]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - kernel/time/clockevents.c
drivers/rtc: Remove redundant rtc_valid_tm() from rtc_resume()
[mirror_ubuntu-zesty-kernel.git] / kernel / time / clockevents.c
1 /*
2 * linux/kernel/time/clockevents.c
3 *
4 * This file contains functions which manage clock event devices.
5 *
6 * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
7 * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
8 * Copyright(C) 2006-2007, Timesys Corp., Thomas Gleixner
9 *
10 * This code is licenced under the GPL version 2. For details see
11 * kernel-base/COPYING.
12 */
13
14 #include <linux/clockchips.h>
15 #include <linux/hrtimer.h>
16 #include <linux/init.h>
17 #include <linux/module.h>
18 #include <linux/smp.h>
19 #include <linux/device.h>
20
21 #include "tick-internal.h"
22
23 /* The registered clock event devices */
24 static LIST_HEAD(clockevent_devices);
25 static LIST_HEAD(clockevents_released);
26 /* Protection for the above */
27 static DEFINE_RAW_SPINLOCK(clockevents_lock);
28 /* Protection for unbind operations */
29 static DEFINE_MUTEX(clockevents_mutex);
30
31 struct ce_unbind {
32 struct clock_event_device *ce;
33 int res;
34 };
35
36 static u64 cev_delta2ns(unsigned long latch, struct clock_event_device *evt,
37 bool ismax)
38 {
39 u64 clc = (u64) latch << evt->shift;
40 u64 rnd;
41
42 if (unlikely(!evt->mult)) {
43 evt->mult = 1;
44 WARN_ON(1);
45 }
46 rnd = (u64) evt->mult - 1;
47
48 /*
49 * Upper bound sanity check. If the backwards conversion is
50 * not equal latch, we know that the above shift overflowed.
51 */
52 if ((clc >> evt->shift) != (u64)latch)
53 clc = ~0ULL;
54
55 /*
56 * Scaled math oddities:
57 *
58 * For mult <= (1 << shift) we can safely add mult - 1 to
59 * prevent integer rounding loss. So the backwards conversion
60 * from nsec to device ticks will be correct.
61 *
62 * For mult > (1 << shift), i.e. device frequency is > 1GHz we
63 * need to be careful. Adding mult - 1 will result in a value
64 * which when converted back to device ticks can be larger
65 * than latch by up to (mult - 1) >> shift. For the min_delta
66 * calculation we still want to apply this in order to stay
67 * above the minimum device ticks limit. For the upper limit
68 * we would end up with a latch value larger than the upper
69 * limit of the device, so we omit the add to stay below the
70 * device upper boundary.
71 *
72 * Also omit the add if it would overflow the u64 boundary.
73 */
74 if ((~0ULL - clc > rnd) &&
75 (!ismax || evt->mult <= (1ULL << evt->shift)))
76 clc += rnd;
77
78 do_div(clc, evt->mult);
79
80 /* Deltas less than 1usec are pointless noise */
81 return clc > 1000 ? clc : 1000;
82 }
83
84 /**
85 * clockevents_delta2ns - Convert a latch value (device ticks) to nanoseconds
86 * @latch: value to convert
87 * @evt: pointer to clock event device descriptor
88 *
89 * Math helper, returns latch value converted to nanoseconds (bound checked)
90 */
91 u64 clockevent_delta2ns(unsigned long latch, struct clock_event_device *evt)
92 {
93 return cev_delta2ns(latch, evt, false);
94 }
95 EXPORT_SYMBOL_GPL(clockevent_delta2ns);
96
97 static int __clockevents_set_state(struct clock_event_device *dev,
98 enum clock_event_state state)
99 {
100 /* Transition with legacy set_mode() callback */
101 if (dev->set_mode) {
102 /* Legacy callback doesn't support new modes */
103 if (state > CLOCK_EVT_STATE_ONESHOT)
104 return -ENOSYS;
105 /*
106 * 'clock_event_state' and 'clock_event_mode' have 1-to-1
107 * mapping until *_ONESHOT, and so a simple cast will work.
108 */
109 dev->set_mode((enum clock_event_mode)state, dev);
110 dev->mode = (enum clock_event_mode)state;
111 return 0;
112 }
113
114 if (dev->features & CLOCK_EVT_FEAT_DUMMY)
115 return 0;
116
117 /* Transition with new state-specific callbacks */
118 switch (state) {
119 case CLOCK_EVT_STATE_DETACHED:
120 /*
121 * This is an internal state, which is guaranteed to go from
122 * SHUTDOWN to DETACHED. No driver interaction required.
123 */
124 return 0;
125
126 case CLOCK_EVT_STATE_SHUTDOWN:
127 return dev->set_state_shutdown(dev);
128
129 case CLOCK_EVT_STATE_PERIODIC:
130 /* Core internal bug */
131 if (!(dev->features & CLOCK_EVT_FEAT_PERIODIC))
132 return -ENOSYS;
133 return dev->set_state_periodic(dev);
134
135 case CLOCK_EVT_STATE_ONESHOT:
136 /* Core internal bug */
137 if (!(dev->features & CLOCK_EVT_FEAT_ONESHOT))
138 return -ENOSYS;
139 return dev->set_state_oneshot(dev);
140
141 default:
142 return -ENOSYS;
143 }
144 }
145
146 /**
147 * clockevents_set_state - set the operating state of a clock event device
148 * @dev: device to modify
149 * @state: new state
150 *
151 * Must be called with interrupts disabled !
152 */
153 void clockevents_set_state(struct clock_event_device *dev,
154 enum clock_event_state state)
155 {
156 if (dev->state != state) {
157 if (__clockevents_set_state(dev, state))
158 return;
159
160 dev->state = state;
161
162 /*
163 * A nsec2cyc multiplicator of 0 is invalid and we'd crash
164 * on it, so fix it up and emit a warning:
165 */
166 if (state == CLOCK_EVT_STATE_ONESHOT) {
167 if (unlikely(!dev->mult)) {
168 dev->mult = 1;
169 WARN_ON(1);
170 }
171 }
172 }
173 }
174
175 /**
176 * clockevents_shutdown - shutdown the device and clear next_event
177 * @dev: device to shutdown
178 */
179 void clockevents_shutdown(struct clock_event_device *dev)
180 {
181 clockevents_set_state(dev, CLOCK_EVT_STATE_SHUTDOWN);
182 dev->next_event.tv64 = KTIME_MAX;
183 }
184
185 /**
186 * clockevents_tick_resume - Resume the tick device before using it again
187 * @dev: device to resume
188 */
189 int clockevents_tick_resume(struct clock_event_device *dev)
190 {
191 int ret = 0;
192
193 if (dev->set_mode) {
194 dev->set_mode(CLOCK_EVT_MODE_RESUME, dev);
195 dev->mode = CLOCK_EVT_MODE_RESUME;
196 } else if (dev->tick_resume) {
197 ret = dev->tick_resume(dev);
198 }
199
200 return ret;
201 }
202
203 #ifdef CONFIG_GENERIC_CLOCKEVENTS_MIN_ADJUST
204
205 /* Limit min_delta to a jiffie */
206 #define MIN_DELTA_LIMIT (NSEC_PER_SEC / HZ)
207
208 /**
209 * clockevents_increase_min_delta - raise minimum delta of a clock event device
210 * @dev: device to increase the minimum delta
211 *
212 * Returns 0 on success, -ETIME when the minimum delta reached the limit.
213 */
214 static int clockevents_increase_min_delta(struct clock_event_device *dev)
215 {
216 /* Nothing to do if we already reached the limit */
217 if (dev->min_delta_ns >= MIN_DELTA_LIMIT) {
218 printk_deferred(KERN_WARNING
219 "CE: Reprogramming failure. Giving up\n");
220 dev->next_event.tv64 = KTIME_MAX;
221 return -ETIME;
222 }
223
224 if (dev->min_delta_ns < 5000)
225 dev->min_delta_ns = 5000;
226 else
227 dev->min_delta_ns += dev->min_delta_ns >> 1;
228
229 if (dev->min_delta_ns > MIN_DELTA_LIMIT)
230 dev->min_delta_ns = MIN_DELTA_LIMIT;
231
232 printk_deferred(KERN_WARNING
233 "CE: %s increased min_delta_ns to %llu nsec\n",
234 dev->name ? dev->name : "?",
235 (unsigned long long) dev->min_delta_ns);
236 return 0;
237 }
238
239 /**
240 * clockevents_program_min_delta - Set clock event device to the minimum delay.
241 * @dev: device to program
242 *
243 * Returns 0 on success, -ETIME when the retry loop failed.
244 */
245 static int clockevents_program_min_delta(struct clock_event_device *dev)
246 {
247 unsigned long long clc;
248 int64_t delta;
249 int i;
250
251 for (i = 0;;) {
252 delta = dev->min_delta_ns;
253 dev->next_event = ktime_add_ns(ktime_get(), delta);
254
255 if (dev->state == CLOCK_EVT_STATE_SHUTDOWN)
256 return 0;
257
258 dev->retries++;
259 clc = ((unsigned long long) delta * dev->mult) >> dev->shift;
260 if (dev->set_next_event((unsigned long) clc, dev) == 0)
261 return 0;
262
263 if (++i > 2) {
264 /*
265 * We tried 3 times to program the device with the
266 * given min_delta_ns. Try to increase the minimum
267 * delta, if that fails as well get out of here.
268 */
269 if (clockevents_increase_min_delta(dev))
270 return -ETIME;
271 i = 0;
272 }
273 }
274 }
275
276 #else /* CONFIG_GENERIC_CLOCKEVENTS_MIN_ADJUST */
277
278 /**
279 * clockevents_program_min_delta - Set clock event device to the minimum delay.
280 * @dev: device to program
281 *
282 * Returns 0 on success, -ETIME when the retry loop failed.
283 */
284 static int clockevents_program_min_delta(struct clock_event_device *dev)
285 {
286 unsigned long long clc;
287 int64_t delta;
288
289 delta = dev->min_delta_ns;
290 dev->next_event = ktime_add_ns(ktime_get(), delta);
291
292 if (dev->state == CLOCK_EVT_STATE_SHUTDOWN)
293 return 0;
294
295 dev->retries++;
296 clc = ((unsigned long long) delta * dev->mult) >> dev->shift;
297 return dev->set_next_event((unsigned long) clc, dev);
298 }
299
300 #endif /* CONFIG_GENERIC_CLOCKEVENTS_MIN_ADJUST */
301
302 /**
303 * clockevents_program_event - Reprogram the clock event device.
304 * @dev: device to program
305 * @expires: absolute expiry time (monotonic clock)
306 * @force: program minimum delay if expires can not be set
307 *
308 * Returns 0 on success, -ETIME when the event is in the past.
309 */
310 int clockevents_program_event(struct clock_event_device *dev, ktime_t expires,
311 bool force)
312 {
313 unsigned long long clc;
314 int64_t delta;
315 int rc;
316
317 if (unlikely(expires.tv64 < 0)) {
318 WARN_ON_ONCE(1);
319 return -ETIME;
320 }
321
322 dev->next_event = expires;
323
324 if (dev->state == CLOCK_EVT_STATE_SHUTDOWN)
325 return 0;
326
327 /* Shortcut for clockevent devices that can deal with ktime. */
328 if (dev->features & CLOCK_EVT_FEAT_KTIME)
329 return dev->set_next_ktime(expires, dev);
330
331 delta = ktime_to_ns(ktime_sub(expires, ktime_get()));
332 if (delta <= 0)
333 return force ? clockevents_program_min_delta(dev) : -ETIME;
334
335 delta = min(delta, (int64_t) dev->max_delta_ns);
336 delta = max(delta, (int64_t) dev->min_delta_ns);
337
338 clc = ((unsigned long long) delta * dev->mult) >> dev->shift;
339 rc = dev->set_next_event((unsigned long) clc, dev);
340
341 return (rc && force) ? clockevents_program_min_delta(dev) : rc;
342 }
343
344 /*
345 * Called after a notify add to make devices available which were
346 * released from the notifier call.
347 */
348 static void clockevents_notify_released(void)
349 {
350 struct clock_event_device *dev;
351
352 while (!list_empty(&clockevents_released)) {
353 dev = list_entry(clockevents_released.next,
354 struct clock_event_device, list);
355 list_del(&dev->list);
356 list_add(&dev->list, &clockevent_devices);
357 tick_check_new_device(dev);
358 }
359 }
360
361 /*
362 * Try to install a replacement clock event device
363 */
364 static int clockevents_replace(struct clock_event_device *ced)
365 {
366 struct clock_event_device *dev, *newdev = NULL;
367
368 list_for_each_entry(dev, &clockevent_devices, list) {
369 if (dev == ced || dev->state != CLOCK_EVT_STATE_DETACHED)
370 continue;
371
372 if (!tick_check_replacement(newdev, dev))
373 continue;
374
375 if (!try_module_get(dev->owner))
376 continue;
377
378 if (newdev)
379 module_put(newdev->owner);
380 newdev = dev;
381 }
382 if (newdev) {
383 tick_install_replacement(newdev);
384 list_del_init(&ced->list);
385 }
386 return newdev ? 0 : -EBUSY;
387 }
388
389 /*
390 * Called with clockevents_mutex and clockevents_lock held
391 */
392 static int __clockevents_try_unbind(struct clock_event_device *ced, int cpu)
393 {
394 /* Fast track. Device is unused */
395 if (ced->state == CLOCK_EVT_STATE_DETACHED) {
396 list_del_init(&ced->list);
397 return 0;
398 }
399
400 return ced == per_cpu(tick_cpu_device, cpu).evtdev ? -EAGAIN : -EBUSY;
401 }
402
403 /*
404 * SMP function call to unbind a device
405 */
406 static void __clockevents_unbind(void *arg)
407 {
408 struct ce_unbind *cu = arg;
409 int res;
410
411 raw_spin_lock(&clockevents_lock);
412 res = __clockevents_try_unbind(cu->ce, smp_processor_id());
413 if (res == -EAGAIN)
414 res = clockevents_replace(cu->ce);
415 cu->res = res;
416 raw_spin_unlock(&clockevents_lock);
417 }
418
419 /*
420 * Issues smp function call to unbind a per cpu device. Called with
421 * clockevents_mutex held.
422 */
423 static int clockevents_unbind(struct clock_event_device *ced, int cpu)
424 {
425 struct ce_unbind cu = { .ce = ced, .res = -ENODEV };
426
427 smp_call_function_single(cpu, __clockevents_unbind, &cu, 1);
428 return cu.res;
429 }
430
431 /*
432 * Unbind a clockevents device.
433 */
434 int clockevents_unbind_device(struct clock_event_device *ced, int cpu)
435 {
436 int ret;
437
438 mutex_lock(&clockevents_mutex);
439 ret = clockevents_unbind(ced, cpu);
440 mutex_unlock(&clockevents_mutex);
441 return ret;
442 }
443 EXPORT_SYMBOL_GPL(clockevents_unbind);
444
445 /* Sanity check of state transition callbacks */
446 static int clockevents_sanity_check(struct clock_event_device *dev)
447 {
448 /* Legacy set_mode() callback */
449 if (dev->set_mode) {
450 /* We shouldn't be supporting new modes now */
451 WARN_ON(dev->set_state_periodic || dev->set_state_oneshot ||
452 dev->set_state_shutdown || dev->tick_resume);
453
454 BUG_ON(dev->mode != CLOCK_EVT_MODE_UNUSED);
455 return 0;
456 }
457
458 if (dev->features & CLOCK_EVT_FEAT_DUMMY)
459 return 0;
460
461 /* New state-specific callbacks */
462 if (!dev->set_state_shutdown)
463 return -EINVAL;
464
465 if ((dev->features & CLOCK_EVT_FEAT_PERIODIC) &&
466 !dev->set_state_periodic)
467 return -EINVAL;
468
469 if ((dev->features & CLOCK_EVT_FEAT_ONESHOT) &&
470 !dev->set_state_oneshot)
471 return -EINVAL;
472
473 return 0;
474 }
475
476 /**
477 * clockevents_register_device - register a clock event device
478 * @dev: device to register
479 */
480 void clockevents_register_device(struct clock_event_device *dev)
481 {
482 unsigned long flags;
483
484 BUG_ON(clockevents_sanity_check(dev));
485
486 /* Initialize state to DETACHED */
487 dev->state = CLOCK_EVT_STATE_DETACHED;
488
489 if (!dev->cpumask) {
490 WARN_ON(num_possible_cpus() > 1);
491 dev->cpumask = cpumask_of(smp_processor_id());
492 }
493
494 raw_spin_lock_irqsave(&clockevents_lock, flags);
495
496 list_add(&dev->list, &clockevent_devices);
497 tick_check_new_device(dev);
498 clockevents_notify_released();
499
500 raw_spin_unlock_irqrestore(&clockevents_lock, flags);
501 }
502 EXPORT_SYMBOL_GPL(clockevents_register_device);
503
504 void clockevents_config(struct clock_event_device *dev, u32 freq)
505 {
506 u64 sec;
507
508 if (!(dev->features & CLOCK_EVT_FEAT_ONESHOT))
509 return;
510
511 /*
512 * Calculate the maximum number of seconds we can sleep. Limit
513 * to 10 minutes for hardware which can program more than
514 * 32bit ticks so we still get reasonable conversion values.
515 */
516 sec = dev->max_delta_ticks;
517 do_div(sec, freq);
518 if (!sec)
519 sec = 1;
520 else if (sec > 600 && dev->max_delta_ticks > UINT_MAX)
521 sec = 600;
522
523 clockevents_calc_mult_shift(dev, freq, sec);
524 dev->min_delta_ns = cev_delta2ns(dev->min_delta_ticks, dev, false);
525 dev->max_delta_ns = cev_delta2ns(dev->max_delta_ticks, dev, true);
526 }
527
528 /**
529 * clockevents_config_and_register - Configure and register a clock event device
530 * @dev: device to register
531 * @freq: The clock frequency
532 * @min_delta: The minimum clock ticks to program in oneshot mode
533 * @max_delta: The maximum clock ticks to program in oneshot mode
534 *
535 * min/max_delta can be 0 for devices which do not support oneshot mode.
536 */
537 void clockevents_config_and_register(struct clock_event_device *dev,
538 u32 freq, unsigned long min_delta,
539 unsigned long max_delta)
540 {
541 dev->min_delta_ticks = min_delta;
542 dev->max_delta_ticks = max_delta;
543 clockevents_config(dev, freq);
544 clockevents_register_device(dev);
545 }
546 EXPORT_SYMBOL_GPL(clockevents_config_and_register);
547
548 int __clockevents_update_freq(struct clock_event_device *dev, u32 freq)
549 {
550 clockevents_config(dev, freq);
551
552 if (dev->state == CLOCK_EVT_STATE_ONESHOT)
553 return clockevents_program_event(dev, dev->next_event, false);
554
555 if (dev->state == CLOCK_EVT_STATE_PERIODIC)
556 return __clockevents_set_state(dev, CLOCK_EVT_STATE_PERIODIC);
557
558 return 0;
559 }
560
561 /**
562 * clockevents_update_freq - Update frequency and reprogram a clock event device.
563 * @dev: device to modify
564 * @freq: new device frequency
565 *
566 * Reconfigure and reprogram a clock event device in oneshot
567 * mode. Must be called on the cpu for which the device delivers per
568 * cpu timer events. If called for the broadcast device the core takes
569 * care of serialization.
570 *
571 * Returns 0 on success, -ETIME when the event is in the past.
572 */
573 int clockevents_update_freq(struct clock_event_device *dev, u32 freq)
574 {
575 unsigned long flags;
576 int ret;
577
578 local_irq_save(flags);
579 ret = tick_broadcast_update_freq(dev, freq);
580 if (ret == -ENODEV)
581 ret = __clockevents_update_freq(dev, freq);
582 local_irq_restore(flags);
583 return ret;
584 }
585
586 /*
587 * Noop handler when we shut down an event device
588 */
589 void clockevents_handle_noop(struct clock_event_device *dev)
590 {
591 }
592
593 /**
594 * clockevents_exchange_device - release and request clock devices
595 * @old: device to release (can be NULL)
596 * @new: device to request (can be NULL)
597 *
598 * Called from various tick functions with clockevents_lock held and
599 * interrupts disabled.
600 */
601 void clockevents_exchange_device(struct clock_event_device *old,
602 struct clock_event_device *new)
603 {
604 /*
605 * Caller releases a clock event device. We queue it into the
606 * released list and do a notify add later.
607 */
608 if (old) {
609 module_put(old->owner);
610 clockevents_set_state(old, CLOCK_EVT_STATE_DETACHED);
611 list_del(&old->list);
612 list_add(&old->list, &clockevents_released);
613 }
614
615 if (new) {
616 BUG_ON(new->state != CLOCK_EVT_STATE_DETACHED);
617 clockevents_shutdown(new);
618 }
619 }
620
621 /**
622 * clockevents_suspend - suspend clock devices
623 */
624 void clockevents_suspend(void)
625 {
626 struct clock_event_device *dev;
627
628 list_for_each_entry_reverse(dev, &clockevent_devices, list)
629 if (dev->suspend)
630 dev->suspend(dev);
631 }
632
633 /**
634 * clockevents_resume - resume clock devices
635 */
636 void clockevents_resume(void)
637 {
638 struct clock_event_device *dev;
639
640 list_for_each_entry(dev, &clockevent_devices, list)
641 if (dev->resume)
642 dev->resume(dev);
643 }
644
645 /**
646 * clockevents_notify - notification about relevant events
647 * Returns 0 on success, any other value on error
648 */
649 int clockevents_notify(unsigned long reason, void *arg)
650 {
651 struct clock_event_device *dev, *tmp;
652 unsigned long flags;
653 int cpu, ret = 0;
654
655 raw_spin_lock_irqsave(&clockevents_lock, flags);
656
657 switch (reason) {
658 case CLOCK_EVT_NOTIFY_BROADCAST_ON:
659 case CLOCK_EVT_NOTIFY_BROADCAST_OFF:
660 case CLOCK_EVT_NOTIFY_BROADCAST_FORCE:
661 tick_broadcast_on_off(reason, arg);
662 break;
663
664 case CLOCK_EVT_NOTIFY_BROADCAST_ENTER:
665 case CLOCK_EVT_NOTIFY_BROADCAST_EXIT:
666 ret = tick_broadcast_oneshot_control(reason);
667 break;
668
669 case CLOCK_EVT_NOTIFY_CPU_DYING:
670 tick_handover_do_timer(arg);
671 break;
672
673 case CLOCK_EVT_NOTIFY_CPU_DEAD:
674 tick_shutdown_broadcast_oneshot(arg);
675 tick_shutdown_broadcast(arg);
676 tick_shutdown(arg);
677 /*
678 * Unregister the clock event devices which were
679 * released from the users in the notify chain.
680 */
681 list_for_each_entry_safe(dev, tmp, &clockevents_released, list)
682 list_del(&dev->list);
683 /*
684 * Now check whether the CPU has left unused per cpu devices
685 */
686 cpu = *((int *)arg);
687 list_for_each_entry_safe(dev, tmp, &clockevent_devices, list) {
688 if (cpumask_test_cpu(cpu, dev->cpumask) &&
689 cpumask_weight(dev->cpumask) == 1 &&
690 !tick_is_broadcast_device(dev)) {
691 BUG_ON(dev->state != CLOCK_EVT_STATE_DETACHED);
692 list_del(&dev->list);
693 }
694 }
695 break;
696 default:
697 break;
698 }
699 raw_spin_unlock_irqrestore(&clockevents_lock, flags);
700 return ret;
701 }
702 EXPORT_SYMBOL_GPL(clockevents_notify);
703
704 #ifdef CONFIG_SYSFS
705 struct bus_type clockevents_subsys = {
706 .name = "clockevents",
707 .dev_name = "clockevent",
708 };
709
710 static DEFINE_PER_CPU(struct device, tick_percpu_dev);
711 static struct tick_device *tick_get_tick_dev(struct device *dev);
712
713 static ssize_t sysfs_show_current_tick_dev(struct device *dev,
714 struct device_attribute *attr,
715 char *buf)
716 {
717 struct tick_device *td;
718 ssize_t count = 0;
719
720 raw_spin_lock_irq(&clockevents_lock);
721 td = tick_get_tick_dev(dev);
722 if (td && td->evtdev)
723 count = snprintf(buf, PAGE_SIZE, "%s\n", td->evtdev->name);
724 raw_spin_unlock_irq(&clockevents_lock);
725 return count;
726 }
727 static DEVICE_ATTR(current_device, 0444, sysfs_show_current_tick_dev, NULL);
728
729 /* We don't support the abomination of removable broadcast devices */
730 static ssize_t sysfs_unbind_tick_dev(struct device *dev,
731 struct device_attribute *attr,
732 const char *buf, size_t count)
733 {
734 char name[CS_NAME_LEN];
735 ssize_t ret = sysfs_get_uname(buf, name, count);
736 struct clock_event_device *ce;
737
738 if (ret < 0)
739 return ret;
740
741 ret = -ENODEV;
742 mutex_lock(&clockevents_mutex);
743 raw_spin_lock_irq(&clockevents_lock);
744 list_for_each_entry(ce, &clockevent_devices, list) {
745 if (!strcmp(ce->name, name)) {
746 ret = __clockevents_try_unbind(ce, dev->id);
747 break;
748 }
749 }
750 raw_spin_unlock_irq(&clockevents_lock);
751 /*
752 * We hold clockevents_mutex, so ce can't go away
753 */
754 if (ret == -EAGAIN)
755 ret = clockevents_unbind(ce, dev->id);
756 mutex_unlock(&clockevents_mutex);
757 return ret ? ret : count;
758 }
759 static DEVICE_ATTR(unbind_device, 0200, NULL, sysfs_unbind_tick_dev);
760
761 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
762 static struct device tick_bc_dev = {
763 .init_name = "broadcast",
764 .id = 0,
765 .bus = &clockevents_subsys,
766 };
767
768 static struct tick_device *tick_get_tick_dev(struct device *dev)
769 {
770 return dev == &tick_bc_dev ? tick_get_broadcast_device() :
771 &per_cpu(tick_cpu_device, dev->id);
772 }
773
774 static __init int tick_broadcast_init_sysfs(void)
775 {
776 int err = device_register(&tick_bc_dev);
777
778 if (!err)
779 err = device_create_file(&tick_bc_dev, &dev_attr_current_device);
780 return err;
781 }
782 #else
783 static struct tick_device *tick_get_tick_dev(struct device *dev)
784 {
785 return &per_cpu(tick_cpu_device, dev->id);
786 }
787 static inline int tick_broadcast_init_sysfs(void) { return 0; }
788 #endif
789
790 static int __init tick_init_sysfs(void)
791 {
792 int cpu;
793
794 for_each_possible_cpu(cpu) {
795 struct device *dev = &per_cpu(tick_percpu_dev, cpu);
796 int err;
797
798 dev->id = cpu;
799 dev->bus = &clockevents_subsys;
800 err = device_register(dev);
801 if (!err)
802 err = device_create_file(dev, &dev_attr_current_device);
803 if (!err)
804 err = device_create_file(dev, &dev_attr_unbind_device);
805 if (err)
806 return err;
807 }
808 return tick_broadcast_init_sysfs();
809 }
810
811 static int __init clockevents_init_sysfs(void)
812 {
813 int err = subsys_system_register(&clockevents_subsys, NULL);
814
815 if (!err)
816 err = tick_init_sysfs();
817 return err;
818 }
819 device_initcall(clockevents_init_sysfs);
820 #endif /* SYSFS */