]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - kernel/sched.c
Merge commit 'linus/master' into merge-linus
[mirror_ubuntu-zesty-kernel.git] / kernel / sched.c
1 /*
2 * kernel/sched.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
27 */
28
29 #include <linux/mm.h>
30 #include <linux/module.h>
31 #include <linux/nmi.h>
32 #include <linux/init.h>
33 #include <linux/uaccess.h>
34 #include <linux/highmem.h>
35 #include <linux/smp_lock.h>
36 #include <asm/mmu_context.h>
37 #include <linux/interrupt.h>
38 #include <linux/capability.h>
39 #include <linux/completion.h>
40 #include <linux/kernel_stat.h>
41 #include <linux/debug_locks.h>
42 #include <linux/security.h>
43 #include <linux/notifier.h>
44 #include <linux/profile.h>
45 #include <linux/freezer.h>
46 #include <linux/vmalloc.h>
47 #include <linux/blkdev.h>
48 #include <linux/delay.h>
49 #include <linux/pid_namespace.h>
50 #include <linux/smp.h>
51 #include <linux/threads.h>
52 #include <linux/timer.h>
53 #include <linux/rcupdate.h>
54 #include <linux/cpu.h>
55 #include <linux/cpuset.h>
56 #include <linux/percpu.h>
57 #include <linux/kthread.h>
58 #include <linux/seq_file.h>
59 #include <linux/sysctl.h>
60 #include <linux/syscalls.h>
61 #include <linux/times.h>
62 #include <linux/tsacct_kern.h>
63 #include <linux/kprobes.h>
64 #include <linux/delayacct.h>
65 #include <linux/reciprocal_div.h>
66 #include <linux/unistd.h>
67 #include <linux/pagemap.h>
68 #include <linux/hrtimer.h>
69 #include <linux/tick.h>
70 #include <linux/bootmem.h>
71 #include <linux/debugfs.h>
72 #include <linux/ctype.h>
73 #include <linux/ftrace.h>
74
75 #include <asm/tlb.h>
76 #include <asm/irq_regs.h>
77
78 #include "sched_cpupri.h"
79
80 /*
81 * Convert user-nice values [ -20 ... 0 ... 19 ]
82 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
83 * and back.
84 */
85 #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
86 #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
87 #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
88
89 /*
90 * 'User priority' is the nice value converted to something we
91 * can work with better when scaling various scheduler parameters,
92 * it's a [ 0 ... 39 ] range.
93 */
94 #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
95 #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
96 #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
97
98 /*
99 * Helpers for converting nanosecond timing to jiffy resolution
100 */
101 #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
102
103 #define NICE_0_LOAD SCHED_LOAD_SCALE
104 #define NICE_0_SHIFT SCHED_LOAD_SHIFT
105
106 /*
107 * These are the 'tuning knobs' of the scheduler:
108 *
109 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
110 * Timeslices get refilled after they expire.
111 */
112 #define DEF_TIMESLICE (100 * HZ / 1000)
113
114 /*
115 * single value that denotes runtime == period, ie unlimited time.
116 */
117 #define RUNTIME_INF ((u64)~0ULL)
118
119 #ifdef CONFIG_SMP
120 /*
121 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
122 * Since cpu_power is a 'constant', we can use a reciprocal divide.
123 */
124 static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
125 {
126 return reciprocal_divide(load, sg->reciprocal_cpu_power);
127 }
128
129 /*
130 * Each time a sched group cpu_power is changed,
131 * we must compute its reciprocal value
132 */
133 static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
134 {
135 sg->__cpu_power += val;
136 sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
137 }
138 #endif
139
140 static inline int rt_policy(int policy)
141 {
142 if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
143 return 1;
144 return 0;
145 }
146
147 static inline int task_has_rt_policy(struct task_struct *p)
148 {
149 return rt_policy(p->policy);
150 }
151
152 /*
153 * This is the priority-queue data structure of the RT scheduling class:
154 */
155 struct rt_prio_array {
156 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
157 struct list_head queue[MAX_RT_PRIO];
158 };
159
160 struct rt_bandwidth {
161 /* nests inside the rq lock: */
162 spinlock_t rt_runtime_lock;
163 ktime_t rt_period;
164 u64 rt_runtime;
165 struct hrtimer rt_period_timer;
166 };
167
168 static struct rt_bandwidth def_rt_bandwidth;
169
170 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
171
172 static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
173 {
174 struct rt_bandwidth *rt_b =
175 container_of(timer, struct rt_bandwidth, rt_period_timer);
176 ktime_t now;
177 int overrun;
178 int idle = 0;
179
180 for (;;) {
181 now = hrtimer_cb_get_time(timer);
182 overrun = hrtimer_forward(timer, now, rt_b->rt_period);
183
184 if (!overrun)
185 break;
186
187 idle = do_sched_rt_period_timer(rt_b, overrun);
188 }
189
190 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
191 }
192
193 static
194 void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
195 {
196 rt_b->rt_period = ns_to_ktime(period);
197 rt_b->rt_runtime = runtime;
198
199 spin_lock_init(&rt_b->rt_runtime_lock);
200
201 hrtimer_init(&rt_b->rt_period_timer,
202 CLOCK_MONOTONIC, HRTIMER_MODE_REL);
203 rt_b->rt_period_timer.function = sched_rt_period_timer;
204 rt_b->rt_period_timer.cb_mode = HRTIMER_CB_IRQSAFE_UNLOCKED;
205 }
206
207 static inline int rt_bandwidth_enabled(void)
208 {
209 return sysctl_sched_rt_runtime >= 0;
210 }
211
212 static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
213 {
214 ktime_t now;
215
216 if (rt_bandwidth_enabled() && rt_b->rt_runtime == RUNTIME_INF)
217 return;
218
219 if (hrtimer_active(&rt_b->rt_period_timer))
220 return;
221
222 spin_lock(&rt_b->rt_runtime_lock);
223 for (;;) {
224 if (hrtimer_active(&rt_b->rt_period_timer))
225 break;
226
227 now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
228 hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
229 hrtimer_start_expires(&rt_b->rt_period_timer,
230 HRTIMER_MODE_ABS);
231 }
232 spin_unlock(&rt_b->rt_runtime_lock);
233 }
234
235 #ifdef CONFIG_RT_GROUP_SCHED
236 static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
237 {
238 hrtimer_cancel(&rt_b->rt_period_timer);
239 }
240 #endif
241
242 /*
243 * sched_domains_mutex serializes calls to arch_init_sched_domains,
244 * detach_destroy_domains and partition_sched_domains.
245 */
246 static DEFINE_MUTEX(sched_domains_mutex);
247
248 #ifdef CONFIG_GROUP_SCHED
249
250 #include <linux/cgroup.h>
251
252 struct cfs_rq;
253
254 static LIST_HEAD(task_groups);
255
256 /* task group related information */
257 struct task_group {
258 #ifdef CONFIG_CGROUP_SCHED
259 struct cgroup_subsys_state css;
260 #endif
261
262 #ifdef CONFIG_FAIR_GROUP_SCHED
263 /* schedulable entities of this group on each cpu */
264 struct sched_entity **se;
265 /* runqueue "owned" by this group on each cpu */
266 struct cfs_rq **cfs_rq;
267 unsigned long shares;
268 #endif
269
270 #ifdef CONFIG_RT_GROUP_SCHED
271 struct sched_rt_entity **rt_se;
272 struct rt_rq **rt_rq;
273
274 struct rt_bandwidth rt_bandwidth;
275 #endif
276
277 struct rcu_head rcu;
278 struct list_head list;
279
280 struct task_group *parent;
281 struct list_head siblings;
282 struct list_head children;
283 };
284
285 #ifdef CONFIG_USER_SCHED
286
287 /*
288 * Root task group.
289 * Every UID task group (including init_task_group aka UID-0) will
290 * be a child to this group.
291 */
292 struct task_group root_task_group;
293
294 #ifdef CONFIG_FAIR_GROUP_SCHED
295 /* Default task group's sched entity on each cpu */
296 static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
297 /* Default task group's cfs_rq on each cpu */
298 static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp;
299 #endif /* CONFIG_FAIR_GROUP_SCHED */
300
301 #ifdef CONFIG_RT_GROUP_SCHED
302 static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity);
303 static DEFINE_PER_CPU(struct rt_rq, init_rt_rq) ____cacheline_aligned_in_smp;
304 #endif /* CONFIG_RT_GROUP_SCHED */
305 #else /* !CONFIG_USER_SCHED */
306 #define root_task_group init_task_group
307 #endif /* CONFIG_USER_SCHED */
308
309 /* task_group_lock serializes add/remove of task groups and also changes to
310 * a task group's cpu shares.
311 */
312 static DEFINE_SPINLOCK(task_group_lock);
313
314 #ifdef CONFIG_FAIR_GROUP_SCHED
315 #ifdef CONFIG_USER_SCHED
316 # define INIT_TASK_GROUP_LOAD (2*NICE_0_LOAD)
317 #else /* !CONFIG_USER_SCHED */
318 # define INIT_TASK_GROUP_LOAD NICE_0_LOAD
319 #endif /* CONFIG_USER_SCHED */
320
321 /*
322 * A weight of 0 or 1 can cause arithmetics problems.
323 * A weight of a cfs_rq is the sum of weights of which entities
324 * are queued on this cfs_rq, so a weight of a entity should not be
325 * too large, so as the shares value of a task group.
326 * (The default weight is 1024 - so there's no practical
327 * limitation from this.)
328 */
329 #define MIN_SHARES 2
330 #define MAX_SHARES (1UL << 18)
331
332 static int init_task_group_load = INIT_TASK_GROUP_LOAD;
333 #endif
334
335 /* Default task group.
336 * Every task in system belong to this group at bootup.
337 */
338 struct task_group init_task_group;
339
340 /* return group to which a task belongs */
341 static inline struct task_group *task_group(struct task_struct *p)
342 {
343 struct task_group *tg;
344
345 #ifdef CONFIG_USER_SCHED
346 tg = p->user->tg;
347 #elif defined(CONFIG_CGROUP_SCHED)
348 tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
349 struct task_group, css);
350 #else
351 tg = &init_task_group;
352 #endif
353 return tg;
354 }
355
356 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
357 static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
358 {
359 #ifdef CONFIG_FAIR_GROUP_SCHED
360 p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
361 p->se.parent = task_group(p)->se[cpu];
362 #endif
363
364 #ifdef CONFIG_RT_GROUP_SCHED
365 p->rt.rt_rq = task_group(p)->rt_rq[cpu];
366 p->rt.parent = task_group(p)->rt_se[cpu];
367 #endif
368 }
369
370 #else
371
372 static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
373 static inline struct task_group *task_group(struct task_struct *p)
374 {
375 return NULL;
376 }
377
378 #endif /* CONFIG_GROUP_SCHED */
379
380 /* CFS-related fields in a runqueue */
381 struct cfs_rq {
382 struct load_weight load;
383 unsigned long nr_running;
384
385 u64 exec_clock;
386 u64 min_vruntime;
387 u64 pair_start;
388
389 struct rb_root tasks_timeline;
390 struct rb_node *rb_leftmost;
391
392 struct list_head tasks;
393 struct list_head *balance_iterator;
394
395 /*
396 * 'curr' points to currently running entity on this cfs_rq.
397 * It is set to NULL otherwise (i.e when none are currently running).
398 */
399 struct sched_entity *curr, *next;
400
401 unsigned long nr_spread_over;
402
403 #ifdef CONFIG_FAIR_GROUP_SCHED
404 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
405
406 /*
407 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
408 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
409 * (like users, containers etc.)
410 *
411 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
412 * list is used during load balance.
413 */
414 struct list_head leaf_cfs_rq_list;
415 struct task_group *tg; /* group that "owns" this runqueue */
416
417 #ifdef CONFIG_SMP
418 /*
419 * the part of load.weight contributed by tasks
420 */
421 unsigned long task_weight;
422
423 /*
424 * h_load = weight * f(tg)
425 *
426 * Where f(tg) is the recursive weight fraction assigned to
427 * this group.
428 */
429 unsigned long h_load;
430
431 /*
432 * this cpu's part of tg->shares
433 */
434 unsigned long shares;
435
436 /*
437 * load.weight at the time we set shares
438 */
439 unsigned long rq_weight;
440 #endif
441 #endif
442 };
443
444 /* Real-Time classes' related field in a runqueue: */
445 struct rt_rq {
446 struct rt_prio_array active;
447 unsigned long rt_nr_running;
448 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
449 int highest_prio; /* highest queued rt task prio */
450 #endif
451 #ifdef CONFIG_SMP
452 unsigned long rt_nr_migratory;
453 int overloaded;
454 #endif
455 int rt_throttled;
456 u64 rt_time;
457 u64 rt_runtime;
458 /* Nests inside the rq lock: */
459 spinlock_t rt_runtime_lock;
460
461 #ifdef CONFIG_RT_GROUP_SCHED
462 unsigned long rt_nr_boosted;
463
464 struct rq *rq;
465 struct list_head leaf_rt_rq_list;
466 struct task_group *tg;
467 struct sched_rt_entity *rt_se;
468 #endif
469 };
470
471 #ifdef CONFIG_SMP
472
473 /*
474 * We add the notion of a root-domain which will be used to define per-domain
475 * variables. Each exclusive cpuset essentially defines an island domain by
476 * fully partitioning the member cpus from any other cpuset. Whenever a new
477 * exclusive cpuset is created, we also create and attach a new root-domain
478 * object.
479 *
480 */
481 struct root_domain {
482 atomic_t refcount;
483 cpumask_t span;
484 cpumask_t online;
485
486 /*
487 * The "RT overload" flag: it gets set if a CPU has more than
488 * one runnable RT task.
489 */
490 cpumask_t rto_mask;
491 atomic_t rto_count;
492 #ifdef CONFIG_SMP
493 struct cpupri cpupri;
494 #endif
495 };
496
497 /*
498 * By default the system creates a single root-domain with all cpus as
499 * members (mimicking the global state we have today).
500 */
501 static struct root_domain def_root_domain;
502
503 #endif
504
505 /*
506 * This is the main, per-CPU runqueue data structure.
507 *
508 * Locking rule: those places that want to lock multiple runqueues
509 * (such as the load balancing or the thread migration code), lock
510 * acquire operations must be ordered by ascending &runqueue.
511 */
512 struct rq {
513 /* runqueue lock: */
514 spinlock_t lock;
515
516 /*
517 * nr_running and cpu_load should be in the same cacheline because
518 * remote CPUs use both these fields when doing load calculation.
519 */
520 unsigned long nr_running;
521 #define CPU_LOAD_IDX_MAX 5
522 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
523 unsigned char idle_at_tick;
524 #ifdef CONFIG_NO_HZ
525 unsigned long last_tick_seen;
526 unsigned char in_nohz_recently;
527 #endif
528 /* capture load from *all* tasks on this cpu: */
529 struct load_weight load;
530 unsigned long nr_load_updates;
531 u64 nr_switches;
532
533 struct cfs_rq cfs;
534 struct rt_rq rt;
535
536 #ifdef CONFIG_FAIR_GROUP_SCHED
537 /* list of leaf cfs_rq on this cpu: */
538 struct list_head leaf_cfs_rq_list;
539 #endif
540 #ifdef CONFIG_RT_GROUP_SCHED
541 struct list_head leaf_rt_rq_list;
542 #endif
543
544 /*
545 * This is part of a global counter where only the total sum
546 * over all CPUs matters. A task can increase this counter on
547 * one CPU and if it got migrated afterwards it may decrease
548 * it on another CPU. Always updated under the runqueue lock:
549 */
550 unsigned long nr_uninterruptible;
551
552 struct task_struct *curr, *idle;
553 unsigned long next_balance;
554 struct mm_struct *prev_mm;
555
556 u64 clock;
557
558 atomic_t nr_iowait;
559
560 #ifdef CONFIG_SMP
561 struct root_domain *rd;
562 struct sched_domain *sd;
563
564 /* For active balancing */
565 int active_balance;
566 int push_cpu;
567 /* cpu of this runqueue: */
568 int cpu;
569 int online;
570
571 unsigned long avg_load_per_task;
572
573 struct task_struct *migration_thread;
574 struct list_head migration_queue;
575 #endif
576
577 #ifdef CONFIG_SCHED_HRTICK
578 #ifdef CONFIG_SMP
579 int hrtick_csd_pending;
580 struct call_single_data hrtick_csd;
581 #endif
582 struct hrtimer hrtick_timer;
583 #endif
584
585 #ifdef CONFIG_SCHEDSTATS
586 /* latency stats */
587 struct sched_info rq_sched_info;
588
589 /* sys_sched_yield() stats */
590 unsigned int yld_exp_empty;
591 unsigned int yld_act_empty;
592 unsigned int yld_both_empty;
593 unsigned int yld_count;
594
595 /* schedule() stats */
596 unsigned int sched_switch;
597 unsigned int sched_count;
598 unsigned int sched_goidle;
599
600 /* try_to_wake_up() stats */
601 unsigned int ttwu_count;
602 unsigned int ttwu_local;
603
604 /* BKL stats */
605 unsigned int bkl_count;
606 #endif
607 };
608
609 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
610
611 static inline void check_preempt_curr(struct rq *rq, struct task_struct *p, int sync)
612 {
613 rq->curr->sched_class->check_preempt_curr(rq, p, sync);
614 }
615
616 static inline int cpu_of(struct rq *rq)
617 {
618 #ifdef CONFIG_SMP
619 return rq->cpu;
620 #else
621 return 0;
622 #endif
623 }
624
625 /*
626 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
627 * See detach_destroy_domains: synchronize_sched for details.
628 *
629 * The domain tree of any CPU may only be accessed from within
630 * preempt-disabled sections.
631 */
632 #define for_each_domain(cpu, __sd) \
633 for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
634
635 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
636 #define this_rq() (&__get_cpu_var(runqueues))
637 #define task_rq(p) cpu_rq(task_cpu(p))
638 #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
639
640 static inline void update_rq_clock(struct rq *rq)
641 {
642 rq->clock = sched_clock_cpu(cpu_of(rq));
643 }
644
645 /*
646 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
647 */
648 #ifdef CONFIG_SCHED_DEBUG
649 # define const_debug __read_mostly
650 #else
651 # define const_debug static const
652 #endif
653
654 /**
655 * runqueue_is_locked
656 *
657 * Returns true if the current cpu runqueue is locked.
658 * This interface allows printk to be called with the runqueue lock
659 * held and know whether or not it is OK to wake up the klogd.
660 */
661 int runqueue_is_locked(void)
662 {
663 int cpu = get_cpu();
664 struct rq *rq = cpu_rq(cpu);
665 int ret;
666
667 ret = spin_is_locked(&rq->lock);
668 put_cpu();
669 return ret;
670 }
671
672 /*
673 * Debugging: various feature bits
674 */
675
676 #define SCHED_FEAT(name, enabled) \
677 __SCHED_FEAT_##name ,
678
679 enum {
680 #include "sched_features.h"
681 };
682
683 #undef SCHED_FEAT
684
685 #define SCHED_FEAT(name, enabled) \
686 (1UL << __SCHED_FEAT_##name) * enabled |
687
688 const_debug unsigned int sysctl_sched_features =
689 #include "sched_features.h"
690 0;
691
692 #undef SCHED_FEAT
693
694 #ifdef CONFIG_SCHED_DEBUG
695 #define SCHED_FEAT(name, enabled) \
696 #name ,
697
698 static __read_mostly char *sched_feat_names[] = {
699 #include "sched_features.h"
700 NULL
701 };
702
703 #undef SCHED_FEAT
704
705 static int sched_feat_open(struct inode *inode, struct file *filp)
706 {
707 filp->private_data = inode->i_private;
708 return 0;
709 }
710
711 static ssize_t
712 sched_feat_read(struct file *filp, char __user *ubuf,
713 size_t cnt, loff_t *ppos)
714 {
715 char *buf;
716 int r = 0;
717 int len = 0;
718 int i;
719
720 for (i = 0; sched_feat_names[i]; i++) {
721 len += strlen(sched_feat_names[i]);
722 len += 4;
723 }
724
725 buf = kmalloc(len + 2, GFP_KERNEL);
726 if (!buf)
727 return -ENOMEM;
728
729 for (i = 0; sched_feat_names[i]; i++) {
730 if (sysctl_sched_features & (1UL << i))
731 r += sprintf(buf + r, "%s ", sched_feat_names[i]);
732 else
733 r += sprintf(buf + r, "NO_%s ", sched_feat_names[i]);
734 }
735
736 r += sprintf(buf + r, "\n");
737 WARN_ON(r >= len + 2);
738
739 r = simple_read_from_buffer(ubuf, cnt, ppos, buf, r);
740
741 kfree(buf);
742
743 return r;
744 }
745
746 static ssize_t
747 sched_feat_write(struct file *filp, const char __user *ubuf,
748 size_t cnt, loff_t *ppos)
749 {
750 char buf[64];
751 char *cmp = buf;
752 int neg = 0;
753 int i;
754
755 if (cnt > 63)
756 cnt = 63;
757
758 if (copy_from_user(&buf, ubuf, cnt))
759 return -EFAULT;
760
761 buf[cnt] = 0;
762
763 if (strncmp(buf, "NO_", 3) == 0) {
764 neg = 1;
765 cmp += 3;
766 }
767
768 for (i = 0; sched_feat_names[i]; i++) {
769 int len = strlen(sched_feat_names[i]);
770
771 if (strncmp(cmp, sched_feat_names[i], len) == 0) {
772 if (neg)
773 sysctl_sched_features &= ~(1UL << i);
774 else
775 sysctl_sched_features |= (1UL << i);
776 break;
777 }
778 }
779
780 if (!sched_feat_names[i])
781 return -EINVAL;
782
783 filp->f_pos += cnt;
784
785 return cnt;
786 }
787
788 static struct file_operations sched_feat_fops = {
789 .open = sched_feat_open,
790 .read = sched_feat_read,
791 .write = sched_feat_write,
792 };
793
794 static __init int sched_init_debug(void)
795 {
796 debugfs_create_file("sched_features", 0644, NULL, NULL,
797 &sched_feat_fops);
798
799 return 0;
800 }
801 late_initcall(sched_init_debug);
802
803 #endif
804
805 #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
806
807 /*
808 * Number of tasks to iterate in a single balance run.
809 * Limited because this is done with IRQs disabled.
810 */
811 const_debug unsigned int sysctl_sched_nr_migrate = 32;
812
813 /*
814 * ratelimit for updating the group shares.
815 * default: 0.25ms
816 */
817 unsigned int sysctl_sched_shares_ratelimit = 250000;
818
819 /*
820 * period over which we measure -rt task cpu usage in us.
821 * default: 1s
822 */
823 unsigned int sysctl_sched_rt_period = 1000000;
824
825 static __read_mostly int scheduler_running;
826
827 /*
828 * part of the period that we allow rt tasks to run in us.
829 * default: 0.95s
830 */
831 int sysctl_sched_rt_runtime = 950000;
832
833 static inline u64 global_rt_period(void)
834 {
835 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
836 }
837
838 static inline u64 global_rt_runtime(void)
839 {
840 if (sysctl_sched_rt_runtime < 0)
841 return RUNTIME_INF;
842
843 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
844 }
845
846 #ifndef prepare_arch_switch
847 # define prepare_arch_switch(next) do { } while (0)
848 #endif
849 #ifndef finish_arch_switch
850 # define finish_arch_switch(prev) do { } while (0)
851 #endif
852
853 static inline int task_current(struct rq *rq, struct task_struct *p)
854 {
855 return rq->curr == p;
856 }
857
858 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
859 static inline int task_running(struct rq *rq, struct task_struct *p)
860 {
861 return task_current(rq, p);
862 }
863
864 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
865 {
866 }
867
868 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
869 {
870 #ifdef CONFIG_DEBUG_SPINLOCK
871 /* this is a valid case when another task releases the spinlock */
872 rq->lock.owner = current;
873 #endif
874 /*
875 * If we are tracking spinlock dependencies then we have to
876 * fix up the runqueue lock - which gets 'carried over' from
877 * prev into current:
878 */
879 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
880
881 spin_unlock_irq(&rq->lock);
882 }
883
884 #else /* __ARCH_WANT_UNLOCKED_CTXSW */
885 static inline int task_running(struct rq *rq, struct task_struct *p)
886 {
887 #ifdef CONFIG_SMP
888 return p->oncpu;
889 #else
890 return task_current(rq, p);
891 #endif
892 }
893
894 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
895 {
896 #ifdef CONFIG_SMP
897 /*
898 * We can optimise this out completely for !SMP, because the
899 * SMP rebalancing from interrupt is the only thing that cares
900 * here.
901 */
902 next->oncpu = 1;
903 #endif
904 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
905 spin_unlock_irq(&rq->lock);
906 #else
907 spin_unlock(&rq->lock);
908 #endif
909 }
910
911 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
912 {
913 #ifdef CONFIG_SMP
914 /*
915 * After ->oncpu is cleared, the task can be moved to a different CPU.
916 * We must ensure this doesn't happen until the switch is completely
917 * finished.
918 */
919 smp_wmb();
920 prev->oncpu = 0;
921 #endif
922 #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
923 local_irq_enable();
924 #endif
925 }
926 #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
927
928 /*
929 * __task_rq_lock - lock the runqueue a given task resides on.
930 * Must be called interrupts disabled.
931 */
932 static inline struct rq *__task_rq_lock(struct task_struct *p)
933 __acquires(rq->lock)
934 {
935 for (;;) {
936 struct rq *rq = task_rq(p);
937 spin_lock(&rq->lock);
938 if (likely(rq == task_rq(p)))
939 return rq;
940 spin_unlock(&rq->lock);
941 }
942 }
943
944 /*
945 * task_rq_lock - lock the runqueue a given task resides on and disable
946 * interrupts. Note the ordering: we can safely lookup the task_rq without
947 * explicitly disabling preemption.
948 */
949 static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
950 __acquires(rq->lock)
951 {
952 struct rq *rq;
953
954 for (;;) {
955 local_irq_save(*flags);
956 rq = task_rq(p);
957 spin_lock(&rq->lock);
958 if (likely(rq == task_rq(p)))
959 return rq;
960 spin_unlock_irqrestore(&rq->lock, *flags);
961 }
962 }
963
964 static void __task_rq_unlock(struct rq *rq)
965 __releases(rq->lock)
966 {
967 spin_unlock(&rq->lock);
968 }
969
970 static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
971 __releases(rq->lock)
972 {
973 spin_unlock_irqrestore(&rq->lock, *flags);
974 }
975
976 /*
977 * this_rq_lock - lock this runqueue and disable interrupts.
978 */
979 static struct rq *this_rq_lock(void)
980 __acquires(rq->lock)
981 {
982 struct rq *rq;
983
984 local_irq_disable();
985 rq = this_rq();
986 spin_lock(&rq->lock);
987
988 return rq;
989 }
990
991 #ifdef CONFIG_SCHED_HRTICK
992 /*
993 * Use HR-timers to deliver accurate preemption points.
994 *
995 * Its all a bit involved since we cannot program an hrt while holding the
996 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
997 * reschedule event.
998 *
999 * When we get rescheduled we reprogram the hrtick_timer outside of the
1000 * rq->lock.
1001 */
1002
1003 /*
1004 * Use hrtick when:
1005 * - enabled by features
1006 * - hrtimer is actually high res
1007 */
1008 static inline int hrtick_enabled(struct rq *rq)
1009 {
1010 if (!sched_feat(HRTICK))
1011 return 0;
1012 if (!cpu_active(cpu_of(rq)))
1013 return 0;
1014 return hrtimer_is_hres_active(&rq->hrtick_timer);
1015 }
1016
1017 static void hrtick_clear(struct rq *rq)
1018 {
1019 if (hrtimer_active(&rq->hrtick_timer))
1020 hrtimer_cancel(&rq->hrtick_timer);
1021 }
1022
1023 /*
1024 * High-resolution timer tick.
1025 * Runs from hardirq context with interrupts disabled.
1026 */
1027 static enum hrtimer_restart hrtick(struct hrtimer *timer)
1028 {
1029 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
1030
1031 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
1032
1033 spin_lock(&rq->lock);
1034 update_rq_clock(rq);
1035 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
1036 spin_unlock(&rq->lock);
1037
1038 return HRTIMER_NORESTART;
1039 }
1040
1041 #ifdef CONFIG_SMP
1042 /*
1043 * called from hardirq (IPI) context
1044 */
1045 static void __hrtick_start(void *arg)
1046 {
1047 struct rq *rq = arg;
1048
1049 spin_lock(&rq->lock);
1050 hrtimer_restart(&rq->hrtick_timer);
1051 rq->hrtick_csd_pending = 0;
1052 spin_unlock(&rq->lock);
1053 }
1054
1055 /*
1056 * Called to set the hrtick timer state.
1057 *
1058 * called with rq->lock held and irqs disabled
1059 */
1060 static void hrtick_start(struct rq *rq, u64 delay)
1061 {
1062 struct hrtimer *timer = &rq->hrtick_timer;
1063 ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
1064
1065 hrtimer_set_expires(timer, time);
1066
1067 if (rq == this_rq()) {
1068 hrtimer_restart(timer);
1069 } else if (!rq->hrtick_csd_pending) {
1070 __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd);
1071 rq->hrtick_csd_pending = 1;
1072 }
1073 }
1074
1075 static int
1076 hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
1077 {
1078 int cpu = (int)(long)hcpu;
1079
1080 switch (action) {
1081 case CPU_UP_CANCELED:
1082 case CPU_UP_CANCELED_FROZEN:
1083 case CPU_DOWN_PREPARE:
1084 case CPU_DOWN_PREPARE_FROZEN:
1085 case CPU_DEAD:
1086 case CPU_DEAD_FROZEN:
1087 hrtick_clear(cpu_rq(cpu));
1088 return NOTIFY_OK;
1089 }
1090
1091 return NOTIFY_DONE;
1092 }
1093
1094 static __init void init_hrtick(void)
1095 {
1096 hotcpu_notifier(hotplug_hrtick, 0);
1097 }
1098 #else
1099 /*
1100 * Called to set the hrtick timer state.
1101 *
1102 * called with rq->lock held and irqs disabled
1103 */
1104 static void hrtick_start(struct rq *rq, u64 delay)
1105 {
1106 hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay), HRTIMER_MODE_REL);
1107 }
1108
1109 static inline void init_hrtick(void)
1110 {
1111 }
1112 #endif /* CONFIG_SMP */
1113
1114 static void init_rq_hrtick(struct rq *rq)
1115 {
1116 #ifdef CONFIG_SMP
1117 rq->hrtick_csd_pending = 0;
1118
1119 rq->hrtick_csd.flags = 0;
1120 rq->hrtick_csd.func = __hrtick_start;
1121 rq->hrtick_csd.info = rq;
1122 #endif
1123
1124 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1125 rq->hrtick_timer.function = hrtick;
1126 rq->hrtick_timer.cb_mode = HRTIMER_CB_IRQSAFE_PERCPU;
1127 }
1128 #else /* CONFIG_SCHED_HRTICK */
1129 static inline void hrtick_clear(struct rq *rq)
1130 {
1131 }
1132
1133 static inline void init_rq_hrtick(struct rq *rq)
1134 {
1135 }
1136
1137 static inline void init_hrtick(void)
1138 {
1139 }
1140 #endif /* CONFIG_SCHED_HRTICK */
1141
1142 /*
1143 * resched_task - mark a task 'to be rescheduled now'.
1144 *
1145 * On UP this means the setting of the need_resched flag, on SMP it
1146 * might also involve a cross-CPU call to trigger the scheduler on
1147 * the target CPU.
1148 */
1149 #ifdef CONFIG_SMP
1150
1151 #ifndef tsk_is_polling
1152 #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1153 #endif
1154
1155 static void resched_task(struct task_struct *p)
1156 {
1157 int cpu;
1158
1159 assert_spin_locked(&task_rq(p)->lock);
1160
1161 if (unlikely(test_tsk_thread_flag(p, TIF_NEED_RESCHED)))
1162 return;
1163
1164 set_tsk_thread_flag(p, TIF_NEED_RESCHED);
1165
1166 cpu = task_cpu(p);
1167 if (cpu == smp_processor_id())
1168 return;
1169
1170 /* NEED_RESCHED must be visible before we test polling */
1171 smp_mb();
1172 if (!tsk_is_polling(p))
1173 smp_send_reschedule(cpu);
1174 }
1175
1176 static void resched_cpu(int cpu)
1177 {
1178 struct rq *rq = cpu_rq(cpu);
1179 unsigned long flags;
1180
1181 if (!spin_trylock_irqsave(&rq->lock, flags))
1182 return;
1183 resched_task(cpu_curr(cpu));
1184 spin_unlock_irqrestore(&rq->lock, flags);
1185 }
1186
1187 #ifdef CONFIG_NO_HZ
1188 /*
1189 * When add_timer_on() enqueues a timer into the timer wheel of an
1190 * idle CPU then this timer might expire before the next timer event
1191 * which is scheduled to wake up that CPU. In case of a completely
1192 * idle system the next event might even be infinite time into the
1193 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1194 * leaves the inner idle loop so the newly added timer is taken into
1195 * account when the CPU goes back to idle and evaluates the timer
1196 * wheel for the next timer event.
1197 */
1198 void wake_up_idle_cpu(int cpu)
1199 {
1200 struct rq *rq = cpu_rq(cpu);
1201
1202 if (cpu == smp_processor_id())
1203 return;
1204
1205 /*
1206 * This is safe, as this function is called with the timer
1207 * wheel base lock of (cpu) held. When the CPU is on the way
1208 * to idle and has not yet set rq->curr to idle then it will
1209 * be serialized on the timer wheel base lock and take the new
1210 * timer into account automatically.
1211 */
1212 if (rq->curr != rq->idle)
1213 return;
1214
1215 /*
1216 * We can set TIF_RESCHED on the idle task of the other CPU
1217 * lockless. The worst case is that the other CPU runs the
1218 * idle task through an additional NOOP schedule()
1219 */
1220 set_tsk_thread_flag(rq->idle, TIF_NEED_RESCHED);
1221
1222 /* NEED_RESCHED must be visible before we test polling */
1223 smp_mb();
1224 if (!tsk_is_polling(rq->idle))
1225 smp_send_reschedule(cpu);
1226 }
1227 #endif /* CONFIG_NO_HZ */
1228
1229 #else /* !CONFIG_SMP */
1230 static void resched_task(struct task_struct *p)
1231 {
1232 assert_spin_locked(&task_rq(p)->lock);
1233 set_tsk_need_resched(p);
1234 }
1235 #endif /* CONFIG_SMP */
1236
1237 #if BITS_PER_LONG == 32
1238 # define WMULT_CONST (~0UL)
1239 #else
1240 # define WMULT_CONST (1UL << 32)
1241 #endif
1242
1243 #define WMULT_SHIFT 32
1244
1245 /*
1246 * Shift right and round:
1247 */
1248 #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
1249
1250 /*
1251 * delta *= weight / lw
1252 */
1253 static unsigned long
1254 calc_delta_mine(unsigned long delta_exec, unsigned long weight,
1255 struct load_weight *lw)
1256 {
1257 u64 tmp;
1258
1259 if (!lw->inv_weight) {
1260 if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
1261 lw->inv_weight = 1;
1262 else
1263 lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
1264 / (lw->weight+1);
1265 }
1266
1267 tmp = (u64)delta_exec * weight;
1268 /*
1269 * Check whether we'd overflow the 64-bit multiplication:
1270 */
1271 if (unlikely(tmp > WMULT_CONST))
1272 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
1273 WMULT_SHIFT/2);
1274 else
1275 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
1276
1277 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
1278 }
1279
1280 static inline void update_load_add(struct load_weight *lw, unsigned long inc)
1281 {
1282 lw->weight += inc;
1283 lw->inv_weight = 0;
1284 }
1285
1286 static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
1287 {
1288 lw->weight -= dec;
1289 lw->inv_weight = 0;
1290 }
1291
1292 /*
1293 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1294 * of tasks with abnormal "nice" values across CPUs the contribution that
1295 * each task makes to its run queue's load is weighted according to its
1296 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1297 * scaled version of the new time slice allocation that they receive on time
1298 * slice expiry etc.
1299 */
1300
1301 #define WEIGHT_IDLEPRIO 2
1302 #define WMULT_IDLEPRIO (1 << 31)
1303
1304 /*
1305 * Nice levels are multiplicative, with a gentle 10% change for every
1306 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1307 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1308 * that remained on nice 0.
1309 *
1310 * The "10% effect" is relative and cumulative: from _any_ nice level,
1311 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
1312 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1313 * If a task goes up by ~10% and another task goes down by ~10% then
1314 * the relative distance between them is ~25%.)
1315 */
1316 static const int prio_to_weight[40] = {
1317 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1318 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1319 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1320 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1321 /* 0 */ 1024, 820, 655, 526, 423,
1322 /* 5 */ 335, 272, 215, 172, 137,
1323 /* 10 */ 110, 87, 70, 56, 45,
1324 /* 15 */ 36, 29, 23, 18, 15,
1325 };
1326
1327 /*
1328 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1329 *
1330 * In cases where the weight does not change often, we can use the
1331 * precalculated inverse to speed up arithmetics by turning divisions
1332 * into multiplications:
1333 */
1334 static const u32 prio_to_wmult[40] = {
1335 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1336 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1337 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1338 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1339 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1340 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1341 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1342 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
1343 };
1344
1345 static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
1346
1347 /*
1348 * runqueue iterator, to support SMP load-balancing between different
1349 * scheduling classes, without having to expose their internal data
1350 * structures to the load-balancing proper:
1351 */
1352 struct rq_iterator {
1353 void *arg;
1354 struct task_struct *(*start)(void *);
1355 struct task_struct *(*next)(void *);
1356 };
1357
1358 #ifdef CONFIG_SMP
1359 static unsigned long
1360 balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
1361 unsigned long max_load_move, struct sched_domain *sd,
1362 enum cpu_idle_type idle, int *all_pinned,
1363 int *this_best_prio, struct rq_iterator *iterator);
1364
1365 static int
1366 iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
1367 struct sched_domain *sd, enum cpu_idle_type idle,
1368 struct rq_iterator *iterator);
1369 #endif
1370
1371 #ifdef CONFIG_CGROUP_CPUACCT
1372 static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
1373 #else
1374 static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
1375 #endif
1376
1377 static inline void inc_cpu_load(struct rq *rq, unsigned long load)
1378 {
1379 update_load_add(&rq->load, load);
1380 }
1381
1382 static inline void dec_cpu_load(struct rq *rq, unsigned long load)
1383 {
1384 update_load_sub(&rq->load, load);
1385 }
1386
1387 #if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
1388 typedef int (*tg_visitor)(struct task_group *, void *);
1389
1390 /*
1391 * Iterate the full tree, calling @down when first entering a node and @up when
1392 * leaving it for the final time.
1393 */
1394 static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
1395 {
1396 struct task_group *parent, *child;
1397 int ret;
1398
1399 rcu_read_lock();
1400 parent = &root_task_group;
1401 down:
1402 ret = (*down)(parent, data);
1403 if (ret)
1404 goto out_unlock;
1405 list_for_each_entry_rcu(child, &parent->children, siblings) {
1406 parent = child;
1407 goto down;
1408
1409 up:
1410 continue;
1411 }
1412 ret = (*up)(parent, data);
1413 if (ret)
1414 goto out_unlock;
1415
1416 child = parent;
1417 parent = parent->parent;
1418 if (parent)
1419 goto up;
1420 out_unlock:
1421 rcu_read_unlock();
1422
1423 return ret;
1424 }
1425
1426 static int tg_nop(struct task_group *tg, void *data)
1427 {
1428 return 0;
1429 }
1430 #endif
1431
1432 #ifdef CONFIG_SMP
1433 static unsigned long source_load(int cpu, int type);
1434 static unsigned long target_load(int cpu, int type);
1435 static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
1436
1437 static unsigned long cpu_avg_load_per_task(int cpu)
1438 {
1439 struct rq *rq = cpu_rq(cpu);
1440
1441 if (rq->nr_running)
1442 rq->avg_load_per_task = rq->load.weight / rq->nr_running;
1443
1444 return rq->avg_load_per_task;
1445 }
1446
1447 #ifdef CONFIG_FAIR_GROUP_SCHED
1448
1449 static void __set_se_shares(struct sched_entity *se, unsigned long shares);
1450
1451 /*
1452 * Calculate and set the cpu's group shares.
1453 */
1454 static void
1455 __update_group_shares_cpu(struct task_group *tg, int cpu,
1456 unsigned long sd_shares, unsigned long sd_rq_weight)
1457 {
1458 int boost = 0;
1459 unsigned long shares;
1460 unsigned long rq_weight;
1461
1462 if (!tg->se[cpu])
1463 return;
1464
1465 rq_weight = tg->cfs_rq[cpu]->load.weight;
1466
1467 /*
1468 * If there are currently no tasks on the cpu pretend there is one of
1469 * average load so that when a new task gets to run here it will not
1470 * get delayed by group starvation.
1471 */
1472 if (!rq_weight) {
1473 boost = 1;
1474 rq_weight = NICE_0_LOAD;
1475 }
1476
1477 if (unlikely(rq_weight > sd_rq_weight))
1478 rq_weight = sd_rq_weight;
1479
1480 /*
1481 * \Sum shares * rq_weight
1482 * shares = -----------------------
1483 * \Sum rq_weight
1484 *
1485 */
1486 shares = (sd_shares * rq_weight) / (sd_rq_weight + 1);
1487
1488 /*
1489 * record the actual number of shares, not the boosted amount.
1490 */
1491 tg->cfs_rq[cpu]->shares = boost ? 0 : shares;
1492 tg->cfs_rq[cpu]->rq_weight = rq_weight;
1493
1494 if (shares < MIN_SHARES)
1495 shares = MIN_SHARES;
1496 else if (shares > MAX_SHARES)
1497 shares = MAX_SHARES;
1498
1499 __set_se_shares(tg->se[cpu], shares);
1500 }
1501
1502 /*
1503 * Re-compute the task group their per cpu shares over the given domain.
1504 * This needs to be done in a bottom-up fashion because the rq weight of a
1505 * parent group depends on the shares of its child groups.
1506 */
1507 static int tg_shares_up(struct task_group *tg, void *data)
1508 {
1509 unsigned long rq_weight = 0;
1510 unsigned long shares = 0;
1511 struct sched_domain *sd = data;
1512 int i;
1513
1514 for_each_cpu_mask(i, sd->span) {
1515 rq_weight += tg->cfs_rq[i]->load.weight;
1516 shares += tg->cfs_rq[i]->shares;
1517 }
1518
1519 if ((!shares && rq_weight) || shares > tg->shares)
1520 shares = tg->shares;
1521
1522 if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE))
1523 shares = tg->shares;
1524
1525 if (!rq_weight)
1526 rq_weight = cpus_weight(sd->span) * NICE_0_LOAD;
1527
1528 for_each_cpu_mask(i, sd->span) {
1529 struct rq *rq = cpu_rq(i);
1530 unsigned long flags;
1531
1532 spin_lock_irqsave(&rq->lock, flags);
1533 __update_group_shares_cpu(tg, i, shares, rq_weight);
1534 spin_unlock_irqrestore(&rq->lock, flags);
1535 }
1536
1537 return 0;
1538 }
1539
1540 /*
1541 * Compute the cpu's hierarchical load factor for each task group.
1542 * This needs to be done in a top-down fashion because the load of a child
1543 * group is a fraction of its parents load.
1544 */
1545 static int tg_load_down(struct task_group *tg, void *data)
1546 {
1547 unsigned long load;
1548 long cpu = (long)data;
1549
1550 if (!tg->parent) {
1551 load = cpu_rq(cpu)->load.weight;
1552 } else {
1553 load = tg->parent->cfs_rq[cpu]->h_load;
1554 load *= tg->cfs_rq[cpu]->shares;
1555 load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
1556 }
1557
1558 tg->cfs_rq[cpu]->h_load = load;
1559
1560 return 0;
1561 }
1562
1563 static void update_shares(struct sched_domain *sd)
1564 {
1565 u64 now = cpu_clock(raw_smp_processor_id());
1566 s64 elapsed = now - sd->last_update;
1567
1568 if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) {
1569 sd->last_update = now;
1570 walk_tg_tree(tg_nop, tg_shares_up, sd);
1571 }
1572 }
1573
1574 static void update_shares_locked(struct rq *rq, struct sched_domain *sd)
1575 {
1576 spin_unlock(&rq->lock);
1577 update_shares(sd);
1578 spin_lock(&rq->lock);
1579 }
1580
1581 static void update_h_load(long cpu)
1582 {
1583 walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
1584 }
1585
1586 #else
1587
1588 static inline void update_shares(struct sched_domain *sd)
1589 {
1590 }
1591
1592 static inline void update_shares_locked(struct rq *rq, struct sched_domain *sd)
1593 {
1594 }
1595
1596 #endif
1597
1598 #endif
1599
1600 #ifdef CONFIG_FAIR_GROUP_SCHED
1601 static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
1602 {
1603 #ifdef CONFIG_SMP
1604 cfs_rq->shares = shares;
1605 #endif
1606 }
1607 #endif
1608
1609 #include "sched_stats.h"
1610 #include "sched_idletask.c"
1611 #include "sched_fair.c"
1612 #include "sched_rt.c"
1613 #ifdef CONFIG_SCHED_DEBUG
1614 # include "sched_debug.c"
1615 #endif
1616
1617 #define sched_class_highest (&rt_sched_class)
1618 #define for_each_class(class) \
1619 for (class = sched_class_highest; class; class = class->next)
1620
1621 static void inc_nr_running(struct rq *rq)
1622 {
1623 rq->nr_running++;
1624 }
1625
1626 static void dec_nr_running(struct rq *rq)
1627 {
1628 rq->nr_running--;
1629 }
1630
1631 static void set_load_weight(struct task_struct *p)
1632 {
1633 if (task_has_rt_policy(p)) {
1634 p->se.load.weight = prio_to_weight[0] * 2;
1635 p->se.load.inv_weight = prio_to_wmult[0] >> 1;
1636 return;
1637 }
1638
1639 /*
1640 * SCHED_IDLE tasks get minimal weight:
1641 */
1642 if (p->policy == SCHED_IDLE) {
1643 p->se.load.weight = WEIGHT_IDLEPRIO;
1644 p->se.load.inv_weight = WMULT_IDLEPRIO;
1645 return;
1646 }
1647
1648 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
1649 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
1650 }
1651
1652 static void update_avg(u64 *avg, u64 sample)
1653 {
1654 s64 diff = sample - *avg;
1655 *avg += diff >> 3;
1656 }
1657
1658 static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
1659 {
1660 sched_info_queued(p);
1661 p->sched_class->enqueue_task(rq, p, wakeup);
1662 p->se.on_rq = 1;
1663 }
1664
1665 static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
1666 {
1667 if (sleep && p->se.last_wakeup) {
1668 update_avg(&p->se.avg_overlap,
1669 p->se.sum_exec_runtime - p->se.last_wakeup);
1670 p->se.last_wakeup = 0;
1671 }
1672
1673 sched_info_dequeued(p);
1674 p->sched_class->dequeue_task(rq, p, sleep);
1675 p->se.on_rq = 0;
1676 }
1677
1678 /*
1679 * __normal_prio - return the priority that is based on the static prio
1680 */
1681 static inline int __normal_prio(struct task_struct *p)
1682 {
1683 return p->static_prio;
1684 }
1685
1686 /*
1687 * Calculate the expected normal priority: i.e. priority
1688 * without taking RT-inheritance into account. Might be
1689 * boosted by interactivity modifiers. Changes upon fork,
1690 * setprio syscalls, and whenever the interactivity
1691 * estimator recalculates.
1692 */
1693 static inline int normal_prio(struct task_struct *p)
1694 {
1695 int prio;
1696
1697 if (task_has_rt_policy(p))
1698 prio = MAX_RT_PRIO-1 - p->rt_priority;
1699 else
1700 prio = __normal_prio(p);
1701 return prio;
1702 }
1703
1704 /*
1705 * Calculate the current priority, i.e. the priority
1706 * taken into account by the scheduler. This value might
1707 * be boosted by RT tasks, or might be boosted by
1708 * interactivity modifiers. Will be RT if the task got
1709 * RT-boosted. If not then it returns p->normal_prio.
1710 */
1711 static int effective_prio(struct task_struct *p)
1712 {
1713 p->normal_prio = normal_prio(p);
1714 /*
1715 * If we are RT tasks or we were boosted to RT priority,
1716 * keep the priority unchanged. Otherwise, update priority
1717 * to the normal priority:
1718 */
1719 if (!rt_prio(p->prio))
1720 return p->normal_prio;
1721 return p->prio;
1722 }
1723
1724 /*
1725 * activate_task - move a task to the runqueue.
1726 */
1727 static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
1728 {
1729 if (task_contributes_to_load(p))
1730 rq->nr_uninterruptible--;
1731
1732 enqueue_task(rq, p, wakeup);
1733 inc_nr_running(rq);
1734 }
1735
1736 /*
1737 * deactivate_task - remove a task from the runqueue.
1738 */
1739 static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
1740 {
1741 if (task_contributes_to_load(p))
1742 rq->nr_uninterruptible++;
1743
1744 dequeue_task(rq, p, sleep);
1745 dec_nr_running(rq);
1746 }
1747
1748 /**
1749 * task_curr - is this task currently executing on a CPU?
1750 * @p: the task in question.
1751 */
1752 inline int task_curr(const struct task_struct *p)
1753 {
1754 return cpu_curr(task_cpu(p)) == p;
1755 }
1756
1757 static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1758 {
1759 set_task_rq(p, cpu);
1760 #ifdef CONFIG_SMP
1761 /*
1762 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1763 * successfuly executed on another CPU. We must ensure that updates of
1764 * per-task data have been completed by this moment.
1765 */
1766 smp_wmb();
1767 task_thread_info(p)->cpu = cpu;
1768 #endif
1769 }
1770
1771 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1772 const struct sched_class *prev_class,
1773 int oldprio, int running)
1774 {
1775 if (prev_class != p->sched_class) {
1776 if (prev_class->switched_from)
1777 prev_class->switched_from(rq, p, running);
1778 p->sched_class->switched_to(rq, p, running);
1779 } else
1780 p->sched_class->prio_changed(rq, p, oldprio, running);
1781 }
1782
1783 #ifdef CONFIG_SMP
1784
1785 /* Used instead of source_load when we know the type == 0 */
1786 static unsigned long weighted_cpuload(const int cpu)
1787 {
1788 return cpu_rq(cpu)->load.weight;
1789 }
1790
1791 /*
1792 * Is this task likely cache-hot:
1793 */
1794 static int
1795 task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
1796 {
1797 s64 delta;
1798
1799 /*
1800 * Buddy candidates are cache hot:
1801 */
1802 if (sched_feat(CACHE_HOT_BUDDY) && (&p->se == cfs_rq_of(&p->se)->next))
1803 return 1;
1804
1805 if (p->sched_class != &fair_sched_class)
1806 return 0;
1807
1808 if (sysctl_sched_migration_cost == -1)
1809 return 1;
1810 if (sysctl_sched_migration_cost == 0)
1811 return 0;
1812
1813 delta = now - p->se.exec_start;
1814
1815 return delta < (s64)sysctl_sched_migration_cost;
1816 }
1817
1818
1819 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
1820 {
1821 int old_cpu = task_cpu(p);
1822 struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
1823 struct cfs_rq *old_cfsrq = task_cfs_rq(p),
1824 *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
1825 u64 clock_offset;
1826
1827 clock_offset = old_rq->clock - new_rq->clock;
1828
1829 #ifdef CONFIG_SCHEDSTATS
1830 if (p->se.wait_start)
1831 p->se.wait_start -= clock_offset;
1832 if (p->se.sleep_start)
1833 p->se.sleep_start -= clock_offset;
1834 if (p->se.block_start)
1835 p->se.block_start -= clock_offset;
1836 if (old_cpu != new_cpu) {
1837 schedstat_inc(p, se.nr_migrations);
1838 if (task_hot(p, old_rq->clock, NULL))
1839 schedstat_inc(p, se.nr_forced2_migrations);
1840 }
1841 #endif
1842 p->se.vruntime -= old_cfsrq->min_vruntime -
1843 new_cfsrq->min_vruntime;
1844
1845 __set_task_cpu(p, new_cpu);
1846 }
1847
1848 struct migration_req {
1849 struct list_head list;
1850
1851 struct task_struct *task;
1852 int dest_cpu;
1853
1854 struct completion done;
1855 };
1856
1857 /*
1858 * The task's runqueue lock must be held.
1859 * Returns true if you have to wait for migration thread.
1860 */
1861 static int
1862 migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
1863 {
1864 struct rq *rq = task_rq(p);
1865
1866 /*
1867 * If the task is not on a runqueue (and not running), then
1868 * it is sufficient to simply update the task's cpu field.
1869 */
1870 if (!p->se.on_rq && !task_running(rq, p)) {
1871 set_task_cpu(p, dest_cpu);
1872 return 0;
1873 }
1874
1875 init_completion(&req->done);
1876 req->task = p;
1877 req->dest_cpu = dest_cpu;
1878 list_add(&req->list, &rq->migration_queue);
1879
1880 return 1;
1881 }
1882
1883 /*
1884 * wait_task_inactive - wait for a thread to unschedule.
1885 *
1886 * If @match_state is nonzero, it's the @p->state value just checked and
1887 * not expected to change. If it changes, i.e. @p might have woken up,
1888 * then return zero. When we succeed in waiting for @p to be off its CPU,
1889 * we return a positive number (its total switch count). If a second call
1890 * a short while later returns the same number, the caller can be sure that
1891 * @p has remained unscheduled the whole time.
1892 *
1893 * The caller must ensure that the task *will* unschedule sometime soon,
1894 * else this function might spin for a *long* time. This function can't
1895 * be called with interrupts off, or it may introduce deadlock with
1896 * smp_call_function() if an IPI is sent by the same process we are
1897 * waiting to become inactive.
1898 */
1899 unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1900 {
1901 unsigned long flags;
1902 int running, on_rq;
1903 unsigned long ncsw;
1904 struct rq *rq;
1905
1906 for (;;) {
1907 /*
1908 * We do the initial early heuristics without holding
1909 * any task-queue locks at all. We'll only try to get
1910 * the runqueue lock when things look like they will
1911 * work out!
1912 */
1913 rq = task_rq(p);
1914
1915 /*
1916 * If the task is actively running on another CPU
1917 * still, just relax and busy-wait without holding
1918 * any locks.
1919 *
1920 * NOTE! Since we don't hold any locks, it's not
1921 * even sure that "rq" stays as the right runqueue!
1922 * But we don't care, since "task_running()" will
1923 * return false if the runqueue has changed and p
1924 * is actually now running somewhere else!
1925 */
1926 while (task_running(rq, p)) {
1927 if (match_state && unlikely(p->state != match_state))
1928 return 0;
1929 cpu_relax();
1930 }
1931
1932 /*
1933 * Ok, time to look more closely! We need the rq
1934 * lock now, to be *sure*. If we're wrong, we'll
1935 * just go back and repeat.
1936 */
1937 rq = task_rq_lock(p, &flags);
1938 running = task_running(rq, p);
1939 on_rq = p->se.on_rq;
1940 ncsw = 0;
1941 if (!match_state || p->state == match_state)
1942 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
1943 task_rq_unlock(rq, &flags);
1944
1945 /*
1946 * If it changed from the expected state, bail out now.
1947 */
1948 if (unlikely(!ncsw))
1949 break;
1950
1951 /*
1952 * Was it really running after all now that we
1953 * checked with the proper locks actually held?
1954 *
1955 * Oops. Go back and try again..
1956 */
1957 if (unlikely(running)) {
1958 cpu_relax();
1959 continue;
1960 }
1961
1962 /*
1963 * It's not enough that it's not actively running,
1964 * it must be off the runqueue _entirely_, and not
1965 * preempted!
1966 *
1967 * So if it wa still runnable (but just not actively
1968 * running right now), it's preempted, and we should
1969 * yield - it could be a while.
1970 */
1971 if (unlikely(on_rq)) {
1972 schedule_timeout_uninterruptible(1);
1973 continue;
1974 }
1975
1976 /*
1977 * Ahh, all good. It wasn't running, and it wasn't
1978 * runnable, which means that it will never become
1979 * running in the future either. We're all done!
1980 */
1981 break;
1982 }
1983
1984 return ncsw;
1985 }
1986
1987 /***
1988 * kick_process - kick a running thread to enter/exit the kernel
1989 * @p: the to-be-kicked thread
1990 *
1991 * Cause a process which is running on another CPU to enter
1992 * kernel-mode, without any delay. (to get signals handled.)
1993 *
1994 * NOTE: this function doesnt have to take the runqueue lock,
1995 * because all it wants to ensure is that the remote task enters
1996 * the kernel. If the IPI races and the task has been migrated
1997 * to another CPU then no harm is done and the purpose has been
1998 * achieved as well.
1999 */
2000 void kick_process(struct task_struct *p)
2001 {
2002 int cpu;
2003
2004 preempt_disable();
2005 cpu = task_cpu(p);
2006 if ((cpu != smp_processor_id()) && task_curr(p))
2007 smp_send_reschedule(cpu);
2008 preempt_enable();
2009 }
2010
2011 /*
2012 * Return a low guess at the load of a migration-source cpu weighted
2013 * according to the scheduling class and "nice" value.
2014 *
2015 * We want to under-estimate the load of migration sources, to
2016 * balance conservatively.
2017 */
2018 static unsigned long source_load(int cpu, int type)
2019 {
2020 struct rq *rq = cpu_rq(cpu);
2021 unsigned long total = weighted_cpuload(cpu);
2022
2023 if (type == 0 || !sched_feat(LB_BIAS))
2024 return total;
2025
2026 return min(rq->cpu_load[type-1], total);
2027 }
2028
2029 /*
2030 * Return a high guess at the load of a migration-target cpu weighted
2031 * according to the scheduling class and "nice" value.
2032 */
2033 static unsigned long target_load(int cpu, int type)
2034 {
2035 struct rq *rq = cpu_rq(cpu);
2036 unsigned long total = weighted_cpuload(cpu);
2037
2038 if (type == 0 || !sched_feat(LB_BIAS))
2039 return total;
2040
2041 return max(rq->cpu_load[type-1], total);
2042 }
2043
2044 /*
2045 * find_idlest_group finds and returns the least busy CPU group within the
2046 * domain.
2047 */
2048 static struct sched_group *
2049 find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
2050 {
2051 struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
2052 unsigned long min_load = ULONG_MAX, this_load = 0;
2053 int load_idx = sd->forkexec_idx;
2054 int imbalance = 100 + (sd->imbalance_pct-100)/2;
2055
2056 do {
2057 unsigned long load, avg_load;
2058 int local_group;
2059 int i;
2060
2061 /* Skip over this group if it has no CPUs allowed */
2062 if (!cpus_intersects(group->cpumask, p->cpus_allowed))
2063 continue;
2064
2065 local_group = cpu_isset(this_cpu, group->cpumask);
2066
2067 /* Tally up the load of all CPUs in the group */
2068 avg_load = 0;
2069
2070 for_each_cpu_mask_nr(i, group->cpumask) {
2071 /* Bias balancing toward cpus of our domain */
2072 if (local_group)
2073 load = source_load(i, load_idx);
2074 else
2075 load = target_load(i, load_idx);
2076
2077 avg_load += load;
2078 }
2079
2080 /* Adjust by relative CPU power of the group */
2081 avg_load = sg_div_cpu_power(group,
2082 avg_load * SCHED_LOAD_SCALE);
2083
2084 if (local_group) {
2085 this_load = avg_load;
2086 this = group;
2087 } else if (avg_load < min_load) {
2088 min_load = avg_load;
2089 idlest = group;
2090 }
2091 } while (group = group->next, group != sd->groups);
2092
2093 if (!idlest || 100*this_load < imbalance*min_load)
2094 return NULL;
2095 return idlest;
2096 }
2097
2098 /*
2099 * find_idlest_cpu - find the idlest cpu among the cpus in group.
2100 */
2101 static int
2102 find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu,
2103 cpumask_t *tmp)
2104 {
2105 unsigned long load, min_load = ULONG_MAX;
2106 int idlest = -1;
2107 int i;
2108
2109 /* Traverse only the allowed CPUs */
2110 cpus_and(*tmp, group->cpumask, p->cpus_allowed);
2111
2112 for_each_cpu_mask_nr(i, *tmp) {
2113 load = weighted_cpuload(i);
2114
2115 if (load < min_load || (load == min_load && i == this_cpu)) {
2116 min_load = load;
2117 idlest = i;
2118 }
2119 }
2120
2121 return idlest;
2122 }
2123
2124 /*
2125 * sched_balance_self: balance the current task (running on cpu) in domains
2126 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
2127 * SD_BALANCE_EXEC.
2128 *
2129 * Balance, ie. select the least loaded group.
2130 *
2131 * Returns the target CPU number, or the same CPU if no balancing is needed.
2132 *
2133 * preempt must be disabled.
2134 */
2135 static int sched_balance_self(int cpu, int flag)
2136 {
2137 struct task_struct *t = current;
2138 struct sched_domain *tmp, *sd = NULL;
2139
2140 for_each_domain(cpu, tmp) {
2141 /*
2142 * If power savings logic is enabled for a domain, stop there.
2143 */
2144 if (tmp->flags & SD_POWERSAVINGS_BALANCE)
2145 break;
2146 if (tmp->flags & flag)
2147 sd = tmp;
2148 }
2149
2150 if (sd)
2151 update_shares(sd);
2152
2153 while (sd) {
2154 cpumask_t span, tmpmask;
2155 struct sched_group *group;
2156 int new_cpu, weight;
2157
2158 if (!(sd->flags & flag)) {
2159 sd = sd->child;
2160 continue;
2161 }
2162
2163 span = sd->span;
2164 group = find_idlest_group(sd, t, cpu);
2165 if (!group) {
2166 sd = sd->child;
2167 continue;
2168 }
2169
2170 new_cpu = find_idlest_cpu(group, t, cpu, &tmpmask);
2171 if (new_cpu == -1 || new_cpu == cpu) {
2172 /* Now try balancing at a lower domain level of cpu */
2173 sd = sd->child;
2174 continue;
2175 }
2176
2177 /* Now try balancing at a lower domain level of new_cpu */
2178 cpu = new_cpu;
2179 sd = NULL;
2180 weight = cpus_weight(span);
2181 for_each_domain(cpu, tmp) {
2182 if (weight <= cpus_weight(tmp->span))
2183 break;
2184 if (tmp->flags & flag)
2185 sd = tmp;
2186 }
2187 /* while loop will break here if sd == NULL */
2188 }
2189
2190 return cpu;
2191 }
2192
2193 #endif /* CONFIG_SMP */
2194
2195 /***
2196 * try_to_wake_up - wake up a thread
2197 * @p: the to-be-woken-up thread
2198 * @state: the mask of task states that can be woken
2199 * @sync: do a synchronous wakeup?
2200 *
2201 * Put it on the run-queue if it's not already there. The "current"
2202 * thread is always on the run-queue (except when the actual
2203 * re-schedule is in progress), and as such you're allowed to do
2204 * the simpler "current->state = TASK_RUNNING" to mark yourself
2205 * runnable without the overhead of this.
2206 *
2207 * returns failure only if the task is already active.
2208 */
2209 static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
2210 {
2211 int cpu, orig_cpu, this_cpu, success = 0;
2212 unsigned long flags;
2213 long old_state;
2214 struct rq *rq;
2215
2216 if (!sched_feat(SYNC_WAKEUPS))
2217 sync = 0;
2218
2219 #ifdef CONFIG_SMP
2220 if (sched_feat(LB_WAKEUP_UPDATE)) {
2221 struct sched_domain *sd;
2222
2223 this_cpu = raw_smp_processor_id();
2224 cpu = task_cpu(p);
2225
2226 for_each_domain(this_cpu, sd) {
2227 if (cpu_isset(cpu, sd->span)) {
2228 update_shares(sd);
2229 break;
2230 }
2231 }
2232 }
2233 #endif
2234
2235 smp_wmb();
2236 rq = task_rq_lock(p, &flags);
2237 old_state = p->state;
2238 if (!(old_state & state))
2239 goto out;
2240
2241 if (p->se.on_rq)
2242 goto out_running;
2243
2244 cpu = task_cpu(p);
2245 orig_cpu = cpu;
2246 this_cpu = smp_processor_id();
2247
2248 #ifdef CONFIG_SMP
2249 if (unlikely(task_running(rq, p)))
2250 goto out_activate;
2251
2252 cpu = p->sched_class->select_task_rq(p, sync);
2253 if (cpu != orig_cpu) {
2254 set_task_cpu(p, cpu);
2255 task_rq_unlock(rq, &flags);
2256 /* might preempt at this point */
2257 rq = task_rq_lock(p, &flags);
2258 old_state = p->state;
2259 if (!(old_state & state))
2260 goto out;
2261 if (p->se.on_rq)
2262 goto out_running;
2263
2264 this_cpu = smp_processor_id();
2265 cpu = task_cpu(p);
2266 }
2267
2268 #ifdef CONFIG_SCHEDSTATS
2269 schedstat_inc(rq, ttwu_count);
2270 if (cpu == this_cpu)
2271 schedstat_inc(rq, ttwu_local);
2272 else {
2273 struct sched_domain *sd;
2274 for_each_domain(this_cpu, sd) {
2275 if (cpu_isset(cpu, sd->span)) {
2276 schedstat_inc(sd, ttwu_wake_remote);
2277 break;
2278 }
2279 }
2280 }
2281 #endif /* CONFIG_SCHEDSTATS */
2282
2283 out_activate:
2284 #endif /* CONFIG_SMP */
2285 schedstat_inc(p, se.nr_wakeups);
2286 if (sync)
2287 schedstat_inc(p, se.nr_wakeups_sync);
2288 if (orig_cpu != cpu)
2289 schedstat_inc(p, se.nr_wakeups_migrate);
2290 if (cpu == this_cpu)
2291 schedstat_inc(p, se.nr_wakeups_local);
2292 else
2293 schedstat_inc(p, se.nr_wakeups_remote);
2294 update_rq_clock(rq);
2295 activate_task(rq, p, 1);
2296 success = 1;
2297
2298 out_running:
2299 trace_mark(kernel_sched_wakeup,
2300 "pid %d state %ld ## rq %p task %p rq->curr %p",
2301 p->pid, p->state, rq, p, rq->curr);
2302 check_preempt_curr(rq, p, sync);
2303
2304 p->state = TASK_RUNNING;
2305 #ifdef CONFIG_SMP
2306 if (p->sched_class->task_wake_up)
2307 p->sched_class->task_wake_up(rq, p);
2308 #endif
2309 out:
2310 current->se.last_wakeup = current->se.sum_exec_runtime;
2311
2312 task_rq_unlock(rq, &flags);
2313
2314 return success;
2315 }
2316
2317 int wake_up_process(struct task_struct *p)
2318 {
2319 return try_to_wake_up(p, TASK_ALL, 0);
2320 }
2321 EXPORT_SYMBOL(wake_up_process);
2322
2323 int wake_up_state(struct task_struct *p, unsigned int state)
2324 {
2325 return try_to_wake_up(p, state, 0);
2326 }
2327
2328 /*
2329 * Perform scheduler related setup for a newly forked process p.
2330 * p is forked by current.
2331 *
2332 * __sched_fork() is basic setup used by init_idle() too:
2333 */
2334 static void __sched_fork(struct task_struct *p)
2335 {
2336 p->se.exec_start = 0;
2337 p->se.sum_exec_runtime = 0;
2338 p->se.prev_sum_exec_runtime = 0;
2339 p->se.last_wakeup = 0;
2340 p->se.avg_overlap = 0;
2341
2342 #ifdef CONFIG_SCHEDSTATS
2343 p->se.wait_start = 0;
2344 p->se.sum_sleep_runtime = 0;
2345 p->se.sleep_start = 0;
2346 p->se.block_start = 0;
2347 p->se.sleep_max = 0;
2348 p->se.block_max = 0;
2349 p->se.exec_max = 0;
2350 p->se.slice_max = 0;
2351 p->se.wait_max = 0;
2352 #endif
2353
2354 INIT_LIST_HEAD(&p->rt.run_list);
2355 p->se.on_rq = 0;
2356 INIT_LIST_HEAD(&p->se.group_node);
2357
2358 #ifdef CONFIG_PREEMPT_NOTIFIERS
2359 INIT_HLIST_HEAD(&p->preempt_notifiers);
2360 #endif
2361
2362 /*
2363 * We mark the process as running here, but have not actually
2364 * inserted it onto the runqueue yet. This guarantees that
2365 * nobody will actually run it, and a signal or other external
2366 * event cannot wake it up and insert it on the runqueue either.
2367 */
2368 p->state = TASK_RUNNING;
2369 }
2370
2371 /*
2372 * fork()/clone()-time setup:
2373 */
2374 void sched_fork(struct task_struct *p, int clone_flags)
2375 {
2376 int cpu = get_cpu();
2377
2378 __sched_fork(p);
2379
2380 #ifdef CONFIG_SMP
2381 cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
2382 #endif
2383 set_task_cpu(p, cpu);
2384
2385 /*
2386 * Make sure we do not leak PI boosting priority to the child:
2387 */
2388 p->prio = current->normal_prio;
2389 if (!rt_prio(p->prio))
2390 p->sched_class = &fair_sched_class;
2391
2392 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
2393 if (likely(sched_info_on()))
2394 memset(&p->sched_info, 0, sizeof(p->sched_info));
2395 #endif
2396 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
2397 p->oncpu = 0;
2398 #endif
2399 #ifdef CONFIG_PREEMPT
2400 /* Want to start with kernel preemption disabled. */
2401 task_thread_info(p)->preempt_count = 1;
2402 #endif
2403 put_cpu();
2404 }
2405
2406 /*
2407 * wake_up_new_task - wake up a newly created task for the first time.
2408 *
2409 * This function will do some initial scheduler statistics housekeeping
2410 * that must be done for every newly created context, then puts the task
2411 * on the runqueue and wakes it.
2412 */
2413 void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
2414 {
2415 unsigned long flags;
2416 struct rq *rq;
2417
2418 rq = task_rq_lock(p, &flags);
2419 BUG_ON(p->state != TASK_RUNNING);
2420 update_rq_clock(rq);
2421
2422 p->prio = effective_prio(p);
2423
2424 if (!p->sched_class->task_new || !current->se.on_rq) {
2425 activate_task(rq, p, 0);
2426 } else {
2427 /*
2428 * Let the scheduling class do new task startup
2429 * management (if any):
2430 */
2431 p->sched_class->task_new(rq, p);
2432 inc_nr_running(rq);
2433 }
2434 trace_mark(kernel_sched_wakeup_new,
2435 "pid %d state %ld ## rq %p task %p rq->curr %p",
2436 p->pid, p->state, rq, p, rq->curr);
2437 check_preempt_curr(rq, p, 0);
2438 #ifdef CONFIG_SMP
2439 if (p->sched_class->task_wake_up)
2440 p->sched_class->task_wake_up(rq, p);
2441 #endif
2442 task_rq_unlock(rq, &flags);
2443 }
2444
2445 #ifdef CONFIG_PREEMPT_NOTIFIERS
2446
2447 /**
2448 * preempt_notifier_register - tell me when current is being being preempted & rescheduled
2449 * @notifier: notifier struct to register
2450 */
2451 void preempt_notifier_register(struct preempt_notifier *notifier)
2452 {
2453 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2454 }
2455 EXPORT_SYMBOL_GPL(preempt_notifier_register);
2456
2457 /**
2458 * preempt_notifier_unregister - no longer interested in preemption notifications
2459 * @notifier: notifier struct to unregister
2460 *
2461 * This is safe to call from within a preemption notifier.
2462 */
2463 void preempt_notifier_unregister(struct preempt_notifier *notifier)
2464 {
2465 hlist_del(&notifier->link);
2466 }
2467 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2468
2469 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2470 {
2471 struct preempt_notifier *notifier;
2472 struct hlist_node *node;
2473
2474 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2475 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2476 }
2477
2478 static void
2479 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2480 struct task_struct *next)
2481 {
2482 struct preempt_notifier *notifier;
2483 struct hlist_node *node;
2484
2485 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2486 notifier->ops->sched_out(notifier, next);
2487 }
2488
2489 #else /* !CONFIG_PREEMPT_NOTIFIERS */
2490
2491 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2492 {
2493 }
2494
2495 static void
2496 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2497 struct task_struct *next)
2498 {
2499 }
2500
2501 #endif /* CONFIG_PREEMPT_NOTIFIERS */
2502
2503 /**
2504 * prepare_task_switch - prepare to switch tasks
2505 * @rq: the runqueue preparing to switch
2506 * @prev: the current task that is being switched out
2507 * @next: the task we are going to switch to.
2508 *
2509 * This is called with the rq lock held and interrupts off. It must
2510 * be paired with a subsequent finish_task_switch after the context
2511 * switch.
2512 *
2513 * prepare_task_switch sets up locking and calls architecture specific
2514 * hooks.
2515 */
2516 static inline void
2517 prepare_task_switch(struct rq *rq, struct task_struct *prev,
2518 struct task_struct *next)
2519 {
2520 fire_sched_out_preempt_notifiers(prev, next);
2521 prepare_lock_switch(rq, next);
2522 prepare_arch_switch(next);
2523 }
2524
2525 /**
2526 * finish_task_switch - clean up after a task-switch
2527 * @rq: runqueue associated with task-switch
2528 * @prev: the thread we just switched away from.
2529 *
2530 * finish_task_switch must be called after the context switch, paired
2531 * with a prepare_task_switch call before the context switch.
2532 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2533 * and do any other architecture-specific cleanup actions.
2534 *
2535 * Note that we may have delayed dropping an mm in context_switch(). If
2536 * so, we finish that here outside of the runqueue lock. (Doing it
2537 * with the lock held can cause deadlocks; see schedule() for
2538 * details.)
2539 */
2540 static void finish_task_switch(struct rq *rq, struct task_struct *prev)
2541 __releases(rq->lock)
2542 {
2543 struct mm_struct *mm = rq->prev_mm;
2544 long prev_state;
2545
2546 rq->prev_mm = NULL;
2547
2548 /*
2549 * A task struct has one reference for the use as "current".
2550 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
2551 * schedule one last time. The schedule call will never return, and
2552 * the scheduled task must drop that reference.
2553 * The test for TASK_DEAD must occur while the runqueue locks are
2554 * still held, otherwise prev could be scheduled on another cpu, die
2555 * there before we look at prev->state, and then the reference would
2556 * be dropped twice.
2557 * Manfred Spraul <manfred@colorfullife.com>
2558 */
2559 prev_state = prev->state;
2560 finish_arch_switch(prev);
2561 finish_lock_switch(rq, prev);
2562 #ifdef CONFIG_SMP
2563 if (current->sched_class->post_schedule)
2564 current->sched_class->post_schedule(rq);
2565 #endif
2566
2567 fire_sched_in_preempt_notifiers(current);
2568 if (mm)
2569 mmdrop(mm);
2570 if (unlikely(prev_state == TASK_DEAD)) {
2571 /*
2572 * Remove function-return probe instances associated with this
2573 * task and put them back on the free list.
2574 */
2575 kprobe_flush_task(prev);
2576 put_task_struct(prev);
2577 }
2578 }
2579
2580 /**
2581 * schedule_tail - first thing a freshly forked thread must call.
2582 * @prev: the thread we just switched away from.
2583 */
2584 asmlinkage void schedule_tail(struct task_struct *prev)
2585 __releases(rq->lock)
2586 {
2587 struct rq *rq = this_rq();
2588
2589 finish_task_switch(rq, prev);
2590 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
2591 /* In this case, finish_task_switch does not reenable preemption */
2592 preempt_enable();
2593 #endif
2594 if (current->set_child_tid)
2595 put_user(task_pid_vnr(current), current->set_child_tid);
2596 }
2597
2598 /*
2599 * context_switch - switch to the new MM and the new
2600 * thread's register state.
2601 */
2602 static inline void
2603 context_switch(struct rq *rq, struct task_struct *prev,
2604 struct task_struct *next)
2605 {
2606 struct mm_struct *mm, *oldmm;
2607
2608 prepare_task_switch(rq, prev, next);
2609 trace_mark(kernel_sched_schedule,
2610 "prev_pid %d next_pid %d prev_state %ld "
2611 "## rq %p prev %p next %p",
2612 prev->pid, next->pid, prev->state,
2613 rq, prev, next);
2614 mm = next->mm;
2615 oldmm = prev->active_mm;
2616 /*
2617 * For paravirt, this is coupled with an exit in switch_to to
2618 * combine the page table reload and the switch backend into
2619 * one hypercall.
2620 */
2621 arch_enter_lazy_cpu_mode();
2622
2623 if (unlikely(!mm)) {
2624 next->active_mm = oldmm;
2625 atomic_inc(&oldmm->mm_count);
2626 enter_lazy_tlb(oldmm, next);
2627 } else
2628 switch_mm(oldmm, mm, next);
2629
2630 if (unlikely(!prev->mm)) {
2631 prev->active_mm = NULL;
2632 rq->prev_mm = oldmm;
2633 }
2634 /*
2635 * Since the runqueue lock will be released by the next
2636 * task (which is an invalid locking op but in the case
2637 * of the scheduler it's an obvious special-case), so we
2638 * do an early lockdep release here:
2639 */
2640 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
2641 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2642 #endif
2643
2644 /* Here we just switch the register state and the stack. */
2645 switch_to(prev, next, prev);
2646
2647 barrier();
2648 /*
2649 * this_rq must be evaluated again because prev may have moved
2650 * CPUs since it called schedule(), thus the 'rq' on its stack
2651 * frame will be invalid.
2652 */
2653 finish_task_switch(this_rq(), prev);
2654 }
2655
2656 /*
2657 * nr_running, nr_uninterruptible and nr_context_switches:
2658 *
2659 * externally visible scheduler statistics: current number of runnable
2660 * threads, current number of uninterruptible-sleeping threads, total
2661 * number of context switches performed since bootup.
2662 */
2663 unsigned long nr_running(void)
2664 {
2665 unsigned long i, sum = 0;
2666
2667 for_each_online_cpu(i)
2668 sum += cpu_rq(i)->nr_running;
2669
2670 return sum;
2671 }
2672
2673 unsigned long nr_uninterruptible(void)
2674 {
2675 unsigned long i, sum = 0;
2676
2677 for_each_possible_cpu(i)
2678 sum += cpu_rq(i)->nr_uninterruptible;
2679
2680 /*
2681 * Since we read the counters lockless, it might be slightly
2682 * inaccurate. Do not allow it to go below zero though:
2683 */
2684 if (unlikely((long)sum < 0))
2685 sum = 0;
2686
2687 return sum;
2688 }
2689
2690 unsigned long long nr_context_switches(void)
2691 {
2692 int i;
2693 unsigned long long sum = 0;
2694
2695 for_each_possible_cpu(i)
2696 sum += cpu_rq(i)->nr_switches;
2697
2698 return sum;
2699 }
2700
2701 unsigned long nr_iowait(void)
2702 {
2703 unsigned long i, sum = 0;
2704
2705 for_each_possible_cpu(i)
2706 sum += atomic_read(&cpu_rq(i)->nr_iowait);
2707
2708 return sum;
2709 }
2710
2711 unsigned long nr_active(void)
2712 {
2713 unsigned long i, running = 0, uninterruptible = 0;
2714
2715 for_each_online_cpu(i) {
2716 running += cpu_rq(i)->nr_running;
2717 uninterruptible += cpu_rq(i)->nr_uninterruptible;
2718 }
2719
2720 if (unlikely((long)uninterruptible < 0))
2721 uninterruptible = 0;
2722
2723 return running + uninterruptible;
2724 }
2725
2726 /*
2727 * Update rq->cpu_load[] statistics. This function is usually called every
2728 * scheduler tick (TICK_NSEC).
2729 */
2730 static void update_cpu_load(struct rq *this_rq)
2731 {
2732 unsigned long this_load = this_rq->load.weight;
2733 int i, scale;
2734
2735 this_rq->nr_load_updates++;
2736
2737 /* Update our load: */
2738 for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
2739 unsigned long old_load, new_load;
2740
2741 /* scale is effectively 1 << i now, and >> i divides by scale */
2742
2743 old_load = this_rq->cpu_load[i];
2744 new_load = this_load;
2745 /*
2746 * Round up the averaging division if load is increasing. This
2747 * prevents us from getting stuck on 9 if the load is 10, for
2748 * example.
2749 */
2750 if (new_load > old_load)
2751 new_load += scale-1;
2752 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
2753 }
2754 }
2755
2756 #ifdef CONFIG_SMP
2757
2758 /*
2759 * double_rq_lock - safely lock two runqueues
2760 *
2761 * Note this does not disable interrupts like task_rq_lock,
2762 * you need to do so manually before calling.
2763 */
2764 static void double_rq_lock(struct rq *rq1, struct rq *rq2)
2765 __acquires(rq1->lock)
2766 __acquires(rq2->lock)
2767 {
2768 BUG_ON(!irqs_disabled());
2769 if (rq1 == rq2) {
2770 spin_lock(&rq1->lock);
2771 __acquire(rq2->lock); /* Fake it out ;) */
2772 } else {
2773 if (rq1 < rq2) {
2774 spin_lock(&rq1->lock);
2775 spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
2776 } else {
2777 spin_lock(&rq2->lock);
2778 spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
2779 }
2780 }
2781 update_rq_clock(rq1);
2782 update_rq_clock(rq2);
2783 }
2784
2785 /*
2786 * double_rq_unlock - safely unlock two runqueues
2787 *
2788 * Note this does not restore interrupts like task_rq_unlock,
2789 * you need to do so manually after calling.
2790 */
2791 static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
2792 __releases(rq1->lock)
2793 __releases(rq2->lock)
2794 {
2795 spin_unlock(&rq1->lock);
2796 if (rq1 != rq2)
2797 spin_unlock(&rq2->lock);
2798 else
2799 __release(rq2->lock);
2800 }
2801
2802 /*
2803 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
2804 */
2805 static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
2806 __releases(this_rq->lock)
2807 __acquires(busiest->lock)
2808 __acquires(this_rq->lock)
2809 {
2810 int ret = 0;
2811
2812 if (unlikely(!irqs_disabled())) {
2813 /* printk() doesn't work good under rq->lock */
2814 spin_unlock(&this_rq->lock);
2815 BUG_ON(1);
2816 }
2817 if (unlikely(!spin_trylock(&busiest->lock))) {
2818 if (busiest < this_rq) {
2819 spin_unlock(&this_rq->lock);
2820 spin_lock(&busiest->lock);
2821 spin_lock_nested(&this_rq->lock, SINGLE_DEPTH_NESTING);
2822 ret = 1;
2823 } else
2824 spin_lock_nested(&busiest->lock, SINGLE_DEPTH_NESTING);
2825 }
2826 return ret;
2827 }
2828
2829 static void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
2830 __releases(busiest->lock)
2831 {
2832 spin_unlock(&busiest->lock);
2833 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
2834 }
2835
2836 /*
2837 * If dest_cpu is allowed for this process, migrate the task to it.
2838 * This is accomplished by forcing the cpu_allowed mask to only
2839 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
2840 * the cpu_allowed mask is restored.
2841 */
2842 static void sched_migrate_task(struct task_struct *p, int dest_cpu)
2843 {
2844 struct migration_req req;
2845 unsigned long flags;
2846 struct rq *rq;
2847
2848 rq = task_rq_lock(p, &flags);
2849 if (!cpu_isset(dest_cpu, p->cpus_allowed)
2850 || unlikely(!cpu_active(dest_cpu)))
2851 goto out;
2852
2853 /* force the process onto the specified CPU */
2854 if (migrate_task(p, dest_cpu, &req)) {
2855 /* Need to wait for migration thread (might exit: take ref). */
2856 struct task_struct *mt = rq->migration_thread;
2857
2858 get_task_struct(mt);
2859 task_rq_unlock(rq, &flags);
2860 wake_up_process(mt);
2861 put_task_struct(mt);
2862 wait_for_completion(&req.done);
2863
2864 return;
2865 }
2866 out:
2867 task_rq_unlock(rq, &flags);
2868 }
2869
2870 /*
2871 * sched_exec - execve() is a valuable balancing opportunity, because at
2872 * this point the task has the smallest effective memory and cache footprint.
2873 */
2874 void sched_exec(void)
2875 {
2876 int new_cpu, this_cpu = get_cpu();
2877 new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
2878 put_cpu();
2879 if (new_cpu != this_cpu)
2880 sched_migrate_task(current, new_cpu);
2881 }
2882
2883 /*
2884 * pull_task - move a task from a remote runqueue to the local runqueue.
2885 * Both runqueues must be locked.
2886 */
2887 static void pull_task(struct rq *src_rq, struct task_struct *p,
2888 struct rq *this_rq, int this_cpu)
2889 {
2890 deactivate_task(src_rq, p, 0);
2891 set_task_cpu(p, this_cpu);
2892 activate_task(this_rq, p, 0);
2893 /*
2894 * Note that idle threads have a prio of MAX_PRIO, for this test
2895 * to be always true for them.
2896 */
2897 check_preempt_curr(this_rq, p, 0);
2898 }
2899
2900 /*
2901 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
2902 */
2903 static
2904 int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
2905 struct sched_domain *sd, enum cpu_idle_type idle,
2906 int *all_pinned)
2907 {
2908 /*
2909 * We do not migrate tasks that are:
2910 * 1) running (obviously), or
2911 * 2) cannot be migrated to this CPU due to cpus_allowed, or
2912 * 3) are cache-hot on their current CPU.
2913 */
2914 if (!cpu_isset(this_cpu, p->cpus_allowed)) {
2915 schedstat_inc(p, se.nr_failed_migrations_affine);
2916 return 0;
2917 }
2918 *all_pinned = 0;
2919
2920 if (task_running(rq, p)) {
2921 schedstat_inc(p, se.nr_failed_migrations_running);
2922 return 0;
2923 }
2924
2925 /*
2926 * Aggressive migration if:
2927 * 1) task is cache cold, or
2928 * 2) too many balance attempts have failed.
2929 */
2930
2931 if (!task_hot(p, rq->clock, sd) ||
2932 sd->nr_balance_failed > sd->cache_nice_tries) {
2933 #ifdef CONFIG_SCHEDSTATS
2934 if (task_hot(p, rq->clock, sd)) {
2935 schedstat_inc(sd, lb_hot_gained[idle]);
2936 schedstat_inc(p, se.nr_forced_migrations);
2937 }
2938 #endif
2939 return 1;
2940 }
2941
2942 if (task_hot(p, rq->clock, sd)) {
2943 schedstat_inc(p, se.nr_failed_migrations_hot);
2944 return 0;
2945 }
2946 return 1;
2947 }
2948
2949 static unsigned long
2950 balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
2951 unsigned long max_load_move, struct sched_domain *sd,
2952 enum cpu_idle_type idle, int *all_pinned,
2953 int *this_best_prio, struct rq_iterator *iterator)
2954 {
2955 int loops = 0, pulled = 0, pinned = 0;
2956 struct task_struct *p;
2957 long rem_load_move = max_load_move;
2958
2959 if (max_load_move == 0)
2960 goto out;
2961
2962 pinned = 1;
2963
2964 /*
2965 * Start the load-balancing iterator:
2966 */
2967 p = iterator->start(iterator->arg);
2968 next:
2969 if (!p || loops++ > sysctl_sched_nr_migrate)
2970 goto out;
2971
2972 if ((p->se.load.weight >> 1) > rem_load_move ||
2973 !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
2974 p = iterator->next(iterator->arg);
2975 goto next;
2976 }
2977
2978 pull_task(busiest, p, this_rq, this_cpu);
2979 pulled++;
2980 rem_load_move -= p->se.load.weight;
2981
2982 /*
2983 * We only want to steal up to the prescribed amount of weighted load.
2984 */
2985 if (rem_load_move > 0) {
2986 if (p->prio < *this_best_prio)
2987 *this_best_prio = p->prio;
2988 p = iterator->next(iterator->arg);
2989 goto next;
2990 }
2991 out:
2992 /*
2993 * Right now, this is one of only two places pull_task() is called,
2994 * so we can safely collect pull_task() stats here rather than
2995 * inside pull_task().
2996 */
2997 schedstat_add(sd, lb_gained[idle], pulled);
2998
2999 if (all_pinned)
3000 *all_pinned = pinned;
3001
3002 return max_load_move - rem_load_move;
3003 }
3004
3005 /*
3006 * move_tasks tries to move up to max_load_move weighted load from busiest to
3007 * this_rq, as part of a balancing operation within domain "sd".
3008 * Returns 1 if successful and 0 otherwise.
3009 *
3010 * Called with both runqueues locked.
3011 */
3012 static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
3013 unsigned long max_load_move,
3014 struct sched_domain *sd, enum cpu_idle_type idle,
3015 int *all_pinned)
3016 {
3017 const struct sched_class *class = sched_class_highest;
3018 unsigned long total_load_moved = 0;
3019 int this_best_prio = this_rq->curr->prio;
3020
3021 do {
3022 total_load_moved +=
3023 class->load_balance(this_rq, this_cpu, busiest,
3024 max_load_move - total_load_moved,
3025 sd, idle, all_pinned, &this_best_prio);
3026 class = class->next;
3027
3028 if (idle == CPU_NEWLY_IDLE && this_rq->nr_running)
3029 break;
3030
3031 } while (class && max_load_move > total_load_moved);
3032
3033 return total_load_moved > 0;
3034 }
3035
3036 static int
3037 iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
3038 struct sched_domain *sd, enum cpu_idle_type idle,
3039 struct rq_iterator *iterator)
3040 {
3041 struct task_struct *p = iterator->start(iterator->arg);
3042 int pinned = 0;
3043
3044 while (p) {
3045 if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
3046 pull_task(busiest, p, this_rq, this_cpu);
3047 /*
3048 * Right now, this is only the second place pull_task()
3049 * is called, so we can safely collect pull_task()
3050 * stats here rather than inside pull_task().
3051 */
3052 schedstat_inc(sd, lb_gained[idle]);
3053
3054 return 1;
3055 }
3056 p = iterator->next(iterator->arg);
3057 }
3058
3059 return 0;
3060 }
3061
3062 /*
3063 * move_one_task tries to move exactly one task from busiest to this_rq, as
3064 * part of active balancing operations within "domain".
3065 * Returns 1 if successful and 0 otherwise.
3066 *
3067 * Called with both runqueues locked.
3068 */
3069 static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
3070 struct sched_domain *sd, enum cpu_idle_type idle)
3071 {
3072 const struct sched_class *class;
3073
3074 for (class = sched_class_highest; class; class = class->next)
3075 if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
3076 return 1;
3077
3078 return 0;
3079 }
3080
3081 /*
3082 * find_busiest_group finds and returns the busiest CPU group within the
3083 * domain. It calculates and returns the amount of weighted load which
3084 * should be moved to restore balance via the imbalance parameter.
3085 */
3086 static struct sched_group *
3087 find_busiest_group(struct sched_domain *sd, int this_cpu,
3088 unsigned long *imbalance, enum cpu_idle_type idle,
3089 int *sd_idle, const cpumask_t *cpus, int *balance)
3090 {
3091 struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
3092 unsigned long max_load, avg_load, total_load, this_load, total_pwr;
3093 unsigned long max_pull;
3094 unsigned long busiest_load_per_task, busiest_nr_running;
3095 unsigned long this_load_per_task, this_nr_running;
3096 int load_idx, group_imb = 0;
3097 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3098 int power_savings_balance = 1;
3099 unsigned long leader_nr_running = 0, min_load_per_task = 0;
3100 unsigned long min_nr_running = ULONG_MAX;
3101 struct sched_group *group_min = NULL, *group_leader = NULL;
3102 #endif
3103
3104 max_load = this_load = total_load = total_pwr = 0;
3105 busiest_load_per_task = busiest_nr_running = 0;
3106 this_load_per_task = this_nr_running = 0;
3107
3108 if (idle == CPU_NOT_IDLE)
3109 load_idx = sd->busy_idx;
3110 else if (idle == CPU_NEWLY_IDLE)
3111 load_idx = sd->newidle_idx;
3112 else
3113 load_idx = sd->idle_idx;
3114
3115 do {
3116 unsigned long load, group_capacity, max_cpu_load, min_cpu_load;
3117 int local_group;
3118 int i;
3119 int __group_imb = 0;
3120 unsigned int balance_cpu = -1, first_idle_cpu = 0;
3121 unsigned long sum_nr_running, sum_weighted_load;
3122 unsigned long sum_avg_load_per_task;
3123 unsigned long avg_load_per_task;
3124
3125 local_group = cpu_isset(this_cpu, group->cpumask);
3126
3127 if (local_group)
3128 balance_cpu = first_cpu(group->cpumask);
3129
3130 /* Tally up the load of all CPUs in the group */
3131 sum_weighted_load = sum_nr_running = avg_load = 0;
3132 sum_avg_load_per_task = avg_load_per_task = 0;
3133
3134 max_cpu_load = 0;
3135 min_cpu_load = ~0UL;
3136
3137 for_each_cpu_mask_nr(i, group->cpumask) {
3138 struct rq *rq;
3139
3140 if (!cpu_isset(i, *cpus))
3141 continue;
3142
3143 rq = cpu_rq(i);
3144
3145 if (*sd_idle && rq->nr_running)
3146 *sd_idle = 0;
3147
3148 /* Bias balancing toward cpus of our domain */
3149 if (local_group) {
3150 if (idle_cpu(i) && !first_idle_cpu) {
3151 first_idle_cpu = 1;
3152 balance_cpu = i;
3153 }
3154
3155 load = target_load(i, load_idx);
3156 } else {
3157 load = source_load(i, load_idx);
3158 if (load > max_cpu_load)
3159 max_cpu_load = load;
3160 if (min_cpu_load > load)
3161 min_cpu_load = load;
3162 }
3163
3164 avg_load += load;
3165 sum_nr_running += rq->nr_running;
3166 sum_weighted_load += weighted_cpuload(i);
3167
3168 sum_avg_load_per_task += cpu_avg_load_per_task(i);
3169 }
3170
3171 /*
3172 * First idle cpu or the first cpu(busiest) in this sched group
3173 * is eligible for doing load balancing at this and above
3174 * domains. In the newly idle case, we will allow all the cpu's
3175 * to do the newly idle load balance.
3176 */
3177 if (idle != CPU_NEWLY_IDLE && local_group &&
3178 balance_cpu != this_cpu && balance) {
3179 *balance = 0;
3180 goto ret;
3181 }
3182
3183 total_load += avg_load;
3184 total_pwr += group->__cpu_power;
3185
3186 /* Adjust by relative CPU power of the group */
3187 avg_load = sg_div_cpu_power(group,
3188 avg_load * SCHED_LOAD_SCALE);
3189
3190
3191 /*
3192 * Consider the group unbalanced when the imbalance is larger
3193 * than the average weight of two tasks.
3194 *
3195 * APZ: with cgroup the avg task weight can vary wildly and
3196 * might not be a suitable number - should we keep a
3197 * normalized nr_running number somewhere that negates
3198 * the hierarchy?
3199 */
3200 avg_load_per_task = sg_div_cpu_power(group,
3201 sum_avg_load_per_task * SCHED_LOAD_SCALE);
3202
3203 if ((max_cpu_load - min_cpu_load) > 2*avg_load_per_task)
3204 __group_imb = 1;
3205
3206 group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
3207
3208 if (local_group) {
3209 this_load = avg_load;
3210 this = group;
3211 this_nr_running = sum_nr_running;
3212 this_load_per_task = sum_weighted_load;
3213 } else if (avg_load > max_load &&
3214 (sum_nr_running > group_capacity || __group_imb)) {
3215 max_load = avg_load;
3216 busiest = group;
3217 busiest_nr_running = sum_nr_running;
3218 busiest_load_per_task = sum_weighted_load;
3219 group_imb = __group_imb;
3220 }
3221
3222 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3223 /*
3224 * Busy processors will not participate in power savings
3225 * balance.
3226 */
3227 if (idle == CPU_NOT_IDLE ||
3228 !(sd->flags & SD_POWERSAVINGS_BALANCE))
3229 goto group_next;
3230
3231 /*
3232 * If the local group is idle or completely loaded
3233 * no need to do power savings balance at this domain
3234 */
3235 if (local_group && (this_nr_running >= group_capacity ||
3236 !this_nr_running))
3237 power_savings_balance = 0;
3238
3239 /*
3240 * If a group is already running at full capacity or idle,
3241 * don't include that group in power savings calculations
3242 */
3243 if (!power_savings_balance || sum_nr_running >= group_capacity
3244 || !sum_nr_running)
3245 goto group_next;
3246
3247 /*
3248 * Calculate the group which has the least non-idle load.
3249 * This is the group from where we need to pick up the load
3250 * for saving power
3251 */
3252 if ((sum_nr_running < min_nr_running) ||
3253 (sum_nr_running == min_nr_running &&
3254 first_cpu(group->cpumask) <
3255 first_cpu(group_min->cpumask))) {
3256 group_min = group;
3257 min_nr_running = sum_nr_running;
3258 min_load_per_task = sum_weighted_load /
3259 sum_nr_running;
3260 }
3261
3262 /*
3263 * Calculate the group which is almost near its
3264 * capacity but still has some space to pick up some load
3265 * from other group and save more power
3266 */
3267 if (sum_nr_running <= group_capacity - 1) {
3268 if (sum_nr_running > leader_nr_running ||
3269 (sum_nr_running == leader_nr_running &&
3270 first_cpu(group->cpumask) >
3271 first_cpu(group_leader->cpumask))) {
3272 group_leader = group;
3273 leader_nr_running = sum_nr_running;
3274 }
3275 }
3276 group_next:
3277 #endif
3278 group = group->next;
3279 } while (group != sd->groups);
3280
3281 if (!busiest || this_load >= max_load || busiest_nr_running == 0)
3282 goto out_balanced;
3283
3284 avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
3285
3286 if (this_load >= avg_load ||
3287 100*max_load <= sd->imbalance_pct*this_load)
3288 goto out_balanced;
3289
3290 busiest_load_per_task /= busiest_nr_running;
3291 if (group_imb)
3292 busiest_load_per_task = min(busiest_load_per_task, avg_load);
3293
3294 /*
3295 * We're trying to get all the cpus to the average_load, so we don't
3296 * want to push ourselves above the average load, nor do we wish to
3297 * reduce the max loaded cpu below the average load, as either of these
3298 * actions would just result in more rebalancing later, and ping-pong
3299 * tasks around. Thus we look for the minimum possible imbalance.
3300 * Negative imbalances (*we* are more loaded than anyone else) will
3301 * be counted as no imbalance for these purposes -- we can't fix that
3302 * by pulling tasks to us. Be careful of negative numbers as they'll
3303 * appear as very large values with unsigned longs.
3304 */
3305 if (max_load <= busiest_load_per_task)
3306 goto out_balanced;
3307
3308 /*
3309 * In the presence of smp nice balancing, certain scenarios can have
3310 * max load less than avg load(as we skip the groups at or below
3311 * its cpu_power, while calculating max_load..)
3312 */
3313 if (max_load < avg_load) {
3314 *imbalance = 0;
3315 goto small_imbalance;
3316 }
3317
3318 /* Don't want to pull so many tasks that a group would go idle */
3319 max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
3320
3321 /* How much load to actually move to equalise the imbalance */
3322 *imbalance = min(max_pull * busiest->__cpu_power,
3323 (avg_load - this_load) * this->__cpu_power)
3324 / SCHED_LOAD_SCALE;
3325
3326 /*
3327 * if *imbalance is less than the average load per runnable task
3328 * there is no gaurantee that any tasks will be moved so we'll have
3329 * a think about bumping its value to force at least one task to be
3330 * moved
3331 */
3332 if (*imbalance < busiest_load_per_task) {
3333 unsigned long tmp, pwr_now, pwr_move;
3334 unsigned int imbn;
3335
3336 small_imbalance:
3337 pwr_move = pwr_now = 0;
3338 imbn = 2;
3339 if (this_nr_running) {
3340 this_load_per_task /= this_nr_running;
3341 if (busiest_load_per_task > this_load_per_task)
3342 imbn = 1;
3343 } else
3344 this_load_per_task = cpu_avg_load_per_task(this_cpu);
3345
3346 if (max_load - this_load + 2*busiest_load_per_task >=
3347 busiest_load_per_task * imbn) {
3348 *imbalance = busiest_load_per_task;
3349 return busiest;
3350 }
3351
3352 /*
3353 * OK, we don't have enough imbalance to justify moving tasks,
3354 * however we may be able to increase total CPU power used by
3355 * moving them.
3356 */
3357
3358 pwr_now += busiest->__cpu_power *
3359 min(busiest_load_per_task, max_load);
3360 pwr_now += this->__cpu_power *
3361 min(this_load_per_task, this_load);
3362 pwr_now /= SCHED_LOAD_SCALE;
3363
3364 /* Amount of load we'd subtract */
3365 tmp = sg_div_cpu_power(busiest,
3366 busiest_load_per_task * SCHED_LOAD_SCALE);
3367 if (max_load > tmp)
3368 pwr_move += busiest->__cpu_power *
3369 min(busiest_load_per_task, max_load - tmp);
3370
3371 /* Amount of load we'd add */
3372 if (max_load * busiest->__cpu_power <
3373 busiest_load_per_task * SCHED_LOAD_SCALE)
3374 tmp = sg_div_cpu_power(this,
3375 max_load * busiest->__cpu_power);
3376 else
3377 tmp = sg_div_cpu_power(this,
3378 busiest_load_per_task * SCHED_LOAD_SCALE);
3379 pwr_move += this->__cpu_power *
3380 min(this_load_per_task, this_load + tmp);
3381 pwr_move /= SCHED_LOAD_SCALE;
3382
3383 /* Move if we gain throughput */
3384 if (pwr_move > pwr_now)
3385 *imbalance = busiest_load_per_task;
3386 }
3387
3388 return busiest;
3389
3390 out_balanced:
3391 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3392 if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
3393 goto ret;
3394
3395 if (this == group_leader && group_leader != group_min) {
3396 *imbalance = min_load_per_task;
3397 return group_min;
3398 }
3399 #endif
3400 ret:
3401 *imbalance = 0;
3402 return NULL;
3403 }
3404
3405 /*
3406 * find_busiest_queue - find the busiest runqueue among the cpus in group.
3407 */
3408 static struct rq *
3409 find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
3410 unsigned long imbalance, const cpumask_t *cpus)
3411 {
3412 struct rq *busiest = NULL, *rq;
3413 unsigned long max_load = 0;
3414 int i;
3415
3416 for_each_cpu_mask_nr(i, group->cpumask) {
3417 unsigned long wl;
3418
3419 if (!cpu_isset(i, *cpus))
3420 continue;
3421
3422 rq = cpu_rq(i);
3423 wl = weighted_cpuload(i);
3424
3425 if (rq->nr_running == 1 && wl > imbalance)
3426 continue;
3427
3428 if (wl > max_load) {
3429 max_load = wl;
3430 busiest = rq;
3431 }
3432 }
3433
3434 return busiest;
3435 }
3436
3437 /*
3438 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
3439 * so long as it is large enough.
3440 */
3441 #define MAX_PINNED_INTERVAL 512
3442
3443 /*
3444 * Check this_cpu to ensure it is balanced within domain. Attempt to move
3445 * tasks if there is an imbalance.
3446 */
3447 static int load_balance(int this_cpu, struct rq *this_rq,
3448 struct sched_domain *sd, enum cpu_idle_type idle,
3449 int *balance, cpumask_t *cpus)
3450 {
3451 int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
3452 struct sched_group *group;
3453 unsigned long imbalance;
3454 struct rq *busiest;
3455 unsigned long flags;
3456
3457 cpus_setall(*cpus);
3458
3459 /*
3460 * When power savings policy is enabled for the parent domain, idle
3461 * sibling can pick up load irrespective of busy siblings. In this case,
3462 * let the state of idle sibling percolate up as CPU_IDLE, instead of
3463 * portraying it as CPU_NOT_IDLE.
3464 */
3465 if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
3466 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3467 sd_idle = 1;
3468
3469 schedstat_inc(sd, lb_count[idle]);
3470
3471 redo:
3472 update_shares(sd);
3473 group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
3474 cpus, balance);
3475
3476 if (*balance == 0)
3477 goto out_balanced;
3478
3479 if (!group) {
3480 schedstat_inc(sd, lb_nobusyg[idle]);
3481 goto out_balanced;
3482 }
3483
3484 busiest = find_busiest_queue(group, idle, imbalance, cpus);
3485 if (!busiest) {
3486 schedstat_inc(sd, lb_nobusyq[idle]);
3487 goto out_balanced;
3488 }
3489
3490 BUG_ON(busiest == this_rq);
3491
3492 schedstat_add(sd, lb_imbalance[idle], imbalance);
3493
3494 ld_moved = 0;
3495 if (busiest->nr_running > 1) {
3496 /*
3497 * Attempt to move tasks. If find_busiest_group has found
3498 * an imbalance but busiest->nr_running <= 1, the group is
3499 * still unbalanced. ld_moved simply stays zero, so it is
3500 * correctly treated as an imbalance.
3501 */
3502 local_irq_save(flags);
3503 double_rq_lock(this_rq, busiest);
3504 ld_moved = move_tasks(this_rq, this_cpu, busiest,
3505 imbalance, sd, idle, &all_pinned);
3506 double_rq_unlock(this_rq, busiest);
3507 local_irq_restore(flags);
3508
3509 /*
3510 * some other cpu did the load balance for us.
3511 */
3512 if (ld_moved && this_cpu != smp_processor_id())
3513 resched_cpu(this_cpu);
3514
3515 /* All tasks on this runqueue were pinned by CPU affinity */
3516 if (unlikely(all_pinned)) {
3517 cpu_clear(cpu_of(busiest), *cpus);
3518 if (!cpus_empty(*cpus))
3519 goto redo;
3520 goto out_balanced;
3521 }
3522 }
3523
3524 if (!ld_moved) {
3525 schedstat_inc(sd, lb_failed[idle]);
3526 sd->nr_balance_failed++;
3527
3528 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
3529
3530 spin_lock_irqsave(&busiest->lock, flags);
3531
3532 /* don't kick the migration_thread, if the curr
3533 * task on busiest cpu can't be moved to this_cpu
3534 */
3535 if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
3536 spin_unlock_irqrestore(&busiest->lock, flags);
3537 all_pinned = 1;
3538 goto out_one_pinned;
3539 }
3540
3541 if (!busiest->active_balance) {
3542 busiest->active_balance = 1;
3543 busiest->push_cpu = this_cpu;
3544 active_balance = 1;
3545 }
3546 spin_unlock_irqrestore(&busiest->lock, flags);
3547 if (active_balance)
3548 wake_up_process(busiest->migration_thread);
3549
3550 /*
3551 * We've kicked active balancing, reset the failure
3552 * counter.
3553 */
3554 sd->nr_balance_failed = sd->cache_nice_tries+1;
3555 }
3556 } else
3557 sd->nr_balance_failed = 0;
3558
3559 if (likely(!active_balance)) {
3560 /* We were unbalanced, so reset the balancing interval */
3561 sd->balance_interval = sd->min_interval;
3562 } else {
3563 /*
3564 * If we've begun active balancing, start to back off. This
3565 * case may not be covered by the all_pinned logic if there
3566 * is only 1 task on the busy runqueue (because we don't call
3567 * move_tasks).
3568 */
3569 if (sd->balance_interval < sd->max_interval)
3570 sd->balance_interval *= 2;
3571 }
3572
3573 if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3574 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3575 ld_moved = -1;
3576
3577 goto out;
3578
3579 out_balanced:
3580 schedstat_inc(sd, lb_balanced[idle]);
3581
3582 sd->nr_balance_failed = 0;
3583
3584 out_one_pinned:
3585 /* tune up the balancing interval */
3586 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
3587 (sd->balance_interval < sd->max_interval))
3588 sd->balance_interval *= 2;
3589
3590 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3591 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3592 ld_moved = -1;
3593 else
3594 ld_moved = 0;
3595 out:
3596 if (ld_moved)
3597 update_shares(sd);
3598 return ld_moved;
3599 }
3600
3601 /*
3602 * Check this_cpu to ensure it is balanced within domain. Attempt to move
3603 * tasks if there is an imbalance.
3604 *
3605 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
3606 * this_rq is locked.
3607 */
3608 static int
3609 load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd,
3610 cpumask_t *cpus)
3611 {
3612 struct sched_group *group;
3613 struct rq *busiest = NULL;
3614 unsigned long imbalance;
3615 int ld_moved = 0;
3616 int sd_idle = 0;
3617 int all_pinned = 0;
3618
3619 cpus_setall(*cpus);
3620
3621 /*
3622 * When power savings policy is enabled for the parent domain, idle
3623 * sibling can pick up load irrespective of busy siblings. In this case,
3624 * let the state of idle sibling percolate up as IDLE, instead of
3625 * portraying it as CPU_NOT_IDLE.
3626 */
3627 if (sd->flags & SD_SHARE_CPUPOWER &&
3628 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3629 sd_idle = 1;
3630
3631 schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
3632 redo:
3633 update_shares_locked(this_rq, sd);
3634 group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
3635 &sd_idle, cpus, NULL);
3636 if (!group) {
3637 schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
3638 goto out_balanced;
3639 }
3640
3641 busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance, cpus);
3642 if (!busiest) {
3643 schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
3644 goto out_balanced;
3645 }
3646
3647 BUG_ON(busiest == this_rq);
3648
3649 schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
3650
3651 ld_moved = 0;
3652 if (busiest->nr_running > 1) {
3653 /* Attempt to move tasks */
3654 double_lock_balance(this_rq, busiest);
3655 /* this_rq->clock is already updated */
3656 update_rq_clock(busiest);
3657 ld_moved = move_tasks(this_rq, this_cpu, busiest,
3658 imbalance, sd, CPU_NEWLY_IDLE,
3659 &all_pinned);
3660 double_unlock_balance(this_rq, busiest);
3661
3662 if (unlikely(all_pinned)) {
3663 cpu_clear(cpu_of(busiest), *cpus);
3664 if (!cpus_empty(*cpus))
3665 goto redo;
3666 }
3667 }
3668
3669 if (!ld_moved) {
3670 schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
3671 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3672 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3673 return -1;
3674 } else
3675 sd->nr_balance_failed = 0;
3676
3677 update_shares_locked(this_rq, sd);
3678 return ld_moved;
3679
3680 out_balanced:
3681 schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
3682 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3683 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3684 return -1;
3685 sd->nr_balance_failed = 0;
3686
3687 return 0;
3688 }
3689
3690 /*
3691 * idle_balance is called by schedule() if this_cpu is about to become
3692 * idle. Attempts to pull tasks from other CPUs.
3693 */
3694 static void idle_balance(int this_cpu, struct rq *this_rq)
3695 {
3696 struct sched_domain *sd;
3697 int pulled_task = -1;
3698 unsigned long next_balance = jiffies + HZ;
3699 cpumask_t tmpmask;
3700
3701 for_each_domain(this_cpu, sd) {
3702 unsigned long interval;
3703
3704 if (!(sd->flags & SD_LOAD_BALANCE))
3705 continue;
3706
3707 if (sd->flags & SD_BALANCE_NEWIDLE)
3708 /* If we've pulled tasks over stop searching: */
3709 pulled_task = load_balance_newidle(this_cpu, this_rq,
3710 sd, &tmpmask);
3711
3712 interval = msecs_to_jiffies(sd->balance_interval);
3713 if (time_after(next_balance, sd->last_balance + interval))
3714 next_balance = sd->last_balance + interval;
3715 if (pulled_task)
3716 break;
3717 }
3718 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
3719 /*
3720 * We are going idle. next_balance may be set based on
3721 * a busy processor. So reset next_balance.
3722 */
3723 this_rq->next_balance = next_balance;
3724 }
3725 }
3726
3727 /*
3728 * active_load_balance is run by migration threads. It pushes running tasks
3729 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
3730 * running on each physical CPU where possible, and avoids physical /
3731 * logical imbalances.
3732 *
3733 * Called with busiest_rq locked.
3734 */
3735 static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
3736 {
3737 int target_cpu = busiest_rq->push_cpu;
3738 struct sched_domain *sd;
3739 struct rq *target_rq;
3740
3741 /* Is there any task to move? */
3742 if (busiest_rq->nr_running <= 1)
3743 return;
3744
3745 target_rq = cpu_rq(target_cpu);
3746
3747 /*
3748 * This condition is "impossible", if it occurs
3749 * we need to fix it. Originally reported by
3750 * Bjorn Helgaas on a 128-cpu setup.
3751 */
3752 BUG_ON(busiest_rq == target_rq);
3753
3754 /* move a task from busiest_rq to target_rq */
3755 double_lock_balance(busiest_rq, target_rq);
3756 update_rq_clock(busiest_rq);
3757 update_rq_clock(target_rq);
3758
3759 /* Search for an sd spanning us and the target CPU. */
3760 for_each_domain(target_cpu, sd) {
3761 if ((sd->flags & SD_LOAD_BALANCE) &&
3762 cpu_isset(busiest_cpu, sd->span))
3763 break;
3764 }
3765
3766 if (likely(sd)) {
3767 schedstat_inc(sd, alb_count);
3768
3769 if (move_one_task(target_rq, target_cpu, busiest_rq,
3770 sd, CPU_IDLE))
3771 schedstat_inc(sd, alb_pushed);
3772 else
3773 schedstat_inc(sd, alb_failed);
3774 }
3775 double_unlock_balance(busiest_rq, target_rq);
3776 }
3777
3778 #ifdef CONFIG_NO_HZ
3779 static struct {
3780 atomic_t load_balancer;
3781 cpumask_t cpu_mask;
3782 } nohz ____cacheline_aligned = {
3783 .load_balancer = ATOMIC_INIT(-1),
3784 .cpu_mask = CPU_MASK_NONE,
3785 };
3786
3787 /*
3788 * This routine will try to nominate the ilb (idle load balancing)
3789 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
3790 * load balancing on behalf of all those cpus. If all the cpus in the system
3791 * go into this tickless mode, then there will be no ilb owner (as there is
3792 * no need for one) and all the cpus will sleep till the next wakeup event
3793 * arrives...
3794 *
3795 * For the ilb owner, tick is not stopped. And this tick will be used
3796 * for idle load balancing. ilb owner will still be part of
3797 * nohz.cpu_mask..
3798 *
3799 * While stopping the tick, this cpu will become the ilb owner if there
3800 * is no other owner. And will be the owner till that cpu becomes busy
3801 * or if all cpus in the system stop their ticks at which point
3802 * there is no need for ilb owner.
3803 *
3804 * When the ilb owner becomes busy, it nominates another owner, during the
3805 * next busy scheduler_tick()
3806 */
3807 int select_nohz_load_balancer(int stop_tick)
3808 {
3809 int cpu = smp_processor_id();
3810
3811 if (stop_tick) {
3812 cpu_set(cpu, nohz.cpu_mask);
3813 cpu_rq(cpu)->in_nohz_recently = 1;
3814
3815 /*
3816 * If we are going offline and still the leader, give up!
3817 */
3818 if (!cpu_active(cpu) &&
3819 atomic_read(&nohz.load_balancer) == cpu) {
3820 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
3821 BUG();
3822 return 0;
3823 }
3824
3825 /* time for ilb owner also to sleep */
3826 if (cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
3827 if (atomic_read(&nohz.load_balancer) == cpu)
3828 atomic_set(&nohz.load_balancer, -1);
3829 return 0;
3830 }
3831
3832 if (atomic_read(&nohz.load_balancer) == -1) {
3833 /* make me the ilb owner */
3834 if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
3835 return 1;
3836 } else if (atomic_read(&nohz.load_balancer) == cpu)
3837 return 1;
3838 } else {
3839 if (!cpu_isset(cpu, nohz.cpu_mask))
3840 return 0;
3841
3842 cpu_clear(cpu, nohz.cpu_mask);
3843
3844 if (atomic_read(&nohz.load_balancer) == cpu)
3845 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
3846 BUG();
3847 }
3848 return 0;
3849 }
3850 #endif
3851
3852 static DEFINE_SPINLOCK(balancing);
3853
3854 /*
3855 * It checks each scheduling domain to see if it is due to be balanced,
3856 * and initiates a balancing operation if so.
3857 *
3858 * Balancing parameters are set up in arch_init_sched_domains.
3859 */
3860 static void rebalance_domains(int cpu, enum cpu_idle_type idle)
3861 {
3862 int balance = 1;
3863 struct rq *rq = cpu_rq(cpu);
3864 unsigned long interval;
3865 struct sched_domain *sd;
3866 /* Earliest time when we have to do rebalance again */
3867 unsigned long next_balance = jiffies + 60*HZ;
3868 int update_next_balance = 0;
3869 int need_serialize;
3870 cpumask_t tmp;
3871
3872 for_each_domain(cpu, sd) {
3873 if (!(sd->flags & SD_LOAD_BALANCE))
3874 continue;
3875
3876 interval = sd->balance_interval;
3877 if (idle != CPU_IDLE)
3878 interval *= sd->busy_factor;
3879
3880 /* scale ms to jiffies */
3881 interval = msecs_to_jiffies(interval);
3882 if (unlikely(!interval))
3883 interval = 1;
3884 if (interval > HZ*NR_CPUS/10)
3885 interval = HZ*NR_CPUS/10;
3886
3887 need_serialize = sd->flags & SD_SERIALIZE;
3888
3889 if (need_serialize) {
3890 if (!spin_trylock(&balancing))
3891 goto out;
3892 }
3893
3894 if (time_after_eq(jiffies, sd->last_balance + interval)) {
3895 if (load_balance(cpu, rq, sd, idle, &balance, &tmp)) {
3896 /*
3897 * We've pulled tasks over so either we're no
3898 * longer idle, or one of our SMT siblings is
3899 * not idle.
3900 */
3901 idle = CPU_NOT_IDLE;
3902 }
3903 sd->last_balance = jiffies;
3904 }
3905 if (need_serialize)
3906 spin_unlock(&balancing);
3907 out:
3908 if (time_after(next_balance, sd->last_balance + interval)) {
3909 next_balance = sd->last_balance + interval;
3910 update_next_balance = 1;
3911 }
3912
3913 /*
3914 * Stop the load balance at this level. There is another
3915 * CPU in our sched group which is doing load balancing more
3916 * actively.
3917 */
3918 if (!balance)
3919 break;
3920 }
3921
3922 /*
3923 * next_balance will be updated only when there is a need.
3924 * When the cpu is attached to null domain for ex, it will not be
3925 * updated.
3926 */
3927 if (likely(update_next_balance))
3928 rq->next_balance = next_balance;
3929 }
3930
3931 /*
3932 * run_rebalance_domains is triggered when needed from the scheduler tick.
3933 * In CONFIG_NO_HZ case, the idle load balance owner will do the
3934 * rebalancing for all the cpus for whom scheduler ticks are stopped.
3935 */
3936 static void run_rebalance_domains(struct softirq_action *h)
3937 {
3938 int this_cpu = smp_processor_id();
3939 struct rq *this_rq = cpu_rq(this_cpu);
3940 enum cpu_idle_type idle = this_rq->idle_at_tick ?
3941 CPU_IDLE : CPU_NOT_IDLE;
3942
3943 rebalance_domains(this_cpu, idle);
3944
3945 #ifdef CONFIG_NO_HZ
3946 /*
3947 * If this cpu is the owner for idle load balancing, then do the
3948 * balancing on behalf of the other idle cpus whose ticks are
3949 * stopped.
3950 */
3951 if (this_rq->idle_at_tick &&
3952 atomic_read(&nohz.load_balancer) == this_cpu) {
3953 cpumask_t cpus = nohz.cpu_mask;
3954 struct rq *rq;
3955 int balance_cpu;
3956
3957 cpu_clear(this_cpu, cpus);
3958 for_each_cpu_mask_nr(balance_cpu, cpus) {
3959 /*
3960 * If this cpu gets work to do, stop the load balancing
3961 * work being done for other cpus. Next load
3962 * balancing owner will pick it up.
3963 */
3964 if (need_resched())
3965 break;
3966
3967 rebalance_domains(balance_cpu, CPU_IDLE);
3968
3969 rq = cpu_rq(balance_cpu);
3970 if (time_after(this_rq->next_balance, rq->next_balance))
3971 this_rq->next_balance = rq->next_balance;
3972 }
3973 }
3974 #endif
3975 }
3976
3977 /*
3978 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
3979 *
3980 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
3981 * idle load balancing owner or decide to stop the periodic load balancing,
3982 * if the whole system is idle.
3983 */
3984 static inline void trigger_load_balance(struct rq *rq, int cpu)
3985 {
3986 #ifdef CONFIG_NO_HZ
3987 /*
3988 * If we were in the nohz mode recently and busy at the current
3989 * scheduler tick, then check if we need to nominate new idle
3990 * load balancer.
3991 */
3992 if (rq->in_nohz_recently && !rq->idle_at_tick) {
3993 rq->in_nohz_recently = 0;
3994
3995 if (atomic_read(&nohz.load_balancer) == cpu) {
3996 cpu_clear(cpu, nohz.cpu_mask);
3997 atomic_set(&nohz.load_balancer, -1);
3998 }
3999
4000 if (atomic_read(&nohz.load_balancer) == -1) {
4001 /*
4002 * simple selection for now: Nominate the
4003 * first cpu in the nohz list to be the next
4004 * ilb owner.
4005 *
4006 * TBD: Traverse the sched domains and nominate
4007 * the nearest cpu in the nohz.cpu_mask.
4008 */
4009 int ilb = first_cpu(nohz.cpu_mask);
4010
4011 if (ilb < nr_cpu_ids)
4012 resched_cpu(ilb);
4013 }
4014 }
4015
4016 /*
4017 * If this cpu is idle and doing idle load balancing for all the
4018 * cpus with ticks stopped, is it time for that to stop?
4019 */
4020 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
4021 cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
4022 resched_cpu(cpu);
4023 return;
4024 }
4025
4026 /*
4027 * If this cpu is idle and the idle load balancing is done by
4028 * someone else, then no need raise the SCHED_SOFTIRQ
4029 */
4030 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
4031 cpu_isset(cpu, nohz.cpu_mask))
4032 return;
4033 #endif
4034 if (time_after_eq(jiffies, rq->next_balance))
4035 raise_softirq(SCHED_SOFTIRQ);
4036 }
4037
4038 #else /* CONFIG_SMP */
4039
4040 /*
4041 * on UP we do not need to balance between CPUs:
4042 */
4043 static inline void idle_balance(int cpu, struct rq *rq)
4044 {
4045 }
4046
4047 #endif
4048
4049 DEFINE_PER_CPU(struct kernel_stat, kstat);
4050
4051 EXPORT_PER_CPU_SYMBOL(kstat);
4052
4053 /*
4054 * Return p->sum_exec_runtime plus any more ns on the sched_clock
4055 * that have not yet been banked in case the task is currently running.
4056 */
4057 unsigned long long task_sched_runtime(struct task_struct *p)
4058 {
4059 unsigned long flags;
4060 u64 ns, delta_exec;
4061 struct rq *rq;
4062
4063 rq = task_rq_lock(p, &flags);
4064 ns = p->se.sum_exec_runtime;
4065 if (task_current(rq, p)) {
4066 update_rq_clock(rq);
4067 delta_exec = rq->clock - p->se.exec_start;
4068 if ((s64)delta_exec > 0)
4069 ns += delta_exec;
4070 }
4071 task_rq_unlock(rq, &flags);
4072
4073 return ns;
4074 }
4075
4076 /*
4077 * Account user cpu time to a process.
4078 * @p: the process that the cpu time gets accounted to
4079 * @cputime: the cpu time spent in user space since the last update
4080 */
4081 void account_user_time(struct task_struct *p, cputime_t cputime)
4082 {
4083 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4084 cputime64_t tmp;
4085
4086 p->utime = cputime_add(p->utime, cputime);
4087
4088 /* Add user time to cpustat. */
4089 tmp = cputime_to_cputime64(cputime);
4090 if (TASK_NICE(p) > 0)
4091 cpustat->nice = cputime64_add(cpustat->nice, tmp);
4092 else
4093 cpustat->user = cputime64_add(cpustat->user, tmp);
4094 /* Account for user time used */
4095 acct_update_integrals(p);
4096 }
4097
4098 /*
4099 * Account guest cpu time to a process.
4100 * @p: the process that the cpu time gets accounted to
4101 * @cputime: the cpu time spent in virtual machine since the last update
4102 */
4103 static void account_guest_time(struct task_struct *p, cputime_t cputime)
4104 {
4105 cputime64_t tmp;
4106 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4107
4108 tmp = cputime_to_cputime64(cputime);
4109
4110 p->utime = cputime_add(p->utime, cputime);
4111 p->gtime = cputime_add(p->gtime, cputime);
4112
4113 cpustat->user = cputime64_add(cpustat->user, tmp);
4114 cpustat->guest = cputime64_add(cpustat->guest, tmp);
4115 }
4116
4117 /*
4118 * Account scaled user cpu time to a process.
4119 * @p: the process that the cpu time gets accounted to
4120 * @cputime: the cpu time spent in user space since the last update
4121 */
4122 void account_user_time_scaled(struct task_struct *p, cputime_t cputime)
4123 {
4124 p->utimescaled = cputime_add(p->utimescaled, cputime);
4125 }
4126
4127 /*
4128 * Account system cpu time to a process.
4129 * @p: the process that the cpu time gets accounted to
4130 * @hardirq_offset: the offset to subtract from hardirq_count()
4131 * @cputime: the cpu time spent in kernel space since the last update
4132 */
4133 void account_system_time(struct task_struct *p, int hardirq_offset,
4134 cputime_t cputime)
4135 {
4136 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4137 struct rq *rq = this_rq();
4138 cputime64_t tmp;
4139
4140 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
4141 account_guest_time(p, cputime);
4142 return;
4143 }
4144
4145 p->stime = cputime_add(p->stime, cputime);
4146
4147 /* Add system time to cpustat. */
4148 tmp = cputime_to_cputime64(cputime);
4149 if (hardirq_count() - hardirq_offset)
4150 cpustat->irq = cputime64_add(cpustat->irq, tmp);
4151 else if (softirq_count())
4152 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
4153 else if (p != rq->idle)
4154 cpustat->system = cputime64_add(cpustat->system, tmp);
4155 else if (atomic_read(&rq->nr_iowait) > 0)
4156 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
4157 else
4158 cpustat->idle = cputime64_add(cpustat->idle, tmp);
4159 /* Account for system time used */
4160 acct_update_integrals(p);
4161 }
4162
4163 /*
4164 * Account scaled system cpu time to a process.
4165 * @p: the process that the cpu time gets accounted to
4166 * @hardirq_offset: the offset to subtract from hardirq_count()
4167 * @cputime: the cpu time spent in kernel space since the last update
4168 */
4169 void account_system_time_scaled(struct task_struct *p, cputime_t cputime)
4170 {
4171 p->stimescaled = cputime_add(p->stimescaled, cputime);
4172 }
4173
4174 /*
4175 * Account for involuntary wait time.
4176 * @p: the process from which the cpu time has been stolen
4177 * @steal: the cpu time spent in involuntary wait
4178 */
4179 void account_steal_time(struct task_struct *p, cputime_t steal)
4180 {
4181 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4182 cputime64_t tmp = cputime_to_cputime64(steal);
4183 struct rq *rq = this_rq();
4184
4185 if (p == rq->idle) {
4186 p->stime = cputime_add(p->stime, steal);
4187 if (atomic_read(&rq->nr_iowait) > 0)
4188 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
4189 else
4190 cpustat->idle = cputime64_add(cpustat->idle, tmp);
4191 } else
4192 cpustat->steal = cputime64_add(cpustat->steal, tmp);
4193 }
4194
4195 /*
4196 * Use precise platform statistics if available:
4197 */
4198 #ifdef CONFIG_VIRT_CPU_ACCOUNTING
4199 cputime_t task_utime(struct task_struct *p)
4200 {
4201 return p->utime;
4202 }
4203
4204 cputime_t task_stime(struct task_struct *p)
4205 {
4206 return p->stime;
4207 }
4208 #else
4209 cputime_t task_utime(struct task_struct *p)
4210 {
4211 clock_t utime = cputime_to_clock_t(p->utime),
4212 total = utime + cputime_to_clock_t(p->stime);
4213 u64 temp;
4214
4215 /*
4216 * Use CFS's precise accounting:
4217 */
4218 temp = (u64)nsec_to_clock_t(p->se.sum_exec_runtime);
4219
4220 if (total) {
4221 temp *= utime;
4222 do_div(temp, total);
4223 }
4224 utime = (clock_t)temp;
4225
4226 p->prev_utime = max(p->prev_utime, clock_t_to_cputime(utime));
4227 return p->prev_utime;
4228 }
4229
4230 cputime_t task_stime(struct task_struct *p)
4231 {
4232 clock_t stime;
4233
4234 /*
4235 * Use CFS's precise accounting. (we subtract utime from
4236 * the total, to make sure the total observed by userspace
4237 * grows monotonically - apps rely on that):
4238 */
4239 stime = nsec_to_clock_t(p->se.sum_exec_runtime) -
4240 cputime_to_clock_t(task_utime(p));
4241
4242 if (stime >= 0)
4243 p->prev_stime = max(p->prev_stime, clock_t_to_cputime(stime));
4244
4245 return p->prev_stime;
4246 }
4247 #endif
4248
4249 inline cputime_t task_gtime(struct task_struct *p)
4250 {
4251 return p->gtime;
4252 }
4253
4254 /*
4255 * This function gets called by the timer code, with HZ frequency.
4256 * We call it with interrupts disabled.
4257 *
4258 * It also gets called by the fork code, when changing the parent's
4259 * timeslices.
4260 */
4261 void scheduler_tick(void)
4262 {
4263 int cpu = smp_processor_id();
4264 struct rq *rq = cpu_rq(cpu);
4265 struct task_struct *curr = rq->curr;
4266
4267 sched_clock_tick();
4268
4269 spin_lock(&rq->lock);
4270 update_rq_clock(rq);
4271 update_cpu_load(rq);
4272 curr->sched_class->task_tick(rq, curr, 0);
4273 spin_unlock(&rq->lock);
4274
4275 #ifdef CONFIG_SMP
4276 rq->idle_at_tick = idle_cpu(cpu);
4277 trigger_load_balance(rq, cpu);
4278 #endif
4279 }
4280
4281 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
4282 defined(CONFIG_PREEMPT_TRACER))
4283
4284 static inline unsigned long get_parent_ip(unsigned long addr)
4285 {
4286 if (in_lock_functions(addr)) {
4287 addr = CALLER_ADDR2;
4288 if (in_lock_functions(addr))
4289 addr = CALLER_ADDR3;
4290 }
4291 return addr;
4292 }
4293
4294 void __kprobes add_preempt_count(int val)
4295 {
4296 #ifdef CONFIG_DEBUG_PREEMPT
4297 /*
4298 * Underflow?
4299 */
4300 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
4301 return;
4302 #endif
4303 preempt_count() += val;
4304 #ifdef CONFIG_DEBUG_PREEMPT
4305 /*
4306 * Spinlock count overflowing soon?
4307 */
4308 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
4309 PREEMPT_MASK - 10);
4310 #endif
4311 if (preempt_count() == val)
4312 trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
4313 }
4314 EXPORT_SYMBOL(add_preempt_count);
4315
4316 void __kprobes sub_preempt_count(int val)
4317 {
4318 #ifdef CONFIG_DEBUG_PREEMPT
4319 /*
4320 * Underflow?
4321 */
4322 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
4323 return;
4324 /*
4325 * Is the spinlock portion underflowing?
4326 */
4327 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
4328 !(preempt_count() & PREEMPT_MASK)))
4329 return;
4330 #endif
4331
4332 if (preempt_count() == val)
4333 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
4334 preempt_count() -= val;
4335 }
4336 EXPORT_SYMBOL(sub_preempt_count);
4337
4338 #endif
4339
4340 /*
4341 * Print scheduling while atomic bug:
4342 */
4343 static noinline void __schedule_bug(struct task_struct *prev)
4344 {
4345 struct pt_regs *regs = get_irq_regs();
4346
4347 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
4348 prev->comm, prev->pid, preempt_count());
4349
4350 debug_show_held_locks(prev);
4351 print_modules();
4352 if (irqs_disabled())
4353 print_irqtrace_events(prev);
4354
4355 if (regs)
4356 show_regs(regs);
4357 else
4358 dump_stack();
4359 }
4360
4361 /*
4362 * Various schedule()-time debugging checks and statistics:
4363 */
4364 static inline void schedule_debug(struct task_struct *prev)
4365 {
4366 /*
4367 * Test if we are atomic. Since do_exit() needs to call into
4368 * schedule() atomically, we ignore that path for now.
4369 * Otherwise, whine if we are scheduling when we should not be.
4370 */
4371 if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
4372 __schedule_bug(prev);
4373
4374 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
4375
4376 schedstat_inc(this_rq(), sched_count);
4377 #ifdef CONFIG_SCHEDSTATS
4378 if (unlikely(prev->lock_depth >= 0)) {
4379 schedstat_inc(this_rq(), bkl_count);
4380 schedstat_inc(prev, sched_info.bkl_count);
4381 }
4382 #endif
4383 }
4384
4385 /*
4386 * Pick up the highest-prio task:
4387 */
4388 static inline struct task_struct *
4389 pick_next_task(struct rq *rq, struct task_struct *prev)
4390 {
4391 const struct sched_class *class;
4392 struct task_struct *p;
4393
4394 /*
4395 * Optimization: we know that if all tasks are in
4396 * the fair class we can call that function directly:
4397 */
4398 if (likely(rq->nr_running == rq->cfs.nr_running)) {
4399 p = fair_sched_class.pick_next_task(rq);
4400 if (likely(p))
4401 return p;
4402 }
4403
4404 class = sched_class_highest;
4405 for ( ; ; ) {
4406 p = class->pick_next_task(rq);
4407 if (p)
4408 return p;
4409 /*
4410 * Will never be NULL as the idle class always
4411 * returns a non-NULL p:
4412 */
4413 class = class->next;
4414 }
4415 }
4416
4417 /*
4418 * schedule() is the main scheduler function.
4419 */
4420 asmlinkage void __sched schedule(void)
4421 {
4422 struct task_struct *prev, *next;
4423 unsigned long *switch_count;
4424 struct rq *rq;
4425 int cpu;
4426
4427 need_resched:
4428 preempt_disable();
4429 cpu = smp_processor_id();
4430 rq = cpu_rq(cpu);
4431 rcu_qsctr_inc(cpu);
4432 prev = rq->curr;
4433 switch_count = &prev->nivcsw;
4434
4435 release_kernel_lock(prev);
4436 need_resched_nonpreemptible:
4437
4438 schedule_debug(prev);
4439
4440 if (sched_feat(HRTICK))
4441 hrtick_clear(rq);
4442
4443 /*
4444 * Do the rq-clock update outside the rq lock:
4445 */
4446 local_irq_disable();
4447 update_rq_clock(rq);
4448 spin_lock(&rq->lock);
4449 clear_tsk_need_resched(prev);
4450
4451 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
4452 if (unlikely(signal_pending_state(prev->state, prev)))
4453 prev->state = TASK_RUNNING;
4454 else
4455 deactivate_task(rq, prev, 1);
4456 switch_count = &prev->nvcsw;
4457 }
4458
4459 #ifdef CONFIG_SMP
4460 if (prev->sched_class->pre_schedule)
4461 prev->sched_class->pre_schedule(rq, prev);
4462 #endif
4463
4464 if (unlikely(!rq->nr_running))
4465 idle_balance(cpu, rq);
4466
4467 prev->sched_class->put_prev_task(rq, prev);
4468 next = pick_next_task(rq, prev);
4469
4470 if (likely(prev != next)) {
4471 sched_info_switch(prev, next);
4472
4473 rq->nr_switches++;
4474 rq->curr = next;
4475 ++*switch_count;
4476
4477 context_switch(rq, prev, next); /* unlocks the rq */
4478 /*
4479 * the context switch might have flipped the stack from under
4480 * us, hence refresh the local variables.
4481 */
4482 cpu = smp_processor_id();
4483 rq = cpu_rq(cpu);
4484 } else
4485 spin_unlock_irq(&rq->lock);
4486
4487 if (unlikely(reacquire_kernel_lock(current) < 0))
4488 goto need_resched_nonpreemptible;
4489
4490 preempt_enable_no_resched();
4491 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
4492 goto need_resched;
4493 }
4494 EXPORT_SYMBOL(schedule);
4495
4496 #ifdef CONFIG_PREEMPT
4497 /*
4498 * this is the entry point to schedule() from in-kernel preemption
4499 * off of preempt_enable. Kernel preemptions off return from interrupt
4500 * occur there and call schedule directly.
4501 */
4502 asmlinkage void __sched preempt_schedule(void)
4503 {
4504 struct thread_info *ti = current_thread_info();
4505
4506 /*
4507 * If there is a non-zero preempt_count or interrupts are disabled,
4508 * we do not want to preempt the current task. Just return..
4509 */
4510 if (likely(ti->preempt_count || irqs_disabled()))
4511 return;
4512
4513 do {
4514 add_preempt_count(PREEMPT_ACTIVE);
4515 schedule();
4516 sub_preempt_count(PREEMPT_ACTIVE);
4517
4518 /*
4519 * Check again in case we missed a preemption opportunity
4520 * between schedule and now.
4521 */
4522 barrier();
4523 } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
4524 }
4525 EXPORT_SYMBOL(preempt_schedule);
4526
4527 /*
4528 * this is the entry point to schedule() from kernel preemption
4529 * off of irq context.
4530 * Note, that this is called and return with irqs disabled. This will
4531 * protect us against recursive calling from irq.
4532 */
4533 asmlinkage void __sched preempt_schedule_irq(void)
4534 {
4535 struct thread_info *ti = current_thread_info();
4536
4537 /* Catch callers which need to be fixed */
4538 BUG_ON(ti->preempt_count || !irqs_disabled());
4539
4540 do {
4541 add_preempt_count(PREEMPT_ACTIVE);
4542 local_irq_enable();
4543 schedule();
4544 local_irq_disable();
4545 sub_preempt_count(PREEMPT_ACTIVE);
4546
4547 /*
4548 * Check again in case we missed a preemption opportunity
4549 * between schedule and now.
4550 */
4551 barrier();
4552 } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
4553 }
4554
4555 #endif /* CONFIG_PREEMPT */
4556
4557 int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
4558 void *key)
4559 {
4560 return try_to_wake_up(curr->private, mode, sync);
4561 }
4562 EXPORT_SYMBOL(default_wake_function);
4563
4564 /*
4565 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
4566 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
4567 * number) then we wake all the non-exclusive tasks and one exclusive task.
4568 *
4569 * There are circumstances in which we can try to wake a task which has already
4570 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
4571 * zero in this (rare) case, and we handle it by continuing to scan the queue.
4572 */
4573 static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
4574 int nr_exclusive, int sync, void *key)
4575 {
4576 wait_queue_t *curr, *next;
4577
4578 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
4579 unsigned flags = curr->flags;
4580
4581 if (curr->func(curr, mode, sync, key) &&
4582 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
4583 break;
4584 }
4585 }
4586
4587 /**
4588 * __wake_up - wake up threads blocked on a waitqueue.
4589 * @q: the waitqueue
4590 * @mode: which threads
4591 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4592 * @key: is directly passed to the wakeup function
4593 */
4594 void __wake_up(wait_queue_head_t *q, unsigned int mode,
4595 int nr_exclusive, void *key)
4596 {
4597 unsigned long flags;
4598
4599 spin_lock_irqsave(&q->lock, flags);
4600 __wake_up_common(q, mode, nr_exclusive, 0, key);
4601 spin_unlock_irqrestore(&q->lock, flags);
4602 }
4603 EXPORT_SYMBOL(__wake_up);
4604
4605 /*
4606 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
4607 */
4608 void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
4609 {
4610 __wake_up_common(q, mode, 1, 0, NULL);
4611 }
4612
4613 /**
4614 * __wake_up_sync - wake up threads blocked on a waitqueue.
4615 * @q: the waitqueue
4616 * @mode: which threads
4617 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4618 *
4619 * The sync wakeup differs that the waker knows that it will schedule
4620 * away soon, so while the target thread will be woken up, it will not
4621 * be migrated to another CPU - ie. the two threads are 'synchronized'
4622 * with each other. This can prevent needless bouncing between CPUs.
4623 *
4624 * On UP it can prevent extra preemption.
4625 */
4626 void
4627 __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
4628 {
4629 unsigned long flags;
4630 int sync = 1;
4631
4632 if (unlikely(!q))
4633 return;
4634
4635 if (unlikely(!nr_exclusive))
4636 sync = 0;
4637
4638 spin_lock_irqsave(&q->lock, flags);
4639 __wake_up_common(q, mode, nr_exclusive, sync, NULL);
4640 spin_unlock_irqrestore(&q->lock, flags);
4641 }
4642 EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
4643
4644 /**
4645 * complete: - signals a single thread waiting on this completion
4646 * @x: holds the state of this particular completion
4647 *
4648 * This will wake up a single thread waiting on this completion. Threads will be
4649 * awakened in the same order in which they were queued.
4650 *
4651 * See also complete_all(), wait_for_completion() and related routines.
4652 */
4653 void complete(struct completion *x)
4654 {
4655 unsigned long flags;
4656
4657 spin_lock_irqsave(&x->wait.lock, flags);
4658 x->done++;
4659 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
4660 spin_unlock_irqrestore(&x->wait.lock, flags);
4661 }
4662 EXPORT_SYMBOL(complete);
4663
4664 /**
4665 * complete_all: - signals all threads waiting on this completion
4666 * @x: holds the state of this particular completion
4667 *
4668 * This will wake up all threads waiting on this particular completion event.
4669 */
4670 void complete_all(struct completion *x)
4671 {
4672 unsigned long flags;
4673
4674 spin_lock_irqsave(&x->wait.lock, flags);
4675 x->done += UINT_MAX/2;
4676 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
4677 spin_unlock_irqrestore(&x->wait.lock, flags);
4678 }
4679 EXPORT_SYMBOL(complete_all);
4680
4681 static inline long __sched
4682 do_wait_for_common(struct completion *x, long timeout, int state)
4683 {
4684 if (!x->done) {
4685 DECLARE_WAITQUEUE(wait, current);
4686
4687 wait.flags |= WQ_FLAG_EXCLUSIVE;
4688 __add_wait_queue_tail(&x->wait, &wait);
4689 do {
4690 if (signal_pending_state(state, current)) {
4691 timeout = -ERESTARTSYS;
4692 break;
4693 }
4694 __set_current_state(state);
4695 spin_unlock_irq(&x->wait.lock);
4696 timeout = schedule_timeout(timeout);
4697 spin_lock_irq(&x->wait.lock);
4698 } while (!x->done && timeout);
4699 __remove_wait_queue(&x->wait, &wait);
4700 if (!x->done)
4701 return timeout;
4702 }
4703 x->done--;
4704 return timeout ?: 1;
4705 }
4706
4707 static long __sched
4708 wait_for_common(struct completion *x, long timeout, int state)
4709 {
4710 might_sleep();
4711
4712 spin_lock_irq(&x->wait.lock);
4713 timeout = do_wait_for_common(x, timeout, state);
4714 spin_unlock_irq(&x->wait.lock);
4715 return timeout;
4716 }
4717
4718 /**
4719 * wait_for_completion: - waits for completion of a task
4720 * @x: holds the state of this particular completion
4721 *
4722 * This waits to be signaled for completion of a specific task. It is NOT
4723 * interruptible and there is no timeout.
4724 *
4725 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
4726 * and interrupt capability. Also see complete().
4727 */
4728 void __sched wait_for_completion(struct completion *x)
4729 {
4730 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
4731 }
4732 EXPORT_SYMBOL(wait_for_completion);
4733
4734 /**
4735 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
4736 * @x: holds the state of this particular completion
4737 * @timeout: timeout value in jiffies
4738 *
4739 * This waits for either a completion of a specific task to be signaled or for a
4740 * specified timeout to expire. The timeout is in jiffies. It is not
4741 * interruptible.
4742 */
4743 unsigned long __sched
4744 wait_for_completion_timeout(struct completion *x, unsigned long timeout)
4745 {
4746 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
4747 }
4748 EXPORT_SYMBOL(wait_for_completion_timeout);
4749
4750 /**
4751 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
4752 * @x: holds the state of this particular completion
4753 *
4754 * This waits for completion of a specific task to be signaled. It is
4755 * interruptible.
4756 */
4757 int __sched wait_for_completion_interruptible(struct completion *x)
4758 {
4759 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
4760 if (t == -ERESTARTSYS)
4761 return t;
4762 return 0;
4763 }
4764 EXPORT_SYMBOL(wait_for_completion_interruptible);
4765
4766 /**
4767 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
4768 * @x: holds the state of this particular completion
4769 * @timeout: timeout value in jiffies
4770 *
4771 * This waits for either a completion of a specific task to be signaled or for a
4772 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
4773 */
4774 unsigned long __sched
4775 wait_for_completion_interruptible_timeout(struct completion *x,
4776 unsigned long timeout)
4777 {
4778 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
4779 }
4780 EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
4781
4782 /**
4783 * wait_for_completion_killable: - waits for completion of a task (killable)
4784 * @x: holds the state of this particular completion
4785 *
4786 * This waits to be signaled for completion of a specific task. It can be
4787 * interrupted by a kill signal.
4788 */
4789 int __sched wait_for_completion_killable(struct completion *x)
4790 {
4791 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
4792 if (t == -ERESTARTSYS)
4793 return t;
4794 return 0;
4795 }
4796 EXPORT_SYMBOL(wait_for_completion_killable);
4797
4798 /**
4799 * try_wait_for_completion - try to decrement a completion without blocking
4800 * @x: completion structure
4801 *
4802 * Returns: 0 if a decrement cannot be done without blocking
4803 * 1 if a decrement succeeded.
4804 *
4805 * If a completion is being used as a counting completion,
4806 * attempt to decrement the counter without blocking. This
4807 * enables us to avoid waiting if the resource the completion
4808 * is protecting is not available.
4809 */
4810 bool try_wait_for_completion(struct completion *x)
4811 {
4812 int ret = 1;
4813
4814 spin_lock_irq(&x->wait.lock);
4815 if (!x->done)
4816 ret = 0;
4817 else
4818 x->done--;
4819 spin_unlock_irq(&x->wait.lock);
4820 return ret;
4821 }
4822 EXPORT_SYMBOL(try_wait_for_completion);
4823
4824 /**
4825 * completion_done - Test to see if a completion has any waiters
4826 * @x: completion structure
4827 *
4828 * Returns: 0 if there are waiters (wait_for_completion() in progress)
4829 * 1 if there are no waiters.
4830 *
4831 */
4832 bool completion_done(struct completion *x)
4833 {
4834 int ret = 1;
4835
4836 spin_lock_irq(&x->wait.lock);
4837 if (!x->done)
4838 ret = 0;
4839 spin_unlock_irq(&x->wait.lock);
4840 return ret;
4841 }
4842 EXPORT_SYMBOL(completion_done);
4843
4844 static long __sched
4845 sleep_on_common(wait_queue_head_t *q, int state, long timeout)
4846 {
4847 unsigned long flags;
4848 wait_queue_t wait;
4849
4850 init_waitqueue_entry(&wait, current);
4851
4852 __set_current_state(state);
4853
4854 spin_lock_irqsave(&q->lock, flags);
4855 __add_wait_queue(q, &wait);
4856 spin_unlock(&q->lock);
4857 timeout = schedule_timeout(timeout);
4858 spin_lock_irq(&q->lock);
4859 __remove_wait_queue(q, &wait);
4860 spin_unlock_irqrestore(&q->lock, flags);
4861
4862 return timeout;
4863 }
4864
4865 void __sched interruptible_sleep_on(wait_queue_head_t *q)
4866 {
4867 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
4868 }
4869 EXPORT_SYMBOL(interruptible_sleep_on);
4870
4871 long __sched
4872 interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
4873 {
4874 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
4875 }
4876 EXPORT_SYMBOL(interruptible_sleep_on_timeout);
4877
4878 void __sched sleep_on(wait_queue_head_t *q)
4879 {
4880 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
4881 }
4882 EXPORT_SYMBOL(sleep_on);
4883
4884 long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
4885 {
4886 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
4887 }
4888 EXPORT_SYMBOL(sleep_on_timeout);
4889
4890 #ifdef CONFIG_RT_MUTEXES
4891
4892 /*
4893 * rt_mutex_setprio - set the current priority of a task
4894 * @p: task
4895 * @prio: prio value (kernel-internal form)
4896 *
4897 * This function changes the 'effective' priority of a task. It does
4898 * not touch ->normal_prio like __setscheduler().
4899 *
4900 * Used by the rt_mutex code to implement priority inheritance logic.
4901 */
4902 void rt_mutex_setprio(struct task_struct *p, int prio)
4903 {
4904 unsigned long flags;
4905 int oldprio, on_rq, running;
4906 struct rq *rq;
4907 const struct sched_class *prev_class = p->sched_class;
4908
4909 BUG_ON(prio < 0 || prio > MAX_PRIO);
4910
4911 rq = task_rq_lock(p, &flags);
4912 update_rq_clock(rq);
4913
4914 oldprio = p->prio;
4915 on_rq = p->se.on_rq;
4916 running = task_current(rq, p);
4917 if (on_rq)
4918 dequeue_task(rq, p, 0);
4919 if (running)
4920 p->sched_class->put_prev_task(rq, p);
4921
4922 if (rt_prio(prio))
4923 p->sched_class = &rt_sched_class;
4924 else
4925 p->sched_class = &fair_sched_class;
4926
4927 p->prio = prio;
4928
4929 if (running)
4930 p->sched_class->set_curr_task(rq);
4931 if (on_rq) {
4932 enqueue_task(rq, p, 0);
4933
4934 check_class_changed(rq, p, prev_class, oldprio, running);
4935 }
4936 task_rq_unlock(rq, &flags);
4937 }
4938
4939 #endif
4940
4941 void set_user_nice(struct task_struct *p, long nice)
4942 {
4943 int old_prio, delta, on_rq;
4944 unsigned long flags;
4945 struct rq *rq;
4946
4947 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
4948 return;
4949 /*
4950 * We have to be careful, if called from sys_setpriority(),
4951 * the task might be in the middle of scheduling on another CPU.
4952 */
4953 rq = task_rq_lock(p, &flags);
4954 update_rq_clock(rq);
4955 /*
4956 * The RT priorities are set via sched_setscheduler(), but we still
4957 * allow the 'normal' nice value to be set - but as expected
4958 * it wont have any effect on scheduling until the task is
4959 * SCHED_FIFO/SCHED_RR:
4960 */
4961 if (task_has_rt_policy(p)) {
4962 p->static_prio = NICE_TO_PRIO(nice);
4963 goto out_unlock;
4964 }
4965 on_rq = p->se.on_rq;
4966 if (on_rq)
4967 dequeue_task(rq, p, 0);
4968
4969 p->static_prio = NICE_TO_PRIO(nice);
4970 set_load_weight(p);
4971 old_prio = p->prio;
4972 p->prio = effective_prio(p);
4973 delta = p->prio - old_prio;
4974
4975 if (on_rq) {
4976 enqueue_task(rq, p, 0);
4977 /*
4978 * If the task increased its priority or is running and
4979 * lowered its priority, then reschedule its CPU:
4980 */
4981 if (delta < 0 || (delta > 0 && task_running(rq, p)))
4982 resched_task(rq->curr);
4983 }
4984 out_unlock:
4985 task_rq_unlock(rq, &flags);
4986 }
4987 EXPORT_SYMBOL(set_user_nice);
4988
4989 /*
4990 * can_nice - check if a task can reduce its nice value
4991 * @p: task
4992 * @nice: nice value
4993 */
4994 int can_nice(const struct task_struct *p, const int nice)
4995 {
4996 /* convert nice value [19,-20] to rlimit style value [1,40] */
4997 int nice_rlim = 20 - nice;
4998
4999 return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
5000 capable(CAP_SYS_NICE));
5001 }
5002
5003 #ifdef __ARCH_WANT_SYS_NICE
5004
5005 /*
5006 * sys_nice - change the priority of the current process.
5007 * @increment: priority increment
5008 *
5009 * sys_setpriority is a more generic, but much slower function that
5010 * does similar things.
5011 */
5012 asmlinkage long sys_nice(int increment)
5013 {
5014 long nice, retval;
5015
5016 /*
5017 * Setpriority might change our priority at the same moment.
5018 * We don't have to worry. Conceptually one call occurs first
5019 * and we have a single winner.
5020 */
5021 if (increment < -40)
5022 increment = -40;
5023 if (increment > 40)
5024 increment = 40;
5025
5026 nice = PRIO_TO_NICE(current->static_prio) + increment;
5027 if (nice < -20)
5028 nice = -20;
5029 if (nice > 19)
5030 nice = 19;
5031
5032 if (increment < 0 && !can_nice(current, nice))
5033 return -EPERM;
5034
5035 retval = security_task_setnice(current, nice);
5036 if (retval)
5037 return retval;
5038
5039 set_user_nice(current, nice);
5040 return 0;
5041 }
5042
5043 #endif
5044
5045 /**
5046 * task_prio - return the priority value of a given task.
5047 * @p: the task in question.
5048 *
5049 * This is the priority value as seen by users in /proc.
5050 * RT tasks are offset by -200. Normal tasks are centered
5051 * around 0, value goes from -16 to +15.
5052 */
5053 int task_prio(const struct task_struct *p)
5054 {
5055 return p->prio - MAX_RT_PRIO;
5056 }
5057
5058 /**
5059 * task_nice - return the nice value of a given task.
5060 * @p: the task in question.
5061 */
5062 int task_nice(const struct task_struct *p)
5063 {
5064 return TASK_NICE(p);
5065 }
5066 EXPORT_SYMBOL(task_nice);
5067
5068 /**
5069 * idle_cpu - is a given cpu idle currently?
5070 * @cpu: the processor in question.
5071 */
5072 int idle_cpu(int cpu)
5073 {
5074 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
5075 }
5076
5077 /**
5078 * idle_task - return the idle task for a given cpu.
5079 * @cpu: the processor in question.
5080 */
5081 struct task_struct *idle_task(int cpu)
5082 {
5083 return cpu_rq(cpu)->idle;
5084 }
5085
5086 /**
5087 * find_process_by_pid - find a process with a matching PID value.
5088 * @pid: the pid in question.
5089 */
5090 static struct task_struct *find_process_by_pid(pid_t pid)
5091 {
5092 return pid ? find_task_by_vpid(pid) : current;
5093 }
5094
5095 /* Actually do priority change: must hold rq lock. */
5096 static void
5097 __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
5098 {
5099 BUG_ON(p->se.on_rq);
5100
5101 p->policy = policy;
5102 switch (p->policy) {
5103 case SCHED_NORMAL:
5104 case SCHED_BATCH:
5105 case SCHED_IDLE:
5106 p->sched_class = &fair_sched_class;
5107 break;
5108 case SCHED_FIFO:
5109 case SCHED_RR:
5110 p->sched_class = &rt_sched_class;
5111 break;
5112 }
5113
5114 p->rt_priority = prio;
5115 p->normal_prio = normal_prio(p);
5116 /* we are holding p->pi_lock already */
5117 p->prio = rt_mutex_getprio(p);
5118 set_load_weight(p);
5119 }
5120
5121 static int __sched_setscheduler(struct task_struct *p, int policy,
5122 struct sched_param *param, bool user)
5123 {
5124 int retval, oldprio, oldpolicy = -1, on_rq, running;
5125 unsigned long flags;
5126 const struct sched_class *prev_class = p->sched_class;
5127 struct rq *rq;
5128
5129 /* may grab non-irq protected spin_locks */
5130 BUG_ON(in_interrupt());
5131 recheck:
5132 /* double check policy once rq lock held */
5133 if (policy < 0)
5134 policy = oldpolicy = p->policy;
5135 else if (policy != SCHED_FIFO && policy != SCHED_RR &&
5136 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
5137 policy != SCHED_IDLE)
5138 return -EINVAL;
5139 /*
5140 * Valid priorities for SCHED_FIFO and SCHED_RR are
5141 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
5142 * SCHED_BATCH and SCHED_IDLE is 0.
5143 */
5144 if (param->sched_priority < 0 ||
5145 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
5146 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
5147 return -EINVAL;
5148 if (rt_policy(policy) != (param->sched_priority != 0))
5149 return -EINVAL;
5150
5151 /*
5152 * Allow unprivileged RT tasks to decrease priority:
5153 */
5154 if (user && !capable(CAP_SYS_NICE)) {
5155 if (rt_policy(policy)) {
5156 unsigned long rlim_rtprio;
5157
5158 if (!lock_task_sighand(p, &flags))
5159 return -ESRCH;
5160 rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
5161 unlock_task_sighand(p, &flags);
5162
5163 /* can't set/change the rt policy */
5164 if (policy != p->policy && !rlim_rtprio)
5165 return -EPERM;
5166
5167 /* can't increase priority */
5168 if (param->sched_priority > p->rt_priority &&
5169 param->sched_priority > rlim_rtprio)
5170 return -EPERM;
5171 }
5172 /*
5173 * Like positive nice levels, dont allow tasks to
5174 * move out of SCHED_IDLE either:
5175 */
5176 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
5177 return -EPERM;
5178
5179 /* can't change other user's priorities */
5180 if ((current->euid != p->euid) &&
5181 (current->euid != p->uid))
5182 return -EPERM;
5183 }
5184
5185 if (user) {
5186 #ifdef CONFIG_RT_GROUP_SCHED
5187 /*
5188 * Do not allow realtime tasks into groups that have no runtime
5189 * assigned.
5190 */
5191 if (rt_bandwidth_enabled() && rt_policy(policy) &&
5192 task_group(p)->rt_bandwidth.rt_runtime == 0)
5193 return -EPERM;
5194 #endif
5195
5196 retval = security_task_setscheduler(p, policy, param);
5197 if (retval)
5198 return retval;
5199 }
5200
5201 /*
5202 * make sure no PI-waiters arrive (or leave) while we are
5203 * changing the priority of the task:
5204 */
5205 spin_lock_irqsave(&p->pi_lock, flags);
5206 /*
5207 * To be able to change p->policy safely, the apropriate
5208 * runqueue lock must be held.
5209 */
5210 rq = __task_rq_lock(p);
5211 /* recheck policy now with rq lock held */
5212 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
5213 policy = oldpolicy = -1;
5214 __task_rq_unlock(rq);
5215 spin_unlock_irqrestore(&p->pi_lock, flags);
5216 goto recheck;
5217 }
5218 update_rq_clock(rq);
5219 on_rq = p->se.on_rq;
5220 running = task_current(rq, p);
5221 if (on_rq)
5222 deactivate_task(rq, p, 0);
5223 if (running)
5224 p->sched_class->put_prev_task(rq, p);
5225
5226 oldprio = p->prio;
5227 __setscheduler(rq, p, policy, param->sched_priority);
5228
5229 if (running)
5230 p->sched_class->set_curr_task(rq);
5231 if (on_rq) {
5232 activate_task(rq, p, 0);
5233
5234 check_class_changed(rq, p, prev_class, oldprio, running);
5235 }
5236 __task_rq_unlock(rq);
5237 spin_unlock_irqrestore(&p->pi_lock, flags);
5238
5239 rt_mutex_adjust_pi(p);
5240
5241 return 0;
5242 }
5243
5244 /**
5245 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
5246 * @p: the task in question.
5247 * @policy: new policy.
5248 * @param: structure containing the new RT priority.
5249 *
5250 * NOTE that the task may be already dead.
5251 */
5252 int sched_setscheduler(struct task_struct *p, int policy,
5253 struct sched_param *param)
5254 {
5255 return __sched_setscheduler(p, policy, param, true);
5256 }
5257 EXPORT_SYMBOL_GPL(sched_setscheduler);
5258
5259 /**
5260 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
5261 * @p: the task in question.
5262 * @policy: new policy.
5263 * @param: structure containing the new RT priority.
5264 *
5265 * Just like sched_setscheduler, only don't bother checking if the
5266 * current context has permission. For example, this is needed in
5267 * stop_machine(): we create temporary high priority worker threads,
5268 * but our caller might not have that capability.
5269 */
5270 int sched_setscheduler_nocheck(struct task_struct *p, int policy,
5271 struct sched_param *param)
5272 {
5273 return __sched_setscheduler(p, policy, param, false);
5274 }
5275
5276 static int
5277 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
5278 {
5279 struct sched_param lparam;
5280 struct task_struct *p;
5281 int retval;
5282
5283 if (!param || pid < 0)
5284 return -EINVAL;
5285 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
5286 return -EFAULT;
5287
5288 rcu_read_lock();
5289 retval = -ESRCH;
5290 p = find_process_by_pid(pid);
5291 if (p != NULL)
5292 retval = sched_setscheduler(p, policy, &lparam);
5293 rcu_read_unlock();
5294
5295 return retval;
5296 }
5297
5298 /**
5299 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
5300 * @pid: the pid in question.
5301 * @policy: new policy.
5302 * @param: structure containing the new RT priority.
5303 */
5304 asmlinkage long
5305 sys_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
5306 {
5307 /* negative values for policy are not valid */
5308 if (policy < 0)
5309 return -EINVAL;
5310
5311 return do_sched_setscheduler(pid, policy, param);
5312 }
5313
5314 /**
5315 * sys_sched_setparam - set/change the RT priority of a thread
5316 * @pid: the pid in question.
5317 * @param: structure containing the new RT priority.
5318 */
5319 asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
5320 {
5321 return do_sched_setscheduler(pid, -1, param);
5322 }
5323
5324 /**
5325 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
5326 * @pid: the pid in question.
5327 */
5328 asmlinkage long sys_sched_getscheduler(pid_t pid)
5329 {
5330 struct task_struct *p;
5331 int retval;
5332
5333 if (pid < 0)
5334 return -EINVAL;
5335
5336 retval = -ESRCH;
5337 read_lock(&tasklist_lock);
5338 p = find_process_by_pid(pid);
5339 if (p) {
5340 retval = security_task_getscheduler(p);
5341 if (!retval)
5342 retval = p->policy;
5343 }
5344 read_unlock(&tasklist_lock);
5345 return retval;
5346 }
5347
5348 /**
5349 * sys_sched_getscheduler - get the RT priority of a thread
5350 * @pid: the pid in question.
5351 * @param: structure containing the RT priority.
5352 */
5353 asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
5354 {
5355 struct sched_param lp;
5356 struct task_struct *p;
5357 int retval;
5358
5359 if (!param || pid < 0)
5360 return -EINVAL;
5361
5362 read_lock(&tasklist_lock);
5363 p = find_process_by_pid(pid);
5364 retval = -ESRCH;
5365 if (!p)
5366 goto out_unlock;
5367
5368 retval = security_task_getscheduler(p);
5369 if (retval)
5370 goto out_unlock;
5371
5372 lp.sched_priority = p->rt_priority;
5373 read_unlock(&tasklist_lock);
5374
5375 /*
5376 * This one might sleep, we cannot do it with a spinlock held ...
5377 */
5378 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
5379
5380 return retval;
5381
5382 out_unlock:
5383 read_unlock(&tasklist_lock);
5384 return retval;
5385 }
5386
5387 long sched_setaffinity(pid_t pid, const cpumask_t *in_mask)
5388 {
5389 cpumask_t cpus_allowed;
5390 cpumask_t new_mask = *in_mask;
5391 struct task_struct *p;
5392 int retval;
5393
5394 get_online_cpus();
5395 read_lock(&tasklist_lock);
5396
5397 p = find_process_by_pid(pid);
5398 if (!p) {
5399 read_unlock(&tasklist_lock);
5400 put_online_cpus();
5401 return -ESRCH;
5402 }
5403
5404 /*
5405 * It is not safe to call set_cpus_allowed with the
5406 * tasklist_lock held. We will bump the task_struct's
5407 * usage count and then drop tasklist_lock.
5408 */
5409 get_task_struct(p);
5410 read_unlock(&tasklist_lock);
5411
5412 retval = -EPERM;
5413 if ((current->euid != p->euid) && (current->euid != p->uid) &&
5414 !capable(CAP_SYS_NICE))
5415 goto out_unlock;
5416
5417 retval = security_task_setscheduler(p, 0, NULL);
5418 if (retval)
5419 goto out_unlock;
5420
5421 cpuset_cpus_allowed(p, &cpus_allowed);
5422 cpus_and(new_mask, new_mask, cpus_allowed);
5423 again:
5424 retval = set_cpus_allowed_ptr(p, &new_mask);
5425
5426 if (!retval) {
5427 cpuset_cpus_allowed(p, &cpus_allowed);
5428 if (!cpus_subset(new_mask, cpus_allowed)) {
5429 /*
5430 * We must have raced with a concurrent cpuset
5431 * update. Just reset the cpus_allowed to the
5432 * cpuset's cpus_allowed
5433 */
5434 new_mask = cpus_allowed;
5435 goto again;
5436 }
5437 }
5438 out_unlock:
5439 put_task_struct(p);
5440 put_online_cpus();
5441 return retval;
5442 }
5443
5444 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
5445 cpumask_t *new_mask)
5446 {
5447 if (len < sizeof(cpumask_t)) {
5448 memset(new_mask, 0, sizeof(cpumask_t));
5449 } else if (len > sizeof(cpumask_t)) {
5450 len = sizeof(cpumask_t);
5451 }
5452 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
5453 }
5454
5455 /**
5456 * sys_sched_setaffinity - set the cpu affinity of a process
5457 * @pid: pid of the process
5458 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5459 * @user_mask_ptr: user-space pointer to the new cpu mask
5460 */
5461 asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
5462 unsigned long __user *user_mask_ptr)
5463 {
5464 cpumask_t new_mask;
5465 int retval;
5466
5467 retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
5468 if (retval)
5469 return retval;
5470
5471 return sched_setaffinity(pid, &new_mask);
5472 }
5473
5474 long sched_getaffinity(pid_t pid, cpumask_t *mask)
5475 {
5476 struct task_struct *p;
5477 int retval;
5478
5479 get_online_cpus();
5480 read_lock(&tasklist_lock);
5481
5482 retval = -ESRCH;
5483 p = find_process_by_pid(pid);
5484 if (!p)
5485 goto out_unlock;
5486
5487 retval = security_task_getscheduler(p);
5488 if (retval)
5489 goto out_unlock;
5490
5491 cpus_and(*mask, p->cpus_allowed, cpu_online_map);
5492
5493 out_unlock:
5494 read_unlock(&tasklist_lock);
5495 put_online_cpus();
5496
5497 return retval;
5498 }
5499
5500 /**
5501 * sys_sched_getaffinity - get the cpu affinity of a process
5502 * @pid: pid of the process
5503 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5504 * @user_mask_ptr: user-space pointer to hold the current cpu mask
5505 */
5506 asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
5507 unsigned long __user *user_mask_ptr)
5508 {
5509 int ret;
5510 cpumask_t mask;
5511
5512 if (len < sizeof(cpumask_t))
5513 return -EINVAL;
5514
5515 ret = sched_getaffinity(pid, &mask);
5516 if (ret < 0)
5517 return ret;
5518
5519 if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
5520 return -EFAULT;
5521
5522 return sizeof(cpumask_t);
5523 }
5524
5525 /**
5526 * sys_sched_yield - yield the current processor to other threads.
5527 *
5528 * This function yields the current CPU to other tasks. If there are no
5529 * other threads running on this CPU then this function will return.
5530 */
5531 asmlinkage long sys_sched_yield(void)
5532 {
5533 struct rq *rq = this_rq_lock();
5534
5535 schedstat_inc(rq, yld_count);
5536 current->sched_class->yield_task(rq);
5537
5538 /*
5539 * Since we are going to call schedule() anyway, there's
5540 * no need to preempt or enable interrupts:
5541 */
5542 __release(rq->lock);
5543 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
5544 _raw_spin_unlock(&rq->lock);
5545 preempt_enable_no_resched();
5546
5547 schedule();
5548
5549 return 0;
5550 }
5551
5552 static void __cond_resched(void)
5553 {
5554 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
5555 __might_sleep(__FILE__, __LINE__);
5556 #endif
5557 /*
5558 * The BKS might be reacquired before we have dropped
5559 * PREEMPT_ACTIVE, which could trigger a second
5560 * cond_resched() call.
5561 */
5562 do {
5563 add_preempt_count(PREEMPT_ACTIVE);
5564 schedule();
5565 sub_preempt_count(PREEMPT_ACTIVE);
5566 } while (need_resched());
5567 }
5568
5569 int __sched _cond_resched(void)
5570 {
5571 if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
5572 system_state == SYSTEM_RUNNING) {
5573 __cond_resched();
5574 return 1;
5575 }
5576 return 0;
5577 }
5578 EXPORT_SYMBOL(_cond_resched);
5579
5580 /*
5581 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
5582 * call schedule, and on return reacquire the lock.
5583 *
5584 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
5585 * operations here to prevent schedule() from being called twice (once via
5586 * spin_unlock(), once by hand).
5587 */
5588 int cond_resched_lock(spinlock_t *lock)
5589 {
5590 int resched = need_resched() && system_state == SYSTEM_RUNNING;
5591 int ret = 0;
5592
5593 if (spin_needbreak(lock) || resched) {
5594 spin_unlock(lock);
5595 if (resched && need_resched())
5596 __cond_resched();
5597 else
5598 cpu_relax();
5599 ret = 1;
5600 spin_lock(lock);
5601 }
5602 return ret;
5603 }
5604 EXPORT_SYMBOL(cond_resched_lock);
5605
5606 int __sched cond_resched_softirq(void)
5607 {
5608 BUG_ON(!in_softirq());
5609
5610 if (need_resched() && system_state == SYSTEM_RUNNING) {
5611 local_bh_enable();
5612 __cond_resched();
5613 local_bh_disable();
5614 return 1;
5615 }
5616 return 0;
5617 }
5618 EXPORT_SYMBOL(cond_resched_softirq);
5619
5620 /**
5621 * yield - yield the current processor to other threads.
5622 *
5623 * This is a shortcut for kernel-space yielding - it marks the
5624 * thread runnable and calls sys_sched_yield().
5625 */
5626 void __sched yield(void)
5627 {
5628 set_current_state(TASK_RUNNING);
5629 sys_sched_yield();
5630 }
5631 EXPORT_SYMBOL(yield);
5632
5633 /*
5634 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
5635 * that process accounting knows that this is a task in IO wait state.
5636 *
5637 * But don't do that if it is a deliberate, throttling IO wait (this task
5638 * has set its backing_dev_info: the queue against which it should throttle)
5639 */
5640 void __sched io_schedule(void)
5641 {
5642 struct rq *rq = &__raw_get_cpu_var(runqueues);
5643
5644 delayacct_blkio_start();
5645 atomic_inc(&rq->nr_iowait);
5646 schedule();
5647 atomic_dec(&rq->nr_iowait);
5648 delayacct_blkio_end();
5649 }
5650 EXPORT_SYMBOL(io_schedule);
5651
5652 long __sched io_schedule_timeout(long timeout)
5653 {
5654 struct rq *rq = &__raw_get_cpu_var(runqueues);
5655 long ret;
5656
5657 delayacct_blkio_start();
5658 atomic_inc(&rq->nr_iowait);
5659 ret = schedule_timeout(timeout);
5660 atomic_dec(&rq->nr_iowait);
5661 delayacct_blkio_end();
5662 return ret;
5663 }
5664
5665 /**
5666 * sys_sched_get_priority_max - return maximum RT priority.
5667 * @policy: scheduling class.
5668 *
5669 * this syscall returns the maximum rt_priority that can be used
5670 * by a given scheduling class.
5671 */
5672 asmlinkage long sys_sched_get_priority_max(int policy)
5673 {
5674 int ret = -EINVAL;
5675
5676 switch (policy) {
5677 case SCHED_FIFO:
5678 case SCHED_RR:
5679 ret = MAX_USER_RT_PRIO-1;
5680 break;
5681 case SCHED_NORMAL:
5682 case SCHED_BATCH:
5683 case SCHED_IDLE:
5684 ret = 0;
5685 break;
5686 }
5687 return ret;
5688 }
5689
5690 /**
5691 * sys_sched_get_priority_min - return minimum RT priority.
5692 * @policy: scheduling class.
5693 *
5694 * this syscall returns the minimum rt_priority that can be used
5695 * by a given scheduling class.
5696 */
5697 asmlinkage long sys_sched_get_priority_min(int policy)
5698 {
5699 int ret = -EINVAL;
5700
5701 switch (policy) {
5702 case SCHED_FIFO:
5703 case SCHED_RR:
5704 ret = 1;
5705 break;
5706 case SCHED_NORMAL:
5707 case SCHED_BATCH:
5708 case SCHED_IDLE:
5709 ret = 0;
5710 }
5711 return ret;
5712 }
5713
5714 /**
5715 * sys_sched_rr_get_interval - return the default timeslice of a process.
5716 * @pid: pid of the process.
5717 * @interval: userspace pointer to the timeslice value.
5718 *
5719 * this syscall writes the default timeslice value of a given process
5720 * into the user-space timespec buffer. A value of '0' means infinity.
5721 */
5722 asmlinkage
5723 long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
5724 {
5725 struct task_struct *p;
5726 unsigned int time_slice;
5727 int retval;
5728 struct timespec t;
5729
5730 if (pid < 0)
5731 return -EINVAL;
5732
5733 retval = -ESRCH;
5734 read_lock(&tasklist_lock);
5735 p = find_process_by_pid(pid);
5736 if (!p)
5737 goto out_unlock;
5738
5739 retval = security_task_getscheduler(p);
5740 if (retval)
5741 goto out_unlock;
5742
5743 /*
5744 * Time slice is 0 for SCHED_FIFO tasks and for SCHED_OTHER
5745 * tasks that are on an otherwise idle runqueue:
5746 */
5747 time_slice = 0;
5748 if (p->policy == SCHED_RR) {
5749 time_slice = DEF_TIMESLICE;
5750 } else if (p->policy != SCHED_FIFO) {
5751 struct sched_entity *se = &p->se;
5752 unsigned long flags;
5753 struct rq *rq;
5754
5755 rq = task_rq_lock(p, &flags);
5756 if (rq->cfs.load.weight)
5757 time_slice = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
5758 task_rq_unlock(rq, &flags);
5759 }
5760 read_unlock(&tasklist_lock);
5761 jiffies_to_timespec(time_slice, &t);
5762 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
5763 return retval;
5764
5765 out_unlock:
5766 read_unlock(&tasklist_lock);
5767 return retval;
5768 }
5769
5770 static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
5771
5772 void sched_show_task(struct task_struct *p)
5773 {
5774 unsigned long free = 0;
5775 unsigned state;
5776
5777 state = p->state ? __ffs(p->state) + 1 : 0;
5778 printk(KERN_INFO "%-13.13s %c", p->comm,
5779 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
5780 #if BITS_PER_LONG == 32
5781 if (state == TASK_RUNNING)
5782 printk(KERN_CONT " running ");
5783 else
5784 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
5785 #else
5786 if (state == TASK_RUNNING)
5787 printk(KERN_CONT " running task ");
5788 else
5789 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
5790 #endif
5791 #ifdef CONFIG_DEBUG_STACK_USAGE
5792 {
5793 unsigned long *n = end_of_stack(p);
5794 while (!*n)
5795 n++;
5796 free = (unsigned long)n - (unsigned long)end_of_stack(p);
5797 }
5798 #endif
5799 printk(KERN_CONT "%5lu %5d %6d\n", free,
5800 task_pid_nr(p), task_pid_nr(p->real_parent));
5801
5802 show_stack(p, NULL);
5803 }
5804
5805 void show_state_filter(unsigned long state_filter)
5806 {
5807 struct task_struct *g, *p;
5808
5809 #if BITS_PER_LONG == 32
5810 printk(KERN_INFO
5811 " task PC stack pid father\n");
5812 #else
5813 printk(KERN_INFO
5814 " task PC stack pid father\n");
5815 #endif
5816 read_lock(&tasklist_lock);
5817 do_each_thread(g, p) {
5818 /*
5819 * reset the NMI-timeout, listing all files on a slow
5820 * console might take alot of time:
5821 */
5822 touch_nmi_watchdog();
5823 if (!state_filter || (p->state & state_filter))
5824 sched_show_task(p);
5825 } while_each_thread(g, p);
5826
5827 touch_all_softlockup_watchdogs();
5828
5829 #ifdef CONFIG_SCHED_DEBUG
5830 sysrq_sched_debug_show();
5831 #endif
5832 read_unlock(&tasklist_lock);
5833 /*
5834 * Only show locks if all tasks are dumped:
5835 */
5836 if (state_filter == -1)
5837 debug_show_all_locks();
5838 }
5839
5840 void __cpuinit init_idle_bootup_task(struct task_struct *idle)
5841 {
5842 idle->sched_class = &idle_sched_class;
5843 }
5844
5845 /**
5846 * init_idle - set up an idle thread for a given CPU
5847 * @idle: task in question
5848 * @cpu: cpu the idle task belongs to
5849 *
5850 * NOTE: this function does not set the idle thread's NEED_RESCHED
5851 * flag, to make booting more robust.
5852 */
5853 void __cpuinit init_idle(struct task_struct *idle, int cpu)
5854 {
5855 struct rq *rq = cpu_rq(cpu);
5856 unsigned long flags;
5857
5858 __sched_fork(idle);
5859 idle->se.exec_start = sched_clock();
5860
5861 idle->prio = idle->normal_prio = MAX_PRIO;
5862 idle->cpus_allowed = cpumask_of_cpu(cpu);
5863 __set_task_cpu(idle, cpu);
5864
5865 spin_lock_irqsave(&rq->lock, flags);
5866 rq->curr = rq->idle = idle;
5867 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
5868 idle->oncpu = 1;
5869 #endif
5870 spin_unlock_irqrestore(&rq->lock, flags);
5871
5872 /* Set the preempt count _outside_ the spinlocks! */
5873 #if defined(CONFIG_PREEMPT)
5874 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
5875 #else
5876 task_thread_info(idle)->preempt_count = 0;
5877 #endif
5878 /*
5879 * The idle tasks have their own, simple scheduling class:
5880 */
5881 idle->sched_class = &idle_sched_class;
5882 }
5883
5884 /*
5885 * In a system that switches off the HZ timer nohz_cpu_mask
5886 * indicates which cpus entered this state. This is used
5887 * in the rcu update to wait only for active cpus. For system
5888 * which do not switch off the HZ timer nohz_cpu_mask should
5889 * always be CPU_MASK_NONE.
5890 */
5891 cpumask_t nohz_cpu_mask = CPU_MASK_NONE;
5892
5893 /*
5894 * Increase the granularity value when there are more CPUs,
5895 * because with more CPUs the 'effective latency' as visible
5896 * to users decreases. But the relationship is not linear,
5897 * so pick a second-best guess by going with the log2 of the
5898 * number of CPUs.
5899 *
5900 * This idea comes from the SD scheduler of Con Kolivas:
5901 */
5902 static inline void sched_init_granularity(void)
5903 {
5904 unsigned int factor = 1 + ilog2(num_online_cpus());
5905 const unsigned long limit = 200000000;
5906
5907 sysctl_sched_min_granularity *= factor;
5908 if (sysctl_sched_min_granularity > limit)
5909 sysctl_sched_min_granularity = limit;
5910
5911 sysctl_sched_latency *= factor;
5912 if (sysctl_sched_latency > limit)
5913 sysctl_sched_latency = limit;
5914
5915 sysctl_sched_wakeup_granularity *= factor;
5916
5917 sysctl_sched_shares_ratelimit *= factor;
5918 }
5919
5920 #ifdef CONFIG_SMP
5921 /*
5922 * This is how migration works:
5923 *
5924 * 1) we queue a struct migration_req structure in the source CPU's
5925 * runqueue and wake up that CPU's migration thread.
5926 * 2) we down() the locked semaphore => thread blocks.
5927 * 3) migration thread wakes up (implicitly it forces the migrated
5928 * thread off the CPU)
5929 * 4) it gets the migration request and checks whether the migrated
5930 * task is still in the wrong runqueue.
5931 * 5) if it's in the wrong runqueue then the migration thread removes
5932 * it and puts it into the right queue.
5933 * 6) migration thread up()s the semaphore.
5934 * 7) we wake up and the migration is done.
5935 */
5936
5937 /*
5938 * Change a given task's CPU affinity. Migrate the thread to a
5939 * proper CPU and schedule it away if the CPU it's executing on
5940 * is removed from the allowed bitmask.
5941 *
5942 * NOTE: the caller must have a valid reference to the task, the
5943 * task must not exit() & deallocate itself prematurely. The
5944 * call is not atomic; no spinlocks may be held.
5945 */
5946 int set_cpus_allowed_ptr(struct task_struct *p, const cpumask_t *new_mask)
5947 {
5948 struct migration_req req;
5949 unsigned long flags;
5950 struct rq *rq;
5951 int ret = 0;
5952
5953 rq = task_rq_lock(p, &flags);
5954 if (!cpus_intersects(*new_mask, cpu_online_map)) {
5955 ret = -EINVAL;
5956 goto out;
5957 }
5958
5959 if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
5960 !cpus_equal(p->cpus_allowed, *new_mask))) {
5961 ret = -EINVAL;
5962 goto out;
5963 }
5964
5965 if (p->sched_class->set_cpus_allowed)
5966 p->sched_class->set_cpus_allowed(p, new_mask);
5967 else {
5968 p->cpus_allowed = *new_mask;
5969 p->rt.nr_cpus_allowed = cpus_weight(*new_mask);
5970 }
5971
5972 /* Can the task run on the task's current CPU? If so, we're done */
5973 if (cpu_isset(task_cpu(p), *new_mask))
5974 goto out;
5975
5976 if (migrate_task(p, any_online_cpu(*new_mask), &req)) {
5977 /* Need help from migration thread: drop lock and wait. */
5978 task_rq_unlock(rq, &flags);
5979 wake_up_process(rq->migration_thread);
5980 wait_for_completion(&req.done);
5981 tlb_migrate_finish(p->mm);
5982 return 0;
5983 }
5984 out:
5985 task_rq_unlock(rq, &flags);
5986
5987 return ret;
5988 }
5989 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
5990
5991 /*
5992 * Move (not current) task off this cpu, onto dest cpu. We're doing
5993 * this because either it can't run here any more (set_cpus_allowed()
5994 * away from this CPU, or CPU going down), or because we're
5995 * attempting to rebalance this task on exec (sched_exec).
5996 *
5997 * So we race with normal scheduler movements, but that's OK, as long
5998 * as the task is no longer on this CPU.
5999 *
6000 * Returns non-zero if task was successfully migrated.
6001 */
6002 static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
6003 {
6004 struct rq *rq_dest, *rq_src;
6005 int ret = 0, on_rq;
6006
6007 if (unlikely(!cpu_active(dest_cpu)))
6008 return ret;
6009
6010 rq_src = cpu_rq(src_cpu);
6011 rq_dest = cpu_rq(dest_cpu);
6012
6013 double_rq_lock(rq_src, rq_dest);
6014 /* Already moved. */
6015 if (task_cpu(p) != src_cpu)
6016 goto done;
6017 /* Affinity changed (again). */
6018 if (!cpu_isset(dest_cpu, p->cpus_allowed))
6019 goto fail;
6020
6021 on_rq = p->se.on_rq;
6022 if (on_rq)
6023 deactivate_task(rq_src, p, 0);
6024
6025 set_task_cpu(p, dest_cpu);
6026 if (on_rq) {
6027 activate_task(rq_dest, p, 0);
6028 check_preempt_curr(rq_dest, p, 0);
6029 }
6030 done:
6031 ret = 1;
6032 fail:
6033 double_rq_unlock(rq_src, rq_dest);
6034 return ret;
6035 }
6036
6037 /*
6038 * migration_thread - this is a highprio system thread that performs
6039 * thread migration by bumping thread off CPU then 'pushing' onto
6040 * another runqueue.
6041 */
6042 static int migration_thread(void *data)
6043 {
6044 int cpu = (long)data;
6045 struct rq *rq;
6046
6047 rq = cpu_rq(cpu);
6048 BUG_ON(rq->migration_thread != current);
6049
6050 set_current_state(TASK_INTERRUPTIBLE);
6051 while (!kthread_should_stop()) {
6052 struct migration_req *req;
6053 struct list_head *head;
6054
6055 spin_lock_irq(&rq->lock);
6056
6057 if (cpu_is_offline(cpu)) {
6058 spin_unlock_irq(&rq->lock);
6059 goto wait_to_die;
6060 }
6061
6062 if (rq->active_balance) {
6063 active_load_balance(rq, cpu);
6064 rq->active_balance = 0;
6065 }
6066
6067 head = &rq->migration_queue;
6068
6069 if (list_empty(head)) {
6070 spin_unlock_irq(&rq->lock);
6071 schedule();
6072 set_current_state(TASK_INTERRUPTIBLE);
6073 continue;
6074 }
6075 req = list_entry(head->next, struct migration_req, list);
6076 list_del_init(head->next);
6077
6078 spin_unlock(&rq->lock);
6079 __migrate_task(req->task, cpu, req->dest_cpu);
6080 local_irq_enable();
6081
6082 complete(&req->done);
6083 }
6084 __set_current_state(TASK_RUNNING);
6085 return 0;
6086
6087 wait_to_die:
6088 /* Wait for kthread_stop */
6089 set_current_state(TASK_INTERRUPTIBLE);
6090 while (!kthread_should_stop()) {
6091 schedule();
6092 set_current_state(TASK_INTERRUPTIBLE);
6093 }
6094 __set_current_state(TASK_RUNNING);
6095 return 0;
6096 }
6097
6098 #ifdef CONFIG_HOTPLUG_CPU
6099
6100 static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
6101 {
6102 int ret;
6103
6104 local_irq_disable();
6105 ret = __migrate_task(p, src_cpu, dest_cpu);
6106 local_irq_enable();
6107 return ret;
6108 }
6109
6110 /*
6111 * Figure out where task on dead CPU should go, use force if necessary.
6112 * NOTE: interrupts should be disabled by the caller
6113 */
6114 static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
6115 {
6116 unsigned long flags;
6117 cpumask_t mask;
6118 struct rq *rq;
6119 int dest_cpu;
6120
6121 do {
6122 /* On same node? */
6123 mask = node_to_cpumask(cpu_to_node(dead_cpu));
6124 cpus_and(mask, mask, p->cpus_allowed);
6125 dest_cpu = any_online_cpu(mask);
6126
6127 /* On any allowed CPU? */
6128 if (dest_cpu >= nr_cpu_ids)
6129 dest_cpu = any_online_cpu(p->cpus_allowed);
6130
6131 /* No more Mr. Nice Guy. */
6132 if (dest_cpu >= nr_cpu_ids) {
6133 cpumask_t cpus_allowed;
6134
6135 cpuset_cpus_allowed_locked(p, &cpus_allowed);
6136 /*
6137 * Try to stay on the same cpuset, where the
6138 * current cpuset may be a subset of all cpus.
6139 * The cpuset_cpus_allowed_locked() variant of
6140 * cpuset_cpus_allowed() will not block. It must be
6141 * called within calls to cpuset_lock/cpuset_unlock.
6142 */
6143 rq = task_rq_lock(p, &flags);
6144 p->cpus_allowed = cpus_allowed;
6145 dest_cpu = any_online_cpu(p->cpus_allowed);
6146 task_rq_unlock(rq, &flags);
6147
6148 /*
6149 * Don't tell them about moving exiting tasks or
6150 * kernel threads (both mm NULL), since they never
6151 * leave kernel.
6152 */
6153 if (p->mm && printk_ratelimit()) {
6154 printk(KERN_INFO "process %d (%s) no "
6155 "longer affine to cpu%d\n",
6156 task_pid_nr(p), p->comm, dead_cpu);
6157 }
6158 }
6159 } while (!__migrate_task_irq(p, dead_cpu, dest_cpu));
6160 }
6161
6162 /*
6163 * While a dead CPU has no uninterruptible tasks queued at this point,
6164 * it might still have a nonzero ->nr_uninterruptible counter, because
6165 * for performance reasons the counter is not stricly tracking tasks to
6166 * their home CPUs. So we just add the counter to another CPU's counter,
6167 * to keep the global sum constant after CPU-down:
6168 */
6169 static void migrate_nr_uninterruptible(struct rq *rq_src)
6170 {
6171 struct rq *rq_dest = cpu_rq(any_online_cpu(*CPU_MASK_ALL_PTR));
6172 unsigned long flags;
6173
6174 local_irq_save(flags);
6175 double_rq_lock(rq_src, rq_dest);
6176 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
6177 rq_src->nr_uninterruptible = 0;
6178 double_rq_unlock(rq_src, rq_dest);
6179 local_irq_restore(flags);
6180 }
6181
6182 /* Run through task list and migrate tasks from the dead cpu. */
6183 static void migrate_live_tasks(int src_cpu)
6184 {
6185 struct task_struct *p, *t;
6186
6187 read_lock(&tasklist_lock);
6188
6189 do_each_thread(t, p) {
6190 if (p == current)
6191 continue;
6192
6193 if (task_cpu(p) == src_cpu)
6194 move_task_off_dead_cpu(src_cpu, p);
6195 } while_each_thread(t, p);
6196
6197 read_unlock(&tasklist_lock);
6198 }
6199
6200 /*
6201 * Schedules idle task to be the next runnable task on current CPU.
6202 * It does so by boosting its priority to highest possible.
6203 * Used by CPU offline code.
6204 */
6205 void sched_idle_next(void)
6206 {
6207 int this_cpu = smp_processor_id();
6208 struct rq *rq = cpu_rq(this_cpu);
6209 struct task_struct *p = rq->idle;
6210 unsigned long flags;
6211
6212 /* cpu has to be offline */
6213 BUG_ON(cpu_online(this_cpu));
6214
6215 /*
6216 * Strictly not necessary since rest of the CPUs are stopped by now
6217 * and interrupts disabled on the current cpu.
6218 */
6219 spin_lock_irqsave(&rq->lock, flags);
6220
6221 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
6222
6223 update_rq_clock(rq);
6224 activate_task(rq, p, 0);
6225
6226 spin_unlock_irqrestore(&rq->lock, flags);
6227 }
6228
6229 /*
6230 * Ensures that the idle task is using init_mm right before its cpu goes
6231 * offline.
6232 */
6233 void idle_task_exit(void)
6234 {
6235 struct mm_struct *mm = current->active_mm;
6236
6237 BUG_ON(cpu_online(smp_processor_id()));
6238
6239 if (mm != &init_mm)
6240 switch_mm(mm, &init_mm, current);
6241 mmdrop(mm);
6242 }
6243
6244 /* called under rq->lock with disabled interrupts */
6245 static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
6246 {
6247 struct rq *rq = cpu_rq(dead_cpu);
6248
6249 /* Must be exiting, otherwise would be on tasklist. */
6250 BUG_ON(!p->exit_state);
6251
6252 /* Cannot have done final schedule yet: would have vanished. */
6253 BUG_ON(p->state == TASK_DEAD);
6254
6255 get_task_struct(p);
6256
6257 /*
6258 * Drop lock around migration; if someone else moves it,
6259 * that's OK. No task can be added to this CPU, so iteration is
6260 * fine.
6261 */
6262 spin_unlock_irq(&rq->lock);
6263 move_task_off_dead_cpu(dead_cpu, p);
6264 spin_lock_irq(&rq->lock);
6265
6266 put_task_struct(p);
6267 }
6268
6269 /* release_task() removes task from tasklist, so we won't find dead tasks. */
6270 static void migrate_dead_tasks(unsigned int dead_cpu)
6271 {
6272 struct rq *rq = cpu_rq(dead_cpu);
6273 struct task_struct *next;
6274
6275 for ( ; ; ) {
6276 if (!rq->nr_running)
6277 break;
6278 update_rq_clock(rq);
6279 next = pick_next_task(rq, rq->curr);
6280 if (!next)
6281 break;
6282 next->sched_class->put_prev_task(rq, next);
6283 migrate_dead(dead_cpu, next);
6284
6285 }
6286 }
6287 #endif /* CONFIG_HOTPLUG_CPU */
6288
6289 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
6290
6291 static struct ctl_table sd_ctl_dir[] = {
6292 {
6293 .procname = "sched_domain",
6294 .mode = 0555,
6295 },
6296 {0, },
6297 };
6298
6299 static struct ctl_table sd_ctl_root[] = {
6300 {
6301 .ctl_name = CTL_KERN,
6302 .procname = "kernel",
6303 .mode = 0555,
6304 .child = sd_ctl_dir,
6305 },
6306 {0, },
6307 };
6308
6309 static struct ctl_table *sd_alloc_ctl_entry(int n)
6310 {
6311 struct ctl_table *entry =
6312 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
6313
6314 return entry;
6315 }
6316
6317 static void sd_free_ctl_entry(struct ctl_table **tablep)
6318 {
6319 struct ctl_table *entry;
6320
6321 /*
6322 * In the intermediate directories, both the child directory and
6323 * procname are dynamically allocated and could fail but the mode
6324 * will always be set. In the lowest directory the names are
6325 * static strings and all have proc handlers.
6326 */
6327 for (entry = *tablep; entry->mode; entry++) {
6328 if (entry->child)
6329 sd_free_ctl_entry(&entry->child);
6330 if (entry->proc_handler == NULL)
6331 kfree(entry->procname);
6332 }
6333
6334 kfree(*tablep);
6335 *tablep = NULL;
6336 }
6337
6338 static void
6339 set_table_entry(struct ctl_table *entry,
6340 const char *procname, void *data, int maxlen,
6341 mode_t mode, proc_handler *proc_handler)
6342 {
6343 entry->procname = procname;
6344 entry->data = data;
6345 entry->maxlen = maxlen;
6346 entry->mode = mode;
6347 entry->proc_handler = proc_handler;
6348 }
6349
6350 static struct ctl_table *
6351 sd_alloc_ctl_domain_table(struct sched_domain *sd)
6352 {
6353 struct ctl_table *table = sd_alloc_ctl_entry(13);
6354
6355 if (table == NULL)
6356 return NULL;
6357
6358 set_table_entry(&table[0], "min_interval", &sd->min_interval,
6359 sizeof(long), 0644, proc_doulongvec_minmax);
6360 set_table_entry(&table[1], "max_interval", &sd->max_interval,
6361 sizeof(long), 0644, proc_doulongvec_minmax);
6362 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
6363 sizeof(int), 0644, proc_dointvec_minmax);
6364 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
6365 sizeof(int), 0644, proc_dointvec_minmax);
6366 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
6367 sizeof(int), 0644, proc_dointvec_minmax);
6368 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
6369 sizeof(int), 0644, proc_dointvec_minmax);
6370 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
6371 sizeof(int), 0644, proc_dointvec_minmax);
6372 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
6373 sizeof(int), 0644, proc_dointvec_minmax);
6374 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
6375 sizeof(int), 0644, proc_dointvec_minmax);
6376 set_table_entry(&table[9], "cache_nice_tries",
6377 &sd->cache_nice_tries,
6378 sizeof(int), 0644, proc_dointvec_minmax);
6379 set_table_entry(&table[10], "flags", &sd->flags,
6380 sizeof(int), 0644, proc_dointvec_minmax);
6381 set_table_entry(&table[11], "name", sd->name,
6382 CORENAME_MAX_SIZE, 0444, proc_dostring);
6383 /* &table[12] is terminator */
6384
6385 return table;
6386 }
6387
6388 static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
6389 {
6390 struct ctl_table *entry, *table;
6391 struct sched_domain *sd;
6392 int domain_num = 0, i;
6393 char buf[32];
6394
6395 for_each_domain(cpu, sd)
6396 domain_num++;
6397 entry = table = sd_alloc_ctl_entry(domain_num + 1);
6398 if (table == NULL)
6399 return NULL;
6400
6401 i = 0;
6402 for_each_domain(cpu, sd) {
6403 snprintf(buf, 32, "domain%d", i);
6404 entry->procname = kstrdup(buf, GFP_KERNEL);
6405 entry->mode = 0555;
6406 entry->child = sd_alloc_ctl_domain_table(sd);
6407 entry++;
6408 i++;
6409 }
6410 return table;
6411 }
6412
6413 static struct ctl_table_header *sd_sysctl_header;
6414 static void register_sched_domain_sysctl(void)
6415 {
6416 int i, cpu_num = num_online_cpus();
6417 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
6418 char buf[32];
6419
6420 WARN_ON(sd_ctl_dir[0].child);
6421 sd_ctl_dir[0].child = entry;
6422
6423 if (entry == NULL)
6424 return;
6425
6426 for_each_online_cpu(i) {
6427 snprintf(buf, 32, "cpu%d", i);
6428 entry->procname = kstrdup(buf, GFP_KERNEL);
6429 entry->mode = 0555;
6430 entry->child = sd_alloc_ctl_cpu_table(i);
6431 entry++;
6432 }
6433
6434 WARN_ON(sd_sysctl_header);
6435 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
6436 }
6437
6438 /* may be called multiple times per register */
6439 static void unregister_sched_domain_sysctl(void)
6440 {
6441 if (sd_sysctl_header)
6442 unregister_sysctl_table(sd_sysctl_header);
6443 sd_sysctl_header = NULL;
6444 if (sd_ctl_dir[0].child)
6445 sd_free_ctl_entry(&sd_ctl_dir[0].child);
6446 }
6447 #else
6448 static void register_sched_domain_sysctl(void)
6449 {
6450 }
6451 static void unregister_sched_domain_sysctl(void)
6452 {
6453 }
6454 #endif
6455
6456 static void set_rq_online(struct rq *rq)
6457 {
6458 if (!rq->online) {
6459 const struct sched_class *class;
6460
6461 cpu_set(rq->cpu, rq->rd->online);
6462 rq->online = 1;
6463
6464 for_each_class(class) {
6465 if (class->rq_online)
6466 class->rq_online(rq);
6467 }
6468 }
6469 }
6470
6471 static void set_rq_offline(struct rq *rq)
6472 {
6473 if (rq->online) {
6474 const struct sched_class *class;
6475
6476 for_each_class(class) {
6477 if (class->rq_offline)
6478 class->rq_offline(rq);
6479 }
6480
6481 cpu_clear(rq->cpu, rq->rd->online);
6482 rq->online = 0;
6483 }
6484 }
6485
6486 /*
6487 * migration_call - callback that gets triggered when a CPU is added.
6488 * Here we can start up the necessary migration thread for the new CPU.
6489 */
6490 static int __cpuinit
6491 migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
6492 {
6493 struct task_struct *p;
6494 int cpu = (long)hcpu;
6495 unsigned long flags;
6496 struct rq *rq;
6497
6498 switch (action) {
6499
6500 case CPU_UP_PREPARE:
6501 case CPU_UP_PREPARE_FROZEN:
6502 p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
6503 if (IS_ERR(p))
6504 return NOTIFY_BAD;
6505 kthread_bind(p, cpu);
6506 /* Must be high prio: stop_machine expects to yield to it. */
6507 rq = task_rq_lock(p, &flags);
6508 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
6509 task_rq_unlock(rq, &flags);
6510 cpu_rq(cpu)->migration_thread = p;
6511 break;
6512
6513 case CPU_ONLINE:
6514 case CPU_ONLINE_FROZEN:
6515 /* Strictly unnecessary, as first user will wake it. */
6516 wake_up_process(cpu_rq(cpu)->migration_thread);
6517
6518 /* Update our root-domain */
6519 rq = cpu_rq(cpu);
6520 spin_lock_irqsave(&rq->lock, flags);
6521 if (rq->rd) {
6522 BUG_ON(!cpu_isset(cpu, rq->rd->span));
6523
6524 set_rq_online(rq);
6525 }
6526 spin_unlock_irqrestore(&rq->lock, flags);
6527 break;
6528
6529 #ifdef CONFIG_HOTPLUG_CPU
6530 case CPU_UP_CANCELED:
6531 case CPU_UP_CANCELED_FROZEN:
6532 if (!cpu_rq(cpu)->migration_thread)
6533 break;
6534 /* Unbind it from offline cpu so it can run. Fall thru. */
6535 kthread_bind(cpu_rq(cpu)->migration_thread,
6536 any_online_cpu(cpu_online_map));
6537 kthread_stop(cpu_rq(cpu)->migration_thread);
6538 cpu_rq(cpu)->migration_thread = NULL;
6539 break;
6540
6541 case CPU_DEAD:
6542 case CPU_DEAD_FROZEN:
6543 cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
6544 migrate_live_tasks(cpu);
6545 rq = cpu_rq(cpu);
6546 kthread_stop(rq->migration_thread);
6547 rq->migration_thread = NULL;
6548 /* Idle task back to normal (off runqueue, low prio) */
6549 spin_lock_irq(&rq->lock);
6550 update_rq_clock(rq);
6551 deactivate_task(rq, rq->idle, 0);
6552 rq->idle->static_prio = MAX_PRIO;
6553 __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
6554 rq->idle->sched_class = &idle_sched_class;
6555 migrate_dead_tasks(cpu);
6556 spin_unlock_irq(&rq->lock);
6557 cpuset_unlock();
6558 migrate_nr_uninterruptible(rq);
6559 BUG_ON(rq->nr_running != 0);
6560
6561 /*
6562 * No need to migrate the tasks: it was best-effort if
6563 * they didn't take sched_hotcpu_mutex. Just wake up
6564 * the requestors.
6565 */
6566 spin_lock_irq(&rq->lock);
6567 while (!list_empty(&rq->migration_queue)) {
6568 struct migration_req *req;
6569
6570 req = list_entry(rq->migration_queue.next,
6571 struct migration_req, list);
6572 list_del_init(&req->list);
6573 complete(&req->done);
6574 }
6575 spin_unlock_irq(&rq->lock);
6576 break;
6577
6578 case CPU_DYING:
6579 case CPU_DYING_FROZEN:
6580 /* Update our root-domain */
6581 rq = cpu_rq(cpu);
6582 spin_lock_irqsave(&rq->lock, flags);
6583 if (rq->rd) {
6584 BUG_ON(!cpu_isset(cpu, rq->rd->span));
6585 set_rq_offline(rq);
6586 }
6587 spin_unlock_irqrestore(&rq->lock, flags);
6588 break;
6589 #endif
6590 }
6591 return NOTIFY_OK;
6592 }
6593
6594 /* Register at highest priority so that task migration (migrate_all_tasks)
6595 * happens before everything else.
6596 */
6597 static struct notifier_block __cpuinitdata migration_notifier = {
6598 .notifier_call = migration_call,
6599 .priority = 10
6600 };
6601
6602 static int __init migration_init(void)
6603 {
6604 void *cpu = (void *)(long)smp_processor_id();
6605 int err;
6606
6607 /* Start one for the boot CPU: */
6608 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
6609 BUG_ON(err == NOTIFY_BAD);
6610 migration_call(&migration_notifier, CPU_ONLINE, cpu);
6611 register_cpu_notifier(&migration_notifier);
6612
6613 return err;
6614 }
6615 early_initcall(migration_init);
6616 #endif
6617
6618 #ifdef CONFIG_SMP
6619
6620 #ifdef CONFIG_SCHED_DEBUG
6621
6622 static inline const char *sd_level_to_string(enum sched_domain_level lvl)
6623 {
6624 switch (lvl) {
6625 case SD_LV_NONE:
6626 return "NONE";
6627 case SD_LV_SIBLING:
6628 return "SIBLING";
6629 case SD_LV_MC:
6630 return "MC";
6631 case SD_LV_CPU:
6632 return "CPU";
6633 case SD_LV_NODE:
6634 return "NODE";
6635 case SD_LV_ALLNODES:
6636 return "ALLNODES";
6637 case SD_LV_MAX:
6638 return "MAX";
6639
6640 }
6641 return "MAX";
6642 }
6643
6644 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
6645 cpumask_t *groupmask)
6646 {
6647 struct sched_group *group = sd->groups;
6648 char str[256];
6649
6650 cpulist_scnprintf(str, sizeof(str), sd->span);
6651 cpus_clear(*groupmask);
6652
6653 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
6654
6655 if (!(sd->flags & SD_LOAD_BALANCE)) {
6656 printk("does not load-balance\n");
6657 if (sd->parent)
6658 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
6659 " has parent");
6660 return -1;
6661 }
6662
6663 printk(KERN_CONT "span %s level %s\n",
6664 str, sd_level_to_string(sd->level));
6665
6666 if (!cpu_isset(cpu, sd->span)) {
6667 printk(KERN_ERR "ERROR: domain->span does not contain "
6668 "CPU%d\n", cpu);
6669 }
6670 if (!cpu_isset(cpu, group->cpumask)) {
6671 printk(KERN_ERR "ERROR: domain->groups does not contain"
6672 " CPU%d\n", cpu);
6673 }
6674
6675 printk(KERN_DEBUG "%*s groups:", level + 1, "");
6676 do {
6677 if (!group) {
6678 printk("\n");
6679 printk(KERN_ERR "ERROR: group is NULL\n");
6680 break;
6681 }
6682
6683 if (!group->__cpu_power) {
6684 printk(KERN_CONT "\n");
6685 printk(KERN_ERR "ERROR: domain->cpu_power not "
6686 "set\n");
6687 break;
6688 }
6689
6690 if (!cpus_weight(group->cpumask)) {
6691 printk(KERN_CONT "\n");
6692 printk(KERN_ERR "ERROR: empty group\n");
6693 break;
6694 }
6695
6696 if (cpus_intersects(*groupmask, group->cpumask)) {
6697 printk(KERN_CONT "\n");
6698 printk(KERN_ERR "ERROR: repeated CPUs\n");
6699 break;
6700 }
6701
6702 cpus_or(*groupmask, *groupmask, group->cpumask);
6703
6704 cpulist_scnprintf(str, sizeof(str), group->cpumask);
6705 printk(KERN_CONT " %s", str);
6706
6707 group = group->next;
6708 } while (group != sd->groups);
6709 printk(KERN_CONT "\n");
6710
6711 if (!cpus_equal(sd->span, *groupmask))
6712 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
6713
6714 if (sd->parent && !cpus_subset(*groupmask, sd->parent->span))
6715 printk(KERN_ERR "ERROR: parent span is not a superset "
6716 "of domain->span\n");
6717 return 0;
6718 }
6719
6720 static void sched_domain_debug(struct sched_domain *sd, int cpu)
6721 {
6722 cpumask_t *groupmask;
6723 int level = 0;
6724
6725 if (!sd) {
6726 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
6727 return;
6728 }
6729
6730 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
6731
6732 groupmask = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
6733 if (!groupmask) {
6734 printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
6735 return;
6736 }
6737
6738 for (;;) {
6739 if (sched_domain_debug_one(sd, cpu, level, groupmask))
6740 break;
6741 level++;
6742 sd = sd->parent;
6743 if (!sd)
6744 break;
6745 }
6746 kfree(groupmask);
6747 }
6748 #else /* !CONFIG_SCHED_DEBUG */
6749 # define sched_domain_debug(sd, cpu) do { } while (0)
6750 #endif /* CONFIG_SCHED_DEBUG */
6751
6752 static int sd_degenerate(struct sched_domain *sd)
6753 {
6754 if (cpus_weight(sd->span) == 1)
6755 return 1;
6756
6757 /* Following flags need at least 2 groups */
6758 if (sd->flags & (SD_LOAD_BALANCE |
6759 SD_BALANCE_NEWIDLE |
6760 SD_BALANCE_FORK |
6761 SD_BALANCE_EXEC |
6762 SD_SHARE_CPUPOWER |
6763 SD_SHARE_PKG_RESOURCES)) {
6764 if (sd->groups != sd->groups->next)
6765 return 0;
6766 }
6767
6768 /* Following flags don't use groups */
6769 if (sd->flags & (SD_WAKE_IDLE |
6770 SD_WAKE_AFFINE |
6771 SD_WAKE_BALANCE))
6772 return 0;
6773
6774 return 1;
6775 }
6776
6777 static int
6778 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
6779 {
6780 unsigned long cflags = sd->flags, pflags = parent->flags;
6781
6782 if (sd_degenerate(parent))
6783 return 1;
6784
6785 if (!cpus_equal(sd->span, parent->span))
6786 return 0;
6787
6788 /* Does parent contain flags not in child? */
6789 /* WAKE_BALANCE is a subset of WAKE_AFFINE */
6790 if (cflags & SD_WAKE_AFFINE)
6791 pflags &= ~SD_WAKE_BALANCE;
6792 /* Flags needing groups don't count if only 1 group in parent */
6793 if (parent->groups == parent->groups->next) {
6794 pflags &= ~(SD_LOAD_BALANCE |
6795 SD_BALANCE_NEWIDLE |
6796 SD_BALANCE_FORK |
6797 SD_BALANCE_EXEC |
6798 SD_SHARE_CPUPOWER |
6799 SD_SHARE_PKG_RESOURCES);
6800 }
6801 if (~cflags & pflags)
6802 return 0;
6803
6804 return 1;
6805 }
6806
6807 static void rq_attach_root(struct rq *rq, struct root_domain *rd)
6808 {
6809 unsigned long flags;
6810
6811 spin_lock_irqsave(&rq->lock, flags);
6812
6813 if (rq->rd) {
6814 struct root_domain *old_rd = rq->rd;
6815
6816 if (cpu_isset(rq->cpu, old_rd->online))
6817 set_rq_offline(rq);
6818
6819 cpu_clear(rq->cpu, old_rd->span);
6820
6821 if (atomic_dec_and_test(&old_rd->refcount))
6822 kfree(old_rd);
6823 }
6824
6825 atomic_inc(&rd->refcount);
6826 rq->rd = rd;
6827
6828 cpu_set(rq->cpu, rd->span);
6829 if (cpu_isset(rq->cpu, cpu_online_map))
6830 set_rq_online(rq);
6831
6832 spin_unlock_irqrestore(&rq->lock, flags);
6833 }
6834
6835 static void init_rootdomain(struct root_domain *rd)
6836 {
6837 memset(rd, 0, sizeof(*rd));
6838
6839 cpus_clear(rd->span);
6840 cpus_clear(rd->online);
6841
6842 cpupri_init(&rd->cpupri);
6843 }
6844
6845 static void init_defrootdomain(void)
6846 {
6847 init_rootdomain(&def_root_domain);
6848 atomic_set(&def_root_domain.refcount, 1);
6849 }
6850
6851 static struct root_domain *alloc_rootdomain(void)
6852 {
6853 struct root_domain *rd;
6854
6855 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
6856 if (!rd)
6857 return NULL;
6858
6859 init_rootdomain(rd);
6860
6861 return rd;
6862 }
6863
6864 /*
6865 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
6866 * hold the hotplug lock.
6867 */
6868 static void
6869 cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
6870 {
6871 struct rq *rq = cpu_rq(cpu);
6872 struct sched_domain *tmp;
6873
6874 /* Remove the sched domains which do not contribute to scheduling. */
6875 for (tmp = sd; tmp; tmp = tmp->parent) {
6876 struct sched_domain *parent = tmp->parent;
6877 if (!parent)
6878 break;
6879 if (sd_parent_degenerate(tmp, parent)) {
6880 tmp->parent = parent->parent;
6881 if (parent->parent)
6882 parent->parent->child = tmp;
6883 }
6884 }
6885
6886 if (sd && sd_degenerate(sd)) {
6887 sd = sd->parent;
6888 if (sd)
6889 sd->child = NULL;
6890 }
6891
6892 sched_domain_debug(sd, cpu);
6893
6894 rq_attach_root(rq, rd);
6895 rcu_assign_pointer(rq->sd, sd);
6896 }
6897
6898 /* cpus with isolated domains */
6899 static cpumask_t cpu_isolated_map = CPU_MASK_NONE;
6900
6901 /* Setup the mask of cpus configured for isolated domains */
6902 static int __init isolated_cpu_setup(char *str)
6903 {
6904 static int __initdata ints[NR_CPUS];
6905 int i;
6906
6907 str = get_options(str, ARRAY_SIZE(ints), ints);
6908 cpus_clear(cpu_isolated_map);
6909 for (i = 1; i <= ints[0]; i++)
6910 if (ints[i] < NR_CPUS)
6911 cpu_set(ints[i], cpu_isolated_map);
6912 return 1;
6913 }
6914
6915 __setup("isolcpus=", isolated_cpu_setup);
6916
6917 /*
6918 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
6919 * to a function which identifies what group(along with sched group) a CPU
6920 * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
6921 * (due to the fact that we keep track of groups covered with a cpumask_t).
6922 *
6923 * init_sched_build_groups will build a circular linked list of the groups
6924 * covered by the given span, and will set each group's ->cpumask correctly,
6925 * and ->cpu_power to 0.
6926 */
6927 static void
6928 init_sched_build_groups(const cpumask_t *span, const cpumask_t *cpu_map,
6929 int (*group_fn)(int cpu, const cpumask_t *cpu_map,
6930 struct sched_group **sg,
6931 cpumask_t *tmpmask),
6932 cpumask_t *covered, cpumask_t *tmpmask)
6933 {
6934 struct sched_group *first = NULL, *last = NULL;
6935 int i;
6936
6937 cpus_clear(*covered);
6938
6939 for_each_cpu_mask_nr(i, *span) {
6940 struct sched_group *sg;
6941 int group = group_fn(i, cpu_map, &sg, tmpmask);
6942 int j;
6943
6944 if (cpu_isset(i, *covered))
6945 continue;
6946
6947 cpus_clear(sg->cpumask);
6948 sg->__cpu_power = 0;
6949
6950 for_each_cpu_mask_nr(j, *span) {
6951 if (group_fn(j, cpu_map, NULL, tmpmask) != group)
6952 continue;
6953
6954 cpu_set(j, *covered);
6955 cpu_set(j, sg->cpumask);
6956 }
6957 if (!first)
6958 first = sg;
6959 if (last)
6960 last->next = sg;
6961 last = sg;
6962 }
6963 last->next = first;
6964 }
6965
6966 #define SD_NODES_PER_DOMAIN 16
6967
6968 #ifdef CONFIG_NUMA
6969
6970 /**
6971 * find_next_best_node - find the next node to include in a sched_domain
6972 * @node: node whose sched_domain we're building
6973 * @used_nodes: nodes already in the sched_domain
6974 *
6975 * Find the next node to include in a given scheduling domain. Simply
6976 * finds the closest node not already in the @used_nodes map.
6977 *
6978 * Should use nodemask_t.
6979 */
6980 static int find_next_best_node(int node, nodemask_t *used_nodes)
6981 {
6982 int i, n, val, min_val, best_node = 0;
6983
6984 min_val = INT_MAX;
6985
6986 for (i = 0; i < nr_node_ids; i++) {
6987 /* Start at @node */
6988 n = (node + i) % nr_node_ids;
6989
6990 if (!nr_cpus_node(n))
6991 continue;
6992
6993 /* Skip already used nodes */
6994 if (node_isset(n, *used_nodes))
6995 continue;
6996
6997 /* Simple min distance search */
6998 val = node_distance(node, n);
6999
7000 if (val < min_val) {
7001 min_val = val;
7002 best_node = n;
7003 }
7004 }
7005
7006 node_set(best_node, *used_nodes);
7007 return best_node;
7008 }
7009
7010 /**
7011 * sched_domain_node_span - get a cpumask for a node's sched_domain
7012 * @node: node whose cpumask we're constructing
7013 * @span: resulting cpumask
7014 *
7015 * Given a node, construct a good cpumask for its sched_domain to span. It
7016 * should be one that prevents unnecessary balancing, but also spreads tasks
7017 * out optimally.
7018 */
7019 static void sched_domain_node_span(int node, cpumask_t *span)
7020 {
7021 nodemask_t used_nodes;
7022 node_to_cpumask_ptr(nodemask, node);
7023 int i;
7024
7025 cpus_clear(*span);
7026 nodes_clear(used_nodes);
7027
7028 cpus_or(*span, *span, *nodemask);
7029 node_set(node, used_nodes);
7030
7031 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
7032 int next_node = find_next_best_node(node, &used_nodes);
7033
7034 node_to_cpumask_ptr_next(nodemask, next_node);
7035 cpus_or(*span, *span, *nodemask);
7036 }
7037 }
7038 #endif /* CONFIG_NUMA */
7039
7040 int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
7041
7042 /*
7043 * SMT sched-domains:
7044 */
7045 #ifdef CONFIG_SCHED_SMT
7046 static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
7047 static DEFINE_PER_CPU(struct sched_group, sched_group_cpus);
7048
7049 static int
7050 cpu_to_cpu_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
7051 cpumask_t *unused)
7052 {
7053 if (sg)
7054 *sg = &per_cpu(sched_group_cpus, cpu);
7055 return cpu;
7056 }
7057 #endif /* CONFIG_SCHED_SMT */
7058
7059 /*
7060 * multi-core sched-domains:
7061 */
7062 #ifdef CONFIG_SCHED_MC
7063 static DEFINE_PER_CPU(struct sched_domain, core_domains);
7064 static DEFINE_PER_CPU(struct sched_group, sched_group_core);
7065 #endif /* CONFIG_SCHED_MC */
7066
7067 #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
7068 static int
7069 cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
7070 cpumask_t *mask)
7071 {
7072 int group;
7073
7074 *mask = per_cpu(cpu_sibling_map, cpu);
7075 cpus_and(*mask, *mask, *cpu_map);
7076 group = first_cpu(*mask);
7077 if (sg)
7078 *sg = &per_cpu(sched_group_core, group);
7079 return group;
7080 }
7081 #elif defined(CONFIG_SCHED_MC)
7082 static int
7083 cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
7084 cpumask_t *unused)
7085 {
7086 if (sg)
7087 *sg = &per_cpu(sched_group_core, cpu);
7088 return cpu;
7089 }
7090 #endif
7091
7092 static DEFINE_PER_CPU(struct sched_domain, phys_domains);
7093 static DEFINE_PER_CPU(struct sched_group, sched_group_phys);
7094
7095 static int
7096 cpu_to_phys_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
7097 cpumask_t *mask)
7098 {
7099 int group;
7100 #ifdef CONFIG_SCHED_MC
7101 *mask = cpu_coregroup_map(cpu);
7102 cpus_and(*mask, *mask, *cpu_map);
7103 group = first_cpu(*mask);
7104 #elif defined(CONFIG_SCHED_SMT)
7105 *mask = per_cpu(cpu_sibling_map, cpu);
7106 cpus_and(*mask, *mask, *cpu_map);
7107 group = first_cpu(*mask);
7108 #else
7109 group = cpu;
7110 #endif
7111 if (sg)
7112 *sg = &per_cpu(sched_group_phys, group);
7113 return group;
7114 }
7115
7116 #ifdef CONFIG_NUMA
7117 /*
7118 * The init_sched_build_groups can't handle what we want to do with node
7119 * groups, so roll our own. Now each node has its own list of groups which
7120 * gets dynamically allocated.
7121 */
7122 static DEFINE_PER_CPU(struct sched_domain, node_domains);
7123 static struct sched_group ***sched_group_nodes_bycpu;
7124
7125 static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
7126 static DEFINE_PER_CPU(struct sched_group, sched_group_allnodes);
7127
7128 static int cpu_to_allnodes_group(int cpu, const cpumask_t *cpu_map,
7129 struct sched_group **sg, cpumask_t *nodemask)
7130 {
7131 int group;
7132
7133 *nodemask = node_to_cpumask(cpu_to_node(cpu));
7134 cpus_and(*nodemask, *nodemask, *cpu_map);
7135 group = first_cpu(*nodemask);
7136
7137 if (sg)
7138 *sg = &per_cpu(sched_group_allnodes, group);
7139 return group;
7140 }
7141
7142 static void init_numa_sched_groups_power(struct sched_group *group_head)
7143 {
7144 struct sched_group *sg = group_head;
7145 int j;
7146
7147 if (!sg)
7148 return;
7149 do {
7150 for_each_cpu_mask_nr(j, sg->cpumask) {
7151 struct sched_domain *sd;
7152
7153 sd = &per_cpu(phys_domains, j);
7154 if (j != first_cpu(sd->groups->cpumask)) {
7155 /*
7156 * Only add "power" once for each
7157 * physical package.
7158 */
7159 continue;
7160 }
7161
7162 sg_inc_cpu_power(sg, sd->groups->__cpu_power);
7163 }
7164 sg = sg->next;
7165 } while (sg != group_head);
7166 }
7167 #endif /* CONFIG_NUMA */
7168
7169 #ifdef CONFIG_NUMA
7170 /* Free memory allocated for various sched_group structures */
7171 static void free_sched_groups(const cpumask_t *cpu_map, cpumask_t *nodemask)
7172 {
7173 int cpu, i;
7174
7175 for_each_cpu_mask_nr(cpu, *cpu_map) {
7176 struct sched_group **sched_group_nodes
7177 = sched_group_nodes_bycpu[cpu];
7178
7179 if (!sched_group_nodes)
7180 continue;
7181
7182 for (i = 0; i < nr_node_ids; i++) {
7183 struct sched_group *oldsg, *sg = sched_group_nodes[i];
7184
7185 *nodemask = node_to_cpumask(i);
7186 cpus_and(*nodemask, *nodemask, *cpu_map);
7187 if (cpus_empty(*nodemask))
7188 continue;
7189
7190 if (sg == NULL)
7191 continue;
7192 sg = sg->next;
7193 next_sg:
7194 oldsg = sg;
7195 sg = sg->next;
7196 kfree(oldsg);
7197 if (oldsg != sched_group_nodes[i])
7198 goto next_sg;
7199 }
7200 kfree(sched_group_nodes);
7201 sched_group_nodes_bycpu[cpu] = NULL;
7202 }
7203 }
7204 #else /* !CONFIG_NUMA */
7205 static void free_sched_groups(const cpumask_t *cpu_map, cpumask_t *nodemask)
7206 {
7207 }
7208 #endif /* CONFIG_NUMA */
7209
7210 /*
7211 * Initialize sched groups cpu_power.
7212 *
7213 * cpu_power indicates the capacity of sched group, which is used while
7214 * distributing the load between different sched groups in a sched domain.
7215 * Typically cpu_power for all the groups in a sched domain will be same unless
7216 * there are asymmetries in the topology. If there are asymmetries, group
7217 * having more cpu_power will pickup more load compared to the group having
7218 * less cpu_power.
7219 *
7220 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
7221 * the maximum number of tasks a group can handle in the presence of other idle
7222 * or lightly loaded groups in the same sched domain.
7223 */
7224 static void init_sched_groups_power(int cpu, struct sched_domain *sd)
7225 {
7226 struct sched_domain *child;
7227 struct sched_group *group;
7228
7229 WARN_ON(!sd || !sd->groups);
7230
7231 if (cpu != first_cpu(sd->groups->cpumask))
7232 return;
7233
7234 child = sd->child;
7235
7236 sd->groups->__cpu_power = 0;
7237
7238 /*
7239 * For perf policy, if the groups in child domain share resources
7240 * (for example cores sharing some portions of the cache hierarchy
7241 * or SMT), then set this domain groups cpu_power such that each group
7242 * can handle only one task, when there are other idle groups in the
7243 * same sched domain.
7244 */
7245 if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
7246 (child->flags &
7247 (SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
7248 sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
7249 return;
7250 }
7251
7252 /*
7253 * add cpu_power of each child group to this groups cpu_power
7254 */
7255 group = child->groups;
7256 do {
7257 sg_inc_cpu_power(sd->groups, group->__cpu_power);
7258 group = group->next;
7259 } while (group != child->groups);
7260 }
7261
7262 /*
7263 * Initializers for schedule domains
7264 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
7265 */
7266
7267 #ifdef CONFIG_SCHED_DEBUG
7268 # define SD_INIT_NAME(sd, type) sd->name = #type
7269 #else
7270 # define SD_INIT_NAME(sd, type) do { } while (0)
7271 #endif
7272
7273 #define SD_INIT(sd, type) sd_init_##type(sd)
7274
7275 #define SD_INIT_FUNC(type) \
7276 static noinline void sd_init_##type(struct sched_domain *sd) \
7277 { \
7278 memset(sd, 0, sizeof(*sd)); \
7279 *sd = SD_##type##_INIT; \
7280 sd->level = SD_LV_##type; \
7281 SD_INIT_NAME(sd, type); \
7282 }
7283
7284 SD_INIT_FUNC(CPU)
7285 #ifdef CONFIG_NUMA
7286 SD_INIT_FUNC(ALLNODES)
7287 SD_INIT_FUNC(NODE)
7288 #endif
7289 #ifdef CONFIG_SCHED_SMT
7290 SD_INIT_FUNC(SIBLING)
7291 #endif
7292 #ifdef CONFIG_SCHED_MC
7293 SD_INIT_FUNC(MC)
7294 #endif
7295
7296 /*
7297 * To minimize stack usage kmalloc room for cpumasks and share the
7298 * space as the usage in build_sched_domains() dictates. Used only
7299 * if the amount of space is significant.
7300 */
7301 struct allmasks {
7302 cpumask_t tmpmask; /* make this one first */
7303 union {
7304 cpumask_t nodemask;
7305 cpumask_t this_sibling_map;
7306 cpumask_t this_core_map;
7307 };
7308 cpumask_t send_covered;
7309
7310 #ifdef CONFIG_NUMA
7311 cpumask_t domainspan;
7312 cpumask_t covered;
7313 cpumask_t notcovered;
7314 #endif
7315 };
7316
7317 #if NR_CPUS > 128
7318 #define SCHED_CPUMASK_ALLOC 1
7319 #define SCHED_CPUMASK_FREE(v) kfree(v)
7320 #define SCHED_CPUMASK_DECLARE(v) struct allmasks *v
7321 #else
7322 #define SCHED_CPUMASK_ALLOC 0
7323 #define SCHED_CPUMASK_FREE(v)
7324 #define SCHED_CPUMASK_DECLARE(v) struct allmasks _v, *v = &_v
7325 #endif
7326
7327 #define SCHED_CPUMASK_VAR(v, a) cpumask_t *v = (cpumask_t *) \
7328 ((unsigned long)(a) + offsetof(struct allmasks, v))
7329
7330 static int default_relax_domain_level = -1;
7331
7332 static int __init setup_relax_domain_level(char *str)
7333 {
7334 unsigned long val;
7335
7336 val = simple_strtoul(str, NULL, 0);
7337 if (val < SD_LV_MAX)
7338 default_relax_domain_level = val;
7339
7340 return 1;
7341 }
7342 __setup("relax_domain_level=", setup_relax_domain_level);
7343
7344 static void set_domain_attribute(struct sched_domain *sd,
7345 struct sched_domain_attr *attr)
7346 {
7347 int request;
7348
7349 if (!attr || attr->relax_domain_level < 0) {
7350 if (default_relax_domain_level < 0)
7351 return;
7352 else
7353 request = default_relax_domain_level;
7354 } else
7355 request = attr->relax_domain_level;
7356 if (request < sd->level) {
7357 /* turn off idle balance on this domain */
7358 sd->flags &= ~(SD_WAKE_IDLE|SD_BALANCE_NEWIDLE);
7359 } else {
7360 /* turn on idle balance on this domain */
7361 sd->flags |= (SD_WAKE_IDLE_FAR|SD_BALANCE_NEWIDLE);
7362 }
7363 }
7364
7365 /*
7366 * Build sched domains for a given set of cpus and attach the sched domains
7367 * to the individual cpus
7368 */
7369 static int __build_sched_domains(const cpumask_t *cpu_map,
7370 struct sched_domain_attr *attr)
7371 {
7372 int i;
7373 struct root_domain *rd;
7374 SCHED_CPUMASK_DECLARE(allmasks);
7375 cpumask_t *tmpmask;
7376 #ifdef CONFIG_NUMA
7377 struct sched_group **sched_group_nodes = NULL;
7378 int sd_allnodes = 0;
7379
7380 /*
7381 * Allocate the per-node list of sched groups
7382 */
7383 sched_group_nodes = kcalloc(nr_node_ids, sizeof(struct sched_group *),
7384 GFP_KERNEL);
7385 if (!sched_group_nodes) {
7386 printk(KERN_WARNING "Can not alloc sched group node list\n");
7387 return -ENOMEM;
7388 }
7389 #endif
7390
7391 rd = alloc_rootdomain();
7392 if (!rd) {
7393 printk(KERN_WARNING "Cannot alloc root domain\n");
7394 #ifdef CONFIG_NUMA
7395 kfree(sched_group_nodes);
7396 #endif
7397 return -ENOMEM;
7398 }
7399
7400 #if SCHED_CPUMASK_ALLOC
7401 /* get space for all scratch cpumask variables */
7402 allmasks = kmalloc(sizeof(*allmasks), GFP_KERNEL);
7403 if (!allmasks) {
7404 printk(KERN_WARNING "Cannot alloc cpumask array\n");
7405 kfree(rd);
7406 #ifdef CONFIG_NUMA
7407 kfree(sched_group_nodes);
7408 #endif
7409 return -ENOMEM;
7410 }
7411 #endif
7412 tmpmask = (cpumask_t *)allmasks;
7413
7414
7415 #ifdef CONFIG_NUMA
7416 sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
7417 #endif
7418
7419 /*
7420 * Set up domains for cpus specified by the cpu_map.
7421 */
7422 for_each_cpu_mask_nr(i, *cpu_map) {
7423 struct sched_domain *sd = NULL, *p;
7424 SCHED_CPUMASK_VAR(nodemask, allmasks);
7425
7426 *nodemask = node_to_cpumask(cpu_to_node(i));
7427 cpus_and(*nodemask, *nodemask, *cpu_map);
7428
7429 #ifdef CONFIG_NUMA
7430 if (cpus_weight(*cpu_map) >
7431 SD_NODES_PER_DOMAIN*cpus_weight(*nodemask)) {
7432 sd = &per_cpu(allnodes_domains, i);
7433 SD_INIT(sd, ALLNODES);
7434 set_domain_attribute(sd, attr);
7435 sd->span = *cpu_map;
7436 cpu_to_allnodes_group(i, cpu_map, &sd->groups, tmpmask);
7437 p = sd;
7438 sd_allnodes = 1;
7439 } else
7440 p = NULL;
7441
7442 sd = &per_cpu(node_domains, i);
7443 SD_INIT(sd, NODE);
7444 set_domain_attribute(sd, attr);
7445 sched_domain_node_span(cpu_to_node(i), &sd->span);
7446 sd->parent = p;
7447 if (p)
7448 p->child = sd;
7449 cpus_and(sd->span, sd->span, *cpu_map);
7450 #endif
7451
7452 p = sd;
7453 sd = &per_cpu(phys_domains, i);
7454 SD_INIT(sd, CPU);
7455 set_domain_attribute(sd, attr);
7456 sd->span = *nodemask;
7457 sd->parent = p;
7458 if (p)
7459 p->child = sd;
7460 cpu_to_phys_group(i, cpu_map, &sd->groups, tmpmask);
7461
7462 #ifdef CONFIG_SCHED_MC
7463 p = sd;
7464 sd = &per_cpu(core_domains, i);
7465 SD_INIT(sd, MC);
7466 set_domain_attribute(sd, attr);
7467 sd->span = cpu_coregroup_map(i);
7468 cpus_and(sd->span, sd->span, *cpu_map);
7469 sd->parent = p;
7470 p->child = sd;
7471 cpu_to_core_group(i, cpu_map, &sd->groups, tmpmask);
7472 #endif
7473
7474 #ifdef CONFIG_SCHED_SMT
7475 p = sd;
7476 sd = &per_cpu(cpu_domains, i);
7477 SD_INIT(sd, SIBLING);
7478 set_domain_attribute(sd, attr);
7479 sd->span = per_cpu(cpu_sibling_map, i);
7480 cpus_and(sd->span, sd->span, *cpu_map);
7481 sd->parent = p;
7482 p->child = sd;
7483 cpu_to_cpu_group(i, cpu_map, &sd->groups, tmpmask);
7484 #endif
7485 }
7486
7487 #ifdef CONFIG_SCHED_SMT
7488 /* Set up CPU (sibling) groups */
7489 for_each_cpu_mask_nr(i, *cpu_map) {
7490 SCHED_CPUMASK_VAR(this_sibling_map, allmasks);
7491 SCHED_CPUMASK_VAR(send_covered, allmasks);
7492
7493 *this_sibling_map = per_cpu(cpu_sibling_map, i);
7494 cpus_and(*this_sibling_map, *this_sibling_map, *cpu_map);
7495 if (i != first_cpu(*this_sibling_map))
7496 continue;
7497
7498 init_sched_build_groups(this_sibling_map, cpu_map,
7499 &cpu_to_cpu_group,
7500 send_covered, tmpmask);
7501 }
7502 #endif
7503
7504 #ifdef CONFIG_SCHED_MC
7505 /* Set up multi-core groups */
7506 for_each_cpu_mask_nr(i, *cpu_map) {
7507 SCHED_CPUMASK_VAR(this_core_map, allmasks);
7508 SCHED_CPUMASK_VAR(send_covered, allmasks);
7509
7510 *this_core_map = cpu_coregroup_map(i);
7511 cpus_and(*this_core_map, *this_core_map, *cpu_map);
7512 if (i != first_cpu(*this_core_map))
7513 continue;
7514
7515 init_sched_build_groups(this_core_map, cpu_map,
7516 &cpu_to_core_group,
7517 send_covered, tmpmask);
7518 }
7519 #endif
7520
7521 /* Set up physical groups */
7522 for (i = 0; i < nr_node_ids; i++) {
7523 SCHED_CPUMASK_VAR(nodemask, allmasks);
7524 SCHED_CPUMASK_VAR(send_covered, allmasks);
7525
7526 *nodemask = node_to_cpumask(i);
7527 cpus_and(*nodemask, *nodemask, *cpu_map);
7528 if (cpus_empty(*nodemask))
7529 continue;
7530
7531 init_sched_build_groups(nodemask, cpu_map,
7532 &cpu_to_phys_group,
7533 send_covered, tmpmask);
7534 }
7535
7536 #ifdef CONFIG_NUMA
7537 /* Set up node groups */
7538 if (sd_allnodes) {
7539 SCHED_CPUMASK_VAR(send_covered, allmasks);
7540
7541 init_sched_build_groups(cpu_map, cpu_map,
7542 &cpu_to_allnodes_group,
7543 send_covered, tmpmask);
7544 }
7545
7546 for (i = 0; i < nr_node_ids; i++) {
7547 /* Set up node groups */
7548 struct sched_group *sg, *prev;
7549 SCHED_CPUMASK_VAR(nodemask, allmasks);
7550 SCHED_CPUMASK_VAR(domainspan, allmasks);
7551 SCHED_CPUMASK_VAR(covered, allmasks);
7552 int j;
7553
7554 *nodemask = node_to_cpumask(i);
7555 cpus_clear(*covered);
7556
7557 cpus_and(*nodemask, *nodemask, *cpu_map);
7558 if (cpus_empty(*nodemask)) {
7559 sched_group_nodes[i] = NULL;
7560 continue;
7561 }
7562
7563 sched_domain_node_span(i, domainspan);
7564 cpus_and(*domainspan, *domainspan, *cpu_map);
7565
7566 sg = kmalloc_node(sizeof(struct sched_group), GFP_KERNEL, i);
7567 if (!sg) {
7568 printk(KERN_WARNING "Can not alloc domain group for "
7569 "node %d\n", i);
7570 goto error;
7571 }
7572 sched_group_nodes[i] = sg;
7573 for_each_cpu_mask_nr(j, *nodemask) {
7574 struct sched_domain *sd;
7575
7576 sd = &per_cpu(node_domains, j);
7577 sd->groups = sg;
7578 }
7579 sg->__cpu_power = 0;
7580 sg->cpumask = *nodemask;
7581 sg->next = sg;
7582 cpus_or(*covered, *covered, *nodemask);
7583 prev = sg;
7584
7585 for (j = 0; j < nr_node_ids; j++) {
7586 SCHED_CPUMASK_VAR(notcovered, allmasks);
7587 int n = (i + j) % nr_node_ids;
7588 node_to_cpumask_ptr(pnodemask, n);
7589
7590 cpus_complement(*notcovered, *covered);
7591 cpus_and(*tmpmask, *notcovered, *cpu_map);
7592 cpus_and(*tmpmask, *tmpmask, *domainspan);
7593 if (cpus_empty(*tmpmask))
7594 break;
7595
7596 cpus_and(*tmpmask, *tmpmask, *pnodemask);
7597 if (cpus_empty(*tmpmask))
7598 continue;
7599
7600 sg = kmalloc_node(sizeof(struct sched_group),
7601 GFP_KERNEL, i);
7602 if (!sg) {
7603 printk(KERN_WARNING
7604 "Can not alloc domain group for node %d\n", j);
7605 goto error;
7606 }
7607 sg->__cpu_power = 0;
7608 sg->cpumask = *tmpmask;
7609 sg->next = prev->next;
7610 cpus_or(*covered, *covered, *tmpmask);
7611 prev->next = sg;
7612 prev = sg;
7613 }
7614 }
7615 #endif
7616
7617 /* Calculate CPU power for physical packages and nodes */
7618 #ifdef CONFIG_SCHED_SMT
7619 for_each_cpu_mask_nr(i, *cpu_map) {
7620 struct sched_domain *sd = &per_cpu(cpu_domains, i);
7621
7622 init_sched_groups_power(i, sd);
7623 }
7624 #endif
7625 #ifdef CONFIG_SCHED_MC
7626 for_each_cpu_mask_nr(i, *cpu_map) {
7627 struct sched_domain *sd = &per_cpu(core_domains, i);
7628
7629 init_sched_groups_power(i, sd);
7630 }
7631 #endif
7632
7633 for_each_cpu_mask_nr(i, *cpu_map) {
7634 struct sched_domain *sd = &per_cpu(phys_domains, i);
7635
7636 init_sched_groups_power(i, sd);
7637 }
7638
7639 #ifdef CONFIG_NUMA
7640 for (i = 0; i < nr_node_ids; i++)
7641 init_numa_sched_groups_power(sched_group_nodes[i]);
7642
7643 if (sd_allnodes) {
7644 struct sched_group *sg;
7645
7646 cpu_to_allnodes_group(first_cpu(*cpu_map), cpu_map, &sg,
7647 tmpmask);
7648 init_numa_sched_groups_power(sg);
7649 }
7650 #endif
7651
7652 /* Attach the domains */
7653 for_each_cpu_mask_nr(i, *cpu_map) {
7654 struct sched_domain *sd;
7655 #ifdef CONFIG_SCHED_SMT
7656 sd = &per_cpu(cpu_domains, i);
7657 #elif defined(CONFIG_SCHED_MC)
7658 sd = &per_cpu(core_domains, i);
7659 #else
7660 sd = &per_cpu(phys_domains, i);
7661 #endif
7662 cpu_attach_domain(sd, rd, i);
7663 }
7664
7665 SCHED_CPUMASK_FREE((void *)allmasks);
7666 return 0;
7667
7668 #ifdef CONFIG_NUMA
7669 error:
7670 free_sched_groups(cpu_map, tmpmask);
7671 SCHED_CPUMASK_FREE((void *)allmasks);
7672 return -ENOMEM;
7673 #endif
7674 }
7675
7676 static int build_sched_domains(const cpumask_t *cpu_map)
7677 {
7678 return __build_sched_domains(cpu_map, NULL);
7679 }
7680
7681 static cpumask_t *doms_cur; /* current sched domains */
7682 static int ndoms_cur; /* number of sched domains in 'doms_cur' */
7683 static struct sched_domain_attr *dattr_cur;
7684 /* attribues of custom domains in 'doms_cur' */
7685
7686 /*
7687 * Special case: If a kmalloc of a doms_cur partition (array of
7688 * cpumask_t) fails, then fallback to a single sched domain,
7689 * as determined by the single cpumask_t fallback_doms.
7690 */
7691 static cpumask_t fallback_doms;
7692
7693 void __attribute__((weak)) arch_update_cpu_topology(void)
7694 {
7695 }
7696
7697 /*
7698 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
7699 * For now this just excludes isolated cpus, but could be used to
7700 * exclude other special cases in the future.
7701 */
7702 static int arch_init_sched_domains(const cpumask_t *cpu_map)
7703 {
7704 int err;
7705
7706 arch_update_cpu_topology();
7707 ndoms_cur = 1;
7708 doms_cur = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
7709 if (!doms_cur)
7710 doms_cur = &fallback_doms;
7711 cpus_andnot(*doms_cur, *cpu_map, cpu_isolated_map);
7712 dattr_cur = NULL;
7713 err = build_sched_domains(doms_cur);
7714 register_sched_domain_sysctl();
7715
7716 return err;
7717 }
7718
7719 static void arch_destroy_sched_domains(const cpumask_t *cpu_map,
7720 cpumask_t *tmpmask)
7721 {
7722 free_sched_groups(cpu_map, tmpmask);
7723 }
7724
7725 /*
7726 * Detach sched domains from a group of cpus specified in cpu_map
7727 * These cpus will now be attached to the NULL domain
7728 */
7729 static void detach_destroy_domains(const cpumask_t *cpu_map)
7730 {
7731 cpumask_t tmpmask;
7732 int i;
7733
7734 unregister_sched_domain_sysctl();
7735
7736 for_each_cpu_mask_nr(i, *cpu_map)
7737 cpu_attach_domain(NULL, &def_root_domain, i);
7738 synchronize_sched();
7739 arch_destroy_sched_domains(cpu_map, &tmpmask);
7740 }
7741
7742 /* handle null as "default" */
7743 static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
7744 struct sched_domain_attr *new, int idx_new)
7745 {
7746 struct sched_domain_attr tmp;
7747
7748 /* fast path */
7749 if (!new && !cur)
7750 return 1;
7751
7752 tmp = SD_ATTR_INIT;
7753 return !memcmp(cur ? (cur + idx_cur) : &tmp,
7754 new ? (new + idx_new) : &tmp,
7755 sizeof(struct sched_domain_attr));
7756 }
7757
7758 /*
7759 * Partition sched domains as specified by the 'ndoms_new'
7760 * cpumasks in the array doms_new[] of cpumasks. This compares
7761 * doms_new[] to the current sched domain partitioning, doms_cur[].
7762 * It destroys each deleted domain and builds each new domain.
7763 *
7764 * 'doms_new' is an array of cpumask_t's of length 'ndoms_new'.
7765 * The masks don't intersect (don't overlap.) We should setup one
7766 * sched domain for each mask. CPUs not in any of the cpumasks will
7767 * not be load balanced. If the same cpumask appears both in the
7768 * current 'doms_cur' domains and in the new 'doms_new', we can leave
7769 * it as it is.
7770 *
7771 * The passed in 'doms_new' should be kmalloc'd. This routine takes
7772 * ownership of it and will kfree it when done with it. If the caller
7773 * failed the kmalloc call, then it can pass in doms_new == NULL,
7774 * and partition_sched_domains() will fallback to the single partition
7775 * 'fallback_doms', it also forces the domains to be rebuilt.
7776 *
7777 * If doms_new==NULL it will be replaced with cpu_online_map.
7778 * ndoms_new==0 is a special case for destroying existing domains.
7779 * It will not create the default domain.
7780 *
7781 * Call with hotplug lock held
7782 */
7783 void partition_sched_domains(int ndoms_new, cpumask_t *doms_new,
7784 struct sched_domain_attr *dattr_new)
7785 {
7786 int i, j, n;
7787
7788 mutex_lock(&sched_domains_mutex);
7789
7790 /* always unregister in case we don't destroy any domains */
7791 unregister_sched_domain_sysctl();
7792
7793 n = doms_new ? ndoms_new : 0;
7794
7795 /* Destroy deleted domains */
7796 for (i = 0; i < ndoms_cur; i++) {
7797 for (j = 0; j < n; j++) {
7798 if (cpus_equal(doms_cur[i], doms_new[j])
7799 && dattrs_equal(dattr_cur, i, dattr_new, j))
7800 goto match1;
7801 }
7802 /* no match - a current sched domain not in new doms_new[] */
7803 detach_destroy_domains(doms_cur + i);
7804 match1:
7805 ;
7806 }
7807
7808 if (doms_new == NULL) {
7809 ndoms_cur = 0;
7810 doms_new = &fallback_doms;
7811 cpus_andnot(doms_new[0], cpu_online_map, cpu_isolated_map);
7812 dattr_new = NULL;
7813 }
7814
7815 /* Build new domains */
7816 for (i = 0; i < ndoms_new; i++) {
7817 for (j = 0; j < ndoms_cur; j++) {
7818 if (cpus_equal(doms_new[i], doms_cur[j])
7819 && dattrs_equal(dattr_new, i, dattr_cur, j))
7820 goto match2;
7821 }
7822 /* no match - add a new doms_new */
7823 __build_sched_domains(doms_new + i,
7824 dattr_new ? dattr_new + i : NULL);
7825 match2:
7826 ;
7827 }
7828
7829 /* Remember the new sched domains */
7830 if (doms_cur != &fallback_doms)
7831 kfree(doms_cur);
7832 kfree(dattr_cur); /* kfree(NULL) is safe */
7833 doms_cur = doms_new;
7834 dattr_cur = dattr_new;
7835 ndoms_cur = ndoms_new;
7836
7837 register_sched_domain_sysctl();
7838
7839 mutex_unlock(&sched_domains_mutex);
7840 }
7841
7842 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
7843 int arch_reinit_sched_domains(void)
7844 {
7845 get_online_cpus();
7846
7847 /* Destroy domains first to force the rebuild */
7848 partition_sched_domains(0, NULL, NULL);
7849
7850 rebuild_sched_domains();
7851 put_online_cpus();
7852
7853 return 0;
7854 }
7855
7856 static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
7857 {
7858 int ret;
7859
7860 if (buf[0] != '0' && buf[0] != '1')
7861 return -EINVAL;
7862
7863 if (smt)
7864 sched_smt_power_savings = (buf[0] == '1');
7865 else
7866 sched_mc_power_savings = (buf[0] == '1');
7867
7868 ret = arch_reinit_sched_domains();
7869
7870 return ret ? ret : count;
7871 }
7872
7873 #ifdef CONFIG_SCHED_MC
7874 static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
7875 char *page)
7876 {
7877 return sprintf(page, "%u\n", sched_mc_power_savings);
7878 }
7879 static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
7880 const char *buf, size_t count)
7881 {
7882 return sched_power_savings_store(buf, count, 0);
7883 }
7884 static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
7885 sched_mc_power_savings_show,
7886 sched_mc_power_savings_store);
7887 #endif
7888
7889 #ifdef CONFIG_SCHED_SMT
7890 static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
7891 char *page)
7892 {
7893 return sprintf(page, "%u\n", sched_smt_power_savings);
7894 }
7895 static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
7896 const char *buf, size_t count)
7897 {
7898 return sched_power_savings_store(buf, count, 1);
7899 }
7900 static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
7901 sched_smt_power_savings_show,
7902 sched_smt_power_savings_store);
7903 #endif
7904
7905 int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
7906 {
7907 int err = 0;
7908
7909 #ifdef CONFIG_SCHED_SMT
7910 if (smt_capable())
7911 err = sysfs_create_file(&cls->kset.kobj,
7912 &attr_sched_smt_power_savings.attr);
7913 #endif
7914 #ifdef CONFIG_SCHED_MC
7915 if (!err && mc_capable())
7916 err = sysfs_create_file(&cls->kset.kobj,
7917 &attr_sched_mc_power_savings.attr);
7918 #endif
7919 return err;
7920 }
7921 #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
7922
7923 #ifndef CONFIG_CPUSETS
7924 /*
7925 * Add online and remove offline CPUs from the scheduler domains.
7926 * When cpusets are enabled they take over this function.
7927 */
7928 static int update_sched_domains(struct notifier_block *nfb,
7929 unsigned long action, void *hcpu)
7930 {
7931 switch (action) {
7932 case CPU_ONLINE:
7933 case CPU_ONLINE_FROZEN:
7934 case CPU_DEAD:
7935 case CPU_DEAD_FROZEN:
7936 partition_sched_domains(1, NULL, NULL);
7937 return NOTIFY_OK;
7938
7939 default:
7940 return NOTIFY_DONE;
7941 }
7942 }
7943 #endif
7944
7945 static int update_runtime(struct notifier_block *nfb,
7946 unsigned long action, void *hcpu)
7947 {
7948 int cpu = (int)(long)hcpu;
7949
7950 switch (action) {
7951 case CPU_DOWN_PREPARE:
7952 case CPU_DOWN_PREPARE_FROZEN:
7953 disable_runtime(cpu_rq(cpu));
7954 return NOTIFY_OK;
7955
7956 case CPU_DOWN_FAILED:
7957 case CPU_DOWN_FAILED_FROZEN:
7958 case CPU_ONLINE:
7959 case CPU_ONLINE_FROZEN:
7960 enable_runtime(cpu_rq(cpu));
7961 return NOTIFY_OK;
7962
7963 default:
7964 return NOTIFY_DONE;
7965 }
7966 }
7967
7968 void __init sched_init_smp(void)
7969 {
7970 cpumask_t non_isolated_cpus;
7971
7972 #if defined(CONFIG_NUMA)
7973 sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
7974 GFP_KERNEL);
7975 BUG_ON(sched_group_nodes_bycpu == NULL);
7976 #endif
7977 get_online_cpus();
7978 mutex_lock(&sched_domains_mutex);
7979 arch_init_sched_domains(&cpu_online_map);
7980 cpus_andnot(non_isolated_cpus, cpu_possible_map, cpu_isolated_map);
7981 if (cpus_empty(non_isolated_cpus))
7982 cpu_set(smp_processor_id(), non_isolated_cpus);
7983 mutex_unlock(&sched_domains_mutex);
7984 put_online_cpus();
7985
7986 #ifndef CONFIG_CPUSETS
7987 /* XXX: Theoretical race here - CPU may be hotplugged now */
7988 hotcpu_notifier(update_sched_domains, 0);
7989 #endif
7990
7991 /* RT runtime code needs to handle some hotplug events */
7992 hotcpu_notifier(update_runtime, 0);
7993
7994 init_hrtick();
7995
7996 /* Move init over to a non-isolated CPU */
7997 if (set_cpus_allowed_ptr(current, &non_isolated_cpus) < 0)
7998 BUG();
7999 sched_init_granularity();
8000 }
8001 #else
8002 void __init sched_init_smp(void)
8003 {
8004 sched_init_granularity();
8005 }
8006 #endif /* CONFIG_SMP */
8007
8008 int in_sched_functions(unsigned long addr)
8009 {
8010 return in_lock_functions(addr) ||
8011 (addr >= (unsigned long)__sched_text_start
8012 && addr < (unsigned long)__sched_text_end);
8013 }
8014
8015 static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
8016 {
8017 cfs_rq->tasks_timeline = RB_ROOT;
8018 INIT_LIST_HEAD(&cfs_rq->tasks);
8019 #ifdef CONFIG_FAIR_GROUP_SCHED
8020 cfs_rq->rq = rq;
8021 #endif
8022 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
8023 }
8024
8025 static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
8026 {
8027 struct rt_prio_array *array;
8028 int i;
8029
8030 array = &rt_rq->active;
8031 for (i = 0; i < MAX_RT_PRIO; i++) {
8032 INIT_LIST_HEAD(array->queue + i);
8033 __clear_bit(i, array->bitmap);
8034 }
8035 /* delimiter for bitsearch: */
8036 __set_bit(MAX_RT_PRIO, array->bitmap);
8037
8038 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
8039 rt_rq->highest_prio = MAX_RT_PRIO;
8040 #endif
8041 #ifdef CONFIG_SMP
8042 rt_rq->rt_nr_migratory = 0;
8043 rt_rq->overloaded = 0;
8044 #endif
8045
8046 rt_rq->rt_time = 0;
8047 rt_rq->rt_throttled = 0;
8048 rt_rq->rt_runtime = 0;
8049 spin_lock_init(&rt_rq->rt_runtime_lock);
8050
8051 #ifdef CONFIG_RT_GROUP_SCHED
8052 rt_rq->rt_nr_boosted = 0;
8053 rt_rq->rq = rq;
8054 #endif
8055 }
8056
8057 #ifdef CONFIG_FAIR_GROUP_SCHED
8058 static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
8059 struct sched_entity *se, int cpu, int add,
8060 struct sched_entity *parent)
8061 {
8062 struct rq *rq = cpu_rq(cpu);
8063 tg->cfs_rq[cpu] = cfs_rq;
8064 init_cfs_rq(cfs_rq, rq);
8065 cfs_rq->tg = tg;
8066 if (add)
8067 list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
8068
8069 tg->se[cpu] = se;
8070 /* se could be NULL for init_task_group */
8071 if (!se)
8072 return;
8073
8074 if (!parent)
8075 se->cfs_rq = &rq->cfs;
8076 else
8077 se->cfs_rq = parent->my_q;
8078
8079 se->my_q = cfs_rq;
8080 se->load.weight = tg->shares;
8081 se->load.inv_weight = 0;
8082 se->parent = parent;
8083 }
8084 #endif
8085
8086 #ifdef CONFIG_RT_GROUP_SCHED
8087 static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
8088 struct sched_rt_entity *rt_se, int cpu, int add,
8089 struct sched_rt_entity *parent)
8090 {
8091 struct rq *rq = cpu_rq(cpu);
8092
8093 tg->rt_rq[cpu] = rt_rq;
8094 init_rt_rq(rt_rq, rq);
8095 rt_rq->tg = tg;
8096 rt_rq->rt_se = rt_se;
8097 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
8098 if (add)
8099 list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);
8100
8101 tg->rt_se[cpu] = rt_se;
8102 if (!rt_se)
8103 return;
8104
8105 if (!parent)
8106 rt_se->rt_rq = &rq->rt;
8107 else
8108 rt_se->rt_rq = parent->my_q;
8109
8110 rt_se->my_q = rt_rq;
8111 rt_se->parent = parent;
8112 INIT_LIST_HEAD(&rt_se->run_list);
8113 }
8114 #endif
8115
8116 void __init sched_init(void)
8117 {
8118 int i, j;
8119 unsigned long alloc_size = 0, ptr;
8120
8121 #ifdef CONFIG_FAIR_GROUP_SCHED
8122 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
8123 #endif
8124 #ifdef CONFIG_RT_GROUP_SCHED
8125 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
8126 #endif
8127 #ifdef CONFIG_USER_SCHED
8128 alloc_size *= 2;
8129 #endif
8130 /*
8131 * As sched_init() is called before page_alloc is setup,
8132 * we use alloc_bootmem().
8133 */
8134 if (alloc_size) {
8135 ptr = (unsigned long)alloc_bootmem(alloc_size);
8136
8137 #ifdef CONFIG_FAIR_GROUP_SCHED
8138 init_task_group.se = (struct sched_entity **)ptr;
8139 ptr += nr_cpu_ids * sizeof(void **);
8140
8141 init_task_group.cfs_rq = (struct cfs_rq **)ptr;
8142 ptr += nr_cpu_ids * sizeof(void **);
8143
8144 #ifdef CONFIG_USER_SCHED
8145 root_task_group.se = (struct sched_entity **)ptr;
8146 ptr += nr_cpu_ids * sizeof(void **);
8147
8148 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
8149 ptr += nr_cpu_ids * sizeof(void **);
8150 #endif /* CONFIG_USER_SCHED */
8151 #endif /* CONFIG_FAIR_GROUP_SCHED */
8152 #ifdef CONFIG_RT_GROUP_SCHED
8153 init_task_group.rt_se = (struct sched_rt_entity **)ptr;
8154 ptr += nr_cpu_ids * sizeof(void **);
8155
8156 init_task_group.rt_rq = (struct rt_rq **)ptr;
8157 ptr += nr_cpu_ids * sizeof(void **);
8158
8159 #ifdef CONFIG_USER_SCHED
8160 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
8161 ptr += nr_cpu_ids * sizeof(void **);
8162
8163 root_task_group.rt_rq = (struct rt_rq **)ptr;
8164 ptr += nr_cpu_ids * sizeof(void **);
8165 #endif /* CONFIG_USER_SCHED */
8166 #endif /* CONFIG_RT_GROUP_SCHED */
8167 }
8168
8169 #ifdef CONFIG_SMP
8170 init_defrootdomain();
8171 #endif
8172
8173 init_rt_bandwidth(&def_rt_bandwidth,
8174 global_rt_period(), global_rt_runtime());
8175
8176 #ifdef CONFIG_RT_GROUP_SCHED
8177 init_rt_bandwidth(&init_task_group.rt_bandwidth,
8178 global_rt_period(), global_rt_runtime());
8179 #ifdef CONFIG_USER_SCHED
8180 init_rt_bandwidth(&root_task_group.rt_bandwidth,
8181 global_rt_period(), RUNTIME_INF);
8182 #endif /* CONFIG_USER_SCHED */
8183 #endif /* CONFIG_RT_GROUP_SCHED */
8184
8185 #ifdef CONFIG_GROUP_SCHED
8186 list_add(&init_task_group.list, &task_groups);
8187 INIT_LIST_HEAD(&init_task_group.children);
8188
8189 #ifdef CONFIG_USER_SCHED
8190 INIT_LIST_HEAD(&root_task_group.children);
8191 init_task_group.parent = &root_task_group;
8192 list_add(&init_task_group.siblings, &root_task_group.children);
8193 #endif /* CONFIG_USER_SCHED */
8194 #endif /* CONFIG_GROUP_SCHED */
8195
8196 for_each_possible_cpu(i) {
8197 struct rq *rq;
8198
8199 rq = cpu_rq(i);
8200 spin_lock_init(&rq->lock);
8201 rq->nr_running = 0;
8202 init_cfs_rq(&rq->cfs, rq);
8203 init_rt_rq(&rq->rt, rq);
8204 #ifdef CONFIG_FAIR_GROUP_SCHED
8205 init_task_group.shares = init_task_group_load;
8206 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
8207 #ifdef CONFIG_CGROUP_SCHED
8208 /*
8209 * How much cpu bandwidth does init_task_group get?
8210 *
8211 * In case of task-groups formed thr' the cgroup filesystem, it
8212 * gets 100% of the cpu resources in the system. This overall
8213 * system cpu resource is divided among the tasks of
8214 * init_task_group and its child task-groups in a fair manner,
8215 * based on each entity's (task or task-group's) weight
8216 * (se->load.weight).
8217 *
8218 * In other words, if init_task_group has 10 tasks of weight
8219 * 1024) and two child groups A0 and A1 (of weight 1024 each),
8220 * then A0's share of the cpu resource is:
8221 *
8222 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
8223 *
8224 * We achieve this by letting init_task_group's tasks sit
8225 * directly in rq->cfs (i.e init_task_group->se[] = NULL).
8226 */
8227 init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
8228 #elif defined CONFIG_USER_SCHED
8229 root_task_group.shares = NICE_0_LOAD;
8230 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, 0, NULL);
8231 /*
8232 * In case of task-groups formed thr' the user id of tasks,
8233 * init_task_group represents tasks belonging to root user.
8234 * Hence it forms a sibling of all subsequent groups formed.
8235 * In this case, init_task_group gets only a fraction of overall
8236 * system cpu resource, based on the weight assigned to root
8237 * user's cpu share (INIT_TASK_GROUP_LOAD). This is accomplished
8238 * by letting tasks of init_task_group sit in a separate cfs_rq
8239 * (init_cfs_rq) and having one entity represent this group of
8240 * tasks in rq->cfs (i.e init_task_group->se[] != NULL).
8241 */
8242 init_tg_cfs_entry(&init_task_group,
8243 &per_cpu(init_cfs_rq, i),
8244 &per_cpu(init_sched_entity, i), i, 1,
8245 root_task_group.se[i]);
8246
8247 #endif
8248 #endif /* CONFIG_FAIR_GROUP_SCHED */
8249
8250 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
8251 #ifdef CONFIG_RT_GROUP_SCHED
8252 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
8253 #ifdef CONFIG_CGROUP_SCHED
8254 init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
8255 #elif defined CONFIG_USER_SCHED
8256 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, 0, NULL);
8257 init_tg_rt_entry(&init_task_group,
8258 &per_cpu(init_rt_rq, i),
8259 &per_cpu(init_sched_rt_entity, i), i, 1,
8260 root_task_group.rt_se[i]);
8261 #endif
8262 #endif
8263
8264 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
8265 rq->cpu_load[j] = 0;
8266 #ifdef CONFIG_SMP
8267 rq->sd = NULL;
8268 rq->rd = NULL;
8269 rq->active_balance = 0;
8270 rq->next_balance = jiffies;
8271 rq->push_cpu = 0;
8272 rq->cpu = i;
8273 rq->online = 0;
8274 rq->migration_thread = NULL;
8275 INIT_LIST_HEAD(&rq->migration_queue);
8276 rq_attach_root(rq, &def_root_domain);
8277 #endif
8278 init_rq_hrtick(rq);
8279 atomic_set(&rq->nr_iowait, 0);
8280 }
8281
8282 set_load_weight(&init_task);
8283
8284 #ifdef CONFIG_PREEMPT_NOTIFIERS
8285 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
8286 #endif
8287
8288 #ifdef CONFIG_SMP
8289 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
8290 #endif
8291
8292 #ifdef CONFIG_RT_MUTEXES
8293 plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
8294 #endif
8295
8296 /*
8297 * The boot idle thread does lazy MMU switching as well:
8298 */
8299 atomic_inc(&init_mm.mm_count);
8300 enter_lazy_tlb(&init_mm, current);
8301
8302 /*
8303 * Make us the idle thread. Technically, schedule() should not be
8304 * called from this thread, however somewhere below it might be,
8305 * but because we are the idle thread, we just pick up running again
8306 * when this runqueue becomes "idle".
8307 */
8308 init_idle(current, smp_processor_id());
8309 /*
8310 * During early bootup we pretend to be a normal task:
8311 */
8312 current->sched_class = &fair_sched_class;
8313
8314 scheduler_running = 1;
8315 }
8316
8317 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
8318 void __might_sleep(char *file, int line)
8319 {
8320 #ifdef in_atomic
8321 static unsigned long prev_jiffy; /* ratelimiting */
8322
8323 if ((!in_atomic() && !irqs_disabled()) ||
8324 system_state != SYSTEM_RUNNING || oops_in_progress)
8325 return;
8326 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
8327 return;
8328 prev_jiffy = jiffies;
8329
8330 printk(KERN_ERR
8331 "BUG: sleeping function called from invalid context at %s:%d\n",
8332 file, line);
8333 printk(KERN_ERR
8334 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
8335 in_atomic(), irqs_disabled(),
8336 current->pid, current->comm);
8337
8338 debug_show_held_locks(current);
8339 if (irqs_disabled())
8340 print_irqtrace_events(current);
8341 dump_stack();
8342 #endif
8343 }
8344 EXPORT_SYMBOL(__might_sleep);
8345 #endif
8346
8347 #ifdef CONFIG_MAGIC_SYSRQ
8348 static void normalize_task(struct rq *rq, struct task_struct *p)
8349 {
8350 int on_rq;
8351
8352 update_rq_clock(rq);
8353 on_rq = p->se.on_rq;
8354 if (on_rq)
8355 deactivate_task(rq, p, 0);
8356 __setscheduler(rq, p, SCHED_NORMAL, 0);
8357 if (on_rq) {
8358 activate_task(rq, p, 0);
8359 resched_task(rq->curr);
8360 }
8361 }
8362
8363 void normalize_rt_tasks(void)
8364 {
8365 struct task_struct *g, *p;
8366 unsigned long flags;
8367 struct rq *rq;
8368
8369 read_lock_irqsave(&tasklist_lock, flags);
8370 do_each_thread(g, p) {
8371 /*
8372 * Only normalize user tasks:
8373 */
8374 if (!p->mm)
8375 continue;
8376
8377 p->se.exec_start = 0;
8378 #ifdef CONFIG_SCHEDSTATS
8379 p->se.wait_start = 0;
8380 p->se.sleep_start = 0;
8381 p->se.block_start = 0;
8382 #endif
8383
8384 if (!rt_task(p)) {
8385 /*
8386 * Renice negative nice level userspace
8387 * tasks back to 0:
8388 */
8389 if (TASK_NICE(p) < 0 && p->mm)
8390 set_user_nice(p, 0);
8391 continue;
8392 }
8393
8394 spin_lock(&p->pi_lock);
8395 rq = __task_rq_lock(p);
8396
8397 normalize_task(rq, p);
8398
8399 __task_rq_unlock(rq);
8400 spin_unlock(&p->pi_lock);
8401 } while_each_thread(g, p);
8402
8403 read_unlock_irqrestore(&tasklist_lock, flags);
8404 }
8405
8406 #endif /* CONFIG_MAGIC_SYSRQ */
8407
8408 #ifdef CONFIG_IA64
8409 /*
8410 * These functions are only useful for the IA64 MCA handling.
8411 *
8412 * They can only be called when the whole system has been
8413 * stopped - every CPU needs to be quiescent, and no scheduling
8414 * activity can take place. Using them for anything else would
8415 * be a serious bug, and as a result, they aren't even visible
8416 * under any other configuration.
8417 */
8418
8419 /**
8420 * curr_task - return the current task for a given cpu.
8421 * @cpu: the processor in question.
8422 *
8423 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8424 */
8425 struct task_struct *curr_task(int cpu)
8426 {
8427 return cpu_curr(cpu);
8428 }
8429
8430 /**
8431 * set_curr_task - set the current task for a given cpu.
8432 * @cpu: the processor in question.
8433 * @p: the task pointer to set.
8434 *
8435 * Description: This function must only be used when non-maskable interrupts
8436 * are serviced on a separate stack. It allows the architecture to switch the
8437 * notion of the current task on a cpu in a non-blocking manner. This function
8438 * must be called with all CPU's synchronized, and interrupts disabled, the
8439 * and caller must save the original value of the current task (see
8440 * curr_task() above) and restore that value before reenabling interrupts and
8441 * re-starting the system.
8442 *
8443 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8444 */
8445 void set_curr_task(int cpu, struct task_struct *p)
8446 {
8447 cpu_curr(cpu) = p;
8448 }
8449
8450 #endif
8451
8452 #ifdef CONFIG_FAIR_GROUP_SCHED
8453 static void free_fair_sched_group(struct task_group *tg)
8454 {
8455 int i;
8456
8457 for_each_possible_cpu(i) {
8458 if (tg->cfs_rq)
8459 kfree(tg->cfs_rq[i]);
8460 if (tg->se)
8461 kfree(tg->se[i]);
8462 }
8463
8464 kfree(tg->cfs_rq);
8465 kfree(tg->se);
8466 }
8467
8468 static
8469 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
8470 {
8471 struct cfs_rq *cfs_rq;
8472 struct sched_entity *se, *parent_se;
8473 struct rq *rq;
8474 int i;
8475
8476 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
8477 if (!tg->cfs_rq)
8478 goto err;
8479 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
8480 if (!tg->se)
8481 goto err;
8482
8483 tg->shares = NICE_0_LOAD;
8484
8485 for_each_possible_cpu(i) {
8486 rq = cpu_rq(i);
8487
8488 cfs_rq = kmalloc_node(sizeof(struct cfs_rq),
8489 GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
8490 if (!cfs_rq)
8491 goto err;
8492
8493 se = kmalloc_node(sizeof(struct sched_entity),
8494 GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
8495 if (!se)
8496 goto err;
8497
8498 parent_se = parent ? parent->se[i] : NULL;
8499 init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent_se);
8500 }
8501
8502 return 1;
8503
8504 err:
8505 return 0;
8506 }
8507
8508 static inline void register_fair_sched_group(struct task_group *tg, int cpu)
8509 {
8510 list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
8511 &cpu_rq(cpu)->leaf_cfs_rq_list);
8512 }
8513
8514 static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
8515 {
8516 list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
8517 }
8518 #else /* !CONFG_FAIR_GROUP_SCHED */
8519 static inline void free_fair_sched_group(struct task_group *tg)
8520 {
8521 }
8522
8523 static inline
8524 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
8525 {
8526 return 1;
8527 }
8528
8529 static inline void register_fair_sched_group(struct task_group *tg, int cpu)
8530 {
8531 }
8532
8533 static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
8534 {
8535 }
8536 #endif /* CONFIG_FAIR_GROUP_SCHED */
8537
8538 #ifdef CONFIG_RT_GROUP_SCHED
8539 static void free_rt_sched_group(struct task_group *tg)
8540 {
8541 int i;
8542
8543 destroy_rt_bandwidth(&tg->rt_bandwidth);
8544
8545 for_each_possible_cpu(i) {
8546 if (tg->rt_rq)
8547 kfree(tg->rt_rq[i]);
8548 if (tg->rt_se)
8549 kfree(tg->rt_se[i]);
8550 }
8551
8552 kfree(tg->rt_rq);
8553 kfree(tg->rt_se);
8554 }
8555
8556 static
8557 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
8558 {
8559 struct rt_rq *rt_rq;
8560 struct sched_rt_entity *rt_se, *parent_se;
8561 struct rq *rq;
8562 int i;
8563
8564 tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
8565 if (!tg->rt_rq)
8566 goto err;
8567 tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
8568 if (!tg->rt_se)
8569 goto err;
8570
8571 init_rt_bandwidth(&tg->rt_bandwidth,
8572 ktime_to_ns(def_rt_bandwidth.rt_period), 0);
8573
8574 for_each_possible_cpu(i) {
8575 rq = cpu_rq(i);
8576
8577 rt_rq = kmalloc_node(sizeof(struct rt_rq),
8578 GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
8579 if (!rt_rq)
8580 goto err;
8581
8582 rt_se = kmalloc_node(sizeof(struct sched_rt_entity),
8583 GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
8584 if (!rt_se)
8585 goto err;
8586
8587 parent_se = parent ? parent->rt_se[i] : NULL;
8588 init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent_se);
8589 }
8590
8591 return 1;
8592
8593 err:
8594 return 0;
8595 }
8596
8597 static inline void register_rt_sched_group(struct task_group *tg, int cpu)
8598 {
8599 list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
8600 &cpu_rq(cpu)->leaf_rt_rq_list);
8601 }
8602
8603 static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
8604 {
8605 list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
8606 }
8607 #else /* !CONFIG_RT_GROUP_SCHED */
8608 static inline void free_rt_sched_group(struct task_group *tg)
8609 {
8610 }
8611
8612 static inline
8613 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
8614 {
8615 return 1;
8616 }
8617
8618 static inline void register_rt_sched_group(struct task_group *tg, int cpu)
8619 {
8620 }
8621
8622 static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
8623 {
8624 }
8625 #endif /* CONFIG_RT_GROUP_SCHED */
8626
8627 #ifdef CONFIG_GROUP_SCHED
8628 static void free_sched_group(struct task_group *tg)
8629 {
8630 free_fair_sched_group(tg);
8631 free_rt_sched_group(tg);
8632 kfree(tg);
8633 }
8634
8635 /* allocate runqueue etc for a new task group */
8636 struct task_group *sched_create_group(struct task_group *parent)
8637 {
8638 struct task_group *tg;
8639 unsigned long flags;
8640 int i;
8641
8642 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
8643 if (!tg)
8644 return ERR_PTR(-ENOMEM);
8645
8646 if (!alloc_fair_sched_group(tg, parent))
8647 goto err;
8648
8649 if (!alloc_rt_sched_group(tg, parent))
8650 goto err;
8651
8652 spin_lock_irqsave(&task_group_lock, flags);
8653 for_each_possible_cpu(i) {
8654 register_fair_sched_group(tg, i);
8655 register_rt_sched_group(tg, i);
8656 }
8657 list_add_rcu(&tg->list, &task_groups);
8658
8659 WARN_ON(!parent); /* root should already exist */
8660
8661 tg->parent = parent;
8662 INIT_LIST_HEAD(&tg->children);
8663 list_add_rcu(&tg->siblings, &parent->children);
8664 spin_unlock_irqrestore(&task_group_lock, flags);
8665
8666 return tg;
8667
8668 err:
8669 free_sched_group(tg);
8670 return ERR_PTR(-ENOMEM);
8671 }
8672
8673 /* rcu callback to free various structures associated with a task group */
8674 static void free_sched_group_rcu(struct rcu_head *rhp)
8675 {
8676 /* now it should be safe to free those cfs_rqs */
8677 free_sched_group(container_of(rhp, struct task_group, rcu));
8678 }
8679
8680 /* Destroy runqueue etc associated with a task group */
8681 void sched_destroy_group(struct task_group *tg)
8682 {
8683 unsigned long flags;
8684 int i;
8685
8686 spin_lock_irqsave(&task_group_lock, flags);
8687 for_each_possible_cpu(i) {
8688 unregister_fair_sched_group(tg, i);
8689 unregister_rt_sched_group(tg, i);
8690 }
8691 list_del_rcu(&tg->list);
8692 list_del_rcu(&tg->siblings);
8693 spin_unlock_irqrestore(&task_group_lock, flags);
8694
8695 /* wait for possible concurrent references to cfs_rqs complete */
8696 call_rcu(&tg->rcu, free_sched_group_rcu);
8697 }
8698
8699 /* change task's runqueue when it moves between groups.
8700 * The caller of this function should have put the task in its new group
8701 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
8702 * reflect its new group.
8703 */
8704 void sched_move_task(struct task_struct *tsk)
8705 {
8706 int on_rq, running;
8707 unsigned long flags;
8708 struct rq *rq;
8709
8710 rq = task_rq_lock(tsk, &flags);
8711
8712 update_rq_clock(rq);
8713
8714 running = task_current(rq, tsk);
8715 on_rq = tsk->se.on_rq;
8716
8717 if (on_rq)
8718 dequeue_task(rq, tsk, 0);
8719 if (unlikely(running))
8720 tsk->sched_class->put_prev_task(rq, tsk);
8721
8722 set_task_rq(tsk, task_cpu(tsk));
8723
8724 #ifdef CONFIG_FAIR_GROUP_SCHED
8725 if (tsk->sched_class->moved_group)
8726 tsk->sched_class->moved_group(tsk);
8727 #endif
8728
8729 if (unlikely(running))
8730 tsk->sched_class->set_curr_task(rq);
8731 if (on_rq)
8732 enqueue_task(rq, tsk, 0);
8733
8734 task_rq_unlock(rq, &flags);
8735 }
8736 #endif /* CONFIG_GROUP_SCHED */
8737
8738 #ifdef CONFIG_FAIR_GROUP_SCHED
8739 static void __set_se_shares(struct sched_entity *se, unsigned long shares)
8740 {
8741 struct cfs_rq *cfs_rq = se->cfs_rq;
8742 int on_rq;
8743
8744 on_rq = se->on_rq;
8745 if (on_rq)
8746 dequeue_entity(cfs_rq, se, 0);
8747
8748 se->load.weight = shares;
8749 se->load.inv_weight = 0;
8750
8751 if (on_rq)
8752 enqueue_entity(cfs_rq, se, 0);
8753 }
8754
8755 static void set_se_shares(struct sched_entity *se, unsigned long shares)
8756 {
8757 struct cfs_rq *cfs_rq = se->cfs_rq;
8758 struct rq *rq = cfs_rq->rq;
8759 unsigned long flags;
8760
8761 spin_lock_irqsave(&rq->lock, flags);
8762 __set_se_shares(se, shares);
8763 spin_unlock_irqrestore(&rq->lock, flags);
8764 }
8765
8766 static DEFINE_MUTEX(shares_mutex);
8767
8768 int sched_group_set_shares(struct task_group *tg, unsigned long shares)
8769 {
8770 int i;
8771 unsigned long flags;
8772
8773 /*
8774 * We can't change the weight of the root cgroup.
8775 */
8776 if (!tg->se[0])
8777 return -EINVAL;
8778
8779 if (shares < MIN_SHARES)
8780 shares = MIN_SHARES;
8781 else if (shares > MAX_SHARES)
8782 shares = MAX_SHARES;
8783
8784 mutex_lock(&shares_mutex);
8785 if (tg->shares == shares)
8786 goto done;
8787
8788 spin_lock_irqsave(&task_group_lock, flags);
8789 for_each_possible_cpu(i)
8790 unregister_fair_sched_group(tg, i);
8791 list_del_rcu(&tg->siblings);
8792 spin_unlock_irqrestore(&task_group_lock, flags);
8793
8794 /* wait for any ongoing reference to this group to finish */
8795 synchronize_sched();
8796
8797 /*
8798 * Now we are free to modify the group's share on each cpu
8799 * w/o tripping rebalance_share or load_balance_fair.
8800 */
8801 tg->shares = shares;
8802 for_each_possible_cpu(i) {
8803 /*
8804 * force a rebalance
8805 */
8806 cfs_rq_set_shares(tg->cfs_rq[i], 0);
8807 set_se_shares(tg->se[i], shares);
8808 }
8809
8810 /*
8811 * Enable load balance activity on this group, by inserting it back on
8812 * each cpu's rq->leaf_cfs_rq_list.
8813 */
8814 spin_lock_irqsave(&task_group_lock, flags);
8815 for_each_possible_cpu(i)
8816 register_fair_sched_group(tg, i);
8817 list_add_rcu(&tg->siblings, &tg->parent->children);
8818 spin_unlock_irqrestore(&task_group_lock, flags);
8819 done:
8820 mutex_unlock(&shares_mutex);
8821 return 0;
8822 }
8823
8824 unsigned long sched_group_shares(struct task_group *tg)
8825 {
8826 return tg->shares;
8827 }
8828 #endif
8829
8830 #ifdef CONFIG_RT_GROUP_SCHED
8831 /*
8832 * Ensure that the real time constraints are schedulable.
8833 */
8834 static DEFINE_MUTEX(rt_constraints_mutex);
8835
8836 static unsigned long to_ratio(u64 period, u64 runtime)
8837 {
8838 if (runtime == RUNTIME_INF)
8839 return 1ULL << 20;
8840
8841 return div64_u64(runtime << 20, period);
8842 }
8843
8844 /* Must be called with tasklist_lock held */
8845 static inline int tg_has_rt_tasks(struct task_group *tg)
8846 {
8847 struct task_struct *g, *p;
8848
8849 do_each_thread(g, p) {
8850 if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
8851 return 1;
8852 } while_each_thread(g, p);
8853
8854 return 0;
8855 }
8856
8857 struct rt_schedulable_data {
8858 struct task_group *tg;
8859 u64 rt_period;
8860 u64 rt_runtime;
8861 };
8862
8863 static int tg_schedulable(struct task_group *tg, void *data)
8864 {
8865 struct rt_schedulable_data *d = data;
8866 struct task_group *child;
8867 unsigned long total, sum = 0;
8868 u64 period, runtime;
8869
8870 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8871 runtime = tg->rt_bandwidth.rt_runtime;
8872
8873 if (tg == d->tg) {
8874 period = d->rt_period;
8875 runtime = d->rt_runtime;
8876 }
8877
8878 /*
8879 * Cannot have more runtime than the period.
8880 */
8881 if (runtime > period && runtime != RUNTIME_INF)
8882 return -EINVAL;
8883
8884 /*
8885 * Ensure we don't starve existing RT tasks.
8886 */
8887 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
8888 return -EBUSY;
8889
8890 total = to_ratio(period, runtime);
8891
8892 /*
8893 * Nobody can have more than the global setting allows.
8894 */
8895 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
8896 return -EINVAL;
8897
8898 /*
8899 * The sum of our children's runtime should not exceed our own.
8900 */
8901 list_for_each_entry_rcu(child, &tg->children, siblings) {
8902 period = ktime_to_ns(child->rt_bandwidth.rt_period);
8903 runtime = child->rt_bandwidth.rt_runtime;
8904
8905 if (child == d->tg) {
8906 period = d->rt_period;
8907 runtime = d->rt_runtime;
8908 }
8909
8910 sum += to_ratio(period, runtime);
8911 }
8912
8913 if (sum > total)
8914 return -EINVAL;
8915
8916 return 0;
8917 }
8918
8919 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
8920 {
8921 struct rt_schedulable_data data = {
8922 .tg = tg,
8923 .rt_period = period,
8924 .rt_runtime = runtime,
8925 };
8926
8927 return walk_tg_tree(tg_schedulable, tg_nop, &data);
8928 }
8929
8930 static int tg_set_bandwidth(struct task_group *tg,
8931 u64 rt_period, u64 rt_runtime)
8932 {
8933 int i, err = 0;
8934
8935 mutex_lock(&rt_constraints_mutex);
8936 read_lock(&tasklist_lock);
8937 err = __rt_schedulable(tg, rt_period, rt_runtime);
8938 if (err)
8939 goto unlock;
8940
8941 spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
8942 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
8943 tg->rt_bandwidth.rt_runtime = rt_runtime;
8944
8945 for_each_possible_cpu(i) {
8946 struct rt_rq *rt_rq = tg->rt_rq[i];
8947
8948 spin_lock(&rt_rq->rt_runtime_lock);
8949 rt_rq->rt_runtime = rt_runtime;
8950 spin_unlock(&rt_rq->rt_runtime_lock);
8951 }
8952 spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
8953 unlock:
8954 read_unlock(&tasklist_lock);
8955 mutex_unlock(&rt_constraints_mutex);
8956
8957 return err;
8958 }
8959
8960 int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
8961 {
8962 u64 rt_runtime, rt_period;
8963
8964 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8965 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
8966 if (rt_runtime_us < 0)
8967 rt_runtime = RUNTIME_INF;
8968
8969 return tg_set_bandwidth(tg, rt_period, rt_runtime);
8970 }
8971
8972 long sched_group_rt_runtime(struct task_group *tg)
8973 {
8974 u64 rt_runtime_us;
8975
8976 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
8977 return -1;
8978
8979 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
8980 do_div(rt_runtime_us, NSEC_PER_USEC);
8981 return rt_runtime_us;
8982 }
8983
8984 int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
8985 {
8986 u64 rt_runtime, rt_period;
8987
8988 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
8989 rt_runtime = tg->rt_bandwidth.rt_runtime;
8990
8991 if (rt_period == 0)
8992 return -EINVAL;
8993
8994 return tg_set_bandwidth(tg, rt_period, rt_runtime);
8995 }
8996
8997 long sched_group_rt_period(struct task_group *tg)
8998 {
8999 u64 rt_period_us;
9000
9001 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
9002 do_div(rt_period_us, NSEC_PER_USEC);
9003 return rt_period_us;
9004 }
9005
9006 static int sched_rt_global_constraints(void)
9007 {
9008 u64 runtime, period;
9009 int ret = 0;
9010
9011 if (sysctl_sched_rt_period <= 0)
9012 return -EINVAL;
9013
9014 runtime = global_rt_runtime();
9015 period = global_rt_period();
9016
9017 /*
9018 * Sanity check on the sysctl variables.
9019 */
9020 if (runtime > period && runtime != RUNTIME_INF)
9021 return -EINVAL;
9022
9023 mutex_lock(&rt_constraints_mutex);
9024 read_lock(&tasklist_lock);
9025 ret = __rt_schedulable(NULL, 0, 0);
9026 read_unlock(&tasklist_lock);
9027 mutex_unlock(&rt_constraints_mutex);
9028
9029 return ret;
9030 }
9031 #else /* !CONFIG_RT_GROUP_SCHED */
9032 static int sched_rt_global_constraints(void)
9033 {
9034 unsigned long flags;
9035 int i;
9036
9037 if (sysctl_sched_rt_period <= 0)
9038 return -EINVAL;
9039
9040 spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
9041 for_each_possible_cpu(i) {
9042 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
9043
9044 spin_lock(&rt_rq->rt_runtime_lock);
9045 rt_rq->rt_runtime = global_rt_runtime();
9046 spin_unlock(&rt_rq->rt_runtime_lock);
9047 }
9048 spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
9049
9050 return 0;
9051 }
9052 #endif /* CONFIG_RT_GROUP_SCHED */
9053
9054 int sched_rt_handler(struct ctl_table *table, int write,
9055 struct file *filp, void __user *buffer, size_t *lenp,
9056 loff_t *ppos)
9057 {
9058 int ret;
9059 int old_period, old_runtime;
9060 static DEFINE_MUTEX(mutex);
9061
9062 mutex_lock(&mutex);
9063 old_period = sysctl_sched_rt_period;
9064 old_runtime = sysctl_sched_rt_runtime;
9065
9066 ret = proc_dointvec(table, write, filp, buffer, lenp, ppos);
9067
9068 if (!ret && write) {
9069 ret = sched_rt_global_constraints();
9070 if (ret) {
9071 sysctl_sched_rt_period = old_period;
9072 sysctl_sched_rt_runtime = old_runtime;
9073 } else {
9074 def_rt_bandwidth.rt_runtime = global_rt_runtime();
9075 def_rt_bandwidth.rt_period =
9076 ns_to_ktime(global_rt_period());
9077 }
9078 }
9079 mutex_unlock(&mutex);
9080
9081 return ret;
9082 }
9083
9084 #ifdef CONFIG_CGROUP_SCHED
9085
9086 /* return corresponding task_group object of a cgroup */
9087 static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
9088 {
9089 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
9090 struct task_group, css);
9091 }
9092
9093 static struct cgroup_subsys_state *
9094 cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
9095 {
9096 struct task_group *tg, *parent;
9097
9098 if (!cgrp->parent) {
9099 /* This is early initialization for the top cgroup */
9100 return &init_task_group.css;
9101 }
9102
9103 parent = cgroup_tg(cgrp->parent);
9104 tg = sched_create_group(parent);
9105 if (IS_ERR(tg))
9106 return ERR_PTR(-ENOMEM);
9107
9108 return &tg->css;
9109 }
9110
9111 static void
9112 cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
9113 {
9114 struct task_group *tg = cgroup_tg(cgrp);
9115
9116 sched_destroy_group(tg);
9117 }
9118
9119 static int
9120 cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
9121 struct task_struct *tsk)
9122 {
9123 #ifdef CONFIG_RT_GROUP_SCHED
9124 /* Don't accept realtime tasks when there is no way for them to run */
9125 if (rt_task(tsk) && cgroup_tg(cgrp)->rt_bandwidth.rt_runtime == 0)
9126 return -EINVAL;
9127 #else
9128 /* We don't support RT-tasks being in separate groups */
9129 if (tsk->sched_class != &fair_sched_class)
9130 return -EINVAL;
9131 #endif
9132
9133 return 0;
9134 }
9135
9136 static void
9137 cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
9138 struct cgroup *old_cont, struct task_struct *tsk)
9139 {
9140 sched_move_task(tsk);
9141 }
9142
9143 #ifdef CONFIG_FAIR_GROUP_SCHED
9144 static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
9145 u64 shareval)
9146 {
9147 return sched_group_set_shares(cgroup_tg(cgrp), shareval);
9148 }
9149
9150 static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
9151 {
9152 struct task_group *tg = cgroup_tg(cgrp);
9153
9154 return (u64) tg->shares;
9155 }
9156 #endif /* CONFIG_FAIR_GROUP_SCHED */
9157
9158 #ifdef CONFIG_RT_GROUP_SCHED
9159 static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
9160 s64 val)
9161 {
9162 return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
9163 }
9164
9165 static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
9166 {
9167 return sched_group_rt_runtime(cgroup_tg(cgrp));
9168 }
9169
9170 static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
9171 u64 rt_period_us)
9172 {
9173 return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
9174 }
9175
9176 static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
9177 {
9178 return sched_group_rt_period(cgroup_tg(cgrp));
9179 }
9180 #endif /* CONFIG_RT_GROUP_SCHED */
9181
9182 static struct cftype cpu_files[] = {
9183 #ifdef CONFIG_FAIR_GROUP_SCHED
9184 {
9185 .name = "shares",
9186 .read_u64 = cpu_shares_read_u64,
9187 .write_u64 = cpu_shares_write_u64,
9188 },
9189 #endif
9190 #ifdef CONFIG_RT_GROUP_SCHED
9191 {
9192 .name = "rt_runtime_us",
9193 .read_s64 = cpu_rt_runtime_read,
9194 .write_s64 = cpu_rt_runtime_write,
9195 },
9196 {
9197 .name = "rt_period_us",
9198 .read_u64 = cpu_rt_period_read_uint,
9199 .write_u64 = cpu_rt_period_write_uint,
9200 },
9201 #endif
9202 };
9203
9204 static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
9205 {
9206 return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
9207 }
9208
9209 struct cgroup_subsys cpu_cgroup_subsys = {
9210 .name = "cpu",
9211 .create = cpu_cgroup_create,
9212 .destroy = cpu_cgroup_destroy,
9213 .can_attach = cpu_cgroup_can_attach,
9214 .attach = cpu_cgroup_attach,
9215 .populate = cpu_cgroup_populate,
9216 .subsys_id = cpu_cgroup_subsys_id,
9217 .early_init = 1,
9218 };
9219
9220 #endif /* CONFIG_CGROUP_SCHED */
9221
9222 #ifdef CONFIG_CGROUP_CPUACCT
9223
9224 /*
9225 * CPU accounting code for task groups.
9226 *
9227 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
9228 * (balbir@in.ibm.com).
9229 */
9230
9231 /* track cpu usage of a group of tasks */
9232 struct cpuacct {
9233 struct cgroup_subsys_state css;
9234 /* cpuusage holds pointer to a u64-type object on every cpu */
9235 u64 *cpuusage;
9236 };
9237
9238 struct cgroup_subsys cpuacct_subsys;
9239
9240 /* return cpu accounting group corresponding to this container */
9241 static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
9242 {
9243 return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
9244 struct cpuacct, css);
9245 }
9246
9247 /* return cpu accounting group to which this task belongs */
9248 static inline struct cpuacct *task_ca(struct task_struct *tsk)
9249 {
9250 return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
9251 struct cpuacct, css);
9252 }
9253
9254 /* create a new cpu accounting group */
9255 static struct cgroup_subsys_state *cpuacct_create(
9256 struct cgroup_subsys *ss, struct cgroup *cgrp)
9257 {
9258 struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
9259
9260 if (!ca)
9261 return ERR_PTR(-ENOMEM);
9262
9263 ca->cpuusage = alloc_percpu(u64);
9264 if (!ca->cpuusage) {
9265 kfree(ca);
9266 return ERR_PTR(-ENOMEM);
9267 }
9268
9269 return &ca->css;
9270 }
9271
9272 /* destroy an existing cpu accounting group */
9273 static void
9274 cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
9275 {
9276 struct cpuacct *ca = cgroup_ca(cgrp);
9277
9278 free_percpu(ca->cpuusage);
9279 kfree(ca);
9280 }
9281
9282 /* return total cpu usage (in nanoseconds) of a group */
9283 static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
9284 {
9285 struct cpuacct *ca = cgroup_ca(cgrp);
9286 u64 totalcpuusage = 0;
9287 int i;
9288
9289 for_each_possible_cpu(i) {
9290 u64 *cpuusage = percpu_ptr(ca->cpuusage, i);
9291
9292 /*
9293 * Take rq->lock to make 64-bit addition safe on 32-bit
9294 * platforms.
9295 */
9296 spin_lock_irq(&cpu_rq(i)->lock);
9297 totalcpuusage += *cpuusage;
9298 spin_unlock_irq(&cpu_rq(i)->lock);
9299 }
9300
9301 return totalcpuusage;
9302 }
9303
9304 static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
9305 u64 reset)
9306 {
9307 struct cpuacct *ca = cgroup_ca(cgrp);
9308 int err = 0;
9309 int i;
9310
9311 if (reset) {
9312 err = -EINVAL;
9313 goto out;
9314 }
9315
9316 for_each_possible_cpu(i) {
9317 u64 *cpuusage = percpu_ptr(ca->cpuusage, i);
9318
9319 spin_lock_irq(&cpu_rq(i)->lock);
9320 *cpuusage = 0;
9321 spin_unlock_irq(&cpu_rq(i)->lock);
9322 }
9323 out:
9324 return err;
9325 }
9326
9327 static struct cftype files[] = {
9328 {
9329 .name = "usage",
9330 .read_u64 = cpuusage_read,
9331 .write_u64 = cpuusage_write,
9332 },
9333 };
9334
9335 static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
9336 {
9337 return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
9338 }
9339
9340 /*
9341 * charge this task's execution time to its accounting group.
9342 *
9343 * called with rq->lock held.
9344 */
9345 static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
9346 {
9347 struct cpuacct *ca;
9348
9349 if (!cpuacct_subsys.active)
9350 return;
9351
9352 ca = task_ca(tsk);
9353 if (ca) {
9354 u64 *cpuusage = percpu_ptr(ca->cpuusage, task_cpu(tsk));
9355
9356 *cpuusage += cputime;
9357 }
9358 }
9359
9360 struct cgroup_subsys cpuacct_subsys = {
9361 .name = "cpuacct",
9362 .create = cpuacct_create,
9363 .destroy = cpuacct_destroy,
9364 .populate = cpuacct_populate,
9365 .subsys_id = cpuacct_subsys_id,
9366 };
9367 #endif /* CONFIG_CGROUP_CPUACCT */