]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - kernel/sched.c
sched: fix new task startup crash
[mirror_ubuntu-bionic-kernel.git] / kernel / sched.c
1 /*
2 * kernel/sched.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
25 */
26
27 #include <linux/mm.h>
28 #include <linux/module.h>
29 #include <linux/nmi.h>
30 #include <linux/init.h>
31 #include <linux/uaccess.h>
32 #include <linux/highmem.h>
33 #include <linux/smp_lock.h>
34 #include <asm/mmu_context.h>
35 #include <linux/interrupt.h>
36 #include <linux/capability.h>
37 #include <linux/completion.h>
38 #include <linux/kernel_stat.h>
39 #include <linux/debug_locks.h>
40 #include <linux/security.h>
41 #include <linux/notifier.h>
42 #include <linux/profile.h>
43 #include <linux/freezer.h>
44 #include <linux/vmalloc.h>
45 #include <linux/blkdev.h>
46 #include <linux/delay.h>
47 #include <linux/smp.h>
48 #include <linux/threads.h>
49 #include <linux/timer.h>
50 #include <linux/rcupdate.h>
51 #include <linux/cpu.h>
52 #include <linux/cpuset.h>
53 #include <linux/percpu.h>
54 #include <linux/kthread.h>
55 #include <linux/seq_file.h>
56 #include <linux/sysctl.h>
57 #include <linux/syscalls.h>
58 #include <linux/times.h>
59 #include <linux/tsacct_kern.h>
60 #include <linux/kprobes.h>
61 #include <linux/delayacct.h>
62 #include <linux/reciprocal_div.h>
63 #include <linux/unistd.h>
64 #include <linux/pagemap.h>
65
66 #include <asm/tlb.h>
67
68 /*
69 * Scheduler clock - returns current time in nanosec units.
70 * This is default implementation.
71 * Architectures and sub-architectures can override this.
72 */
73 unsigned long long __attribute__((weak)) sched_clock(void)
74 {
75 return (unsigned long long)jiffies * (1000000000 / HZ);
76 }
77
78 /*
79 * Convert user-nice values [ -20 ... 0 ... 19 ]
80 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
81 * and back.
82 */
83 #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
84 #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
85 #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
86
87 /*
88 * 'User priority' is the nice value converted to something we
89 * can work with better when scaling various scheduler parameters,
90 * it's a [ 0 ... 39 ] range.
91 */
92 #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
93 #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
94 #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
95
96 /*
97 * Some helpers for converting nanosecond timing to jiffy resolution
98 */
99 #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (1000000000 / HZ))
100 #define JIFFIES_TO_NS(TIME) ((TIME) * (1000000000 / HZ))
101
102 #define NICE_0_LOAD SCHED_LOAD_SCALE
103 #define NICE_0_SHIFT SCHED_LOAD_SHIFT
104
105 /*
106 * These are the 'tuning knobs' of the scheduler:
107 *
108 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
109 * Timeslices get refilled after they expire.
110 */
111 #define DEF_TIMESLICE (100 * HZ / 1000)
112
113 #ifdef CONFIG_SMP
114 /*
115 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
116 * Since cpu_power is a 'constant', we can use a reciprocal divide.
117 */
118 static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
119 {
120 return reciprocal_divide(load, sg->reciprocal_cpu_power);
121 }
122
123 /*
124 * Each time a sched group cpu_power is changed,
125 * we must compute its reciprocal value
126 */
127 static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
128 {
129 sg->__cpu_power += val;
130 sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
131 }
132 #endif
133
134 static inline int rt_policy(int policy)
135 {
136 if (unlikely(policy == SCHED_FIFO) || unlikely(policy == SCHED_RR))
137 return 1;
138 return 0;
139 }
140
141 static inline int task_has_rt_policy(struct task_struct *p)
142 {
143 return rt_policy(p->policy);
144 }
145
146 /*
147 * This is the priority-queue data structure of the RT scheduling class:
148 */
149 struct rt_prio_array {
150 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
151 struct list_head queue[MAX_RT_PRIO];
152 };
153
154 #ifdef CONFIG_FAIR_GROUP_SCHED
155
156 struct cfs_rq;
157
158 /* task group related information */
159 struct task_group {
160 /* schedulable entities of this group on each cpu */
161 struct sched_entity **se;
162 /* runqueue "owned" by this group on each cpu */
163 struct cfs_rq **cfs_rq;
164 unsigned long shares;
165 /* spinlock to serialize modification to shares */
166 spinlock_t lock;
167 };
168
169 /* Default task group's sched entity on each cpu */
170 static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
171 /* Default task group's cfs_rq on each cpu */
172 static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp;
173
174 static struct sched_entity *init_sched_entity_p[NR_CPUS];
175 static struct cfs_rq *init_cfs_rq_p[NR_CPUS];
176
177 /* Default task group.
178 * Every task in system belong to this group at bootup.
179 */
180 struct task_group init_task_group = {
181 .se = init_sched_entity_p,
182 .cfs_rq = init_cfs_rq_p,
183 };
184
185 #ifdef CONFIG_FAIR_USER_SCHED
186 # define INIT_TASK_GRP_LOAD 2*NICE_0_LOAD
187 #else
188 # define INIT_TASK_GRP_LOAD NICE_0_LOAD
189 #endif
190
191 static int init_task_group_load = INIT_TASK_GRP_LOAD;
192
193 /* return group to which a task belongs */
194 static inline struct task_group *task_group(struct task_struct *p)
195 {
196 struct task_group *tg;
197
198 #ifdef CONFIG_FAIR_USER_SCHED
199 tg = p->user->tg;
200 #else
201 tg = &init_task_group;
202 #endif
203
204 return tg;
205 }
206
207 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
208 static inline void set_task_cfs_rq(struct task_struct *p)
209 {
210 p->se.cfs_rq = task_group(p)->cfs_rq[task_cpu(p)];
211 p->se.parent = task_group(p)->se[task_cpu(p)];
212 }
213
214 #else
215
216 static inline void set_task_cfs_rq(struct task_struct *p) { }
217
218 #endif /* CONFIG_FAIR_GROUP_SCHED */
219
220 /* CFS-related fields in a runqueue */
221 struct cfs_rq {
222 struct load_weight load;
223 unsigned long nr_running;
224
225 u64 exec_clock;
226 u64 min_vruntime;
227
228 struct rb_root tasks_timeline;
229 struct rb_node *rb_leftmost;
230 struct rb_node *rb_load_balance_curr;
231 /* 'curr' points to currently running entity on this cfs_rq.
232 * It is set to NULL otherwise (i.e when none are currently running).
233 */
234 struct sched_entity *curr;
235
236 unsigned long nr_spread_over;
237
238 #ifdef CONFIG_FAIR_GROUP_SCHED
239 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
240
241 /* leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
242 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
243 * (like users, containers etc.)
244 *
245 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
246 * list is used during load balance.
247 */
248 struct list_head leaf_cfs_rq_list; /* Better name : task_cfs_rq_list? */
249 struct task_group *tg; /* group that "owns" this runqueue */
250 struct rcu_head rcu;
251 #endif
252 };
253
254 /* Real-Time classes' related field in a runqueue: */
255 struct rt_rq {
256 struct rt_prio_array active;
257 int rt_load_balance_idx;
258 struct list_head *rt_load_balance_head, *rt_load_balance_curr;
259 };
260
261 /*
262 * This is the main, per-CPU runqueue data structure.
263 *
264 * Locking rule: those places that want to lock multiple runqueues
265 * (such as the load balancing or the thread migration code), lock
266 * acquire operations must be ordered by ascending &runqueue.
267 */
268 struct rq {
269 spinlock_t lock; /* runqueue lock */
270
271 /*
272 * nr_running and cpu_load should be in the same cacheline because
273 * remote CPUs use both these fields when doing load calculation.
274 */
275 unsigned long nr_running;
276 #define CPU_LOAD_IDX_MAX 5
277 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
278 unsigned char idle_at_tick;
279 #ifdef CONFIG_NO_HZ
280 unsigned char in_nohz_recently;
281 #endif
282 struct load_weight load; /* capture load from *all* tasks on this cpu */
283 unsigned long nr_load_updates;
284 u64 nr_switches;
285
286 struct cfs_rq cfs;
287 #ifdef CONFIG_FAIR_GROUP_SCHED
288 struct list_head leaf_cfs_rq_list; /* list of leaf cfs_rq on this cpu */
289 #endif
290 struct rt_rq rt;
291
292 /*
293 * This is part of a global counter where only the total sum
294 * over all CPUs matters. A task can increase this counter on
295 * one CPU and if it got migrated afterwards it may decrease
296 * it on another CPU. Always updated under the runqueue lock:
297 */
298 unsigned long nr_uninterruptible;
299
300 struct task_struct *curr, *idle;
301 unsigned long next_balance;
302 struct mm_struct *prev_mm;
303
304 u64 clock, prev_clock_raw;
305 s64 clock_max_delta;
306
307 unsigned int clock_warps, clock_overflows;
308 u64 idle_clock;
309 unsigned int clock_deep_idle_events;
310 u64 tick_timestamp;
311
312 atomic_t nr_iowait;
313
314 #ifdef CONFIG_SMP
315 struct sched_domain *sd;
316
317 /* For active balancing */
318 int active_balance;
319 int push_cpu;
320 int cpu; /* cpu of this runqueue */
321
322 struct task_struct *migration_thread;
323 struct list_head migration_queue;
324 #endif
325
326 #ifdef CONFIG_SCHEDSTATS
327 /* latency stats */
328 struct sched_info rq_sched_info;
329
330 /* sys_sched_yield() stats */
331 unsigned long yld_exp_empty;
332 unsigned long yld_act_empty;
333 unsigned long yld_both_empty;
334 unsigned long yld_count;
335
336 /* schedule() stats */
337 unsigned long sched_switch;
338 unsigned long sched_count;
339 unsigned long sched_goidle;
340
341 /* try_to_wake_up() stats */
342 unsigned long ttwu_count;
343 unsigned long ttwu_local;
344
345 /* BKL stats */
346 unsigned long bkl_count;
347 #endif
348 struct lock_class_key rq_lock_key;
349 };
350
351 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
352 static DEFINE_MUTEX(sched_hotcpu_mutex);
353
354 static inline void check_preempt_curr(struct rq *rq, struct task_struct *p)
355 {
356 rq->curr->sched_class->check_preempt_curr(rq, p);
357 }
358
359 static inline int cpu_of(struct rq *rq)
360 {
361 #ifdef CONFIG_SMP
362 return rq->cpu;
363 #else
364 return 0;
365 #endif
366 }
367
368 /*
369 * Update the per-runqueue clock, as finegrained as the platform can give
370 * us, but without assuming monotonicity, etc.:
371 */
372 static void __update_rq_clock(struct rq *rq)
373 {
374 u64 prev_raw = rq->prev_clock_raw;
375 u64 now = sched_clock();
376 s64 delta = now - prev_raw;
377 u64 clock = rq->clock;
378
379 #ifdef CONFIG_SCHED_DEBUG
380 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
381 #endif
382 /*
383 * Protect against sched_clock() occasionally going backwards:
384 */
385 if (unlikely(delta < 0)) {
386 clock++;
387 rq->clock_warps++;
388 } else {
389 /*
390 * Catch too large forward jumps too:
391 */
392 if (unlikely(clock + delta > rq->tick_timestamp + TICK_NSEC)) {
393 if (clock < rq->tick_timestamp + TICK_NSEC)
394 clock = rq->tick_timestamp + TICK_NSEC;
395 else
396 clock++;
397 rq->clock_overflows++;
398 } else {
399 if (unlikely(delta > rq->clock_max_delta))
400 rq->clock_max_delta = delta;
401 clock += delta;
402 }
403 }
404
405 rq->prev_clock_raw = now;
406 rq->clock = clock;
407 }
408
409 static void update_rq_clock(struct rq *rq)
410 {
411 if (likely(smp_processor_id() == cpu_of(rq)))
412 __update_rq_clock(rq);
413 }
414
415 /*
416 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
417 * See detach_destroy_domains: synchronize_sched for details.
418 *
419 * The domain tree of any CPU may only be accessed from within
420 * preempt-disabled sections.
421 */
422 #define for_each_domain(cpu, __sd) \
423 for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
424
425 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
426 #define this_rq() (&__get_cpu_var(runqueues))
427 #define task_rq(p) cpu_rq(task_cpu(p))
428 #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
429
430 /*
431 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
432 */
433 #ifdef CONFIG_SCHED_DEBUG
434 # define const_debug __read_mostly
435 #else
436 # define const_debug static const
437 #endif
438
439 /*
440 * Debugging: various feature bits
441 */
442 enum {
443 SCHED_FEAT_NEW_FAIR_SLEEPERS = 1,
444 SCHED_FEAT_START_DEBIT = 2,
445 SCHED_FEAT_TREE_AVG = 4,
446 SCHED_FEAT_APPROX_AVG = 8,
447 SCHED_FEAT_WAKEUP_PREEMPT = 16,
448 SCHED_FEAT_PREEMPT_RESTRICT = 32,
449 };
450
451 const_debug unsigned int sysctl_sched_features =
452 SCHED_FEAT_NEW_FAIR_SLEEPERS *1 |
453 SCHED_FEAT_START_DEBIT *1 |
454 SCHED_FEAT_TREE_AVG *0 |
455 SCHED_FEAT_APPROX_AVG *0 |
456 SCHED_FEAT_WAKEUP_PREEMPT *1 |
457 SCHED_FEAT_PREEMPT_RESTRICT *1;
458
459 #define sched_feat(x) (sysctl_sched_features & SCHED_FEAT_##x)
460
461 /*
462 * For kernel-internal use: high-speed (but slightly incorrect) per-cpu
463 * clock constructed from sched_clock():
464 */
465 unsigned long long cpu_clock(int cpu)
466 {
467 unsigned long long now;
468 unsigned long flags;
469 struct rq *rq;
470
471 local_irq_save(flags);
472 rq = cpu_rq(cpu);
473 update_rq_clock(rq);
474 now = rq->clock;
475 local_irq_restore(flags);
476
477 return now;
478 }
479 EXPORT_SYMBOL_GPL(cpu_clock);
480
481 #ifndef prepare_arch_switch
482 # define prepare_arch_switch(next) do { } while (0)
483 #endif
484 #ifndef finish_arch_switch
485 # define finish_arch_switch(prev) do { } while (0)
486 #endif
487
488 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
489 static inline int task_running(struct rq *rq, struct task_struct *p)
490 {
491 return rq->curr == p;
492 }
493
494 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
495 {
496 }
497
498 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
499 {
500 #ifdef CONFIG_DEBUG_SPINLOCK
501 /* this is a valid case when another task releases the spinlock */
502 rq->lock.owner = current;
503 #endif
504 /*
505 * If we are tracking spinlock dependencies then we have to
506 * fix up the runqueue lock - which gets 'carried over' from
507 * prev into current:
508 */
509 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
510
511 spin_unlock_irq(&rq->lock);
512 }
513
514 #else /* __ARCH_WANT_UNLOCKED_CTXSW */
515 static inline int task_running(struct rq *rq, struct task_struct *p)
516 {
517 #ifdef CONFIG_SMP
518 return p->oncpu;
519 #else
520 return rq->curr == p;
521 #endif
522 }
523
524 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
525 {
526 #ifdef CONFIG_SMP
527 /*
528 * We can optimise this out completely for !SMP, because the
529 * SMP rebalancing from interrupt is the only thing that cares
530 * here.
531 */
532 next->oncpu = 1;
533 #endif
534 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
535 spin_unlock_irq(&rq->lock);
536 #else
537 spin_unlock(&rq->lock);
538 #endif
539 }
540
541 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
542 {
543 #ifdef CONFIG_SMP
544 /*
545 * After ->oncpu is cleared, the task can be moved to a different CPU.
546 * We must ensure this doesn't happen until the switch is completely
547 * finished.
548 */
549 smp_wmb();
550 prev->oncpu = 0;
551 #endif
552 #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
553 local_irq_enable();
554 #endif
555 }
556 #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
557
558 /*
559 * __task_rq_lock - lock the runqueue a given task resides on.
560 * Must be called interrupts disabled.
561 */
562 static inline struct rq *__task_rq_lock(struct task_struct *p)
563 __acquires(rq->lock)
564 {
565 for (;;) {
566 struct rq *rq = task_rq(p);
567 spin_lock(&rq->lock);
568 if (likely(rq == task_rq(p)))
569 return rq;
570 spin_unlock(&rq->lock);
571 }
572 }
573
574 /*
575 * task_rq_lock - lock the runqueue a given task resides on and disable
576 * interrupts. Note the ordering: we can safely lookup the task_rq without
577 * explicitly disabling preemption.
578 */
579 static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
580 __acquires(rq->lock)
581 {
582 struct rq *rq;
583
584 for (;;) {
585 local_irq_save(*flags);
586 rq = task_rq(p);
587 spin_lock(&rq->lock);
588 if (likely(rq == task_rq(p)))
589 return rq;
590 spin_unlock_irqrestore(&rq->lock, *flags);
591 }
592 }
593
594 static void __task_rq_unlock(struct rq *rq)
595 __releases(rq->lock)
596 {
597 spin_unlock(&rq->lock);
598 }
599
600 static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
601 __releases(rq->lock)
602 {
603 spin_unlock_irqrestore(&rq->lock, *flags);
604 }
605
606 /*
607 * this_rq_lock - lock this runqueue and disable interrupts.
608 */
609 static struct rq *this_rq_lock(void)
610 __acquires(rq->lock)
611 {
612 struct rq *rq;
613
614 local_irq_disable();
615 rq = this_rq();
616 spin_lock(&rq->lock);
617
618 return rq;
619 }
620
621 /*
622 * We are going deep-idle (irqs are disabled):
623 */
624 void sched_clock_idle_sleep_event(void)
625 {
626 struct rq *rq = cpu_rq(smp_processor_id());
627
628 spin_lock(&rq->lock);
629 __update_rq_clock(rq);
630 spin_unlock(&rq->lock);
631 rq->clock_deep_idle_events++;
632 }
633 EXPORT_SYMBOL_GPL(sched_clock_idle_sleep_event);
634
635 /*
636 * We just idled delta nanoseconds (called with irqs disabled):
637 */
638 void sched_clock_idle_wakeup_event(u64 delta_ns)
639 {
640 struct rq *rq = cpu_rq(smp_processor_id());
641 u64 now = sched_clock();
642
643 rq->idle_clock += delta_ns;
644 /*
645 * Override the previous timestamp and ignore all
646 * sched_clock() deltas that occured while we idled,
647 * and use the PM-provided delta_ns to advance the
648 * rq clock:
649 */
650 spin_lock(&rq->lock);
651 rq->prev_clock_raw = now;
652 rq->clock += delta_ns;
653 spin_unlock(&rq->lock);
654 }
655 EXPORT_SYMBOL_GPL(sched_clock_idle_wakeup_event);
656
657 /*
658 * resched_task - mark a task 'to be rescheduled now'.
659 *
660 * On UP this means the setting of the need_resched flag, on SMP it
661 * might also involve a cross-CPU call to trigger the scheduler on
662 * the target CPU.
663 */
664 #ifdef CONFIG_SMP
665
666 #ifndef tsk_is_polling
667 #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
668 #endif
669
670 static void resched_task(struct task_struct *p)
671 {
672 int cpu;
673
674 assert_spin_locked(&task_rq(p)->lock);
675
676 if (unlikely(test_tsk_thread_flag(p, TIF_NEED_RESCHED)))
677 return;
678
679 set_tsk_thread_flag(p, TIF_NEED_RESCHED);
680
681 cpu = task_cpu(p);
682 if (cpu == smp_processor_id())
683 return;
684
685 /* NEED_RESCHED must be visible before we test polling */
686 smp_mb();
687 if (!tsk_is_polling(p))
688 smp_send_reschedule(cpu);
689 }
690
691 static void resched_cpu(int cpu)
692 {
693 struct rq *rq = cpu_rq(cpu);
694 unsigned long flags;
695
696 if (!spin_trylock_irqsave(&rq->lock, flags))
697 return;
698 resched_task(cpu_curr(cpu));
699 spin_unlock_irqrestore(&rq->lock, flags);
700 }
701 #else
702 static inline void resched_task(struct task_struct *p)
703 {
704 assert_spin_locked(&task_rq(p)->lock);
705 set_tsk_need_resched(p);
706 }
707 #endif
708
709 #if BITS_PER_LONG == 32
710 # define WMULT_CONST (~0UL)
711 #else
712 # define WMULT_CONST (1UL << 32)
713 #endif
714
715 #define WMULT_SHIFT 32
716
717 /*
718 * Shift right and round:
719 */
720 #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
721
722 static unsigned long
723 calc_delta_mine(unsigned long delta_exec, unsigned long weight,
724 struct load_weight *lw)
725 {
726 u64 tmp;
727
728 if (unlikely(!lw->inv_weight))
729 lw->inv_weight = (WMULT_CONST - lw->weight/2) / lw->weight + 1;
730
731 tmp = (u64)delta_exec * weight;
732 /*
733 * Check whether we'd overflow the 64-bit multiplication:
734 */
735 if (unlikely(tmp > WMULT_CONST))
736 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
737 WMULT_SHIFT/2);
738 else
739 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
740
741 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
742 }
743
744 static inline unsigned long
745 calc_delta_fair(unsigned long delta_exec, struct load_weight *lw)
746 {
747 return calc_delta_mine(delta_exec, NICE_0_LOAD, lw);
748 }
749
750 static inline void update_load_add(struct load_weight *lw, unsigned long inc)
751 {
752 lw->weight += inc;
753 }
754
755 static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
756 {
757 lw->weight -= dec;
758 }
759
760 /*
761 * To aid in avoiding the subversion of "niceness" due to uneven distribution
762 * of tasks with abnormal "nice" values across CPUs the contribution that
763 * each task makes to its run queue's load is weighted according to its
764 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
765 * scaled version of the new time slice allocation that they receive on time
766 * slice expiry etc.
767 */
768
769 #define WEIGHT_IDLEPRIO 2
770 #define WMULT_IDLEPRIO (1 << 31)
771
772 /*
773 * Nice levels are multiplicative, with a gentle 10% change for every
774 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
775 * nice 1, it will get ~10% less CPU time than another CPU-bound task
776 * that remained on nice 0.
777 *
778 * The "10% effect" is relative and cumulative: from _any_ nice level,
779 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
780 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
781 * If a task goes up by ~10% and another task goes down by ~10% then
782 * the relative distance between them is ~25%.)
783 */
784 static const int prio_to_weight[40] = {
785 /* -20 */ 88761, 71755, 56483, 46273, 36291,
786 /* -15 */ 29154, 23254, 18705, 14949, 11916,
787 /* -10 */ 9548, 7620, 6100, 4904, 3906,
788 /* -5 */ 3121, 2501, 1991, 1586, 1277,
789 /* 0 */ 1024, 820, 655, 526, 423,
790 /* 5 */ 335, 272, 215, 172, 137,
791 /* 10 */ 110, 87, 70, 56, 45,
792 /* 15 */ 36, 29, 23, 18, 15,
793 };
794
795 /*
796 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
797 *
798 * In cases where the weight does not change often, we can use the
799 * precalculated inverse to speed up arithmetics by turning divisions
800 * into multiplications:
801 */
802 static const u32 prio_to_wmult[40] = {
803 /* -20 */ 48388, 59856, 76040, 92818, 118348,
804 /* -15 */ 147320, 184698, 229616, 287308, 360437,
805 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
806 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
807 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
808 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
809 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
810 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
811 };
812
813 static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
814
815 /*
816 * runqueue iterator, to support SMP load-balancing between different
817 * scheduling classes, without having to expose their internal data
818 * structures to the load-balancing proper:
819 */
820 struct rq_iterator {
821 void *arg;
822 struct task_struct *(*start)(void *);
823 struct task_struct *(*next)(void *);
824 };
825
826 static int balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
827 unsigned long max_nr_move, unsigned long max_load_move,
828 struct sched_domain *sd, enum cpu_idle_type idle,
829 int *all_pinned, unsigned long *load_moved,
830 int *this_best_prio, struct rq_iterator *iterator);
831
832 #include "sched_stats.h"
833 #include "sched_idletask.c"
834 #include "sched_fair.c"
835 #include "sched_rt.c"
836 #ifdef CONFIG_SCHED_DEBUG
837 # include "sched_debug.c"
838 #endif
839
840 #define sched_class_highest (&rt_sched_class)
841
842 /*
843 * Update delta_exec, delta_fair fields for rq.
844 *
845 * delta_fair clock advances at a rate inversely proportional to
846 * total load (rq->load.weight) on the runqueue, while
847 * delta_exec advances at the same rate as wall-clock (provided
848 * cpu is not idle).
849 *
850 * delta_exec / delta_fair is a measure of the (smoothened) load on this
851 * runqueue over any given interval. This (smoothened) load is used
852 * during load balance.
853 *
854 * This function is called /before/ updating rq->load
855 * and when switching tasks.
856 */
857 static inline void inc_load(struct rq *rq, const struct task_struct *p)
858 {
859 update_load_add(&rq->load, p->se.load.weight);
860 }
861
862 static inline void dec_load(struct rq *rq, const struct task_struct *p)
863 {
864 update_load_sub(&rq->load, p->se.load.weight);
865 }
866
867 static void inc_nr_running(struct task_struct *p, struct rq *rq)
868 {
869 rq->nr_running++;
870 inc_load(rq, p);
871 }
872
873 static void dec_nr_running(struct task_struct *p, struct rq *rq)
874 {
875 rq->nr_running--;
876 dec_load(rq, p);
877 }
878
879 static void set_load_weight(struct task_struct *p)
880 {
881 if (task_has_rt_policy(p)) {
882 p->se.load.weight = prio_to_weight[0] * 2;
883 p->se.load.inv_weight = prio_to_wmult[0] >> 1;
884 return;
885 }
886
887 /*
888 * SCHED_IDLE tasks get minimal weight:
889 */
890 if (p->policy == SCHED_IDLE) {
891 p->se.load.weight = WEIGHT_IDLEPRIO;
892 p->se.load.inv_weight = WMULT_IDLEPRIO;
893 return;
894 }
895
896 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
897 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
898 }
899
900 static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
901 {
902 sched_info_queued(p);
903 p->sched_class->enqueue_task(rq, p, wakeup);
904 p->se.on_rq = 1;
905 }
906
907 static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
908 {
909 p->sched_class->dequeue_task(rq, p, sleep);
910 p->se.on_rq = 0;
911 }
912
913 /*
914 * __normal_prio - return the priority that is based on the static prio
915 */
916 static inline int __normal_prio(struct task_struct *p)
917 {
918 return p->static_prio;
919 }
920
921 /*
922 * Calculate the expected normal priority: i.e. priority
923 * without taking RT-inheritance into account. Might be
924 * boosted by interactivity modifiers. Changes upon fork,
925 * setprio syscalls, and whenever the interactivity
926 * estimator recalculates.
927 */
928 static inline int normal_prio(struct task_struct *p)
929 {
930 int prio;
931
932 if (task_has_rt_policy(p))
933 prio = MAX_RT_PRIO-1 - p->rt_priority;
934 else
935 prio = __normal_prio(p);
936 return prio;
937 }
938
939 /*
940 * Calculate the current priority, i.e. the priority
941 * taken into account by the scheduler. This value might
942 * be boosted by RT tasks, or might be boosted by
943 * interactivity modifiers. Will be RT if the task got
944 * RT-boosted. If not then it returns p->normal_prio.
945 */
946 static int effective_prio(struct task_struct *p)
947 {
948 p->normal_prio = normal_prio(p);
949 /*
950 * If we are RT tasks or we were boosted to RT priority,
951 * keep the priority unchanged. Otherwise, update priority
952 * to the normal priority:
953 */
954 if (!rt_prio(p->prio))
955 return p->normal_prio;
956 return p->prio;
957 }
958
959 /*
960 * activate_task - move a task to the runqueue.
961 */
962 static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
963 {
964 if (p->state == TASK_UNINTERRUPTIBLE)
965 rq->nr_uninterruptible--;
966
967 enqueue_task(rq, p, wakeup);
968 inc_nr_running(p, rq);
969 }
970
971 /*
972 * deactivate_task - remove a task from the runqueue.
973 */
974 static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
975 {
976 if (p->state == TASK_UNINTERRUPTIBLE)
977 rq->nr_uninterruptible++;
978
979 dequeue_task(rq, p, sleep);
980 dec_nr_running(p, rq);
981 }
982
983 /**
984 * task_curr - is this task currently executing on a CPU?
985 * @p: the task in question.
986 */
987 inline int task_curr(const struct task_struct *p)
988 {
989 return cpu_curr(task_cpu(p)) == p;
990 }
991
992 /* Used instead of source_load when we know the type == 0 */
993 unsigned long weighted_cpuload(const int cpu)
994 {
995 return cpu_rq(cpu)->load.weight;
996 }
997
998 static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
999 {
1000 #ifdef CONFIG_SMP
1001 task_thread_info(p)->cpu = cpu;
1002 #endif
1003 set_task_cfs_rq(p);
1004 }
1005
1006 #ifdef CONFIG_SMP
1007
1008 /*
1009 * Is this task likely cache-hot:
1010 */
1011 static inline int
1012 task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
1013 {
1014 s64 delta;
1015
1016 if (p->sched_class != &fair_sched_class)
1017 return 0;
1018
1019 if (sysctl_sched_migration_cost == -1)
1020 return 1;
1021 if (sysctl_sched_migration_cost == 0)
1022 return 0;
1023
1024 delta = now - p->se.exec_start;
1025
1026 return delta < (s64)sysctl_sched_migration_cost;
1027 }
1028
1029
1030 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
1031 {
1032 int old_cpu = task_cpu(p);
1033 struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
1034 struct cfs_rq *old_cfsrq = task_cfs_rq(p),
1035 *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
1036 u64 clock_offset;
1037
1038 clock_offset = old_rq->clock - new_rq->clock;
1039
1040 #ifdef CONFIG_SCHEDSTATS
1041 if (p->se.wait_start)
1042 p->se.wait_start -= clock_offset;
1043 if (p->se.sleep_start)
1044 p->se.sleep_start -= clock_offset;
1045 if (p->se.block_start)
1046 p->se.block_start -= clock_offset;
1047 if (old_cpu != new_cpu) {
1048 schedstat_inc(p, se.nr_migrations);
1049 if (task_hot(p, old_rq->clock, NULL))
1050 schedstat_inc(p, se.nr_forced2_migrations);
1051 }
1052 #endif
1053 p->se.vruntime -= old_cfsrq->min_vruntime -
1054 new_cfsrq->min_vruntime;
1055
1056 __set_task_cpu(p, new_cpu);
1057 }
1058
1059 struct migration_req {
1060 struct list_head list;
1061
1062 struct task_struct *task;
1063 int dest_cpu;
1064
1065 struct completion done;
1066 };
1067
1068 /*
1069 * The task's runqueue lock must be held.
1070 * Returns true if you have to wait for migration thread.
1071 */
1072 static int
1073 migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
1074 {
1075 struct rq *rq = task_rq(p);
1076
1077 /*
1078 * If the task is not on a runqueue (and not running), then
1079 * it is sufficient to simply update the task's cpu field.
1080 */
1081 if (!p->se.on_rq && !task_running(rq, p)) {
1082 set_task_cpu(p, dest_cpu);
1083 return 0;
1084 }
1085
1086 init_completion(&req->done);
1087 req->task = p;
1088 req->dest_cpu = dest_cpu;
1089 list_add(&req->list, &rq->migration_queue);
1090
1091 return 1;
1092 }
1093
1094 /*
1095 * wait_task_inactive - wait for a thread to unschedule.
1096 *
1097 * The caller must ensure that the task *will* unschedule sometime soon,
1098 * else this function might spin for a *long* time. This function can't
1099 * be called with interrupts off, or it may introduce deadlock with
1100 * smp_call_function() if an IPI is sent by the same process we are
1101 * waiting to become inactive.
1102 */
1103 void wait_task_inactive(struct task_struct *p)
1104 {
1105 unsigned long flags;
1106 int running, on_rq;
1107 struct rq *rq;
1108
1109 for (;;) {
1110 /*
1111 * We do the initial early heuristics without holding
1112 * any task-queue locks at all. We'll only try to get
1113 * the runqueue lock when things look like they will
1114 * work out!
1115 */
1116 rq = task_rq(p);
1117
1118 /*
1119 * If the task is actively running on another CPU
1120 * still, just relax and busy-wait without holding
1121 * any locks.
1122 *
1123 * NOTE! Since we don't hold any locks, it's not
1124 * even sure that "rq" stays as the right runqueue!
1125 * But we don't care, since "task_running()" will
1126 * return false if the runqueue has changed and p
1127 * is actually now running somewhere else!
1128 */
1129 while (task_running(rq, p))
1130 cpu_relax();
1131
1132 /*
1133 * Ok, time to look more closely! We need the rq
1134 * lock now, to be *sure*. If we're wrong, we'll
1135 * just go back and repeat.
1136 */
1137 rq = task_rq_lock(p, &flags);
1138 running = task_running(rq, p);
1139 on_rq = p->se.on_rq;
1140 task_rq_unlock(rq, &flags);
1141
1142 /*
1143 * Was it really running after all now that we
1144 * checked with the proper locks actually held?
1145 *
1146 * Oops. Go back and try again..
1147 */
1148 if (unlikely(running)) {
1149 cpu_relax();
1150 continue;
1151 }
1152
1153 /*
1154 * It's not enough that it's not actively running,
1155 * it must be off the runqueue _entirely_, and not
1156 * preempted!
1157 *
1158 * So if it wa still runnable (but just not actively
1159 * running right now), it's preempted, and we should
1160 * yield - it could be a while.
1161 */
1162 if (unlikely(on_rq)) {
1163 schedule_timeout_uninterruptible(1);
1164 continue;
1165 }
1166
1167 /*
1168 * Ahh, all good. It wasn't running, and it wasn't
1169 * runnable, which means that it will never become
1170 * running in the future either. We're all done!
1171 */
1172 break;
1173 }
1174 }
1175
1176 /***
1177 * kick_process - kick a running thread to enter/exit the kernel
1178 * @p: the to-be-kicked thread
1179 *
1180 * Cause a process which is running on another CPU to enter
1181 * kernel-mode, without any delay. (to get signals handled.)
1182 *
1183 * NOTE: this function doesnt have to take the runqueue lock,
1184 * because all it wants to ensure is that the remote task enters
1185 * the kernel. If the IPI races and the task has been migrated
1186 * to another CPU then no harm is done and the purpose has been
1187 * achieved as well.
1188 */
1189 void kick_process(struct task_struct *p)
1190 {
1191 int cpu;
1192
1193 preempt_disable();
1194 cpu = task_cpu(p);
1195 if ((cpu != smp_processor_id()) && task_curr(p))
1196 smp_send_reschedule(cpu);
1197 preempt_enable();
1198 }
1199
1200 /*
1201 * Return a low guess at the load of a migration-source cpu weighted
1202 * according to the scheduling class and "nice" value.
1203 *
1204 * We want to under-estimate the load of migration sources, to
1205 * balance conservatively.
1206 */
1207 static unsigned long source_load(int cpu, int type)
1208 {
1209 struct rq *rq = cpu_rq(cpu);
1210 unsigned long total = weighted_cpuload(cpu);
1211
1212 if (type == 0)
1213 return total;
1214
1215 return min(rq->cpu_load[type-1], total);
1216 }
1217
1218 /*
1219 * Return a high guess at the load of a migration-target cpu weighted
1220 * according to the scheduling class and "nice" value.
1221 */
1222 static unsigned long target_load(int cpu, int type)
1223 {
1224 struct rq *rq = cpu_rq(cpu);
1225 unsigned long total = weighted_cpuload(cpu);
1226
1227 if (type == 0)
1228 return total;
1229
1230 return max(rq->cpu_load[type-1], total);
1231 }
1232
1233 /*
1234 * Return the average load per task on the cpu's run queue
1235 */
1236 static inline unsigned long cpu_avg_load_per_task(int cpu)
1237 {
1238 struct rq *rq = cpu_rq(cpu);
1239 unsigned long total = weighted_cpuload(cpu);
1240 unsigned long n = rq->nr_running;
1241
1242 return n ? total / n : SCHED_LOAD_SCALE;
1243 }
1244
1245 /*
1246 * find_idlest_group finds and returns the least busy CPU group within the
1247 * domain.
1248 */
1249 static struct sched_group *
1250 find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
1251 {
1252 struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
1253 unsigned long min_load = ULONG_MAX, this_load = 0;
1254 int load_idx = sd->forkexec_idx;
1255 int imbalance = 100 + (sd->imbalance_pct-100)/2;
1256
1257 do {
1258 unsigned long load, avg_load;
1259 int local_group;
1260 int i;
1261
1262 /* Skip over this group if it has no CPUs allowed */
1263 if (!cpus_intersects(group->cpumask, p->cpus_allowed))
1264 continue;
1265
1266 local_group = cpu_isset(this_cpu, group->cpumask);
1267
1268 /* Tally up the load of all CPUs in the group */
1269 avg_load = 0;
1270
1271 for_each_cpu_mask(i, group->cpumask) {
1272 /* Bias balancing toward cpus of our domain */
1273 if (local_group)
1274 load = source_load(i, load_idx);
1275 else
1276 load = target_load(i, load_idx);
1277
1278 avg_load += load;
1279 }
1280
1281 /* Adjust by relative CPU power of the group */
1282 avg_load = sg_div_cpu_power(group,
1283 avg_load * SCHED_LOAD_SCALE);
1284
1285 if (local_group) {
1286 this_load = avg_load;
1287 this = group;
1288 } else if (avg_load < min_load) {
1289 min_load = avg_load;
1290 idlest = group;
1291 }
1292 } while (group = group->next, group != sd->groups);
1293
1294 if (!idlest || 100*this_load < imbalance*min_load)
1295 return NULL;
1296 return idlest;
1297 }
1298
1299 /*
1300 * find_idlest_cpu - find the idlest cpu among the cpus in group.
1301 */
1302 static int
1303 find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
1304 {
1305 cpumask_t tmp;
1306 unsigned long load, min_load = ULONG_MAX;
1307 int idlest = -1;
1308 int i;
1309
1310 /* Traverse only the allowed CPUs */
1311 cpus_and(tmp, group->cpumask, p->cpus_allowed);
1312
1313 for_each_cpu_mask(i, tmp) {
1314 load = weighted_cpuload(i);
1315
1316 if (load < min_load || (load == min_load && i == this_cpu)) {
1317 min_load = load;
1318 idlest = i;
1319 }
1320 }
1321
1322 return idlest;
1323 }
1324
1325 /*
1326 * sched_balance_self: balance the current task (running on cpu) in domains
1327 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
1328 * SD_BALANCE_EXEC.
1329 *
1330 * Balance, ie. select the least loaded group.
1331 *
1332 * Returns the target CPU number, or the same CPU if no balancing is needed.
1333 *
1334 * preempt must be disabled.
1335 */
1336 static int sched_balance_self(int cpu, int flag)
1337 {
1338 struct task_struct *t = current;
1339 struct sched_domain *tmp, *sd = NULL;
1340
1341 for_each_domain(cpu, tmp) {
1342 /*
1343 * If power savings logic is enabled for a domain, stop there.
1344 */
1345 if (tmp->flags & SD_POWERSAVINGS_BALANCE)
1346 break;
1347 if (tmp->flags & flag)
1348 sd = tmp;
1349 }
1350
1351 while (sd) {
1352 cpumask_t span;
1353 struct sched_group *group;
1354 int new_cpu, weight;
1355
1356 if (!(sd->flags & flag)) {
1357 sd = sd->child;
1358 continue;
1359 }
1360
1361 span = sd->span;
1362 group = find_idlest_group(sd, t, cpu);
1363 if (!group) {
1364 sd = sd->child;
1365 continue;
1366 }
1367
1368 new_cpu = find_idlest_cpu(group, t, cpu);
1369 if (new_cpu == -1 || new_cpu == cpu) {
1370 /* Now try balancing at a lower domain level of cpu */
1371 sd = sd->child;
1372 continue;
1373 }
1374
1375 /* Now try balancing at a lower domain level of new_cpu */
1376 cpu = new_cpu;
1377 sd = NULL;
1378 weight = cpus_weight(span);
1379 for_each_domain(cpu, tmp) {
1380 if (weight <= cpus_weight(tmp->span))
1381 break;
1382 if (tmp->flags & flag)
1383 sd = tmp;
1384 }
1385 /* while loop will break here if sd == NULL */
1386 }
1387
1388 return cpu;
1389 }
1390
1391 #endif /* CONFIG_SMP */
1392
1393 /*
1394 * wake_idle() will wake a task on an idle cpu if task->cpu is
1395 * not idle and an idle cpu is available. The span of cpus to
1396 * search starts with cpus closest then further out as needed,
1397 * so we always favor a closer, idle cpu.
1398 *
1399 * Returns the CPU we should wake onto.
1400 */
1401 #if defined(ARCH_HAS_SCHED_WAKE_IDLE)
1402 static int wake_idle(int cpu, struct task_struct *p)
1403 {
1404 cpumask_t tmp;
1405 struct sched_domain *sd;
1406 int i;
1407
1408 /*
1409 * If it is idle, then it is the best cpu to run this task.
1410 *
1411 * This cpu is also the best, if it has more than one task already.
1412 * Siblings must be also busy(in most cases) as they didn't already
1413 * pickup the extra load from this cpu and hence we need not check
1414 * sibling runqueue info. This will avoid the checks and cache miss
1415 * penalities associated with that.
1416 */
1417 if (idle_cpu(cpu) || cpu_rq(cpu)->nr_running > 1)
1418 return cpu;
1419
1420 for_each_domain(cpu, sd) {
1421 if (sd->flags & SD_WAKE_IDLE) {
1422 cpus_and(tmp, sd->span, p->cpus_allowed);
1423 for_each_cpu_mask(i, tmp) {
1424 if (idle_cpu(i)) {
1425 if (i != task_cpu(p)) {
1426 schedstat_inc(p,
1427 se.nr_wakeups_idle);
1428 }
1429 return i;
1430 }
1431 }
1432 } else {
1433 break;
1434 }
1435 }
1436 return cpu;
1437 }
1438 #else
1439 static inline int wake_idle(int cpu, struct task_struct *p)
1440 {
1441 return cpu;
1442 }
1443 #endif
1444
1445 /***
1446 * try_to_wake_up - wake up a thread
1447 * @p: the to-be-woken-up thread
1448 * @state: the mask of task states that can be woken
1449 * @sync: do a synchronous wakeup?
1450 *
1451 * Put it on the run-queue if it's not already there. The "current"
1452 * thread is always on the run-queue (except when the actual
1453 * re-schedule is in progress), and as such you're allowed to do
1454 * the simpler "current->state = TASK_RUNNING" to mark yourself
1455 * runnable without the overhead of this.
1456 *
1457 * returns failure only if the task is already active.
1458 */
1459 static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
1460 {
1461 int cpu, orig_cpu, this_cpu, success = 0;
1462 unsigned long flags;
1463 long old_state;
1464 struct rq *rq;
1465 #ifdef CONFIG_SMP
1466 struct sched_domain *sd, *this_sd = NULL;
1467 unsigned long load, this_load;
1468 int new_cpu;
1469 #endif
1470
1471 rq = task_rq_lock(p, &flags);
1472 old_state = p->state;
1473 if (!(old_state & state))
1474 goto out;
1475
1476 if (p->se.on_rq)
1477 goto out_running;
1478
1479 cpu = task_cpu(p);
1480 orig_cpu = cpu;
1481 this_cpu = smp_processor_id();
1482
1483 #ifdef CONFIG_SMP
1484 if (unlikely(task_running(rq, p)))
1485 goto out_activate;
1486
1487 new_cpu = cpu;
1488
1489 schedstat_inc(rq, ttwu_count);
1490 if (cpu == this_cpu) {
1491 schedstat_inc(rq, ttwu_local);
1492 goto out_set_cpu;
1493 }
1494
1495 for_each_domain(this_cpu, sd) {
1496 if (cpu_isset(cpu, sd->span)) {
1497 schedstat_inc(sd, ttwu_wake_remote);
1498 this_sd = sd;
1499 break;
1500 }
1501 }
1502
1503 if (unlikely(!cpu_isset(this_cpu, p->cpus_allowed)))
1504 goto out_set_cpu;
1505
1506 /*
1507 * Check for affine wakeup and passive balancing possibilities.
1508 */
1509 if (this_sd) {
1510 int idx = this_sd->wake_idx;
1511 unsigned int imbalance;
1512
1513 imbalance = 100 + (this_sd->imbalance_pct - 100) / 2;
1514
1515 load = source_load(cpu, idx);
1516 this_load = target_load(this_cpu, idx);
1517
1518 new_cpu = this_cpu; /* Wake to this CPU if we can */
1519
1520 if (this_sd->flags & SD_WAKE_AFFINE) {
1521 unsigned long tl = this_load;
1522 unsigned long tl_per_task;
1523
1524 /*
1525 * Attract cache-cold tasks on sync wakeups:
1526 */
1527 if (sync && !task_hot(p, rq->clock, this_sd))
1528 goto out_set_cpu;
1529
1530 schedstat_inc(p, se.nr_wakeups_affine_attempts);
1531 tl_per_task = cpu_avg_load_per_task(this_cpu);
1532
1533 /*
1534 * If sync wakeup then subtract the (maximum possible)
1535 * effect of the currently running task from the load
1536 * of the current CPU:
1537 */
1538 if (sync)
1539 tl -= current->se.load.weight;
1540
1541 if ((tl <= load &&
1542 tl + target_load(cpu, idx) <= tl_per_task) ||
1543 100*(tl + p->se.load.weight) <= imbalance*load) {
1544 /*
1545 * This domain has SD_WAKE_AFFINE and
1546 * p is cache cold in this domain, and
1547 * there is no bad imbalance.
1548 */
1549 schedstat_inc(this_sd, ttwu_move_affine);
1550 schedstat_inc(p, se.nr_wakeups_affine);
1551 goto out_set_cpu;
1552 }
1553 }
1554
1555 /*
1556 * Start passive balancing when half the imbalance_pct
1557 * limit is reached.
1558 */
1559 if (this_sd->flags & SD_WAKE_BALANCE) {
1560 if (imbalance*this_load <= 100*load) {
1561 schedstat_inc(this_sd, ttwu_move_balance);
1562 schedstat_inc(p, se.nr_wakeups_passive);
1563 goto out_set_cpu;
1564 }
1565 }
1566 }
1567
1568 new_cpu = cpu; /* Could not wake to this_cpu. Wake to cpu instead */
1569 out_set_cpu:
1570 new_cpu = wake_idle(new_cpu, p);
1571 if (new_cpu != cpu) {
1572 set_task_cpu(p, new_cpu);
1573 task_rq_unlock(rq, &flags);
1574 /* might preempt at this point */
1575 rq = task_rq_lock(p, &flags);
1576 old_state = p->state;
1577 if (!(old_state & state))
1578 goto out;
1579 if (p->se.on_rq)
1580 goto out_running;
1581
1582 this_cpu = smp_processor_id();
1583 cpu = task_cpu(p);
1584 }
1585
1586 out_activate:
1587 #endif /* CONFIG_SMP */
1588 schedstat_inc(p, se.nr_wakeups);
1589 if (sync)
1590 schedstat_inc(p, se.nr_wakeups_sync);
1591 if (orig_cpu != cpu)
1592 schedstat_inc(p, se.nr_wakeups_migrate);
1593 if (cpu == this_cpu)
1594 schedstat_inc(p, se.nr_wakeups_local);
1595 else
1596 schedstat_inc(p, se.nr_wakeups_remote);
1597 update_rq_clock(rq);
1598 activate_task(rq, p, 1);
1599 check_preempt_curr(rq, p);
1600 success = 1;
1601
1602 out_running:
1603 p->state = TASK_RUNNING;
1604 out:
1605 task_rq_unlock(rq, &flags);
1606
1607 return success;
1608 }
1609
1610 int fastcall wake_up_process(struct task_struct *p)
1611 {
1612 return try_to_wake_up(p, TASK_STOPPED | TASK_TRACED |
1613 TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE, 0);
1614 }
1615 EXPORT_SYMBOL(wake_up_process);
1616
1617 int fastcall wake_up_state(struct task_struct *p, unsigned int state)
1618 {
1619 return try_to_wake_up(p, state, 0);
1620 }
1621
1622 /*
1623 * Perform scheduler related setup for a newly forked process p.
1624 * p is forked by current.
1625 *
1626 * __sched_fork() is basic setup used by init_idle() too:
1627 */
1628 static void __sched_fork(struct task_struct *p)
1629 {
1630 p->se.exec_start = 0;
1631 p->se.sum_exec_runtime = 0;
1632 p->se.prev_sum_exec_runtime = 0;
1633
1634 #ifdef CONFIG_SCHEDSTATS
1635 p->se.wait_start = 0;
1636 p->se.sum_sleep_runtime = 0;
1637 p->se.sleep_start = 0;
1638 p->se.block_start = 0;
1639 p->se.sleep_max = 0;
1640 p->se.block_max = 0;
1641 p->se.exec_max = 0;
1642 p->se.slice_max = 0;
1643 p->se.wait_max = 0;
1644 #endif
1645
1646 INIT_LIST_HEAD(&p->run_list);
1647 p->se.on_rq = 0;
1648
1649 #ifdef CONFIG_PREEMPT_NOTIFIERS
1650 INIT_HLIST_HEAD(&p->preempt_notifiers);
1651 #endif
1652
1653 /*
1654 * We mark the process as running here, but have not actually
1655 * inserted it onto the runqueue yet. This guarantees that
1656 * nobody will actually run it, and a signal or other external
1657 * event cannot wake it up and insert it on the runqueue either.
1658 */
1659 p->state = TASK_RUNNING;
1660 }
1661
1662 /*
1663 * fork()/clone()-time setup:
1664 */
1665 void sched_fork(struct task_struct *p, int clone_flags)
1666 {
1667 int cpu = get_cpu();
1668
1669 __sched_fork(p);
1670
1671 #ifdef CONFIG_SMP
1672 cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
1673 #endif
1674 set_task_cpu(p, cpu);
1675
1676 /*
1677 * Make sure we do not leak PI boosting priority to the child:
1678 */
1679 p->prio = current->normal_prio;
1680 if (!rt_prio(p->prio))
1681 p->sched_class = &fair_sched_class;
1682
1683 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1684 if (likely(sched_info_on()))
1685 memset(&p->sched_info, 0, sizeof(p->sched_info));
1686 #endif
1687 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
1688 p->oncpu = 0;
1689 #endif
1690 #ifdef CONFIG_PREEMPT
1691 /* Want to start with kernel preemption disabled. */
1692 task_thread_info(p)->preempt_count = 1;
1693 #endif
1694 put_cpu();
1695 }
1696
1697 /*
1698 * wake_up_new_task - wake up a newly created task for the first time.
1699 *
1700 * This function will do some initial scheduler statistics housekeeping
1701 * that must be done for every newly created context, then puts the task
1702 * on the runqueue and wakes it.
1703 */
1704 void fastcall wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
1705 {
1706 unsigned long flags;
1707 struct rq *rq;
1708
1709 rq = task_rq_lock(p, &flags);
1710 BUG_ON(p->state != TASK_RUNNING);
1711 update_rq_clock(rq);
1712
1713 p->prio = effective_prio(p);
1714
1715 if (!p->sched_class->task_new || !current->se.on_rq) {
1716 activate_task(rq, p, 0);
1717 } else {
1718 /*
1719 * Let the scheduling class do new task startup
1720 * management (if any):
1721 */
1722 p->sched_class->task_new(rq, p);
1723 inc_nr_running(p, rq);
1724 }
1725 check_preempt_curr(rq, p);
1726 task_rq_unlock(rq, &flags);
1727 }
1728
1729 #ifdef CONFIG_PREEMPT_NOTIFIERS
1730
1731 /**
1732 * preempt_notifier_register - tell me when current is being being preempted & rescheduled
1733 * @notifier: notifier struct to register
1734 */
1735 void preempt_notifier_register(struct preempt_notifier *notifier)
1736 {
1737 hlist_add_head(&notifier->link, &current->preempt_notifiers);
1738 }
1739 EXPORT_SYMBOL_GPL(preempt_notifier_register);
1740
1741 /**
1742 * preempt_notifier_unregister - no longer interested in preemption notifications
1743 * @notifier: notifier struct to unregister
1744 *
1745 * This is safe to call from within a preemption notifier.
1746 */
1747 void preempt_notifier_unregister(struct preempt_notifier *notifier)
1748 {
1749 hlist_del(&notifier->link);
1750 }
1751 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
1752
1753 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1754 {
1755 struct preempt_notifier *notifier;
1756 struct hlist_node *node;
1757
1758 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
1759 notifier->ops->sched_in(notifier, raw_smp_processor_id());
1760 }
1761
1762 static void
1763 fire_sched_out_preempt_notifiers(struct task_struct *curr,
1764 struct task_struct *next)
1765 {
1766 struct preempt_notifier *notifier;
1767 struct hlist_node *node;
1768
1769 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
1770 notifier->ops->sched_out(notifier, next);
1771 }
1772
1773 #else
1774
1775 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1776 {
1777 }
1778
1779 static void
1780 fire_sched_out_preempt_notifiers(struct task_struct *curr,
1781 struct task_struct *next)
1782 {
1783 }
1784
1785 #endif
1786
1787 /**
1788 * prepare_task_switch - prepare to switch tasks
1789 * @rq: the runqueue preparing to switch
1790 * @prev: the current task that is being switched out
1791 * @next: the task we are going to switch to.
1792 *
1793 * This is called with the rq lock held and interrupts off. It must
1794 * be paired with a subsequent finish_task_switch after the context
1795 * switch.
1796 *
1797 * prepare_task_switch sets up locking and calls architecture specific
1798 * hooks.
1799 */
1800 static inline void
1801 prepare_task_switch(struct rq *rq, struct task_struct *prev,
1802 struct task_struct *next)
1803 {
1804 fire_sched_out_preempt_notifiers(prev, next);
1805 prepare_lock_switch(rq, next);
1806 prepare_arch_switch(next);
1807 }
1808
1809 /**
1810 * finish_task_switch - clean up after a task-switch
1811 * @rq: runqueue associated with task-switch
1812 * @prev: the thread we just switched away from.
1813 *
1814 * finish_task_switch must be called after the context switch, paired
1815 * with a prepare_task_switch call before the context switch.
1816 * finish_task_switch will reconcile locking set up by prepare_task_switch,
1817 * and do any other architecture-specific cleanup actions.
1818 *
1819 * Note that we may have delayed dropping an mm in context_switch(). If
1820 * so, we finish that here outside of the runqueue lock. (Doing it
1821 * with the lock held can cause deadlocks; see schedule() for
1822 * details.)
1823 */
1824 static void finish_task_switch(struct rq *rq, struct task_struct *prev)
1825 __releases(rq->lock)
1826 {
1827 struct mm_struct *mm = rq->prev_mm;
1828 long prev_state;
1829
1830 rq->prev_mm = NULL;
1831
1832 /*
1833 * A task struct has one reference for the use as "current".
1834 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
1835 * schedule one last time. The schedule call will never return, and
1836 * the scheduled task must drop that reference.
1837 * The test for TASK_DEAD must occur while the runqueue locks are
1838 * still held, otherwise prev could be scheduled on another cpu, die
1839 * there before we look at prev->state, and then the reference would
1840 * be dropped twice.
1841 * Manfred Spraul <manfred@colorfullife.com>
1842 */
1843 prev_state = prev->state;
1844 finish_arch_switch(prev);
1845 finish_lock_switch(rq, prev);
1846 fire_sched_in_preempt_notifiers(current);
1847 if (mm)
1848 mmdrop(mm);
1849 if (unlikely(prev_state == TASK_DEAD)) {
1850 /*
1851 * Remove function-return probe instances associated with this
1852 * task and put them back on the free list.
1853 */
1854 kprobe_flush_task(prev);
1855 put_task_struct(prev);
1856 }
1857 }
1858
1859 /**
1860 * schedule_tail - first thing a freshly forked thread must call.
1861 * @prev: the thread we just switched away from.
1862 */
1863 asmlinkage void schedule_tail(struct task_struct *prev)
1864 __releases(rq->lock)
1865 {
1866 struct rq *rq = this_rq();
1867
1868 finish_task_switch(rq, prev);
1869 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
1870 /* In this case, finish_task_switch does not reenable preemption */
1871 preempt_enable();
1872 #endif
1873 if (current->set_child_tid)
1874 put_user(current->pid, current->set_child_tid);
1875 }
1876
1877 /*
1878 * context_switch - switch to the new MM and the new
1879 * thread's register state.
1880 */
1881 static inline void
1882 context_switch(struct rq *rq, struct task_struct *prev,
1883 struct task_struct *next)
1884 {
1885 struct mm_struct *mm, *oldmm;
1886
1887 prepare_task_switch(rq, prev, next);
1888 mm = next->mm;
1889 oldmm = prev->active_mm;
1890 /*
1891 * For paravirt, this is coupled with an exit in switch_to to
1892 * combine the page table reload and the switch backend into
1893 * one hypercall.
1894 */
1895 arch_enter_lazy_cpu_mode();
1896
1897 if (unlikely(!mm)) {
1898 next->active_mm = oldmm;
1899 atomic_inc(&oldmm->mm_count);
1900 enter_lazy_tlb(oldmm, next);
1901 } else
1902 switch_mm(oldmm, mm, next);
1903
1904 if (unlikely(!prev->mm)) {
1905 prev->active_mm = NULL;
1906 rq->prev_mm = oldmm;
1907 }
1908 /*
1909 * Since the runqueue lock will be released by the next
1910 * task (which is an invalid locking op but in the case
1911 * of the scheduler it's an obvious special-case), so we
1912 * do an early lockdep release here:
1913 */
1914 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
1915 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
1916 #endif
1917
1918 /* Here we just switch the register state and the stack. */
1919 switch_to(prev, next, prev);
1920
1921 barrier();
1922 /*
1923 * this_rq must be evaluated again because prev may have moved
1924 * CPUs since it called schedule(), thus the 'rq' on its stack
1925 * frame will be invalid.
1926 */
1927 finish_task_switch(this_rq(), prev);
1928 }
1929
1930 /*
1931 * nr_running, nr_uninterruptible and nr_context_switches:
1932 *
1933 * externally visible scheduler statistics: current number of runnable
1934 * threads, current number of uninterruptible-sleeping threads, total
1935 * number of context switches performed since bootup.
1936 */
1937 unsigned long nr_running(void)
1938 {
1939 unsigned long i, sum = 0;
1940
1941 for_each_online_cpu(i)
1942 sum += cpu_rq(i)->nr_running;
1943
1944 return sum;
1945 }
1946
1947 unsigned long nr_uninterruptible(void)
1948 {
1949 unsigned long i, sum = 0;
1950
1951 for_each_possible_cpu(i)
1952 sum += cpu_rq(i)->nr_uninterruptible;
1953
1954 /*
1955 * Since we read the counters lockless, it might be slightly
1956 * inaccurate. Do not allow it to go below zero though:
1957 */
1958 if (unlikely((long)sum < 0))
1959 sum = 0;
1960
1961 return sum;
1962 }
1963
1964 unsigned long long nr_context_switches(void)
1965 {
1966 int i;
1967 unsigned long long sum = 0;
1968
1969 for_each_possible_cpu(i)
1970 sum += cpu_rq(i)->nr_switches;
1971
1972 return sum;
1973 }
1974
1975 unsigned long nr_iowait(void)
1976 {
1977 unsigned long i, sum = 0;
1978
1979 for_each_possible_cpu(i)
1980 sum += atomic_read(&cpu_rq(i)->nr_iowait);
1981
1982 return sum;
1983 }
1984
1985 unsigned long nr_active(void)
1986 {
1987 unsigned long i, running = 0, uninterruptible = 0;
1988
1989 for_each_online_cpu(i) {
1990 running += cpu_rq(i)->nr_running;
1991 uninterruptible += cpu_rq(i)->nr_uninterruptible;
1992 }
1993
1994 if (unlikely((long)uninterruptible < 0))
1995 uninterruptible = 0;
1996
1997 return running + uninterruptible;
1998 }
1999
2000 /*
2001 * Update rq->cpu_load[] statistics. This function is usually called every
2002 * scheduler tick (TICK_NSEC).
2003 */
2004 static void update_cpu_load(struct rq *this_rq)
2005 {
2006 unsigned long this_load = this_rq->load.weight;
2007 int i, scale;
2008
2009 this_rq->nr_load_updates++;
2010
2011 /* Update our load: */
2012 for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
2013 unsigned long old_load, new_load;
2014
2015 /* scale is effectively 1 << i now, and >> i divides by scale */
2016
2017 old_load = this_rq->cpu_load[i];
2018 new_load = this_load;
2019 /*
2020 * Round up the averaging division if load is increasing. This
2021 * prevents us from getting stuck on 9 if the load is 10, for
2022 * example.
2023 */
2024 if (new_load > old_load)
2025 new_load += scale-1;
2026 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
2027 }
2028 }
2029
2030 #ifdef CONFIG_SMP
2031
2032 /*
2033 * double_rq_lock - safely lock two runqueues
2034 *
2035 * Note this does not disable interrupts like task_rq_lock,
2036 * you need to do so manually before calling.
2037 */
2038 static void double_rq_lock(struct rq *rq1, struct rq *rq2)
2039 __acquires(rq1->lock)
2040 __acquires(rq2->lock)
2041 {
2042 BUG_ON(!irqs_disabled());
2043 if (rq1 == rq2) {
2044 spin_lock(&rq1->lock);
2045 __acquire(rq2->lock); /* Fake it out ;) */
2046 } else {
2047 if (rq1 < rq2) {
2048 spin_lock(&rq1->lock);
2049 spin_lock(&rq2->lock);
2050 } else {
2051 spin_lock(&rq2->lock);
2052 spin_lock(&rq1->lock);
2053 }
2054 }
2055 update_rq_clock(rq1);
2056 update_rq_clock(rq2);
2057 }
2058
2059 /*
2060 * double_rq_unlock - safely unlock two runqueues
2061 *
2062 * Note this does not restore interrupts like task_rq_unlock,
2063 * you need to do so manually after calling.
2064 */
2065 static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
2066 __releases(rq1->lock)
2067 __releases(rq2->lock)
2068 {
2069 spin_unlock(&rq1->lock);
2070 if (rq1 != rq2)
2071 spin_unlock(&rq2->lock);
2072 else
2073 __release(rq2->lock);
2074 }
2075
2076 /*
2077 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
2078 */
2079 static void double_lock_balance(struct rq *this_rq, struct rq *busiest)
2080 __releases(this_rq->lock)
2081 __acquires(busiest->lock)
2082 __acquires(this_rq->lock)
2083 {
2084 if (unlikely(!irqs_disabled())) {
2085 /* printk() doesn't work good under rq->lock */
2086 spin_unlock(&this_rq->lock);
2087 BUG_ON(1);
2088 }
2089 if (unlikely(!spin_trylock(&busiest->lock))) {
2090 if (busiest < this_rq) {
2091 spin_unlock(&this_rq->lock);
2092 spin_lock(&busiest->lock);
2093 spin_lock(&this_rq->lock);
2094 } else
2095 spin_lock(&busiest->lock);
2096 }
2097 }
2098
2099 /*
2100 * If dest_cpu is allowed for this process, migrate the task to it.
2101 * This is accomplished by forcing the cpu_allowed mask to only
2102 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
2103 * the cpu_allowed mask is restored.
2104 */
2105 static void sched_migrate_task(struct task_struct *p, int dest_cpu)
2106 {
2107 struct migration_req req;
2108 unsigned long flags;
2109 struct rq *rq;
2110
2111 rq = task_rq_lock(p, &flags);
2112 if (!cpu_isset(dest_cpu, p->cpus_allowed)
2113 || unlikely(cpu_is_offline(dest_cpu)))
2114 goto out;
2115
2116 /* force the process onto the specified CPU */
2117 if (migrate_task(p, dest_cpu, &req)) {
2118 /* Need to wait for migration thread (might exit: take ref). */
2119 struct task_struct *mt = rq->migration_thread;
2120
2121 get_task_struct(mt);
2122 task_rq_unlock(rq, &flags);
2123 wake_up_process(mt);
2124 put_task_struct(mt);
2125 wait_for_completion(&req.done);
2126
2127 return;
2128 }
2129 out:
2130 task_rq_unlock(rq, &flags);
2131 }
2132
2133 /*
2134 * sched_exec - execve() is a valuable balancing opportunity, because at
2135 * this point the task has the smallest effective memory and cache footprint.
2136 */
2137 void sched_exec(void)
2138 {
2139 int new_cpu, this_cpu = get_cpu();
2140 new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
2141 put_cpu();
2142 if (new_cpu != this_cpu)
2143 sched_migrate_task(current, new_cpu);
2144 }
2145
2146 /*
2147 * pull_task - move a task from a remote runqueue to the local runqueue.
2148 * Both runqueues must be locked.
2149 */
2150 static void pull_task(struct rq *src_rq, struct task_struct *p,
2151 struct rq *this_rq, int this_cpu)
2152 {
2153 deactivate_task(src_rq, p, 0);
2154 set_task_cpu(p, this_cpu);
2155 activate_task(this_rq, p, 0);
2156 /*
2157 * Note that idle threads have a prio of MAX_PRIO, for this test
2158 * to be always true for them.
2159 */
2160 check_preempt_curr(this_rq, p);
2161 }
2162
2163 /*
2164 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
2165 */
2166 static
2167 int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
2168 struct sched_domain *sd, enum cpu_idle_type idle,
2169 int *all_pinned)
2170 {
2171 /*
2172 * We do not migrate tasks that are:
2173 * 1) running (obviously), or
2174 * 2) cannot be migrated to this CPU due to cpus_allowed, or
2175 * 3) are cache-hot on their current CPU.
2176 */
2177 if (!cpu_isset(this_cpu, p->cpus_allowed)) {
2178 schedstat_inc(p, se.nr_failed_migrations_affine);
2179 return 0;
2180 }
2181 *all_pinned = 0;
2182
2183 if (task_running(rq, p)) {
2184 schedstat_inc(p, se.nr_failed_migrations_running);
2185 return 0;
2186 }
2187
2188 /*
2189 * Aggressive migration if:
2190 * 1) task is cache cold, or
2191 * 2) too many balance attempts have failed.
2192 */
2193
2194 if (!task_hot(p, rq->clock, sd) ||
2195 sd->nr_balance_failed > sd->cache_nice_tries) {
2196 #ifdef CONFIG_SCHEDSTATS
2197 if (task_hot(p, rq->clock, sd)) {
2198 schedstat_inc(sd, lb_hot_gained[idle]);
2199 schedstat_inc(p, se.nr_forced_migrations);
2200 }
2201 #endif
2202 return 1;
2203 }
2204
2205 if (task_hot(p, rq->clock, sd)) {
2206 schedstat_inc(p, se.nr_failed_migrations_hot);
2207 return 0;
2208 }
2209 return 1;
2210 }
2211
2212 static int balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
2213 unsigned long max_nr_move, unsigned long max_load_move,
2214 struct sched_domain *sd, enum cpu_idle_type idle,
2215 int *all_pinned, unsigned long *load_moved,
2216 int *this_best_prio, struct rq_iterator *iterator)
2217 {
2218 int pulled = 0, pinned = 0, skip_for_load;
2219 struct task_struct *p;
2220 long rem_load_move = max_load_move;
2221
2222 if (max_nr_move == 0 || max_load_move == 0)
2223 goto out;
2224
2225 pinned = 1;
2226
2227 /*
2228 * Start the load-balancing iterator:
2229 */
2230 p = iterator->start(iterator->arg);
2231 next:
2232 if (!p)
2233 goto out;
2234 /*
2235 * To help distribute high priority tasks accross CPUs we don't
2236 * skip a task if it will be the highest priority task (i.e. smallest
2237 * prio value) on its new queue regardless of its load weight
2238 */
2239 skip_for_load = (p->se.load.weight >> 1) > rem_load_move +
2240 SCHED_LOAD_SCALE_FUZZ;
2241 if ((skip_for_load && p->prio >= *this_best_prio) ||
2242 !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
2243 p = iterator->next(iterator->arg);
2244 goto next;
2245 }
2246
2247 pull_task(busiest, p, this_rq, this_cpu);
2248 pulled++;
2249 rem_load_move -= p->se.load.weight;
2250
2251 /*
2252 * We only want to steal up to the prescribed number of tasks
2253 * and the prescribed amount of weighted load.
2254 */
2255 if (pulled < max_nr_move && rem_load_move > 0) {
2256 if (p->prio < *this_best_prio)
2257 *this_best_prio = p->prio;
2258 p = iterator->next(iterator->arg);
2259 goto next;
2260 }
2261 out:
2262 /*
2263 * Right now, this is the only place pull_task() is called,
2264 * so we can safely collect pull_task() stats here rather than
2265 * inside pull_task().
2266 */
2267 schedstat_add(sd, lb_gained[idle], pulled);
2268
2269 if (all_pinned)
2270 *all_pinned = pinned;
2271 *load_moved = max_load_move - rem_load_move;
2272 return pulled;
2273 }
2274
2275 /*
2276 * move_tasks tries to move up to max_load_move weighted load from busiest to
2277 * this_rq, as part of a balancing operation within domain "sd".
2278 * Returns 1 if successful and 0 otherwise.
2279 *
2280 * Called with both runqueues locked.
2281 */
2282 static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
2283 unsigned long max_load_move,
2284 struct sched_domain *sd, enum cpu_idle_type idle,
2285 int *all_pinned)
2286 {
2287 const struct sched_class *class = sched_class_highest;
2288 unsigned long total_load_moved = 0;
2289 int this_best_prio = this_rq->curr->prio;
2290
2291 do {
2292 total_load_moved +=
2293 class->load_balance(this_rq, this_cpu, busiest,
2294 ULONG_MAX, max_load_move - total_load_moved,
2295 sd, idle, all_pinned, &this_best_prio);
2296 class = class->next;
2297 } while (class && max_load_move > total_load_moved);
2298
2299 return total_load_moved > 0;
2300 }
2301
2302 /*
2303 * move_one_task tries to move exactly one task from busiest to this_rq, as
2304 * part of active balancing operations within "domain".
2305 * Returns 1 if successful and 0 otherwise.
2306 *
2307 * Called with both runqueues locked.
2308 */
2309 static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
2310 struct sched_domain *sd, enum cpu_idle_type idle)
2311 {
2312 const struct sched_class *class;
2313 int this_best_prio = MAX_PRIO;
2314
2315 for (class = sched_class_highest; class; class = class->next)
2316 if (class->load_balance(this_rq, this_cpu, busiest,
2317 1, ULONG_MAX, sd, idle, NULL,
2318 &this_best_prio))
2319 return 1;
2320
2321 return 0;
2322 }
2323
2324 /*
2325 * find_busiest_group finds and returns the busiest CPU group within the
2326 * domain. It calculates and returns the amount of weighted load which
2327 * should be moved to restore balance via the imbalance parameter.
2328 */
2329 static struct sched_group *
2330 find_busiest_group(struct sched_domain *sd, int this_cpu,
2331 unsigned long *imbalance, enum cpu_idle_type idle,
2332 int *sd_idle, cpumask_t *cpus, int *balance)
2333 {
2334 struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
2335 unsigned long max_load, avg_load, total_load, this_load, total_pwr;
2336 unsigned long max_pull;
2337 unsigned long busiest_load_per_task, busiest_nr_running;
2338 unsigned long this_load_per_task, this_nr_running;
2339 int load_idx, group_imb = 0;
2340 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2341 int power_savings_balance = 1;
2342 unsigned long leader_nr_running = 0, min_load_per_task = 0;
2343 unsigned long min_nr_running = ULONG_MAX;
2344 struct sched_group *group_min = NULL, *group_leader = NULL;
2345 #endif
2346
2347 max_load = this_load = total_load = total_pwr = 0;
2348 busiest_load_per_task = busiest_nr_running = 0;
2349 this_load_per_task = this_nr_running = 0;
2350 if (idle == CPU_NOT_IDLE)
2351 load_idx = sd->busy_idx;
2352 else if (idle == CPU_NEWLY_IDLE)
2353 load_idx = sd->newidle_idx;
2354 else
2355 load_idx = sd->idle_idx;
2356
2357 do {
2358 unsigned long load, group_capacity, max_cpu_load, min_cpu_load;
2359 int local_group;
2360 int i;
2361 int __group_imb = 0;
2362 unsigned int balance_cpu = -1, first_idle_cpu = 0;
2363 unsigned long sum_nr_running, sum_weighted_load;
2364
2365 local_group = cpu_isset(this_cpu, group->cpumask);
2366
2367 if (local_group)
2368 balance_cpu = first_cpu(group->cpumask);
2369
2370 /* Tally up the load of all CPUs in the group */
2371 sum_weighted_load = sum_nr_running = avg_load = 0;
2372 max_cpu_load = 0;
2373 min_cpu_load = ~0UL;
2374
2375 for_each_cpu_mask(i, group->cpumask) {
2376 struct rq *rq;
2377
2378 if (!cpu_isset(i, *cpus))
2379 continue;
2380
2381 rq = cpu_rq(i);
2382
2383 if (*sd_idle && rq->nr_running)
2384 *sd_idle = 0;
2385
2386 /* Bias balancing toward cpus of our domain */
2387 if (local_group) {
2388 if (idle_cpu(i) && !first_idle_cpu) {
2389 first_idle_cpu = 1;
2390 balance_cpu = i;
2391 }
2392
2393 load = target_load(i, load_idx);
2394 } else {
2395 load = source_load(i, load_idx);
2396 if (load > max_cpu_load)
2397 max_cpu_load = load;
2398 if (min_cpu_load > load)
2399 min_cpu_load = load;
2400 }
2401
2402 avg_load += load;
2403 sum_nr_running += rq->nr_running;
2404 sum_weighted_load += weighted_cpuload(i);
2405 }
2406
2407 /*
2408 * First idle cpu or the first cpu(busiest) in this sched group
2409 * is eligible for doing load balancing at this and above
2410 * domains. In the newly idle case, we will allow all the cpu's
2411 * to do the newly idle load balance.
2412 */
2413 if (idle != CPU_NEWLY_IDLE && local_group &&
2414 balance_cpu != this_cpu && balance) {
2415 *balance = 0;
2416 goto ret;
2417 }
2418
2419 total_load += avg_load;
2420 total_pwr += group->__cpu_power;
2421
2422 /* Adjust by relative CPU power of the group */
2423 avg_load = sg_div_cpu_power(group,
2424 avg_load * SCHED_LOAD_SCALE);
2425
2426 if ((max_cpu_load - min_cpu_load) > SCHED_LOAD_SCALE)
2427 __group_imb = 1;
2428
2429 group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
2430
2431 if (local_group) {
2432 this_load = avg_load;
2433 this = group;
2434 this_nr_running = sum_nr_running;
2435 this_load_per_task = sum_weighted_load;
2436 } else if (avg_load > max_load &&
2437 (sum_nr_running > group_capacity || __group_imb)) {
2438 max_load = avg_load;
2439 busiest = group;
2440 busiest_nr_running = sum_nr_running;
2441 busiest_load_per_task = sum_weighted_load;
2442 group_imb = __group_imb;
2443 }
2444
2445 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2446 /*
2447 * Busy processors will not participate in power savings
2448 * balance.
2449 */
2450 if (idle == CPU_NOT_IDLE ||
2451 !(sd->flags & SD_POWERSAVINGS_BALANCE))
2452 goto group_next;
2453
2454 /*
2455 * If the local group is idle or completely loaded
2456 * no need to do power savings balance at this domain
2457 */
2458 if (local_group && (this_nr_running >= group_capacity ||
2459 !this_nr_running))
2460 power_savings_balance = 0;
2461
2462 /*
2463 * If a group is already running at full capacity or idle,
2464 * don't include that group in power savings calculations
2465 */
2466 if (!power_savings_balance || sum_nr_running >= group_capacity
2467 || !sum_nr_running)
2468 goto group_next;
2469
2470 /*
2471 * Calculate the group which has the least non-idle load.
2472 * This is the group from where we need to pick up the load
2473 * for saving power
2474 */
2475 if ((sum_nr_running < min_nr_running) ||
2476 (sum_nr_running == min_nr_running &&
2477 first_cpu(group->cpumask) <
2478 first_cpu(group_min->cpumask))) {
2479 group_min = group;
2480 min_nr_running = sum_nr_running;
2481 min_load_per_task = sum_weighted_load /
2482 sum_nr_running;
2483 }
2484
2485 /*
2486 * Calculate the group which is almost near its
2487 * capacity but still has some space to pick up some load
2488 * from other group and save more power
2489 */
2490 if (sum_nr_running <= group_capacity - 1) {
2491 if (sum_nr_running > leader_nr_running ||
2492 (sum_nr_running == leader_nr_running &&
2493 first_cpu(group->cpumask) >
2494 first_cpu(group_leader->cpumask))) {
2495 group_leader = group;
2496 leader_nr_running = sum_nr_running;
2497 }
2498 }
2499 group_next:
2500 #endif
2501 group = group->next;
2502 } while (group != sd->groups);
2503
2504 if (!busiest || this_load >= max_load || busiest_nr_running == 0)
2505 goto out_balanced;
2506
2507 avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
2508
2509 if (this_load >= avg_load ||
2510 100*max_load <= sd->imbalance_pct*this_load)
2511 goto out_balanced;
2512
2513 busiest_load_per_task /= busiest_nr_running;
2514 if (group_imb)
2515 busiest_load_per_task = min(busiest_load_per_task, avg_load);
2516
2517 /*
2518 * We're trying to get all the cpus to the average_load, so we don't
2519 * want to push ourselves above the average load, nor do we wish to
2520 * reduce the max loaded cpu below the average load, as either of these
2521 * actions would just result in more rebalancing later, and ping-pong
2522 * tasks around. Thus we look for the minimum possible imbalance.
2523 * Negative imbalances (*we* are more loaded than anyone else) will
2524 * be counted as no imbalance for these purposes -- we can't fix that
2525 * by pulling tasks to us. Be careful of negative numbers as they'll
2526 * appear as very large values with unsigned longs.
2527 */
2528 if (max_load <= busiest_load_per_task)
2529 goto out_balanced;
2530
2531 /*
2532 * In the presence of smp nice balancing, certain scenarios can have
2533 * max load less than avg load(as we skip the groups at or below
2534 * its cpu_power, while calculating max_load..)
2535 */
2536 if (max_load < avg_load) {
2537 *imbalance = 0;
2538 goto small_imbalance;
2539 }
2540
2541 /* Don't want to pull so many tasks that a group would go idle */
2542 max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
2543
2544 /* How much load to actually move to equalise the imbalance */
2545 *imbalance = min(max_pull * busiest->__cpu_power,
2546 (avg_load - this_load) * this->__cpu_power)
2547 / SCHED_LOAD_SCALE;
2548
2549 /*
2550 * if *imbalance is less than the average load per runnable task
2551 * there is no gaurantee that any tasks will be moved so we'll have
2552 * a think about bumping its value to force at least one task to be
2553 * moved
2554 */
2555 if (*imbalance < busiest_load_per_task) {
2556 unsigned long tmp, pwr_now, pwr_move;
2557 unsigned int imbn;
2558
2559 small_imbalance:
2560 pwr_move = pwr_now = 0;
2561 imbn = 2;
2562 if (this_nr_running) {
2563 this_load_per_task /= this_nr_running;
2564 if (busiest_load_per_task > this_load_per_task)
2565 imbn = 1;
2566 } else
2567 this_load_per_task = SCHED_LOAD_SCALE;
2568
2569 if (max_load - this_load + SCHED_LOAD_SCALE_FUZZ >=
2570 busiest_load_per_task * imbn) {
2571 *imbalance = busiest_load_per_task;
2572 return busiest;
2573 }
2574
2575 /*
2576 * OK, we don't have enough imbalance to justify moving tasks,
2577 * however we may be able to increase total CPU power used by
2578 * moving them.
2579 */
2580
2581 pwr_now += busiest->__cpu_power *
2582 min(busiest_load_per_task, max_load);
2583 pwr_now += this->__cpu_power *
2584 min(this_load_per_task, this_load);
2585 pwr_now /= SCHED_LOAD_SCALE;
2586
2587 /* Amount of load we'd subtract */
2588 tmp = sg_div_cpu_power(busiest,
2589 busiest_load_per_task * SCHED_LOAD_SCALE);
2590 if (max_load > tmp)
2591 pwr_move += busiest->__cpu_power *
2592 min(busiest_load_per_task, max_load - tmp);
2593
2594 /* Amount of load we'd add */
2595 if (max_load * busiest->__cpu_power <
2596 busiest_load_per_task * SCHED_LOAD_SCALE)
2597 tmp = sg_div_cpu_power(this,
2598 max_load * busiest->__cpu_power);
2599 else
2600 tmp = sg_div_cpu_power(this,
2601 busiest_load_per_task * SCHED_LOAD_SCALE);
2602 pwr_move += this->__cpu_power *
2603 min(this_load_per_task, this_load + tmp);
2604 pwr_move /= SCHED_LOAD_SCALE;
2605
2606 /* Move if we gain throughput */
2607 if (pwr_move > pwr_now)
2608 *imbalance = busiest_load_per_task;
2609 }
2610
2611 return busiest;
2612
2613 out_balanced:
2614 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2615 if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
2616 goto ret;
2617
2618 if (this == group_leader && group_leader != group_min) {
2619 *imbalance = min_load_per_task;
2620 return group_min;
2621 }
2622 #endif
2623 ret:
2624 *imbalance = 0;
2625 return NULL;
2626 }
2627
2628 /*
2629 * find_busiest_queue - find the busiest runqueue among the cpus in group.
2630 */
2631 static struct rq *
2632 find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
2633 unsigned long imbalance, cpumask_t *cpus)
2634 {
2635 struct rq *busiest = NULL, *rq;
2636 unsigned long max_load = 0;
2637 int i;
2638
2639 for_each_cpu_mask(i, group->cpumask) {
2640 unsigned long wl;
2641
2642 if (!cpu_isset(i, *cpus))
2643 continue;
2644
2645 rq = cpu_rq(i);
2646 wl = weighted_cpuload(i);
2647
2648 if (rq->nr_running == 1 && wl > imbalance)
2649 continue;
2650
2651 if (wl > max_load) {
2652 max_load = wl;
2653 busiest = rq;
2654 }
2655 }
2656
2657 return busiest;
2658 }
2659
2660 /*
2661 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
2662 * so long as it is large enough.
2663 */
2664 #define MAX_PINNED_INTERVAL 512
2665
2666 /*
2667 * Check this_cpu to ensure it is balanced within domain. Attempt to move
2668 * tasks if there is an imbalance.
2669 */
2670 static int load_balance(int this_cpu, struct rq *this_rq,
2671 struct sched_domain *sd, enum cpu_idle_type idle,
2672 int *balance)
2673 {
2674 int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
2675 struct sched_group *group;
2676 unsigned long imbalance;
2677 struct rq *busiest;
2678 cpumask_t cpus = CPU_MASK_ALL;
2679 unsigned long flags;
2680
2681 /*
2682 * When power savings policy is enabled for the parent domain, idle
2683 * sibling can pick up load irrespective of busy siblings. In this case,
2684 * let the state of idle sibling percolate up as CPU_IDLE, instead of
2685 * portraying it as CPU_NOT_IDLE.
2686 */
2687 if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
2688 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
2689 sd_idle = 1;
2690
2691 schedstat_inc(sd, lb_count[idle]);
2692
2693 redo:
2694 group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
2695 &cpus, balance);
2696
2697 if (*balance == 0)
2698 goto out_balanced;
2699
2700 if (!group) {
2701 schedstat_inc(sd, lb_nobusyg[idle]);
2702 goto out_balanced;
2703 }
2704
2705 busiest = find_busiest_queue(group, idle, imbalance, &cpus);
2706 if (!busiest) {
2707 schedstat_inc(sd, lb_nobusyq[idle]);
2708 goto out_balanced;
2709 }
2710
2711 BUG_ON(busiest == this_rq);
2712
2713 schedstat_add(sd, lb_imbalance[idle], imbalance);
2714
2715 ld_moved = 0;
2716 if (busiest->nr_running > 1) {
2717 /*
2718 * Attempt to move tasks. If find_busiest_group has found
2719 * an imbalance but busiest->nr_running <= 1, the group is
2720 * still unbalanced. ld_moved simply stays zero, so it is
2721 * correctly treated as an imbalance.
2722 */
2723 local_irq_save(flags);
2724 double_rq_lock(this_rq, busiest);
2725 ld_moved = move_tasks(this_rq, this_cpu, busiest,
2726 imbalance, sd, idle, &all_pinned);
2727 double_rq_unlock(this_rq, busiest);
2728 local_irq_restore(flags);
2729
2730 /*
2731 * some other cpu did the load balance for us.
2732 */
2733 if (ld_moved && this_cpu != smp_processor_id())
2734 resched_cpu(this_cpu);
2735
2736 /* All tasks on this runqueue were pinned by CPU affinity */
2737 if (unlikely(all_pinned)) {
2738 cpu_clear(cpu_of(busiest), cpus);
2739 if (!cpus_empty(cpus))
2740 goto redo;
2741 goto out_balanced;
2742 }
2743 }
2744
2745 if (!ld_moved) {
2746 schedstat_inc(sd, lb_failed[idle]);
2747 sd->nr_balance_failed++;
2748
2749 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
2750
2751 spin_lock_irqsave(&busiest->lock, flags);
2752
2753 /* don't kick the migration_thread, if the curr
2754 * task on busiest cpu can't be moved to this_cpu
2755 */
2756 if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
2757 spin_unlock_irqrestore(&busiest->lock, flags);
2758 all_pinned = 1;
2759 goto out_one_pinned;
2760 }
2761
2762 if (!busiest->active_balance) {
2763 busiest->active_balance = 1;
2764 busiest->push_cpu = this_cpu;
2765 active_balance = 1;
2766 }
2767 spin_unlock_irqrestore(&busiest->lock, flags);
2768 if (active_balance)
2769 wake_up_process(busiest->migration_thread);
2770
2771 /*
2772 * We've kicked active balancing, reset the failure
2773 * counter.
2774 */
2775 sd->nr_balance_failed = sd->cache_nice_tries+1;
2776 }
2777 } else
2778 sd->nr_balance_failed = 0;
2779
2780 if (likely(!active_balance)) {
2781 /* We were unbalanced, so reset the balancing interval */
2782 sd->balance_interval = sd->min_interval;
2783 } else {
2784 /*
2785 * If we've begun active balancing, start to back off. This
2786 * case may not be covered by the all_pinned logic if there
2787 * is only 1 task on the busy runqueue (because we don't call
2788 * move_tasks).
2789 */
2790 if (sd->balance_interval < sd->max_interval)
2791 sd->balance_interval *= 2;
2792 }
2793
2794 if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2795 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
2796 return -1;
2797 return ld_moved;
2798
2799 out_balanced:
2800 schedstat_inc(sd, lb_balanced[idle]);
2801
2802 sd->nr_balance_failed = 0;
2803
2804 out_one_pinned:
2805 /* tune up the balancing interval */
2806 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
2807 (sd->balance_interval < sd->max_interval))
2808 sd->balance_interval *= 2;
2809
2810 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2811 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
2812 return -1;
2813 return 0;
2814 }
2815
2816 /*
2817 * Check this_cpu to ensure it is balanced within domain. Attempt to move
2818 * tasks if there is an imbalance.
2819 *
2820 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
2821 * this_rq is locked.
2822 */
2823 static int
2824 load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
2825 {
2826 struct sched_group *group;
2827 struct rq *busiest = NULL;
2828 unsigned long imbalance;
2829 int ld_moved = 0;
2830 int sd_idle = 0;
2831 int all_pinned = 0;
2832 cpumask_t cpus = CPU_MASK_ALL;
2833
2834 /*
2835 * When power savings policy is enabled for the parent domain, idle
2836 * sibling can pick up load irrespective of busy siblings. In this case,
2837 * let the state of idle sibling percolate up as IDLE, instead of
2838 * portraying it as CPU_NOT_IDLE.
2839 */
2840 if (sd->flags & SD_SHARE_CPUPOWER &&
2841 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
2842 sd_idle = 1;
2843
2844 schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
2845 redo:
2846 group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
2847 &sd_idle, &cpus, NULL);
2848 if (!group) {
2849 schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
2850 goto out_balanced;
2851 }
2852
2853 busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance,
2854 &cpus);
2855 if (!busiest) {
2856 schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
2857 goto out_balanced;
2858 }
2859
2860 BUG_ON(busiest == this_rq);
2861
2862 schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
2863
2864 ld_moved = 0;
2865 if (busiest->nr_running > 1) {
2866 /* Attempt to move tasks */
2867 double_lock_balance(this_rq, busiest);
2868 /* this_rq->clock is already updated */
2869 update_rq_clock(busiest);
2870 ld_moved = move_tasks(this_rq, this_cpu, busiest,
2871 imbalance, sd, CPU_NEWLY_IDLE,
2872 &all_pinned);
2873 spin_unlock(&busiest->lock);
2874
2875 if (unlikely(all_pinned)) {
2876 cpu_clear(cpu_of(busiest), cpus);
2877 if (!cpus_empty(cpus))
2878 goto redo;
2879 }
2880 }
2881
2882 if (!ld_moved) {
2883 schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
2884 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2885 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
2886 return -1;
2887 } else
2888 sd->nr_balance_failed = 0;
2889
2890 return ld_moved;
2891
2892 out_balanced:
2893 schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
2894 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2895 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
2896 return -1;
2897 sd->nr_balance_failed = 0;
2898
2899 return 0;
2900 }
2901
2902 /*
2903 * idle_balance is called by schedule() if this_cpu is about to become
2904 * idle. Attempts to pull tasks from other CPUs.
2905 */
2906 static void idle_balance(int this_cpu, struct rq *this_rq)
2907 {
2908 struct sched_domain *sd;
2909 int pulled_task = -1;
2910 unsigned long next_balance = jiffies + HZ;
2911
2912 for_each_domain(this_cpu, sd) {
2913 unsigned long interval;
2914
2915 if (!(sd->flags & SD_LOAD_BALANCE))
2916 continue;
2917
2918 if (sd->flags & SD_BALANCE_NEWIDLE)
2919 /* If we've pulled tasks over stop searching: */
2920 pulled_task = load_balance_newidle(this_cpu,
2921 this_rq, sd);
2922
2923 interval = msecs_to_jiffies(sd->balance_interval);
2924 if (time_after(next_balance, sd->last_balance + interval))
2925 next_balance = sd->last_balance + interval;
2926 if (pulled_task)
2927 break;
2928 }
2929 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
2930 /*
2931 * We are going idle. next_balance may be set based on
2932 * a busy processor. So reset next_balance.
2933 */
2934 this_rq->next_balance = next_balance;
2935 }
2936 }
2937
2938 /*
2939 * active_load_balance is run by migration threads. It pushes running tasks
2940 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
2941 * running on each physical CPU where possible, and avoids physical /
2942 * logical imbalances.
2943 *
2944 * Called with busiest_rq locked.
2945 */
2946 static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
2947 {
2948 int target_cpu = busiest_rq->push_cpu;
2949 struct sched_domain *sd;
2950 struct rq *target_rq;
2951
2952 /* Is there any task to move? */
2953 if (busiest_rq->nr_running <= 1)
2954 return;
2955
2956 target_rq = cpu_rq(target_cpu);
2957
2958 /*
2959 * This condition is "impossible", if it occurs
2960 * we need to fix it. Originally reported by
2961 * Bjorn Helgaas on a 128-cpu setup.
2962 */
2963 BUG_ON(busiest_rq == target_rq);
2964
2965 /* move a task from busiest_rq to target_rq */
2966 double_lock_balance(busiest_rq, target_rq);
2967 update_rq_clock(busiest_rq);
2968 update_rq_clock(target_rq);
2969
2970 /* Search for an sd spanning us and the target CPU. */
2971 for_each_domain(target_cpu, sd) {
2972 if ((sd->flags & SD_LOAD_BALANCE) &&
2973 cpu_isset(busiest_cpu, sd->span))
2974 break;
2975 }
2976
2977 if (likely(sd)) {
2978 schedstat_inc(sd, alb_count);
2979
2980 if (move_one_task(target_rq, target_cpu, busiest_rq,
2981 sd, CPU_IDLE))
2982 schedstat_inc(sd, alb_pushed);
2983 else
2984 schedstat_inc(sd, alb_failed);
2985 }
2986 spin_unlock(&target_rq->lock);
2987 }
2988
2989 #ifdef CONFIG_NO_HZ
2990 static struct {
2991 atomic_t load_balancer;
2992 cpumask_t cpu_mask;
2993 } nohz ____cacheline_aligned = {
2994 .load_balancer = ATOMIC_INIT(-1),
2995 .cpu_mask = CPU_MASK_NONE,
2996 };
2997
2998 /*
2999 * This routine will try to nominate the ilb (idle load balancing)
3000 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
3001 * load balancing on behalf of all those cpus. If all the cpus in the system
3002 * go into this tickless mode, then there will be no ilb owner (as there is
3003 * no need for one) and all the cpus will sleep till the next wakeup event
3004 * arrives...
3005 *
3006 * For the ilb owner, tick is not stopped. And this tick will be used
3007 * for idle load balancing. ilb owner will still be part of
3008 * nohz.cpu_mask..
3009 *
3010 * While stopping the tick, this cpu will become the ilb owner if there
3011 * is no other owner. And will be the owner till that cpu becomes busy
3012 * or if all cpus in the system stop their ticks at which point
3013 * there is no need for ilb owner.
3014 *
3015 * When the ilb owner becomes busy, it nominates another owner, during the
3016 * next busy scheduler_tick()
3017 */
3018 int select_nohz_load_balancer(int stop_tick)
3019 {
3020 int cpu = smp_processor_id();
3021
3022 if (stop_tick) {
3023 cpu_set(cpu, nohz.cpu_mask);
3024 cpu_rq(cpu)->in_nohz_recently = 1;
3025
3026 /*
3027 * If we are going offline and still the leader, give up!
3028 */
3029 if (cpu_is_offline(cpu) &&
3030 atomic_read(&nohz.load_balancer) == cpu) {
3031 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
3032 BUG();
3033 return 0;
3034 }
3035
3036 /* time for ilb owner also to sleep */
3037 if (cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
3038 if (atomic_read(&nohz.load_balancer) == cpu)
3039 atomic_set(&nohz.load_balancer, -1);
3040 return 0;
3041 }
3042
3043 if (atomic_read(&nohz.load_balancer) == -1) {
3044 /* make me the ilb owner */
3045 if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
3046 return 1;
3047 } else if (atomic_read(&nohz.load_balancer) == cpu)
3048 return 1;
3049 } else {
3050 if (!cpu_isset(cpu, nohz.cpu_mask))
3051 return 0;
3052
3053 cpu_clear(cpu, nohz.cpu_mask);
3054
3055 if (atomic_read(&nohz.load_balancer) == cpu)
3056 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
3057 BUG();
3058 }
3059 return 0;
3060 }
3061 #endif
3062
3063 static DEFINE_SPINLOCK(balancing);
3064
3065 /*
3066 * It checks each scheduling domain to see if it is due to be balanced,
3067 * and initiates a balancing operation if so.
3068 *
3069 * Balancing parameters are set up in arch_init_sched_domains.
3070 */
3071 static void rebalance_domains(int cpu, enum cpu_idle_type idle)
3072 {
3073 int balance = 1;
3074 struct rq *rq = cpu_rq(cpu);
3075 unsigned long interval;
3076 struct sched_domain *sd;
3077 /* Earliest time when we have to do rebalance again */
3078 unsigned long next_balance = jiffies + 60*HZ;
3079 int update_next_balance = 0;
3080
3081 for_each_domain(cpu, sd) {
3082 if (!(sd->flags & SD_LOAD_BALANCE))
3083 continue;
3084
3085 interval = sd->balance_interval;
3086 if (idle != CPU_IDLE)
3087 interval *= sd->busy_factor;
3088
3089 /* scale ms to jiffies */
3090 interval = msecs_to_jiffies(interval);
3091 if (unlikely(!interval))
3092 interval = 1;
3093 if (interval > HZ*NR_CPUS/10)
3094 interval = HZ*NR_CPUS/10;
3095
3096
3097 if (sd->flags & SD_SERIALIZE) {
3098 if (!spin_trylock(&balancing))
3099 goto out;
3100 }
3101
3102 if (time_after_eq(jiffies, sd->last_balance + interval)) {
3103 if (load_balance(cpu, rq, sd, idle, &balance)) {
3104 /*
3105 * We've pulled tasks over so either we're no
3106 * longer idle, or one of our SMT siblings is
3107 * not idle.
3108 */
3109 idle = CPU_NOT_IDLE;
3110 }
3111 sd->last_balance = jiffies;
3112 }
3113 if (sd->flags & SD_SERIALIZE)
3114 spin_unlock(&balancing);
3115 out:
3116 if (time_after(next_balance, sd->last_balance + interval)) {
3117 next_balance = sd->last_balance + interval;
3118 update_next_balance = 1;
3119 }
3120
3121 /*
3122 * Stop the load balance at this level. There is another
3123 * CPU in our sched group which is doing load balancing more
3124 * actively.
3125 */
3126 if (!balance)
3127 break;
3128 }
3129
3130 /*
3131 * next_balance will be updated only when there is a need.
3132 * When the cpu is attached to null domain for ex, it will not be
3133 * updated.
3134 */
3135 if (likely(update_next_balance))
3136 rq->next_balance = next_balance;
3137 }
3138
3139 /*
3140 * run_rebalance_domains is triggered when needed from the scheduler tick.
3141 * In CONFIG_NO_HZ case, the idle load balance owner will do the
3142 * rebalancing for all the cpus for whom scheduler ticks are stopped.
3143 */
3144 static void run_rebalance_domains(struct softirq_action *h)
3145 {
3146 int this_cpu = smp_processor_id();
3147 struct rq *this_rq = cpu_rq(this_cpu);
3148 enum cpu_idle_type idle = this_rq->idle_at_tick ?
3149 CPU_IDLE : CPU_NOT_IDLE;
3150
3151 rebalance_domains(this_cpu, idle);
3152
3153 #ifdef CONFIG_NO_HZ
3154 /*
3155 * If this cpu is the owner for idle load balancing, then do the
3156 * balancing on behalf of the other idle cpus whose ticks are
3157 * stopped.
3158 */
3159 if (this_rq->idle_at_tick &&
3160 atomic_read(&nohz.load_balancer) == this_cpu) {
3161 cpumask_t cpus = nohz.cpu_mask;
3162 struct rq *rq;
3163 int balance_cpu;
3164
3165 cpu_clear(this_cpu, cpus);
3166 for_each_cpu_mask(balance_cpu, cpus) {
3167 /*
3168 * If this cpu gets work to do, stop the load balancing
3169 * work being done for other cpus. Next load
3170 * balancing owner will pick it up.
3171 */
3172 if (need_resched())
3173 break;
3174
3175 rebalance_domains(balance_cpu, CPU_IDLE);
3176
3177 rq = cpu_rq(balance_cpu);
3178 if (time_after(this_rq->next_balance, rq->next_balance))
3179 this_rq->next_balance = rq->next_balance;
3180 }
3181 }
3182 #endif
3183 }
3184
3185 /*
3186 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
3187 *
3188 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
3189 * idle load balancing owner or decide to stop the periodic load balancing,
3190 * if the whole system is idle.
3191 */
3192 static inline void trigger_load_balance(struct rq *rq, int cpu)
3193 {
3194 #ifdef CONFIG_NO_HZ
3195 /*
3196 * If we were in the nohz mode recently and busy at the current
3197 * scheduler tick, then check if we need to nominate new idle
3198 * load balancer.
3199 */
3200 if (rq->in_nohz_recently && !rq->idle_at_tick) {
3201 rq->in_nohz_recently = 0;
3202
3203 if (atomic_read(&nohz.load_balancer) == cpu) {
3204 cpu_clear(cpu, nohz.cpu_mask);
3205 atomic_set(&nohz.load_balancer, -1);
3206 }
3207
3208 if (atomic_read(&nohz.load_balancer) == -1) {
3209 /*
3210 * simple selection for now: Nominate the
3211 * first cpu in the nohz list to be the next
3212 * ilb owner.
3213 *
3214 * TBD: Traverse the sched domains and nominate
3215 * the nearest cpu in the nohz.cpu_mask.
3216 */
3217 int ilb = first_cpu(nohz.cpu_mask);
3218
3219 if (ilb != NR_CPUS)
3220 resched_cpu(ilb);
3221 }
3222 }
3223
3224 /*
3225 * If this cpu is idle and doing idle load balancing for all the
3226 * cpus with ticks stopped, is it time for that to stop?
3227 */
3228 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
3229 cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
3230 resched_cpu(cpu);
3231 return;
3232 }
3233
3234 /*
3235 * If this cpu is idle and the idle load balancing is done by
3236 * someone else, then no need raise the SCHED_SOFTIRQ
3237 */
3238 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
3239 cpu_isset(cpu, nohz.cpu_mask))
3240 return;
3241 #endif
3242 if (time_after_eq(jiffies, rq->next_balance))
3243 raise_softirq(SCHED_SOFTIRQ);
3244 }
3245
3246 #else /* CONFIG_SMP */
3247
3248 /*
3249 * on UP we do not need to balance between CPUs:
3250 */
3251 static inline void idle_balance(int cpu, struct rq *rq)
3252 {
3253 }
3254
3255 /* Avoid "used but not defined" warning on UP */
3256 static int balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
3257 unsigned long max_nr_move, unsigned long max_load_move,
3258 struct sched_domain *sd, enum cpu_idle_type idle,
3259 int *all_pinned, unsigned long *load_moved,
3260 int *this_best_prio, struct rq_iterator *iterator)
3261 {
3262 *load_moved = 0;
3263
3264 return 0;
3265 }
3266
3267 #endif
3268
3269 DEFINE_PER_CPU(struct kernel_stat, kstat);
3270
3271 EXPORT_PER_CPU_SYMBOL(kstat);
3272
3273 /*
3274 * Return p->sum_exec_runtime plus any more ns on the sched_clock
3275 * that have not yet been banked in case the task is currently running.
3276 */
3277 unsigned long long task_sched_runtime(struct task_struct *p)
3278 {
3279 unsigned long flags;
3280 u64 ns, delta_exec;
3281 struct rq *rq;
3282
3283 rq = task_rq_lock(p, &flags);
3284 ns = p->se.sum_exec_runtime;
3285 if (rq->curr == p) {
3286 update_rq_clock(rq);
3287 delta_exec = rq->clock - p->se.exec_start;
3288 if ((s64)delta_exec > 0)
3289 ns += delta_exec;
3290 }
3291 task_rq_unlock(rq, &flags);
3292
3293 return ns;
3294 }
3295
3296 /*
3297 * Account user cpu time to a process.
3298 * @p: the process that the cpu time gets accounted to
3299 * @hardirq_offset: the offset to subtract from hardirq_count()
3300 * @cputime: the cpu time spent in user space since the last update
3301 */
3302 void account_user_time(struct task_struct *p, cputime_t cputime)
3303 {
3304 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3305 cputime64_t tmp;
3306
3307 p->utime = cputime_add(p->utime, cputime);
3308
3309 /* Add user time to cpustat. */
3310 tmp = cputime_to_cputime64(cputime);
3311 if (TASK_NICE(p) > 0)
3312 cpustat->nice = cputime64_add(cpustat->nice, tmp);
3313 else
3314 cpustat->user = cputime64_add(cpustat->user, tmp);
3315 }
3316
3317 /*
3318 * Account guest cpu time to a process.
3319 * @p: the process that the cpu time gets accounted to
3320 * @cputime: the cpu time spent in virtual machine since the last update
3321 */
3322 void account_guest_time(struct task_struct *p, cputime_t cputime)
3323 {
3324 cputime64_t tmp;
3325 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3326
3327 tmp = cputime_to_cputime64(cputime);
3328
3329 p->utime = cputime_add(p->utime, cputime);
3330 p->gtime = cputime_add(p->gtime, cputime);
3331
3332 cpustat->user = cputime64_add(cpustat->user, tmp);
3333 cpustat->guest = cputime64_add(cpustat->guest, tmp);
3334 }
3335
3336 /*
3337 * Account system cpu time to a process.
3338 * @p: the process that the cpu time gets accounted to
3339 * @hardirq_offset: the offset to subtract from hardirq_count()
3340 * @cputime: the cpu time spent in kernel space since the last update
3341 */
3342 void account_system_time(struct task_struct *p, int hardirq_offset,
3343 cputime_t cputime)
3344 {
3345 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3346 struct rq *rq = this_rq();
3347 cputime64_t tmp;
3348
3349 if (p->flags & PF_VCPU) {
3350 account_guest_time(p, cputime);
3351 p->flags &= ~PF_VCPU;
3352 return;
3353 }
3354
3355 p->stime = cputime_add(p->stime, cputime);
3356
3357 /* Add system time to cpustat. */
3358 tmp = cputime_to_cputime64(cputime);
3359 if (hardirq_count() - hardirq_offset)
3360 cpustat->irq = cputime64_add(cpustat->irq, tmp);
3361 else if (softirq_count())
3362 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
3363 else if (p != rq->idle)
3364 cpustat->system = cputime64_add(cpustat->system, tmp);
3365 else if (atomic_read(&rq->nr_iowait) > 0)
3366 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
3367 else
3368 cpustat->idle = cputime64_add(cpustat->idle, tmp);
3369 /* Account for system time used */
3370 acct_update_integrals(p);
3371 }
3372
3373 /*
3374 * Account for involuntary wait time.
3375 * @p: the process from which the cpu time has been stolen
3376 * @steal: the cpu time spent in involuntary wait
3377 */
3378 void account_steal_time(struct task_struct *p, cputime_t steal)
3379 {
3380 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3381 cputime64_t tmp = cputime_to_cputime64(steal);
3382 struct rq *rq = this_rq();
3383
3384 if (p == rq->idle) {
3385 p->stime = cputime_add(p->stime, steal);
3386 if (atomic_read(&rq->nr_iowait) > 0)
3387 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
3388 else
3389 cpustat->idle = cputime64_add(cpustat->idle, tmp);
3390 } else
3391 cpustat->steal = cputime64_add(cpustat->steal, tmp);
3392 }
3393
3394 /*
3395 * This function gets called by the timer code, with HZ frequency.
3396 * We call it with interrupts disabled.
3397 *
3398 * It also gets called by the fork code, when changing the parent's
3399 * timeslices.
3400 */
3401 void scheduler_tick(void)
3402 {
3403 int cpu = smp_processor_id();
3404 struct rq *rq = cpu_rq(cpu);
3405 struct task_struct *curr = rq->curr;
3406 u64 next_tick = rq->tick_timestamp + TICK_NSEC;
3407
3408 spin_lock(&rq->lock);
3409 __update_rq_clock(rq);
3410 /*
3411 * Let rq->clock advance by at least TICK_NSEC:
3412 */
3413 if (unlikely(rq->clock < next_tick))
3414 rq->clock = next_tick;
3415 rq->tick_timestamp = rq->clock;
3416 update_cpu_load(rq);
3417 if (curr != rq->idle) /* FIXME: needed? */
3418 curr->sched_class->task_tick(rq, curr);
3419 spin_unlock(&rq->lock);
3420
3421 #ifdef CONFIG_SMP
3422 rq->idle_at_tick = idle_cpu(cpu);
3423 trigger_load_balance(rq, cpu);
3424 #endif
3425 }
3426
3427 #if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)
3428
3429 void fastcall add_preempt_count(int val)
3430 {
3431 /*
3432 * Underflow?
3433 */
3434 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3435 return;
3436 preempt_count() += val;
3437 /*
3438 * Spinlock count overflowing soon?
3439 */
3440 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
3441 PREEMPT_MASK - 10);
3442 }
3443 EXPORT_SYMBOL(add_preempt_count);
3444
3445 void fastcall sub_preempt_count(int val)
3446 {
3447 /*
3448 * Underflow?
3449 */
3450 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
3451 return;
3452 /*
3453 * Is the spinlock portion underflowing?
3454 */
3455 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3456 !(preempt_count() & PREEMPT_MASK)))
3457 return;
3458
3459 preempt_count() -= val;
3460 }
3461 EXPORT_SYMBOL(sub_preempt_count);
3462
3463 #endif
3464
3465 /*
3466 * Print scheduling while atomic bug:
3467 */
3468 static noinline void __schedule_bug(struct task_struct *prev)
3469 {
3470 printk(KERN_ERR "BUG: scheduling while atomic: %s/0x%08x/%d\n",
3471 prev->comm, preempt_count(), prev->pid);
3472 debug_show_held_locks(prev);
3473 if (irqs_disabled())
3474 print_irqtrace_events(prev);
3475 dump_stack();
3476 }
3477
3478 /*
3479 * Various schedule()-time debugging checks and statistics:
3480 */
3481 static inline void schedule_debug(struct task_struct *prev)
3482 {
3483 /*
3484 * Test if we are atomic. Since do_exit() needs to call into
3485 * schedule() atomically, we ignore that path for now.
3486 * Otherwise, whine if we are scheduling when we should not be.
3487 */
3488 if (unlikely(in_atomic_preempt_off()) && unlikely(!prev->exit_state))
3489 __schedule_bug(prev);
3490
3491 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3492
3493 schedstat_inc(this_rq(), sched_count);
3494 #ifdef CONFIG_SCHEDSTATS
3495 if (unlikely(prev->lock_depth >= 0)) {
3496 schedstat_inc(this_rq(), bkl_count);
3497 schedstat_inc(prev, sched_info.bkl_count);
3498 }
3499 #endif
3500 }
3501
3502 /*
3503 * Pick up the highest-prio task:
3504 */
3505 static inline struct task_struct *
3506 pick_next_task(struct rq *rq, struct task_struct *prev)
3507 {
3508 const struct sched_class *class;
3509 struct task_struct *p;
3510
3511 /*
3512 * Optimization: we know that if all tasks are in
3513 * the fair class we can call that function directly:
3514 */
3515 if (likely(rq->nr_running == rq->cfs.nr_running)) {
3516 p = fair_sched_class.pick_next_task(rq);
3517 if (likely(p))
3518 return p;
3519 }
3520
3521 class = sched_class_highest;
3522 for ( ; ; ) {
3523 p = class->pick_next_task(rq);
3524 if (p)
3525 return p;
3526 /*
3527 * Will never be NULL as the idle class always
3528 * returns a non-NULL p:
3529 */
3530 class = class->next;
3531 }
3532 }
3533
3534 /*
3535 * schedule() is the main scheduler function.
3536 */
3537 asmlinkage void __sched schedule(void)
3538 {
3539 struct task_struct *prev, *next;
3540 long *switch_count;
3541 struct rq *rq;
3542 int cpu;
3543
3544 need_resched:
3545 preempt_disable();
3546 cpu = smp_processor_id();
3547 rq = cpu_rq(cpu);
3548 rcu_qsctr_inc(cpu);
3549 prev = rq->curr;
3550 switch_count = &prev->nivcsw;
3551
3552 release_kernel_lock(prev);
3553 need_resched_nonpreemptible:
3554
3555 schedule_debug(prev);
3556
3557 /*
3558 * Do the rq-clock update outside the rq lock:
3559 */
3560 local_irq_disable();
3561 __update_rq_clock(rq);
3562 spin_lock(&rq->lock);
3563 clear_tsk_need_resched(prev);
3564
3565 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
3566 if (unlikely((prev->state & TASK_INTERRUPTIBLE) &&
3567 unlikely(signal_pending(prev)))) {
3568 prev->state = TASK_RUNNING;
3569 } else {
3570 deactivate_task(rq, prev, 1);
3571 }
3572 switch_count = &prev->nvcsw;
3573 }
3574
3575 if (unlikely(!rq->nr_running))
3576 idle_balance(cpu, rq);
3577
3578 prev->sched_class->put_prev_task(rq, prev);
3579 next = pick_next_task(rq, prev);
3580
3581 sched_info_switch(prev, next);
3582
3583 if (likely(prev != next)) {
3584 rq->nr_switches++;
3585 rq->curr = next;
3586 ++*switch_count;
3587
3588 context_switch(rq, prev, next); /* unlocks the rq */
3589 } else
3590 spin_unlock_irq(&rq->lock);
3591
3592 if (unlikely(reacquire_kernel_lock(current) < 0)) {
3593 cpu = smp_processor_id();
3594 rq = cpu_rq(cpu);
3595 goto need_resched_nonpreemptible;
3596 }
3597 preempt_enable_no_resched();
3598 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3599 goto need_resched;
3600 }
3601 EXPORT_SYMBOL(schedule);
3602
3603 #ifdef CONFIG_PREEMPT
3604 /*
3605 * this is the entry point to schedule() from in-kernel preemption
3606 * off of preempt_enable. Kernel preemptions off return from interrupt
3607 * occur there and call schedule directly.
3608 */
3609 asmlinkage void __sched preempt_schedule(void)
3610 {
3611 struct thread_info *ti = current_thread_info();
3612 #ifdef CONFIG_PREEMPT_BKL
3613 struct task_struct *task = current;
3614 int saved_lock_depth;
3615 #endif
3616 /*
3617 * If there is a non-zero preempt_count or interrupts are disabled,
3618 * we do not want to preempt the current task. Just return..
3619 */
3620 if (likely(ti->preempt_count || irqs_disabled()))
3621 return;
3622
3623 do {
3624 add_preempt_count(PREEMPT_ACTIVE);
3625
3626 /*
3627 * We keep the big kernel semaphore locked, but we
3628 * clear ->lock_depth so that schedule() doesnt
3629 * auto-release the semaphore:
3630 */
3631 #ifdef CONFIG_PREEMPT_BKL
3632 saved_lock_depth = task->lock_depth;
3633 task->lock_depth = -1;
3634 #endif
3635 schedule();
3636 #ifdef CONFIG_PREEMPT_BKL
3637 task->lock_depth = saved_lock_depth;
3638 #endif
3639 sub_preempt_count(PREEMPT_ACTIVE);
3640
3641 /*
3642 * Check again in case we missed a preemption opportunity
3643 * between schedule and now.
3644 */
3645 barrier();
3646 } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
3647 }
3648 EXPORT_SYMBOL(preempt_schedule);
3649
3650 /*
3651 * this is the entry point to schedule() from kernel preemption
3652 * off of irq context.
3653 * Note, that this is called and return with irqs disabled. This will
3654 * protect us against recursive calling from irq.
3655 */
3656 asmlinkage void __sched preempt_schedule_irq(void)
3657 {
3658 struct thread_info *ti = current_thread_info();
3659 #ifdef CONFIG_PREEMPT_BKL
3660 struct task_struct *task = current;
3661 int saved_lock_depth;
3662 #endif
3663 /* Catch callers which need to be fixed */
3664 BUG_ON(ti->preempt_count || !irqs_disabled());
3665
3666 do {
3667 add_preempt_count(PREEMPT_ACTIVE);
3668
3669 /*
3670 * We keep the big kernel semaphore locked, but we
3671 * clear ->lock_depth so that schedule() doesnt
3672 * auto-release the semaphore:
3673 */
3674 #ifdef CONFIG_PREEMPT_BKL
3675 saved_lock_depth = task->lock_depth;
3676 task->lock_depth = -1;
3677 #endif
3678 local_irq_enable();
3679 schedule();
3680 local_irq_disable();
3681 #ifdef CONFIG_PREEMPT_BKL
3682 task->lock_depth = saved_lock_depth;
3683 #endif
3684 sub_preempt_count(PREEMPT_ACTIVE);
3685
3686 /*
3687 * Check again in case we missed a preemption opportunity
3688 * between schedule and now.
3689 */
3690 barrier();
3691 } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
3692 }
3693
3694 #endif /* CONFIG_PREEMPT */
3695
3696 int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
3697 void *key)
3698 {
3699 return try_to_wake_up(curr->private, mode, sync);
3700 }
3701 EXPORT_SYMBOL(default_wake_function);
3702
3703 /*
3704 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
3705 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
3706 * number) then we wake all the non-exclusive tasks and one exclusive task.
3707 *
3708 * There are circumstances in which we can try to wake a task which has already
3709 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
3710 * zero in this (rare) case, and we handle it by continuing to scan the queue.
3711 */
3712 static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
3713 int nr_exclusive, int sync, void *key)
3714 {
3715 wait_queue_t *curr, *next;
3716
3717 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
3718 unsigned flags = curr->flags;
3719
3720 if (curr->func(curr, mode, sync, key) &&
3721 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
3722 break;
3723 }
3724 }
3725
3726 /**
3727 * __wake_up - wake up threads blocked on a waitqueue.
3728 * @q: the waitqueue
3729 * @mode: which threads
3730 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3731 * @key: is directly passed to the wakeup function
3732 */
3733 void fastcall __wake_up(wait_queue_head_t *q, unsigned int mode,
3734 int nr_exclusive, void *key)
3735 {
3736 unsigned long flags;
3737
3738 spin_lock_irqsave(&q->lock, flags);
3739 __wake_up_common(q, mode, nr_exclusive, 0, key);
3740 spin_unlock_irqrestore(&q->lock, flags);
3741 }
3742 EXPORT_SYMBOL(__wake_up);
3743
3744 /*
3745 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
3746 */
3747 void fastcall __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
3748 {
3749 __wake_up_common(q, mode, 1, 0, NULL);
3750 }
3751
3752 /**
3753 * __wake_up_sync - wake up threads blocked on a waitqueue.
3754 * @q: the waitqueue
3755 * @mode: which threads
3756 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3757 *
3758 * The sync wakeup differs that the waker knows that it will schedule
3759 * away soon, so while the target thread will be woken up, it will not
3760 * be migrated to another CPU - ie. the two threads are 'synchronized'
3761 * with each other. This can prevent needless bouncing between CPUs.
3762 *
3763 * On UP it can prevent extra preemption.
3764 */
3765 void fastcall
3766 __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
3767 {
3768 unsigned long flags;
3769 int sync = 1;
3770
3771 if (unlikely(!q))
3772 return;
3773
3774 if (unlikely(!nr_exclusive))
3775 sync = 0;
3776
3777 spin_lock_irqsave(&q->lock, flags);
3778 __wake_up_common(q, mode, nr_exclusive, sync, NULL);
3779 spin_unlock_irqrestore(&q->lock, flags);
3780 }
3781 EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
3782
3783 void fastcall complete(struct completion *x)
3784 {
3785 unsigned long flags;
3786
3787 spin_lock_irqsave(&x->wait.lock, flags);
3788 x->done++;
3789 __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
3790 1, 0, NULL);
3791 spin_unlock_irqrestore(&x->wait.lock, flags);
3792 }
3793 EXPORT_SYMBOL(complete);
3794
3795 void fastcall complete_all(struct completion *x)
3796 {
3797 unsigned long flags;
3798
3799 spin_lock_irqsave(&x->wait.lock, flags);
3800 x->done += UINT_MAX/2;
3801 __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
3802 0, 0, NULL);
3803 spin_unlock_irqrestore(&x->wait.lock, flags);
3804 }
3805 EXPORT_SYMBOL(complete_all);
3806
3807 static inline long __sched
3808 do_wait_for_common(struct completion *x, long timeout, int state)
3809 {
3810 if (!x->done) {
3811 DECLARE_WAITQUEUE(wait, current);
3812
3813 wait.flags |= WQ_FLAG_EXCLUSIVE;
3814 __add_wait_queue_tail(&x->wait, &wait);
3815 do {
3816 if (state == TASK_INTERRUPTIBLE &&
3817 signal_pending(current)) {
3818 __remove_wait_queue(&x->wait, &wait);
3819 return -ERESTARTSYS;
3820 }
3821 __set_current_state(state);
3822 spin_unlock_irq(&x->wait.lock);
3823 timeout = schedule_timeout(timeout);
3824 spin_lock_irq(&x->wait.lock);
3825 if (!timeout) {
3826 __remove_wait_queue(&x->wait, &wait);
3827 return timeout;
3828 }
3829 } while (!x->done);
3830 __remove_wait_queue(&x->wait, &wait);
3831 }
3832 x->done--;
3833 return timeout;
3834 }
3835
3836 static long __sched
3837 wait_for_common(struct completion *x, long timeout, int state)
3838 {
3839 might_sleep();
3840
3841 spin_lock_irq(&x->wait.lock);
3842 timeout = do_wait_for_common(x, timeout, state);
3843 spin_unlock_irq(&x->wait.lock);
3844 return timeout;
3845 }
3846
3847 void fastcall __sched wait_for_completion(struct completion *x)
3848 {
3849 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
3850 }
3851 EXPORT_SYMBOL(wait_for_completion);
3852
3853 unsigned long fastcall __sched
3854 wait_for_completion_timeout(struct completion *x, unsigned long timeout)
3855 {
3856 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
3857 }
3858 EXPORT_SYMBOL(wait_for_completion_timeout);
3859
3860 int __sched wait_for_completion_interruptible(struct completion *x)
3861 {
3862 return wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
3863 }
3864 EXPORT_SYMBOL(wait_for_completion_interruptible);
3865
3866 unsigned long fastcall __sched
3867 wait_for_completion_interruptible_timeout(struct completion *x,
3868 unsigned long timeout)
3869 {
3870 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
3871 }
3872 EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
3873
3874 static long __sched
3875 sleep_on_common(wait_queue_head_t *q, int state, long timeout)
3876 {
3877 unsigned long flags;
3878 wait_queue_t wait;
3879
3880 init_waitqueue_entry(&wait, current);
3881
3882 __set_current_state(state);
3883
3884 spin_lock_irqsave(&q->lock, flags);
3885 __add_wait_queue(q, &wait);
3886 spin_unlock(&q->lock);
3887 timeout = schedule_timeout(timeout);
3888 spin_lock_irq(&q->lock);
3889 __remove_wait_queue(q, &wait);
3890 spin_unlock_irqrestore(&q->lock, flags);
3891
3892 return timeout;
3893 }
3894
3895 void __sched interruptible_sleep_on(wait_queue_head_t *q)
3896 {
3897 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
3898 }
3899 EXPORT_SYMBOL(interruptible_sleep_on);
3900
3901 long __sched
3902 interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
3903 {
3904 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
3905 }
3906 EXPORT_SYMBOL(interruptible_sleep_on_timeout);
3907
3908 void __sched sleep_on(wait_queue_head_t *q)
3909 {
3910 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
3911 }
3912 EXPORT_SYMBOL(sleep_on);
3913
3914 long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
3915 {
3916 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
3917 }
3918 EXPORT_SYMBOL(sleep_on_timeout);
3919
3920 #ifdef CONFIG_RT_MUTEXES
3921
3922 /*
3923 * rt_mutex_setprio - set the current priority of a task
3924 * @p: task
3925 * @prio: prio value (kernel-internal form)
3926 *
3927 * This function changes the 'effective' priority of a task. It does
3928 * not touch ->normal_prio like __setscheduler().
3929 *
3930 * Used by the rt_mutex code to implement priority inheritance logic.
3931 */
3932 void rt_mutex_setprio(struct task_struct *p, int prio)
3933 {
3934 unsigned long flags;
3935 int oldprio, on_rq, running;
3936 struct rq *rq;
3937
3938 BUG_ON(prio < 0 || prio > MAX_PRIO);
3939
3940 rq = task_rq_lock(p, &flags);
3941 update_rq_clock(rq);
3942
3943 oldprio = p->prio;
3944 on_rq = p->se.on_rq;
3945 running = task_running(rq, p);
3946 if (on_rq) {
3947 dequeue_task(rq, p, 0);
3948 if (running)
3949 p->sched_class->put_prev_task(rq, p);
3950 }
3951
3952 if (rt_prio(prio))
3953 p->sched_class = &rt_sched_class;
3954 else
3955 p->sched_class = &fair_sched_class;
3956
3957 p->prio = prio;
3958
3959 if (on_rq) {
3960 if (running)
3961 p->sched_class->set_curr_task(rq);
3962 enqueue_task(rq, p, 0);
3963 /*
3964 * Reschedule if we are currently running on this runqueue and
3965 * our priority decreased, or if we are not currently running on
3966 * this runqueue and our priority is higher than the current's
3967 */
3968 if (running) {
3969 if (p->prio > oldprio)
3970 resched_task(rq->curr);
3971 } else {
3972 check_preempt_curr(rq, p);
3973 }
3974 }
3975 task_rq_unlock(rq, &flags);
3976 }
3977
3978 #endif
3979
3980 void set_user_nice(struct task_struct *p, long nice)
3981 {
3982 int old_prio, delta, on_rq;
3983 unsigned long flags;
3984 struct rq *rq;
3985
3986 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
3987 return;
3988 /*
3989 * We have to be careful, if called from sys_setpriority(),
3990 * the task might be in the middle of scheduling on another CPU.
3991 */
3992 rq = task_rq_lock(p, &flags);
3993 update_rq_clock(rq);
3994 /*
3995 * The RT priorities are set via sched_setscheduler(), but we still
3996 * allow the 'normal' nice value to be set - but as expected
3997 * it wont have any effect on scheduling until the task is
3998 * SCHED_FIFO/SCHED_RR:
3999 */
4000 if (task_has_rt_policy(p)) {
4001 p->static_prio = NICE_TO_PRIO(nice);
4002 goto out_unlock;
4003 }
4004 on_rq = p->se.on_rq;
4005 if (on_rq) {
4006 dequeue_task(rq, p, 0);
4007 dec_load(rq, p);
4008 }
4009
4010 p->static_prio = NICE_TO_PRIO(nice);
4011 set_load_weight(p);
4012 old_prio = p->prio;
4013 p->prio = effective_prio(p);
4014 delta = p->prio - old_prio;
4015
4016 if (on_rq) {
4017 enqueue_task(rq, p, 0);
4018 inc_load(rq, p);
4019 /*
4020 * If the task increased its priority or is running and
4021 * lowered its priority, then reschedule its CPU:
4022 */
4023 if (delta < 0 || (delta > 0 && task_running(rq, p)))
4024 resched_task(rq->curr);
4025 }
4026 out_unlock:
4027 task_rq_unlock(rq, &flags);
4028 }
4029 EXPORT_SYMBOL(set_user_nice);
4030
4031 /*
4032 * can_nice - check if a task can reduce its nice value
4033 * @p: task
4034 * @nice: nice value
4035 */
4036 int can_nice(const struct task_struct *p, const int nice)
4037 {
4038 /* convert nice value [19,-20] to rlimit style value [1,40] */
4039 int nice_rlim = 20 - nice;
4040
4041 return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
4042 capable(CAP_SYS_NICE));
4043 }
4044
4045 #ifdef __ARCH_WANT_SYS_NICE
4046
4047 /*
4048 * sys_nice - change the priority of the current process.
4049 * @increment: priority increment
4050 *
4051 * sys_setpriority is a more generic, but much slower function that
4052 * does similar things.
4053 */
4054 asmlinkage long sys_nice(int increment)
4055 {
4056 long nice, retval;
4057
4058 /*
4059 * Setpriority might change our priority at the same moment.
4060 * We don't have to worry. Conceptually one call occurs first
4061 * and we have a single winner.
4062 */
4063 if (increment < -40)
4064 increment = -40;
4065 if (increment > 40)
4066 increment = 40;
4067
4068 nice = PRIO_TO_NICE(current->static_prio) + increment;
4069 if (nice < -20)
4070 nice = -20;
4071 if (nice > 19)
4072 nice = 19;
4073
4074 if (increment < 0 && !can_nice(current, nice))
4075 return -EPERM;
4076
4077 retval = security_task_setnice(current, nice);
4078 if (retval)
4079 return retval;
4080
4081 set_user_nice(current, nice);
4082 return 0;
4083 }
4084
4085 #endif
4086
4087 /**
4088 * task_prio - return the priority value of a given task.
4089 * @p: the task in question.
4090 *
4091 * This is the priority value as seen by users in /proc.
4092 * RT tasks are offset by -200. Normal tasks are centered
4093 * around 0, value goes from -16 to +15.
4094 */
4095 int task_prio(const struct task_struct *p)
4096 {
4097 return p->prio - MAX_RT_PRIO;
4098 }
4099
4100 /**
4101 * task_nice - return the nice value of a given task.
4102 * @p: the task in question.
4103 */
4104 int task_nice(const struct task_struct *p)
4105 {
4106 return TASK_NICE(p);
4107 }
4108 EXPORT_SYMBOL_GPL(task_nice);
4109
4110 /**
4111 * idle_cpu - is a given cpu idle currently?
4112 * @cpu: the processor in question.
4113 */
4114 int idle_cpu(int cpu)
4115 {
4116 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
4117 }
4118
4119 /**
4120 * idle_task - return the idle task for a given cpu.
4121 * @cpu: the processor in question.
4122 */
4123 struct task_struct *idle_task(int cpu)
4124 {
4125 return cpu_rq(cpu)->idle;
4126 }
4127
4128 /**
4129 * find_process_by_pid - find a process with a matching PID value.
4130 * @pid: the pid in question.
4131 */
4132 static struct task_struct *find_process_by_pid(pid_t pid)
4133 {
4134 return pid ? find_task_by_pid(pid) : current;
4135 }
4136
4137 /* Actually do priority change: must hold rq lock. */
4138 static void
4139 __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
4140 {
4141 BUG_ON(p->se.on_rq);
4142
4143 p->policy = policy;
4144 switch (p->policy) {
4145 case SCHED_NORMAL:
4146 case SCHED_BATCH:
4147 case SCHED_IDLE:
4148 p->sched_class = &fair_sched_class;
4149 break;
4150 case SCHED_FIFO:
4151 case SCHED_RR:
4152 p->sched_class = &rt_sched_class;
4153 break;
4154 }
4155
4156 p->rt_priority = prio;
4157 p->normal_prio = normal_prio(p);
4158 /* we are holding p->pi_lock already */
4159 p->prio = rt_mutex_getprio(p);
4160 set_load_weight(p);
4161 }
4162
4163 /**
4164 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
4165 * @p: the task in question.
4166 * @policy: new policy.
4167 * @param: structure containing the new RT priority.
4168 *
4169 * NOTE that the task may be already dead.
4170 */
4171 int sched_setscheduler(struct task_struct *p, int policy,
4172 struct sched_param *param)
4173 {
4174 int retval, oldprio, oldpolicy = -1, on_rq, running;
4175 unsigned long flags;
4176 struct rq *rq;
4177
4178 /* may grab non-irq protected spin_locks */
4179 BUG_ON(in_interrupt());
4180 recheck:
4181 /* double check policy once rq lock held */
4182 if (policy < 0)
4183 policy = oldpolicy = p->policy;
4184 else if (policy != SCHED_FIFO && policy != SCHED_RR &&
4185 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
4186 policy != SCHED_IDLE)
4187 return -EINVAL;
4188 /*
4189 * Valid priorities for SCHED_FIFO and SCHED_RR are
4190 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4191 * SCHED_BATCH and SCHED_IDLE is 0.
4192 */
4193 if (param->sched_priority < 0 ||
4194 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
4195 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
4196 return -EINVAL;
4197 if (rt_policy(policy) != (param->sched_priority != 0))
4198 return -EINVAL;
4199
4200 /*
4201 * Allow unprivileged RT tasks to decrease priority:
4202 */
4203 if (!capable(CAP_SYS_NICE)) {
4204 if (rt_policy(policy)) {
4205 unsigned long rlim_rtprio;
4206
4207 if (!lock_task_sighand(p, &flags))
4208 return -ESRCH;
4209 rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
4210 unlock_task_sighand(p, &flags);
4211
4212 /* can't set/change the rt policy */
4213 if (policy != p->policy && !rlim_rtprio)
4214 return -EPERM;
4215
4216 /* can't increase priority */
4217 if (param->sched_priority > p->rt_priority &&
4218 param->sched_priority > rlim_rtprio)
4219 return -EPERM;
4220 }
4221 /*
4222 * Like positive nice levels, dont allow tasks to
4223 * move out of SCHED_IDLE either:
4224 */
4225 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
4226 return -EPERM;
4227
4228 /* can't change other user's priorities */
4229 if ((current->euid != p->euid) &&
4230 (current->euid != p->uid))
4231 return -EPERM;
4232 }
4233
4234 retval = security_task_setscheduler(p, policy, param);
4235 if (retval)
4236 return retval;
4237 /*
4238 * make sure no PI-waiters arrive (or leave) while we are
4239 * changing the priority of the task:
4240 */
4241 spin_lock_irqsave(&p->pi_lock, flags);
4242 /*
4243 * To be able to change p->policy safely, the apropriate
4244 * runqueue lock must be held.
4245 */
4246 rq = __task_rq_lock(p);
4247 /* recheck policy now with rq lock held */
4248 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4249 policy = oldpolicy = -1;
4250 __task_rq_unlock(rq);
4251 spin_unlock_irqrestore(&p->pi_lock, flags);
4252 goto recheck;
4253 }
4254 update_rq_clock(rq);
4255 on_rq = p->se.on_rq;
4256 running = task_running(rq, p);
4257 if (on_rq) {
4258 deactivate_task(rq, p, 0);
4259 if (running)
4260 p->sched_class->put_prev_task(rq, p);
4261 }
4262
4263 oldprio = p->prio;
4264 __setscheduler(rq, p, policy, param->sched_priority);
4265
4266 if (on_rq) {
4267 if (running)
4268 p->sched_class->set_curr_task(rq);
4269 activate_task(rq, p, 0);
4270 /*
4271 * Reschedule if we are currently running on this runqueue and
4272 * our priority decreased, or if we are not currently running on
4273 * this runqueue and our priority is higher than the current's
4274 */
4275 if (running) {
4276 if (p->prio > oldprio)
4277 resched_task(rq->curr);
4278 } else {
4279 check_preempt_curr(rq, p);
4280 }
4281 }
4282 __task_rq_unlock(rq);
4283 spin_unlock_irqrestore(&p->pi_lock, flags);
4284
4285 rt_mutex_adjust_pi(p);
4286
4287 return 0;
4288 }
4289 EXPORT_SYMBOL_GPL(sched_setscheduler);
4290
4291 static int
4292 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
4293 {
4294 struct sched_param lparam;
4295 struct task_struct *p;
4296 int retval;
4297
4298 if (!param || pid < 0)
4299 return -EINVAL;
4300 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4301 return -EFAULT;
4302
4303 rcu_read_lock();
4304 retval = -ESRCH;
4305 p = find_process_by_pid(pid);
4306 if (p != NULL)
4307 retval = sched_setscheduler(p, policy, &lparam);
4308 rcu_read_unlock();
4309
4310 return retval;
4311 }
4312
4313 /**
4314 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4315 * @pid: the pid in question.
4316 * @policy: new policy.
4317 * @param: structure containing the new RT priority.
4318 */
4319 asmlinkage long sys_sched_setscheduler(pid_t pid, int policy,
4320 struct sched_param __user *param)
4321 {
4322 /* negative values for policy are not valid */
4323 if (policy < 0)
4324 return -EINVAL;
4325
4326 return do_sched_setscheduler(pid, policy, param);
4327 }
4328
4329 /**
4330 * sys_sched_setparam - set/change the RT priority of a thread
4331 * @pid: the pid in question.
4332 * @param: structure containing the new RT priority.
4333 */
4334 asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
4335 {
4336 return do_sched_setscheduler(pid, -1, param);
4337 }
4338
4339 /**
4340 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4341 * @pid: the pid in question.
4342 */
4343 asmlinkage long sys_sched_getscheduler(pid_t pid)
4344 {
4345 struct task_struct *p;
4346 int retval;
4347
4348 if (pid < 0)
4349 return -EINVAL;
4350
4351 retval = -ESRCH;
4352 read_lock(&tasklist_lock);
4353 p = find_process_by_pid(pid);
4354 if (p) {
4355 retval = security_task_getscheduler(p);
4356 if (!retval)
4357 retval = p->policy;
4358 }
4359 read_unlock(&tasklist_lock);
4360 return retval;
4361 }
4362
4363 /**
4364 * sys_sched_getscheduler - get the RT priority of a thread
4365 * @pid: the pid in question.
4366 * @param: structure containing the RT priority.
4367 */
4368 asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
4369 {
4370 struct sched_param lp;
4371 struct task_struct *p;
4372 int retval;
4373
4374 if (!param || pid < 0)
4375 return -EINVAL;
4376
4377 read_lock(&tasklist_lock);
4378 p = find_process_by_pid(pid);
4379 retval = -ESRCH;
4380 if (!p)
4381 goto out_unlock;
4382
4383 retval = security_task_getscheduler(p);
4384 if (retval)
4385 goto out_unlock;
4386
4387 lp.sched_priority = p->rt_priority;
4388 read_unlock(&tasklist_lock);
4389
4390 /*
4391 * This one might sleep, we cannot do it with a spinlock held ...
4392 */
4393 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4394
4395 return retval;
4396
4397 out_unlock:
4398 read_unlock(&tasklist_lock);
4399 return retval;
4400 }
4401
4402 long sched_setaffinity(pid_t pid, cpumask_t new_mask)
4403 {
4404 cpumask_t cpus_allowed;
4405 struct task_struct *p;
4406 int retval;
4407
4408 mutex_lock(&sched_hotcpu_mutex);
4409 read_lock(&tasklist_lock);
4410
4411 p = find_process_by_pid(pid);
4412 if (!p) {
4413 read_unlock(&tasklist_lock);
4414 mutex_unlock(&sched_hotcpu_mutex);
4415 return -ESRCH;
4416 }
4417
4418 /*
4419 * It is not safe to call set_cpus_allowed with the
4420 * tasklist_lock held. We will bump the task_struct's
4421 * usage count and then drop tasklist_lock.
4422 */
4423 get_task_struct(p);
4424 read_unlock(&tasklist_lock);
4425
4426 retval = -EPERM;
4427 if ((current->euid != p->euid) && (current->euid != p->uid) &&
4428 !capable(CAP_SYS_NICE))
4429 goto out_unlock;
4430
4431 retval = security_task_setscheduler(p, 0, NULL);
4432 if (retval)
4433 goto out_unlock;
4434
4435 cpus_allowed = cpuset_cpus_allowed(p);
4436 cpus_and(new_mask, new_mask, cpus_allowed);
4437 retval = set_cpus_allowed(p, new_mask);
4438
4439 out_unlock:
4440 put_task_struct(p);
4441 mutex_unlock(&sched_hotcpu_mutex);
4442 return retval;
4443 }
4444
4445 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4446 cpumask_t *new_mask)
4447 {
4448 if (len < sizeof(cpumask_t)) {
4449 memset(new_mask, 0, sizeof(cpumask_t));
4450 } else if (len > sizeof(cpumask_t)) {
4451 len = sizeof(cpumask_t);
4452 }
4453 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4454 }
4455
4456 /**
4457 * sys_sched_setaffinity - set the cpu affinity of a process
4458 * @pid: pid of the process
4459 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4460 * @user_mask_ptr: user-space pointer to the new cpu mask
4461 */
4462 asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
4463 unsigned long __user *user_mask_ptr)
4464 {
4465 cpumask_t new_mask;
4466 int retval;
4467
4468 retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
4469 if (retval)
4470 return retval;
4471
4472 return sched_setaffinity(pid, new_mask);
4473 }
4474
4475 /*
4476 * Represents all cpu's present in the system
4477 * In systems capable of hotplug, this map could dynamically grow
4478 * as new cpu's are detected in the system via any platform specific
4479 * method, such as ACPI for e.g.
4480 */
4481
4482 cpumask_t cpu_present_map __read_mostly;
4483 EXPORT_SYMBOL(cpu_present_map);
4484
4485 #ifndef CONFIG_SMP
4486 cpumask_t cpu_online_map __read_mostly = CPU_MASK_ALL;
4487 EXPORT_SYMBOL(cpu_online_map);
4488
4489 cpumask_t cpu_possible_map __read_mostly = CPU_MASK_ALL;
4490 EXPORT_SYMBOL(cpu_possible_map);
4491 #endif
4492
4493 long sched_getaffinity(pid_t pid, cpumask_t *mask)
4494 {
4495 struct task_struct *p;
4496 int retval;
4497
4498 mutex_lock(&sched_hotcpu_mutex);
4499 read_lock(&tasklist_lock);
4500
4501 retval = -ESRCH;
4502 p = find_process_by_pid(pid);
4503 if (!p)
4504 goto out_unlock;
4505
4506 retval = security_task_getscheduler(p);
4507 if (retval)
4508 goto out_unlock;
4509
4510 cpus_and(*mask, p->cpus_allowed, cpu_online_map);
4511
4512 out_unlock:
4513 read_unlock(&tasklist_lock);
4514 mutex_unlock(&sched_hotcpu_mutex);
4515
4516 return retval;
4517 }
4518
4519 /**
4520 * sys_sched_getaffinity - get the cpu affinity of a process
4521 * @pid: pid of the process
4522 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4523 * @user_mask_ptr: user-space pointer to hold the current cpu mask
4524 */
4525 asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
4526 unsigned long __user *user_mask_ptr)
4527 {
4528 int ret;
4529 cpumask_t mask;
4530
4531 if (len < sizeof(cpumask_t))
4532 return -EINVAL;
4533
4534 ret = sched_getaffinity(pid, &mask);
4535 if (ret < 0)
4536 return ret;
4537
4538 if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
4539 return -EFAULT;
4540
4541 return sizeof(cpumask_t);
4542 }
4543
4544 /**
4545 * sys_sched_yield - yield the current processor to other threads.
4546 *
4547 * This function yields the current CPU to other tasks. If there are no
4548 * other threads running on this CPU then this function will return.
4549 */
4550 asmlinkage long sys_sched_yield(void)
4551 {
4552 struct rq *rq = this_rq_lock();
4553
4554 schedstat_inc(rq, yld_count);
4555 current->sched_class->yield_task(rq);
4556
4557 /*
4558 * Since we are going to call schedule() anyway, there's
4559 * no need to preempt or enable interrupts:
4560 */
4561 __release(rq->lock);
4562 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
4563 _raw_spin_unlock(&rq->lock);
4564 preempt_enable_no_resched();
4565
4566 schedule();
4567
4568 return 0;
4569 }
4570
4571 static void __cond_resched(void)
4572 {
4573 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
4574 __might_sleep(__FILE__, __LINE__);
4575 #endif
4576 /*
4577 * The BKS might be reacquired before we have dropped
4578 * PREEMPT_ACTIVE, which could trigger a second
4579 * cond_resched() call.
4580 */
4581 do {
4582 add_preempt_count(PREEMPT_ACTIVE);
4583 schedule();
4584 sub_preempt_count(PREEMPT_ACTIVE);
4585 } while (need_resched());
4586 }
4587
4588 int __sched cond_resched(void)
4589 {
4590 if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
4591 system_state == SYSTEM_RUNNING) {
4592 __cond_resched();
4593 return 1;
4594 }
4595 return 0;
4596 }
4597 EXPORT_SYMBOL(cond_resched);
4598
4599 /*
4600 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
4601 * call schedule, and on return reacquire the lock.
4602 *
4603 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4604 * operations here to prevent schedule() from being called twice (once via
4605 * spin_unlock(), once by hand).
4606 */
4607 int cond_resched_lock(spinlock_t *lock)
4608 {
4609 int ret = 0;
4610
4611 if (need_lockbreak(lock)) {
4612 spin_unlock(lock);
4613 cpu_relax();
4614 ret = 1;
4615 spin_lock(lock);
4616 }
4617 if (need_resched() && system_state == SYSTEM_RUNNING) {
4618 spin_release(&lock->dep_map, 1, _THIS_IP_);
4619 _raw_spin_unlock(lock);
4620 preempt_enable_no_resched();
4621 __cond_resched();
4622 ret = 1;
4623 spin_lock(lock);
4624 }
4625 return ret;
4626 }
4627 EXPORT_SYMBOL(cond_resched_lock);
4628
4629 int __sched cond_resched_softirq(void)
4630 {
4631 BUG_ON(!in_softirq());
4632
4633 if (need_resched() && system_state == SYSTEM_RUNNING) {
4634 local_bh_enable();
4635 __cond_resched();
4636 local_bh_disable();
4637 return 1;
4638 }
4639 return 0;
4640 }
4641 EXPORT_SYMBOL(cond_resched_softirq);
4642
4643 /**
4644 * yield - yield the current processor to other threads.
4645 *
4646 * This is a shortcut for kernel-space yielding - it marks the
4647 * thread runnable and calls sys_sched_yield().
4648 */
4649 void __sched yield(void)
4650 {
4651 set_current_state(TASK_RUNNING);
4652 sys_sched_yield();
4653 }
4654 EXPORT_SYMBOL(yield);
4655
4656 /*
4657 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
4658 * that process accounting knows that this is a task in IO wait state.
4659 *
4660 * But don't do that if it is a deliberate, throttling IO wait (this task
4661 * has set its backing_dev_info: the queue against which it should throttle)
4662 */
4663 void __sched io_schedule(void)
4664 {
4665 struct rq *rq = &__raw_get_cpu_var(runqueues);
4666
4667 delayacct_blkio_start();
4668 atomic_inc(&rq->nr_iowait);
4669 schedule();
4670 atomic_dec(&rq->nr_iowait);
4671 delayacct_blkio_end();
4672 }
4673 EXPORT_SYMBOL(io_schedule);
4674
4675 long __sched io_schedule_timeout(long timeout)
4676 {
4677 struct rq *rq = &__raw_get_cpu_var(runqueues);
4678 long ret;
4679
4680 delayacct_blkio_start();
4681 atomic_inc(&rq->nr_iowait);
4682 ret = schedule_timeout(timeout);
4683 atomic_dec(&rq->nr_iowait);
4684 delayacct_blkio_end();
4685 return ret;
4686 }
4687
4688 /**
4689 * sys_sched_get_priority_max - return maximum RT priority.
4690 * @policy: scheduling class.
4691 *
4692 * this syscall returns the maximum rt_priority that can be used
4693 * by a given scheduling class.
4694 */
4695 asmlinkage long sys_sched_get_priority_max(int policy)
4696 {
4697 int ret = -EINVAL;
4698
4699 switch (policy) {
4700 case SCHED_FIFO:
4701 case SCHED_RR:
4702 ret = MAX_USER_RT_PRIO-1;
4703 break;
4704 case SCHED_NORMAL:
4705 case SCHED_BATCH:
4706 case SCHED_IDLE:
4707 ret = 0;
4708 break;
4709 }
4710 return ret;
4711 }
4712
4713 /**
4714 * sys_sched_get_priority_min - return minimum RT priority.
4715 * @policy: scheduling class.
4716 *
4717 * this syscall returns the minimum rt_priority that can be used
4718 * by a given scheduling class.
4719 */
4720 asmlinkage long sys_sched_get_priority_min(int policy)
4721 {
4722 int ret = -EINVAL;
4723
4724 switch (policy) {
4725 case SCHED_FIFO:
4726 case SCHED_RR:
4727 ret = 1;
4728 break;
4729 case SCHED_NORMAL:
4730 case SCHED_BATCH:
4731 case SCHED_IDLE:
4732 ret = 0;
4733 }
4734 return ret;
4735 }
4736
4737 /**
4738 * sys_sched_rr_get_interval - return the default timeslice of a process.
4739 * @pid: pid of the process.
4740 * @interval: userspace pointer to the timeslice value.
4741 *
4742 * this syscall writes the default timeslice value of a given process
4743 * into the user-space timespec buffer. A value of '0' means infinity.
4744 */
4745 asmlinkage
4746 long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
4747 {
4748 struct task_struct *p;
4749 unsigned int time_slice;
4750 int retval;
4751 struct timespec t;
4752
4753 if (pid < 0)
4754 return -EINVAL;
4755
4756 retval = -ESRCH;
4757 read_lock(&tasklist_lock);
4758 p = find_process_by_pid(pid);
4759 if (!p)
4760 goto out_unlock;
4761
4762 retval = security_task_getscheduler(p);
4763 if (retval)
4764 goto out_unlock;
4765
4766 if (p->policy == SCHED_FIFO)
4767 time_slice = 0;
4768 else if (p->policy == SCHED_RR)
4769 time_slice = DEF_TIMESLICE;
4770 else {
4771 struct sched_entity *se = &p->se;
4772 unsigned long flags;
4773 struct rq *rq;
4774
4775 rq = task_rq_lock(p, &flags);
4776 time_slice = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
4777 task_rq_unlock(rq, &flags);
4778 }
4779 read_unlock(&tasklist_lock);
4780 jiffies_to_timespec(time_slice, &t);
4781 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
4782 return retval;
4783
4784 out_unlock:
4785 read_unlock(&tasklist_lock);
4786 return retval;
4787 }
4788
4789 static const char stat_nam[] = "RSDTtZX";
4790
4791 static void show_task(struct task_struct *p)
4792 {
4793 unsigned long free = 0;
4794 unsigned state;
4795
4796 state = p->state ? __ffs(p->state) + 1 : 0;
4797 printk("%-13.13s %c", p->comm,
4798 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4799 #if BITS_PER_LONG == 32
4800 if (state == TASK_RUNNING)
4801 printk(" running ");
4802 else
4803 printk(" %08lx ", thread_saved_pc(p));
4804 #else
4805 if (state == TASK_RUNNING)
4806 printk(" running task ");
4807 else
4808 printk(" %016lx ", thread_saved_pc(p));
4809 #endif
4810 #ifdef CONFIG_DEBUG_STACK_USAGE
4811 {
4812 unsigned long *n = end_of_stack(p);
4813 while (!*n)
4814 n++;
4815 free = (unsigned long)n - (unsigned long)end_of_stack(p);
4816 }
4817 #endif
4818 printk("%5lu %5d %6d\n", free, p->pid, p->parent->pid);
4819
4820 if (state != TASK_RUNNING)
4821 show_stack(p, NULL);
4822 }
4823
4824 void show_state_filter(unsigned long state_filter)
4825 {
4826 struct task_struct *g, *p;
4827
4828 #if BITS_PER_LONG == 32
4829 printk(KERN_INFO
4830 " task PC stack pid father\n");
4831 #else
4832 printk(KERN_INFO
4833 " task PC stack pid father\n");
4834 #endif
4835 read_lock(&tasklist_lock);
4836 do_each_thread(g, p) {
4837 /*
4838 * reset the NMI-timeout, listing all files on a slow
4839 * console might take alot of time:
4840 */
4841 touch_nmi_watchdog();
4842 if (!state_filter || (p->state & state_filter))
4843 show_task(p);
4844 } while_each_thread(g, p);
4845
4846 touch_all_softlockup_watchdogs();
4847
4848 #ifdef CONFIG_SCHED_DEBUG
4849 sysrq_sched_debug_show();
4850 #endif
4851 read_unlock(&tasklist_lock);
4852 /*
4853 * Only show locks if all tasks are dumped:
4854 */
4855 if (state_filter == -1)
4856 debug_show_all_locks();
4857 }
4858
4859 void __cpuinit init_idle_bootup_task(struct task_struct *idle)
4860 {
4861 idle->sched_class = &idle_sched_class;
4862 }
4863
4864 /**
4865 * init_idle - set up an idle thread for a given CPU
4866 * @idle: task in question
4867 * @cpu: cpu the idle task belongs to
4868 *
4869 * NOTE: this function does not set the idle thread's NEED_RESCHED
4870 * flag, to make booting more robust.
4871 */
4872 void __cpuinit init_idle(struct task_struct *idle, int cpu)
4873 {
4874 struct rq *rq = cpu_rq(cpu);
4875 unsigned long flags;
4876
4877 __sched_fork(idle);
4878 idle->se.exec_start = sched_clock();
4879
4880 idle->prio = idle->normal_prio = MAX_PRIO;
4881 idle->cpus_allowed = cpumask_of_cpu(cpu);
4882 __set_task_cpu(idle, cpu);
4883
4884 spin_lock_irqsave(&rq->lock, flags);
4885 rq->curr = rq->idle = idle;
4886 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
4887 idle->oncpu = 1;
4888 #endif
4889 spin_unlock_irqrestore(&rq->lock, flags);
4890
4891 /* Set the preempt count _outside_ the spinlocks! */
4892 #if defined(CONFIG_PREEMPT) && !defined(CONFIG_PREEMPT_BKL)
4893 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
4894 #else
4895 task_thread_info(idle)->preempt_count = 0;
4896 #endif
4897 /*
4898 * The idle tasks have their own, simple scheduling class:
4899 */
4900 idle->sched_class = &idle_sched_class;
4901 }
4902
4903 /*
4904 * In a system that switches off the HZ timer nohz_cpu_mask
4905 * indicates which cpus entered this state. This is used
4906 * in the rcu update to wait only for active cpus. For system
4907 * which do not switch off the HZ timer nohz_cpu_mask should
4908 * always be CPU_MASK_NONE.
4909 */
4910 cpumask_t nohz_cpu_mask = CPU_MASK_NONE;
4911
4912 #ifdef CONFIG_SMP
4913 /*
4914 * This is how migration works:
4915 *
4916 * 1) we queue a struct migration_req structure in the source CPU's
4917 * runqueue and wake up that CPU's migration thread.
4918 * 2) we down() the locked semaphore => thread blocks.
4919 * 3) migration thread wakes up (implicitly it forces the migrated
4920 * thread off the CPU)
4921 * 4) it gets the migration request and checks whether the migrated
4922 * task is still in the wrong runqueue.
4923 * 5) if it's in the wrong runqueue then the migration thread removes
4924 * it and puts it into the right queue.
4925 * 6) migration thread up()s the semaphore.
4926 * 7) we wake up and the migration is done.
4927 */
4928
4929 /*
4930 * Change a given task's CPU affinity. Migrate the thread to a
4931 * proper CPU and schedule it away if the CPU it's executing on
4932 * is removed from the allowed bitmask.
4933 *
4934 * NOTE: the caller must have a valid reference to the task, the
4935 * task must not exit() & deallocate itself prematurely. The
4936 * call is not atomic; no spinlocks may be held.
4937 */
4938 int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
4939 {
4940 struct migration_req req;
4941 unsigned long flags;
4942 struct rq *rq;
4943 int ret = 0;
4944
4945 rq = task_rq_lock(p, &flags);
4946 if (!cpus_intersects(new_mask, cpu_online_map)) {
4947 ret = -EINVAL;
4948 goto out;
4949 }
4950
4951 p->cpus_allowed = new_mask;
4952 /* Can the task run on the task's current CPU? If so, we're done */
4953 if (cpu_isset(task_cpu(p), new_mask))
4954 goto out;
4955
4956 if (migrate_task(p, any_online_cpu(new_mask), &req)) {
4957 /* Need help from migration thread: drop lock and wait. */
4958 task_rq_unlock(rq, &flags);
4959 wake_up_process(rq->migration_thread);
4960 wait_for_completion(&req.done);
4961 tlb_migrate_finish(p->mm);
4962 return 0;
4963 }
4964 out:
4965 task_rq_unlock(rq, &flags);
4966
4967 return ret;
4968 }
4969 EXPORT_SYMBOL_GPL(set_cpus_allowed);
4970
4971 /*
4972 * Move (not current) task off this cpu, onto dest cpu. We're doing
4973 * this because either it can't run here any more (set_cpus_allowed()
4974 * away from this CPU, or CPU going down), or because we're
4975 * attempting to rebalance this task on exec (sched_exec).
4976 *
4977 * So we race with normal scheduler movements, but that's OK, as long
4978 * as the task is no longer on this CPU.
4979 *
4980 * Returns non-zero if task was successfully migrated.
4981 */
4982 static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
4983 {
4984 struct rq *rq_dest, *rq_src;
4985 int ret = 0, on_rq;
4986
4987 if (unlikely(cpu_is_offline(dest_cpu)))
4988 return ret;
4989
4990 rq_src = cpu_rq(src_cpu);
4991 rq_dest = cpu_rq(dest_cpu);
4992
4993 double_rq_lock(rq_src, rq_dest);
4994 /* Already moved. */
4995 if (task_cpu(p) != src_cpu)
4996 goto out;
4997 /* Affinity changed (again). */
4998 if (!cpu_isset(dest_cpu, p->cpus_allowed))
4999 goto out;
5000
5001 on_rq = p->se.on_rq;
5002 if (on_rq)
5003 deactivate_task(rq_src, p, 0);
5004
5005 set_task_cpu(p, dest_cpu);
5006 if (on_rq) {
5007 activate_task(rq_dest, p, 0);
5008 check_preempt_curr(rq_dest, p);
5009 }
5010 ret = 1;
5011 out:
5012 double_rq_unlock(rq_src, rq_dest);
5013 return ret;
5014 }
5015
5016 /*
5017 * migration_thread - this is a highprio system thread that performs
5018 * thread migration by bumping thread off CPU then 'pushing' onto
5019 * another runqueue.
5020 */
5021 static int migration_thread(void *data)
5022 {
5023 int cpu = (long)data;
5024 struct rq *rq;
5025
5026 rq = cpu_rq(cpu);
5027 BUG_ON(rq->migration_thread != current);
5028
5029 set_current_state(TASK_INTERRUPTIBLE);
5030 while (!kthread_should_stop()) {
5031 struct migration_req *req;
5032 struct list_head *head;
5033
5034 spin_lock_irq(&rq->lock);
5035
5036 if (cpu_is_offline(cpu)) {
5037 spin_unlock_irq(&rq->lock);
5038 goto wait_to_die;
5039 }
5040
5041 if (rq->active_balance) {
5042 active_load_balance(rq, cpu);
5043 rq->active_balance = 0;
5044 }
5045
5046 head = &rq->migration_queue;
5047
5048 if (list_empty(head)) {
5049 spin_unlock_irq(&rq->lock);
5050 schedule();
5051 set_current_state(TASK_INTERRUPTIBLE);
5052 continue;
5053 }
5054 req = list_entry(head->next, struct migration_req, list);
5055 list_del_init(head->next);
5056
5057 spin_unlock(&rq->lock);
5058 __migrate_task(req->task, cpu, req->dest_cpu);
5059 local_irq_enable();
5060
5061 complete(&req->done);
5062 }
5063 __set_current_state(TASK_RUNNING);
5064 return 0;
5065
5066 wait_to_die:
5067 /* Wait for kthread_stop */
5068 set_current_state(TASK_INTERRUPTIBLE);
5069 while (!kthread_should_stop()) {
5070 schedule();
5071 set_current_state(TASK_INTERRUPTIBLE);
5072 }
5073 __set_current_state(TASK_RUNNING);
5074 return 0;
5075 }
5076
5077 #ifdef CONFIG_HOTPLUG_CPU
5078 /*
5079 * Figure out where task on dead CPU should go, use force if neccessary.
5080 * NOTE: interrupts should be disabled by the caller
5081 */
5082 static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
5083 {
5084 unsigned long flags;
5085 cpumask_t mask;
5086 struct rq *rq;
5087 int dest_cpu;
5088
5089 do {
5090 /* On same node? */
5091 mask = node_to_cpumask(cpu_to_node(dead_cpu));
5092 cpus_and(mask, mask, p->cpus_allowed);
5093 dest_cpu = any_online_cpu(mask);
5094
5095 /* On any allowed CPU? */
5096 if (dest_cpu == NR_CPUS)
5097 dest_cpu = any_online_cpu(p->cpus_allowed);
5098
5099 /* No more Mr. Nice Guy. */
5100 if (dest_cpu == NR_CPUS) {
5101 rq = task_rq_lock(p, &flags);
5102 cpus_setall(p->cpus_allowed);
5103 dest_cpu = any_online_cpu(p->cpus_allowed);
5104 task_rq_unlock(rq, &flags);
5105
5106 /*
5107 * Don't tell them about moving exiting tasks or
5108 * kernel threads (both mm NULL), since they never
5109 * leave kernel.
5110 */
5111 if (p->mm && printk_ratelimit())
5112 printk(KERN_INFO "process %d (%s) no "
5113 "longer affine to cpu%d\n",
5114 p->pid, p->comm, dead_cpu);
5115 }
5116 } while (!__migrate_task(p, dead_cpu, dest_cpu));
5117 }
5118
5119 /*
5120 * While a dead CPU has no uninterruptible tasks queued at this point,
5121 * it might still have a nonzero ->nr_uninterruptible counter, because
5122 * for performance reasons the counter is not stricly tracking tasks to
5123 * their home CPUs. So we just add the counter to another CPU's counter,
5124 * to keep the global sum constant after CPU-down:
5125 */
5126 static void migrate_nr_uninterruptible(struct rq *rq_src)
5127 {
5128 struct rq *rq_dest = cpu_rq(any_online_cpu(CPU_MASK_ALL));
5129 unsigned long flags;
5130
5131 local_irq_save(flags);
5132 double_rq_lock(rq_src, rq_dest);
5133 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
5134 rq_src->nr_uninterruptible = 0;
5135 double_rq_unlock(rq_src, rq_dest);
5136 local_irq_restore(flags);
5137 }
5138
5139 /* Run through task list and migrate tasks from the dead cpu. */
5140 static void migrate_live_tasks(int src_cpu)
5141 {
5142 struct task_struct *p, *t;
5143
5144 write_lock_irq(&tasklist_lock);
5145
5146 do_each_thread(t, p) {
5147 if (p == current)
5148 continue;
5149
5150 if (task_cpu(p) == src_cpu)
5151 move_task_off_dead_cpu(src_cpu, p);
5152 } while_each_thread(t, p);
5153
5154 write_unlock_irq(&tasklist_lock);
5155 }
5156
5157 /*
5158 * activate_idle_task - move idle task to the _front_ of runqueue.
5159 */
5160 static void activate_idle_task(struct task_struct *p, struct rq *rq)
5161 {
5162 update_rq_clock(rq);
5163
5164 if (p->state == TASK_UNINTERRUPTIBLE)
5165 rq->nr_uninterruptible--;
5166
5167 enqueue_task(rq, p, 0);
5168 inc_nr_running(p, rq);
5169 }
5170
5171 /*
5172 * Schedules idle task to be the next runnable task on current CPU.
5173 * It does so by boosting its priority to highest possible and adding it to
5174 * the _front_ of the runqueue. Used by CPU offline code.
5175 */
5176 void sched_idle_next(void)
5177 {
5178 int this_cpu = smp_processor_id();
5179 struct rq *rq = cpu_rq(this_cpu);
5180 struct task_struct *p = rq->idle;
5181 unsigned long flags;
5182
5183 /* cpu has to be offline */
5184 BUG_ON(cpu_online(this_cpu));
5185
5186 /*
5187 * Strictly not necessary since rest of the CPUs are stopped by now
5188 * and interrupts disabled on the current cpu.
5189 */
5190 spin_lock_irqsave(&rq->lock, flags);
5191
5192 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
5193
5194 /* Add idle task to the _front_ of its priority queue: */
5195 activate_idle_task(p, rq);
5196
5197 spin_unlock_irqrestore(&rq->lock, flags);
5198 }
5199
5200 /*
5201 * Ensures that the idle task is using init_mm right before its cpu goes
5202 * offline.
5203 */
5204 void idle_task_exit(void)
5205 {
5206 struct mm_struct *mm = current->active_mm;
5207
5208 BUG_ON(cpu_online(smp_processor_id()));
5209
5210 if (mm != &init_mm)
5211 switch_mm(mm, &init_mm, current);
5212 mmdrop(mm);
5213 }
5214
5215 /* called under rq->lock with disabled interrupts */
5216 static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
5217 {
5218 struct rq *rq = cpu_rq(dead_cpu);
5219
5220 /* Must be exiting, otherwise would be on tasklist. */
5221 BUG_ON(p->exit_state != EXIT_ZOMBIE && p->exit_state != EXIT_DEAD);
5222
5223 /* Cannot have done final schedule yet: would have vanished. */
5224 BUG_ON(p->state == TASK_DEAD);
5225
5226 get_task_struct(p);
5227
5228 /*
5229 * Drop lock around migration; if someone else moves it,
5230 * that's OK. No task can be added to this CPU, so iteration is
5231 * fine.
5232 * NOTE: interrupts should be left disabled --dev@
5233 */
5234 spin_unlock(&rq->lock);
5235 move_task_off_dead_cpu(dead_cpu, p);
5236 spin_lock(&rq->lock);
5237
5238 put_task_struct(p);
5239 }
5240
5241 /* release_task() removes task from tasklist, so we won't find dead tasks. */
5242 static void migrate_dead_tasks(unsigned int dead_cpu)
5243 {
5244 struct rq *rq = cpu_rq(dead_cpu);
5245 struct task_struct *next;
5246
5247 for ( ; ; ) {
5248 if (!rq->nr_running)
5249 break;
5250 update_rq_clock(rq);
5251 next = pick_next_task(rq, rq->curr);
5252 if (!next)
5253 break;
5254 migrate_dead(dead_cpu, next);
5255
5256 }
5257 }
5258 #endif /* CONFIG_HOTPLUG_CPU */
5259
5260 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
5261
5262 static struct ctl_table sd_ctl_dir[] = {
5263 {
5264 .procname = "sched_domain",
5265 .mode = 0555,
5266 },
5267 {0,},
5268 };
5269
5270 static struct ctl_table sd_ctl_root[] = {
5271 {
5272 .ctl_name = CTL_KERN,
5273 .procname = "kernel",
5274 .mode = 0555,
5275 .child = sd_ctl_dir,
5276 },
5277 {0,},
5278 };
5279
5280 static struct ctl_table *sd_alloc_ctl_entry(int n)
5281 {
5282 struct ctl_table *entry =
5283 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
5284
5285 return entry;
5286 }
5287
5288 static void sd_free_ctl_entry(struct ctl_table **tablep)
5289 {
5290 struct ctl_table *entry;
5291
5292 /*
5293 * In the intermediate directories, both the child directory and
5294 * procname are dynamically allocated and could fail but the mode
5295 * will always be set. In the lowest directory the names are
5296 * static strings and all have proc handlers.
5297 */
5298 for (entry = *tablep; entry->mode; entry++) {
5299 if (entry->child)
5300 sd_free_ctl_entry(&entry->child);
5301 if (entry->proc_handler == NULL)
5302 kfree(entry->procname);
5303 }
5304
5305 kfree(*tablep);
5306 *tablep = NULL;
5307 }
5308
5309 static void
5310 set_table_entry(struct ctl_table *entry,
5311 const char *procname, void *data, int maxlen,
5312 mode_t mode, proc_handler *proc_handler)
5313 {
5314 entry->procname = procname;
5315 entry->data = data;
5316 entry->maxlen = maxlen;
5317 entry->mode = mode;
5318 entry->proc_handler = proc_handler;
5319 }
5320
5321 static struct ctl_table *
5322 sd_alloc_ctl_domain_table(struct sched_domain *sd)
5323 {
5324 struct ctl_table *table = sd_alloc_ctl_entry(12);
5325
5326 if (table == NULL)
5327 return NULL;
5328
5329 set_table_entry(&table[0], "min_interval", &sd->min_interval,
5330 sizeof(long), 0644, proc_doulongvec_minmax);
5331 set_table_entry(&table[1], "max_interval", &sd->max_interval,
5332 sizeof(long), 0644, proc_doulongvec_minmax);
5333 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
5334 sizeof(int), 0644, proc_dointvec_minmax);
5335 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
5336 sizeof(int), 0644, proc_dointvec_minmax);
5337 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
5338 sizeof(int), 0644, proc_dointvec_minmax);
5339 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
5340 sizeof(int), 0644, proc_dointvec_minmax);
5341 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
5342 sizeof(int), 0644, proc_dointvec_minmax);
5343 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
5344 sizeof(int), 0644, proc_dointvec_minmax);
5345 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
5346 sizeof(int), 0644, proc_dointvec_minmax);
5347 set_table_entry(&table[9], "cache_nice_tries",
5348 &sd->cache_nice_tries,
5349 sizeof(int), 0644, proc_dointvec_minmax);
5350 set_table_entry(&table[10], "flags", &sd->flags,
5351 sizeof(int), 0644, proc_dointvec_minmax);
5352 /* &table[11] is terminator */
5353
5354 return table;
5355 }
5356
5357 static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
5358 {
5359 struct ctl_table *entry, *table;
5360 struct sched_domain *sd;
5361 int domain_num = 0, i;
5362 char buf[32];
5363
5364 for_each_domain(cpu, sd)
5365 domain_num++;
5366 entry = table = sd_alloc_ctl_entry(domain_num + 1);
5367 if (table == NULL)
5368 return NULL;
5369
5370 i = 0;
5371 for_each_domain(cpu, sd) {
5372 snprintf(buf, 32, "domain%d", i);
5373 entry->procname = kstrdup(buf, GFP_KERNEL);
5374 entry->mode = 0555;
5375 entry->child = sd_alloc_ctl_domain_table(sd);
5376 entry++;
5377 i++;
5378 }
5379 return table;
5380 }
5381
5382 static struct ctl_table_header *sd_sysctl_header;
5383 static void register_sched_domain_sysctl(void)
5384 {
5385 int i, cpu_num = num_online_cpus();
5386 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
5387 char buf[32];
5388
5389 if (entry == NULL)
5390 return;
5391
5392 sd_ctl_dir[0].child = entry;
5393
5394 for_each_online_cpu(i) {
5395 snprintf(buf, 32, "cpu%d", i);
5396 entry->procname = kstrdup(buf, GFP_KERNEL);
5397 entry->mode = 0555;
5398 entry->child = sd_alloc_ctl_cpu_table(i);
5399 entry++;
5400 }
5401 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
5402 }
5403
5404 static void unregister_sched_domain_sysctl(void)
5405 {
5406 unregister_sysctl_table(sd_sysctl_header);
5407 sd_sysctl_header = NULL;
5408 sd_free_ctl_entry(&sd_ctl_dir[0].child);
5409 }
5410 #else
5411 static void register_sched_domain_sysctl(void)
5412 {
5413 }
5414 static void unregister_sched_domain_sysctl(void)
5415 {
5416 }
5417 #endif
5418
5419 /*
5420 * migration_call - callback that gets triggered when a CPU is added.
5421 * Here we can start up the necessary migration thread for the new CPU.
5422 */
5423 static int __cpuinit
5424 migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
5425 {
5426 struct task_struct *p;
5427 int cpu = (long)hcpu;
5428 unsigned long flags;
5429 struct rq *rq;
5430
5431 switch (action) {
5432 case CPU_LOCK_ACQUIRE:
5433 mutex_lock(&sched_hotcpu_mutex);
5434 break;
5435
5436 case CPU_UP_PREPARE:
5437 case CPU_UP_PREPARE_FROZEN:
5438 p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
5439 if (IS_ERR(p))
5440 return NOTIFY_BAD;
5441 kthread_bind(p, cpu);
5442 /* Must be high prio: stop_machine expects to yield to it. */
5443 rq = task_rq_lock(p, &flags);
5444 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
5445 task_rq_unlock(rq, &flags);
5446 cpu_rq(cpu)->migration_thread = p;
5447 break;
5448
5449 case CPU_ONLINE:
5450 case CPU_ONLINE_FROZEN:
5451 /* Strictly unneccessary, as first user will wake it. */
5452 wake_up_process(cpu_rq(cpu)->migration_thread);
5453 break;
5454
5455 #ifdef CONFIG_HOTPLUG_CPU
5456 case CPU_UP_CANCELED:
5457 case CPU_UP_CANCELED_FROZEN:
5458 if (!cpu_rq(cpu)->migration_thread)
5459 break;
5460 /* Unbind it from offline cpu so it can run. Fall thru. */
5461 kthread_bind(cpu_rq(cpu)->migration_thread,
5462 any_online_cpu(cpu_online_map));
5463 kthread_stop(cpu_rq(cpu)->migration_thread);
5464 cpu_rq(cpu)->migration_thread = NULL;
5465 break;
5466
5467 case CPU_DEAD:
5468 case CPU_DEAD_FROZEN:
5469 migrate_live_tasks(cpu);
5470 rq = cpu_rq(cpu);
5471 kthread_stop(rq->migration_thread);
5472 rq->migration_thread = NULL;
5473 /* Idle task back to normal (off runqueue, low prio) */
5474 rq = task_rq_lock(rq->idle, &flags);
5475 update_rq_clock(rq);
5476 deactivate_task(rq, rq->idle, 0);
5477 rq->idle->static_prio = MAX_PRIO;
5478 __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
5479 rq->idle->sched_class = &idle_sched_class;
5480 migrate_dead_tasks(cpu);
5481 task_rq_unlock(rq, &flags);
5482 migrate_nr_uninterruptible(rq);
5483 BUG_ON(rq->nr_running != 0);
5484
5485 /* No need to migrate the tasks: it was best-effort if
5486 * they didn't take sched_hotcpu_mutex. Just wake up
5487 * the requestors. */
5488 spin_lock_irq(&rq->lock);
5489 while (!list_empty(&rq->migration_queue)) {
5490 struct migration_req *req;
5491
5492 req = list_entry(rq->migration_queue.next,
5493 struct migration_req, list);
5494 list_del_init(&req->list);
5495 complete(&req->done);
5496 }
5497 spin_unlock_irq(&rq->lock);
5498 break;
5499 #endif
5500 case CPU_LOCK_RELEASE:
5501 mutex_unlock(&sched_hotcpu_mutex);
5502 break;
5503 }
5504 return NOTIFY_OK;
5505 }
5506
5507 /* Register at highest priority so that task migration (migrate_all_tasks)
5508 * happens before everything else.
5509 */
5510 static struct notifier_block __cpuinitdata migration_notifier = {
5511 .notifier_call = migration_call,
5512 .priority = 10
5513 };
5514
5515 int __init migration_init(void)
5516 {
5517 void *cpu = (void *)(long)smp_processor_id();
5518 int err;
5519
5520 /* Start one for the boot CPU: */
5521 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5522 BUG_ON(err == NOTIFY_BAD);
5523 migration_call(&migration_notifier, CPU_ONLINE, cpu);
5524 register_cpu_notifier(&migration_notifier);
5525
5526 return 0;
5527 }
5528 #endif
5529
5530 #ifdef CONFIG_SMP
5531
5532 /* Number of possible processor ids */
5533 int nr_cpu_ids __read_mostly = NR_CPUS;
5534 EXPORT_SYMBOL(nr_cpu_ids);
5535
5536 #ifdef CONFIG_SCHED_DEBUG
5537 static void sched_domain_debug(struct sched_domain *sd, int cpu)
5538 {
5539 int level = 0;
5540
5541 if (!sd) {
5542 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5543 return;
5544 }
5545
5546 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5547
5548 do {
5549 int i;
5550 char str[NR_CPUS];
5551 struct sched_group *group = sd->groups;
5552 cpumask_t groupmask;
5553
5554 cpumask_scnprintf(str, NR_CPUS, sd->span);
5555 cpus_clear(groupmask);
5556
5557 printk(KERN_DEBUG);
5558 for (i = 0; i < level + 1; i++)
5559 printk(" ");
5560 printk("domain %d: ", level);
5561
5562 if (!(sd->flags & SD_LOAD_BALANCE)) {
5563 printk("does not load-balance\n");
5564 if (sd->parent)
5565 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5566 " has parent");
5567 break;
5568 }
5569
5570 printk("span %s\n", str);
5571
5572 if (!cpu_isset(cpu, sd->span))
5573 printk(KERN_ERR "ERROR: domain->span does not contain "
5574 "CPU%d\n", cpu);
5575 if (!cpu_isset(cpu, group->cpumask))
5576 printk(KERN_ERR "ERROR: domain->groups does not contain"
5577 " CPU%d\n", cpu);
5578
5579 printk(KERN_DEBUG);
5580 for (i = 0; i < level + 2; i++)
5581 printk(" ");
5582 printk("groups:");
5583 do {
5584 if (!group) {
5585 printk("\n");
5586 printk(KERN_ERR "ERROR: group is NULL\n");
5587 break;
5588 }
5589
5590 if (!group->__cpu_power) {
5591 printk("\n");
5592 printk(KERN_ERR "ERROR: domain->cpu_power not "
5593 "set\n");
5594 break;
5595 }
5596
5597 if (!cpus_weight(group->cpumask)) {
5598 printk("\n");
5599 printk(KERN_ERR "ERROR: empty group\n");
5600 break;
5601 }
5602
5603 if (cpus_intersects(groupmask, group->cpumask)) {
5604 printk("\n");
5605 printk(KERN_ERR "ERROR: repeated CPUs\n");
5606 break;
5607 }
5608
5609 cpus_or(groupmask, groupmask, group->cpumask);
5610
5611 cpumask_scnprintf(str, NR_CPUS, group->cpumask);
5612 printk(" %s", str);
5613
5614 group = group->next;
5615 } while (group != sd->groups);
5616 printk("\n");
5617
5618 if (!cpus_equal(sd->span, groupmask))
5619 printk(KERN_ERR "ERROR: groups don't span "
5620 "domain->span\n");
5621
5622 level++;
5623 sd = sd->parent;
5624 if (!sd)
5625 continue;
5626
5627 if (!cpus_subset(groupmask, sd->span))
5628 printk(KERN_ERR "ERROR: parent span is not a superset "
5629 "of domain->span\n");
5630
5631 } while (sd);
5632 }
5633 #else
5634 # define sched_domain_debug(sd, cpu) do { } while (0)
5635 #endif
5636
5637 static int sd_degenerate(struct sched_domain *sd)
5638 {
5639 if (cpus_weight(sd->span) == 1)
5640 return 1;
5641
5642 /* Following flags need at least 2 groups */
5643 if (sd->flags & (SD_LOAD_BALANCE |
5644 SD_BALANCE_NEWIDLE |
5645 SD_BALANCE_FORK |
5646 SD_BALANCE_EXEC |
5647 SD_SHARE_CPUPOWER |
5648 SD_SHARE_PKG_RESOURCES)) {
5649 if (sd->groups != sd->groups->next)
5650 return 0;
5651 }
5652
5653 /* Following flags don't use groups */
5654 if (sd->flags & (SD_WAKE_IDLE |
5655 SD_WAKE_AFFINE |
5656 SD_WAKE_BALANCE))
5657 return 0;
5658
5659 return 1;
5660 }
5661
5662 static int
5663 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
5664 {
5665 unsigned long cflags = sd->flags, pflags = parent->flags;
5666
5667 if (sd_degenerate(parent))
5668 return 1;
5669
5670 if (!cpus_equal(sd->span, parent->span))
5671 return 0;
5672
5673 /* Does parent contain flags not in child? */
5674 /* WAKE_BALANCE is a subset of WAKE_AFFINE */
5675 if (cflags & SD_WAKE_AFFINE)
5676 pflags &= ~SD_WAKE_BALANCE;
5677 /* Flags needing groups don't count if only 1 group in parent */
5678 if (parent->groups == parent->groups->next) {
5679 pflags &= ~(SD_LOAD_BALANCE |
5680 SD_BALANCE_NEWIDLE |
5681 SD_BALANCE_FORK |
5682 SD_BALANCE_EXEC |
5683 SD_SHARE_CPUPOWER |
5684 SD_SHARE_PKG_RESOURCES);
5685 }
5686 if (~cflags & pflags)
5687 return 0;
5688
5689 return 1;
5690 }
5691
5692 /*
5693 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
5694 * hold the hotplug lock.
5695 */
5696 static void cpu_attach_domain(struct sched_domain *sd, int cpu)
5697 {
5698 struct rq *rq = cpu_rq(cpu);
5699 struct sched_domain *tmp;
5700
5701 /* Remove the sched domains which do not contribute to scheduling. */
5702 for (tmp = sd; tmp; tmp = tmp->parent) {
5703 struct sched_domain *parent = tmp->parent;
5704 if (!parent)
5705 break;
5706 if (sd_parent_degenerate(tmp, parent)) {
5707 tmp->parent = parent->parent;
5708 if (parent->parent)
5709 parent->parent->child = tmp;
5710 }
5711 }
5712
5713 if (sd && sd_degenerate(sd)) {
5714 sd = sd->parent;
5715 if (sd)
5716 sd->child = NULL;
5717 }
5718
5719 sched_domain_debug(sd, cpu);
5720
5721 rcu_assign_pointer(rq->sd, sd);
5722 }
5723
5724 /* cpus with isolated domains */
5725 static cpumask_t cpu_isolated_map = CPU_MASK_NONE;
5726
5727 /* Setup the mask of cpus configured for isolated domains */
5728 static int __init isolated_cpu_setup(char *str)
5729 {
5730 int ints[NR_CPUS], i;
5731
5732 str = get_options(str, ARRAY_SIZE(ints), ints);
5733 cpus_clear(cpu_isolated_map);
5734 for (i = 1; i <= ints[0]; i++)
5735 if (ints[i] < NR_CPUS)
5736 cpu_set(ints[i], cpu_isolated_map);
5737 return 1;
5738 }
5739
5740 __setup("isolcpus=", isolated_cpu_setup);
5741
5742 /*
5743 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
5744 * to a function which identifies what group(along with sched group) a CPU
5745 * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
5746 * (due to the fact that we keep track of groups covered with a cpumask_t).
5747 *
5748 * init_sched_build_groups will build a circular linked list of the groups
5749 * covered by the given span, and will set each group's ->cpumask correctly,
5750 * and ->cpu_power to 0.
5751 */
5752 static void
5753 init_sched_build_groups(cpumask_t span, const cpumask_t *cpu_map,
5754 int (*group_fn)(int cpu, const cpumask_t *cpu_map,
5755 struct sched_group **sg))
5756 {
5757 struct sched_group *first = NULL, *last = NULL;
5758 cpumask_t covered = CPU_MASK_NONE;
5759 int i;
5760
5761 for_each_cpu_mask(i, span) {
5762 struct sched_group *sg;
5763 int group = group_fn(i, cpu_map, &sg);
5764 int j;
5765
5766 if (cpu_isset(i, covered))
5767 continue;
5768
5769 sg->cpumask = CPU_MASK_NONE;
5770 sg->__cpu_power = 0;
5771
5772 for_each_cpu_mask(j, span) {
5773 if (group_fn(j, cpu_map, NULL) != group)
5774 continue;
5775
5776 cpu_set(j, covered);
5777 cpu_set(j, sg->cpumask);
5778 }
5779 if (!first)
5780 first = sg;
5781 if (last)
5782 last->next = sg;
5783 last = sg;
5784 }
5785 last->next = first;
5786 }
5787
5788 #define SD_NODES_PER_DOMAIN 16
5789
5790 #ifdef CONFIG_NUMA
5791
5792 /**
5793 * find_next_best_node - find the next node to include in a sched_domain
5794 * @node: node whose sched_domain we're building
5795 * @used_nodes: nodes already in the sched_domain
5796 *
5797 * Find the next node to include in a given scheduling domain. Simply
5798 * finds the closest node not already in the @used_nodes map.
5799 *
5800 * Should use nodemask_t.
5801 */
5802 static int find_next_best_node(int node, unsigned long *used_nodes)
5803 {
5804 int i, n, val, min_val, best_node = 0;
5805
5806 min_val = INT_MAX;
5807
5808 for (i = 0; i < MAX_NUMNODES; i++) {
5809 /* Start at @node */
5810 n = (node + i) % MAX_NUMNODES;
5811
5812 if (!nr_cpus_node(n))
5813 continue;
5814
5815 /* Skip already used nodes */
5816 if (test_bit(n, used_nodes))
5817 continue;
5818
5819 /* Simple min distance search */
5820 val = node_distance(node, n);
5821
5822 if (val < min_val) {
5823 min_val = val;
5824 best_node = n;
5825 }
5826 }
5827
5828 set_bit(best_node, used_nodes);
5829 return best_node;
5830 }
5831
5832 /**
5833 * sched_domain_node_span - get a cpumask for a node's sched_domain
5834 * @node: node whose cpumask we're constructing
5835 * @size: number of nodes to include in this span
5836 *
5837 * Given a node, construct a good cpumask for its sched_domain to span. It
5838 * should be one that prevents unnecessary balancing, but also spreads tasks
5839 * out optimally.
5840 */
5841 static cpumask_t sched_domain_node_span(int node)
5842 {
5843 DECLARE_BITMAP(used_nodes, MAX_NUMNODES);
5844 cpumask_t span, nodemask;
5845 int i;
5846
5847 cpus_clear(span);
5848 bitmap_zero(used_nodes, MAX_NUMNODES);
5849
5850 nodemask = node_to_cpumask(node);
5851 cpus_or(span, span, nodemask);
5852 set_bit(node, used_nodes);
5853
5854 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
5855 int next_node = find_next_best_node(node, used_nodes);
5856
5857 nodemask = node_to_cpumask(next_node);
5858 cpus_or(span, span, nodemask);
5859 }
5860
5861 return span;
5862 }
5863 #endif
5864
5865 int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
5866
5867 /*
5868 * SMT sched-domains:
5869 */
5870 #ifdef CONFIG_SCHED_SMT
5871 static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
5872 static DEFINE_PER_CPU(struct sched_group, sched_group_cpus);
5873
5874 static int cpu_to_cpu_group(int cpu, const cpumask_t *cpu_map,
5875 struct sched_group **sg)
5876 {
5877 if (sg)
5878 *sg = &per_cpu(sched_group_cpus, cpu);
5879 return cpu;
5880 }
5881 #endif
5882
5883 /*
5884 * multi-core sched-domains:
5885 */
5886 #ifdef CONFIG_SCHED_MC
5887 static DEFINE_PER_CPU(struct sched_domain, core_domains);
5888 static DEFINE_PER_CPU(struct sched_group, sched_group_core);
5889 #endif
5890
5891 #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
5892 static int cpu_to_core_group(int cpu, const cpumask_t *cpu_map,
5893 struct sched_group **sg)
5894 {
5895 int group;
5896 cpumask_t mask = per_cpu(cpu_sibling_map, cpu);
5897 cpus_and(mask, mask, *cpu_map);
5898 group = first_cpu(mask);
5899 if (sg)
5900 *sg = &per_cpu(sched_group_core, group);
5901 return group;
5902 }
5903 #elif defined(CONFIG_SCHED_MC)
5904 static int cpu_to_core_group(int cpu, const cpumask_t *cpu_map,
5905 struct sched_group **sg)
5906 {
5907 if (sg)
5908 *sg = &per_cpu(sched_group_core, cpu);
5909 return cpu;
5910 }
5911 #endif
5912
5913 static DEFINE_PER_CPU(struct sched_domain, phys_domains);
5914 static DEFINE_PER_CPU(struct sched_group, sched_group_phys);
5915
5916 static int cpu_to_phys_group(int cpu, const cpumask_t *cpu_map,
5917 struct sched_group **sg)
5918 {
5919 int group;
5920 #ifdef CONFIG_SCHED_MC
5921 cpumask_t mask = cpu_coregroup_map(cpu);
5922 cpus_and(mask, mask, *cpu_map);
5923 group = first_cpu(mask);
5924 #elif defined(CONFIG_SCHED_SMT)
5925 cpumask_t mask = per_cpu(cpu_sibling_map, cpu);
5926 cpus_and(mask, mask, *cpu_map);
5927 group = first_cpu(mask);
5928 #else
5929 group = cpu;
5930 #endif
5931 if (sg)
5932 *sg = &per_cpu(sched_group_phys, group);
5933 return group;
5934 }
5935
5936 #ifdef CONFIG_NUMA
5937 /*
5938 * The init_sched_build_groups can't handle what we want to do with node
5939 * groups, so roll our own. Now each node has its own list of groups which
5940 * gets dynamically allocated.
5941 */
5942 static DEFINE_PER_CPU(struct sched_domain, node_domains);
5943 static struct sched_group **sched_group_nodes_bycpu[NR_CPUS];
5944
5945 static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
5946 static DEFINE_PER_CPU(struct sched_group, sched_group_allnodes);
5947
5948 static int cpu_to_allnodes_group(int cpu, const cpumask_t *cpu_map,
5949 struct sched_group **sg)
5950 {
5951 cpumask_t nodemask = node_to_cpumask(cpu_to_node(cpu));
5952 int group;
5953
5954 cpus_and(nodemask, nodemask, *cpu_map);
5955 group = first_cpu(nodemask);
5956
5957 if (sg)
5958 *sg = &per_cpu(sched_group_allnodes, group);
5959 return group;
5960 }
5961
5962 static void init_numa_sched_groups_power(struct sched_group *group_head)
5963 {
5964 struct sched_group *sg = group_head;
5965 int j;
5966
5967 if (!sg)
5968 return;
5969 do {
5970 for_each_cpu_mask(j, sg->cpumask) {
5971 struct sched_domain *sd;
5972
5973 sd = &per_cpu(phys_domains, j);
5974 if (j != first_cpu(sd->groups->cpumask)) {
5975 /*
5976 * Only add "power" once for each
5977 * physical package.
5978 */
5979 continue;
5980 }
5981
5982 sg_inc_cpu_power(sg, sd->groups->__cpu_power);
5983 }
5984 sg = sg->next;
5985 } while (sg != group_head);
5986 }
5987 #endif
5988
5989 #ifdef CONFIG_NUMA
5990 /* Free memory allocated for various sched_group structures */
5991 static void free_sched_groups(const cpumask_t *cpu_map)
5992 {
5993 int cpu, i;
5994
5995 for_each_cpu_mask(cpu, *cpu_map) {
5996 struct sched_group **sched_group_nodes
5997 = sched_group_nodes_bycpu[cpu];
5998
5999 if (!sched_group_nodes)
6000 continue;
6001
6002 for (i = 0; i < MAX_NUMNODES; i++) {
6003 cpumask_t nodemask = node_to_cpumask(i);
6004 struct sched_group *oldsg, *sg = sched_group_nodes[i];
6005
6006 cpus_and(nodemask, nodemask, *cpu_map);
6007 if (cpus_empty(nodemask))
6008 continue;
6009
6010 if (sg == NULL)
6011 continue;
6012 sg = sg->next;
6013 next_sg:
6014 oldsg = sg;
6015 sg = sg->next;
6016 kfree(oldsg);
6017 if (oldsg != sched_group_nodes[i])
6018 goto next_sg;
6019 }
6020 kfree(sched_group_nodes);
6021 sched_group_nodes_bycpu[cpu] = NULL;
6022 }
6023 }
6024 #else
6025 static void free_sched_groups(const cpumask_t *cpu_map)
6026 {
6027 }
6028 #endif
6029
6030 /*
6031 * Initialize sched groups cpu_power.
6032 *
6033 * cpu_power indicates the capacity of sched group, which is used while
6034 * distributing the load between different sched groups in a sched domain.
6035 * Typically cpu_power for all the groups in a sched domain will be same unless
6036 * there are asymmetries in the topology. If there are asymmetries, group
6037 * having more cpu_power will pickup more load compared to the group having
6038 * less cpu_power.
6039 *
6040 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
6041 * the maximum number of tasks a group can handle in the presence of other idle
6042 * or lightly loaded groups in the same sched domain.
6043 */
6044 static void init_sched_groups_power(int cpu, struct sched_domain *sd)
6045 {
6046 struct sched_domain *child;
6047 struct sched_group *group;
6048
6049 WARN_ON(!sd || !sd->groups);
6050
6051 if (cpu != first_cpu(sd->groups->cpumask))
6052 return;
6053
6054 child = sd->child;
6055
6056 sd->groups->__cpu_power = 0;
6057
6058 /*
6059 * For perf policy, if the groups in child domain share resources
6060 * (for example cores sharing some portions of the cache hierarchy
6061 * or SMT), then set this domain groups cpu_power such that each group
6062 * can handle only one task, when there are other idle groups in the
6063 * same sched domain.
6064 */
6065 if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
6066 (child->flags &
6067 (SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
6068 sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
6069 return;
6070 }
6071
6072 /*
6073 * add cpu_power of each child group to this groups cpu_power
6074 */
6075 group = child->groups;
6076 do {
6077 sg_inc_cpu_power(sd->groups, group->__cpu_power);
6078 group = group->next;
6079 } while (group != child->groups);
6080 }
6081
6082 /*
6083 * Build sched domains for a given set of cpus and attach the sched domains
6084 * to the individual cpus
6085 */
6086 static int build_sched_domains(const cpumask_t *cpu_map)
6087 {
6088 int i;
6089 #ifdef CONFIG_NUMA
6090 struct sched_group **sched_group_nodes = NULL;
6091 int sd_allnodes = 0;
6092
6093 /*
6094 * Allocate the per-node list of sched groups
6095 */
6096 sched_group_nodes = kcalloc(MAX_NUMNODES, sizeof(struct sched_group *),
6097 GFP_KERNEL);
6098 if (!sched_group_nodes) {
6099 printk(KERN_WARNING "Can not alloc sched group node list\n");
6100 return -ENOMEM;
6101 }
6102 sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
6103 #endif
6104
6105 /*
6106 * Set up domains for cpus specified by the cpu_map.
6107 */
6108 for_each_cpu_mask(i, *cpu_map) {
6109 struct sched_domain *sd = NULL, *p;
6110 cpumask_t nodemask = node_to_cpumask(cpu_to_node(i));
6111
6112 cpus_and(nodemask, nodemask, *cpu_map);
6113
6114 #ifdef CONFIG_NUMA
6115 if (cpus_weight(*cpu_map) >
6116 SD_NODES_PER_DOMAIN*cpus_weight(nodemask)) {
6117 sd = &per_cpu(allnodes_domains, i);
6118 *sd = SD_ALLNODES_INIT;
6119 sd->span = *cpu_map;
6120 cpu_to_allnodes_group(i, cpu_map, &sd->groups);
6121 p = sd;
6122 sd_allnodes = 1;
6123 } else
6124 p = NULL;
6125
6126 sd = &per_cpu(node_domains, i);
6127 *sd = SD_NODE_INIT;
6128 sd->span = sched_domain_node_span(cpu_to_node(i));
6129 sd->parent = p;
6130 if (p)
6131 p->child = sd;
6132 cpus_and(sd->span, sd->span, *cpu_map);
6133 #endif
6134
6135 p = sd;
6136 sd = &per_cpu(phys_domains, i);
6137 *sd = SD_CPU_INIT;
6138 sd->span = nodemask;
6139 sd->parent = p;
6140 if (p)
6141 p->child = sd;
6142 cpu_to_phys_group(i, cpu_map, &sd->groups);
6143
6144 #ifdef CONFIG_SCHED_MC
6145 p = sd;
6146 sd = &per_cpu(core_domains, i);
6147 *sd = SD_MC_INIT;
6148 sd->span = cpu_coregroup_map(i);
6149 cpus_and(sd->span, sd->span, *cpu_map);
6150 sd->parent = p;
6151 p->child = sd;
6152 cpu_to_core_group(i, cpu_map, &sd->groups);
6153 #endif
6154
6155 #ifdef CONFIG_SCHED_SMT
6156 p = sd;
6157 sd = &per_cpu(cpu_domains, i);
6158 *sd = SD_SIBLING_INIT;
6159 sd->span = per_cpu(cpu_sibling_map, i);
6160 cpus_and(sd->span, sd->span, *cpu_map);
6161 sd->parent = p;
6162 p->child = sd;
6163 cpu_to_cpu_group(i, cpu_map, &sd->groups);
6164 #endif
6165 }
6166
6167 #ifdef CONFIG_SCHED_SMT
6168 /* Set up CPU (sibling) groups */
6169 for_each_cpu_mask(i, *cpu_map) {
6170 cpumask_t this_sibling_map = per_cpu(cpu_sibling_map, i);
6171 cpus_and(this_sibling_map, this_sibling_map, *cpu_map);
6172 if (i != first_cpu(this_sibling_map))
6173 continue;
6174
6175 init_sched_build_groups(this_sibling_map, cpu_map,
6176 &cpu_to_cpu_group);
6177 }
6178 #endif
6179
6180 #ifdef CONFIG_SCHED_MC
6181 /* Set up multi-core groups */
6182 for_each_cpu_mask(i, *cpu_map) {
6183 cpumask_t this_core_map = cpu_coregroup_map(i);
6184 cpus_and(this_core_map, this_core_map, *cpu_map);
6185 if (i != first_cpu(this_core_map))
6186 continue;
6187 init_sched_build_groups(this_core_map, cpu_map,
6188 &cpu_to_core_group);
6189 }
6190 #endif
6191
6192 /* Set up physical groups */
6193 for (i = 0; i < MAX_NUMNODES; i++) {
6194 cpumask_t nodemask = node_to_cpumask(i);
6195
6196 cpus_and(nodemask, nodemask, *cpu_map);
6197 if (cpus_empty(nodemask))
6198 continue;
6199
6200 init_sched_build_groups(nodemask, cpu_map, &cpu_to_phys_group);
6201 }
6202
6203 #ifdef CONFIG_NUMA
6204 /* Set up node groups */
6205 if (sd_allnodes)
6206 init_sched_build_groups(*cpu_map, cpu_map,
6207 &cpu_to_allnodes_group);
6208
6209 for (i = 0; i < MAX_NUMNODES; i++) {
6210 /* Set up node groups */
6211 struct sched_group *sg, *prev;
6212 cpumask_t nodemask = node_to_cpumask(i);
6213 cpumask_t domainspan;
6214 cpumask_t covered = CPU_MASK_NONE;
6215 int j;
6216
6217 cpus_and(nodemask, nodemask, *cpu_map);
6218 if (cpus_empty(nodemask)) {
6219 sched_group_nodes[i] = NULL;
6220 continue;
6221 }
6222
6223 domainspan = sched_domain_node_span(i);
6224 cpus_and(domainspan, domainspan, *cpu_map);
6225
6226 sg = kmalloc_node(sizeof(struct sched_group), GFP_KERNEL, i);
6227 if (!sg) {
6228 printk(KERN_WARNING "Can not alloc domain group for "
6229 "node %d\n", i);
6230 goto error;
6231 }
6232 sched_group_nodes[i] = sg;
6233 for_each_cpu_mask(j, nodemask) {
6234 struct sched_domain *sd;
6235
6236 sd = &per_cpu(node_domains, j);
6237 sd->groups = sg;
6238 }
6239 sg->__cpu_power = 0;
6240 sg->cpumask = nodemask;
6241 sg->next = sg;
6242 cpus_or(covered, covered, nodemask);
6243 prev = sg;
6244
6245 for (j = 0; j < MAX_NUMNODES; j++) {
6246 cpumask_t tmp, notcovered;
6247 int n = (i + j) % MAX_NUMNODES;
6248
6249 cpus_complement(notcovered, covered);
6250 cpus_and(tmp, notcovered, *cpu_map);
6251 cpus_and(tmp, tmp, domainspan);
6252 if (cpus_empty(tmp))
6253 break;
6254
6255 nodemask = node_to_cpumask(n);
6256 cpus_and(tmp, tmp, nodemask);
6257 if (cpus_empty(tmp))
6258 continue;
6259
6260 sg = kmalloc_node(sizeof(struct sched_group),
6261 GFP_KERNEL, i);
6262 if (!sg) {
6263 printk(KERN_WARNING
6264 "Can not alloc domain group for node %d\n", j);
6265 goto error;
6266 }
6267 sg->__cpu_power = 0;
6268 sg->cpumask = tmp;
6269 sg->next = prev->next;
6270 cpus_or(covered, covered, tmp);
6271 prev->next = sg;
6272 prev = sg;
6273 }
6274 }
6275 #endif
6276
6277 /* Calculate CPU power for physical packages and nodes */
6278 #ifdef CONFIG_SCHED_SMT
6279 for_each_cpu_mask(i, *cpu_map) {
6280 struct sched_domain *sd = &per_cpu(cpu_domains, i);
6281
6282 init_sched_groups_power(i, sd);
6283 }
6284 #endif
6285 #ifdef CONFIG_SCHED_MC
6286 for_each_cpu_mask(i, *cpu_map) {
6287 struct sched_domain *sd = &per_cpu(core_domains, i);
6288
6289 init_sched_groups_power(i, sd);
6290 }
6291 #endif
6292
6293 for_each_cpu_mask(i, *cpu_map) {
6294 struct sched_domain *sd = &per_cpu(phys_domains, i);
6295
6296 init_sched_groups_power(i, sd);
6297 }
6298
6299 #ifdef CONFIG_NUMA
6300 for (i = 0; i < MAX_NUMNODES; i++)
6301 init_numa_sched_groups_power(sched_group_nodes[i]);
6302
6303 if (sd_allnodes) {
6304 struct sched_group *sg;
6305
6306 cpu_to_allnodes_group(first_cpu(*cpu_map), cpu_map, &sg);
6307 init_numa_sched_groups_power(sg);
6308 }
6309 #endif
6310
6311 /* Attach the domains */
6312 for_each_cpu_mask(i, *cpu_map) {
6313 struct sched_domain *sd;
6314 #ifdef CONFIG_SCHED_SMT
6315 sd = &per_cpu(cpu_domains, i);
6316 #elif defined(CONFIG_SCHED_MC)
6317 sd = &per_cpu(core_domains, i);
6318 #else
6319 sd = &per_cpu(phys_domains, i);
6320 #endif
6321 cpu_attach_domain(sd, i);
6322 }
6323
6324 return 0;
6325
6326 #ifdef CONFIG_NUMA
6327 error:
6328 free_sched_groups(cpu_map);
6329 return -ENOMEM;
6330 #endif
6331 }
6332 /*
6333 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
6334 */
6335 static int arch_init_sched_domains(const cpumask_t *cpu_map)
6336 {
6337 cpumask_t cpu_default_map;
6338 int err;
6339
6340 /*
6341 * Setup mask for cpus without special case scheduling requirements.
6342 * For now this just excludes isolated cpus, but could be used to
6343 * exclude other special cases in the future.
6344 */
6345 cpus_andnot(cpu_default_map, *cpu_map, cpu_isolated_map);
6346
6347 err = build_sched_domains(&cpu_default_map);
6348
6349 register_sched_domain_sysctl();
6350
6351 return err;
6352 }
6353
6354 static void arch_destroy_sched_domains(const cpumask_t *cpu_map)
6355 {
6356 free_sched_groups(cpu_map);
6357 }
6358
6359 /*
6360 * Detach sched domains from a group of cpus specified in cpu_map
6361 * These cpus will now be attached to the NULL domain
6362 */
6363 static void detach_destroy_domains(const cpumask_t *cpu_map)
6364 {
6365 int i;
6366
6367 unregister_sched_domain_sysctl();
6368
6369 for_each_cpu_mask(i, *cpu_map)
6370 cpu_attach_domain(NULL, i);
6371 synchronize_sched();
6372 arch_destroy_sched_domains(cpu_map);
6373 }
6374
6375 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
6376 static int arch_reinit_sched_domains(void)
6377 {
6378 int err;
6379
6380 mutex_lock(&sched_hotcpu_mutex);
6381 detach_destroy_domains(&cpu_online_map);
6382 err = arch_init_sched_domains(&cpu_online_map);
6383 mutex_unlock(&sched_hotcpu_mutex);
6384
6385 return err;
6386 }
6387
6388 static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
6389 {
6390 int ret;
6391
6392 if (buf[0] != '0' && buf[0] != '1')
6393 return -EINVAL;
6394
6395 if (smt)
6396 sched_smt_power_savings = (buf[0] == '1');
6397 else
6398 sched_mc_power_savings = (buf[0] == '1');
6399
6400 ret = arch_reinit_sched_domains();
6401
6402 return ret ? ret : count;
6403 }
6404
6405 #ifdef CONFIG_SCHED_MC
6406 static ssize_t sched_mc_power_savings_show(struct sys_device *dev, char *page)
6407 {
6408 return sprintf(page, "%u\n", sched_mc_power_savings);
6409 }
6410 static ssize_t sched_mc_power_savings_store(struct sys_device *dev,
6411 const char *buf, size_t count)
6412 {
6413 return sched_power_savings_store(buf, count, 0);
6414 }
6415 static SYSDEV_ATTR(sched_mc_power_savings, 0644, sched_mc_power_savings_show,
6416 sched_mc_power_savings_store);
6417 #endif
6418
6419 #ifdef CONFIG_SCHED_SMT
6420 static ssize_t sched_smt_power_savings_show(struct sys_device *dev, char *page)
6421 {
6422 return sprintf(page, "%u\n", sched_smt_power_savings);
6423 }
6424 static ssize_t sched_smt_power_savings_store(struct sys_device *dev,
6425 const char *buf, size_t count)
6426 {
6427 return sched_power_savings_store(buf, count, 1);
6428 }
6429 static SYSDEV_ATTR(sched_smt_power_savings, 0644, sched_smt_power_savings_show,
6430 sched_smt_power_savings_store);
6431 #endif
6432
6433 int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
6434 {
6435 int err = 0;
6436
6437 #ifdef CONFIG_SCHED_SMT
6438 if (smt_capable())
6439 err = sysfs_create_file(&cls->kset.kobj,
6440 &attr_sched_smt_power_savings.attr);
6441 #endif
6442 #ifdef CONFIG_SCHED_MC
6443 if (!err && mc_capable())
6444 err = sysfs_create_file(&cls->kset.kobj,
6445 &attr_sched_mc_power_savings.attr);
6446 #endif
6447 return err;
6448 }
6449 #endif
6450
6451 /*
6452 * Force a reinitialization of the sched domains hierarchy. The domains
6453 * and groups cannot be updated in place without racing with the balancing
6454 * code, so we temporarily attach all running cpus to the NULL domain
6455 * which will prevent rebalancing while the sched domains are recalculated.
6456 */
6457 static int update_sched_domains(struct notifier_block *nfb,
6458 unsigned long action, void *hcpu)
6459 {
6460 switch (action) {
6461 case CPU_UP_PREPARE:
6462 case CPU_UP_PREPARE_FROZEN:
6463 case CPU_DOWN_PREPARE:
6464 case CPU_DOWN_PREPARE_FROZEN:
6465 detach_destroy_domains(&cpu_online_map);
6466 return NOTIFY_OK;
6467
6468 case CPU_UP_CANCELED:
6469 case CPU_UP_CANCELED_FROZEN:
6470 case CPU_DOWN_FAILED:
6471 case CPU_DOWN_FAILED_FROZEN:
6472 case CPU_ONLINE:
6473 case CPU_ONLINE_FROZEN:
6474 case CPU_DEAD:
6475 case CPU_DEAD_FROZEN:
6476 /*
6477 * Fall through and re-initialise the domains.
6478 */
6479 break;
6480 default:
6481 return NOTIFY_DONE;
6482 }
6483
6484 /* The hotplug lock is already held by cpu_up/cpu_down */
6485 arch_init_sched_domains(&cpu_online_map);
6486
6487 return NOTIFY_OK;
6488 }
6489
6490 void __init sched_init_smp(void)
6491 {
6492 cpumask_t non_isolated_cpus;
6493
6494 mutex_lock(&sched_hotcpu_mutex);
6495 arch_init_sched_domains(&cpu_online_map);
6496 cpus_andnot(non_isolated_cpus, cpu_possible_map, cpu_isolated_map);
6497 if (cpus_empty(non_isolated_cpus))
6498 cpu_set(smp_processor_id(), non_isolated_cpus);
6499 mutex_unlock(&sched_hotcpu_mutex);
6500 /* XXX: Theoretical race here - CPU may be hotplugged now */
6501 hotcpu_notifier(update_sched_domains, 0);
6502
6503 /* Move init over to a non-isolated CPU */
6504 if (set_cpus_allowed(current, non_isolated_cpus) < 0)
6505 BUG();
6506 }
6507 #else
6508 void __init sched_init_smp(void)
6509 {
6510 }
6511 #endif /* CONFIG_SMP */
6512
6513 int in_sched_functions(unsigned long addr)
6514 {
6515 /* Linker adds these: start and end of __sched functions */
6516 extern char __sched_text_start[], __sched_text_end[];
6517
6518 return in_lock_functions(addr) ||
6519 (addr >= (unsigned long)__sched_text_start
6520 && addr < (unsigned long)__sched_text_end);
6521 }
6522
6523 static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
6524 {
6525 cfs_rq->tasks_timeline = RB_ROOT;
6526 #ifdef CONFIG_FAIR_GROUP_SCHED
6527 cfs_rq->rq = rq;
6528 #endif
6529 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
6530 }
6531
6532 void __init sched_init(void)
6533 {
6534 int highest_cpu = 0;
6535 int i, j;
6536
6537 for_each_possible_cpu(i) {
6538 struct rt_prio_array *array;
6539 struct rq *rq;
6540
6541 rq = cpu_rq(i);
6542 spin_lock_init(&rq->lock);
6543 lockdep_set_class(&rq->lock, &rq->rq_lock_key);
6544 rq->nr_running = 0;
6545 rq->clock = 1;
6546 init_cfs_rq(&rq->cfs, rq);
6547 #ifdef CONFIG_FAIR_GROUP_SCHED
6548 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
6549 {
6550 struct cfs_rq *cfs_rq = &per_cpu(init_cfs_rq, i);
6551 struct sched_entity *se =
6552 &per_cpu(init_sched_entity, i);
6553
6554 init_cfs_rq_p[i] = cfs_rq;
6555 init_cfs_rq(cfs_rq, rq);
6556 cfs_rq->tg = &init_task_group;
6557 list_add(&cfs_rq->leaf_cfs_rq_list,
6558 &rq->leaf_cfs_rq_list);
6559
6560 init_sched_entity_p[i] = se;
6561 se->cfs_rq = &rq->cfs;
6562 se->my_q = cfs_rq;
6563 se->load.weight = init_task_group_load;
6564 se->load.inv_weight =
6565 div64_64(1ULL<<32, init_task_group_load);
6566 se->parent = NULL;
6567 }
6568 init_task_group.shares = init_task_group_load;
6569 spin_lock_init(&init_task_group.lock);
6570 #endif
6571
6572 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
6573 rq->cpu_load[j] = 0;
6574 #ifdef CONFIG_SMP
6575 rq->sd = NULL;
6576 rq->active_balance = 0;
6577 rq->next_balance = jiffies;
6578 rq->push_cpu = 0;
6579 rq->cpu = i;
6580 rq->migration_thread = NULL;
6581 INIT_LIST_HEAD(&rq->migration_queue);
6582 #endif
6583 atomic_set(&rq->nr_iowait, 0);
6584
6585 array = &rq->rt.active;
6586 for (j = 0; j < MAX_RT_PRIO; j++) {
6587 INIT_LIST_HEAD(array->queue + j);
6588 __clear_bit(j, array->bitmap);
6589 }
6590 highest_cpu = i;
6591 /* delimiter for bitsearch: */
6592 __set_bit(MAX_RT_PRIO, array->bitmap);
6593 }
6594
6595 set_load_weight(&init_task);
6596
6597 #ifdef CONFIG_PREEMPT_NOTIFIERS
6598 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
6599 #endif
6600
6601 #ifdef CONFIG_SMP
6602 nr_cpu_ids = highest_cpu + 1;
6603 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains, NULL);
6604 #endif
6605
6606 #ifdef CONFIG_RT_MUTEXES
6607 plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
6608 #endif
6609
6610 /*
6611 * The boot idle thread does lazy MMU switching as well:
6612 */
6613 atomic_inc(&init_mm.mm_count);
6614 enter_lazy_tlb(&init_mm, current);
6615
6616 /*
6617 * Make us the idle thread. Technically, schedule() should not be
6618 * called from this thread, however somewhere below it might be,
6619 * but because we are the idle thread, we just pick up running again
6620 * when this runqueue becomes "idle".
6621 */
6622 init_idle(current, smp_processor_id());
6623 /*
6624 * During early bootup we pretend to be a normal task:
6625 */
6626 current->sched_class = &fair_sched_class;
6627 }
6628
6629 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
6630 void __might_sleep(char *file, int line)
6631 {
6632 #ifdef in_atomic
6633 static unsigned long prev_jiffy; /* ratelimiting */
6634
6635 if ((in_atomic() || irqs_disabled()) &&
6636 system_state == SYSTEM_RUNNING && !oops_in_progress) {
6637 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
6638 return;
6639 prev_jiffy = jiffies;
6640 printk(KERN_ERR "BUG: sleeping function called from invalid"
6641 " context at %s:%d\n", file, line);
6642 printk("in_atomic():%d, irqs_disabled():%d\n",
6643 in_atomic(), irqs_disabled());
6644 debug_show_held_locks(current);
6645 if (irqs_disabled())
6646 print_irqtrace_events(current);
6647 dump_stack();
6648 }
6649 #endif
6650 }
6651 EXPORT_SYMBOL(__might_sleep);
6652 #endif
6653
6654 #ifdef CONFIG_MAGIC_SYSRQ
6655 static void normalize_task(struct rq *rq, struct task_struct *p)
6656 {
6657 int on_rq;
6658 update_rq_clock(rq);
6659 on_rq = p->se.on_rq;
6660 if (on_rq)
6661 deactivate_task(rq, p, 0);
6662 __setscheduler(rq, p, SCHED_NORMAL, 0);
6663 if (on_rq) {
6664 activate_task(rq, p, 0);
6665 resched_task(rq->curr);
6666 }
6667 }
6668
6669 void normalize_rt_tasks(void)
6670 {
6671 struct task_struct *g, *p;
6672 unsigned long flags;
6673 struct rq *rq;
6674
6675 read_lock_irq(&tasklist_lock);
6676 do_each_thread(g, p) {
6677 /*
6678 * Only normalize user tasks:
6679 */
6680 if (!p->mm)
6681 continue;
6682
6683 p->se.exec_start = 0;
6684 #ifdef CONFIG_SCHEDSTATS
6685 p->se.wait_start = 0;
6686 p->se.sleep_start = 0;
6687 p->se.block_start = 0;
6688 #endif
6689 task_rq(p)->clock = 0;
6690
6691 if (!rt_task(p)) {
6692 /*
6693 * Renice negative nice level userspace
6694 * tasks back to 0:
6695 */
6696 if (TASK_NICE(p) < 0 && p->mm)
6697 set_user_nice(p, 0);
6698 continue;
6699 }
6700
6701 spin_lock_irqsave(&p->pi_lock, flags);
6702 rq = __task_rq_lock(p);
6703
6704 normalize_task(rq, p);
6705
6706 __task_rq_unlock(rq);
6707 spin_unlock_irqrestore(&p->pi_lock, flags);
6708 } while_each_thread(g, p);
6709
6710 read_unlock_irq(&tasklist_lock);
6711 }
6712
6713 #endif /* CONFIG_MAGIC_SYSRQ */
6714
6715 #ifdef CONFIG_IA64
6716 /*
6717 * These functions are only useful for the IA64 MCA handling.
6718 *
6719 * They can only be called when the whole system has been
6720 * stopped - every CPU needs to be quiescent, and no scheduling
6721 * activity can take place. Using them for anything else would
6722 * be a serious bug, and as a result, they aren't even visible
6723 * under any other configuration.
6724 */
6725
6726 /**
6727 * curr_task - return the current task for a given cpu.
6728 * @cpu: the processor in question.
6729 *
6730 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6731 */
6732 struct task_struct *curr_task(int cpu)
6733 {
6734 return cpu_curr(cpu);
6735 }
6736
6737 /**
6738 * set_curr_task - set the current task for a given cpu.
6739 * @cpu: the processor in question.
6740 * @p: the task pointer to set.
6741 *
6742 * Description: This function must only be used when non-maskable interrupts
6743 * are serviced on a separate stack. It allows the architecture to switch the
6744 * notion of the current task on a cpu in a non-blocking manner. This function
6745 * must be called with all CPU's synchronized, and interrupts disabled, the
6746 * and caller must save the original value of the current task (see
6747 * curr_task() above) and restore that value before reenabling interrupts and
6748 * re-starting the system.
6749 *
6750 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6751 */
6752 void set_curr_task(int cpu, struct task_struct *p)
6753 {
6754 cpu_curr(cpu) = p;
6755 }
6756
6757 #endif
6758
6759 #ifdef CONFIG_FAIR_GROUP_SCHED
6760
6761 /* allocate runqueue etc for a new task group */
6762 struct task_group *sched_create_group(void)
6763 {
6764 struct task_group *tg;
6765 struct cfs_rq *cfs_rq;
6766 struct sched_entity *se;
6767 struct rq *rq;
6768 int i;
6769
6770 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
6771 if (!tg)
6772 return ERR_PTR(-ENOMEM);
6773
6774 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * NR_CPUS, GFP_KERNEL);
6775 if (!tg->cfs_rq)
6776 goto err;
6777 tg->se = kzalloc(sizeof(se) * NR_CPUS, GFP_KERNEL);
6778 if (!tg->se)
6779 goto err;
6780
6781 for_each_possible_cpu(i) {
6782 rq = cpu_rq(i);
6783
6784 cfs_rq = kmalloc_node(sizeof(struct cfs_rq), GFP_KERNEL,
6785 cpu_to_node(i));
6786 if (!cfs_rq)
6787 goto err;
6788
6789 se = kmalloc_node(sizeof(struct sched_entity), GFP_KERNEL,
6790 cpu_to_node(i));
6791 if (!se)
6792 goto err;
6793
6794 memset(cfs_rq, 0, sizeof(struct cfs_rq));
6795 memset(se, 0, sizeof(struct sched_entity));
6796
6797 tg->cfs_rq[i] = cfs_rq;
6798 init_cfs_rq(cfs_rq, rq);
6799 cfs_rq->tg = tg;
6800
6801 tg->se[i] = se;
6802 se->cfs_rq = &rq->cfs;
6803 se->my_q = cfs_rq;
6804 se->load.weight = NICE_0_LOAD;
6805 se->load.inv_weight = div64_64(1ULL<<32, NICE_0_LOAD);
6806 se->parent = NULL;
6807 }
6808
6809 for_each_possible_cpu(i) {
6810 rq = cpu_rq(i);
6811 cfs_rq = tg->cfs_rq[i];
6812 list_add_rcu(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
6813 }
6814
6815 tg->shares = NICE_0_LOAD;
6816 spin_lock_init(&tg->lock);
6817
6818 return tg;
6819
6820 err:
6821 for_each_possible_cpu(i) {
6822 if (tg->cfs_rq)
6823 kfree(tg->cfs_rq[i]);
6824 if (tg->se)
6825 kfree(tg->se[i]);
6826 }
6827 kfree(tg->cfs_rq);
6828 kfree(tg->se);
6829 kfree(tg);
6830
6831 return ERR_PTR(-ENOMEM);
6832 }
6833
6834 /* rcu callback to free various structures associated with a task group */
6835 static void free_sched_group(struct rcu_head *rhp)
6836 {
6837 struct cfs_rq *cfs_rq = container_of(rhp, struct cfs_rq, rcu);
6838 struct task_group *tg = cfs_rq->tg;
6839 struct sched_entity *se;
6840 int i;
6841
6842 /* now it should be safe to free those cfs_rqs */
6843 for_each_possible_cpu(i) {
6844 cfs_rq = tg->cfs_rq[i];
6845 kfree(cfs_rq);
6846
6847 se = tg->se[i];
6848 kfree(se);
6849 }
6850
6851 kfree(tg->cfs_rq);
6852 kfree(tg->se);
6853 kfree(tg);
6854 }
6855
6856 /* Destroy runqueue etc associated with a task group */
6857 void sched_destroy_group(struct task_group *tg)
6858 {
6859 struct cfs_rq *cfs_rq;
6860 int i;
6861
6862 for_each_possible_cpu(i) {
6863 cfs_rq = tg->cfs_rq[i];
6864 list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
6865 }
6866
6867 cfs_rq = tg->cfs_rq[0];
6868
6869 /* wait for possible concurrent references to cfs_rqs complete */
6870 call_rcu(&cfs_rq->rcu, free_sched_group);
6871 }
6872
6873 /* change task's runqueue when it moves between groups.
6874 * The caller of this function should have put the task in its new group
6875 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
6876 * reflect its new group.
6877 */
6878 void sched_move_task(struct task_struct *tsk)
6879 {
6880 int on_rq, running;
6881 unsigned long flags;
6882 struct rq *rq;
6883
6884 rq = task_rq_lock(tsk, &flags);
6885
6886 if (tsk->sched_class != &fair_sched_class)
6887 goto done;
6888
6889 update_rq_clock(rq);
6890
6891 running = task_running(rq, tsk);
6892 on_rq = tsk->se.on_rq;
6893
6894 if (on_rq) {
6895 dequeue_task(rq, tsk, 0);
6896 if (unlikely(running))
6897 tsk->sched_class->put_prev_task(rq, tsk);
6898 }
6899
6900 set_task_cfs_rq(tsk);
6901
6902 if (on_rq) {
6903 if (unlikely(running))
6904 tsk->sched_class->set_curr_task(rq);
6905 enqueue_task(rq, tsk, 0);
6906 }
6907
6908 done:
6909 task_rq_unlock(rq, &flags);
6910 }
6911
6912 static void set_se_shares(struct sched_entity *se, unsigned long shares)
6913 {
6914 struct cfs_rq *cfs_rq = se->cfs_rq;
6915 struct rq *rq = cfs_rq->rq;
6916 int on_rq;
6917
6918 spin_lock_irq(&rq->lock);
6919
6920 on_rq = se->on_rq;
6921 if (on_rq)
6922 dequeue_entity(cfs_rq, se, 0);
6923
6924 se->load.weight = shares;
6925 se->load.inv_weight = div64_64((1ULL<<32), shares);
6926
6927 if (on_rq)
6928 enqueue_entity(cfs_rq, se, 0);
6929
6930 spin_unlock_irq(&rq->lock);
6931 }
6932
6933 int sched_group_set_shares(struct task_group *tg, unsigned long shares)
6934 {
6935 int i;
6936
6937 spin_lock(&tg->lock);
6938 if (tg->shares == shares)
6939 goto done;
6940
6941 tg->shares = shares;
6942 for_each_possible_cpu(i)
6943 set_se_shares(tg->se[i], shares);
6944
6945 done:
6946 spin_unlock(&tg->lock);
6947 return 0;
6948 }
6949
6950 unsigned long sched_group_shares(struct task_group *tg)
6951 {
6952 return tg->shares;
6953 }
6954
6955 #endif /* CONFIG_FAIR_GROUP_SCHED */