]> git.proxmox.com Git - mirror_ubuntu-eoan-kernel.git/blob - kernel/signal.c
signals: document CLD_CONTINUED notification mechanics
[mirror_ubuntu-eoan-kernel.git] / kernel / signal.c
1 /*
2 * linux/kernel/signal.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 *
6 * 1997-11-02 Modified for POSIX.1b signals by Richard Henderson
7 *
8 * 2003-06-02 Jim Houston - Concurrent Computer Corp.
9 * Changes to use preallocated sigqueue structures
10 * to allow signals to be sent reliably.
11 */
12
13 #include <linux/slab.h>
14 #include <linux/module.h>
15 #include <linux/init.h>
16 #include <linux/sched.h>
17 #include <linux/fs.h>
18 #include <linux/tty.h>
19 #include <linux/binfmts.h>
20 #include <linux/security.h>
21 #include <linux/syscalls.h>
22 #include <linux/ptrace.h>
23 #include <linux/signal.h>
24 #include <linux/signalfd.h>
25 #include <linux/capability.h>
26 #include <linux/freezer.h>
27 #include <linux/pid_namespace.h>
28 #include <linux/nsproxy.h>
29
30 #include <asm/param.h>
31 #include <asm/uaccess.h>
32 #include <asm/unistd.h>
33 #include <asm/siginfo.h>
34 #include "audit.h" /* audit_signal_info() */
35
36 /*
37 * SLAB caches for signal bits.
38 */
39
40 static struct kmem_cache *sigqueue_cachep;
41
42 static int __sig_ignored(struct task_struct *t, int sig)
43 {
44 void __user *handler;
45
46 /* Is it explicitly or implicitly ignored? */
47
48 handler = t->sighand->action[sig - 1].sa.sa_handler;
49 return handler == SIG_IGN ||
50 (handler == SIG_DFL && sig_kernel_ignore(sig));
51 }
52
53 static int sig_ignored(struct task_struct *t, int sig)
54 {
55 /*
56 * Tracers always want to know about signals..
57 */
58 if (t->ptrace & PT_PTRACED)
59 return 0;
60
61 /*
62 * Blocked signals are never ignored, since the
63 * signal handler may change by the time it is
64 * unblocked.
65 */
66 if (sigismember(&t->blocked, sig) || sigismember(&t->real_blocked, sig))
67 return 0;
68
69 return __sig_ignored(t, sig);
70 }
71
72 /*
73 * Re-calculate pending state from the set of locally pending
74 * signals, globally pending signals, and blocked signals.
75 */
76 static inline int has_pending_signals(sigset_t *signal, sigset_t *blocked)
77 {
78 unsigned long ready;
79 long i;
80
81 switch (_NSIG_WORDS) {
82 default:
83 for (i = _NSIG_WORDS, ready = 0; --i >= 0 ;)
84 ready |= signal->sig[i] &~ blocked->sig[i];
85 break;
86
87 case 4: ready = signal->sig[3] &~ blocked->sig[3];
88 ready |= signal->sig[2] &~ blocked->sig[2];
89 ready |= signal->sig[1] &~ blocked->sig[1];
90 ready |= signal->sig[0] &~ blocked->sig[0];
91 break;
92
93 case 2: ready = signal->sig[1] &~ blocked->sig[1];
94 ready |= signal->sig[0] &~ blocked->sig[0];
95 break;
96
97 case 1: ready = signal->sig[0] &~ blocked->sig[0];
98 }
99 return ready != 0;
100 }
101
102 #define PENDING(p,b) has_pending_signals(&(p)->signal, (b))
103
104 static int recalc_sigpending_tsk(struct task_struct *t)
105 {
106 if (t->signal->group_stop_count > 0 ||
107 PENDING(&t->pending, &t->blocked) ||
108 PENDING(&t->signal->shared_pending, &t->blocked)) {
109 set_tsk_thread_flag(t, TIF_SIGPENDING);
110 return 1;
111 }
112 /*
113 * We must never clear the flag in another thread, or in current
114 * when it's possible the current syscall is returning -ERESTART*.
115 * So we don't clear it here, and only callers who know they should do.
116 */
117 return 0;
118 }
119
120 /*
121 * After recalculating TIF_SIGPENDING, we need to make sure the task wakes up.
122 * This is superfluous when called on current, the wakeup is a harmless no-op.
123 */
124 void recalc_sigpending_and_wake(struct task_struct *t)
125 {
126 if (recalc_sigpending_tsk(t))
127 signal_wake_up(t, 0);
128 }
129
130 void recalc_sigpending(void)
131 {
132 if (!recalc_sigpending_tsk(current) && !freezing(current))
133 clear_thread_flag(TIF_SIGPENDING);
134
135 }
136
137 /* Given the mask, find the first available signal that should be serviced. */
138
139 int next_signal(struct sigpending *pending, sigset_t *mask)
140 {
141 unsigned long i, *s, *m, x;
142 int sig = 0;
143
144 s = pending->signal.sig;
145 m = mask->sig;
146 switch (_NSIG_WORDS) {
147 default:
148 for (i = 0; i < _NSIG_WORDS; ++i, ++s, ++m)
149 if ((x = *s &~ *m) != 0) {
150 sig = ffz(~x) + i*_NSIG_BPW + 1;
151 break;
152 }
153 break;
154
155 case 2: if ((x = s[0] &~ m[0]) != 0)
156 sig = 1;
157 else if ((x = s[1] &~ m[1]) != 0)
158 sig = _NSIG_BPW + 1;
159 else
160 break;
161 sig += ffz(~x);
162 break;
163
164 case 1: if ((x = *s &~ *m) != 0)
165 sig = ffz(~x) + 1;
166 break;
167 }
168
169 return sig;
170 }
171
172 static struct sigqueue *__sigqueue_alloc(struct task_struct *t, gfp_t flags,
173 int override_rlimit)
174 {
175 struct sigqueue *q = NULL;
176 struct user_struct *user;
177
178 /*
179 * In order to avoid problems with "switch_user()", we want to make
180 * sure that the compiler doesn't re-load "t->user"
181 */
182 user = t->user;
183 barrier();
184 atomic_inc(&user->sigpending);
185 if (override_rlimit ||
186 atomic_read(&user->sigpending) <=
187 t->signal->rlim[RLIMIT_SIGPENDING].rlim_cur)
188 q = kmem_cache_alloc(sigqueue_cachep, flags);
189 if (unlikely(q == NULL)) {
190 atomic_dec(&user->sigpending);
191 } else {
192 INIT_LIST_HEAD(&q->list);
193 q->flags = 0;
194 q->user = get_uid(user);
195 }
196 return(q);
197 }
198
199 static void __sigqueue_free(struct sigqueue *q)
200 {
201 if (q->flags & SIGQUEUE_PREALLOC)
202 return;
203 atomic_dec(&q->user->sigpending);
204 free_uid(q->user);
205 kmem_cache_free(sigqueue_cachep, q);
206 }
207
208 void flush_sigqueue(struct sigpending *queue)
209 {
210 struct sigqueue *q;
211
212 sigemptyset(&queue->signal);
213 while (!list_empty(&queue->list)) {
214 q = list_entry(queue->list.next, struct sigqueue , list);
215 list_del_init(&q->list);
216 __sigqueue_free(q);
217 }
218 }
219
220 /*
221 * Flush all pending signals for a task.
222 */
223 void flush_signals(struct task_struct *t)
224 {
225 unsigned long flags;
226
227 spin_lock_irqsave(&t->sighand->siglock, flags);
228 clear_tsk_thread_flag(t, TIF_SIGPENDING);
229 flush_sigqueue(&t->pending);
230 flush_sigqueue(&t->signal->shared_pending);
231 spin_unlock_irqrestore(&t->sighand->siglock, flags);
232 }
233
234 void ignore_signals(struct task_struct *t)
235 {
236 int i;
237
238 for (i = 0; i < _NSIG; ++i)
239 t->sighand->action[i].sa.sa_handler = SIG_IGN;
240
241 flush_signals(t);
242 }
243
244 /*
245 * Flush all handlers for a task.
246 */
247
248 void
249 flush_signal_handlers(struct task_struct *t, int force_default)
250 {
251 int i;
252 struct k_sigaction *ka = &t->sighand->action[0];
253 for (i = _NSIG ; i != 0 ; i--) {
254 if (force_default || ka->sa.sa_handler != SIG_IGN)
255 ka->sa.sa_handler = SIG_DFL;
256 ka->sa.sa_flags = 0;
257 sigemptyset(&ka->sa.sa_mask);
258 ka++;
259 }
260 }
261
262 int unhandled_signal(struct task_struct *tsk, int sig)
263 {
264 if (is_global_init(tsk))
265 return 1;
266 if (tsk->ptrace & PT_PTRACED)
267 return 0;
268 return (tsk->sighand->action[sig-1].sa.sa_handler == SIG_IGN) ||
269 (tsk->sighand->action[sig-1].sa.sa_handler == SIG_DFL);
270 }
271
272
273 /* Notify the system that a driver wants to block all signals for this
274 * process, and wants to be notified if any signals at all were to be
275 * sent/acted upon. If the notifier routine returns non-zero, then the
276 * signal will be acted upon after all. If the notifier routine returns 0,
277 * then then signal will be blocked. Only one block per process is
278 * allowed. priv is a pointer to private data that the notifier routine
279 * can use to determine if the signal should be blocked or not. */
280
281 void
282 block_all_signals(int (*notifier)(void *priv), void *priv, sigset_t *mask)
283 {
284 unsigned long flags;
285
286 spin_lock_irqsave(&current->sighand->siglock, flags);
287 current->notifier_mask = mask;
288 current->notifier_data = priv;
289 current->notifier = notifier;
290 spin_unlock_irqrestore(&current->sighand->siglock, flags);
291 }
292
293 /* Notify the system that blocking has ended. */
294
295 void
296 unblock_all_signals(void)
297 {
298 unsigned long flags;
299
300 spin_lock_irqsave(&current->sighand->siglock, flags);
301 current->notifier = NULL;
302 current->notifier_data = NULL;
303 recalc_sigpending();
304 spin_unlock_irqrestore(&current->sighand->siglock, flags);
305 }
306
307 static int collect_signal(int sig, struct sigpending *list, siginfo_t *info)
308 {
309 struct sigqueue *q, *first = NULL;
310 int still_pending = 0;
311
312 if (unlikely(!sigismember(&list->signal, sig)))
313 return 0;
314
315 /*
316 * Collect the siginfo appropriate to this signal. Check if
317 * there is another siginfo for the same signal.
318 */
319 list_for_each_entry(q, &list->list, list) {
320 if (q->info.si_signo == sig) {
321 if (first) {
322 still_pending = 1;
323 break;
324 }
325 first = q;
326 }
327 }
328 if (first) {
329 list_del_init(&first->list);
330 copy_siginfo(info, &first->info);
331 __sigqueue_free(first);
332 if (!still_pending)
333 sigdelset(&list->signal, sig);
334 } else {
335
336 /* Ok, it wasn't in the queue. This must be
337 a fast-pathed signal or we must have been
338 out of queue space. So zero out the info.
339 */
340 sigdelset(&list->signal, sig);
341 info->si_signo = sig;
342 info->si_errno = 0;
343 info->si_code = 0;
344 info->si_pid = 0;
345 info->si_uid = 0;
346 }
347 return 1;
348 }
349
350 static int __dequeue_signal(struct sigpending *pending, sigset_t *mask,
351 siginfo_t *info)
352 {
353 int sig = next_signal(pending, mask);
354
355 if (sig) {
356 if (current->notifier) {
357 if (sigismember(current->notifier_mask, sig)) {
358 if (!(current->notifier)(current->notifier_data)) {
359 clear_thread_flag(TIF_SIGPENDING);
360 return 0;
361 }
362 }
363 }
364
365 if (!collect_signal(sig, pending, info))
366 sig = 0;
367 }
368
369 return sig;
370 }
371
372 /*
373 * Dequeue a signal and return the element to the caller, which is
374 * expected to free it.
375 *
376 * All callers have to hold the siglock.
377 */
378 int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info)
379 {
380 int signr;
381
382 /* We only dequeue private signals from ourselves, we don't let
383 * signalfd steal them
384 */
385 signr = __dequeue_signal(&tsk->pending, mask, info);
386 if (!signr) {
387 signr = __dequeue_signal(&tsk->signal->shared_pending,
388 mask, info);
389 /*
390 * itimer signal ?
391 *
392 * itimers are process shared and we restart periodic
393 * itimers in the signal delivery path to prevent DoS
394 * attacks in the high resolution timer case. This is
395 * compliant with the old way of self restarting
396 * itimers, as the SIGALRM is a legacy signal and only
397 * queued once. Changing the restart behaviour to
398 * restart the timer in the signal dequeue path is
399 * reducing the timer noise on heavy loaded !highres
400 * systems too.
401 */
402 if (unlikely(signr == SIGALRM)) {
403 struct hrtimer *tmr = &tsk->signal->real_timer;
404
405 if (!hrtimer_is_queued(tmr) &&
406 tsk->signal->it_real_incr.tv64 != 0) {
407 hrtimer_forward(tmr, tmr->base->get_time(),
408 tsk->signal->it_real_incr);
409 hrtimer_restart(tmr);
410 }
411 }
412 }
413
414 recalc_sigpending();
415 if (!signr)
416 return 0;
417
418 if (unlikely(sig_kernel_stop(signr))) {
419 /*
420 * Set a marker that we have dequeued a stop signal. Our
421 * caller might release the siglock and then the pending
422 * stop signal it is about to process is no longer in the
423 * pending bitmasks, but must still be cleared by a SIGCONT
424 * (and overruled by a SIGKILL). So those cases clear this
425 * shared flag after we've set it. Note that this flag may
426 * remain set after the signal we return is ignored or
427 * handled. That doesn't matter because its only purpose
428 * is to alert stop-signal processing code when another
429 * processor has come along and cleared the flag.
430 */
431 if (!(tsk->signal->flags & SIGNAL_GROUP_EXIT))
432 tsk->signal->flags |= SIGNAL_STOP_DEQUEUED;
433 }
434 if ((info->si_code & __SI_MASK) == __SI_TIMER && info->si_sys_private) {
435 /*
436 * Release the siglock to ensure proper locking order
437 * of timer locks outside of siglocks. Note, we leave
438 * irqs disabled here, since the posix-timers code is
439 * about to disable them again anyway.
440 */
441 spin_unlock(&tsk->sighand->siglock);
442 do_schedule_next_timer(info);
443 spin_lock(&tsk->sighand->siglock);
444 }
445 return signr;
446 }
447
448 /*
449 * Tell a process that it has a new active signal..
450 *
451 * NOTE! we rely on the previous spin_lock to
452 * lock interrupts for us! We can only be called with
453 * "siglock" held, and the local interrupt must
454 * have been disabled when that got acquired!
455 *
456 * No need to set need_resched since signal event passing
457 * goes through ->blocked
458 */
459 void signal_wake_up(struct task_struct *t, int resume)
460 {
461 unsigned int mask;
462
463 set_tsk_thread_flag(t, TIF_SIGPENDING);
464
465 /*
466 * For SIGKILL, we want to wake it up in the stopped/traced/killable
467 * case. We don't check t->state here because there is a race with it
468 * executing another processor and just now entering stopped state.
469 * By using wake_up_state, we ensure the process will wake up and
470 * handle its death signal.
471 */
472 mask = TASK_INTERRUPTIBLE;
473 if (resume)
474 mask |= TASK_WAKEKILL;
475 if (!wake_up_state(t, mask))
476 kick_process(t);
477 }
478
479 /*
480 * Remove signals in mask from the pending set and queue.
481 * Returns 1 if any signals were found.
482 *
483 * All callers must be holding the siglock.
484 *
485 * This version takes a sigset mask and looks at all signals,
486 * not just those in the first mask word.
487 */
488 static int rm_from_queue_full(sigset_t *mask, struct sigpending *s)
489 {
490 struct sigqueue *q, *n;
491 sigset_t m;
492
493 sigandsets(&m, mask, &s->signal);
494 if (sigisemptyset(&m))
495 return 0;
496
497 signandsets(&s->signal, &s->signal, mask);
498 list_for_each_entry_safe(q, n, &s->list, list) {
499 if (sigismember(mask, q->info.si_signo)) {
500 list_del_init(&q->list);
501 __sigqueue_free(q);
502 }
503 }
504 return 1;
505 }
506 /*
507 * Remove signals in mask from the pending set and queue.
508 * Returns 1 if any signals were found.
509 *
510 * All callers must be holding the siglock.
511 */
512 static int rm_from_queue(unsigned long mask, struct sigpending *s)
513 {
514 struct sigqueue *q, *n;
515
516 if (!sigtestsetmask(&s->signal, mask))
517 return 0;
518
519 sigdelsetmask(&s->signal, mask);
520 list_for_each_entry_safe(q, n, &s->list, list) {
521 if (q->info.si_signo < SIGRTMIN &&
522 (mask & sigmask(q->info.si_signo))) {
523 list_del_init(&q->list);
524 __sigqueue_free(q);
525 }
526 }
527 return 1;
528 }
529
530 /*
531 * Bad permissions for sending the signal
532 */
533 static int check_kill_permission(int sig, struct siginfo *info,
534 struct task_struct *t)
535 {
536 int error;
537
538 if (!valid_signal(sig))
539 return -EINVAL;
540
541 if (info != SEND_SIG_NOINFO && (is_si_special(info) || SI_FROMKERNEL(info)))
542 return 0;
543
544 error = audit_signal_info(sig, t); /* Let audit system see the signal */
545 if (error)
546 return error;
547
548 if (((sig != SIGCONT) || (task_session_nr(current) != task_session_nr(t)))
549 && (current->euid ^ t->suid) && (current->euid ^ t->uid)
550 && (current->uid ^ t->suid) && (current->uid ^ t->uid)
551 && !capable(CAP_KILL))
552 return -EPERM;
553
554 return security_task_kill(t, info, sig, 0);
555 }
556
557 /* forward decl */
558 static void do_notify_parent_cldstop(struct task_struct *tsk, int why);
559
560 /*
561 * Handle magic process-wide effects of stop/continue signals. Unlike
562 * the signal actions, these happen immediately at signal-generation
563 * time regardless of blocking, ignoring, or handling. This does the
564 * actual continuing for SIGCONT, but not the actual stopping for stop
565 * signals. The process stop is done as a signal action for SIG_DFL.
566 *
567 * Returns true if the signal should be actually delivered, otherwise
568 * it should be dropped.
569 */
570 static int prepare_signal(int sig, struct task_struct *p)
571 {
572 struct signal_struct *signal = p->signal;
573 struct task_struct *t;
574
575 if (unlikely(signal->flags & SIGNAL_GROUP_EXIT)) {
576 /*
577 * The process is in the middle of dying, nothing to do.
578 */
579 } else if (sig_kernel_stop(sig)) {
580 /*
581 * This is a stop signal. Remove SIGCONT from all queues.
582 */
583 rm_from_queue(sigmask(SIGCONT), &signal->shared_pending);
584 t = p;
585 do {
586 rm_from_queue(sigmask(SIGCONT), &t->pending);
587 } while_each_thread(p, t);
588 } else if (sig == SIGCONT) {
589 unsigned int why;
590 /*
591 * Remove all stop signals from all queues,
592 * and wake all threads.
593 */
594 rm_from_queue(SIG_KERNEL_STOP_MASK, &signal->shared_pending);
595 t = p;
596 do {
597 unsigned int state;
598 rm_from_queue(SIG_KERNEL_STOP_MASK, &t->pending);
599 /*
600 * If there is a handler for SIGCONT, we must make
601 * sure that no thread returns to user mode before
602 * we post the signal, in case it was the only
603 * thread eligible to run the signal handler--then
604 * it must not do anything between resuming and
605 * running the handler. With the TIF_SIGPENDING
606 * flag set, the thread will pause and acquire the
607 * siglock that we hold now and until we've queued
608 * the pending signal.
609 *
610 * Wake up the stopped thread _after_ setting
611 * TIF_SIGPENDING
612 */
613 state = __TASK_STOPPED;
614 if (sig_user_defined(t, SIGCONT) && !sigismember(&t->blocked, SIGCONT)) {
615 set_tsk_thread_flag(t, TIF_SIGPENDING);
616 state |= TASK_INTERRUPTIBLE;
617 }
618 wake_up_state(t, state);
619 } while_each_thread(p, t);
620
621 /*
622 * Notify the parent with CLD_CONTINUED if we were stopped.
623 *
624 * If we were in the middle of a group stop, we pretend it
625 * was already finished, and then continued. Since SIGCHLD
626 * doesn't queue we report only CLD_STOPPED, as if the next
627 * CLD_CONTINUED was dropped.
628 */
629 why = 0;
630 if (signal->flags & SIGNAL_STOP_STOPPED)
631 why |= SIGNAL_CLD_CONTINUED;
632 else if (signal->group_stop_count)
633 why |= SIGNAL_CLD_STOPPED;
634
635 if (why) {
636 /*
637 * The first thread which returns from finish_stop()
638 * will take ->siglock, notice SIGNAL_CLD_MASK, and
639 * notify its parent. See get_signal_to_deliver().
640 */
641 signal->flags = why | SIGNAL_STOP_CONTINUED;
642 signal->group_stop_count = 0;
643 signal->group_exit_code = 0;
644 } else {
645 /*
646 * We are not stopped, but there could be a stop
647 * signal in the middle of being processed after
648 * being removed from the queue. Clear that too.
649 */
650 signal->flags &= ~SIGNAL_STOP_DEQUEUED;
651 }
652 }
653
654 return !sig_ignored(p, sig);
655 }
656
657 /*
658 * Test if P wants to take SIG. After we've checked all threads with this,
659 * it's equivalent to finding no threads not blocking SIG. Any threads not
660 * blocking SIG were ruled out because they are not running and already
661 * have pending signals. Such threads will dequeue from the shared queue
662 * as soon as they're available, so putting the signal on the shared queue
663 * will be equivalent to sending it to one such thread.
664 */
665 static inline int wants_signal(int sig, struct task_struct *p)
666 {
667 if (sigismember(&p->blocked, sig))
668 return 0;
669 if (p->flags & PF_EXITING)
670 return 0;
671 if (sig == SIGKILL)
672 return 1;
673 if (task_is_stopped_or_traced(p))
674 return 0;
675 return task_curr(p) || !signal_pending(p);
676 }
677
678 static void complete_signal(int sig, struct task_struct *p, int group)
679 {
680 struct signal_struct *signal = p->signal;
681 struct task_struct *t;
682
683 /*
684 * Now find a thread we can wake up to take the signal off the queue.
685 *
686 * If the main thread wants the signal, it gets first crack.
687 * Probably the least surprising to the average bear.
688 */
689 if (wants_signal(sig, p))
690 t = p;
691 else if (!group || thread_group_empty(p))
692 /*
693 * There is just one thread and it does not need to be woken.
694 * It will dequeue unblocked signals before it runs again.
695 */
696 return;
697 else {
698 /*
699 * Otherwise try to find a suitable thread.
700 */
701 t = signal->curr_target;
702 while (!wants_signal(sig, t)) {
703 t = next_thread(t);
704 if (t == signal->curr_target)
705 /*
706 * No thread needs to be woken.
707 * Any eligible threads will see
708 * the signal in the queue soon.
709 */
710 return;
711 }
712 signal->curr_target = t;
713 }
714
715 /*
716 * Found a killable thread. If the signal will be fatal,
717 * then start taking the whole group down immediately.
718 */
719 if (sig_fatal(p, sig) && !(signal->flags & SIGNAL_GROUP_EXIT) &&
720 !sigismember(&t->real_blocked, sig) &&
721 (sig == SIGKILL || !(t->ptrace & PT_PTRACED))) {
722 /*
723 * This signal will be fatal to the whole group.
724 */
725 if (!sig_kernel_coredump(sig)) {
726 /*
727 * Start a group exit and wake everybody up.
728 * This way we don't have other threads
729 * running and doing things after a slower
730 * thread has the fatal signal pending.
731 */
732 signal->flags = SIGNAL_GROUP_EXIT;
733 signal->group_exit_code = sig;
734 signal->group_stop_count = 0;
735 t = p;
736 do {
737 sigaddset(&t->pending.signal, SIGKILL);
738 signal_wake_up(t, 1);
739 } while_each_thread(p, t);
740 return;
741 }
742 }
743
744 /*
745 * The signal is already in the shared-pending queue.
746 * Tell the chosen thread to wake up and dequeue it.
747 */
748 signal_wake_up(t, sig == SIGKILL);
749 return;
750 }
751
752 static inline int legacy_queue(struct sigpending *signals, int sig)
753 {
754 return (sig < SIGRTMIN) && sigismember(&signals->signal, sig);
755 }
756
757 static int send_signal(int sig, struct siginfo *info, struct task_struct *t,
758 int group)
759 {
760 struct sigpending *pending;
761 struct sigqueue *q;
762
763 assert_spin_locked(&t->sighand->siglock);
764 if (!prepare_signal(sig, t))
765 return 0;
766
767 pending = group ? &t->signal->shared_pending : &t->pending;
768 /*
769 * Short-circuit ignored signals and support queuing
770 * exactly one non-rt signal, so that we can get more
771 * detailed information about the cause of the signal.
772 */
773 if (legacy_queue(pending, sig))
774 return 0;
775
776 /*
777 * Deliver the signal to listening signalfds. This must be called
778 * with the sighand lock held.
779 */
780 signalfd_notify(t, sig);
781
782 /*
783 * fast-pathed signals for kernel-internal things like SIGSTOP
784 * or SIGKILL.
785 */
786 if (info == SEND_SIG_FORCED)
787 goto out_set;
788
789 /* Real-time signals must be queued if sent by sigqueue, or
790 some other real-time mechanism. It is implementation
791 defined whether kill() does so. We attempt to do so, on
792 the principle of least surprise, but since kill is not
793 allowed to fail with EAGAIN when low on memory we just
794 make sure at least one signal gets delivered and don't
795 pass on the info struct. */
796
797 q = __sigqueue_alloc(t, GFP_ATOMIC, (sig < SIGRTMIN &&
798 (is_si_special(info) ||
799 info->si_code >= 0)));
800 if (q) {
801 list_add_tail(&q->list, &pending->list);
802 switch ((unsigned long) info) {
803 case (unsigned long) SEND_SIG_NOINFO:
804 q->info.si_signo = sig;
805 q->info.si_errno = 0;
806 q->info.si_code = SI_USER;
807 q->info.si_pid = task_pid_vnr(current);
808 q->info.si_uid = current->uid;
809 break;
810 case (unsigned long) SEND_SIG_PRIV:
811 q->info.si_signo = sig;
812 q->info.si_errno = 0;
813 q->info.si_code = SI_KERNEL;
814 q->info.si_pid = 0;
815 q->info.si_uid = 0;
816 break;
817 default:
818 copy_siginfo(&q->info, info);
819 break;
820 }
821 } else if (!is_si_special(info)) {
822 if (sig >= SIGRTMIN && info->si_code != SI_USER)
823 /*
824 * Queue overflow, abort. We may abort if the signal was rt
825 * and sent by user using something other than kill().
826 */
827 return -EAGAIN;
828 }
829
830 out_set:
831 sigaddset(&pending->signal, sig);
832 complete_signal(sig, t, group);
833 return 0;
834 }
835
836 int print_fatal_signals;
837
838 static void print_fatal_signal(struct pt_regs *regs, int signr)
839 {
840 printk("%s/%d: potentially unexpected fatal signal %d.\n",
841 current->comm, task_pid_nr(current), signr);
842
843 #if defined(__i386__) && !defined(__arch_um__)
844 printk("code at %08lx: ", regs->ip);
845 {
846 int i;
847 for (i = 0; i < 16; i++) {
848 unsigned char insn;
849
850 __get_user(insn, (unsigned char *)(regs->ip + i));
851 printk("%02x ", insn);
852 }
853 }
854 #endif
855 printk("\n");
856 show_regs(regs);
857 }
858
859 static int __init setup_print_fatal_signals(char *str)
860 {
861 get_option (&str, &print_fatal_signals);
862
863 return 1;
864 }
865
866 __setup("print-fatal-signals=", setup_print_fatal_signals);
867
868 int
869 __group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
870 {
871 return send_signal(sig, info, p, 1);
872 }
873
874 static int
875 specific_send_sig_info(int sig, struct siginfo *info, struct task_struct *t)
876 {
877 return send_signal(sig, info, t, 0);
878 }
879
880 /*
881 * Force a signal that the process can't ignore: if necessary
882 * we unblock the signal and change any SIG_IGN to SIG_DFL.
883 *
884 * Note: If we unblock the signal, we always reset it to SIG_DFL,
885 * since we do not want to have a signal handler that was blocked
886 * be invoked when user space had explicitly blocked it.
887 *
888 * We don't want to have recursive SIGSEGV's etc, for example.
889 */
890 int
891 force_sig_info(int sig, struct siginfo *info, struct task_struct *t)
892 {
893 unsigned long int flags;
894 int ret, blocked, ignored;
895 struct k_sigaction *action;
896
897 spin_lock_irqsave(&t->sighand->siglock, flags);
898 action = &t->sighand->action[sig-1];
899 ignored = action->sa.sa_handler == SIG_IGN;
900 blocked = sigismember(&t->blocked, sig);
901 if (blocked || ignored) {
902 action->sa.sa_handler = SIG_DFL;
903 if (blocked) {
904 sigdelset(&t->blocked, sig);
905 recalc_sigpending_and_wake(t);
906 }
907 }
908 ret = specific_send_sig_info(sig, info, t);
909 spin_unlock_irqrestore(&t->sighand->siglock, flags);
910
911 return ret;
912 }
913
914 void
915 force_sig_specific(int sig, struct task_struct *t)
916 {
917 force_sig_info(sig, SEND_SIG_FORCED, t);
918 }
919
920 /*
921 * Nuke all other threads in the group.
922 */
923 void zap_other_threads(struct task_struct *p)
924 {
925 struct task_struct *t;
926
927 p->signal->group_stop_count = 0;
928
929 for (t = next_thread(p); t != p; t = next_thread(t)) {
930 /*
931 * Don't bother with already dead threads
932 */
933 if (t->exit_state)
934 continue;
935
936 /* SIGKILL will be handled before any pending SIGSTOP */
937 sigaddset(&t->pending.signal, SIGKILL);
938 signal_wake_up(t, 1);
939 }
940 }
941
942 int __fatal_signal_pending(struct task_struct *tsk)
943 {
944 return sigismember(&tsk->pending.signal, SIGKILL);
945 }
946 EXPORT_SYMBOL(__fatal_signal_pending);
947
948 struct sighand_struct *lock_task_sighand(struct task_struct *tsk, unsigned long *flags)
949 {
950 struct sighand_struct *sighand;
951
952 rcu_read_lock();
953 for (;;) {
954 sighand = rcu_dereference(tsk->sighand);
955 if (unlikely(sighand == NULL))
956 break;
957
958 spin_lock_irqsave(&sighand->siglock, *flags);
959 if (likely(sighand == tsk->sighand))
960 break;
961 spin_unlock_irqrestore(&sighand->siglock, *flags);
962 }
963 rcu_read_unlock();
964
965 return sighand;
966 }
967
968 int group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
969 {
970 unsigned long flags;
971 int ret;
972
973 ret = check_kill_permission(sig, info, p);
974
975 if (!ret && sig) {
976 ret = -ESRCH;
977 if (lock_task_sighand(p, &flags)) {
978 ret = __group_send_sig_info(sig, info, p);
979 unlock_task_sighand(p, &flags);
980 }
981 }
982
983 return ret;
984 }
985
986 /*
987 * __kill_pgrp_info() sends a signal to a process group: this is what the tty
988 * control characters do (^C, ^Z etc)
989 */
990
991 int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp)
992 {
993 struct task_struct *p = NULL;
994 int retval, success;
995
996 success = 0;
997 retval = -ESRCH;
998 do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
999 int err = group_send_sig_info(sig, info, p);
1000 success |= !err;
1001 retval = err;
1002 } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
1003 return success ? 0 : retval;
1004 }
1005
1006 int kill_pid_info(int sig, struct siginfo *info, struct pid *pid)
1007 {
1008 int error = -ESRCH;
1009 struct task_struct *p;
1010
1011 rcu_read_lock();
1012 retry:
1013 p = pid_task(pid, PIDTYPE_PID);
1014 if (p) {
1015 error = group_send_sig_info(sig, info, p);
1016 if (unlikely(error == -ESRCH))
1017 /*
1018 * The task was unhashed in between, try again.
1019 * If it is dead, pid_task() will return NULL,
1020 * if we race with de_thread() it will find the
1021 * new leader.
1022 */
1023 goto retry;
1024 }
1025 rcu_read_unlock();
1026
1027 return error;
1028 }
1029
1030 int
1031 kill_proc_info(int sig, struct siginfo *info, pid_t pid)
1032 {
1033 int error;
1034 rcu_read_lock();
1035 error = kill_pid_info(sig, info, find_vpid(pid));
1036 rcu_read_unlock();
1037 return error;
1038 }
1039
1040 /* like kill_pid_info(), but doesn't use uid/euid of "current" */
1041 int kill_pid_info_as_uid(int sig, struct siginfo *info, struct pid *pid,
1042 uid_t uid, uid_t euid, u32 secid)
1043 {
1044 int ret = -EINVAL;
1045 struct task_struct *p;
1046
1047 if (!valid_signal(sig))
1048 return ret;
1049
1050 read_lock(&tasklist_lock);
1051 p = pid_task(pid, PIDTYPE_PID);
1052 if (!p) {
1053 ret = -ESRCH;
1054 goto out_unlock;
1055 }
1056 if ((info == SEND_SIG_NOINFO || (!is_si_special(info) && SI_FROMUSER(info)))
1057 && (euid != p->suid) && (euid != p->uid)
1058 && (uid != p->suid) && (uid != p->uid)) {
1059 ret = -EPERM;
1060 goto out_unlock;
1061 }
1062 ret = security_task_kill(p, info, sig, secid);
1063 if (ret)
1064 goto out_unlock;
1065 if (sig && p->sighand) {
1066 unsigned long flags;
1067 spin_lock_irqsave(&p->sighand->siglock, flags);
1068 ret = __group_send_sig_info(sig, info, p);
1069 spin_unlock_irqrestore(&p->sighand->siglock, flags);
1070 }
1071 out_unlock:
1072 read_unlock(&tasklist_lock);
1073 return ret;
1074 }
1075 EXPORT_SYMBOL_GPL(kill_pid_info_as_uid);
1076
1077 /*
1078 * kill_something_info() interprets pid in interesting ways just like kill(2).
1079 *
1080 * POSIX specifies that kill(-1,sig) is unspecified, but what we have
1081 * is probably wrong. Should make it like BSD or SYSV.
1082 */
1083
1084 static int kill_something_info(int sig, struct siginfo *info, int pid)
1085 {
1086 int ret;
1087
1088 if (pid > 0) {
1089 rcu_read_lock();
1090 ret = kill_pid_info(sig, info, find_vpid(pid));
1091 rcu_read_unlock();
1092 return ret;
1093 }
1094
1095 read_lock(&tasklist_lock);
1096 if (pid != -1) {
1097 ret = __kill_pgrp_info(sig, info,
1098 pid ? find_vpid(-pid) : task_pgrp(current));
1099 } else {
1100 int retval = 0, count = 0;
1101 struct task_struct * p;
1102
1103 for_each_process(p) {
1104 if (p->pid > 1 && !same_thread_group(p, current)) {
1105 int err = group_send_sig_info(sig, info, p);
1106 ++count;
1107 if (err != -EPERM)
1108 retval = err;
1109 }
1110 }
1111 ret = count ? retval : -ESRCH;
1112 }
1113 read_unlock(&tasklist_lock);
1114
1115 return ret;
1116 }
1117
1118 /*
1119 * These are for backward compatibility with the rest of the kernel source.
1120 */
1121
1122 /*
1123 * The caller must ensure the task can't exit.
1124 */
1125 int
1126 send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1127 {
1128 int ret;
1129 unsigned long flags;
1130
1131 /*
1132 * Make sure legacy kernel users don't send in bad values
1133 * (normal paths check this in check_kill_permission).
1134 */
1135 if (!valid_signal(sig))
1136 return -EINVAL;
1137
1138 spin_lock_irqsave(&p->sighand->siglock, flags);
1139 ret = specific_send_sig_info(sig, info, p);
1140 spin_unlock_irqrestore(&p->sighand->siglock, flags);
1141 return ret;
1142 }
1143
1144 #define __si_special(priv) \
1145 ((priv) ? SEND_SIG_PRIV : SEND_SIG_NOINFO)
1146
1147 int
1148 send_sig(int sig, struct task_struct *p, int priv)
1149 {
1150 return send_sig_info(sig, __si_special(priv), p);
1151 }
1152
1153 void
1154 force_sig(int sig, struct task_struct *p)
1155 {
1156 force_sig_info(sig, SEND_SIG_PRIV, p);
1157 }
1158
1159 /*
1160 * When things go south during signal handling, we
1161 * will force a SIGSEGV. And if the signal that caused
1162 * the problem was already a SIGSEGV, we'll want to
1163 * make sure we don't even try to deliver the signal..
1164 */
1165 int
1166 force_sigsegv(int sig, struct task_struct *p)
1167 {
1168 if (sig == SIGSEGV) {
1169 unsigned long flags;
1170 spin_lock_irqsave(&p->sighand->siglock, flags);
1171 p->sighand->action[sig - 1].sa.sa_handler = SIG_DFL;
1172 spin_unlock_irqrestore(&p->sighand->siglock, flags);
1173 }
1174 force_sig(SIGSEGV, p);
1175 return 0;
1176 }
1177
1178 int kill_pgrp(struct pid *pid, int sig, int priv)
1179 {
1180 int ret;
1181
1182 read_lock(&tasklist_lock);
1183 ret = __kill_pgrp_info(sig, __si_special(priv), pid);
1184 read_unlock(&tasklist_lock);
1185
1186 return ret;
1187 }
1188 EXPORT_SYMBOL(kill_pgrp);
1189
1190 int kill_pid(struct pid *pid, int sig, int priv)
1191 {
1192 return kill_pid_info(sig, __si_special(priv), pid);
1193 }
1194 EXPORT_SYMBOL(kill_pid);
1195
1196 int
1197 kill_proc(pid_t pid, int sig, int priv)
1198 {
1199 int ret;
1200
1201 rcu_read_lock();
1202 ret = kill_pid_info(sig, __si_special(priv), find_pid(pid));
1203 rcu_read_unlock();
1204 return ret;
1205 }
1206
1207 /*
1208 * These functions support sending signals using preallocated sigqueue
1209 * structures. This is needed "because realtime applications cannot
1210 * afford to lose notifications of asynchronous events, like timer
1211 * expirations or I/O completions". In the case of Posix Timers
1212 * we allocate the sigqueue structure from the timer_create. If this
1213 * allocation fails we are able to report the failure to the application
1214 * with an EAGAIN error.
1215 */
1216
1217 struct sigqueue *sigqueue_alloc(void)
1218 {
1219 struct sigqueue *q;
1220
1221 if ((q = __sigqueue_alloc(current, GFP_KERNEL, 0)))
1222 q->flags |= SIGQUEUE_PREALLOC;
1223 return(q);
1224 }
1225
1226 void sigqueue_free(struct sigqueue *q)
1227 {
1228 unsigned long flags;
1229 spinlock_t *lock = &current->sighand->siglock;
1230
1231 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1232 /*
1233 * If the signal is still pending remove it from the
1234 * pending queue. We must hold ->siglock while testing
1235 * q->list to serialize with collect_signal().
1236 */
1237 spin_lock_irqsave(lock, flags);
1238 if (!list_empty(&q->list))
1239 list_del_init(&q->list);
1240 spin_unlock_irqrestore(lock, flags);
1241
1242 q->flags &= ~SIGQUEUE_PREALLOC;
1243 __sigqueue_free(q);
1244 }
1245
1246 int send_sigqueue(struct sigqueue *q, struct task_struct *t, int group)
1247 {
1248 int sig = q->info.si_signo;
1249 struct sigpending *pending;
1250 unsigned long flags;
1251 int ret;
1252
1253 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1254
1255 ret = -1;
1256 if (!likely(lock_task_sighand(t, &flags)))
1257 goto ret;
1258
1259 ret = 1; /* the signal is ignored */
1260 if (!prepare_signal(sig, t))
1261 goto out;
1262
1263 ret = 0;
1264 if (unlikely(!list_empty(&q->list))) {
1265 /*
1266 * If an SI_TIMER entry is already queue just increment
1267 * the overrun count.
1268 */
1269 BUG_ON(q->info.si_code != SI_TIMER);
1270 q->info.si_overrun++;
1271 goto out;
1272 }
1273
1274 signalfd_notify(t, sig);
1275 pending = group ? &t->signal->shared_pending : &t->pending;
1276 list_add_tail(&q->list, &pending->list);
1277 sigaddset(&pending->signal, sig);
1278 complete_signal(sig, t, group);
1279 out:
1280 unlock_task_sighand(t, &flags);
1281 ret:
1282 return ret;
1283 }
1284
1285 /*
1286 * Wake up any threads in the parent blocked in wait* syscalls.
1287 */
1288 static inline void __wake_up_parent(struct task_struct *p,
1289 struct task_struct *parent)
1290 {
1291 wake_up_interruptible_sync(&parent->signal->wait_chldexit);
1292 }
1293
1294 /*
1295 * Let a parent know about the death of a child.
1296 * For a stopped/continued status change, use do_notify_parent_cldstop instead.
1297 */
1298
1299 void do_notify_parent(struct task_struct *tsk, int sig)
1300 {
1301 struct siginfo info;
1302 unsigned long flags;
1303 struct sighand_struct *psig;
1304
1305 BUG_ON(sig == -1);
1306
1307 /* do_notify_parent_cldstop should have been called instead. */
1308 BUG_ON(task_is_stopped_or_traced(tsk));
1309
1310 BUG_ON(!tsk->ptrace &&
1311 (tsk->group_leader != tsk || !thread_group_empty(tsk)));
1312
1313 info.si_signo = sig;
1314 info.si_errno = 0;
1315 /*
1316 * we are under tasklist_lock here so our parent is tied to
1317 * us and cannot exit and release its namespace.
1318 *
1319 * the only it can is to switch its nsproxy with sys_unshare,
1320 * bu uncharing pid namespaces is not allowed, so we'll always
1321 * see relevant namespace
1322 *
1323 * write_lock() currently calls preempt_disable() which is the
1324 * same as rcu_read_lock(), but according to Oleg, this is not
1325 * correct to rely on this
1326 */
1327 rcu_read_lock();
1328 info.si_pid = task_pid_nr_ns(tsk, tsk->parent->nsproxy->pid_ns);
1329 rcu_read_unlock();
1330
1331 info.si_uid = tsk->uid;
1332
1333 /* FIXME: find out whether or not this is supposed to be c*time. */
1334 info.si_utime = cputime_to_jiffies(cputime_add(tsk->utime,
1335 tsk->signal->utime));
1336 info.si_stime = cputime_to_jiffies(cputime_add(tsk->stime,
1337 tsk->signal->stime));
1338
1339 info.si_status = tsk->exit_code & 0x7f;
1340 if (tsk->exit_code & 0x80)
1341 info.si_code = CLD_DUMPED;
1342 else if (tsk->exit_code & 0x7f)
1343 info.si_code = CLD_KILLED;
1344 else {
1345 info.si_code = CLD_EXITED;
1346 info.si_status = tsk->exit_code >> 8;
1347 }
1348
1349 psig = tsk->parent->sighand;
1350 spin_lock_irqsave(&psig->siglock, flags);
1351 if (!tsk->ptrace && sig == SIGCHLD &&
1352 (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN ||
1353 (psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT))) {
1354 /*
1355 * We are exiting and our parent doesn't care. POSIX.1
1356 * defines special semantics for setting SIGCHLD to SIG_IGN
1357 * or setting the SA_NOCLDWAIT flag: we should be reaped
1358 * automatically and not left for our parent's wait4 call.
1359 * Rather than having the parent do it as a magic kind of
1360 * signal handler, we just set this to tell do_exit that we
1361 * can be cleaned up without becoming a zombie. Note that
1362 * we still call __wake_up_parent in this case, because a
1363 * blocked sys_wait4 might now return -ECHILD.
1364 *
1365 * Whether we send SIGCHLD or not for SA_NOCLDWAIT
1366 * is implementation-defined: we do (if you don't want
1367 * it, just use SIG_IGN instead).
1368 */
1369 tsk->exit_signal = -1;
1370 if (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN)
1371 sig = 0;
1372 }
1373 if (valid_signal(sig) && sig > 0)
1374 __group_send_sig_info(sig, &info, tsk->parent);
1375 __wake_up_parent(tsk, tsk->parent);
1376 spin_unlock_irqrestore(&psig->siglock, flags);
1377 }
1378
1379 static void do_notify_parent_cldstop(struct task_struct *tsk, int why)
1380 {
1381 struct siginfo info;
1382 unsigned long flags;
1383 struct task_struct *parent;
1384 struct sighand_struct *sighand;
1385
1386 if (tsk->ptrace & PT_PTRACED)
1387 parent = tsk->parent;
1388 else {
1389 tsk = tsk->group_leader;
1390 parent = tsk->real_parent;
1391 }
1392
1393 info.si_signo = SIGCHLD;
1394 info.si_errno = 0;
1395 /*
1396 * see comment in do_notify_parent() abot the following 3 lines
1397 */
1398 rcu_read_lock();
1399 info.si_pid = task_pid_nr_ns(tsk, tsk->parent->nsproxy->pid_ns);
1400 rcu_read_unlock();
1401
1402 info.si_uid = tsk->uid;
1403
1404 /* FIXME: find out whether or not this is supposed to be c*time. */
1405 info.si_utime = cputime_to_jiffies(tsk->utime);
1406 info.si_stime = cputime_to_jiffies(tsk->stime);
1407
1408 info.si_code = why;
1409 switch (why) {
1410 case CLD_CONTINUED:
1411 info.si_status = SIGCONT;
1412 break;
1413 case CLD_STOPPED:
1414 info.si_status = tsk->signal->group_exit_code & 0x7f;
1415 break;
1416 case CLD_TRAPPED:
1417 info.si_status = tsk->exit_code & 0x7f;
1418 break;
1419 default:
1420 BUG();
1421 }
1422
1423 sighand = parent->sighand;
1424 spin_lock_irqsave(&sighand->siglock, flags);
1425 if (sighand->action[SIGCHLD-1].sa.sa_handler != SIG_IGN &&
1426 !(sighand->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDSTOP))
1427 __group_send_sig_info(SIGCHLD, &info, parent);
1428 /*
1429 * Even if SIGCHLD is not generated, we must wake up wait4 calls.
1430 */
1431 __wake_up_parent(tsk, parent);
1432 spin_unlock_irqrestore(&sighand->siglock, flags);
1433 }
1434
1435 static inline int may_ptrace_stop(void)
1436 {
1437 if (!likely(current->ptrace & PT_PTRACED))
1438 return 0;
1439 /*
1440 * Are we in the middle of do_coredump?
1441 * If so and our tracer is also part of the coredump stopping
1442 * is a deadlock situation, and pointless because our tracer
1443 * is dead so don't allow us to stop.
1444 * If SIGKILL was already sent before the caller unlocked
1445 * ->siglock we must see ->core_waiters != 0. Otherwise it
1446 * is safe to enter schedule().
1447 */
1448 if (unlikely(current->mm->core_waiters) &&
1449 unlikely(current->mm == current->parent->mm))
1450 return 0;
1451
1452 return 1;
1453 }
1454
1455 /*
1456 * Return nonzero if there is a SIGKILL that should be waking us up.
1457 * Called with the siglock held.
1458 */
1459 static int sigkill_pending(struct task_struct *tsk)
1460 {
1461 return ((sigismember(&tsk->pending.signal, SIGKILL) ||
1462 sigismember(&tsk->signal->shared_pending.signal, SIGKILL)) &&
1463 !unlikely(sigismember(&tsk->blocked, SIGKILL)));
1464 }
1465
1466 /*
1467 * This must be called with current->sighand->siglock held.
1468 *
1469 * This should be the path for all ptrace stops.
1470 * We always set current->last_siginfo while stopped here.
1471 * That makes it a way to test a stopped process for
1472 * being ptrace-stopped vs being job-control-stopped.
1473 *
1474 * If we actually decide not to stop at all because the tracer
1475 * is gone, we keep current->exit_code unless clear_code.
1476 */
1477 static void ptrace_stop(int exit_code, int clear_code, siginfo_t *info)
1478 {
1479 int killed = 0;
1480
1481 if (arch_ptrace_stop_needed(exit_code, info)) {
1482 /*
1483 * The arch code has something special to do before a
1484 * ptrace stop. This is allowed to block, e.g. for faults
1485 * on user stack pages. We can't keep the siglock while
1486 * calling arch_ptrace_stop, so we must release it now.
1487 * To preserve proper semantics, we must do this before
1488 * any signal bookkeeping like checking group_stop_count.
1489 * Meanwhile, a SIGKILL could come in before we retake the
1490 * siglock. That must prevent us from sleeping in TASK_TRACED.
1491 * So after regaining the lock, we must check for SIGKILL.
1492 */
1493 spin_unlock_irq(&current->sighand->siglock);
1494 arch_ptrace_stop(exit_code, info);
1495 spin_lock_irq(&current->sighand->siglock);
1496 killed = sigkill_pending(current);
1497 }
1498
1499 /*
1500 * If there is a group stop in progress,
1501 * we must participate in the bookkeeping.
1502 */
1503 if (current->signal->group_stop_count > 0)
1504 --current->signal->group_stop_count;
1505
1506 current->last_siginfo = info;
1507 current->exit_code = exit_code;
1508
1509 /* Let the debugger run. */
1510 __set_current_state(TASK_TRACED);
1511 spin_unlock_irq(&current->sighand->siglock);
1512 read_lock(&tasklist_lock);
1513 if (!unlikely(killed) && may_ptrace_stop()) {
1514 do_notify_parent_cldstop(current, CLD_TRAPPED);
1515 read_unlock(&tasklist_lock);
1516 schedule();
1517 } else {
1518 /*
1519 * By the time we got the lock, our tracer went away.
1520 * Don't drop the lock yet, another tracer may come.
1521 */
1522 __set_current_state(TASK_RUNNING);
1523 if (clear_code)
1524 current->exit_code = 0;
1525 read_unlock(&tasklist_lock);
1526 }
1527
1528 /*
1529 * While in TASK_TRACED, we were considered "frozen enough".
1530 * Now that we woke up, it's crucial if we're supposed to be
1531 * frozen that we freeze now before running anything substantial.
1532 */
1533 try_to_freeze();
1534
1535 /*
1536 * We are back. Now reacquire the siglock before touching
1537 * last_siginfo, so that we are sure to have synchronized with
1538 * any signal-sending on another CPU that wants to examine it.
1539 */
1540 spin_lock_irq(&current->sighand->siglock);
1541 current->last_siginfo = NULL;
1542
1543 /*
1544 * Queued signals ignored us while we were stopped for tracing.
1545 * So check for any that we should take before resuming user mode.
1546 * This sets TIF_SIGPENDING, but never clears it.
1547 */
1548 recalc_sigpending_tsk(current);
1549 }
1550
1551 void ptrace_notify(int exit_code)
1552 {
1553 siginfo_t info;
1554
1555 BUG_ON((exit_code & (0x7f | ~0xffff)) != SIGTRAP);
1556
1557 memset(&info, 0, sizeof info);
1558 info.si_signo = SIGTRAP;
1559 info.si_code = exit_code;
1560 info.si_pid = task_pid_vnr(current);
1561 info.si_uid = current->uid;
1562
1563 /* Let the debugger run. */
1564 spin_lock_irq(&current->sighand->siglock);
1565 ptrace_stop(exit_code, 1, &info);
1566 spin_unlock_irq(&current->sighand->siglock);
1567 }
1568
1569 static void
1570 finish_stop(int stop_count)
1571 {
1572 /*
1573 * If there are no other threads in the group, or if there is
1574 * a group stop in progress and we are the last to stop,
1575 * report to the parent. When ptraced, every thread reports itself.
1576 */
1577 if (stop_count == 0 || (current->ptrace & PT_PTRACED)) {
1578 read_lock(&tasklist_lock);
1579 do_notify_parent_cldstop(current, CLD_STOPPED);
1580 read_unlock(&tasklist_lock);
1581 }
1582
1583 do {
1584 schedule();
1585 } while (try_to_freeze());
1586 /*
1587 * Now we don't run again until continued.
1588 */
1589 current->exit_code = 0;
1590 }
1591
1592 /*
1593 * This performs the stopping for SIGSTOP and other stop signals.
1594 * We have to stop all threads in the thread group.
1595 * Returns nonzero if we've actually stopped and released the siglock.
1596 * Returns zero if we didn't stop and still hold the siglock.
1597 */
1598 static int do_signal_stop(int signr)
1599 {
1600 struct signal_struct *sig = current->signal;
1601 int stop_count;
1602
1603 if (sig->group_stop_count > 0) {
1604 /*
1605 * There is a group stop in progress. We don't need to
1606 * start another one.
1607 */
1608 stop_count = --sig->group_stop_count;
1609 } else {
1610 struct task_struct *t;
1611
1612 if (!likely(sig->flags & SIGNAL_STOP_DEQUEUED) ||
1613 unlikely(signal_group_exit(sig)))
1614 return 0;
1615 /*
1616 * There is no group stop already in progress.
1617 * We must initiate one now.
1618 */
1619 sig->group_exit_code = signr;
1620
1621 stop_count = 0;
1622 for (t = next_thread(current); t != current; t = next_thread(t))
1623 /*
1624 * Setting state to TASK_STOPPED for a group
1625 * stop is always done with the siglock held,
1626 * so this check has no races.
1627 */
1628 if (!(t->flags & PF_EXITING) &&
1629 !task_is_stopped_or_traced(t)) {
1630 stop_count++;
1631 signal_wake_up(t, 0);
1632 }
1633 sig->group_stop_count = stop_count;
1634 }
1635
1636 if (stop_count == 0)
1637 sig->flags = SIGNAL_STOP_STOPPED;
1638 current->exit_code = sig->group_exit_code;
1639 __set_current_state(TASK_STOPPED);
1640
1641 spin_unlock_irq(&current->sighand->siglock);
1642 finish_stop(stop_count);
1643 return 1;
1644 }
1645
1646 static int ptrace_signal(int signr, siginfo_t *info,
1647 struct pt_regs *regs, void *cookie)
1648 {
1649 if (!(current->ptrace & PT_PTRACED))
1650 return signr;
1651
1652 ptrace_signal_deliver(regs, cookie);
1653
1654 /* Let the debugger run. */
1655 ptrace_stop(signr, 0, info);
1656
1657 /* We're back. Did the debugger cancel the sig? */
1658 signr = current->exit_code;
1659 if (signr == 0)
1660 return signr;
1661
1662 current->exit_code = 0;
1663
1664 /* Update the siginfo structure if the signal has
1665 changed. If the debugger wanted something
1666 specific in the siginfo structure then it should
1667 have updated *info via PTRACE_SETSIGINFO. */
1668 if (signr != info->si_signo) {
1669 info->si_signo = signr;
1670 info->si_errno = 0;
1671 info->si_code = SI_USER;
1672 info->si_pid = task_pid_vnr(current->parent);
1673 info->si_uid = current->parent->uid;
1674 }
1675
1676 /* If the (new) signal is now blocked, requeue it. */
1677 if (sigismember(&current->blocked, signr)) {
1678 specific_send_sig_info(signr, info, current);
1679 signr = 0;
1680 }
1681
1682 return signr;
1683 }
1684
1685 int get_signal_to_deliver(siginfo_t *info, struct k_sigaction *return_ka,
1686 struct pt_regs *regs, void *cookie)
1687 {
1688 struct sighand_struct *sighand = current->sighand;
1689 struct signal_struct *signal = current->signal;
1690 int signr;
1691
1692 relock:
1693 /*
1694 * We'll jump back here after any time we were stopped in TASK_STOPPED.
1695 * While in TASK_STOPPED, we were considered "frozen enough".
1696 * Now that we woke up, it's crucial if we're supposed to be
1697 * frozen that we freeze now before running anything substantial.
1698 */
1699 try_to_freeze();
1700
1701 spin_lock_irq(&sighand->siglock);
1702 /*
1703 * Every stopped thread goes here after wakeup. Check to see if
1704 * we should notify the parent, prepare_signal(SIGCONT) encodes
1705 * the CLD_ si_code into SIGNAL_CLD_MASK bits.
1706 */
1707 if (unlikely(signal->flags & SIGNAL_CLD_MASK)) {
1708 int why = (signal->flags & SIGNAL_STOP_CONTINUED)
1709 ? CLD_CONTINUED : CLD_STOPPED;
1710 signal->flags &= ~SIGNAL_CLD_MASK;
1711 spin_unlock_irq(&sighand->siglock);
1712
1713 read_lock(&tasklist_lock);
1714 do_notify_parent_cldstop(current->group_leader, why);
1715 read_unlock(&tasklist_lock);
1716 goto relock;
1717 }
1718
1719 for (;;) {
1720 struct k_sigaction *ka;
1721
1722 if (unlikely(signal->group_stop_count > 0) &&
1723 do_signal_stop(0))
1724 goto relock;
1725
1726 signr = dequeue_signal(current, &current->blocked, info);
1727 if (!signr)
1728 break; /* will return 0 */
1729
1730 if (signr != SIGKILL) {
1731 signr = ptrace_signal(signr, info, regs, cookie);
1732 if (!signr)
1733 continue;
1734 }
1735
1736 ka = &sighand->action[signr-1];
1737 if (ka->sa.sa_handler == SIG_IGN) /* Do nothing. */
1738 continue;
1739 if (ka->sa.sa_handler != SIG_DFL) {
1740 /* Run the handler. */
1741 *return_ka = *ka;
1742
1743 if (ka->sa.sa_flags & SA_ONESHOT)
1744 ka->sa.sa_handler = SIG_DFL;
1745
1746 break; /* will return non-zero "signr" value */
1747 }
1748
1749 /*
1750 * Now we are doing the default action for this signal.
1751 */
1752 if (sig_kernel_ignore(signr)) /* Default is nothing. */
1753 continue;
1754
1755 /*
1756 * Global init gets no signals it doesn't want.
1757 */
1758 if (is_global_init(current))
1759 continue;
1760
1761 if (sig_kernel_stop(signr)) {
1762 /*
1763 * The default action is to stop all threads in
1764 * the thread group. The job control signals
1765 * do nothing in an orphaned pgrp, but SIGSTOP
1766 * always works. Note that siglock needs to be
1767 * dropped during the call to is_orphaned_pgrp()
1768 * because of lock ordering with tasklist_lock.
1769 * This allows an intervening SIGCONT to be posted.
1770 * We need to check for that and bail out if necessary.
1771 */
1772 if (signr != SIGSTOP) {
1773 spin_unlock_irq(&sighand->siglock);
1774
1775 /* signals can be posted during this window */
1776
1777 if (is_current_pgrp_orphaned())
1778 goto relock;
1779
1780 spin_lock_irq(&sighand->siglock);
1781 }
1782
1783 if (likely(do_signal_stop(signr))) {
1784 /* It released the siglock. */
1785 goto relock;
1786 }
1787
1788 /*
1789 * We didn't actually stop, due to a race
1790 * with SIGCONT or something like that.
1791 */
1792 continue;
1793 }
1794
1795 spin_unlock_irq(&sighand->siglock);
1796
1797 /*
1798 * Anything else is fatal, maybe with a core dump.
1799 */
1800 current->flags |= PF_SIGNALED;
1801
1802 if (sig_kernel_coredump(signr)) {
1803 if (print_fatal_signals)
1804 print_fatal_signal(regs, signr);
1805 /*
1806 * If it was able to dump core, this kills all
1807 * other threads in the group and synchronizes with
1808 * their demise. If we lost the race with another
1809 * thread getting here, it set group_exit_code
1810 * first and our do_group_exit call below will use
1811 * that value and ignore the one we pass it.
1812 */
1813 do_coredump((long)signr, signr, regs);
1814 }
1815
1816 /*
1817 * Death signals, no core dump.
1818 */
1819 do_group_exit(signr);
1820 /* NOTREACHED */
1821 }
1822 spin_unlock_irq(&sighand->siglock);
1823 return signr;
1824 }
1825
1826 void exit_signals(struct task_struct *tsk)
1827 {
1828 int group_stop = 0;
1829 struct task_struct *t;
1830
1831 if (thread_group_empty(tsk) || signal_group_exit(tsk->signal)) {
1832 tsk->flags |= PF_EXITING;
1833 return;
1834 }
1835
1836 spin_lock_irq(&tsk->sighand->siglock);
1837 /*
1838 * From now this task is not visible for group-wide signals,
1839 * see wants_signal(), do_signal_stop().
1840 */
1841 tsk->flags |= PF_EXITING;
1842 if (!signal_pending(tsk))
1843 goto out;
1844
1845 /* It could be that __group_complete_signal() choose us to
1846 * notify about group-wide signal. Another thread should be
1847 * woken now to take the signal since we will not.
1848 */
1849 for (t = tsk; (t = next_thread(t)) != tsk; )
1850 if (!signal_pending(t) && !(t->flags & PF_EXITING))
1851 recalc_sigpending_and_wake(t);
1852
1853 if (unlikely(tsk->signal->group_stop_count) &&
1854 !--tsk->signal->group_stop_count) {
1855 tsk->signal->flags = SIGNAL_STOP_STOPPED;
1856 group_stop = 1;
1857 }
1858 out:
1859 spin_unlock_irq(&tsk->sighand->siglock);
1860
1861 if (unlikely(group_stop)) {
1862 read_lock(&tasklist_lock);
1863 do_notify_parent_cldstop(tsk, CLD_STOPPED);
1864 read_unlock(&tasklist_lock);
1865 }
1866 }
1867
1868 EXPORT_SYMBOL(recalc_sigpending);
1869 EXPORT_SYMBOL_GPL(dequeue_signal);
1870 EXPORT_SYMBOL(flush_signals);
1871 EXPORT_SYMBOL(force_sig);
1872 EXPORT_SYMBOL(kill_proc);
1873 EXPORT_SYMBOL(ptrace_notify);
1874 EXPORT_SYMBOL(send_sig);
1875 EXPORT_SYMBOL(send_sig_info);
1876 EXPORT_SYMBOL(sigprocmask);
1877 EXPORT_SYMBOL(block_all_signals);
1878 EXPORT_SYMBOL(unblock_all_signals);
1879
1880
1881 /*
1882 * System call entry points.
1883 */
1884
1885 asmlinkage long sys_restart_syscall(void)
1886 {
1887 struct restart_block *restart = &current_thread_info()->restart_block;
1888 return restart->fn(restart);
1889 }
1890
1891 long do_no_restart_syscall(struct restart_block *param)
1892 {
1893 return -EINTR;
1894 }
1895
1896 /*
1897 * We don't need to get the kernel lock - this is all local to this
1898 * particular thread.. (and that's good, because this is _heavily_
1899 * used by various programs)
1900 */
1901
1902 /*
1903 * This is also useful for kernel threads that want to temporarily
1904 * (or permanently) block certain signals.
1905 *
1906 * NOTE! Unlike the user-mode sys_sigprocmask(), the kernel
1907 * interface happily blocks "unblockable" signals like SIGKILL
1908 * and friends.
1909 */
1910 int sigprocmask(int how, sigset_t *set, sigset_t *oldset)
1911 {
1912 int error;
1913
1914 spin_lock_irq(&current->sighand->siglock);
1915 if (oldset)
1916 *oldset = current->blocked;
1917
1918 error = 0;
1919 switch (how) {
1920 case SIG_BLOCK:
1921 sigorsets(&current->blocked, &current->blocked, set);
1922 break;
1923 case SIG_UNBLOCK:
1924 signandsets(&current->blocked, &current->blocked, set);
1925 break;
1926 case SIG_SETMASK:
1927 current->blocked = *set;
1928 break;
1929 default:
1930 error = -EINVAL;
1931 }
1932 recalc_sigpending();
1933 spin_unlock_irq(&current->sighand->siglock);
1934
1935 return error;
1936 }
1937
1938 asmlinkage long
1939 sys_rt_sigprocmask(int how, sigset_t __user *set, sigset_t __user *oset, size_t sigsetsize)
1940 {
1941 int error = -EINVAL;
1942 sigset_t old_set, new_set;
1943
1944 /* XXX: Don't preclude handling different sized sigset_t's. */
1945 if (sigsetsize != sizeof(sigset_t))
1946 goto out;
1947
1948 if (set) {
1949 error = -EFAULT;
1950 if (copy_from_user(&new_set, set, sizeof(*set)))
1951 goto out;
1952 sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
1953
1954 error = sigprocmask(how, &new_set, &old_set);
1955 if (error)
1956 goto out;
1957 if (oset)
1958 goto set_old;
1959 } else if (oset) {
1960 spin_lock_irq(&current->sighand->siglock);
1961 old_set = current->blocked;
1962 spin_unlock_irq(&current->sighand->siglock);
1963
1964 set_old:
1965 error = -EFAULT;
1966 if (copy_to_user(oset, &old_set, sizeof(*oset)))
1967 goto out;
1968 }
1969 error = 0;
1970 out:
1971 return error;
1972 }
1973
1974 long do_sigpending(void __user *set, unsigned long sigsetsize)
1975 {
1976 long error = -EINVAL;
1977 sigset_t pending;
1978
1979 if (sigsetsize > sizeof(sigset_t))
1980 goto out;
1981
1982 spin_lock_irq(&current->sighand->siglock);
1983 sigorsets(&pending, &current->pending.signal,
1984 &current->signal->shared_pending.signal);
1985 spin_unlock_irq(&current->sighand->siglock);
1986
1987 /* Outside the lock because only this thread touches it. */
1988 sigandsets(&pending, &current->blocked, &pending);
1989
1990 error = -EFAULT;
1991 if (!copy_to_user(set, &pending, sigsetsize))
1992 error = 0;
1993
1994 out:
1995 return error;
1996 }
1997
1998 asmlinkage long
1999 sys_rt_sigpending(sigset_t __user *set, size_t sigsetsize)
2000 {
2001 return do_sigpending(set, sigsetsize);
2002 }
2003
2004 #ifndef HAVE_ARCH_COPY_SIGINFO_TO_USER
2005
2006 int copy_siginfo_to_user(siginfo_t __user *to, siginfo_t *from)
2007 {
2008 int err;
2009
2010 if (!access_ok (VERIFY_WRITE, to, sizeof(siginfo_t)))
2011 return -EFAULT;
2012 if (from->si_code < 0)
2013 return __copy_to_user(to, from, sizeof(siginfo_t))
2014 ? -EFAULT : 0;
2015 /*
2016 * If you change siginfo_t structure, please be sure
2017 * this code is fixed accordingly.
2018 * Please remember to update the signalfd_copyinfo() function
2019 * inside fs/signalfd.c too, in case siginfo_t changes.
2020 * It should never copy any pad contained in the structure
2021 * to avoid security leaks, but must copy the generic
2022 * 3 ints plus the relevant union member.
2023 */
2024 err = __put_user(from->si_signo, &to->si_signo);
2025 err |= __put_user(from->si_errno, &to->si_errno);
2026 err |= __put_user((short)from->si_code, &to->si_code);
2027 switch (from->si_code & __SI_MASK) {
2028 case __SI_KILL:
2029 err |= __put_user(from->si_pid, &to->si_pid);
2030 err |= __put_user(from->si_uid, &to->si_uid);
2031 break;
2032 case __SI_TIMER:
2033 err |= __put_user(from->si_tid, &to->si_tid);
2034 err |= __put_user(from->si_overrun, &to->si_overrun);
2035 err |= __put_user(from->si_ptr, &to->si_ptr);
2036 break;
2037 case __SI_POLL:
2038 err |= __put_user(from->si_band, &to->si_band);
2039 err |= __put_user(from->si_fd, &to->si_fd);
2040 break;
2041 case __SI_FAULT:
2042 err |= __put_user(from->si_addr, &to->si_addr);
2043 #ifdef __ARCH_SI_TRAPNO
2044 err |= __put_user(from->si_trapno, &to->si_trapno);
2045 #endif
2046 break;
2047 case __SI_CHLD:
2048 err |= __put_user(from->si_pid, &to->si_pid);
2049 err |= __put_user(from->si_uid, &to->si_uid);
2050 err |= __put_user(from->si_status, &to->si_status);
2051 err |= __put_user(from->si_utime, &to->si_utime);
2052 err |= __put_user(from->si_stime, &to->si_stime);
2053 break;
2054 case __SI_RT: /* This is not generated by the kernel as of now. */
2055 case __SI_MESGQ: /* But this is */
2056 err |= __put_user(from->si_pid, &to->si_pid);
2057 err |= __put_user(from->si_uid, &to->si_uid);
2058 err |= __put_user(from->si_ptr, &to->si_ptr);
2059 break;
2060 default: /* this is just in case for now ... */
2061 err |= __put_user(from->si_pid, &to->si_pid);
2062 err |= __put_user(from->si_uid, &to->si_uid);
2063 break;
2064 }
2065 return err;
2066 }
2067
2068 #endif
2069
2070 asmlinkage long
2071 sys_rt_sigtimedwait(const sigset_t __user *uthese,
2072 siginfo_t __user *uinfo,
2073 const struct timespec __user *uts,
2074 size_t sigsetsize)
2075 {
2076 int ret, sig;
2077 sigset_t these;
2078 struct timespec ts;
2079 siginfo_t info;
2080 long timeout = 0;
2081
2082 /* XXX: Don't preclude handling different sized sigset_t's. */
2083 if (sigsetsize != sizeof(sigset_t))
2084 return -EINVAL;
2085
2086 if (copy_from_user(&these, uthese, sizeof(these)))
2087 return -EFAULT;
2088
2089 /*
2090 * Invert the set of allowed signals to get those we
2091 * want to block.
2092 */
2093 sigdelsetmask(&these, sigmask(SIGKILL)|sigmask(SIGSTOP));
2094 signotset(&these);
2095
2096 if (uts) {
2097 if (copy_from_user(&ts, uts, sizeof(ts)))
2098 return -EFAULT;
2099 if (ts.tv_nsec >= 1000000000L || ts.tv_nsec < 0
2100 || ts.tv_sec < 0)
2101 return -EINVAL;
2102 }
2103
2104 spin_lock_irq(&current->sighand->siglock);
2105 sig = dequeue_signal(current, &these, &info);
2106 if (!sig) {
2107 timeout = MAX_SCHEDULE_TIMEOUT;
2108 if (uts)
2109 timeout = (timespec_to_jiffies(&ts)
2110 + (ts.tv_sec || ts.tv_nsec));
2111
2112 if (timeout) {
2113 /* None ready -- temporarily unblock those we're
2114 * interested while we are sleeping in so that we'll
2115 * be awakened when they arrive. */
2116 current->real_blocked = current->blocked;
2117 sigandsets(&current->blocked, &current->blocked, &these);
2118 recalc_sigpending();
2119 spin_unlock_irq(&current->sighand->siglock);
2120
2121 timeout = schedule_timeout_interruptible(timeout);
2122
2123 spin_lock_irq(&current->sighand->siglock);
2124 sig = dequeue_signal(current, &these, &info);
2125 current->blocked = current->real_blocked;
2126 siginitset(&current->real_blocked, 0);
2127 recalc_sigpending();
2128 }
2129 }
2130 spin_unlock_irq(&current->sighand->siglock);
2131
2132 if (sig) {
2133 ret = sig;
2134 if (uinfo) {
2135 if (copy_siginfo_to_user(uinfo, &info))
2136 ret = -EFAULT;
2137 }
2138 } else {
2139 ret = -EAGAIN;
2140 if (timeout)
2141 ret = -EINTR;
2142 }
2143
2144 return ret;
2145 }
2146
2147 asmlinkage long
2148 sys_kill(int pid, int sig)
2149 {
2150 struct siginfo info;
2151
2152 info.si_signo = sig;
2153 info.si_errno = 0;
2154 info.si_code = SI_USER;
2155 info.si_pid = task_tgid_vnr(current);
2156 info.si_uid = current->uid;
2157
2158 return kill_something_info(sig, &info, pid);
2159 }
2160
2161 static int do_tkill(int tgid, int pid, int sig)
2162 {
2163 int error;
2164 struct siginfo info;
2165 struct task_struct *p;
2166 unsigned long flags;
2167
2168 error = -ESRCH;
2169 info.si_signo = sig;
2170 info.si_errno = 0;
2171 info.si_code = SI_TKILL;
2172 info.si_pid = task_tgid_vnr(current);
2173 info.si_uid = current->uid;
2174
2175 rcu_read_lock();
2176 p = find_task_by_vpid(pid);
2177 if (p && (tgid <= 0 || task_tgid_vnr(p) == tgid)) {
2178 error = check_kill_permission(sig, &info, p);
2179 /*
2180 * The null signal is a permissions and process existence
2181 * probe. No signal is actually delivered.
2182 *
2183 * If lock_task_sighand() fails we pretend the task dies
2184 * after receiving the signal. The window is tiny, and the
2185 * signal is private anyway.
2186 */
2187 if (!error && sig && lock_task_sighand(p, &flags)) {
2188 error = specific_send_sig_info(sig, &info, p);
2189 unlock_task_sighand(p, &flags);
2190 }
2191 }
2192 rcu_read_unlock();
2193
2194 return error;
2195 }
2196
2197 /**
2198 * sys_tgkill - send signal to one specific thread
2199 * @tgid: the thread group ID of the thread
2200 * @pid: the PID of the thread
2201 * @sig: signal to be sent
2202 *
2203 * This syscall also checks the @tgid and returns -ESRCH even if the PID
2204 * exists but it's not belonging to the target process anymore. This
2205 * method solves the problem of threads exiting and PIDs getting reused.
2206 */
2207 asmlinkage long sys_tgkill(int tgid, int pid, int sig)
2208 {
2209 /* This is only valid for single tasks */
2210 if (pid <= 0 || tgid <= 0)
2211 return -EINVAL;
2212
2213 return do_tkill(tgid, pid, sig);
2214 }
2215
2216 /*
2217 * Send a signal to only one task, even if it's a CLONE_THREAD task.
2218 */
2219 asmlinkage long
2220 sys_tkill(int pid, int sig)
2221 {
2222 /* This is only valid for single tasks */
2223 if (pid <= 0)
2224 return -EINVAL;
2225
2226 return do_tkill(0, pid, sig);
2227 }
2228
2229 asmlinkage long
2230 sys_rt_sigqueueinfo(int pid, int sig, siginfo_t __user *uinfo)
2231 {
2232 siginfo_t info;
2233
2234 if (copy_from_user(&info, uinfo, sizeof(siginfo_t)))
2235 return -EFAULT;
2236
2237 /* Not even root can pretend to send signals from the kernel.
2238 Nor can they impersonate a kill(), which adds source info. */
2239 if (info.si_code >= 0)
2240 return -EPERM;
2241 info.si_signo = sig;
2242
2243 /* POSIX.1b doesn't mention process groups. */
2244 return kill_proc_info(sig, &info, pid);
2245 }
2246
2247 int do_sigaction(int sig, struct k_sigaction *act, struct k_sigaction *oact)
2248 {
2249 struct task_struct *t = current;
2250 struct k_sigaction *k;
2251 sigset_t mask;
2252
2253 if (!valid_signal(sig) || sig < 1 || (act && sig_kernel_only(sig)))
2254 return -EINVAL;
2255
2256 k = &t->sighand->action[sig-1];
2257
2258 spin_lock_irq(&current->sighand->siglock);
2259 if (oact)
2260 *oact = *k;
2261
2262 if (act) {
2263 sigdelsetmask(&act->sa.sa_mask,
2264 sigmask(SIGKILL) | sigmask(SIGSTOP));
2265 *k = *act;
2266 /*
2267 * POSIX 3.3.1.3:
2268 * "Setting a signal action to SIG_IGN for a signal that is
2269 * pending shall cause the pending signal to be discarded,
2270 * whether or not it is blocked."
2271 *
2272 * "Setting a signal action to SIG_DFL for a signal that is
2273 * pending and whose default action is to ignore the signal
2274 * (for example, SIGCHLD), shall cause the pending signal to
2275 * be discarded, whether or not it is blocked"
2276 */
2277 if (__sig_ignored(t, sig)) {
2278 sigemptyset(&mask);
2279 sigaddset(&mask, sig);
2280 rm_from_queue_full(&mask, &t->signal->shared_pending);
2281 do {
2282 rm_from_queue_full(&mask, &t->pending);
2283 t = next_thread(t);
2284 } while (t != current);
2285 }
2286 }
2287
2288 spin_unlock_irq(&current->sighand->siglock);
2289 return 0;
2290 }
2291
2292 int
2293 do_sigaltstack (const stack_t __user *uss, stack_t __user *uoss, unsigned long sp)
2294 {
2295 stack_t oss;
2296 int error;
2297
2298 if (uoss) {
2299 oss.ss_sp = (void __user *) current->sas_ss_sp;
2300 oss.ss_size = current->sas_ss_size;
2301 oss.ss_flags = sas_ss_flags(sp);
2302 }
2303
2304 if (uss) {
2305 void __user *ss_sp;
2306 size_t ss_size;
2307 int ss_flags;
2308
2309 error = -EFAULT;
2310 if (!access_ok(VERIFY_READ, uss, sizeof(*uss))
2311 || __get_user(ss_sp, &uss->ss_sp)
2312 || __get_user(ss_flags, &uss->ss_flags)
2313 || __get_user(ss_size, &uss->ss_size))
2314 goto out;
2315
2316 error = -EPERM;
2317 if (on_sig_stack(sp))
2318 goto out;
2319
2320 error = -EINVAL;
2321 /*
2322 *
2323 * Note - this code used to test ss_flags incorrectly
2324 * old code may have been written using ss_flags==0
2325 * to mean ss_flags==SS_ONSTACK (as this was the only
2326 * way that worked) - this fix preserves that older
2327 * mechanism
2328 */
2329 if (ss_flags != SS_DISABLE && ss_flags != SS_ONSTACK && ss_flags != 0)
2330 goto out;
2331
2332 if (ss_flags == SS_DISABLE) {
2333 ss_size = 0;
2334 ss_sp = NULL;
2335 } else {
2336 error = -ENOMEM;
2337 if (ss_size < MINSIGSTKSZ)
2338 goto out;
2339 }
2340
2341 current->sas_ss_sp = (unsigned long) ss_sp;
2342 current->sas_ss_size = ss_size;
2343 }
2344
2345 if (uoss) {
2346 error = -EFAULT;
2347 if (copy_to_user(uoss, &oss, sizeof(oss)))
2348 goto out;
2349 }
2350
2351 error = 0;
2352 out:
2353 return error;
2354 }
2355
2356 #ifdef __ARCH_WANT_SYS_SIGPENDING
2357
2358 asmlinkage long
2359 sys_sigpending(old_sigset_t __user *set)
2360 {
2361 return do_sigpending(set, sizeof(*set));
2362 }
2363
2364 #endif
2365
2366 #ifdef __ARCH_WANT_SYS_SIGPROCMASK
2367 /* Some platforms have their own version with special arguments others
2368 support only sys_rt_sigprocmask. */
2369
2370 asmlinkage long
2371 sys_sigprocmask(int how, old_sigset_t __user *set, old_sigset_t __user *oset)
2372 {
2373 int error;
2374 old_sigset_t old_set, new_set;
2375
2376 if (set) {
2377 error = -EFAULT;
2378 if (copy_from_user(&new_set, set, sizeof(*set)))
2379 goto out;
2380 new_set &= ~(sigmask(SIGKILL) | sigmask(SIGSTOP));
2381
2382 spin_lock_irq(&current->sighand->siglock);
2383 old_set = current->blocked.sig[0];
2384
2385 error = 0;
2386 switch (how) {
2387 default:
2388 error = -EINVAL;
2389 break;
2390 case SIG_BLOCK:
2391 sigaddsetmask(&current->blocked, new_set);
2392 break;
2393 case SIG_UNBLOCK:
2394 sigdelsetmask(&current->blocked, new_set);
2395 break;
2396 case SIG_SETMASK:
2397 current->blocked.sig[0] = new_set;
2398 break;
2399 }
2400
2401 recalc_sigpending();
2402 spin_unlock_irq(&current->sighand->siglock);
2403 if (error)
2404 goto out;
2405 if (oset)
2406 goto set_old;
2407 } else if (oset) {
2408 old_set = current->blocked.sig[0];
2409 set_old:
2410 error = -EFAULT;
2411 if (copy_to_user(oset, &old_set, sizeof(*oset)))
2412 goto out;
2413 }
2414 error = 0;
2415 out:
2416 return error;
2417 }
2418 #endif /* __ARCH_WANT_SYS_SIGPROCMASK */
2419
2420 #ifdef __ARCH_WANT_SYS_RT_SIGACTION
2421 asmlinkage long
2422 sys_rt_sigaction(int sig,
2423 const struct sigaction __user *act,
2424 struct sigaction __user *oact,
2425 size_t sigsetsize)
2426 {
2427 struct k_sigaction new_sa, old_sa;
2428 int ret = -EINVAL;
2429
2430 /* XXX: Don't preclude handling different sized sigset_t's. */
2431 if (sigsetsize != sizeof(sigset_t))
2432 goto out;
2433
2434 if (act) {
2435 if (copy_from_user(&new_sa.sa, act, sizeof(new_sa.sa)))
2436 return -EFAULT;
2437 }
2438
2439 ret = do_sigaction(sig, act ? &new_sa : NULL, oact ? &old_sa : NULL);
2440
2441 if (!ret && oact) {
2442 if (copy_to_user(oact, &old_sa.sa, sizeof(old_sa.sa)))
2443 return -EFAULT;
2444 }
2445 out:
2446 return ret;
2447 }
2448 #endif /* __ARCH_WANT_SYS_RT_SIGACTION */
2449
2450 #ifdef __ARCH_WANT_SYS_SGETMASK
2451
2452 /*
2453 * For backwards compatibility. Functionality superseded by sigprocmask.
2454 */
2455 asmlinkage long
2456 sys_sgetmask(void)
2457 {
2458 /* SMP safe */
2459 return current->blocked.sig[0];
2460 }
2461
2462 asmlinkage long
2463 sys_ssetmask(int newmask)
2464 {
2465 int old;
2466
2467 spin_lock_irq(&current->sighand->siglock);
2468 old = current->blocked.sig[0];
2469
2470 siginitset(&current->blocked, newmask & ~(sigmask(SIGKILL)|
2471 sigmask(SIGSTOP)));
2472 recalc_sigpending();
2473 spin_unlock_irq(&current->sighand->siglock);
2474
2475 return old;
2476 }
2477 #endif /* __ARCH_WANT_SGETMASK */
2478
2479 #ifdef __ARCH_WANT_SYS_SIGNAL
2480 /*
2481 * For backwards compatibility. Functionality superseded by sigaction.
2482 */
2483 asmlinkage unsigned long
2484 sys_signal(int sig, __sighandler_t handler)
2485 {
2486 struct k_sigaction new_sa, old_sa;
2487 int ret;
2488
2489 new_sa.sa.sa_handler = handler;
2490 new_sa.sa.sa_flags = SA_ONESHOT | SA_NOMASK;
2491 sigemptyset(&new_sa.sa.sa_mask);
2492
2493 ret = do_sigaction(sig, &new_sa, &old_sa);
2494
2495 return ret ? ret : (unsigned long)old_sa.sa.sa_handler;
2496 }
2497 #endif /* __ARCH_WANT_SYS_SIGNAL */
2498
2499 #ifdef __ARCH_WANT_SYS_PAUSE
2500
2501 asmlinkage long
2502 sys_pause(void)
2503 {
2504 current->state = TASK_INTERRUPTIBLE;
2505 schedule();
2506 return -ERESTARTNOHAND;
2507 }
2508
2509 #endif
2510
2511 #ifdef __ARCH_WANT_SYS_RT_SIGSUSPEND
2512 asmlinkage long sys_rt_sigsuspend(sigset_t __user *unewset, size_t sigsetsize)
2513 {
2514 sigset_t newset;
2515
2516 /* XXX: Don't preclude handling different sized sigset_t's. */
2517 if (sigsetsize != sizeof(sigset_t))
2518 return -EINVAL;
2519
2520 if (copy_from_user(&newset, unewset, sizeof(newset)))
2521 return -EFAULT;
2522 sigdelsetmask(&newset, sigmask(SIGKILL)|sigmask(SIGSTOP));
2523
2524 spin_lock_irq(&current->sighand->siglock);
2525 current->saved_sigmask = current->blocked;
2526 current->blocked = newset;
2527 recalc_sigpending();
2528 spin_unlock_irq(&current->sighand->siglock);
2529
2530 current->state = TASK_INTERRUPTIBLE;
2531 schedule();
2532 set_thread_flag(TIF_RESTORE_SIGMASK);
2533 return -ERESTARTNOHAND;
2534 }
2535 #endif /* __ARCH_WANT_SYS_RT_SIGSUSPEND */
2536
2537 __attribute__((weak)) const char *arch_vma_name(struct vm_area_struct *vma)
2538 {
2539 return NULL;
2540 }
2541
2542 void __init signals_init(void)
2543 {
2544 sigqueue_cachep = KMEM_CACHE(sigqueue, SLAB_PANIC);
2545 }