUG
3016 s64 d = se->vruntime - cfs_rq->min_vruntime;
3017
3018 if (d < 0)
3019 d = -d;
3020
3021 if (d > 3*sysctl_sched_latency)
3022 schedstat_inc(cfs_rq, nr_spread_over);
3023 #endif
3024 }
3025
3026 static void
3027 place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
3028 {
3029 u64 vruntime = cfs_rq->min_vruntime;
3030
3031 /*
3032 * The 'current' period is already promised to the current tasks,
3033 * however the extra weight of the new task will slow them down a
3034 * little, place the new task so that it fits in the slot that
3035 * stays open at the end.
3036 */
3037 if (initial && sched_feat(START_DEBIT))
3038 vruntime += sched_vslice(cfs_rq, se);
3039
3040 /* sleeps up to a single latency don't count. */
3041 if (!initial) {
3042 unsigned long thresh = sysctl_sched_latency;
3043
3044 /*
3045 * Halve their sleep time's effect, to allow
3046 * for a gentler effect of sleepers:
3047 */
3048 if (sched_feat(GENTLE_FAIR_SLEEPERS))
3049 thresh >>= 1;
3050
3051 vruntime -= thresh;
3052 }
3053
3054 /* ensure we never gain time by being placed backwards. */
3055 se->vruntime = max_vruntime(se->vruntime, vruntime);
3056 }
3057
3058 static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
3059
3060 static void
3061 enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
3062 {
3063 /*
3064 * Update the normalized vruntime before updating min_vruntime
3065 * through calling update_curr().
3066 */
3067 if (!(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_WAKING))
3068 se->vruntime += cfs_rq->min_vruntime;
3069
3070 /*
3071 * Update run-time statistics of the 'current'.
3072 */
3073 update_curr(cfs_rq);
3074 enqueue_entity_load_avg(cfs_rq, se, flags & ENQUEUE_WAKEUP);
3075 account_entity_enqueue(cfs_rq, se);
3076 update_cfs_shares(cfs_rq);
3077
3078 if (flags & ENQUEUE_WAKEUP) {
3079 place_entity(cfs_rq, se, 0);
3080 enqueue_sleeper(cfs_rq, se);
3081 }
3082
3083 update_stats_enqueue(cfs_rq, se);
3084 check_spread(cfs_rq, se);
3085 if (se != cfs_rq->curr)
3086 __enqueue_entity(cfs_rq, se);
3087 se->on_rq = 1;
3088
3089 if (cfs_rq->nr_running == 1) {
3090 list_add_leaf_cfs_rq(cfs_rq);
3091 check_enqueue_throttle(cfs_rq);
3092 }
3093 }
3094
3095 static void __clear_buddies_last(struct sched_entity *se)
3096 {
3097 for_each_sched_entity(se) {
3098 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3099 if (cfs_rq->last != se)
3100 break;
3101
3102 cfs_rq->last = NULL;
3103 }
3104 }
3105
3106 static void __clear_buddies_next(struct sched_entity *se)
3107 {
3108 for_each_sched_entity(se) {
3109 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3110 if (cfs_rq->next != se)
3111 break;
3112
3113 cfs_rq->next = NULL;
3114 }
3115 }
3116
3117 static void __clear_buddies_skip(struct sched_entity *se)
3118 {
3119 for_each_sched_entity(se) {
3120 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3121 if (cfs_rq->skip != se)
3122 break;
3123
3124 cfs_rq->skip = NULL;
3125 }
3126 }
3127
3128 static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
3129 {
3130 if (cfs_rq->last == se)
3131 __clear_buddies_last(se);
3132
3133 if (cfs_rq->next == se)
3134 __clear_buddies_next(se);
3135
3136 if (cfs_rq->skip == se)
3137 __clear_buddies_skip(se);
3138 }
3139
3140 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
3141
3142 static void
3143 dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
3144 {
3145 /*
3146 * Update run-time statistics of the 'current'.
3147 */
3148 update_curr(cfs_rq);
3149 dequeue_entity_load_avg(cfs_rq, se, flags & DEQUEUE_SLEEP);
3150
3151 update_stats_dequeue(cfs_rq, se);
3152 if (flags & DEQUEUE_SLEEP) {
3153 #ifdef CONFIG_SCHEDSTATS
3154 if (entity_is_task(se)) {
3155 struct task_struct *tsk = task_of(se);
3156
3157 if (tsk->state & TASK_INTERRUPTIBLE)
3158 se->statistics.sleep_start = rq_clock(rq_of(cfs_rq));
3159 if (tsk->state & TASK_UNINTERRUPTIBLE)
3160 se->statistics.block_start = rq_clock(rq_of(cfs_rq));
3161 }
3162 #endif
3163 }
3164
3165 clear_buddies(cfs_rq, se);
3166
3167 if (se != cfs_rq->curr)
3168 __dequeue_entity(cfs_rq, se);
3169 se->on_rq = 0;
3170 account_entity_dequeue(cfs_rq, se);
3171
3172 /*
3173 * Normalize the entity after updating the min_vruntime because the
3174 * update can refer to the ->curr item and we need to reflect this
3175 * movement in our normalized position.
3176 */
3177 if (!(flags & DEQUEUE_SLEEP))
3178 se->vruntime -= cfs_rq->min_vruntime;
3179
3180 /* return excess runtime on last dequeue */
3181 return_cfs_rq_runtime(cfs_rq);
3182
3183 update_min_vruntime(cfs_rq);
3184 update_cfs_shares(cfs_rq);
3185 }
3186
3187 /*
3188 * Preempt the current task with a newly woken task if needed:
3189 */
3190 static void
3191 check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
3192 {
3193 unsigned long ideal_runtime, delta_exec;
3194 struct sched_entity *se;
3195 s64 delta;
3196
3197 ideal_runtime = sched_slice(cfs_rq, curr);
3198 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
3199 if (delta_exec > ideal_runtime) {
3200 resched_curr(rq_of(cfs_rq));
3201 /*
3202 * The current task ran long enough, ensure it doesn't get
3203 * re-elected due to buddy favours.
3204 */
3205 clear_buddies(cfs_rq, curr);
3206 return;
3207 }
3208
3209 /*
3210 * Ensure that a task that missed wakeup preemption by a
3211 * narrow margin doesn't have to wait for a full slice.
3212 * This also mitigates buddy induced latencies under load.
3213 */
3214 if (delta_exec < sysctl_sched_min_granularity)
3215 return;
3216
3217 se = __pick_first_entity(cfs_rq);
3218 delta = curr->vruntime - se->vruntime;
3219
3220 if (delta < 0)
3221 return;
3222
3223 if (delta > ideal_runtime)
3224 resched_curr(rq_of(cfs_rq));
3225 }
3226
3227 static void
3228 set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
3229 {
3230 /* 'current' is not kept within the tree. */
3231 if (se->on_rq) {
3232 /*
3233 * Any task has to be enqueued before it get to execute on
3234 * a CPU. So account for the time it spent waiting on the
3235 * runqueue.
3236 */
3237 update_stats_wait_end(cfs_rq, se);
3238 __dequeue_entity(cfs_rq, se);
3239 update_entity_load_avg(se, 1);
3240 }
3241
3242 update_stats_curr_start(cfs_rq, se);
3243 cfs_rq->curr = se;
3244 #ifdef CONFIG_SCHEDSTATS
3245 /*
3246 * Track our maximum slice length, if the CPU's load is at
3247 * least twice that of our own weight (i.e. dont track it
3248 * when there are only lesser-weight tasks around):
3249 */
3250 if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
3251 se->statistics.slice_max = max(se->statistics.slice_max,
3252 se->sum_exec_runtime - se->prev_sum_exec_runtime);
3253 }
3254 #endif
3255 se->prev_sum_exec_runtime = se->sum_exec_runtime;
3256 }
3257
3258 static int
3259 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
3260
3261 /*
3262 * Pick the next process, keeping these things in mind, in this order:
3263 * 1) keep things fair between processes/task groups
3264 * 2) pick the "next" process, since someone really wants that to run
3265 * 3) pick the "last" process, for cache locality
3266 * 4) do not run the "skip" process, if something else is available
3267 */
3268 static struct sched_entity *
3269 pick_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *curr)
3270 {
3271 struct sched_entity *left = __pick_first_entity(cfs_rq);
3272 struct sched_entity *se;
3273
3274 /*
3275 * If curr is set we have to see if its left of the leftmost entity
3276 * still in the tree, provided there was anything in the tree at all.
3277 */
3278 if (!left || (curr && entity_before(curr, left)))
3279 left = curr;
3280
3281 se = left; /* ideally we run the leftmost entity */
3282
3283 /*
3284 * Avoid running the skip buddy, if running something else can
3285 * be done without getting too unfair.
3286 */
3287 if (cfs_rq->skip == se) {
3288 struct sched_entity *second;
3289
3290 if (se == curr) {
3291 second = __pick_first_entity(cfs_rq);
3292 } else {
3293 second = __pick_next_entity(se);
3294 if (!second || (curr && entity_before(curr, second)))
3295 second = curr;
3296 }
3297
3298 if (second && wakeup_preempt_entity(second, left) < 1)
3299 se = second;
3300 }
3301
3302 /*
3303 * Prefer last buddy, try to return the CPU to a preempted task.
3304 */
3305 if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
3306 se = cfs_rq->last;
3307
3308 /*
3309 * Someone really wants this to run. If it's not unfair, run it.
3310 */
3311 if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
3312 se = cfs_rq->next;
3313
3314 clear_buddies(cfs_rq, se);
3315
3316 return se;
3317 }
3318
3319 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
3320
3321 static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
3322 {
3323 /*
3324 * If still on the runqueue then deactivate_task()
3325 * was not called and update_curr() has to be done:
3326 */
3327 if (prev->on_rq)
3328 update_curr(cfs_rq);
3329
3330 /* throttle cfs_rqs exceeding runtime */
3331 check_cfs_rq_runtime(cfs_rq);
3332
3333 check_spread(cfs_rq, prev);
3334 if (prev->on_rq) {
3335 update_stats_wait_start(cfs_rq, prev);
3336 /* Put 'current' back into the tree. */
3337 __enqueue_entity(cfs_rq, prev);
3338 /* in !on_rq case, update occurred at dequeue */
3339 update_entity_load_avg(prev, 1);
3340 }
3341 cfs_rq->curr = NULL;
3342 }
3343
3344 static void
3345 entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
3346 {
3347 /*
3348 * Update run-time statistics of the 'current'.
3349 */
3350 update_curr(cfs_rq);
3351
3352 /*
3353 * Ensure that runnable average is periodically updated.
3354 */
3355 update_entity_load_avg(curr, 1);
3356 update_cfs_rq_blocked_load(cfs_rq, 1);
3357 update_cfs_shares(cfs_rq);
3358
3359 #ifdef CONFIG_SCHED_HRTICK
3360 /*
3361 * queued ticks are scheduled to match the slice, so don't bother
3362 * validating it and just reschedule.
3363 */
3364 if (queued) {
3365 resched_curr(rq_of(cfs_rq));
3366 return;
3367 }
3368 /*
3369 * don't let the period tick interfere with the hrtick preemption
3370 */
3371 if (!sched_feat(DOUBLE_TICK) &&
3372 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
3373 return;
3374 #endif
3375
3376 if (cfs_rq->nr_running > 1)
3377 check_preempt_tick(cfs_rq, curr);
3378 }
3379
3380
3381 /**************************************************
3382 * CFS bandwidth control machinery
3383 */
3384
3385 #ifdef CONFIG_CFS_BANDWIDTH
3386
3387 #ifdef HAVE_JUMP_LABEL
3388 static struct static_key __cfs_bandwidth_used;
3389
3390 static inline bool cfs_bandwidth_used(void)
3391 {
3392 return static_key_false(&__cfs_bandwidth_used);
3393 }
3394
3395 void cfs_bandwidth_usage_inc(void)
3396 {
3397 static_key_slow_inc(&__cfs_bandwidth_used);
3398 }
3399
3400 void cfs_bandwidth_usage_dec(void)
3401 {
3402 static_key_slow_dec(&__cfs_bandwidth_used);
3403 }
3404 #else /* HAVE_JUMP_LABEL */
3405 static bool cfs_bandwidth_used(void)
3406 {
3407 return true;
3408 }
3409
3410 void cfs_bandwidth_usage_inc(void) {}
3411 void cfs_bandwidth_usage_dec(void) {}
3412 #endif /* HAVE_JUMP_LABEL */
3413
3414 /*
3415 * default period for cfs group bandwidth.
3416 * default: 0.1s, units: nanoseconds
3417 */
3418 static inline u64 default_cfs_period(void)
3419 {
3420 return 100000000ULL;
3421 }
3422
3423 static inline u64 sched_cfs_bandwidth_slice(void)
3424 {
3425 return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
3426 }
3427
3428 /*
3429 * Replenish runtime according to assigned quota and update expiration time.
3430 * We use sched_clock_cpu directly instead of rq->clock to avoid adding
3431 * additional synchronization around rq->lock.
3432 *
3433 * requires cfs_b->lock
3434 */
3435 void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
3436 {
3437 u64 now;
3438
3439 if (cfs_b->quota == RUNTIME_INF)
3440 return;
3441
3442 now = sched_clock_cpu(smp_processor_id());
3443 cfs_b->runtime = cfs_b->quota;
3444 cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period);
3445 }
3446
3447 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
3448 {
3449 return &tg->cfs_bandwidth;
3450 }
3451
3452 /* rq->task_clock normalized against any time this cfs_rq has spent throttled */
3453 static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
3454 {
3455 if (unlikely(cfs_rq->throttle_count))
3456 return cfs_rq->throttled_clock_task;
3457
3458 return rq_clock_task(rq_of(cfs_rq)) - cfs_rq->throttled_clock_task_time;
3459 }
3460
3461 /* returns 0 on failure to allocate runtime */
3462 static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3463 {
3464 struct task_group *tg = cfs_rq->tg;
3465 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
3466 u64 amount = 0, min_amount, expires;
3467
3468 /* note: this is a positive sum as runtime_remaining <= 0 */
3469 min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining;
3470
3471 raw_spin_lock(&cfs_b->lock);
3472 if (cfs_b->quota == RUNTIME_INF)
3473 amount = min_amount;
3474 else {
3475 /*
3476 * If the bandwidth pool has become inactive, then at least one
3477 * period must have elapsed since the last consumption.
3478 * Refresh the global state and ensure bandwidth timer becomes
3479 * active.
3480 */
3481 if (!cfs_b->timer_active) {
3482 __refill_cfs_bandwidth_runtime(cfs_b);
3483 __start_cfs_bandwidth(cfs_b, false);
3484 }
3485
3486 if (cfs_b->runtime > 0) {
3487 amount = min(cfs_b->runtime, min_amount);
3488 cfs_b->runtime -= amount;
3489 cfs_b->idle = 0;
3490 }
3491 }
3492 expires = cfs_b->runtime_expires;
3493 raw_spin_unlock(&cfs_b->lock);
3494
3495 cfs_rq->runtime_remaining += amount;
3496 /*
3497 * we may have advanced our local expiration to account for allowed
3498 * spread between our sched_clock and the one on which runtime was
3499 * issued.
3500 */
3501 if ((s64)(expires - cfs_rq->runtime_expires) > 0)
3502 cfs_rq->runtime_expires = expires;
3503
3504 return cfs_rq->runtime_remaining > 0;
3505 }
3506
3507 /*
3508 * Note: This depends on the synchronization provided by sched_clock and the
3509 * fact that rq->clock snapshots this value.
3510 */
3511 static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3512 {
3513 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3514
3515 /* if the deadline is ahead of our clock, nothing to do */
3516 if (likely((s64)(rq_clock(rq_of(cfs_rq)) - cfs_rq->runtime_expires) < 0))
3517 return;
3518
3519 if (cfs_rq->runtime_remaining < 0)
3520 return;
3521
3522 /*
3523 * If the local deadline has passed we have to consider the
3524 * possibility that our sched_clock is 'fast' and the global deadline
3525 * has not truly expired.
3526 *
3527 * Fortunately we can check determine whether this the case by checking
3528 * whether the global deadline has advanced. It is valid to compare
3529 * cfs_b->runtime_expires without any locks since we only care about
3530 * exact equality, so a partial write will still work.
3531 */
3532
3533 if (cfs_rq->runtime_expires != cfs_b->runtime_expires) {
3534 /* extend local deadline, drift is bounded above by 2 ticks */
3535 cfs_rq->runtime_expires += TICK_NSEC;
3536 } else {
3537 /* global deadline is ahead, expiration has passed */
3538 cfs_rq->runtime_remaining = 0;
3539 }
3540 }
3541
3542 static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
3543 {
3544 /* dock delta_exec before expiring quota (as it could span periods) */
3545 cfs_rq->runtime_remaining -= delta_exec;
3546 expire_cfs_rq_runtime(cfs_rq);
3547
3548 if (likely(cfs_rq->runtime_remaining > 0))
3549 return;
3550
3551 /*
3552 * if we're unable to extend our runtime we resched so that the active
3553 * hierarchy can be throttled
3554 */
3555 if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
3556 resched_curr(rq_of(cfs_rq));
3557 }
3558
3559 static __always_inline
3560 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
3561 {
3562 if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
3563 return;
3564
3565 __account_cfs_rq_runtime(cfs_rq, delta_exec);
3566 }
3567
3568 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
3569 {
3570 return cfs_bandwidth_used() && cfs_rq->throttled;
3571 }
3572
3573 /* check whether cfs_rq, or any parent, is throttled */
3574 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
3575 {
3576 return cfs_bandwidth_used() && cfs_rq->throttle_count;
3577 }
3578
3579 /*
3580 * Ensure that neither of the group entities corresponding to src_cpu or
3581 * dest_cpu are members of a throttled hierarchy when performing group
3582 * load-balance operations.
3583 */
3584 static inline int throttled_lb_pair(struct task_group *tg,
3585 int src_cpu, int dest_cpu)
3586 {
3587 struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
3588
3589 src_cfs_rq = tg->cfs_rq[src_cpu];
3590 dest_cfs_rq = tg->cfs_rq[dest_cpu];
3591
3592 return throttled_hierarchy(src_cfs_rq) ||
3593 throttled_hierarchy(dest_cfs_rq);
3594 }
3595
3596 /* updated child weight may affect parent so we have to do this bottom up */
3597 static int tg_unthrottle_up(struct task_group *tg, void *data)
3598 {
3599 struct rq *rq = data;
3600 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
3601
3602 cfs_rq->throttle_count--;
3603 #ifdef CONFIG_SMP
3604 if (!cfs_rq->throttle_count) {
3605 /* adjust cfs_rq_clock_task() */
3606 cfs_rq->throttled_clock_task_time += rq_clock_task(rq) -
3607 cfs_rq->throttled_clock_task;
3608 }
3609 #endif
3610
3611 return 0;
3612 }
3613
3614 static int tg_throttle_down(struct task_group *tg, void *data)
3615 {
3616 struct rq *rq = data;
3617 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
3618
3619 /* group is entering throttled state, stop time */
3620 if (!cfs_rq->throttle_count)
3621 cfs_rq->throttled_clock_task = rq_clock_task(rq);
3622 cfs_rq->throttle_count++;
3623
3624 return 0;
3625 }
3626
3627 static void throttle_cfs_rq(struct cfs_rq *cfs_rq)
3628 {
3629 struct rq *rq = rq_of(cfs_rq);
3630 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3631 struct sched_entity *se;
3632 long task_delta, dequeue = 1;
3633
3634 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
3635
3636 /* freeze hierarchy runnable averages while throttled */
3637 rcu_read_lock();
3638 walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
3639 rcu_read_unlock();
3640
3641 task_delta = cfs_rq->h_nr_running;
3642 for_each_sched_entity(se) {
3643 struct cfs_rq *qcfs_rq = cfs_rq_of(se);
3644 /* throttled entity or throttle-on-deactivate */
3645 if (!se->on_rq)
3646 break;
3647
3648 if (dequeue)
3649 dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
3650 qcfs_rq->h_nr_running -= task_delta;
3651
3652 if (qcfs_rq->load.weight)
3653 dequeue = 0;
3654 }
3655
3656 if (!se)
3657 sub_nr_running(rq, task_delta);
3658
3659 cfs_rq->throttled = 1;
3660 cfs_rq->throttled_clock = rq_clock(rq);
3661 raw_spin_lock(&cfs_b->lock);
3662 /*
3663 * Add to the _head_ of the list, so that an already-started
3664 * distribute_cfs_runtime will not see us
3665 */
3666 list_add_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
3667 if (!cfs_b->timer_active)
3668 __start_cfs_bandwidth(cfs_b, false);
3669 raw_spin_unlock(&cfs_b->lock);
3670 }
3671
3672 void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
3673 {
3674 struct rq *rq = rq_of(cfs_rq);
3675 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3676 struct sched_entity *se;
3677 int enqueue = 1;
3678 long task_delta;
3679
3680 se = cfs_rq->tg->se[cpu_of(rq)];
3681
3682 cfs_rq->throttled = 0;
3683
3684 update_rq_clock(rq);
3685
3686 raw_spin_lock(&cfs_b->lock);
3687 cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
3688 list_del_rcu(&cfs_rq->throttled_list);
3689 raw_spin_unlock(&cfs_b->lock);
3690
3691 /* update hierarchical throttle state */
3692 walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
3693
3694 if (!cfs_rq->load.weight)
3695 return;
3696
3697 task_delta = cfs_rq->h_nr_running;
3698 for_each_sched_entity(se) {
3699 if (se->on_rq)
3700 enqueue = 0;
3701
3702 cfs_rq = cfs_rq_of(se);
3703 if (enqueue)
3704 enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
3705 cfs_rq->h_nr_running += task_delta;
3706
3707 if (cfs_rq_throttled(cfs_rq))
3708 break;
3709 }
3710
3711 if (!se)
3712 add_nr_running(rq, task_delta);
3713
3714 /* determine whether we need to wake up potentially idle cpu */
3715 if (rq->curr == rq->idle && rq->cfs.nr_running)
3716 resched_curr(rq);
3717 }
3718
3719 static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b,
3720 u64 remaining, u64 expires)
3721 {
3722 struct cfs_rq *cfs_rq;
3723 u64 runtime;
3724 u64 starting_runtime = remaining;
3725
3726 rcu_read_lock();
3727 list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
3728 throttled_list) {
3729 struct rq *rq = rq_of(cfs_rq);
3730
3731 raw_spin_lock(&rq->lock);
3732 if (!cfs_rq_throttled(cfs_rq))
3733 goto next;
3734
3735 runtime = -cfs_rq->runtime_remaining + 1;
3736 if (runtime > remaining)
3737 runtime = remaining;
3738 remaining -= runtime;
3739
3740 cfs_rq->runtime_remaining += runtime;
3741 cfs_rq->runtime_expires = expires;
3742
3743 /* we check whether we're throttled above */
3744 if (cfs_rq->runtime_remaining > 0)
3745 unthrottle_cfs_rq(cfs_rq);
3746
3747 next:
3748 raw_spin_unlock(&rq->lock);
3749
3750 if (!remaining)
3751 break;
3752 }
3753 rcu_read_unlock();
3754
3755 return starting_runtime - remaining;
3756 }
3757
3758 /*
3759 * Responsible for refilling a task_group's bandwidth and unthrottling its
3760 * cfs_rqs as appropriate. If there has been no activity within the last
3761 * period the timer is deactivated until scheduling resumes; cfs_b->idle is
3762 * used to track this state.
3763 */
3764 static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun)
3765 {
3766 u64 runtime, runtime_expires;
3767 int throttled;
3768
3769 /* no need to continue the timer with no bandwidth constraint */
3770 if (cfs_b->quota == RUNTIME_INF)
3771 goto out_deactivate;
3772
3773 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
3774 cfs_b->nr_periods += overrun;
3775
3776 /*
3777 * idle depends on !throttled (for the case of a large deficit), and if
3778 * we're going inactive then everything else can be deferred
3779 */
3780 if (cfs_b->idle && !throttled)
3781 goto out_deactivate;
3782
3783 /*
3784 * if we have relooped after returning idle once, we need to update our
3785 * status as actually running, so that other cpus doing
3786 * __start_cfs_bandwidth will stop trying to cancel us.
3787 */
3788 cfs_b->timer_active = 1;
3789
3790 __refill_cfs_bandwidth_runtime(cfs_b);
3791
3792 if (!throttled) {
3793 /* mark as potentially idle for the upcoming period */
3794 cfs_b->idle = 1;
3795 return 0;
3796 }
3797
3798 /* account preceding periods in which throttling occurred */
3799 cfs_b->nr_throttled += overrun;
3800
3801 runtime_expires = cfs_b->runtime_expires;
3802
3803 /*
3804 * This check is repeated as we are holding onto the new bandwidth while
3805 * we unthrottle. This can potentially race with an unthrottled group
3806 * trying to acquire new bandwidth from the global pool. This can result
3807 * in us over-using our runtime if it is all used during this loop, but
3808 * only by limited amounts in that extreme case.
3809 */
3810 while (throttled && cfs_b->runtime > 0) {
3811 runtime = cfs_b->runtime;
3812 raw_spin_unlock(&cfs_b->lock);
3813 /* we can't nest cfs_b->lock while distributing bandwidth */
3814 runtime = distribute_cfs_runtime(cfs_b, runtime,
3815 runtime_expires);
3816 raw_spin_lock(&cfs_b->lock);
3817
3818 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
3819
3820 cfs_b->runtime -= min(runtime, cfs_b->runtime);
3821 }
3822
3823 /*
3824 * While we are ensured activity in the period following an
3825 * unthrottle, this also covers the case in which the new bandwidth is
3826 * insufficient to cover the existing bandwidth deficit. (Forcing the
3827 * timer to remain active while there are any throttled entities.)
3828 */
3829 cfs_b->idle = 0;
3830
3831 return 0;
3832
3833 out_deactivate:
3834 cfs_b->timer_active = 0;
3835 return 1;
3836 }
3837
3838 /* a cfs_rq won't donate quota below this amount */
3839 static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
3840 /* minimum remaining period time to redistribute slack quota */
3841 static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
3842 /* how long we wait to gather additional slack before distributing */
3843 static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
3844
3845 /*
3846 * Are we near the end of the current quota period?
3847 *
3848 * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the
3849 * hrtimer base being cleared by __hrtimer_start_range_ns. In the case of
3850 * migrate_hrtimers, base is never cleared, so we are fine.
3851 */
3852 static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
3853 {
3854 struct hrtimer *refresh_timer = &cfs_b->period_timer;
3855 u64 remaining;
3856
3857 /* if the call-back is running a quota refresh is already occurring */
3858 if (hrtimer_callback_running(refresh_timer))
3859 return 1;
3860
3861 /* is a quota refresh about to occur? */
3862 remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
3863 if (remaining < min_expire)
3864 return 1;
3865
3866 return 0;
3867 }
3868
3869 static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
3870 {
3871 u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
3872
3873 /* if there's a quota refresh soon don't bother with slack */
3874 if (runtime_refresh_within(cfs_b, min_left))
3875 return;
3876
3877 start_bandwidth_timer(&cfs_b->slack_timer,
3878 ns_to_ktime(cfs_bandwidth_slack_period));
3879 }
3880
3881 /* we know any runtime found here is valid as update_curr() precedes return */
3882 static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3883 {
3884 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3885 s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
3886
3887 if (slack_runtime <= 0)
3888 return;
3889
3890 raw_spin_lock(&cfs_b->lock);
3891 if (cfs_b->quota != RUNTIME_INF &&
3892 cfs_rq->runtime_expires == cfs_b->runtime_expires) {
3893 cfs_b->runtime += slack_runtime;
3894
3895 /* we are under rq->lock, defer unthrottling using a timer */
3896 if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
3897 !list_empty(&cfs_b->throttled_cfs_rq))
3898 start_cfs_slack_bandwidth(cfs_b);
3899 }
3900 raw_spin_unlock(&cfs_b->lock);
3901
3902 /* even if it's not valid for return we don't want to try again */
3903 cfs_rq->runtime_remaining -= slack_runtime;
3904 }
3905
3906 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3907 {
3908 if (!cfs_bandwidth_used())
3909 return;
3910
3911 if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
3912 return;
3913
3914 __return_cfs_rq_runtime(cfs_rq);
3915 }
3916
3917 /*
3918 * This is done with a timer (instead of inline with bandwidth return) since
3919 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
3920 */
3921 static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
3922 {
3923 u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
3924 u64 expires;
3925
3926 /* confirm we're still not at a refresh boundary */
3927 raw_spin_lock(&cfs_b->lock);
3928 if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) {
3929 raw_spin_unlock(&cfs_b->lock);
3930 return;
3931 }
3932
3933 if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice)
3934 runtime = cfs_b->runtime;
3935
3936 expires = cfs_b->runtime_expires;
3937 raw_spin_unlock(&cfs_b->lock);
3938
3939 if (!runtime)
3940 return;
3941
3942 runtime = distribute_cfs_runtime(cfs_b, runtime, expires);
3943
3944 raw_spin_lock(&cfs_b->lock);
3945 if (expires == cfs_b->runtime_expires)
3946 cfs_b->runtime -= min(runtime, cfs_b->runtime);
3947 raw_spin_unlock(&cfs_b->lock);
3948 }
3949
3950 /*
3951 * When a group wakes up we want to make sure that its quota is not already
3952 * expired/exceeded, otherwise it may be allowed to steal additional ticks of
3953 * runtime as update_curr() throttling can not not trigger until it's on-rq.
3954 */
3955 static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
3956 {
3957 if (!cfs_bandwidth_used())
3958 return;
3959
3960 /* an active group must be handled by the update_curr()->put() path */
3961 if (!cfs_rq->runtime_enabled || cfs_rq->curr)
3962 return;
3963
3964 /* ensure the group is not already throttled */
3965 if (cfs_rq_throttled(cfs_rq))
3966 return;
3967
3968 /* update runtime allocation */
3969 account_cfs_rq_runtime(cfs_rq, 0);
3970 if (cfs_rq->runtime_remaining <= 0)
3971 throttle_cfs_rq(cfs_rq);
3972 }
3973
3974 /* conditionally throttle active cfs_rq's from put_prev_entity() */
3975 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3976 {
3977 if (!cfs_bandwidth_used())
3978 return false;
3979
3980 if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
3981 return false;
3982
3983 /*
3984 * it's possible for a throttled entity to be forced into a running
3985 * state (e.g. set_curr_task), in this case we're finished.
3986 */
3987 if (cfs_rq_throttled(cfs_rq))
3988 return true;
3989
3990 throttle_cfs_rq(cfs_rq);
3991 return true;
3992 }
3993
3994 static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
3995 {
3996 struct cfs_bandwidth *cfs_b =
3997 container_of(timer, struct cfs_bandwidth, slack_timer);
3998 do_sched_cfs_slack_timer(cfs_b);
3999
4000 return HRTIMER_NORESTART;
4001 }
4002
4003 static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
4004 {
4005 struct cfs_bandwidth *cfs_b =
4006 container_of(timer, struct cfs_bandwidth, period_timer);
4007 ktime_t now;
4008 int overrun;
4009 int idle = 0;
4010
4011 raw_spin_lock(&cfs_b->lock);
4012 for (;;) {
4013 now = hrtimer_cb_get_time(timer);
4014 overrun = hrtimer_forward(timer, now, cfs_b->period);
4015
4016 if (!overrun)
4017 break;
4018
4019 idle = do_sched_cfs_period_timer(cfs_b, overrun);
4020 }
4021 raw_spin_unlock(&cfs_b->lock);
4022
4023 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
4024 }
4025
4026 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
4027 {
4028 raw_spin_lock_init(&cfs_b->lock);
4029 cfs_b->runtime = 0;
4030 cfs_b->quota = RUNTIME_INF;
4031 cfs_b->period = ns_to_ktime(default_cfs_period());
4032
4033 INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
4034 hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
4035 cfs_b->period_timer.function = sched_cfs_period_timer;
4036 hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
4037 cfs_b->slack_timer.function = sched_cfs_slack_timer;
4038 }
4039
4040 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4041 {
4042 cfs_rq->runtime_enabled = 0;
4043 INIT_LIST_HEAD(&cfs_rq->throttled_list);
4044 }
4045
4046 /* requires cfs_b->lock, may release to reprogram timer */
4047 void __start_cfs_bandwidth(struct cfs_bandwidth *cfs_b, bool force)
4048 {
4049 /*
4050 * The timer may be active because we're trying to set a new bandwidth
4051 * period or because we're racing with the tear-down path
4052 * (timer_active==0 becomes visible before the hrtimer call-back
4053 * terminates). In either case we ensure that it's re-programmed
4054 */
4055 while (unlikely(hrtimer_active(&cfs_b->period_timer)) &&
4056 hrtimer_try_to_cancel(&cfs_b->period_timer) < 0) {
4057 /* bounce the lock to allow do_sched_cfs_period_timer to run */
4058 raw_spin_unlock(&cfs_b->lock);
4059 cpu_relax();
4060 raw_spin_lock(&cfs_b->lock);
4061 /* if someone else restarted the timer then we're done */
4062 if (!force && cfs_b->timer_active)
4063 return;
4064 }
4065
4066 cfs_b->timer_active = 1;
4067 start_bandwidth_timer(&cfs_b->period_timer, cfs_b->period);
4068 }
4069
4070 static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
4071 {
4072 /* init_cfs_bandwidth() was not called */
4073 if (!cfs_b->throttled_cfs_rq.next)
4074 return;
4075
4076 hrtimer_cancel(&cfs_b->period_timer);
4077 hrtimer_cancel(&cfs_b->slack_timer);
4078 }
4079
4080 static void __maybe_unused update_runtime_enabled(struct rq *rq)
4081 {
4082 struct cfs_rq *cfs_rq;
4083
4084 for_each_leaf_cfs_rq(rq, cfs_rq) {
4085 struct cfs_bandwidth *cfs_b = &cfs_rq->tg->cfs_bandwidth;
4086
4087 raw_spin_lock(&cfs_b->lock);
4088 cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF;
4089 raw_spin_unlock(&cfs_b->lock);
4090 }
4091 }
4092
4093 static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
4094 {
4095 struct cfs_rq *cfs_rq;
4096
4097 for_each_leaf_cfs_rq(rq, cfs_rq) {
4098 if (!cfs_rq->runtime_enabled)
4099 continue;
4100
4101 /*
4102 * clock_task is not advancing so we just need to make sure
4103 * there's some valid quota amount
4104 */
4105 cfs_rq->runtime_remaining = 1;
4106 /*
4107 * Offline rq is schedulable till cpu is completely disabled
4108 * in take_cpu_down(), so we prevent new cfs throttling here.
4109 */
4110 cfs_rq->runtime_enabled = 0;
4111
4112 if (cfs_rq_throttled(cfs_rq))
4113 unthrottle_cfs_rq(cfs_rq);
4114 }
4115 }
4116
4117 #else /* CONFIG_CFS_BANDWIDTH */
4118 static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
4119 {
4120 return rq_clock_task(rq_of(cfs_rq));
4121 }
4122
4123 static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {}
4124 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; }
4125 static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
4126 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
4127
4128 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
4129 {
4130 return 0;
4131 }
4132
4133 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
4134 {
4135 return 0;
4136 }
4137
4138 static inline int throttled_lb_pair(struct task_group *tg,
4139 int src_cpu, int dest_cpu)
4140 {
4141 return 0;
4142 }
4143
4144 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
4145
4146 #ifdef CONFIG_FAIR_GROUP_SCHED
4147 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
4148 #endif
4149
4150 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
4151 {
4152 return NULL;
4153 }
4154 static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
4155 static inline void update_runtime_enabled(struct rq *rq) {}
4156 static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
4157
4158 #endif /* CONFIG_CFS_BANDWIDTH */
4159
4160 /**************************************************
4161 * CFS operations on tasks:
4162 */
4163
4164 #ifdef CONFIG_SCHED_HRTICK
4165 static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
4166 {
4167 struct sched_entity *se = &p->se;
4168 struct cfs_rq *cfs_rq = cfs_rq_of(se);
4169
4170 WARN_ON(task_rq(p) != rq);
4171
4172 if (cfs_rq->nr_running > 1) {
4173 u64 slice = sched_slice(cfs_rq, se);
4174 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
4175 s64 delta = slice - ran;
4176
4177 if (delta < 0) {
4178 if (rq->curr == p)
4179 resched_curr(rq);
4180 return;
4181 }
4182 hrtick_start(rq, delta);
4183 }
4184 }
4185
4186 /*
4187 * called from enqueue/dequeue and updates the hrtick when the
4188 * current task is from our class and nr_running is low enough
4189 * to matter.
4190 */
4191 static void hrtick_update(struct rq *rq)
4192 {
4193 struct task_struct *curr = rq->curr;
4194
4195 if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class)
4196 return;
4197
4198 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
4199 hrtick_start_fair(rq, curr);
4200 }
4201 #else /* !CONFIG_SCHED_HRTICK */
4202 static inline void
4203 hrtick_start_fair(struct rq *rq, struct task_struct *p)
4204 {
4205 }
4206
4207 static inline void hrtick_update(struct rq *rq)
4208 {
4209 }
4210 #endif
4211
4212 /*
4213 * The enqueue_task method is called before nr_running is
4214 * increased. Here we update the fair scheduling stats and
4215 * then put the task into the rbtree:
4216 */
4217 static void
4218 enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
4219 {
4220 struct cfs_rq *cfs_rq;
4221 struct sched_entity *se = &p->se;
4222
4223 for_each_sched_entity(se) {
4224 if (se->on_rq)
4225 break;
4226 cfs_rq = cfs_rq_of(se);
4227 enqueue_entity(cfs_rq, se, flags);
4228
4229 /*
4230 * end evaluation on encountering a throttled cfs_rq
4231 *
4232 * note: in the case of encountering a throttled cfs_rq we will
4233 * post the final h_nr_running increment below.
4234 */
4235 if (cfs_rq_throttled(cfs_rq))
4236 break;
4237 cfs_rq->h_nr_running++;
4238
4239 flags = ENQUEUE_WAKEUP;
4240 }
4241
4242 for_each_sched_entity(se) {
4243 cfs_rq = cfs_rq_of(se);
4244 cfs_rq->h_nr_running++;
4245
4246 if (cfs_rq_throttled(cfs_rq))
4247 break;
4248
4249 update_cfs_shares(cfs_rq);
4250 update_entity_load_avg(se, 1);
4251 }
4252
4253 if (!se) {
4254 update_rq_runnable_avg(rq, rq->nr_running);
4255 add_nr_running(rq, 1);
4256 }
4257 hrtick_update(rq);
4258 }
4259
4260 static void set_next_buddy(struct sched_entity *se);
4261
4262 /*
4263 * The dequeue_task method is called before nr_running is
4264 * decreased. We remove the task from the rbtree and
4265 * update the fair scheduling stats:
4266 */
4267 static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
4268 {
4269 struct cfs_rq *cfs_rq;
4270 struct sched_entity *se = &p->se;
4271 int task_sleep = flags & DEQUEUE_SLEEP;
4272
4273 for_each_sched_entity(se) {
4274 cfs_rq = cfs_rq_of(se);
4275 dequeue_entity(cfs_rq, se, flags);
4276
4277 /*
4278 * end evaluation on encountering a throttled cfs_rq
4279 *
4280 * note: in the case of encountering a throttled cfs_rq we will
4281 * post the final h_nr_running decrement below.
4282 */
4283 if (cfs_rq_throttled(cfs_rq))
4284 break;
4285 cfs_rq->h_nr_running--;
4286
4287 /* Don't dequeue parent if it has other entities besides us */
4288 if (cfs_rq->load.weight) {
4289 /*
4290 * Bias pick_next to pick a task from this cfs_rq, as
4291 * p is sleeping when it is within its sched_slice.
4292 */
4293 if (task_sleep && parent_entity(se))
4294 set_next_buddy(parent_entity(se));
4295
4296 /* avoid re-evaluating load for this entity */
4297 se = parent_entity(se);
4298 break;
4299 }
4300 flags |= DEQUEUE_SLEEP;
4301 }
4302
4303 for_each_sched_entity(se) {
4304 cfs_rq = cfs_rq_of(se);
4305 cfs_rq->h_nr_running--;
4306
4307 if (cfs_rq_throttled(cfs_rq))
4308 break;
4309
4310 update_cfs_shares(cfs_rq);
4311 update_entity_load_avg(se, 1);
4312 }
4313
4314 if (!se) {
4315 sub_nr_running(rq, 1);
4316 update_rq_runnable_avg(rq, 1);
4317 }
4318 hrtick_update(rq);
4319 }
4320
4321 #ifdef CONFIG_SMP
4322 /* Used instead of source_load when we know the type == 0 */
4323 static unsigned long weighted_cpuload(const int cpu)
4324 {
4325 return cpu_rq(cpu)->cfs.runnable_load_avg;
4326 }
4327
4328 /*
4329 * Return a low guess at the load of a migration-source cpu weighted
4330 * according to the scheduling class and "nice" value.
4331 *
4332 * We want to under-estimate the load of migration sources, to
4333 * balance conservatively.
4334 */
4335 static unsigned long source_load(int cpu, int type)
4336 {
4337 struct rq *rq = cpu_rq(cpu);
4338 unsigned long total = weighted_cpuload(cpu);
4339
4340 if (type == 0 || !sched_feat(LB_BIAS))
4341 return total;
4342
4343 return min(rq->cpu_load[type-1], total);
4344 }
4345
4346 /*
4347 * Return a high guess at the load of a migration-target cpu weighted
4348 * according to the scheduling class and "nice" value.
4349 */
4350 static unsigned long target_load(int cpu, int type)
4351 {
4352 struct rq *rq = cpu_rq(cpu);
4353 unsigned long total = weighted_cpuload(cpu);
4354
4355 if (type == 0 || !sched_feat(LB_BIAS))
4356 return total;
4357
4358 return max(rq->cpu_load[type-1], total);
4359 }
4360
4361 static unsigned long capacity_of(int cpu)
4362 {
4363 return cpu_rq(cpu)->cpu_capacity;
4364 }
4365
4366 static unsigned long capacity_orig_of(int cpu)
4367 {
4368 return cpu_rq(cpu)->cpu_capacity_orig;
4369 }
4370
4371 static unsigned long cpu_avg_load_per_task(int cpu)
4372 {
4373 struct rq *rq = cpu_rq(cpu);
4374 unsigned long nr_running = ACCESS_ONCE(rq->cfs.h_nr_running);
4375 unsigned long load_avg = rq->cfs.runnable_load_avg;
4376
4377 if (nr_running)
4378 return load_avg / nr_running;
4379
4380 return 0;
4381 }
4382
4383 static void record_wakee(struct task_struct *p)
4384 {
4385 /*
4386 * Rough decay (wiping) for cost saving, don't worry
4387 * about the boundary, really active task won't care
4388 * about the loss.
4389 */
4390 if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) {
4391 current->wakee_flips >>= 1;
4392 current->wakee_flip_decay_ts = jiffies;
4393 }
4394
4395 if (current->last_wakee != p) {
4396 current->last_wakee = p;
4397 current->wakee_flips++;
4398 }
4399 }
4400
4401 static void task_waking_fair(struct task_struct *p)
4402 {
4403 struct sched_entity *se = &p->se;
4404 struct cfs_rq *cfs_rq = cfs_rq_of(se);
4405 u64 min_vruntime;
4406
4407 #ifndef CONFIG_64BIT
4408 u64 min_vruntime_copy;
4409
4410 do {
4411 min_vruntime_copy = cfs_rq->min_vruntime_copy;
4412 smp_rmb();
4413 min_vruntime = cfs_rq->min_vruntime;
4414 } while (min_vruntime != min_vruntime_copy);
4415 #else
4416 min_vruntime = cfs_rq->min_vruntime;
4417 #endif
4418
4419 se->vruntime -= min_vruntime;
4420 record_wakee(p);
4421 }
4422
4423 #ifdef CONFIG_FAIR_GROUP_SCHED
4424 /*
4425 * effective_load() calculates the load change as seen from the root_task_group
4426 *
4427 * Adding load to a group doesn't make a group heavier, but can cause movement
4428 * of group shares between cpus. Assuming the shares were perfectly aligned one
4429 * can calculate the shift in shares.
4430 *
4431 * Calculate the effective load difference if @wl is added (subtracted) to @tg
4432 * on this @cpu and results in a total addition (subtraction) of @wg to the
4433 * total group weight.
4434 *
4435 * Given a runqueue weight distribution (rw_i) we can compute a shares
4436 * distribution (s_i) using:
4437 *
4438 * s_i = rw_i / \Sum rw_j (1)
4439 *
4440 * Suppose we have 4 CPUs and our @tg is a direct child of the root group and
4441 * has 7 equal weight tasks, distributed as below (rw_i), with the resulting
4442 * shares distribution (s_i):
4443 *
4444 * rw_i = { 2, 4, 1, 0 }
4445 * s_i = { 2/7, 4/7, 1/7, 0 }
4446 *
4447 * As per wake_affine() we're interested in the load of two CPUs (the CPU the
4448 * task used to run on and the CPU the waker is running on), we need to
4449 * compute the effect of waking a task on either CPU and, in case of a sync
4450 * wakeup, compute the effect of the current task going to sleep.
4451 *
4452 * So for a change of @wl to the local @cpu with an overall group weight change
4453 * of @wl we can compute the new shares distribution (s'_i) using:
4454 *
4455 * s'_i = (rw_i + @wl) / (@wg + \Sum rw_j) (2)
4456 *
4457 * Suppose we're interested in CPUs 0 and 1, and want to compute the load
4458 * differences in waking a task to CPU 0. The additional task changes the
4459 * weight and shares distributions like:
4460 *
4461 * rw'_i = { 3, 4, 1, 0 }
4462 * s'_i = { 3/8, 4/8, 1/8, 0 }
4463 *
4464 * We can then compute the difference in effective weight by using:
4465 *
4466 * dw_i = S * (s'_i - s_i) (3)
4467 *
4468 * Where 'S' is the group weight as seen by its parent.
4469 *
4470 * Therefore the effective change in loads on CPU 0 would be 5/56 (3/8 - 2/7)
4471 * times the weight of the group. The effect on CPU 1 would be -4/56 (4/8 -
4472 * 4/7) times the weight of the group.
4473 */
4474 static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
4475 {
4476 struct sched_entity *se = tg->se[cpu];
4477
4478 if (!tg->parent) /* the trivial, non-cgroup case */
4479 return wl;
4480
4481 for_each_sched_entity(se) {
4482 long w, W;
4483
4484 tg = se->my_q->tg;
4485
4486 /*
4487 * W = @wg + \Sum rw_j
4488 */
4489 W = wg + calc_tg_weight(tg, se->my_q);
4490
4491 /*
4492 * w = rw_i + @wl
4493 */
4494 w = se->my_q->load.weight + wl;
4495
4496 /*
4497 * wl = S * s'_i; see (2)
4498 */
4499 if (W > 0 && w < W)
4500 wl = (w * (long)tg->shares) / W;
4501 else
4502 wl = tg->shares;
4503
4504 /*
4505 * Per the above, wl is the new se->load.weight value; since
4506 * those are clipped to [MIN_SHARES, ...) do so now. See
4507 * calc_cfs_shares().
4508 */
4509 if (wl < MIN_SHARES)
4510 wl = MIN_SHARES;
4511
4512 /*
4513 * wl = dw_i = S * (s'_i - s_i); see (3)
4514 */
4515 wl -= se->load.weight;
4516
4517 /*
4518 * Recursively apply this logic to all parent groups to compute
4519 * the final effective load change on the root group. Since
4520 * only the @tg group gets extra weight, all parent groups can
4521 * only redistribute existing shares. @wl is the shift in shares
4522 * resulting from this level per the above.
4523 */
4524 wg = 0;
4525 }
4526
4527 return wl;
4528 }
4529 #else
4530
4531 static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
4532 {
4533 return wl;
4534 }
4535
4536 #endif
4537
4538 static int wake_wide(struct task_struct *p)
4539 {
4540 int factor = this_cpu_read(sd_llc_size);
4541
4542 /*
4543 * Yeah, it's the switching-frequency, could means many wakee or
4544 * rapidly switch, use factor here will just help to automatically
4545 * adjust the loose-degree, so bigger node will lead to more pull.
4546 */
4547 if (p->wakee_flips > factor) {
4548 /*
4549 * wakee is somewhat hot, it needs certain amount of cpu
4550 * resource, so if waker is far more hot, prefer to leave
4551 * it alone.
4552 */
4553 if (current->wakee_flips > (factor * p->wakee_flips))
4554 return 1;
4555 }
4556
4557 return 0;
4558 }
4559
4560 static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync)
4561 {
4562 s64 this_load, load;
4563 s64 this_eff_load, prev_eff_load;
4564 int idx, this_cpu, prev_cpu;
4565 struct task_group *tg;
4566 unsigned long weight;
4567 int balanced;
4568
4569 /*
4570 * If we wake multiple tasks be careful to not bounce
4571 * ourselves around too much.
4572 */
4573 if (wake_wide(p))
4574 return 0;
4575
4576 idx = sd->wake_idx;
4577 this_cpu = smp_processor_id();
4578 prev_cpu = task_cpu(p);
4579 load = source_load(prev_cpu, idx);
4580 this_load = target_load(this_cpu, idx);
4581
4582 /*
4583 * If sync wakeup then subtract the (maximum possible)
4584 * effect of the currently running task from the load
4585 * of the current CPU:
4586 */
4587 if (sync) {
4588 tg = task_group(current);
4589 weight = current->se.load.weight;
4590
4591 this_load += effective_load(tg, this_cpu, -weight, -weight);
4592 load += effective_load(tg, prev_cpu, 0, -weight);
4593 }
4594
4595 tg = task_group(p);
4596 weight = p->se.load.weight;
4597
4598 /*
4599 * In low-load situations, where prev_cpu is idle and this_cpu is idle
4600 * due to the sync cause above having dropped this_load to 0, we'll
4601 * always have an imbalance, but there's really nothing you can do
4602 * about that, so that's good too.
4603 *
4604 * Otherwise check if either cpus are near enough in load to allow this
4605 * task to be woken on this_cpu.
4606 */
4607 this_eff_load = 100;
4608 this_eff_load *= capacity_of(prev_cpu);
4609
4610 prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2;
4611 prev_eff_load *= capacity_of(this_cpu);
4612
4613 if (this_load > 0) {
4614 this_eff_load *= this_load +
4615 effective_load(tg, this_cpu, weight, weight);
4616
4617 prev_eff_load *= load + effective_load(tg, prev_cpu, 0, weight);
4618 }
4619
4620 balanced = this_eff_load <= prev_eff_load;
4621
4622 schedstat_inc(p, se.statistics.nr_wakeups_affine_attempts);
4623
4624 if (!balanced)
4625 return 0;
4626
4627 schedstat_inc(sd, ttwu_move_affine);
4628 schedstat_inc(p, se.statistics.nr_wakeups_affine);
4629
4630 return 1;
4631 }
4632
4633 /*
4634 * find_idlest_group finds and returns the least busy CPU group within the
4635 * domain.
4636 */
4637 static struct sched_group *
4638 find_idlest_group(struct sched_domain *sd, struct task_struct *p,
4639 int this_cpu, int sd_flag)
4640 {
4641 struct sched_group *idlest = NULL, *group = sd->groups;
4642 unsigned long min_load = ULONG_MAX, this_load = 0;
4643 int load_idx = sd->forkexec_idx;
4644 int imbalance = 100 + (sd->imbalance_pct-100)/2;
4645
4646 if (sd_flag & SD_BALANCE_WAKE)
4647 load_idx = sd->wake_idx;
4648
4649 do {
4650 unsigned long load, avg_load;
4651 int local_group;
4652 int i;
4653
4654 /* Skip over this group if it has no CPUs allowed */
4655 if (!cpumask_intersects(sched_group_cpus(group),
4656 tsk_cpus_allowed(p)))
4657 continue;
4658
4659 local_group = cpumask_test_cpu(this_cpu,
4660 sched_group_cpus(group));
4661
4662 /* Tally up the load of all CPUs in the group */
4663 avg_load = 0;
4664
4665 for_each_cpu(i, sched_group_cpus(group)) {
4666 /* Bias balancing toward cpus of our domain */
4667 if (local_group)
4668 load = source_load(i, load_idx);
4669 else
4670 load = target_load(i, load_idx);
4671
4672 avg_load += load;
4673 }
4674
4675 /* Adjust by relative CPU capacity of the group */
4676 avg_load = (avg_load * SCHED_CAPACITY_SCALE) / group->sgc->capacity;
4677
4678 if (local_group) {
4679 this_load = avg_load;
4680 } else if (avg_load < min_load) {
4681 min_load = avg_load;
4682 idlest = group;
4683 }
4684 } while (group = group->next, group != sd->groups);
4685
4686 if (!idlest || 100*this_load < imbalance*min_load)
4687 return NULL;
4688 return idlest;
4689 }
4690
4691 /*
4692 * find_idlest_cpu - find the idlest cpu among the cpus in group.
4693 */
4694 static int
4695 find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
4696 {
4697 unsigned long load, min_load = ULONG_MAX;
4698 unsigned int min_exit_latency = UINT_MAX;
4699 u64 latest_idle_timestamp = 0;
4700 int least_loaded_cpu = this_cpu;
4701 int shallowest_idle_cpu = -1;
4702 int i;
4703
4704 /* Traverse only the allowed CPUs */
4705 for_each_cpu_and(i, sched_group_cpus(group), tsk_cpus_allowed(p)) {
4706 if (idle_cpu(i)) {
4707 struct rq *rq = cpu_rq(i);
4708 struct cpuidle_state *idle = idle_get_state(rq);
4709 if (idle && idle->exit_latency < min_exit_latency) {
4710 /*
4711 * We give priority to a CPU whose idle state
4712 * has the smallest exit latency irrespective
4713 * of any idle timestamp.
4714 */
4715 min_exit_latency = idle->exit_latency;
4716 latest_idle_timestamp = rq->idle_stamp;
4717 shallowest_idle_cpu = i;
4718 } else if ((!idle || idle->exit_latency == min_exit_latency) &&
4719 rq->idle_stamp > latest_idle_timestamp) {
4720 /*
4721 * If equal or no active idle state, then
4722 * the most recently idled CPU might have
4723 * a warmer cache.
4724 */
4725 latest_idle_timestamp = rq->idle_stamp;
4726 shallowest_idle_cpu = i;
4727 }
4728 } else if (shallowest_idle_cpu == -1) {
4729 load = weighted_cpuload(i);
4730 if (load < min_load || (load == min_load && i == this_cpu)) {
4731 min_load = load;
4732 least_loaded_cpu = i;
4733 }
4734 }
4735 }
4736
4737 return shallowest_idle_cpu != -1 ? shallowest_idle_cpu : least_loaded_cpu;
4738 }
4739
4740 /*
4741 * Try and locate an idle CPU in the sched_domain.
4742 */
4743 static int select_idle_sibling(struct task_struct *p, int target)
4744 {
4745 struct sched_domain *sd;
4746 struct sched_group *sg;
4747 int i = task_cpu(p);
4748
4749 if (idle_cpu(target))
4750 return target;
4751
4752 /*
4753 * If the prevous cpu is cache affine and idle, don't be stupid.
4754 */
4755 if (i != target && cpus_share_cache(i, target) && idle_cpu(i))
4756 return i;
4757
4758 /*
4759 * Otherwise, iterate the domains and find an elegible idle cpu.
4760 */
4761 sd = rcu_dereference(per_cpu(sd_llc, target));
4762 for_each_lower_domain(sd) {
4763 sg = sd->groups;
4764 do {
4765 if (!cpumask_intersects(sched_group_cpus(sg),
4766 tsk_cpus_allowed(p)))
4767 goto next;
4768
4769 for_each_cpu(i, sched_group_cpus(sg)) {
4770 if (i == target || !idle_cpu(i))
4771 goto next;
4772 }
4773
4774 target = cpumask_first_and(sched_group_cpus(sg),
4775 tsk_cpus_allowed(p));
4776 goto done;
4777 next:
4778 sg = sg->next;
4779 } while (sg != sd->groups);
4780 }
4781 done:
4782 return target;
4783 }
4784 /*
4785 * get_cpu_usage returns the amount of capacity of a CPU that is used by CFS
4786 * tasks. The unit of the return value must be the one of capacity so we can
4787 * compare the usage with the capacity of the CPU that is available for CFS
4788 * task (ie cpu_capacity).
4789 * cfs.utilization_load_avg is the sum of running time of runnable tasks on a
4790 * CPU. It represents the amount of utilization of a CPU in the range
4791 * [0..SCHED_LOAD_SCALE]. The usage of a CPU can't be higher than the full
4792 * capacity of the CPU because it's about the running time on this CPU.
4793 * Nevertheless, cfs.utilization_load_avg can be higher than SCHED_LOAD_SCALE
4794 * because of unfortunate rounding in avg_period and running_load_avg or just
4795 * after migrating tasks until the average stabilizes with the new running
4796 * time. So we need to check that the usage stays into the range
4797 * [0..cpu_capacity_orig] and cap if necessary.
4798 * Without capping the usage, a group could be seen as overloaded (CPU0 usage
4799 * at 121% + CPU1 usage at 80%) whereas CPU1 has 20% of available capacity
4800 */
4801 static int get_cpu_usage(int cpu)
4802 {
4803 unsigned long usage = cpu_rq(cpu)->cfs.utilization_load_avg;
4804 unsigned long capacity = capacity_orig_of(cpu);
4805
4806 if (usage >= SCHED_LOAD_SCALE)
4807 return capacity;
4808
4809 return (usage * capacity) >> SCHED_LOAD_SHIFT;
4810 }
4811
4812 /*
4813 * select_task_rq_fair: Select target runqueue for the waking task in domains
4814 * that have the 'sd_flag' flag set. In practice, this is SD_BALANCE_WAKE,
4815 * SD_BALANCE_FORK, or SD_BALANCE_EXEC.
4816 *
4817 * Balances load by selecting the idlest cpu in the idlest group, or under
4818 * certain conditions an idle sibling cpu if the domain has SD_WAKE_AFFINE set.
4819 *
4820 * Returns the target cpu number.
4821 *
4822 * preempt must be disabled.
4823 */
4824 static int
4825 select_task_rq_fair(struct task_struct *p, int prev_cpu, int sd_flag, int wake_flags)
4826 {
4827 struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
4828 int cpu = smp_processor_id();
4829 int new_cpu = cpu;
4830 int want_affine = 0;
4831 int sync = wake_flags & WF_SYNC;
4832
4833 if (sd_flag & SD_BALANCE_WAKE)
4834 want_affine = cpumask_test_cpu(cpu, tsk_cpus_allowed(p));
4835
4836 rcu_read_lock();
4837 for_each_domain(cpu, tmp) {
4838 if (!(tmp->flags & SD_LOAD_BALANCE))
4839 continue;
4840
4841 /*
4842 * If both cpu and prev_cpu are part of this domain,
4843 * cpu is a valid SD_WAKE_AFFINE target.
4844 */
4845 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
4846 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
4847 affine_sd = tmp;
4848 break;
4849 }
4850
4851 if (tmp->flags & sd_flag)
4852 sd = tmp;
4853 }
4854
4855 if (affine_sd && cpu != prev_cpu && wake_affine(affine_sd, p, sync))
4856 prev_cpu = cpu;
4857
4858 if (sd_flag & SD_BALANCE_WAKE) {
4859 new_cpu = select_idle_sibling(p, prev_cpu);
4860 goto unlock;
4861 }
4862
4863 while (sd) {
4864 struct sched_group *group;
4865 int weight;
4866
4867 if (!(sd->flags & sd_flag)) {
4868 sd = sd->child;
4869 continue;
4870 }
4871
4872 group = find_idlest_group(sd, p, cpu, sd_flag);
4873 if (!group) {
4874 sd = sd->child;
4875 continue;
4876 }
4877
4878 new_cpu = find_idlest_cpu(group, p, cpu);
4879 if (new_cpu == -1 || new_cpu == cpu) {
4880 /* Now try balancing at a lower domain level of cpu */
4881 sd = sd->child;
4882 continue;
4883 }
4884
4885 /* Now try balancing at a lower domain level of new_cpu */
4886 cpu = new_cpu;
4887 weight = sd->span_weight;
4888 sd = NULL;
4889 for_each_domain(cpu, tmp) {
4890 if (weight <= tmp->span_weight)
4891 break;
4892 if (tmp->flags & sd_flag)
4893 sd = tmp;
4894 }
4895 /* while loop will break here if sd == NULL */
4896 }
4897 unlock:
4898 rcu_read_unlock();
4899
4900 return new_cpu;
4901 }
4902
4903 /*
4904 * Called immediately before a task is migrated to a new cpu; task_cpu(p) and
4905 * cfs_rq_of(p) references at time of call are still valid and identify the
4906 * previous cpu. However, the caller only guarantees p->pi_lock is held; no
4907 * other assumptions, including the state of rq->lock, should be made.
4908 */
4909 static void
4910 migrate_task_rq_fair(struct task_struct *p, int next_cpu)
4911 {
4912 struct sched_entity *se = &p->se;
4913 struct cfs_rq *cfs_rq = cfs_rq_of(se);
4914
4915 /*
4916 * Load tracking: accumulate removed load so that it can be processed
4917 * when we next update owning cfs_rq under rq->lock. Tasks contribute
4918 * to blocked load iff they have a positive decay-count. It can never
4919 * be negative here since on-rq tasks have decay-count == 0.
4920 */
4921 if (se->avg.decay_count) {
4922 se->avg.decay_count = -__synchronize_entity_decay(se);
4923 atomic_long_add(se->avg.load_avg_contrib,
4924 &cfs_rq->removed_load);
4925 }
4926
4927 /* We have migrated, no longer consider this task hot */
4928 se->exec_start = 0;
4929 }
4930 #endif /* CONFIG_SMP */
4931
4932 static unsigned long
4933 wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
4934 {
4935 unsigned long gran = sysctl_sched_wakeup_granularity;
4936
4937 /*
4938 * Since its curr running now, convert the gran from real-time
4939 * to virtual-time in his units.
4940 *
4941 * By using 'se' instead of 'curr' we penalize light tasks, so
4942 * they get preempted easier. That is, if 'se' < 'curr' then
4943 * the resulting gran will be larger, therefore penalizing the
4944 * lighter, if otoh 'se' > 'curr' then the resulting gran will
4945 * be smaller, again penalizing the lighter task.
4946 *
4947 * This is especially important for buddies when the leftmost
4948 * task is higher priority than the buddy.
4949 */
4950 return calc_delta_fair(gran, se);
4951 }
4952
4953 /*
4954 * Should 'se' preempt 'curr'.
4955 *
4956 * |s1
4957 * |s2
4958 * |s3
4959 * g
4960 * |<--->|c
4961 *
4962 * w(c, s1) = -1
4963 * w(c, s2) = 0
4964 * w(c, s3) = 1
4965 *
4966 */
4967 static int
4968 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
4969 {
4970 s64 gran, vdiff = curr->vruntime - se->vruntime;
4971
4972 if (vdiff <= 0)
4973 return -1;
4974
4975 gran = wakeup_gran(curr, se);
4976 if (vdiff > gran)
4977 return 1;
4978
4979 return 0;
4980 }
4981
4982 static void set_last_buddy(struct sched_entity *se)
4983 {
4984 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
4985 return;
4986
4987 for_each_sched_entity(se)
4988 cfs_rq_of(se)->last = se;
4989 }
4990
4991 static void set_next_buddy(struct sched_entity *se)
4992 {
4993 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
4994 return;
4995
4996 for_each_sched_entity(se)
4997 cfs_rq_of(se)->next = se;
4998 }
4999
5000 static void set_skip_buddy(struct sched_entity *se)
5001 {
5002 for_each_sched_entity(se)
5003 cfs_rq_of(se)->skip = se;
5004 }
5005
5006 /*
5007 * Preempt the current task with a newly woken task if needed:
5008 */
5009 static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
5010 {
5011 struct task_struct *curr = rq->curr;
5012 struct sched_entity *se = &curr->se, *pse = &p->se;
5013 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
5014 int scale = cfs_rq->nr_running >= sched_nr_latency;
5015 int next_buddy_marked = 0;
5016
5017 if (unlikely(se == pse))
5018 return;
5019
5020 /*
5021 * This is possible from callers such as attach_tasks(), in which we
5022 * unconditionally check_prempt_curr() after an enqueue (which may have
5023 * lead to a throttle). This both saves work and prevents false
5024 * next-buddy nomination below.
5025 */
5026 if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
5027 return;
5028
5029 if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
5030 set_next_buddy(pse);
5031 next_buddy_marked = 1;
5032 }
5033
5034 /*
5035 * We can come here with TIF_NEED_RESCHED already set from new task
5036 * wake up path.
5037 *
5038 * Note: this also catches the edge-case of curr being in a throttled
5039 * group (e.g. via set_curr_task), since update_curr() (in the
5040 * enqueue of curr) will have resulted in resched being set. This
5041 * prevents us from potentially nominating it as a false LAST_BUDDY
5042 * below.
5043 */
5044 if (test_tsk_need_resched(curr))
5045 return;
5046
5047 /* Idle tasks are by definition preempted by non-idle tasks. */
5048 if (unlikely(curr->policy == SCHED_IDLE) &&
5049 likely(p->policy != SCHED_IDLE))
5050 goto preempt;
5051
5052 /*
5053 * Batch and idle tasks do not preempt non-idle tasks (their preemption
5054 * is driven by the tick):
5055 */
5056 if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
5057 return;
5058
5059 find_matching_se(&se, &pse);
5060 update_curr(cfs_rq_of(se));
5061 BUG_ON(!pse);
5062 if (wakeup_preempt_entity(se, pse) == 1) {
5063 /*
5064 * Bias pick_next to pick the sched entity that is
5065 * triggering this preemption.
5066 */
5067 if (!next_buddy_marked)
5068 set_next_buddy(pse);
5069 goto preempt;
5070 }
5071
5072 return;
5073
5074 preempt:
5075 resched_curr(rq);
5076 /*
5077 * Only set the backward buddy when the current task is still
5078 * on the rq. This can happen when a wakeup gets interleaved
5079 * with schedule on the ->pre_schedule() or idle_balance()
5080 * point, either of which can * drop the rq lock.
5081 *
5082 * Also, during early boot the idle thread is in the fair class,
5083 * for obvious reasons its a bad idea to schedule back to it.
5084 */
5085 if (unlikely(!se->on_rq || curr == rq->idle))
5086 return;
5087
5088 if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
5089 set_last_buddy(se);
5090 }
5091
5092 static struct task_struct *
5093 pick_next_task_fair(struct rq *rq, struct task_struct *prev)
5094 {
5095 struct cfs_rq *cfs_rq = &rq->cfs;
5096 struct sched_entity *se;
5097 struct task_struct *p;
5098 int new_tasks;
5099
5100 again:
5101 #ifdef CONFIG_FAIR_GROUP_SCHED
5102 if (!cfs_rq->nr_running)
5103 goto idle;
5104
5105 if (prev->sched_class != &fair_sched_class)
5106 goto simple;
5107
5108 /*
5109 * Because of the set_next_buddy() in dequeue_task_fair() it is rather
5110 * likely that a next task is from the same cgroup as the current.
5111 *
5112 * Therefore attempt to avoid putting and setting the entire cgroup
5113 * hierarchy, only change the part that actually changes.
5114 */
5115
5116 do {
5117 struct sched_entity *curr = cfs_rq->curr;
5118
5119 /*
5120 * Since we got here without doing put_prev_entity() we also
5121 * have to consider cfs_rq->curr. If it is still a runnable
5122 * entity, update_curr() will update its vruntime, otherwise
5123 * forget we've ever seen it.
5124 */
5125 if (curr && curr->on_rq)
5126 update_curr(cfs_rq);
5127 else
5128 curr = NULL;
5129
5130 /*
5131 * This call to check_cfs_rq_runtime() will do the throttle and
5132 * dequeue its entity in the parent(s). Therefore the 'simple'
5133 * nr_running test will indeed be correct.
5134 */
5135 if (unlikely(check_cfs_rq_runtime(cfs_rq)))
5136 goto simple;
5137
5138 se = pick_next_entity(cfs_rq, curr);
5139 cfs_rq = group_cfs_rq(se);
5140 } while (cfs_rq);
5141
5142 p = task_of(se);
5143
5144 /*
5145 * Since we haven't yet done put_prev_entity and if the selected task
5146 * is a different task than we started out with, try and touch the
5147 * least amount of cfs_rqs.
5148 */
5149 if (prev != p) {
5150 struct sched_entity *pse = &prev->se;
5151
5152 while (!(cfs_rq = is_same_group(se, pse))) {
5153 int se_depth = se->depth;
5154 int pse_depth = pse->depth;
5155
5156 if (se_depth <= pse_depth) {
5157 put_prev_entity(cfs_rq_of(pse), pse);
5158 pse = parent_entity(pse);
5159 }
5160 if (se_depth >= pse_depth) {
5161 set_next_entity(cfs_rq_of(se), se);
5162 se = parent_entity(se);
5163 }
5164 }
5165
5166 put_prev_entity(cfs_rq, pse);
5167 set_next_entity(cfs_rq, se);
5168 }
5169
5170 if (hrtick_enabled(rq))
5171 hrtick_start_fair(rq, p);
5172
5173 return p;
5174 simple:
5175 cfs_rq = &rq->cfs;
5176 #endif
5177
5178 if (!cfs_rq->nr_running)
5179 goto idle;
5180
5181 put_prev_task(rq, prev);
5182
5183 do {
5184 se = pick_next_entity(cfs_rq, NULL);
5185 set_next_entity(cfs_rq, se);
5186 cfs_rq = group_cfs_rq(se);
5187 } while (cfs_rq);
5188
5189 p = task_of(se);
5190
5191 if (hrtick_enabled(rq))
5192 hrtick_start_fair(rq, p);
5193
5194 return p;
5195
5196 idle:
5197 new_tasks = idle_balance(rq);
5198 /*
5199 * Because idle_balance() releases (and re-acquires) rq->lock, it is
5200 * possible for any higher priority task to appear. In that case we
5201 * must re-start the pick_next_entity() loop.
5202 */
5203 if (new_tasks < 0)
5204 return RETRY_TASK;
5205
5206 if (new_tasks > 0)
5207 goto again;
5208
5209 return NULL;
5210 }
5211
5212 /*
5213 * Account for a descheduled task:
5214 */
5215 static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
5216 {
5217 struct sched_entity *se = &prev->se;
5218 struct cfs_rq *cfs_rq;
5219
5220 for_each_sched_entity(se) {
5221 cfs_rq = cfs_rq_of(se);
5222 put_prev_entity(cfs_rq, se);
5223 }
5224 }
5225
5226 /*
5227 * sched_yield() is very simple
5228 *
5229 * The magic of dealing with the ->skip buddy is in pick_next_entity.
5230 */
5231 static void yield_task_fair(struct rq *rq)
5232 {
5233 struct task_struct *curr = rq->curr;
5234 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
5235 struct sched_entity *se = &curr->se;
5236
5237 /*
5238 * Are we the only task in the tree?
5239 */
5240 if (unlikely(rq->nr_running == 1))
5241 return;
5242
5243 clear_buddies(cfs_rq, se);
5244
5245 if (curr->policy != SCHED_BATCH) {
5246 update_rq_clock(rq);
5247 /*
5248 * Update run-time statistics of the 'current'.
5249 */
5250 update_curr(cfs_rq);
5251 /*
5252 * Tell update_rq_clock() that we've just updated,
5253 * so we don't do microscopic update in schedule()
5254 * and double the fastpath cost.
5255 */
5256 rq_clock_skip_update(rq, true);
5257 }
5258
5259 set_skip_buddy(se);
5260 }
5261
5262 static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
5263 {
5264 struct sched_entity *se = &p->se;
5265
5266 /* throttled hierarchies are not runnable */
5267 if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
5268 return false;
5269
5270 /* Tell the scheduler that we'd really like pse to run next. */
5271 set_next_buddy(se);
5272
5273 yield_task_fair(rq);
5274
5275 return true;
5276 }
5277
5278 #ifdef CONFIG_SMP
5279 /**************************************************
5280 * Fair scheduling class load-balancing methods.
5281 *
5282 * BASICS
5283 *
5284 * The purpose of load-balancing is to achieve the same basic fairness the
5285 * per-cpu scheduler provides, namely provide a proportional amount of compute
5286 * time to each task. This is expressed in the following equation:
5287 *
5288 * W_i,n/P_i == W_j,n/P_j for all i,j (1)
5289 *
5290 * Where W_i,n is the n-th weight average for cpu i. The instantaneous weight
5291 * W_i,0 is defined as:
5292 *
5293 * W_i,0 = \Sum_j w_i,j (2)
5294 *
5295 * Where w_i,j is the weight of the j-th runnable task on cpu i. This weight
5296 * is derived from the nice value as per prio_to_weight[].
5297 *
5298 * The weight average is an exponential decay average of the instantaneous
5299 * weight:
5300 *
5301 * W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0 (3)
5302 *
5303 * C_i is the compute capacity of cpu i, typically it is the
5304 * fraction of 'recent' time available for SCHED_OTHER task execution. But it
5305 * can also include other factors [XXX].
5306 *
5307 * To achieve this balance we define a measure of imbalance which follows
5308 * directly from (1):
5309 *
5310 * imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j } (4)
5311 *
5312 * We them move tasks around to minimize the imbalance. In the continuous
5313 * function space it is obvious this converges, in the discrete case we get
5314 * a few fun cases generally called infeasible weight scenarios.
5315 *
5316 * [XXX expand on:
5317 * - infeasible weights;
5318 * - local vs global optima in the discrete case. ]
5319 *
5320 *
5321 * SCHED DOMAINS
5322 *
5323 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
5324 * for all i,j solution, we create a tree of cpus that follows the hardware
5325 * topology where each level pairs two lower groups (or better). This results
5326 * in O(log n) layers. Furthermore we reduce the number of cpus going up the
5327 * tree to only the first of the previous level and we decrease the frequency
5328 * of load-balance at each level inv. proportional to the number of cpus in
5329 * the groups.
5330 *
5331 * This yields:
5332 *
5333 * log_2 n 1 n
5334 * \Sum { --- * --- * 2^i } = O(n) (5)
5335 * i = 0 2^i 2^i
5336 * `- size of each group
5337 * | | `- number of cpus doing load-balance
5338 * | `- freq
5339 * `- sum over all levels
5340 *
5341 * Coupled with a limit on how many tasks we can migrate every balance pass,
5342 * this makes (5) the runtime complexity of the balancer.
5343 *
5344 * An important property here is that each CPU is still (indirectly) connected
5345 * to every other cpu in at most O(log n) steps:
5346 *
5347 * The adjacency matrix of the resulting graph is given by:
5348 *
5349 * log_2 n
5350 * A_i,j = \Union (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1) (6)
5351 * k = 0
5352 *
5353 * And you'll find that:
5354 *
5355 * A^(log_2 n)_i,j != 0 for all i,j (7)
5356 *
5357 * Showing there's indeed a path between every cpu in at most O(log n) steps.
5358 * The task movement gives a factor of O(m), giving a convergence complexity
5359 * of:
5360 *
5361 * O(nm log n), n := nr_cpus, m := nr_tasks (8)
5362 *
5363 *
5364 * WORK CONSERVING
5365 *
5366 * In order to avoid CPUs going idle while there's still work to do, new idle
5367 * balancing is more aggressive and has the newly idle cpu iterate up the domain
5368 * tree itself instead of relying on other CPUs to bring it work.
5369 *
5370 * This adds some complexity to both (5) and (8) but it reduces the total idle
5371 * time.
5372 *
5373 * [XXX more?]
5374 *
5375 *
5376 * CGROUPS
5377 *
5378 * Cgroups make a horror show out of (2), instead of a simple sum we get:
5379 *
5380 * s_k,i
5381 * W_i,0 = \Sum_j \Prod_k w_k * ----- (9)
5382 * S_k
5383 *
5384 * Where
5385 *
5386 * s_k,i = \Sum_j w_i,j,k and S_k = \Sum_i s_k,i (10)
5387 *
5388 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on cpu i.
5389 *
5390 * The big problem is S_k, its a global sum needed to compute a local (W_i)
5391 * property.
5392 *
5393 * [XXX write more on how we solve this.. _after_ merging pjt's patches that
5394 * rewrite all of this once again.]
5395 */
5396
5397 static unsigned long __read_mostly max_load_balance_interval = HZ/10;
5398
5399 enum fbq_type { regular, remote, all };
5400
5401 #define LBF_ALL_PINNED 0x01
5402 #define LBF_NEED_BREAK 0x02
5403 #define LBF_DST_PINNED 0x04
5404 #define LBF_SOME_PINNED 0x08
5405
5406 struct lb_env {
5407 struct sched_domain *sd;
5408
5409 struct rq *src_rq;
5410 int src_cpu;
5411
5412 int dst_cpu;
5413 struct rq *dst_rq;
5414
5415 struct cpumask *dst_grpmask;
5416 int new_dst_cpu;
5417 enum cpu_idle_type idle;
5418 long imbalance;
5419 /* The set of CPUs under consideration for load-balancing */
5420 struct cpumask *cpus;
5421
5422 unsigned int flags;
5423
5424 unsigned int loop;
5425 unsigned int loop_break;
5426 unsigned int loop_max;
5427
5428 enum fbq_type fbq_type;
5429 struct list_head tasks;
5430 };
5431
5432 /*
5433 * Is this task likely cache-hot:
5434 */
5435 static int task_hot(struct task_struct *p, struct lb_env *env)
5436 {
5437 s64 delta;
5438
5439 lockdep_assert_held(&env->src_rq->lock);
5440
5441 if (p->sched_class != &fair_sched_class)
5442 return 0;
5443
5444 if (unlikely(p->policy == SCHED_IDLE))
5445 return 0;
5446
5447 /*
5448 * Buddy candidates are cache hot:
5449 */
5450 if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running &&
5451 (&p->se == cfs_rq_of(&p->se)->next ||
5452 &p->se == cfs_rq_of(&p->se)->last))
5453 return 1;
5454
5455 if (sysctl_sched_migration_cost == -1)
5456 return 1;
5457 if (sysctl_sched_migration_cost == 0)
5458 return 0;
5459
5460 delta = rq_clock_task(env->src_rq) - p->se.exec_start;
5461
5462 return delta < (s64)sysctl_sched_migration_cost;
5463 }
5464
5465 #ifdef CONFIG_NUMA_BALANCING
5466 /* Returns true if the destination node has incurred more faults */
5467 static bool migrate_improves_locality(struct task_struct *p, struct lb_env *env)
5468 {
5469 struct numa_group *numa_group = rcu_dereference(p->numa_group);
5470 int src_nid, dst_nid;
5471
5472 if (!sched_feat(NUMA_FAVOUR_HIGHER) || !p->numa_faults ||
5473 !(env->sd->flags & SD_NUMA)) {
5474 return false;
5475 }
5476
5477 src_nid = cpu_to_node(env->src_cpu);
5478 dst_nid = cpu_to_node(env->dst_cpu);
5479
5480 if (src_nid == dst_nid)
5481 return false;
5482
5483 if (numa_group) {
5484 /* Task is already in the group's interleave set. */
5485 if (node_isset(src_nid, numa_group->active_nodes))
5486 return false;
5487
5488 /* Task is moving into the group's interleave set. */
5489 if (node_isset(dst_nid, numa_group->active_nodes))
5490 return true;
5491
5492 return group_faults(p, dst_nid) > group_faults(p, src_nid);
5493 }
5494
5495 /* Encourage migration to the preferred node. */
5496 if (dst_nid == p->numa_preferred_nid)
5497 return true;
5498
5499 return task_faults(p, dst_nid) > task_faults(p, src_nid);
5500 }
5501
5502
5503 static bool migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
5504 {
5505 struct numa_group *numa_group = rcu_dereference(p->numa_group);
5506 int src_nid, dst_nid;
5507
5508 if (!sched_feat(NUMA) || !sched_feat(NUMA_RESIST_LOWER))
5509 return false;
5510
5511 if (!p->numa_faults || !(env->sd->flags & SD_NUMA))
5512 return false;
5513
5514 src_nid = cpu_to_node(env->src_cpu);
5515 dst_nid = cpu_to_node(env->dst_cpu);
5516
5517 if (src_nid == dst_nid)
5518 return false;
5519
5520 if (numa_group) {
5521 /* Task is moving within/into the group's interleave set. */
5522 if (node_isset(dst_nid, numa_group->active_nodes))
5523 return false;
5524
5525 /* Task is moving out of the group's interleave set. */
5526 if (node_isset(src_nid, numa_group->active_nodes))
5527 return true;
5528
5529 return group_faults(p, dst_nid) < group_faults(p, src_nid);
5530 }
5531
5532 /* Migrating away from the preferred node is always bad. */
5533 if (src_nid == p->numa_preferred_nid)
5534 return true;
5535
5536 return task_faults(p, dst_nid) < task_faults(p, src_nid);
5537 }
5538
5539 #else
5540 static inline bool migrate_improves_locality(struct task_struct *p,
5541 struct lb_env *env)
5542 {
5543 return false;
5544 }
5545
5546 static inline bool migrate_degrades_locality(struct task_struct *p,
5547 struct lb_env *env)
5548 {
5549 return false;
5550 }
5551 #endif
5552
5553 /*
5554 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
5555 */
5556 static
5557 int can_migrate_task(struct task_struct *p, struct lb_env *env)
5558 {
5559 int tsk_cache_hot = 0;
5560
5561 lockdep_assert_held(&env->src_rq->lock);
5562
5563 /*
5564 * We do not migrate tasks that are:
5565 * 1) throttled_lb_pair, or
5566 * 2) cannot be migrated to this CPU due to cpus_allowed, or
5567 * 3) running (obviously), or
5568 * 4) are cache-hot on their current CPU.
5569 */
5570 if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
5571 return 0;
5572
5573 if (!cpumask_test_cpu(env->dst_cpu, tsk_cpus_allowed(p))) {
5574 int cpu;
5575
5576 schedstat_inc(p, se.statistics.nr_failed_migrations_affine);
5577
5578 env->flags |= LBF_SOME_PINNED;
5579
5580 /*
5581 * Remember if this task can be migrated to any other cpu in
5582 * our sched_group. We may want to revisit it if we couldn't
5583 * meet load balance goals by pulling other tasks on src_cpu.
5584 *
5585 * Also avoid computing new_dst_cpu if we have already computed
5586 * one in current iteration.
5587 */
5588 if (!env->dst_grpmask || (env->flags & LBF_DST_PINNED))
5589 return 0;
5590
5591 /* Prevent to re-select dst_cpu via env's cpus */
5592 for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
5593 if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p))) {
5594 env->flags |= LBF_DST_PINNED;
5595 env->new_dst_cpu = cpu;
5596 break;
5597 }
5598 }
5599
5600 return 0;
5601 }
5602
5603 /* Record that we found atleast one task that could run on dst_cpu */
5604 env->flags &= ~LBF_ALL_PINNED;
5605
5606 if (task_running(env->src_rq, p)) {
5607 schedstat_inc(p, se.statistics.nr_failed_migrations_running);
5608 return 0;
5609 }
5610
5611 /*
5612 * Aggressive migration if:
5613 * 1) destination numa is preferred
5614 * 2) task is cache cold, or
5615 * 3) too many balance attempts have failed.
5616 */
5617 tsk_cache_hot = task_hot(p, env);
5618 if (!tsk_cache_hot)
5619 tsk_cache_hot = migrate_degrades_locality(p, env);
5620
5621 if (migrate_improves_locality(p, env) || !tsk_cache_hot ||
5622 env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
5623 if (tsk_cache_hot) {
5624 schedstat_inc(env->sd, lb_hot_gained[env->idle]);
5625 schedstat_inc(p, se.statistics.nr_forced_migrations);
5626 }
5627 return 1;
5628 }
5629
5630 schedstat_inc(p, se.statistics.nr_failed_migrations_hot);
5631 return 0;
5632 }
5633
5634 /*
5635 * detach_task() -- detach the task for the migration specified in env
5636 */
5637 static void detach_task(struct task_struct *p, struct lb_env *env)
5638 {
5639 lockdep_assert_held(&env->src_rq->lock);
5640
5641 deactivate_task(env->src_rq, p, 0);
5642 p->on_rq = TASK_ON_RQ_MIGRATING;
5643 set_task_cpu(p, env->dst_cpu);
5644 }
5645
5646 /*
5647 * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as
5648 * part of active balancing operations within "domain".
5649 *
5650 * Returns a task if successful and NULL otherwise.
5651 */
5652 static struct task_struct *detach_one_task(struct lb_env *env)
5653 {
5654 struct task_struct *p, *n;
5655
5656 lockdep_assert_held(&env->src_rq->lock);
5657
5658 list_for_each_entry_safe(p, n, &env->src_rq->cfs_tasks, se.group_node) {
5659 if (!can_migrate_task(p, env))
5660 continue;
5661
5662 detach_task(p, env);
5663
5664 /*
5665 * Right now, this is only the second place where
5666 * lb_gained[env->idle] is updated (other is detach_tasks)
5667 * so we can safely collect stats here rather than
5668 * inside detach_tasks().
5669 */
5670 schedstat_inc(env->sd, lb_gained[env->idle]);
5671 return p;
5672 }
5673 return NULL;
5674 }
5675
5676 static const unsigned int sched_nr_migrate_break = 32;
5677
5678 /*
5679 * detach_tasks() -- tries to detach up to imbalance weighted load from
5680 * busiest_rq, as part of a balancing operation within domain "sd".
5681 *
5682 * Returns number of detached tasks if successful and 0 otherwise.
5683 */
5684 static int detach_tasks(struct lb_env *env)
5685 {
5686 struct list_head *tasks = &env->src_rq->cfs_tasks;
5687 struct task_struct *p;
5688 unsigned long load;
5689 int detached = 0;
5690
5691 lockdep_assert_held(&env->src_rq->lock);
5692
5693 if (env->imbalance <= 0)
5694 return 0;
5695
5696 while (!list_empty(tasks)) {
5697 p = list_first_entry(tasks, struct task_struct, se.group_node);
5698
5699 env->loop++;
5700 /* We've more or less seen every task there is, call it quits */
5701 if (env->loop > env->loop_max)
5702 break;
5703
5704 /* take a breather every nr_migrate tasks */
5705 if (env->loop > env->loop_break) {
5706 env->loop_break += sched_nr_migrate_break;
5707 env->flags |= LBF_NEED_BREAK;
5708 break;
5709 }
5710
5711 if (!can_migrate_task(p, env))
5712 goto next;
5713
5714 load = task_h_load(p);
5715
5716 if (sched_feat(LB_MIN) && load < 16 && !env->sd->nr_balance_failed)
5717 goto next;
5718
5719 if ((load / 2) > env->imbalance)
5720 goto next;
5721
5722 detach_task(p, env);
5723 list_add(&p->se.group_node, &env->tasks);
5724
5725 detached++;
5726 env->imbalance -= load;
5727
5728 #ifdef CONFIG_PREEMPT
5729 /*
5730 * NEWIDLE balancing is a source of latency, so preemptible
5731 * kernels will stop after the first task is detached to minimize
5732 * the critical section.
5733 */
5734 if (env->idle == CPU_NEWLY_IDLE)
5735 break;
5736 #endif
5737
5738 /*
5739 * We only want to steal up to the prescribed amount of
5740 * weighted load.
5741 */
5742 if (env->imbalance <= 0)
5743 break;
5744
5745 continue;
5746 next:
5747 list_move_tail(&p->se.group_node, tasks);
5748 }
5749
5750 /*
5751 * Right now, this is one of only two places we collect this stat
5752 * so we can safely collect detach_one_task() stats here rather
5753 * than inside detach_one_task().
5754 */
5755 schedstat_add(env->sd, lb_gained[env->idle], detached);
5756
5757 return detached;
5758 }
5759
5760 /*
5761 * attach_task() -- attach the task detached by detach_task() to its new rq.
5762 */
5763 static void attach_task(struct rq *rq, struct task_struct *p)
5764 {
5765 lockdep_assert_held(&rq->lock);
5766
5767 BUG_ON(task_rq(p) != rq);
5768 p->on_rq = TASK_ON_RQ_QUEUED;
5769 activate_task(rq, p, 0);
5770 check_preempt_curr(rq, p, 0);
5771 }
5772
5773 /*
5774 * attach_one_task() -- attaches the task returned from detach_one_task() to
5775 * its new rq.
5776 */
5777 static void attach_one_task(struct rq *rq, struct task_struct *p)
5778 {
5779 raw_spin_lock(&rq->lock);
5780 attach_task(rq, p);
5781 raw_spin_unlock(&rq->lock);
5782 }
5783
5784 /*
5785 * attach_tasks() -- attaches all tasks detached by detach_tasks() to their
5786 * new rq.
5787 */
5788 static void attach_tasks(struct lb_env *env)
5789 {
5790 struct list_head *tasks = &env->tasks;
5791 struct task_struct *p;
5792
5793 raw_spin_lock(&env->dst_rq->lock);
5794
5795 while (!list_empty(tasks)) {
5796 p = list_first_entry(tasks, struct task_struct, se.group_node);
5797 list_del_init(&p->se.group_node);
5798
5799 attach_task(env->dst_rq, p);
5800 }
5801
5802 raw_spin_unlock(&env->dst_rq->lock);
5803 }
5804
5805 #ifdef CONFIG_FAIR_GROUP_SCHED
5806 /*
5807 * update tg->load_weight by folding this cpu's load_avg
5808 */
5809 static void __update_blocked_averages_cpu(struct task_group *tg, int cpu)
5810 {
5811 struct sched_entity *se = tg->se[cpu];
5812 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu];
5813
5814 /* throttled entities do not contribute to load */
5815 if (throttled_hierarchy(cfs_rq))
5816 return;
5817
5818 update_cfs_rq_blocked_load(cfs_rq, 1);
5819
5820 if (se) {
5821 update_entity_load_avg(se, 1);
5822 /*
5823 * We pivot on our runnable average having decayed to zero for
5824 * list removal. This generally implies that all our children
5825 * have also been removed (modulo rounding error or bandwidth
5826 * control); however, such cases are rare and we can fix these
5827 * at enqueue.
5828 *
5829 * TODO: fix up out-of-order children on enqueue.
5830 */
5831 if (!se->avg.runnable_avg_sum && !cfs_rq->nr_running)
5832 list_del_leaf_cfs_rq(cfs_rq);
5833 } else {
5834 struct rq *rq = rq_of(cfs_rq);
5835 update_rq_runnable_avg(rq, rq->nr_running);
5836 }
5837 }
5838
5839 static void update_blocked_averages(int cpu)
5840 {
5841 struct rq *rq = cpu_rq(cpu);
5842 struct cfs_rq *cfs_rq;
5843 unsigned long flags;
5844
5845 raw_spin_lock_irqsave(&rq->lock, flags);
5846 update_rq_clock(rq);
5847 /*
5848 * Iterates the task_group tree in a bottom up fashion, see
5849 * list_add_leaf_cfs_rq() for details.
5850 */
5851 for_each_leaf_cfs_rq(rq, cfs_rq) {
5852 /*
5853 * Note: We may want to consider periodically releasing
5854 * rq->lock about these updates so that creating many task
5855 * groups does not result in continually extending hold time.
5856 */
5857 __update_blocked_averages_cpu(cfs_rq->tg, rq->cpu);
5858 }
5859
5860 raw_spin_unlock_irqrestore(&rq->lock, flags);
5861 }
5862
5863 /*
5864 * Compute the hierarchical load factor for cfs_rq and all its ascendants.
5865 * This needs to be done in a top-down fashion because the load of a child
5866 * group is a fraction of its parents load.
5867 */
5868 static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
5869 {
5870 struct rq *rq = rq_of(cfs_rq);
5871 struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
5872 unsigned long now = jiffies;
5873 unsigned long load;
5874
5875 if (cfs_rq->last_h_load_update == now)
5876 return;
5877
5878 cfs_rq->h_load_next = NULL;
5879 for_each_sched_entity(se) {
5880 cfs_rq = cfs_rq_of(se);
5881 cfs_rq->h_load_next = se;
5882 if (cfs_rq->last_h_load_update == now)
5883 break;
5884 }
5885
5886 if (!se) {
5887 cfs_rq->h_load = cfs_rq->runnable_load_avg;
5888 cfs_rq->last_h_load_update = now;
5889 }
5890
5891 while ((se = cfs_rq->h_load_next) != NULL) {
5892 load = cfs_rq->h_load;
5893 load = div64_ul(load * se->avg.load_avg_contrib,
5894 cfs_rq->runnable_load_avg + 1);
5895 cfs_rq = group_cfs_rq(se);
5896 cfs_rq->h_load = load;
5897 cfs_rq->last_h_load_update = now;
5898 }
5899 }
5900
5901 static unsigned long task_h_load(struct task_struct *p)
5902 {
5903 struct cfs_rq *cfs_rq = task_cfs_rq(p);
5904
5905 update_cfs_rq_h_load(cfs_rq);
5906 return div64_ul(p->se.avg.load_avg_contrib * cfs_rq->h_load,
5907 cfs_rq->runnable_load_avg + 1);
5908 }
5909 #else
5910 static inline void update_blocked_averages(int cpu)
5911 {
5912 }
5913
5914 static unsigned long task_h_load(struct task_struct *p)
5915 {
5916 return p->se.avg.load_avg_contrib;
5917 }
5918 #endif
5919
5920 /********** Helpers for find_busiest_group ************************/
5921
5922 enum group_type {
5923 group_other = 0,
5924 group_imbalanced,
5925 group_overloaded,
5926 };
5927
5928 /*
5929 * sg_lb_stats - stats of a sched_group required for load_balancing
5930 */
5931 struct sg_lb_stats {
5932 unsigned long avg_load; /*Avg load across the CPUs of the group */
5933 unsigned long group_load; /* Total load over the CPUs of the group */
5934 unsigned long sum_weighted_load; /* Weighted load of group's tasks */
5935 unsigned long load_per_task;
5936 unsigned long group_capacity;
5937 unsigned long group_usage; /* Total usage of the group */
5938 unsigned int sum_nr_running; /* Nr tasks running in the group */
5939 unsigned int group_capacity_factor;
5940 unsigned int idle_cpus;
5941 unsigned int group_weight;
5942 enum group_type group_type;
5943 int group_has_free_capacity;
5944 #ifdef CONFIG_NUMA_BALANCING
5945 unsigned int nr_numa_running;
5946 unsigned int nr_preferred_running;
5947 #endif
5948 };
5949
5950 /*
5951 * sd_lb_stats - Structure to store the statistics of a sched_domain
5952 * during load balancing.
5953 */
5954 struct sd_lb_stats {
5955 struct sched_group *busiest; /* Busiest group in this sd */
5956 struct sched_group *local; /* Local group in this sd */
5957 unsigned long total_load; /* Total load of all groups in sd */
5958 unsigned long total_capacity; /* Total capacity of all groups in sd */
5959 unsigned long avg_load; /* Average load across all groups in sd */
5960
5961 struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */
5962 struct sg_lb_stats local_stat; /* Statistics of the local group */
5963 };
5964
5965 static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
5966 {
5967 /*
5968 * Skimp on the clearing to avoid duplicate work. We can avoid clearing
5969 * local_stat because update_sg_lb_stats() does a full clear/assignment.
5970 * We must however clear busiest_stat::avg_load because
5971 * update_sd_pick_busiest() reads this before assignment.
5972 */
5973 *sds = (struct sd_lb_stats){
5974 .busiest = NULL,
5975 .local = NULL,
5976 .total_load = 0UL,
5977 .total_capacity = 0UL,
5978 .busiest_stat = {
5979 .avg_load = 0UL,
5980 .sum_nr_running = 0,
5981 .group_type = group_other,
5982 },
5983 };
5984 }
5985
5986 /**
5987 * get_sd_load_idx - Obtain the load index for a given sched domain.
5988 * @sd: The sched_domain whose load_idx is to be obtained.
5989 * @idle: The idle status of the CPU for whose sd load_idx is obtained.
5990 *
5991 * Return: The load index.
5992 */
5993 static inline int get_sd_load_idx(struct sched_domain *sd,
5994 enum cpu_idle_type idle)
5995 {
5996 int load_idx;
5997
5998 switch (idle) {
5999 case CPU_NOT_IDLE:
6000 load_idx = sd->busy_idx;
6001 break;
6002
6003 case CPU_NEWLY_IDLE:
6004 load_idx = sd->newidle_idx;
6005 break;
6006 default:
6007 load_idx = sd->idle_idx;
6008 break;
6009 }
6010
6011 return load_idx;
6012 }
6013
6014 static unsigned long default_scale_capacity(struct sched_domain *sd, int cpu)
6015 {
6016 return SCHED_CAPACITY_SCALE;
6017 }
6018
6019 unsigned long __weak arch_scale_freq_capacity(struct sched_domain *sd, int cpu)
6020 {
6021 return default_scale_capacity(sd, cpu);
6022 }
6023
6024 static unsigned long default_scale_cpu_capacity(struct sched_domain *sd, int cpu)
6025 {
6026 if ((sd->flags & SD_SHARE_CPUCAPACITY) && (sd->span_weight > 1))
6027 return sd->smt_gain / sd->span_weight;
6028
6029 return SCHED_CAPACITY_SCALE;
6030 }
6031
6032 unsigned long __weak arch_scale_cpu_capacity(struct sched_domain *sd, int cpu)
6033 {
6034 return default_scale_cpu_capacity(sd, cpu);
6035 }
6036
6037 static unsigned long scale_rt_capacity(int cpu)
6038 {
6039 struct rq *rq = cpu_rq(cpu);
6040 u64 total, used, age_stamp, avg;
6041 s64 delta;
6042
6043 /*
6044 * Since we're reading these variables without serialization make sure
6045 * we read them once before doing sanity checks on them.
6046 */
6047 age_stamp = ACCESS_ONCE(rq->age_stamp);
6048 avg = ACCESS_ONCE(rq->rt_avg);
6049 delta = __rq_clock_broken(rq) - age_stamp;
6050
6051 if (unlikely(delta < 0))
6052 delta = 0;
6053
6054 total = sched_avg_period() + delta;
6055
6056 used = div_u64(avg, total);
6057
6058 if (likely(used < SCHED_CAPACITY_SCALE))
6059 return SCHED_CAPACITY_SCALE - used;
6060
6061 return 1;
6062 }
6063
6064 static void update_cpu_capacity(struct sched_domain *sd, int cpu)
6065 {
6066 unsigned long capacity = SCHED_CAPACITY_SCALE;
6067 struct sched_group *sdg = sd->groups;
6068
6069 if (sched_feat(ARCH_CAPACITY))
6070 capacity *= arch_scale_cpu_capacity(sd, cpu);
6071 else
6072 capacity *= default_scale_cpu_capacity(sd, cpu);
6073
6074 capacity >>= SCHED_CAPACITY_SHIFT;
6075
6076 cpu_rq(cpu)->cpu_capacity_orig = capacity;
6077 sdg->sgc->capacity_orig = capacity;
6078
6079 capacity *= scale_rt_capacity(cpu);
6080 capacity >>= SCHED_CAPACITY_SHIFT;
6081
6082 if (!capacity)
6083 capacity = 1;
6084
6085 cpu_rq(cpu)->cpu_capacity = capacity;
6086 sdg->sgc->capacity = capacity;
6087 }
6088
6089 void update_group_capacity(struct sched_domain *sd, int cpu)
6090 {
6091 struct sched_domain *child = sd->child;
6092 struct sched_group *group, *sdg = sd->groups;
6093 unsigned long capacity, capacity_orig;
6094 unsigned long interval;
6095
6096 interval = msecs_to_jiffies(sd->balance_interval);
6097 interval = clamp(interval, 1UL, max_load_balance_interval);
6098 sdg->sgc->next_update = jiffies + interval;
6099
6100 if (!child) {
6101 update_cpu_capacity(sd, cpu);
6102 return;
6103 }
6104
6105 capacity_orig = capacity = 0;
6106
6107 if (child->flags & SD_OVERLAP) {
6108 /*
6109 * SD_OVERLAP domains cannot assume that child groups
6110 * span the current group.
6111 */
6112
6113 for_each_cpu(cpu, sched_group_cpus(sdg)) {
6114 struct sched_group_capacity *sgc;
6115 struct rq *rq = cpu_rq(cpu);
6116
6117 /*
6118 * build_sched_domains() -> init_sched_groups_capacity()
6119 * gets here before we've attached the domains to the
6120 * runqueues.
6121 *
6122 * Use capacity_of(), which is set irrespective of domains
6123 * in update_cpu_capacity().
6124 *
6125 * This avoids capacity/capacity_orig from being 0 and
6126 * causing divide-by-zero issues on boot.
6127 *
6128 * Runtime updates will correct capacity_orig.
6129 */
6130 if (unlikely(!rq->sd)) {
6131 capacity_orig += capacity_orig_of(cpu);
6132 capacity += capacity_of(cpu);
6133 continue;
6134 }
6135
6136 sgc = rq->sd->groups->sgc;
6137 capacity_orig += sgc->capacity_orig;
6138 capacity += sgc->capacity;
6139 }
6140 } else {
6141 /*
6142 * !SD_OVERLAP domains can assume that child groups
6143 * span the current group.
6144 */
6145
6146 group = child->groups;
6147 do {
6148 capacity_orig += group->sgc->capacity_orig;
6149 capacity += group->sgc->capacity;
6150 group = group->next;
6151 } while (group != child->groups);
6152 }
6153
6154 sdg->sgc->capacity_orig = capacity_orig;
6155 sdg->sgc->capacity = capacity;
6156 }
6157
6158 /*
6159 * Try and fix up capacity for tiny siblings, this is needed when
6160 * things like SD_ASYM_PACKING need f_b_g to select another sibling
6161 * which on its own isn't powerful enough.
6162 *
6163 * See update_sd_pick_busiest() and check_asym_packing().
6164 */
6165 static inline int
6166 fix_small_capacity(struct sched_domain *sd, struct sched_group *group)
6167 {
6168 /*
6169 * Only siblings can have significantly less than SCHED_CAPACITY_SCALE
6170 */
6171 if (!(sd->flags & SD_SHARE_CPUCAPACITY))
6172 return 0;
6173
6174 /*
6175 * If ~90% of the cpu_capacity is still there, we're good.
6176 */
6177 if (group->sgc->capacity * 32 > group->sgc->capacity_orig * 29)
6178 return 1;
6179
6180 return 0;
6181 }
6182
6183 /*
6184 * Group imbalance indicates (and tries to solve) the problem where balancing
6185 * groups is inadequate due to tsk_cpus_allowed() constraints.
6186 *
6187 * Imagine a situation of two groups of 4 cpus each and 4 tasks each with a
6188 * cpumask covering 1 cpu of the first group and 3 cpus of the second group.
6189 * Something like:
6190 *
6191 * { 0 1 2 3 } { 4 5 6 7 }
6192 * * * * *
6193 *
6194 * If we were to balance group-wise we'd place two tasks in the first group and
6195 * two tasks in the second group. Clearly this is undesired as it will overload
6196 * cpu 3 and leave one of the cpus in the second group unused.
6197 *
6198 * The current solution to this issue is detecting the skew in the first group
6199 * by noticing the lower domain failed to reach balance and had difficulty
6200 * moving tasks due to affinity constraints.
6201 *
6202 * When this is so detected; this group becomes a candidate for busiest; see
6203 * update_sd_pick_busiest(). And calculate_imbalance() and
6204 * find_busiest_group() avoid some of the usual balance conditions to allow it
6205 * to create an effective group imbalance.
6206 *
6207 * This is a somewhat tricky proposition since the next run might not find the
6208 * group imbalance and decide the groups need to be balanced again. A most
6209 * subtle and fragile situation.
6210 */
6211
6212 static inline int sg_imbalanced(struct sched_group *group)
6213 {
6214 return group->sgc->imbalance;
6215 }
6216
6217 /*
6218 * Compute the group capacity factor.
6219 *
6220 * Avoid the issue where N*frac(smt_capacity) >= 1 creates 'phantom' cores by
6221 * first dividing out the smt factor and computing the actual number of cores
6222 * and limit unit capacity with that.
6223 */
6224 static inline int sg_capacity_factor(struct lb_env *env, struct sched_group *group)
6225 {
6226 unsigned int capacity_factor, smt, cpus;
6227 unsigned int capacity, capacity_orig;
6228
6229 capacity = group->sgc->capacity;
6230 capacity_orig = group->sgc->capacity_orig;
6231 cpus = group->group_weight;
6232
6233 /* smt := ceil(cpus / capacity), assumes: 1 < smt_capacity < 2 */
6234 smt = DIV_ROUND_UP(SCHED_CAPACITY_SCALE * cpus, capacity_orig);
6235 capacity_factor = cpus / smt; /* cores */
6236
6237 capacity_factor = min_t(unsigned,
6238 capacity_factor, DIV_ROUND_CLOSEST(capacity, SCHED_CAPACITY_SCALE));
6239 if (!capacity_factor)
6240 capacity_factor = fix_small_capacity(env->sd, group);
6241
6242 return capacity_factor;
6243 }
6244
6245 static enum group_type
6246 group_classify(struct sched_group *group, struct sg_lb_stats *sgs)
6247 {
6248 if (sgs->sum_nr_running > sgs->group_capacity_factor)
6249 return group_overloaded;
6250
6251 if (sg_imbalanced(group))
6252 return group_imbalanced;
6253
6254 return group_other;
6255 }
6256
6257 /**
6258 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
6259 * @env: The load balancing environment.
6260 * @group: sched_group whose statistics are to be updated.
6261 * @load_idx: Load index of sched_domain of this_cpu for load calc.
6262 * @local_group: Does group contain this_cpu.
6263 * @sgs: variable to hold the statistics for this group.
6264 * @overload: Indicate more than one runnable task for any CPU.
6265 */
6266 static inline void update_sg_lb_stats(struct lb_env *env,
6267 struct sched_group *group, int load_idx,
6268 int local_group, struct sg_lb_stats *sgs,
6269 bool *overload)
6270 {
6271 unsigned long load;
6272 int i;
6273
6274 memset(sgs, 0, sizeof(*sgs));
6275
6276 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
6277 struct rq *rq = cpu_rq(i);
6278
6279 /* Bias balancing toward cpus of our domain */
6280 if (local_group)
6281 load = target_load(i, load_idx);
6282 else
6283 load = source_load(i, load_idx);
6284
6285 sgs->group_load += load;
6286 sgs->group_usage += get_cpu_usage(i);
6287 sgs->sum_nr_running += rq->cfs.h_nr_running;
6288
6289 if (rq->nr_running > 1)
6290 *overload = true;
6291
6292 #ifdef CONFIG_NUMA_BALANCING
6293 sgs->nr_numa_running += rq->nr_numa_running;
6294 sgs->nr_preferred_running += rq->nr_preferred_running;
6295 #endif
6296 sgs->sum_weighted_load += weighted_cpuload(i);
6297 if (idle_cpu(i))
6298 sgs->idle_cpus++;
6299 }
6300
6301 /* Adjust by relative CPU capacity of the group */
6302 sgs->group_capacity = group->sgc->capacity;
6303 sgs->avg_load = (sgs->group_load*SCHED_CAPACITY_SCALE) / sgs->group_capacity;
6304
6305 if (sgs->sum_nr_running)
6306 sgs->load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
6307
6308 sgs->group_weight = group->group_weight;
6309 sgs->group_capacity_factor = sg_capacity_factor(env, group);
6310 sgs->group_type = group_classify(group, sgs);
6311
6312 if (sgs->group_capacity_factor > sgs->sum_nr_running)
6313 sgs->group_has_free_capacity = 1;
6314 }
6315
6316 /**
6317 * update_sd_pick_busiest - return 1 on busiest group
6318 * @env: The load balancing environment.
6319 * @sds: sched_domain statistics
6320 * @sg: sched_group candidate to be checked for being the busiest
6321 * @sgs: sched_group statistics
6322 *
6323 * Determine if @sg is a busier group than the previously selected
6324 * busiest group.
6325 *
6326 * Return: %true if @sg is a busier group than the previously selected
6327 * busiest group. %false otherwise.
6328 */
6329 static bool update_sd_pick_busiest(struct lb_env *env,
6330 struct sd_lb_stats *sds,
6331 struct sched_group *sg,
6332 struct sg_lb_stats *sgs)
6333 {
6334 struct sg_lb_stats *busiest = &sds->busiest_stat;
6335
6336 if (sgs->group_type > busiest->group_type)
6337 return true;
6338
6339 if (sgs->group_type < busiest->group_type)
6340 return false;
6341
6342 if (sgs->avg_load <= busiest->avg_load)
6343 return false;
6344
6345 /* This is the busiest node in its class. */
6346 if (!(env->sd->flags & SD_ASYM_PACKING))
6347 return true;
6348
6349 /*
6350 * ASYM_PACKING needs to move all the work to the lowest
6351 * numbered CPUs in the group, therefore mark all groups
6352 * higher than ourself as busy.
6353 */
6354 if (sgs->sum_nr_running && env->dst_cpu < group_first_cpu(sg)) {
6355 if (!sds->busiest)
6356 return true;
6357
6358 if (group_first_cpu(sds->busiest) > group_first_cpu(sg))
6359 return true;
6360 }
6361
6362 return false;
6363 }
6364
6365 #ifdef CONFIG_NUMA_BALANCING
6366 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
6367 {
6368 if (sgs->sum_nr_running > sgs->nr_numa_running)
6369 return regular;
6370 if (sgs->sum_nr_running > sgs->nr_preferred_running)
6371 return remote;
6372 return all;
6373 }
6374
6375 static inline enum fbq_type fbq_classify_rq(struct rq *rq)
6376 {
6377 if (rq->nr_running > rq->nr_numa_running)
6378 return regular;
6379 if (rq->nr_running > rq->nr_preferred_running)
6380 return remote;
6381 return all;
6382 }
6383 #else
6384 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
6385 {
6386 return all;
6387 }
6388
6389 static inline enum fbq_type fbq_classify_rq(struct rq *rq)
6390 {
6391 return regular;
6392 }
6393 #endif /* CONFIG_NUMA_BALANCING */
6394
6395 /**
6396 * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
6397 * @env: The load balancing environment.
6398 * @sds: variable to hold the statistics for this sched_domain.
6399 */
6400 static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds)
6401 {
6402 struct sched_domain *child = env->sd->child;
6403 struct sched_group *sg = env->sd->groups;
6404 struct sg_lb_stats tmp_sgs;
6405 int load_idx, prefer_sibling = 0;
6406 bool overload = false;
6407
6408 if (child && child->flags & SD_PREFER_SIBLING)
6409 prefer_sibling = 1;
6410
6411 load_idx = get_sd_load_idx(env->sd, env->idle);
6412
6413 do {
6414 struct sg_lb_stats *sgs = &tmp_sgs;
6415 int local_group;
6416
6417 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_cpus(sg));
6418 if (local_group) {
6419 sds->local = sg;
6420 sgs = &sds->local_stat;
6421
6422 if (env->idle != CPU_NEWLY_IDLE ||
6423 time_after_eq(jiffies, sg->sgc->next_update))
6424 update_group_capacity(env->sd, env->dst_cpu);
6425 }
6426
6427 update_sg_lb_stats(env, sg, load_idx, local_group, sgs,
6428 &overload);
6429
6430 if (local_group)
6431 goto next_group;
6432
6433 /*
6434 * In case the child domain prefers tasks go to siblings
6435 * first, lower the sg capacity factor to one so that we'll try
6436 * and move all the excess tasks away. We lower the capacity
6437 * of a group only if the local group has the capacity to fit
6438 * these excess tasks, i.e. nr_running < group_capacity_factor. The
6439 * extra check prevents the case where you always pull from the
6440 * heaviest group when it is already under-utilized (possible
6441 * with a large weight task outweighs the tasks on the system).
6442 */
6443 if (prefer_sibling && sds->local &&
6444 sds->local_stat.group_has_free_capacity) {
6445 sgs->group_capacity_factor = min(sgs->group_capacity_factor, 1U);
6446 sgs->group_type = group_classify(sg, sgs);
6447 }
6448
6449 if (update_sd_pick_busiest(env, sds, sg, sgs)) {
6450 sds->busiest = sg;
6451 sds->busiest_stat = *sgs;
6452 }
6453
6454 next_group:
6455 /* Now, start updating sd_lb_stats */
6456 sds->total_load += sgs->group_load;
6457 sds->total_capacity += sgs->group_capacity;
6458
6459 sg = sg->next;
6460 } while (sg != env->sd->groups);
6461
6462 if (env->sd->flags & SD_NUMA)
6463 env->fbq_type = fbq_classify_group(&sds->busiest_stat);
6464
6465 if (!env->sd->parent) {
6466 /* update overload indicator if we are at root domain */
6467 if (env->dst_rq->rd->overload != overload)
6468 env->dst_rq->rd->overload = overload;
6469 }
6470
6471 }
6472
6473 /**
6474 * check_asym_packing - Check to see if the group is packed into the
6475 * sched doman.
6476 *
6477 * This is primarily intended to used at the sibling level. Some
6478 * cores like POWER7 prefer to use lower numbered SMT threads. In the
6479 * case of POWER7, it can move to lower SMT modes only when higher
6480 * threads are idle. When in lower SMT modes, the threads will
6481 * perform better since they share less core resources. Hence when we
6482 * have idle threads, we want them to be the higher ones.
6483 *
6484 * This packing function is run on idle threads. It checks to see if
6485 * the busiest CPU in this domain (core in the P7 case) has a higher
6486 * CPU number than the packing function is being run on. Here we are
6487 * assuming lower CPU number will be equivalent to lower a SMT thread
6488 * number.
6489 *
6490 * Return: 1 when packing is required and a task should be moved to
6491 * this CPU. The amount of the imbalance is returned in *imbalance.
6492 *
6493 * @env: The load balancing environment.
6494 * @sds: Statistics of the sched_domain which is to be packed
6495 */
6496 static int check_asym_packing(struct lb_env *env, struct sd_lb_stats *sds)
6497 {
6498 int busiest_cpu;
6499
6500 if (!(env->sd->flags & SD_ASYM_PACKING))
6501 return 0;
6502
6503 if (!sds->busiest)
6504 return 0;
6505
6506 busiest_cpu = group_first_cpu(sds->busiest);
6507 if (env->dst_cpu > busiest_cpu)
6508 return 0;
6509
6510 env->imbalance = DIV_ROUND_CLOSEST(
6511 sds->busiest_stat.avg_load * sds->busiest_stat.group_capacity,
6512 SCHED_CAPACITY_SCALE);
6513
6514 return 1;
6515 }
6516
6517 /**
6518 * fix_small_imbalance - Calculate the minor imbalance that exists
6519 * amongst the groups of a sched_domain, during
6520 * load balancing.
6521 * @env: The load balancing environment.
6522 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
6523 */
6524 static inline
6525 void fix_small_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
6526 {
6527 unsigned long tmp, capa_now = 0, capa_move = 0;
6528 unsigned int imbn = 2;
6529 unsigned long scaled_busy_load_per_task;
6530 struct sg_lb_stats *local, *busiest;
6531
6532 local = &sds->local_stat;
6533 busiest = &sds->busiest_stat;
6534
6535 if (!local->sum_nr_running)
6536 local->load_per_task = cpu_avg_load_per_task(env->dst_cpu);
6537 else if (busiest->load_per_task > local->load_per_task)
6538 imbn = 1;
6539
6540 scaled_busy_load_per_task =
6541 (busiest->load_per_task * SCHED_CAPACITY_SCALE) /
6542 busiest->group_capacity;
6543
6544 if (busiest->avg_load + scaled_busy_load_per_task >=
6545 local->avg_load + (scaled_busy_load_per_task * imbn)) {
6546 env->imbalance = busiest->load_per_task;
6547 return;
6548 }
6549
6550 /*
6551 * OK, we don't have enough imbalance to justify moving tasks,
6552 * however we may be able to increase total CPU capacity used by
6553 * moving them.
6554 */
6555
6556 capa_now += busiest->group_capacity *
6557 min(busiest->load_per_task, busiest->avg_load);
6558 capa_now += local->group_capacity *
6559 min(local->load_per_task, local->avg_load);
6560 capa_now /= SCHED_CAPACITY_SCALE;
6561
6562 /* Amount of load we'd subtract */
6563 if (busiest->avg_load > scaled_busy_load_per_task) {
6564 capa_move += busiest->group_capacity *
6565 min(busiest->load_per_task,
6566 busiest->avg_load - scaled_busy_load_per_task);
6567 }
6568
6569 /* Amount of load we'd add */
6570 if (busiest->avg_load * busiest->group_capacity <
6571 busiest->load_per_task * SCHED_CAPACITY_SCALE) {
6572 tmp = (busiest->avg_load * busiest->group_capacity) /
6573 local->group_capacity;
6574 } else {
6575 tmp = (busiest->load_per_task * SCHED_CAPACITY_SCALE) /
6576 local->group_capacity;
6577 }
6578 capa_move += local->group_capacity *
6579 min(local->load_per_task, local->avg_load + tmp);
6580 capa_move /= SCHED_CAPACITY_SCALE;
6581
6582 /* Move if we gain throughput */
6583 if (capa_move > capa_now)
6584 env->imbalance = busiest->load_per_task;
6585 }
6586
6587 /**
6588 * calculate_imbalance - Calculate the amount of imbalance present within the
6589 * groups of a given sched_domain during load balance.
6590 * @env: load balance environment
6591 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
6592 */
6593 static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
6594 {
6595 unsigned long max_pull, load_above_capacity = ~0UL;
6596 struct sg_lb_stats *local, *busiest;
6597
6598 local = &sds->local_stat;
6599 busiest = &sds->busiest_stat;
6600
6601 if (busiest->group_type == group_imbalanced) {
6602 /*
6603 * In the group_imb case we cannot rely on group-wide averages
6604 * to ensure cpu-load equilibrium, look at wider averages. XXX
6605 */
6606 busiest->load_per_task =
6607 min(busiest->load_per_task, sds->avg_load);
6608 }
6609
6610 /*
6611 * In the presence of smp nice balancing, certain scenarios can have
6612 * max load less than avg load(as we skip the groups at or below
6613 * its cpu_capacity, while calculating max_load..)
6614 */
6615 if (busiest->avg_load <= sds->avg_load ||
6616 local->avg_load >= sds->avg_load) {
6617 env->imbalance = 0;
6618 return fix_small_imbalance(env, sds);
6619 }
6620
6621 /*
6622 * If there aren't any idle cpus, avoid creating some.
6623 */
6624 if (busiest->group_type == group_overloaded &&
6625 local->group_type == group_overloaded) {
6626 load_above_capacity =
6627 (busiest->sum_nr_running - busiest->group_capacity_factor);
6628
6629 load_above_capacity *= (SCHED_LOAD_SCALE * SCHED_CAPACITY_SCALE);
6630 load_above_capacity /= busiest->group_capacity;
6631 }
6632
6633 /*
6634 * We're trying to get all the cpus to the average_load, so we don't
6635 * want to push ourselves above the average load, nor do we wish to
6636 * reduce the max loaded cpu below the average load. At the same time,
6637 * we also don't want to reduce the group load below the group capacity
6638 * (so that we can implement power-savings policies etc). Thus we look
6639 * for the minimum possible imbalance.
6640 */
6641 max_pull = min(busiest->avg_load - sds->avg_load, load_above_capacity);
6642
6643 /* How much load to actually move to equalise the imbalance */
6644 env->imbalance = min(
6645 max_pull * busiest->group_capacity,
6646 (sds->avg_load - local->avg_load) * local->group_capacity
6647 ) / SCHED_CAPACITY_SCALE;
6648
6649 /*
6650 * if *imbalance is less than the average load per runnable task
6651 * there is no guarantee that any tasks will be moved so we'll have
6652 * a think about bumping its value to force at least one task to be
6653 * moved
6654 */
6655 if (env->imbalance < busiest->load_per_task)
6656 return fix_small_imbalance(env, sds);
6657 }
6658
6659 /******* find_busiest_group() helpers end here *********************/
6660
6661 /**
6662 * find_busiest_group - Returns the busiest group within the sched_domain
6663 * if there is an imbalance. If there isn't an imbalance, and
6664 * the user has opted for power-savings, it returns a group whose
6665 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
6666 * such a group exists.
6667 *
6668 * Also calculates the amount of weighted load which should be moved
6669 * to restore balance.
6670 *
6671 * @env: The load balancing environment.
6672 *
6673 * Return: - The busiest group if imbalance exists.
6674 * - If no imbalance and user has opted for power-savings balance,
6675 * return the least loaded group whose CPUs can be
6676 * put to idle by rebalancing its tasks onto our group.
6677 */
6678 static struct sched_group *find_busiest_group(struct lb_env *env)
6679 {
6680 struct sg_lb_stats *local, *busiest;
6681 struct sd_lb_stats sds;
6682
6683 init_sd_lb_stats(&sds);
6684
6685 /*
6686 * Compute the various statistics relavent for load balancing at
6687 * this level.
6688 */
6689 update_sd_lb_stats(env, &sds);
6690 local = &sds.local_stat;
6691 busiest = &sds.busiest_stat;
6692
6693 if ((env->idle == CPU_IDLE || env->idle == CPU_NEWLY_IDLE) &&
6694 check_asym_packing(env, &sds))
6695 return sds.busiest;
6696
6697 /* There is no busy sibling group to pull tasks from */
6698 if (!sds.busiest || busiest->sum_nr_running == 0)
6699 goto out_balanced;
6700
6701 sds.avg_load = (SCHED_CAPACITY_SCALE * sds.total_load)
6702 / sds.total_capacity;
6703
6704 /*
6705 * If the busiest group is imbalanced the below checks don't
6706 * work because they assume all things are equal, which typically
6707 * isn't true due to cpus_allowed constraints and the like.
6708 */
6709 if (busiest->group_type == group_imbalanced)
6710 goto force_balance;
6711
6712 /* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */
6713 if (env->idle == CPU_NEWLY_IDLE && local->group_has_free_capacity &&
6714 !busiest->group_has_free_capacity)
6715 goto force_balance;
6716
6717 /*
6718 * If the local group is busier than the selected busiest group
6719 * don't try and pull any tasks.
6720 */
6721 if (local->avg_load >= busiest->avg_load)
6722 goto out_balanced;
6723
6724 /*
6725 * Don't pull any tasks if this group is already above the domain
6726 * average load.
6727 */
6728 if (local->avg_load >= sds.avg_load)
6729 goto out_balanced;
6730
6731 if (env->idle == CPU_IDLE) {
6732 /*
6733 * This cpu is idle. If the busiest group is not overloaded
6734 * and there is no imbalance between this and busiest group
6735 * wrt idle cpus, it is balanced. The imbalance becomes
6736 * significant if the diff is greater than 1 otherwise we
6737 * might end up to just move the imbalance on another group
6738 */
6739 if ((busiest->group_type != group_overloaded) &&
6740 (local->idle_cpus <= (busiest->idle_cpus + 1)))
6741 goto out_balanced;
6742 } else {
6743 /*
6744 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
6745 * imbalance_pct to be conservative.
6746 */
6747 if (100 * busiest->avg_load <=
6748 env->sd->imbalance_pct * local->avg_load)
6749 goto out_balanced;
6750 }
6751
6752 force_balance:
6753 /* Looks like there is an imbalance. Compute it */
6754 calculate_imbalance(env, &sds);
6755 return sds.busiest;
6756
6757 out_balanced:
6758 env->imbalance = 0;
6759 return NULL;
6760 }
6761
6762 /*
6763 * find_busiest_queue - find the busiest runqueue among the cpus in group.
6764 */
6765 static struct rq *find_busiest_queue(struct lb_env *env,
6766 struct sched_group *group)
6767 {
6768 struct rq *busiest = NULL, *rq;
6769 unsigned long busiest_load = 0, busiest_capacity = 1;
6770 int i;
6771
6772 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
6773 unsigned long capacity, capacity_factor, wl;
6774 enum fbq_type rt;
6775
6776 rq = cpu_rq(i);
6777 rt = fbq_classify_rq(rq);
6778
6779 /*
6780 * We classify groups/runqueues into three groups:
6781 * - regular: there are !numa tasks
6782 * - remote: there are numa tasks that run on the 'wrong' node
6783 * - all: there is no distinction
6784 *
6785 * In order to avoid migrating ideally placed numa tasks,
6786 * ignore those when there's better options.
6787 *
6788 * If we ignore the actual busiest queue to migrate another
6789 * task, the next balance pass can still reduce the busiest
6790 * queue by moving tasks around inside the node.
6791 *
6792 * If we cannot move enough load due to this classification
6793 * the next pass will adjust the group classification and
6794 * allow migration of more tasks.
6795 *
6796 * Both cases only affect the total convergence complexity.
6797 */
6798 if (rt > env->fbq_type)
6799 continue;
6800
6801 capacity = capacity_of(i);
6802 capacity_factor = DIV_ROUND_CLOSEST(capacity, SCHED_CAPACITY_SCALE);
6803 if (!capacity_factor)
6804 capacity_factor = fix_small_capacity(env->sd, group);
6805
6806 wl = weighted_cpuload(i);
6807
6808 /*
6809 * When comparing with imbalance, use weighted_cpuload()
6810 * which is not scaled with the cpu capacity.
6811 */
6812 if (capacity_factor && rq->nr_running == 1 && wl > env->imbalance)
6813 continue;
6814
6815 /*
6816 * For the load comparisons with the other cpu's, consider
6817 * the weighted_cpuload() scaled with the cpu capacity, so
6818 * that the load can be moved away from the cpu that is
6819 * potentially running at a lower capacity.
6820 *
6821 * Thus we're looking for max(wl_i / capacity_i), crosswise
6822 * multiplication to rid ourselves of the division works out
6823 * to: wl_i * capacity_j > wl_j * capacity_i; where j is
6824 * our previous maximum.
6825 */
6826 if (wl * busiest_capacity > busiest_load * capacity) {
6827 busiest_load = wl;
6828 busiest_capacity = capacity;
6829 busiest = rq;
6830 }
6831 }
6832
6833 return busiest;
6834 }
6835
6836 /*
6837 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
6838 * so long as it is large enough.
6839 */
6840 #define MAX_PINNED_INTERVAL 512
6841
6842 /* Working cpumask for load_balance and load_balance_newidle. */
6843 DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
6844
6845 static int need_active_balance(struct lb_env *env)
6846 {
6847 struct sched_domain *sd = env->sd;
6848
6849 if (env->idle == CPU_NEWLY_IDLE) {
6850
6851 /*
6852 * ASYM_PACKING needs to force migrate tasks from busy but
6853 * higher numbered CPUs in order to pack all tasks in the
6854 * lowest numbered CPUs.
6855 */
6856 if ((sd->flags & SD_ASYM_PACKING) && env->src_cpu > env->dst_cpu)
6857 return 1;
6858 }
6859
6860 return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
6861 }
6862
6863 static int active_load_balance_cpu_stop(void *data);
6864
6865 static int should_we_balance(struct lb_env *env)
6866 {
6867 struct sched_group *sg = env->sd->groups;
6868 struct cpumask *sg_cpus, *sg_mask;
6869 int cpu, balance_cpu = -1;
6870
6871 /*
6872 * In the newly idle case, we will allow all the cpu's
6873 * to do the newly idle load balance.
6874 */
6875 if (env->idle == CPU_NEWLY_IDLE)
6876 return 1;
6877
6878 sg_cpus = sched_group_cpus(sg);
6879 sg_mask = sched_group_mask(sg);
6880 /* Try to find first idle cpu */
6881 for_each_cpu_and(cpu, sg_cpus, env->cpus) {
6882 if (!cpumask_test_cpu(cpu, sg_mask) || !idle_cpu(cpu))
6883 continue;
6884
6885 balance_cpu = cpu;
6886 break;
6887 }
6888
6889 if (balance_cpu == -1)
6890 balance_cpu = group_balance_cpu(sg);
6891
6892 /*
6893 * First idle cpu or the first cpu(busiest) in this sched group
6894 * is eligible for doing load balancing at this and above domains.
6895 */
6896 return balance_cpu == env->dst_cpu;
6897 }
6898
6899 /*
6900 * Check this_cpu to ensure it is balanced within domain. Attempt to move
6901 * tasks if there is an imbalance.
6902 */
6903 static int load_balance(int this_cpu, struct rq *this_rq,
6904 struct sched_domain *sd, enum cpu_idle_type idle,
6905 int *continue_balancing)
6906 {
6907 int ld_moved, cur_ld_moved, active_balance = 0;
6908 struct sched_domain *sd_parent = sd->parent;
6909 struct sched_group *group;
6910 struct rq *busiest;
6911 unsigned long flags;
6912 struct cpumask *cpus = this_cpu_cpumask_var_ptr(load_balance_mask);
6913
6914 struct lb_env env = {
6915 .sd = sd,
6916 .dst_cpu = this_cpu,
6917 .dst_rq = this_rq,
6918 .dst_grpmask = sched_group_cpus(sd->groups),
6919 .idle = idle,
6920 .loop_break = sched_nr_migrate_break,
6921 .cpus = cpus,
6922 .fbq_type = all,
6923 .tasks = LIST_HEAD_INIT(env.tasks),
6924 };
6925
6926 /*
6927 * For NEWLY_IDLE load_balancing, we don't need to consider
6928 * other cpus in our group
6929 */
6930 if (idle == CPU_NEWLY_IDLE)
6931 env.dst_grpmask = NULL;
6932
6933 cpumask_copy(cpus, cpu_active_mask);
6934
6935 schedstat_inc(sd, lb_count[idle]);
6936
6937 redo:
6938 if (!should_we_balance(&env)) {
6939 *continue_balancing = 0;
6940 goto out_balanced;
6941 }
6942
6943 group = find_busiest_group(&env);
6944 if (!group) {
6945 schedstat_inc(sd, lb_nobusyg[idle]);
6946 goto out_balanced;
6947 }
6948
6949 busiest = find_busiest_queue(&env, group);
6950 if (!busiest) {
6951 schedstat_inc(sd, lb_nobusyq[idle]);
6952 goto out_balanced;
6953 }
6954
6955 BUG_ON(busiest == env.dst_rq);
6956
6957 schedstat_add(sd, lb_imbalance[idle], env.imbalance);
6958
6959 ld_moved = 0;
6960 if (busiest->nr_running > 1) {
6961 /*
6962 * Attempt to move tasks. If find_busiest_group has found
6963 * an imbalance but busiest->nr_running <= 1, the group is
6964 * still unbalanced. ld_moved simply stays zero, so it is
6965 * correctly treated as an imbalance.
6966 */
6967 env.flags |= LBF_ALL_PINNED;
6968 env.src_cpu = busiest->cpu;
6969 env.src_rq = busiest;
6970 env.loop_max = min(sysctl_sched_nr_migrate, busiest->nr_running);
6971
6972 more_balance:
6973 raw_spin_lock_irqsave(&busiest->lock, flags);
6974
6975 /*
6976 * cur_ld_moved - load moved in current iteration
6977 * ld_moved - cumulative load moved across iterations
6978 */
6979 cur_ld_moved = detach_tasks(&env);
6980
6981 /*
6982 * We've detached some tasks from busiest_rq. Every
6983 * task is masked "TASK_ON_RQ_MIGRATING", so we can safely
6984 * unlock busiest->lock, and we are able to be sure
6985 * that nobody can manipulate the tasks in parallel.
6986 * See task_rq_lock() family for the details.
6987 */
6988
6989 raw_spin_unlock(&busiest->lock);
6990
6991 if (cur_ld_moved) {
6992 attach_tasks(&env);
6993 ld_moved += cur_ld_moved;
6994 }
6995
6996 local_irq_restore(flags);
6997
6998 if (env.flags & LBF_NEED_BREAK) {
6999 env.flags &= ~LBF_NEED_BREAK;
7000 goto more_balance;
7001 }
7002
7003 /*
7004 * Revisit (affine) tasks on src_cpu that couldn't be moved to
7005 * us and move them to an alternate dst_cpu in our sched_group
7006 * where they can run. The upper limit on how many times we
7007 * iterate on same src_cpu is dependent on number of cpus in our
7008 * sched_group.
7009 *
7010 * This changes load balance semantics a bit on who can move
7011 * load to a given_cpu. In addition to the given_cpu itself
7012 * (or a ilb_cpu acting on its behalf where given_cpu is
7013 * nohz-idle), we now have balance_cpu in a position to move
7014 * load to given_cpu. In rare situations, this may cause
7015 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
7016 * _independently_ and at _same_ time to move some load to
7017 * given_cpu) causing exceess load to be moved to given_cpu.
7018 * This however should not happen so much in practice and
7019 * moreover subsequent load balance cycles should correct the
7020 * excess load moved.
7021 */
7022 if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
7023
7024 /* Prevent to re-select dst_cpu via env's cpus */
7025 cpumask_clear_cpu(env.dst_cpu, env.cpus);
7026
7027 env.dst_rq = cpu_rq(env.new_dst_cpu);
7028 env.dst_cpu = env.new_dst_cpu;
7029 env.flags &= ~LBF_DST_PINNED;
7030 env.loop = 0;
7031 env.loop_break = sched_nr_migrate_break;
7032
7033 /*
7034 * Go back to "more_balance" rather than "redo" since we
7035 * need to continue with same src_cpu.
7036 */
7037 goto more_balance;
7038 }
7039
7040 /*
7041 * We failed to reach balance because of affinity.
7042 */
7043 if (sd_parent) {
7044 int *group_imbalance = &sd_parent->groups->sgc->imbalance;
7045
7046 if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0)
7047 *group_imbalance = 1;
7048 }
7049
7050 /* All tasks on this runqueue were pinned by CPU affinity */
7051 if (unlikely(env.flags & LBF_ALL_PINNED)) {
7052 cpumask_clear_cpu(cpu_of(busiest), cpus);
7053 if (!cpumask_empty(cpus)) {
7054 env.loop = 0;
7055 env.loop_break = sched_nr_migrate_break;
7056 goto redo;
7057 }
7058 goto out_all_pinned;
7059 }
7060 }
7061
7062 if (!ld_moved) {
7063 schedstat_inc(sd, lb_failed[idle]);
7064 /*
7065 * Increment the failure counter only on periodic balance.
7066 * We do not want newidle balance, which can be very
7067 * frequent, pollute the failure counter causing
7068 * excessive cache_hot migrations and active balances.
7069 */
7070 if (idle != CPU_NEWLY_IDLE)
7071 sd->nr_balance_failed++;
7072
7073 if (need_active_balance(&env)) {
7074 raw_spin_lock_irqsave(&busiest->lock, flags);
7075
7076 /* don't kick the active_load_balance_cpu_stop,
7077 * if the curr task on busiest cpu can't be
7078 * moved to this_cpu
7079 */
7080 if (!cpumask_test_cpu(this_cpu,
7081 tsk_cpus_allowed(busiest->curr))) {
7082 raw_spin_unlock_irqrestore(&busiest->lock,
7083 flags);
7084 env.flags |= LBF_ALL_PINNED;
7085 goto out_one_pinned;
7086 }
7087
7088 /*
7089 * ->active_balance synchronizes accesses to
7090 * ->active_balance_work. Once set, it's cleared
7091 * only after active load balance is finished.
7092 */
7093 if (!busiest->active_balance) {
7094 busiest->active_balance = 1;
7095 busiest->push_cpu = this_cpu;
7096 active_balance = 1;
7097 }
7098 raw_spin_unlock_irqrestore(&busiest->lock, flags);
7099
7100 if (active_balance) {
7101 stop_one_cpu_nowait(cpu_of(busiest),
7102 active_load_balance_cpu_stop, busiest,
7103 &busiest->active_balance_work);
7104 }
7105
7106 /*
7107 * We've kicked active balancing, reset the failure
7108 * counter.
7109 */
7110 sd->nr_balance_failed = sd->cache_nice_tries+1;
7111 }
7112 } else
7113 sd->nr_balance_failed = 0;
7114
7115 if (likely(!active_balance)) {
7116 /* We were unbalanced, so reset the balancing interval */
7117 sd->balance_interval = sd->min_interval;
7118 } else {
7119 /*
7120 * If we've begun active balancing, start to back off. This
7121 * case may not be covered by the all_pinned logic if there
7122 * is only 1 task on the busy runqueue (because we don't call
7123 * detach_tasks).
7124 */
7125 if (sd->balance_interval < sd->max_interval)
7126 sd->balance_interval *= 2;
7127 }
7128
7129 goto out;
7130
7131 out_balanced:
7132 /*
7133 * We reach balance although we may have faced some affinity
7134 * constraints. Clear the imbalance flag if it was set.
7135 */
7136 if (sd_parent) {
7137 int *group_imbalance = &sd_parent->groups->sgc->imbalance;
7138
7139 if (*group_imbalance)
7140 *group_imbalance = 0;
7141 }
7142
7143 out_all_pinned:
7144 /*
7145 * We reach balance because all tasks are pinned at this level so
7146 * we can't migrate them. Let the imbalance flag set so parent level
7147 * can try to migrate them.
7148 */
7149 schedstat_inc(sd, lb_balanced[idle]);
7150
7151 sd->nr_balance_failed = 0;
7152
7153 out_one_pinned:
7154 /* tune up the balancing interval */
7155 if (((env.flags & LBF_ALL_PINNED) &&
7156 sd->balance_interval < MAX_PINNED_INTERVAL) ||
7157 (sd->balance_interval < sd->max_interval))
7158 sd->balance_interval *= 2;
7159
7160 ld_moved = 0;
7161 out:
7162 return ld_moved;
7163 }
7164
7165 static inline unsigned long
7166 get_sd_balance_interval(struct sched_domain *sd, int cpu_busy)
7167 {
7168 unsigned long interval = sd->balance_interval;
7169
7170 if (cpu_busy)
7171 interval *= sd->busy_factor;
7172
7173 /* scale ms to jiffies */
7174 interval = msecs_to_jiffies(interval);
7175 interval = clamp(interval, 1UL, max_load_balance_interval);
7176
7177 return interval;
7178 }
7179
7180 static inline void
7181 update_next_balance(struct sched_domain *sd, int cpu_busy, unsigned long *next_balance)
7182 {
7183 unsigned long interval, next;
7184
7185 interval = get_sd_balance_interval(sd, cpu_busy);
7186 next = sd->last_balance + interval;
7187
7188 if (time_after(*next_balance, next))
7189 *next_balance = next;
7190 }
7191
7192 /*
7193 * idle_balance is called by schedule() if this_cpu is about to become
7194 * idle. Attempts to pull tasks from other CPUs.
7195 */
7196 static int idle_balance(struct rq *this_rq)
7197 {
7198 unsigned long next_balance = jiffies + HZ;
7199 int this_cpu = this_rq->cpu;
7200 struct sched_domain *sd;
7201 int pulled_task = 0;
7202 u64 curr_cost = 0;
7203
7204 idle_enter_fair(this_rq);
7205
7206 /*
7207 * We must set idle_stamp _before_ calling idle_balance(), such that we
7208 * measure the duration of idle_balance() as idle time.
7209 */
7210 this_rq->idle_stamp = rq_clock(this_rq);
7211
7212 if (this_rq->avg_idle < sysctl_sched_migration_cost ||
7213 !this_rq->rd->overload) {
7214 rcu_read_lock();
7215 sd = rcu_dereference_check_sched_domain(this_rq->sd);
7216 if (sd)
7217 update_next_balance(sd, 0, &next_balance);
7218 rcu_read_unlock();
7219
7220 goto out;
7221 }
7222
7223 /*
7224 * Drop the rq->lock, but keep IRQ/preempt disabled.
7225 */
7226 raw_spin_unlock(&this_rq->lock);
7227
7228 update_blocked_averages(this_cpu);
7229 rcu_read_lock();
7230 for_each_domain(this_cpu, sd) {
7231 int continue_balancing = 1;
7232 u64 t0, domain_cost;
7233
7234 if (!(sd->flags & SD_LOAD_BALANCE))
7235 continue;
7236
7237 if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost) {
7238 update_next_balance(sd, 0, &next_balance);
7239 break;
7240 }
7241
7242 if (sd->flags & SD_BALANCE_NEWIDLE) {
7243 t0 = sched_clock_cpu(this_cpu);
7244
7245 pulled_task = load_balance(this_cpu, this_rq,
7246 sd, CPU_NEWLY_IDLE,
7247 &continue_balancing);
7248
7249 domain_cost = sched_clock_cpu(this_cpu) - t0;
7250 if (domain_cost > sd->max_newidle_lb_cost)
7251 sd->max_newidle_lb_cost = domain_cost;
7252
7253 curr_cost += domain_cost;
7254 }
7255
7256 update_next_balance(sd, 0, &next_balance);
7257
7258 /*
7259 * Stop searching for tasks to pull if there are
7260 * now runnable tasks on this rq.
7261 */
7262 if (pulled_task || this_rq->nr_running > 0)
7263 break;
7264 }
7265 rcu_read_unlock();
7266
7267 raw_spin_lock(&this_rq->lock);
7268
7269 if (curr_cost > this_rq->max_idle_balance_cost)
7270 this_rq->max_idle_balance_cost = curr_cost;
7271
7272 /*
7273 * While browsing the domains, we released the rq lock, a task could
7274 * have been enqueued in the meantime. Since we're not going idle,
7275 * pretend we pulled a task.
7276 */
7277 if (this_rq->cfs.h_nr_running && !pulled_task)
7278 pulled_task = 1;
7279
7280 out:
7281 /* Move the next balance forward */
7282 if (time_after(this_rq->next_balance, next_balance))
7283 this_rq->next_balance = next_balance;
7284
7285 /* Is there a task of a high priority class? */
7286 if (this_rq->nr_running != this_rq->cfs.h_nr_running)
7287 pulled_task = -1;
7288
7289 if (pulled_task) {
7290 idle_exit_fair(this_rq);
7291 this_rq->idle_stamp = 0;
7292 }
7293
7294 return pulled_task;
7295 }
7296
7297 /*
7298 * active_load_balance_cpu_stop is run by cpu stopper. It pushes
7299 * running tasks off the busiest CPU onto idle CPUs. It requires at
7300 * least 1 task to be running on each physical CPU where possible, and
7301 * avoids physical / logical imbalances.
7302 */
7303 static int active_load_balance_cpu_stop(void *data)
7304 {
7305 struct rq *busiest_rq = data;
7306 int busiest_cpu = cpu_of(busiest_rq);
7307 int target_cpu = busiest_rq->push_cpu;
7308 struct rq *target_rq = cpu_rq(target_cpu);
7309 struct sched_domain *sd;
7310 struct task_struct *p = NULL;
7311
7312 raw_spin_lock_irq(&busiest_rq->lock);
7313
7314 /* make sure the requested cpu hasn't gone down in the meantime */
7315 if (unlikely(busiest_cpu != smp_processor_id() ||
7316 !busiest_rq->active_balance))
7317 goto out_unlock;
7318
7319 /* Is there any task to move? */
7320 if (busiest_rq->nr_running <= 1)
7321 goto out_unlock;
7322
7323 /*
7324 * This condition is "impossible", if it occurs
7325 * we need to fix it. Originally reported by
7326 * Bjorn Helgaas on a 128-cpu setup.
7327 */
7328 BUG_ON(busiest_rq == target_rq);
7329
7330 /* Search for an sd spanning us and the target CPU. */
7331 rcu_read_lock();
7332 for_each_domain(target_cpu, sd) {
7333 if ((sd->flags & SD_LOAD_BALANCE) &&
7334 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
7335 break;
7336 }
7337
7338 if (likely(sd)) {
7339 struct lb_env env = {
7340 .sd = sd,
7341 .dst_cpu = target_cpu,
7342 .dst_rq = target_rq,
7343 .src_cpu = busiest_rq->cpu,
7344 .src_rq = busiest_rq,
7345 .idle = CPU_IDLE,
7346 };
7347
7348 schedstat_inc(sd, alb_count);
7349
7350 p = detach_one_task(&env);
7351 if (p)
7352 schedstat_inc(sd, alb_pushed);
7353 else
7354 schedstat_inc(sd, alb_failed);
7355 }
7356 rcu_read_unlock();
7357 out_unlock:
7358 busiest_rq->active_balance = 0;
7359 raw_spin_unlock(&busiest_rq->lock);
7360
7361 if (p)
7362 attach_one_task(target_rq, p);
7363
7364 local_irq_enable();
7365
7366 return 0;
7367 }
7368
7369 static inline int on_null_domain(struct rq *rq)
7370 {
7371 return unlikely(!rcu_dereference_sched(rq->sd));
7372 }
7373
7374 #ifdef CONFIG_NO_HZ_COMMON
7375 /*
7376 * idle load balancing details
7377 * - When one of the busy CPUs notice that there may be an idle rebalancing
7378 * needed, they will kick the idle load balancer, which then does idle
7379 * load balancing for all the idle CPUs.
7380 */
7381 static struct {
7382 cpumask_var_t idle_cpus_mask;
7383 atomic_t nr_cpus;
7384 unsigned long next_balance; /* in jiffy units */
7385 } nohz ____cacheline_aligned;
7386
7387 static inline int find_new_ilb(void)
7388 {
7389 int ilb = cpumask_first(nohz.idle_cpus_mask);
7390
7391 if (ilb < nr_cpu_ids && idle_cpu(ilb))
7392 return ilb;
7393
7394 return nr_cpu_ids;
7395 }
7396
7397 /*
7398 * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
7399 * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
7400 * CPU (if there is one).
7401 */
7402 static void nohz_balancer_kick(void)
7403 {
7404 int ilb_cpu;
7405
7406 nohz.next_balance++;
7407
7408 ilb_cpu = find_new_ilb();
7409
7410 if (ilb_cpu >= nr_cpu_ids)
7411 return;
7412
7413 if (test_and_set_bit(NOHZ_BALANCE_KICK, nohz_flags(ilb_cpu)))
7414 return;
7415 /*
7416 * Use smp_send_reschedule() instead of resched_cpu().
7417 * This way we generate a sched IPI on the target cpu which
7418 * is idle. And the softirq performing nohz idle load balance
7419 * will be run before returning from the IPI.
7420 */
7421 smp_send_reschedule(ilb_cpu);
7422 return;
7423 }
7424
7425 static inline void nohz_balance_exit_idle(int cpu)
7426 {
7427 if (unlikely(test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))) {
7428 /*
7429 * Completely isolated CPUs don't ever set, so we must test.
7430 */
7431 if (likely(cpumask_test_cpu(cpu, nohz.idle_cpus_mask))) {
7432 cpumask_clear_cpu(cpu, nohz.idle_cpus_mask);
7433 atomic_dec(&nohz.nr_cpus);
7434 }
7435 clear_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
7436 }
7437 }
7438
7439 static inline void set_cpu_sd_state_busy(void)
7440 {
7441 struct sched_domain *sd;
7442 int cpu = smp_processor_id();
7443
7444 rcu_read_lock();
7445 sd = rcu_dereference(per_cpu(sd_busy, cpu));
7446
7447 if (!sd || !sd->nohz_idle)
7448 goto unlock;
7449 sd->nohz_idle = 0;
7450
7451 atomic_inc(&sd->groups->sgc->nr_busy_cpus);
7452 unlock:
7453 rcu_read_unlock();
7454 }
7455
7456 void set_cpu_sd_state_idle(void)
7457 {
7458 struct sched_domain *sd;
7459 int cpu = smp_processor_id();
7460
7461 rcu_read_lock();
7462 sd = rcu_dereference(per_cpu(sd_busy, cpu));
7463
7464 if (!sd || sd->nohz_idle)
7465 goto unlock;
7466 sd->nohz_idle = 1;
7467
7468 atomic_dec(&sd->groups->sgc->nr_busy_cpus);
7469 unlock:
7470 rcu_read_unlock();
7471 }
7472
7473 /*
7474 * This routine will record that the cpu is going idle with tick stopped.
7475 * This info will be used in performing idle load balancing in the future.
7476 */
7477 void nohz_balance_enter_idle(int cpu)
7478 {
7479 /*
7480 * If this cpu is going down, then nothing needs to be done.
7481 */
7482 if (!cpu_active(cpu))
7483 return;
7484
7485 if (test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))
7486 return;
7487
7488 /*
7489 * If we're a completely isolated CPU, we don't play.
7490 */
7491 if (on_null_domain(cpu_rq(cpu)))
7492 return;
7493
7494 cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
7495 atomic_inc(&nohz.nr_cpus);
7496 set_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
7497 }
7498
7499 static int sched_ilb_notifier(struct notifier_block *nfb,
7500 unsigned long action, void *hcpu)
7501 {
7502 switch (action & ~CPU_TASKS_FROZEN) {
7503 case CPU_DYING:
7504 nohz_balance_exit_idle(smp_processor_id());
7505 return NOTIFY_OK;
7506 default:
7507 return NOTIFY_DONE;
7508 }
7509 }
7510 #endif
7511
7512 static DEFINE_SPINLOCK(balancing);
7513
7514 /*
7515 * Scale the max load_balance interval with the number of CPUs in the system.
7516 * This trades load-balance latency on larger machines for less cross talk.
7517 */
7518 void update_max_interval(void)
7519 {
7520 max_load_balance_interval = HZ*num_online_cpus()/10;
7521 }
7522
7523 /*
7524 * It checks each scheduling domain to see if it is due to be balanced,
7525 * and initiates a balancing operation if so.
7526 *
7527 * Balancing parameters are set up in init_sched_domains.
7528 */
7529 static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle)
7530 {
7531 int continue_balancing = 1;
7532 int cpu = rq->cpu;
7533 unsigned long interval;
7534 struct sched_domain *sd;
7535 /* Earliest time when we have to do rebalance again */
7536 unsigned long next_balance = jiffies + 60*HZ;
7537 int update_next_balance = 0;
7538 int need_serialize, need_decay = 0;
7539 u64 max_cost = 0;
7540
7541 update_blocked_averages(cpu);
7542
7543 rcu_read_lock();
7544 for_each_domain(cpu, sd) {
7545 /*
7546 * Decay the newidle max times here because this is a regular
7547 * visit to all the domains. Decay ~1% per second.
7548 */
7549 if (time_after(jiffies, sd->next_decay_max_lb_cost)) {
7550 sd->max_newidle_lb_cost =
7551 (sd->max_newidle_lb_cost * 253) / 256;
7552 sd->next_decay_max_lb_cost = jiffies + HZ;
7553 need_decay = 1;
7554 }
7555 max_cost += sd->max_newidle_lb_cost;
7556
7557 if (!(sd->flags & SD_LOAD_BALANCE))
7558 continue;
7559
7560 /*
7561 * Stop the load balance at this level. There is another
7562 * CPU in our sched group which is doing load balancing more
7563 * actively.
7564 */
7565 if (!continue_balancing) {
7566 if (need_decay)
7567 continue;
7568 break;
7569 }
7570
7571 interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
7572
7573 need_serialize = sd->flags & SD_SERIALIZE;
7574 if (need_serialize) {
7575 if (!spin_trylock(&balancing))
7576 goto out;
7577 }
7578
7579 if (time_after_eq(jiffies, sd->last_balance + interval)) {
7580 if (load_balance(cpu, rq, sd, idle, &continue_balancing)) {
7581 /*
7582 * The LBF_DST_PINNED logic could have changed
7583 * env->dst_cpu, so we can't know our idle
7584 * state even if we migrated tasks. Update it.
7585 */
7586 idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE;
7587 }
7588 sd->last_balance = jiffies;
7589 interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
7590 }
7591 if (need_serialize)
7592 spin_unlock(&balancing);
7593 out:
7594 if (time_after(next_balance, sd->last_balance + interval)) {
7595 next_balance = sd->last_balance + interval;
7596 update_next_balance = 1;
7597 }
7598 }
7599 if (need_decay) {
7600 /*
7601 * Ensure the rq-wide value also decays but keep it at a
7602 * reasonable floor to avoid funnies with rq->avg_idle.
7603 */
7604 rq->max_idle_balance_cost =
7605 max((u64)sysctl_sched_migration_cost, max_cost);
7606 }
7607 rcu_read_unlock();
7608
7609 /*
7610 * next_balance will be updated only when there is a need.
7611 * When the cpu is attached to null domain for ex, it will not be
7612 * updated.
7613 */
7614 if (likely(update_next_balance))
7615 rq->next_balance = next_balance;
7616 }
7617
7618 #ifdef CONFIG_NO_HZ_COMMON
7619 /*
7620 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
7621 * rebalancing for all the cpus for whom scheduler ticks are stopped.
7622 */
7623 static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
7624 {
7625 int this_cpu = this_rq->cpu;
7626 struct rq *rq;
7627 int balance_cpu;
7628
7629 if (idle != CPU_IDLE ||
7630 !test_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu)))
7631 goto end;
7632
7633 for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
7634 if (balance_cpu == this_cpu || !idle_cpu(balance_cpu))
7635 continue;
7636
7637 /*
7638 * If this cpu gets work to do, stop the load balancing
7639 * work being done for other cpus. Next load
7640 * balancing owner will pick it up.
7641 */
7642 if (need_resched())
7643 break;
7644
7645 rq = cpu_rq(balance_cpu);
7646
7647 /*
7648 * If time for next balance is due,
7649 * do the balance.
7650 */
7651 if (time_after_eq(jiffies, rq->next_balance)) {
7652 raw_spin_lock_irq(&rq->lock);
7653 update_rq_clock(rq);
7654 update_idle_cpu_load(rq);
7655 raw_spin_unlock_irq(&rq->lock);
7656 rebalance_domains(rq, CPU_IDLE);
7657 }
7658
7659 if (time_after(this_rq->next_balance, rq->next_balance))
7660 this_rq->next_balance = rq->next_balance;
7661 }
7662 nohz.next_balance = this_rq->next_balance;
7663 end:
7664 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu));
7665 }
7666
7667 /*
7668 * Current heuristic for kicking the idle load balancer in the presence
7669 * of an idle cpu is the system.
7670 * - This rq has more than one task.
7671 * - At any scheduler domain level, this cpu's scheduler group has multiple
7672 * busy cpu's exceeding the group's capacity.
7673 * - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler
7674 * domain span are idle.
7675 */
7676 static inline int nohz_kick_needed(struct rq *rq)
7677 {
7678 unsigned long now = jiffies;
7679 struct sched_domain *sd;
7680 struct sched_group_capacity *sgc;
7681 int nr_busy, cpu = rq->cpu;
7682
7683 if (unlikely(rq->idle_balance))
7684 return 0;
7685
7686 /*
7687 * We may be recently in ticked or tickless idle mode. At the first
7688 * busy tick after returning from idle, we will update the busy stats.
7689 */
7690 set_cpu_sd_state_busy();
7691 nohz_balance_exit_idle(cpu);
7692
7693 /*
7694 * None are in tickless mode and hence no need for NOHZ idle load
7695 * balancing.
7696 */
7697 if (likely(!atomic_read(&nohz.nr_cpus)))
7698 return 0;
7699
7700 if (time_before(now, nohz.next_balance))
7701 return 0;
7702
7703 if (rq->nr_running >= 2)
7704 goto need_kick;
7705
7706 rcu_read_lock();
7707 sd = rcu_dereference(per_cpu(sd_busy, cpu));
7708
7709 if (sd) {
7710 sgc = sd->groups->sgc;
7711 nr_busy = atomic_read(&sgc->nr_busy_cpus);
7712
7713 if (nr_busy > 1)
7714 goto need_kick_unlock;
7715 }
7716
7717 sd = rcu_dereference(per_cpu(sd_asym, cpu));
7718
7719 if (sd && (cpumask_first_and(nohz.idle_cpus_mask,
7720 sched_domain_span(sd)) < cpu))
7721 goto need_kick_unlock;
7722
7723 rcu_read_unlock();
7724 return 0;
7725
7726 need_kick_unlock:
7727 rcu_read_unlock();
7728 need_kick:
7729 return 1;
7730 }
7731 #else
7732 static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) { }
7733 #endif
7734
7735 /*
7736 * run_rebalance_domains is triggered when needed from the scheduler tick.
7737 * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
7738 */
7739 static void run_rebalance_domains(struct softirq_action *h)
7740 {
7741 struct rq *this_rq = this_rq();
7742 enum cpu_idle_type idle = this_rq->idle_balance ?
7743 CPU_IDLE : CPU_NOT_IDLE;
7744
7745 rebalance_domains(this_rq, idle);
7746
7747 /*
7748 * If this cpu has a pending nohz_balance_kick, then do the
7749 * balancing on behalf of the other idle cpus whose ticks are
7750 * stopped.
7751 */
7752 nohz_idle_balance(this_rq, idle);
7753 }
7754
7755 /*
7756 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
7757 */
7758 void trigger_load_balance(struct rq *rq)
7759 {
7760 /* Don't need to rebalance while attached to NULL domain */
7761 if (unlikely(on_null_domain(rq)))
7762 return;
7763
7764 if (time_after_eq(jiffies, rq->next_balance))
7765 raise_softirq(SCHED_SOFTIRQ);
7766 #ifdef CONFIG_NO_HZ_COMMON
7767 if (nohz_kick_needed(rq))
7768 nohz_balancer_kick();
7769 #endif
7770 }
7771
7772 static void rq_online_fair(struct rq *rq)
7773 {
7774 update_sysctl();
7775
7776 update_runtime_enabled(rq);
7777 }
7778
7779 static void rq_offline_fair(struct rq *rq)
7780 {
7781 update_sysctl();
7782
7783 /* Ensure any throttled groups are reachable by pick_next_task */
7784 unthrottle_offline_cfs_rqs(rq);
7785 }
7786
7787 #endif /* CONFIG_SMP */
7788
7789 /*
7790 * scheduler tick hitting a task of our scheduling class:
7791 */
7792 static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
7793 {
7794 struct cfs_rq *cfs_rq;
7795 struct sched_entity *se = &curr->se;
7796
7797 for_each_sched_entity(se) {
7798 cfs_rq = cfs_rq_of(se);
7799 entity_tick(cfs_rq, se, queued);
7800 }
7801
7802 if (numabalancing_enabled)
7803 task_tick_numa(rq, curr);
7804
7805 update_rq_runnable_avg(rq, 1);
7806 }
7807
7808 /*
7809 * called on fork with the child task as argument from the parent's context
7810 * - child not yet on the tasklist
7811 * - preemption disabled
7812 */
7813 static void task_fork_fair(struct task_struct *p)
7814 {
7815 struct cfs_rq *cfs_rq;
7816 struct sched_entity *se = &p->se, *curr;
7817 int this_cpu = smp_processor_id();
7818 struct rq *rq = this_rq();
7819 unsigned long flags;
7820
7821 raw_spin_lock_irqsave(&rq->lock, flags);
7822
7823 update_rq_clock(rq);
7824
7825 cfs_rq = task_cfs_rq(current);
7826 curr = cfs_rq->curr;
7827
7828 /*
7829 * Not only the cpu but also the task_group of the parent might have
7830 * been changed after parent->se.parent,cfs_rq were copied to
7831 * child->se.parent,cfs_rq. So call __set_task_cpu() to make those
7832 * of child point to valid ones.
7833 */
7834 rcu_read_lock();
7835 __set_task_cpu(p, this_cpu);
7836 rcu_read_unlock();
7837
7838 update_curr(cfs_rq);
7839
7840 if (curr)
7841 se->vruntime = curr->vruntime;
7842 place_entity(cfs_rq, se, 1);
7843
7844 if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
7845 /*
7846 * Upon rescheduling, sched_class::put_prev_task() will place
7847 * 'current' within the tree based on its new key value.
7848 */
7849 swap(curr->vruntime, se->vruntime);
7850 resched_curr(rq);
7851 }
7852
7853 se->vruntime -= cfs_rq->min_vruntime;
7854
7855 raw_spin_unlock_irqrestore(&rq->lock, flags);
7856 }
7857
7858 /*
7859 * Priority of the task has changed. Check to see if we preempt
7860 * the current task.
7861 */
7862 static void
7863 prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
7864 {
7865 if (!task_on_rq_queued(p))
7866 return;
7867
7868 /*
7869 * Reschedule if we are currently running on this runqueue and
7870 * our priority decreased, or if we are not currently running on
7871 * this runqueue and our priority is higher than the current's
7872 */
7873 if (rq->curr == p) {
7874 if (p->prio > oldprio)
7875 resched_curr(rq);
7876 } else
7877 check_preempt_curr(rq, p, 0);
7878 }
7879
7880 static void switched_from_fair(struct rq *rq, struct task_struct *p)
7881 {
7882 struct sched_entity *se = &p->se;
7883 struct cfs_rq *cfs_rq = cfs_rq_of(se);
7884
7885 /*
7886 * Ensure the task's vruntime is normalized, so that when it's
7887 * switched back to the fair class the enqueue_entity(.flags=0) will
7888 * do the right thing.
7889 *
7890 * If it's queued, then the dequeue_entity(.flags=0) will already
7891 * have normalized the vruntime, if it's !queued, then only when
7892 * the task is sleeping will it still have non-normalized vruntime.
7893 */
7894 if (!task_on_rq_queued(p) && p->state != TASK_RUNNING) {
7895 /*
7896 * Fix up our vruntime so that the current sleep doesn't
7897 * cause 'unlimited' sleep bonus.
7898 */
7899 place_entity(cfs_rq, se, 0);
7900 se->vruntime -= cfs_rq->min_vruntime;
7901 }
7902
7903 #ifdef CONFIG_SMP
7904 /*
7905 * Remove our load from contribution when we leave sched_fair
7906 * and ensure we don't carry in an old decay_count if we
7907 * switch back.
7908 */
7909 if (se->avg.decay_count) {
7910 __synchronize_entity_decay(se);
7911 subtract_blocked_load_contrib(cfs_rq, se->avg.load_avg_contrib);
7912 }
7913 #endif
7914 }
7915
7916 /*
7917 * We switched to the sched_fair class.
7918 */
7919 static void switched_to_fair(struct rq *rq, struct task_struct *p)
7920 {
7921 #ifdef CONFIG_FAIR_GROUP_SCHED
7922 struct sched_entity *se = &p->se;
7923 /*
7924 * Since the real-depth could have been changed (only FAIR
7925 * class maintain depth value), reset depth properly.
7926 */
7927 se->depth = se->parent ? se->parent->depth + 1 : 0;
7928 #endif
7929 if (!task_on_rq_queued(p))
7930 return;
7931
7932 /*
7933 * We were most likely switched from sched_rt, so
7934 * kick off the schedule if running, otherwise just see
7935 * if we can still preempt the current task.
7936 */
7937 if (rq->curr == p)
7938 resched_curr(rq);
7939 else
7940 check_preempt_curr(rq, p, 0);
7941 }
7942
7943 /* Account for a task changing its policy or group.
7944 *
7945 * This routine is mostly called to set cfs_rq->curr field when a task
7946 * migrates between groups/classes.
7947 */
7948 static void set_curr_task_fair(struct rq *rq)
7949 {
7950 struct sched_entity *se = &rq->curr->se;
7951
7952 for_each_sched_entity(se) {
7953 struct cfs_rq *cfs_rq = cfs_rq_of(se);
7954
7955 set_next_entity(cfs_rq, se);
7956 /* ensure bandwidth has been allocated on our new cfs_rq */
7957 account_cfs_rq_runtime(cfs_rq, 0);
7958 }
7959 }
7960
7961 void init_cfs_rq(struct cfs_rq *cfs_rq)
7962 {
7963 cfs_rq->tasks_timeline = RB_ROOT;
7964 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
7965 #ifndef CONFIG_64BIT
7966 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
7967 #endif
7968 #ifdef CONFIG_SMP
7969 atomic64_set(&cfs_rq->decay_counter, 1);
7970 atomic_long_set(&cfs_rq->removed_load, 0);
7971 #endif
7972 }
7973
7974 #ifdef CONFIG_FAIR_GROUP_SCHED
7975 static void task_move_group_fair(struct task_struct *p, int queued)
7976 {
7977 struct sched_entity *se = &p->se;
7978 struct cfs_rq *cfs_rq;
7979
7980 /*
7981 * If the task was not on the rq at the time of this cgroup movement
7982 * it must have been asleep, sleeping tasks keep their ->vruntime
7983 * absolute on their old rq until wakeup (needed for the fair sleeper
7984 * bonus in place_entity()).
7985 *
7986 * If it was on the rq, we've just 'preempted' it, which does convert
7987 * ->vruntime to a relative base.
7988 *
7989 * Make sure both cases convert their relative position when migrating
7990 * to another cgroup's rq. This does somewhat interfere with the
7991 * fair sleeper stuff for the first placement, but who cares.
7992 */
7993 /*
7994 * When !queued, vruntime of the task has usually NOT been normalized.
7995 * But there are some cases where it has already been normalized:
7996 *
7997 * - Moving a forked child which is waiting for being woken up by
7998 * wake_up_new_task().
7999 * - Moving a task which has been woken up by try_to_wake_up() and
8000 * waiting for actually being woken up by sched_ttwu_pending().
8001 *
8002 * To prevent boost or penalty in the new cfs_rq caused by delta
8003 * min_vruntime between the two cfs_rqs, we skip vruntime adjustment.
8004 */
8005 if (!queued && (!se->sum_exec_runtime || p->state == TASK_WAKING))
8006 queued = 1;
8007
8008 if (!queued)
8009 se->vruntime -= cfs_rq_of(se)->min_vruntime;
8010 set_task_rq(p, task_cpu(p));
8011 se->depth = se->parent ? se->parent->depth + 1 : 0;
8012 if (!queued) {
8013 cfs_rq = cfs_rq_of(se);
8014 se->vruntime += cfs_rq->min_vruntime;
8015 #ifdef CONFIG_SMP
8016 /*
8017 * migrate_task_rq_fair() will have removed our previous
8018 * contribution, but we must synchronize for ongoing future
8019 * decay.
8020 */
8021 se->avg.decay_count = atomic64_read(&cfs_rq->decay_counter);
8022 cfs_rq->blocked_load_avg += se->avg.load_avg_contrib;
8023 #endif
8024 }
8025 }
8026
8027 void free_fair_sched_group(struct task_group *tg)
8028 {
8029 int i;
8030
8031 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
8032
8033 for_each_possible_cpu(i) {
8034 if (tg->cfs_rq)
8035 kfree(tg->cfs_rq[i]);
8036 if (tg->se)
8037 kfree(tg->se[i]);
8038 }
8039
8040 kfree(tg->cfs_rq);
8041 kfree(tg->se);
8042 }
8043
8044 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
8045 {
8046 struct cfs_rq *cfs_rq;
8047 struct sched_entity *se;
8048 int i;
8049
8050 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
8051 if (!tg->cfs_rq)
8052 goto err;
8053 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
8054 if (!tg->se)
8055 goto err;
8056
8057 tg->shares = NICE_0_LOAD;
8058
8059 init_cfs_bandwidth(tg_cfs_bandwidth(tg));
8060
8061 for_each_possible_cpu(i) {
8062 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
8063 GFP_KERNEL, cpu_to_node(i));
8064 if (!cfs_rq)
8065 goto err;
8066
8067 se = kzalloc_node(sizeof(struct sched_entity),
8068 GFP_KERNEL, cpu_to_node(i));
8069 if (!se)
8070 goto err_free_rq;
8071
8072 init_cfs_rq(cfs_rq);
8073 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
8074 }
8075
8076 return 1;
8077
8078 err_free_rq:
8079 kfree(cfs_rq);
8080 err:
8081 return 0;
8082 }
8083
8084 void unregister_fair_sched_group(struct task_group *tg, int cpu)
8085 {
8086 struct rq *rq = cpu_rq(cpu);
8087 unsigned long flags;
8088
8089 /*
8090 * Only empty task groups can be destroyed; so we can speculatively
8091 * check on_list without danger of it being re-added.
8092 */
8093 if (!tg->cfs_rq[cpu]->on_list)
8094 return;
8095
8096 raw_spin_lock_irqsave(&rq->lock, flags);
8097 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
8098 raw_spin_unlock_irqrestore(&rq->lock, flags);
8099 }
8100
8101 void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
8102 struct sched_entity *se, int cpu,
8103 struct sched_entity *parent)
8104 {
8105 struct rq *rq = cpu_rq(cpu);
8106
8107 cfs_rq->tg = tg;
8108 cfs_rq->rq = rq;
8109 init_cfs_rq_runtime(cfs_rq);
8110
8111 tg->cfs_rq[cpu] = cfs_rq;
8112 tg->se[cpu] = se;
8113
8114 /* se could be NULL for root_task_group */
8115 if (!se)
8116 return;
8117
8118 if (!parent) {
8119 se->cfs_rq = &rq->cfs;
8120 se->depth = 0;
8121 } else {
8122 se->cfs_rq = parent->my_q;
8123 se->depth = parent->depth + 1;
8124 }
8125
8126 se->my_q = cfs_rq;
8127 /* guarantee group entities always have weight */
8128 update_load_set(&se->load, NICE_0_LOAD);
8129 se->parent = parent;
8130 }
8131
8132 static DEFINE_MUTEX(shares_mutex);
8133
8134 int sched_group_set_shares(struct task_group *tg, unsigned long shares)
8135 {
8136 int i;
8137 unsigned long flags;
8138
8139 /*
8140 * We can't change the weight of the root cgroup.
8141 */
8142 if (!tg->se[0])
8143 return -EINVAL;
8144
8145 shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
8146
8147 mutex_lock(&shares_mutex);
8148 if (tg->shares == shares)
8149 goto done;
8150
8151 tg->shares = shares;
8152 for_each_possible_cpu(i) {
8153 struct rq *rq = cpu_rq(i);
8154 struct sched_entity *se;
8155
8156 se = tg->se[i];
8157 /* Propagate contribution to hierarchy */
8158 raw_spin_lock_irqsave(&rq->lock, flags);
8159
8160 /* Possible calls to update_curr() need rq clock */
8161 update_rq_clock(rq);
8162 for_each_sched_entity(se)
8163 update_cfs_shares(group_cfs_rq(se));
8164 raw_spin_unlock_irqrestore(&rq->lock, flags);
8165 }
8166
8167 done:
8168 mutex_unlock(&shares_mutex);
8169 return 0;
8170 }
8171 #else /* CONFIG_FAIR_GROUP_SCHED */
8172
8173 void free_fair_sched_group(struct task_group *tg) { }
8174
8175 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
8176 {
8177 return 1;
8178 }
8179
8180 void unregister_fair_sched_group(struct task_group *tg, int cpu) { }
8181
8182 #endif /* CONFIG_FAIR_GROUP_SCHED */
8183
8184
8185 static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
8186 {
8187 struct sched_entity *se = &task->se;
8188 unsigned int rr_interval = 0;
8189
8190 /*
8191 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
8192 * idle runqueue:
8193 */
8194 if (rq->cfs.load.weight)
8195 rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
8196
8197 return rr_interval;
8198 }
8199
8200 /*
8201 * All the scheduling class methods:
8202 */
8203 const struct sched_class fair_sched_class = {
8204 .next = &idle_sched_class,
8205 .enqueue_task = enqueue_task_fair,
8206 .dequeue_task = dequeue_task_fair,
8207 .yield_task = yield_task_fair,
8208 .yield_to_task = yield_to_task_fair,
8209
8210 .check_preempt_curr = check_preempt_wakeup,
8211
8212 .pick_next_task = pick_next_task_fair,
8213 .put_prev_task = put_prev_task_fair,
8214
8215 #ifdef CONFIG_SMP
8216 .select_task_rq = select_task_rq_fair,
8217 .migrate_task_rq = migrate_task_rq_fair,
8218
8219 .rq_online = rq_online_fair,
8220 .rq_offline = rq_offline_fair,
8221
8222 .task_waking = task_waking_fair,
8223 #endif
8224
8225 .set_curr_task = set_curr_task_fair,
8226 .task_tick = task_tick_fair,
8227 .task_fork = task_fork_fair,
8228
8229 .prio_changed = prio_changed_fair,
8230 .switched_from = switched_from_fair,
8231 .switched_to = switched_to_fair,
8232
8233 .get_rr_interval = get_rr_interval_fair,
8234
8235 .update_curr = update_curr_fair,
8236
8237 #ifdef CONFIG_FAIR_GROUP_SCHED
8238 .task_move_group = task_move_group_fair,
8239 #endif
8240 };
8241
8242 #ifdef CONFIG_SCHED_DEBUG
8243 void print_cfs_stats(struct seq_file *m, int cpu)
8244 {
8245 struct cfs_rq *cfs_rq;
8246
8247 rcu_read_lock();
8248 for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
8249 print_cfs_rq(m, cpu, cfs_rq);
8250 rcu_read_unlock();
8251 }
8252 #endif
8253
8254 __init void init_sched_fair_class(void)
8255 {
8256 #ifdef CONFIG_SMP
8257 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
8258
8259 #ifdef CONFIG_NO_HZ_COMMON
8260 nohz.next_balance = jiffies;
8261 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
8262 cpu_notifier(sched_ilb_notifier, 0);
8263 #endif
8264 #endif /* SMP */
8265
8266 }