]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - kernel/time/hrtimer.c
Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm
[mirror_ubuntu-artful-kernel.git] / kernel / time / hrtimer.c
1 /*
2 * linux/kernel/hrtimer.c
3 *
4 * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
5 * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
6 * Copyright(C) 2006-2007 Timesys Corp., Thomas Gleixner
7 *
8 * High-resolution kernel timers
9 *
10 * In contrast to the low-resolution timeout API implemented in
11 * kernel/timer.c, hrtimers provide finer resolution and accuracy
12 * depending on system configuration and capabilities.
13 *
14 * These timers are currently used for:
15 * - itimers
16 * - POSIX timers
17 * - nanosleep
18 * - precise in-kernel timing
19 *
20 * Started by: Thomas Gleixner and Ingo Molnar
21 *
22 * Credits:
23 * based on kernel/timer.c
24 *
25 * Help, testing, suggestions, bugfixes, improvements were
26 * provided by:
27 *
28 * George Anzinger, Andrew Morton, Steven Rostedt, Roman Zippel
29 * et. al.
30 *
31 * For licencing details see kernel-base/COPYING
32 */
33
34 #include <linux/cpu.h>
35 #include <linux/export.h>
36 #include <linux/percpu.h>
37 #include <linux/hrtimer.h>
38 #include <linux/notifier.h>
39 #include <linux/syscalls.h>
40 #include <linux/kallsyms.h>
41 #include <linux/interrupt.h>
42 #include <linux/tick.h>
43 #include <linux/seq_file.h>
44 #include <linux/err.h>
45 #include <linux/debugobjects.h>
46 #include <linux/sched/signal.h>
47 #include <linux/sched/sysctl.h>
48 #include <linux/sched/rt.h>
49 #include <linux/sched/deadline.h>
50 #include <linux/sched/nohz.h>
51 #include <linux/sched/debug.h>
52 #include <linux/timer.h>
53 #include <linux/freezer.h>
54
55 #include <linux/uaccess.h>
56
57 #include <trace/events/timer.h>
58
59 #include "tick-internal.h"
60
61 /*
62 * The timer bases:
63 *
64 * There are more clockids than hrtimer bases. Thus, we index
65 * into the timer bases by the hrtimer_base_type enum. When trying
66 * to reach a base using a clockid, hrtimer_clockid_to_base()
67 * is used to convert from clockid to the proper hrtimer_base_type.
68 */
69 DEFINE_PER_CPU(struct hrtimer_cpu_base, hrtimer_bases) =
70 {
71 .lock = __RAW_SPIN_LOCK_UNLOCKED(hrtimer_bases.lock),
72 .seq = SEQCNT_ZERO(hrtimer_bases.seq),
73 .clock_base =
74 {
75 {
76 .index = HRTIMER_BASE_MONOTONIC,
77 .clockid = CLOCK_MONOTONIC,
78 .get_time = &ktime_get,
79 },
80 {
81 .index = HRTIMER_BASE_REALTIME,
82 .clockid = CLOCK_REALTIME,
83 .get_time = &ktime_get_real,
84 },
85 {
86 .index = HRTIMER_BASE_BOOTTIME,
87 .clockid = CLOCK_BOOTTIME,
88 .get_time = &ktime_get_boottime,
89 },
90 {
91 .index = HRTIMER_BASE_TAI,
92 .clockid = CLOCK_TAI,
93 .get_time = &ktime_get_clocktai,
94 },
95 }
96 };
97
98 static const int hrtimer_clock_to_base_table[MAX_CLOCKS] = {
99 /* Make sure we catch unsupported clockids */
100 [0 ... MAX_CLOCKS - 1] = HRTIMER_MAX_CLOCK_BASES,
101
102 [CLOCK_REALTIME] = HRTIMER_BASE_REALTIME,
103 [CLOCK_MONOTONIC] = HRTIMER_BASE_MONOTONIC,
104 [CLOCK_BOOTTIME] = HRTIMER_BASE_BOOTTIME,
105 [CLOCK_TAI] = HRTIMER_BASE_TAI,
106 };
107
108 /*
109 * Functions and macros which are different for UP/SMP systems are kept in a
110 * single place
111 */
112 #ifdef CONFIG_SMP
113
114 /*
115 * We require the migration_base for lock_hrtimer_base()/switch_hrtimer_base()
116 * such that hrtimer_callback_running() can unconditionally dereference
117 * timer->base->cpu_base
118 */
119 static struct hrtimer_cpu_base migration_cpu_base = {
120 .seq = SEQCNT_ZERO(migration_cpu_base),
121 .clock_base = { { .cpu_base = &migration_cpu_base, }, },
122 };
123
124 #define migration_base migration_cpu_base.clock_base[0]
125
126 /*
127 * We are using hashed locking: holding per_cpu(hrtimer_bases)[n].lock
128 * means that all timers which are tied to this base via timer->base are
129 * locked, and the base itself is locked too.
130 *
131 * So __run_timers/migrate_timers can safely modify all timers which could
132 * be found on the lists/queues.
133 *
134 * When the timer's base is locked, and the timer removed from list, it is
135 * possible to set timer->base = &migration_base and drop the lock: the timer
136 * remains locked.
137 */
138 static
139 struct hrtimer_clock_base *lock_hrtimer_base(const struct hrtimer *timer,
140 unsigned long *flags)
141 {
142 struct hrtimer_clock_base *base;
143
144 for (;;) {
145 base = timer->base;
146 if (likely(base != &migration_base)) {
147 raw_spin_lock_irqsave(&base->cpu_base->lock, *flags);
148 if (likely(base == timer->base))
149 return base;
150 /* The timer has migrated to another CPU: */
151 raw_spin_unlock_irqrestore(&base->cpu_base->lock, *flags);
152 }
153 cpu_relax();
154 }
155 }
156
157 /*
158 * With HIGHRES=y we do not migrate the timer when it is expiring
159 * before the next event on the target cpu because we cannot reprogram
160 * the target cpu hardware and we would cause it to fire late.
161 *
162 * Called with cpu_base->lock of target cpu held.
163 */
164 static int
165 hrtimer_check_target(struct hrtimer *timer, struct hrtimer_clock_base *new_base)
166 {
167 #ifdef CONFIG_HIGH_RES_TIMERS
168 ktime_t expires;
169
170 if (!new_base->cpu_base->hres_active)
171 return 0;
172
173 expires = ktime_sub(hrtimer_get_expires(timer), new_base->offset);
174 return expires <= new_base->cpu_base->expires_next;
175 #else
176 return 0;
177 #endif
178 }
179
180 #ifdef CONFIG_NO_HZ_COMMON
181 static inline
182 struct hrtimer_cpu_base *get_target_base(struct hrtimer_cpu_base *base,
183 int pinned)
184 {
185 if (pinned || !base->migration_enabled)
186 return base;
187 return &per_cpu(hrtimer_bases, get_nohz_timer_target());
188 }
189 #else
190 static inline
191 struct hrtimer_cpu_base *get_target_base(struct hrtimer_cpu_base *base,
192 int pinned)
193 {
194 return base;
195 }
196 #endif
197
198 /*
199 * We switch the timer base to a power-optimized selected CPU target,
200 * if:
201 * - NO_HZ_COMMON is enabled
202 * - timer migration is enabled
203 * - the timer callback is not running
204 * - the timer is not the first expiring timer on the new target
205 *
206 * If one of the above requirements is not fulfilled we move the timer
207 * to the current CPU or leave it on the previously assigned CPU if
208 * the timer callback is currently running.
209 */
210 static inline struct hrtimer_clock_base *
211 switch_hrtimer_base(struct hrtimer *timer, struct hrtimer_clock_base *base,
212 int pinned)
213 {
214 struct hrtimer_cpu_base *new_cpu_base, *this_cpu_base;
215 struct hrtimer_clock_base *new_base;
216 int basenum = base->index;
217
218 this_cpu_base = this_cpu_ptr(&hrtimer_bases);
219 new_cpu_base = get_target_base(this_cpu_base, pinned);
220 again:
221 new_base = &new_cpu_base->clock_base[basenum];
222
223 if (base != new_base) {
224 /*
225 * We are trying to move timer to new_base.
226 * However we can't change timer's base while it is running,
227 * so we keep it on the same CPU. No hassle vs. reprogramming
228 * the event source in the high resolution case. The softirq
229 * code will take care of this when the timer function has
230 * completed. There is no conflict as we hold the lock until
231 * the timer is enqueued.
232 */
233 if (unlikely(hrtimer_callback_running(timer)))
234 return base;
235
236 /* See the comment in lock_hrtimer_base() */
237 timer->base = &migration_base;
238 raw_spin_unlock(&base->cpu_base->lock);
239 raw_spin_lock(&new_base->cpu_base->lock);
240
241 if (new_cpu_base != this_cpu_base &&
242 hrtimer_check_target(timer, new_base)) {
243 raw_spin_unlock(&new_base->cpu_base->lock);
244 raw_spin_lock(&base->cpu_base->lock);
245 new_cpu_base = this_cpu_base;
246 timer->base = base;
247 goto again;
248 }
249 timer->base = new_base;
250 } else {
251 if (new_cpu_base != this_cpu_base &&
252 hrtimer_check_target(timer, new_base)) {
253 new_cpu_base = this_cpu_base;
254 goto again;
255 }
256 }
257 return new_base;
258 }
259
260 #else /* CONFIG_SMP */
261
262 static inline struct hrtimer_clock_base *
263 lock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
264 {
265 struct hrtimer_clock_base *base = timer->base;
266
267 raw_spin_lock_irqsave(&base->cpu_base->lock, *flags);
268
269 return base;
270 }
271
272 # define switch_hrtimer_base(t, b, p) (b)
273
274 #endif /* !CONFIG_SMP */
275
276 /*
277 * Functions for the union type storage format of ktime_t which are
278 * too large for inlining:
279 */
280 #if BITS_PER_LONG < 64
281 /*
282 * Divide a ktime value by a nanosecond value
283 */
284 s64 __ktime_divns(const ktime_t kt, s64 div)
285 {
286 int sft = 0;
287 s64 dclc;
288 u64 tmp;
289
290 dclc = ktime_to_ns(kt);
291 tmp = dclc < 0 ? -dclc : dclc;
292
293 /* Make sure the divisor is less than 2^32: */
294 while (div >> 32) {
295 sft++;
296 div >>= 1;
297 }
298 tmp >>= sft;
299 do_div(tmp, (unsigned long) div);
300 return dclc < 0 ? -tmp : tmp;
301 }
302 EXPORT_SYMBOL_GPL(__ktime_divns);
303 #endif /* BITS_PER_LONG >= 64 */
304
305 /*
306 * Add two ktime values and do a safety check for overflow:
307 */
308 ktime_t ktime_add_safe(const ktime_t lhs, const ktime_t rhs)
309 {
310 ktime_t res = ktime_add_unsafe(lhs, rhs);
311
312 /*
313 * We use KTIME_SEC_MAX here, the maximum timeout which we can
314 * return to user space in a timespec:
315 */
316 if (res < 0 || res < lhs || res < rhs)
317 res = ktime_set(KTIME_SEC_MAX, 0);
318
319 return res;
320 }
321
322 EXPORT_SYMBOL_GPL(ktime_add_safe);
323
324 #ifdef CONFIG_DEBUG_OBJECTS_TIMERS
325
326 static struct debug_obj_descr hrtimer_debug_descr;
327
328 static void *hrtimer_debug_hint(void *addr)
329 {
330 return ((struct hrtimer *) addr)->function;
331 }
332
333 /*
334 * fixup_init is called when:
335 * - an active object is initialized
336 */
337 static bool hrtimer_fixup_init(void *addr, enum debug_obj_state state)
338 {
339 struct hrtimer *timer = addr;
340
341 switch (state) {
342 case ODEBUG_STATE_ACTIVE:
343 hrtimer_cancel(timer);
344 debug_object_init(timer, &hrtimer_debug_descr);
345 return true;
346 default:
347 return false;
348 }
349 }
350
351 /*
352 * fixup_activate is called when:
353 * - an active object is activated
354 * - an unknown non-static object is activated
355 */
356 static bool hrtimer_fixup_activate(void *addr, enum debug_obj_state state)
357 {
358 switch (state) {
359 case ODEBUG_STATE_ACTIVE:
360 WARN_ON(1);
361
362 default:
363 return false;
364 }
365 }
366
367 /*
368 * fixup_free is called when:
369 * - an active object is freed
370 */
371 static bool hrtimer_fixup_free(void *addr, enum debug_obj_state state)
372 {
373 struct hrtimer *timer = addr;
374
375 switch (state) {
376 case ODEBUG_STATE_ACTIVE:
377 hrtimer_cancel(timer);
378 debug_object_free(timer, &hrtimer_debug_descr);
379 return true;
380 default:
381 return false;
382 }
383 }
384
385 static struct debug_obj_descr hrtimer_debug_descr = {
386 .name = "hrtimer",
387 .debug_hint = hrtimer_debug_hint,
388 .fixup_init = hrtimer_fixup_init,
389 .fixup_activate = hrtimer_fixup_activate,
390 .fixup_free = hrtimer_fixup_free,
391 };
392
393 static inline void debug_hrtimer_init(struct hrtimer *timer)
394 {
395 debug_object_init(timer, &hrtimer_debug_descr);
396 }
397
398 static inline void debug_hrtimer_activate(struct hrtimer *timer)
399 {
400 debug_object_activate(timer, &hrtimer_debug_descr);
401 }
402
403 static inline void debug_hrtimer_deactivate(struct hrtimer *timer)
404 {
405 debug_object_deactivate(timer, &hrtimer_debug_descr);
406 }
407
408 static inline void debug_hrtimer_free(struct hrtimer *timer)
409 {
410 debug_object_free(timer, &hrtimer_debug_descr);
411 }
412
413 static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
414 enum hrtimer_mode mode);
415
416 void hrtimer_init_on_stack(struct hrtimer *timer, clockid_t clock_id,
417 enum hrtimer_mode mode)
418 {
419 debug_object_init_on_stack(timer, &hrtimer_debug_descr);
420 __hrtimer_init(timer, clock_id, mode);
421 }
422 EXPORT_SYMBOL_GPL(hrtimer_init_on_stack);
423
424 void destroy_hrtimer_on_stack(struct hrtimer *timer)
425 {
426 debug_object_free(timer, &hrtimer_debug_descr);
427 }
428 EXPORT_SYMBOL_GPL(destroy_hrtimer_on_stack);
429
430 #else
431 static inline void debug_hrtimer_init(struct hrtimer *timer) { }
432 static inline void debug_hrtimer_activate(struct hrtimer *timer) { }
433 static inline void debug_hrtimer_deactivate(struct hrtimer *timer) { }
434 #endif
435
436 static inline void
437 debug_init(struct hrtimer *timer, clockid_t clockid,
438 enum hrtimer_mode mode)
439 {
440 debug_hrtimer_init(timer);
441 trace_hrtimer_init(timer, clockid, mode);
442 }
443
444 static inline void debug_activate(struct hrtimer *timer)
445 {
446 debug_hrtimer_activate(timer);
447 trace_hrtimer_start(timer);
448 }
449
450 static inline void debug_deactivate(struct hrtimer *timer)
451 {
452 debug_hrtimer_deactivate(timer);
453 trace_hrtimer_cancel(timer);
454 }
455
456 #if defined(CONFIG_NO_HZ_COMMON) || defined(CONFIG_HIGH_RES_TIMERS)
457 static inline void hrtimer_update_next_timer(struct hrtimer_cpu_base *cpu_base,
458 struct hrtimer *timer)
459 {
460 #ifdef CONFIG_HIGH_RES_TIMERS
461 cpu_base->next_timer = timer;
462 #endif
463 }
464
465 static ktime_t __hrtimer_get_next_event(struct hrtimer_cpu_base *cpu_base)
466 {
467 struct hrtimer_clock_base *base = cpu_base->clock_base;
468 unsigned int active = cpu_base->active_bases;
469 ktime_t expires, expires_next = KTIME_MAX;
470
471 hrtimer_update_next_timer(cpu_base, NULL);
472 for (; active; base++, active >>= 1) {
473 struct timerqueue_node *next;
474 struct hrtimer *timer;
475
476 if (!(active & 0x01))
477 continue;
478
479 next = timerqueue_getnext(&base->active);
480 timer = container_of(next, struct hrtimer, node);
481 expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
482 if (expires < expires_next) {
483 expires_next = expires;
484 hrtimer_update_next_timer(cpu_base, timer);
485 }
486 }
487 /*
488 * clock_was_set() might have changed base->offset of any of
489 * the clock bases so the result might be negative. Fix it up
490 * to prevent a false positive in clockevents_program_event().
491 */
492 if (expires_next < 0)
493 expires_next = 0;
494 return expires_next;
495 }
496 #endif
497
498 static inline ktime_t hrtimer_update_base(struct hrtimer_cpu_base *base)
499 {
500 ktime_t *offs_real = &base->clock_base[HRTIMER_BASE_REALTIME].offset;
501 ktime_t *offs_boot = &base->clock_base[HRTIMER_BASE_BOOTTIME].offset;
502 ktime_t *offs_tai = &base->clock_base[HRTIMER_BASE_TAI].offset;
503
504 return ktime_get_update_offsets_now(&base->clock_was_set_seq,
505 offs_real, offs_boot, offs_tai);
506 }
507
508 /* High resolution timer related functions */
509 #ifdef CONFIG_HIGH_RES_TIMERS
510
511 /*
512 * High resolution timer enabled ?
513 */
514 static bool hrtimer_hres_enabled __read_mostly = true;
515 unsigned int hrtimer_resolution __read_mostly = LOW_RES_NSEC;
516 EXPORT_SYMBOL_GPL(hrtimer_resolution);
517
518 /*
519 * Enable / Disable high resolution mode
520 */
521 static int __init setup_hrtimer_hres(char *str)
522 {
523 return (kstrtobool(str, &hrtimer_hres_enabled) == 0);
524 }
525
526 __setup("highres=", setup_hrtimer_hres);
527
528 /*
529 * hrtimer_high_res_enabled - query, if the highres mode is enabled
530 */
531 static inline int hrtimer_is_hres_enabled(void)
532 {
533 return hrtimer_hres_enabled;
534 }
535
536 /*
537 * Is the high resolution mode active ?
538 */
539 static inline int __hrtimer_hres_active(struct hrtimer_cpu_base *cpu_base)
540 {
541 return cpu_base->hres_active;
542 }
543
544 static inline int hrtimer_hres_active(void)
545 {
546 return __hrtimer_hres_active(this_cpu_ptr(&hrtimer_bases));
547 }
548
549 /*
550 * Reprogram the event source with checking both queues for the
551 * next event
552 * Called with interrupts disabled and base->lock held
553 */
554 static void
555 hrtimer_force_reprogram(struct hrtimer_cpu_base *cpu_base, int skip_equal)
556 {
557 ktime_t expires_next;
558
559 if (!cpu_base->hres_active)
560 return;
561
562 expires_next = __hrtimer_get_next_event(cpu_base);
563
564 if (skip_equal && expires_next == cpu_base->expires_next)
565 return;
566
567 cpu_base->expires_next = expires_next;
568
569 /*
570 * If a hang was detected in the last timer interrupt then we
571 * leave the hang delay active in the hardware. We want the
572 * system to make progress. That also prevents the following
573 * scenario:
574 * T1 expires 50ms from now
575 * T2 expires 5s from now
576 *
577 * T1 is removed, so this code is called and would reprogram
578 * the hardware to 5s from now. Any hrtimer_start after that
579 * will not reprogram the hardware due to hang_detected being
580 * set. So we'd effectivly block all timers until the T2 event
581 * fires.
582 */
583 if (cpu_base->hang_detected)
584 return;
585
586 tick_program_event(cpu_base->expires_next, 1);
587 }
588
589 /*
590 * When a timer is enqueued and expires earlier than the already enqueued
591 * timers, we have to check, whether it expires earlier than the timer for
592 * which the clock event device was armed.
593 *
594 * Called with interrupts disabled and base->cpu_base.lock held
595 */
596 static void hrtimer_reprogram(struct hrtimer *timer,
597 struct hrtimer_clock_base *base)
598 {
599 struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
600 ktime_t expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
601
602 WARN_ON_ONCE(hrtimer_get_expires_tv64(timer) < 0);
603
604 /*
605 * If the timer is not on the current cpu, we cannot reprogram
606 * the other cpus clock event device.
607 */
608 if (base->cpu_base != cpu_base)
609 return;
610
611 /*
612 * If the hrtimer interrupt is running, then it will
613 * reevaluate the clock bases and reprogram the clock event
614 * device. The callbacks are always executed in hard interrupt
615 * context so we don't need an extra check for a running
616 * callback.
617 */
618 if (cpu_base->in_hrtirq)
619 return;
620
621 /*
622 * CLOCK_REALTIME timer might be requested with an absolute
623 * expiry time which is less than base->offset. Set it to 0.
624 */
625 if (expires < 0)
626 expires = 0;
627
628 if (expires >= cpu_base->expires_next)
629 return;
630
631 /* Update the pointer to the next expiring timer */
632 cpu_base->next_timer = timer;
633
634 /*
635 * If a hang was detected in the last timer interrupt then we
636 * do not schedule a timer which is earlier than the expiry
637 * which we enforced in the hang detection. We want the system
638 * to make progress.
639 */
640 if (cpu_base->hang_detected)
641 return;
642
643 /*
644 * Program the timer hardware. We enforce the expiry for
645 * events which are already in the past.
646 */
647 cpu_base->expires_next = expires;
648 tick_program_event(expires, 1);
649 }
650
651 /*
652 * Initialize the high resolution related parts of cpu_base
653 */
654 static inline void hrtimer_init_hres(struct hrtimer_cpu_base *base)
655 {
656 base->expires_next = KTIME_MAX;
657 base->hres_active = 0;
658 }
659
660 /*
661 * Retrigger next event is called after clock was set
662 *
663 * Called with interrupts disabled via on_each_cpu()
664 */
665 static void retrigger_next_event(void *arg)
666 {
667 struct hrtimer_cpu_base *base = this_cpu_ptr(&hrtimer_bases);
668
669 if (!base->hres_active)
670 return;
671
672 raw_spin_lock(&base->lock);
673 hrtimer_update_base(base);
674 hrtimer_force_reprogram(base, 0);
675 raw_spin_unlock(&base->lock);
676 }
677
678 /*
679 * Switch to high resolution mode
680 */
681 static void hrtimer_switch_to_hres(void)
682 {
683 struct hrtimer_cpu_base *base = this_cpu_ptr(&hrtimer_bases);
684
685 if (tick_init_highres()) {
686 printk(KERN_WARNING "Could not switch to high resolution "
687 "mode on CPU %d\n", base->cpu);
688 return;
689 }
690 base->hres_active = 1;
691 hrtimer_resolution = HIGH_RES_NSEC;
692
693 tick_setup_sched_timer();
694 /* "Retrigger" the interrupt to get things going */
695 retrigger_next_event(NULL);
696 }
697
698 static void clock_was_set_work(struct work_struct *work)
699 {
700 clock_was_set();
701 }
702
703 static DECLARE_WORK(hrtimer_work, clock_was_set_work);
704
705 /*
706 * Called from timekeeping and resume code to reprogram the hrtimer
707 * interrupt device on all cpus.
708 */
709 void clock_was_set_delayed(void)
710 {
711 schedule_work(&hrtimer_work);
712 }
713
714 #else
715
716 static inline int __hrtimer_hres_active(struct hrtimer_cpu_base *b) { return 0; }
717 static inline int hrtimer_hres_active(void) { return 0; }
718 static inline int hrtimer_is_hres_enabled(void) { return 0; }
719 static inline void hrtimer_switch_to_hres(void) { }
720 static inline void
721 hrtimer_force_reprogram(struct hrtimer_cpu_base *base, int skip_equal) { }
722 static inline int hrtimer_reprogram(struct hrtimer *timer,
723 struct hrtimer_clock_base *base)
724 {
725 return 0;
726 }
727 static inline void hrtimer_init_hres(struct hrtimer_cpu_base *base) { }
728 static inline void retrigger_next_event(void *arg) { }
729
730 #endif /* CONFIG_HIGH_RES_TIMERS */
731
732 /*
733 * Clock realtime was set
734 *
735 * Change the offset of the realtime clock vs. the monotonic
736 * clock.
737 *
738 * We might have to reprogram the high resolution timer interrupt. On
739 * SMP we call the architecture specific code to retrigger _all_ high
740 * resolution timer interrupts. On UP we just disable interrupts and
741 * call the high resolution interrupt code.
742 */
743 void clock_was_set(void)
744 {
745 #ifdef CONFIG_HIGH_RES_TIMERS
746 /* Retrigger the CPU local events everywhere */
747 on_each_cpu(retrigger_next_event, NULL, 1);
748 #endif
749 timerfd_clock_was_set();
750 }
751
752 /*
753 * During resume we might have to reprogram the high resolution timer
754 * interrupt on all online CPUs. However, all other CPUs will be
755 * stopped with IRQs interrupts disabled so the clock_was_set() call
756 * must be deferred.
757 */
758 void hrtimers_resume(void)
759 {
760 WARN_ONCE(!irqs_disabled(),
761 KERN_INFO "hrtimers_resume() called with IRQs enabled!");
762
763 /* Retrigger on the local CPU */
764 retrigger_next_event(NULL);
765 /* And schedule a retrigger for all others */
766 clock_was_set_delayed();
767 }
768
769 /*
770 * Counterpart to lock_hrtimer_base above:
771 */
772 static inline
773 void unlock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
774 {
775 raw_spin_unlock_irqrestore(&timer->base->cpu_base->lock, *flags);
776 }
777
778 /**
779 * hrtimer_forward - forward the timer expiry
780 * @timer: hrtimer to forward
781 * @now: forward past this time
782 * @interval: the interval to forward
783 *
784 * Forward the timer expiry so it will expire in the future.
785 * Returns the number of overruns.
786 *
787 * Can be safely called from the callback function of @timer. If
788 * called from other contexts @timer must neither be enqueued nor
789 * running the callback and the caller needs to take care of
790 * serialization.
791 *
792 * Note: This only updates the timer expiry value and does not requeue
793 * the timer.
794 */
795 u64 hrtimer_forward(struct hrtimer *timer, ktime_t now, ktime_t interval)
796 {
797 u64 orun = 1;
798 ktime_t delta;
799
800 delta = ktime_sub(now, hrtimer_get_expires(timer));
801
802 if (delta < 0)
803 return 0;
804
805 if (WARN_ON(timer->state & HRTIMER_STATE_ENQUEUED))
806 return 0;
807
808 if (interval < hrtimer_resolution)
809 interval = hrtimer_resolution;
810
811 if (unlikely(delta >= interval)) {
812 s64 incr = ktime_to_ns(interval);
813
814 orun = ktime_divns(delta, incr);
815 hrtimer_add_expires_ns(timer, incr * orun);
816 if (hrtimer_get_expires_tv64(timer) > now)
817 return orun;
818 /*
819 * This (and the ktime_add() below) is the
820 * correction for exact:
821 */
822 orun++;
823 }
824 hrtimer_add_expires(timer, interval);
825
826 return orun;
827 }
828 EXPORT_SYMBOL_GPL(hrtimer_forward);
829
830 /*
831 * enqueue_hrtimer - internal function to (re)start a timer
832 *
833 * The timer is inserted in expiry order. Insertion into the
834 * red black tree is O(log(n)). Must hold the base lock.
835 *
836 * Returns 1 when the new timer is the leftmost timer in the tree.
837 */
838 static int enqueue_hrtimer(struct hrtimer *timer,
839 struct hrtimer_clock_base *base)
840 {
841 debug_activate(timer);
842
843 base->cpu_base->active_bases |= 1 << base->index;
844
845 timer->state = HRTIMER_STATE_ENQUEUED;
846
847 return timerqueue_add(&base->active, &timer->node);
848 }
849
850 /*
851 * __remove_hrtimer - internal function to remove a timer
852 *
853 * Caller must hold the base lock.
854 *
855 * High resolution timer mode reprograms the clock event device when the
856 * timer is the one which expires next. The caller can disable this by setting
857 * reprogram to zero. This is useful, when the context does a reprogramming
858 * anyway (e.g. timer interrupt)
859 */
860 static void __remove_hrtimer(struct hrtimer *timer,
861 struct hrtimer_clock_base *base,
862 u8 newstate, int reprogram)
863 {
864 struct hrtimer_cpu_base *cpu_base = base->cpu_base;
865 u8 state = timer->state;
866
867 timer->state = newstate;
868 if (!(state & HRTIMER_STATE_ENQUEUED))
869 return;
870
871 if (!timerqueue_del(&base->active, &timer->node))
872 cpu_base->active_bases &= ~(1 << base->index);
873
874 #ifdef CONFIG_HIGH_RES_TIMERS
875 /*
876 * Note: If reprogram is false we do not update
877 * cpu_base->next_timer. This happens when we remove the first
878 * timer on a remote cpu. No harm as we never dereference
879 * cpu_base->next_timer. So the worst thing what can happen is
880 * an superflous call to hrtimer_force_reprogram() on the
881 * remote cpu later on if the same timer gets enqueued again.
882 */
883 if (reprogram && timer == cpu_base->next_timer)
884 hrtimer_force_reprogram(cpu_base, 1);
885 #endif
886 }
887
888 /*
889 * remove hrtimer, called with base lock held
890 */
891 static inline int
892 remove_hrtimer(struct hrtimer *timer, struct hrtimer_clock_base *base, bool restart)
893 {
894 if (hrtimer_is_queued(timer)) {
895 u8 state = timer->state;
896 int reprogram;
897
898 /*
899 * Remove the timer and force reprogramming when high
900 * resolution mode is active and the timer is on the current
901 * CPU. If we remove a timer on another CPU, reprogramming is
902 * skipped. The interrupt event on this CPU is fired and
903 * reprogramming happens in the interrupt handler. This is a
904 * rare case and less expensive than a smp call.
905 */
906 debug_deactivate(timer);
907 reprogram = base->cpu_base == this_cpu_ptr(&hrtimer_bases);
908
909 if (!restart)
910 state = HRTIMER_STATE_INACTIVE;
911
912 __remove_hrtimer(timer, base, state, reprogram);
913 return 1;
914 }
915 return 0;
916 }
917
918 static inline ktime_t hrtimer_update_lowres(struct hrtimer *timer, ktime_t tim,
919 const enum hrtimer_mode mode)
920 {
921 #ifdef CONFIG_TIME_LOW_RES
922 /*
923 * CONFIG_TIME_LOW_RES indicates that the system has no way to return
924 * granular time values. For relative timers we add hrtimer_resolution
925 * (i.e. one jiffie) to prevent short timeouts.
926 */
927 timer->is_rel = mode & HRTIMER_MODE_REL;
928 if (timer->is_rel)
929 tim = ktime_add_safe(tim, hrtimer_resolution);
930 #endif
931 return tim;
932 }
933
934 /**
935 * hrtimer_start_range_ns - (re)start an hrtimer on the current CPU
936 * @timer: the timer to be added
937 * @tim: expiry time
938 * @delta_ns: "slack" range for the timer
939 * @mode: expiry mode: absolute (HRTIMER_MODE_ABS) or
940 * relative (HRTIMER_MODE_REL)
941 */
942 void hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim,
943 u64 delta_ns, const enum hrtimer_mode mode)
944 {
945 struct hrtimer_clock_base *base, *new_base;
946 unsigned long flags;
947 int leftmost;
948
949 base = lock_hrtimer_base(timer, &flags);
950
951 /* Remove an active timer from the queue: */
952 remove_hrtimer(timer, base, true);
953
954 if (mode & HRTIMER_MODE_REL)
955 tim = ktime_add_safe(tim, base->get_time());
956
957 tim = hrtimer_update_lowres(timer, tim, mode);
958
959 hrtimer_set_expires_range_ns(timer, tim, delta_ns);
960
961 /* Switch the timer base, if necessary: */
962 new_base = switch_hrtimer_base(timer, base, mode & HRTIMER_MODE_PINNED);
963
964 leftmost = enqueue_hrtimer(timer, new_base);
965 if (!leftmost)
966 goto unlock;
967
968 if (!hrtimer_is_hres_active(timer)) {
969 /*
970 * Kick to reschedule the next tick to handle the new timer
971 * on dynticks target.
972 */
973 if (new_base->cpu_base->nohz_active)
974 wake_up_nohz_cpu(new_base->cpu_base->cpu);
975 } else {
976 hrtimer_reprogram(timer, new_base);
977 }
978 unlock:
979 unlock_hrtimer_base(timer, &flags);
980 }
981 EXPORT_SYMBOL_GPL(hrtimer_start_range_ns);
982
983 /**
984 * hrtimer_try_to_cancel - try to deactivate a timer
985 * @timer: hrtimer to stop
986 *
987 * Returns:
988 * 0 when the timer was not active
989 * 1 when the timer was active
990 * -1 when the timer is currently executing the callback function and
991 * cannot be stopped
992 */
993 int hrtimer_try_to_cancel(struct hrtimer *timer)
994 {
995 struct hrtimer_clock_base *base;
996 unsigned long flags;
997 int ret = -1;
998
999 /*
1000 * Check lockless first. If the timer is not active (neither
1001 * enqueued nor running the callback, nothing to do here. The
1002 * base lock does not serialize against a concurrent enqueue,
1003 * so we can avoid taking it.
1004 */
1005 if (!hrtimer_active(timer))
1006 return 0;
1007
1008 base = lock_hrtimer_base(timer, &flags);
1009
1010 if (!hrtimer_callback_running(timer))
1011 ret = remove_hrtimer(timer, base, false);
1012
1013 unlock_hrtimer_base(timer, &flags);
1014
1015 return ret;
1016
1017 }
1018 EXPORT_SYMBOL_GPL(hrtimer_try_to_cancel);
1019
1020 /**
1021 * hrtimer_cancel - cancel a timer and wait for the handler to finish.
1022 * @timer: the timer to be cancelled
1023 *
1024 * Returns:
1025 * 0 when the timer was not active
1026 * 1 when the timer was active
1027 */
1028 int hrtimer_cancel(struct hrtimer *timer)
1029 {
1030 for (;;) {
1031 int ret = hrtimer_try_to_cancel(timer);
1032
1033 if (ret >= 0)
1034 return ret;
1035 cpu_relax();
1036 }
1037 }
1038 EXPORT_SYMBOL_GPL(hrtimer_cancel);
1039
1040 /**
1041 * hrtimer_get_remaining - get remaining time for the timer
1042 * @timer: the timer to read
1043 * @adjust: adjust relative timers when CONFIG_TIME_LOW_RES=y
1044 */
1045 ktime_t __hrtimer_get_remaining(const struct hrtimer *timer, bool adjust)
1046 {
1047 unsigned long flags;
1048 ktime_t rem;
1049
1050 lock_hrtimer_base(timer, &flags);
1051 if (IS_ENABLED(CONFIG_TIME_LOW_RES) && adjust)
1052 rem = hrtimer_expires_remaining_adjusted(timer);
1053 else
1054 rem = hrtimer_expires_remaining(timer);
1055 unlock_hrtimer_base(timer, &flags);
1056
1057 return rem;
1058 }
1059 EXPORT_SYMBOL_GPL(__hrtimer_get_remaining);
1060
1061 #ifdef CONFIG_NO_HZ_COMMON
1062 /**
1063 * hrtimer_get_next_event - get the time until next expiry event
1064 *
1065 * Returns the next expiry time or KTIME_MAX if no timer is pending.
1066 */
1067 u64 hrtimer_get_next_event(void)
1068 {
1069 struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
1070 u64 expires = KTIME_MAX;
1071 unsigned long flags;
1072
1073 raw_spin_lock_irqsave(&cpu_base->lock, flags);
1074
1075 if (!__hrtimer_hres_active(cpu_base))
1076 expires = __hrtimer_get_next_event(cpu_base);
1077
1078 raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1079
1080 return expires;
1081 }
1082 #endif
1083
1084 static inline int hrtimer_clockid_to_base(clockid_t clock_id)
1085 {
1086 if (likely(clock_id < MAX_CLOCKS)) {
1087 int base = hrtimer_clock_to_base_table[clock_id];
1088
1089 if (likely(base != HRTIMER_MAX_CLOCK_BASES))
1090 return base;
1091 }
1092 WARN(1, "Invalid clockid %d. Using MONOTONIC\n", clock_id);
1093 return HRTIMER_BASE_MONOTONIC;
1094 }
1095
1096 static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
1097 enum hrtimer_mode mode)
1098 {
1099 struct hrtimer_cpu_base *cpu_base;
1100 int base;
1101
1102 memset(timer, 0, sizeof(struct hrtimer));
1103
1104 cpu_base = raw_cpu_ptr(&hrtimer_bases);
1105
1106 if (clock_id == CLOCK_REALTIME && mode != HRTIMER_MODE_ABS)
1107 clock_id = CLOCK_MONOTONIC;
1108
1109 base = hrtimer_clockid_to_base(clock_id);
1110 timer->base = &cpu_base->clock_base[base];
1111 timerqueue_init(&timer->node);
1112 }
1113
1114 /**
1115 * hrtimer_init - initialize a timer to the given clock
1116 * @timer: the timer to be initialized
1117 * @clock_id: the clock to be used
1118 * @mode: timer mode abs/rel
1119 */
1120 void hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
1121 enum hrtimer_mode mode)
1122 {
1123 debug_init(timer, clock_id, mode);
1124 __hrtimer_init(timer, clock_id, mode);
1125 }
1126 EXPORT_SYMBOL_GPL(hrtimer_init);
1127
1128 /*
1129 * A timer is active, when it is enqueued into the rbtree or the
1130 * callback function is running or it's in the state of being migrated
1131 * to another cpu.
1132 *
1133 * It is important for this function to not return a false negative.
1134 */
1135 bool hrtimer_active(const struct hrtimer *timer)
1136 {
1137 struct hrtimer_cpu_base *cpu_base;
1138 unsigned int seq;
1139
1140 do {
1141 cpu_base = READ_ONCE(timer->base->cpu_base);
1142 seq = raw_read_seqcount_begin(&cpu_base->seq);
1143
1144 if (timer->state != HRTIMER_STATE_INACTIVE ||
1145 cpu_base->running == timer)
1146 return true;
1147
1148 } while (read_seqcount_retry(&cpu_base->seq, seq) ||
1149 cpu_base != READ_ONCE(timer->base->cpu_base));
1150
1151 return false;
1152 }
1153 EXPORT_SYMBOL_GPL(hrtimer_active);
1154
1155 /*
1156 * The write_seqcount_barrier()s in __run_hrtimer() split the thing into 3
1157 * distinct sections:
1158 *
1159 * - queued: the timer is queued
1160 * - callback: the timer is being ran
1161 * - post: the timer is inactive or (re)queued
1162 *
1163 * On the read side we ensure we observe timer->state and cpu_base->running
1164 * from the same section, if anything changed while we looked at it, we retry.
1165 * This includes timer->base changing because sequence numbers alone are
1166 * insufficient for that.
1167 *
1168 * The sequence numbers are required because otherwise we could still observe
1169 * a false negative if the read side got smeared over multiple consequtive
1170 * __run_hrtimer() invocations.
1171 */
1172
1173 static void __run_hrtimer(struct hrtimer_cpu_base *cpu_base,
1174 struct hrtimer_clock_base *base,
1175 struct hrtimer *timer, ktime_t *now)
1176 {
1177 enum hrtimer_restart (*fn)(struct hrtimer *);
1178 int restart;
1179
1180 lockdep_assert_held(&cpu_base->lock);
1181
1182 debug_deactivate(timer);
1183 cpu_base->running = timer;
1184
1185 /*
1186 * Separate the ->running assignment from the ->state assignment.
1187 *
1188 * As with a regular write barrier, this ensures the read side in
1189 * hrtimer_active() cannot observe cpu_base->running == NULL &&
1190 * timer->state == INACTIVE.
1191 */
1192 raw_write_seqcount_barrier(&cpu_base->seq);
1193
1194 __remove_hrtimer(timer, base, HRTIMER_STATE_INACTIVE, 0);
1195 fn = timer->function;
1196
1197 /*
1198 * Clear the 'is relative' flag for the TIME_LOW_RES case. If the
1199 * timer is restarted with a period then it becomes an absolute
1200 * timer. If its not restarted it does not matter.
1201 */
1202 if (IS_ENABLED(CONFIG_TIME_LOW_RES))
1203 timer->is_rel = false;
1204
1205 /*
1206 * Because we run timers from hardirq context, there is no chance
1207 * they get migrated to another cpu, therefore its safe to unlock
1208 * the timer base.
1209 */
1210 raw_spin_unlock(&cpu_base->lock);
1211 trace_hrtimer_expire_entry(timer, now);
1212 restart = fn(timer);
1213 trace_hrtimer_expire_exit(timer);
1214 raw_spin_lock(&cpu_base->lock);
1215
1216 /*
1217 * Note: We clear the running state after enqueue_hrtimer and
1218 * we do not reprogram the event hardware. Happens either in
1219 * hrtimer_start_range_ns() or in hrtimer_interrupt()
1220 *
1221 * Note: Because we dropped the cpu_base->lock above,
1222 * hrtimer_start_range_ns() can have popped in and enqueued the timer
1223 * for us already.
1224 */
1225 if (restart != HRTIMER_NORESTART &&
1226 !(timer->state & HRTIMER_STATE_ENQUEUED))
1227 enqueue_hrtimer(timer, base);
1228
1229 /*
1230 * Separate the ->running assignment from the ->state assignment.
1231 *
1232 * As with a regular write barrier, this ensures the read side in
1233 * hrtimer_active() cannot observe cpu_base->running == NULL &&
1234 * timer->state == INACTIVE.
1235 */
1236 raw_write_seqcount_barrier(&cpu_base->seq);
1237
1238 WARN_ON_ONCE(cpu_base->running != timer);
1239 cpu_base->running = NULL;
1240 }
1241
1242 static void __hrtimer_run_queues(struct hrtimer_cpu_base *cpu_base, ktime_t now)
1243 {
1244 struct hrtimer_clock_base *base = cpu_base->clock_base;
1245 unsigned int active = cpu_base->active_bases;
1246
1247 for (; active; base++, active >>= 1) {
1248 struct timerqueue_node *node;
1249 ktime_t basenow;
1250
1251 if (!(active & 0x01))
1252 continue;
1253
1254 basenow = ktime_add(now, base->offset);
1255
1256 while ((node = timerqueue_getnext(&base->active))) {
1257 struct hrtimer *timer;
1258
1259 timer = container_of(node, struct hrtimer, node);
1260
1261 /*
1262 * The immediate goal for using the softexpires is
1263 * minimizing wakeups, not running timers at the
1264 * earliest interrupt after their soft expiration.
1265 * This allows us to avoid using a Priority Search
1266 * Tree, which can answer a stabbing querry for
1267 * overlapping intervals and instead use the simple
1268 * BST we already have.
1269 * We don't add extra wakeups by delaying timers that
1270 * are right-of a not yet expired timer, because that
1271 * timer will have to trigger a wakeup anyway.
1272 */
1273 if (basenow < hrtimer_get_softexpires_tv64(timer))
1274 break;
1275
1276 __run_hrtimer(cpu_base, base, timer, &basenow);
1277 }
1278 }
1279 }
1280
1281 #ifdef CONFIG_HIGH_RES_TIMERS
1282
1283 /*
1284 * High resolution timer interrupt
1285 * Called with interrupts disabled
1286 */
1287 void hrtimer_interrupt(struct clock_event_device *dev)
1288 {
1289 struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
1290 ktime_t expires_next, now, entry_time, delta;
1291 int retries = 0;
1292
1293 BUG_ON(!cpu_base->hres_active);
1294 cpu_base->nr_events++;
1295 dev->next_event = KTIME_MAX;
1296
1297 raw_spin_lock(&cpu_base->lock);
1298 entry_time = now = hrtimer_update_base(cpu_base);
1299 retry:
1300 cpu_base->in_hrtirq = 1;
1301 /*
1302 * We set expires_next to KTIME_MAX here with cpu_base->lock
1303 * held to prevent that a timer is enqueued in our queue via
1304 * the migration code. This does not affect enqueueing of
1305 * timers which run their callback and need to be requeued on
1306 * this CPU.
1307 */
1308 cpu_base->expires_next = KTIME_MAX;
1309
1310 __hrtimer_run_queues(cpu_base, now);
1311
1312 /* Reevaluate the clock bases for the next expiry */
1313 expires_next = __hrtimer_get_next_event(cpu_base);
1314 /*
1315 * Store the new expiry value so the migration code can verify
1316 * against it.
1317 */
1318 cpu_base->expires_next = expires_next;
1319 cpu_base->in_hrtirq = 0;
1320 raw_spin_unlock(&cpu_base->lock);
1321
1322 /* Reprogramming necessary ? */
1323 if (!tick_program_event(expires_next, 0)) {
1324 cpu_base->hang_detected = 0;
1325 return;
1326 }
1327
1328 /*
1329 * The next timer was already expired due to:
1330 * - tracing
1331 * - long lasting callbacks
1332 * - being scheduled away when running in a VM
1333 *
1334 * We need to prevent that we loop forever in the hrtimer
1335 * interrupt routine. We give it 3 attempts to avoid
1336 * overreacting on some spurious event.
1337 *
1338 * Acquire base lock for updating the offsets and retrieving
1339 * the current time.
1340 */
1341 raw_spin_lock(&cpu_base->lock);
1342 now = hrtimer_update_base(cpu_base);
1343 cpu_base->nr_retries++;
1344 if (++retries < 3)
1345 goto retry;
1346 /*
1347 * Give the system a chance to do something else than looping
1348 * here. We stored the entry time, so we know exactly how long
1349 * we spent here. We schedule the next event this amount of
1350 * time away.
1351 */
1352 cpu_base->nr_hangs++;
1353 cpu_base->hang_detected = 1;
1354 raw_spin_unlock(&cpu_base->lock);
1355 delta = ktime_sub(now, entry_time);
1356 if ((unsigned int)delta > cpu_base->max_hang_time)
1357 cpu_base->max_hang_time = (unsigned int) delta;
1358 /*
1359 * Limit it to a sensible value as we enforce a longer
1360 * delay. Give the CPU at least 100ms to catch up.
1361 */
1362 if (delta > 100 * NSEC_PER_MSEC)
1363 expires_next = ktime_add_ns(now, 100 * NSEC_PER_MSEC);
1364 else
1365 expires_next = ktime_add(now, delta);
1366 tick_program_event(expires_next, 1);
1367 printk_once(KERN_WARNING "hrtimer: interrupt took %llu ns\n",
1368 ktime_to_ns(delta));
1369 }
1370
1371 /* called with interrupts disabled */
1372 static inline void __hrtimer_peek_ahead_timers(void)
1373 {
1374 struct tick_device *td;
1375
1376 if (!hrtimer_hres_active())
1377 return;
1378
1379 td = this_cpu_ptr(&tick_cpu_device);
1380 if (td && td->evtdev)
1381 hrtimer_interrupt(td->evtdev);
1382 }
1383
1384 #else /* CONFIG_HIGH_RES_TIMERS */
1385
1386 static inline void __hrtimer_peek_ahead_timers(void) { }
1387
1388 #endif /* !CONFIG_HIGH_RES_TIMERS */
1389
1390 /*
1391 * Called from run_local_timers in hardirq context every jiffy
1392 */
1393 void hrtimer_run_queues(void)
1394 {
1395 struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
1396 ktime_t now;
1397
1398 if (__hrtimer_hres_active(cpu_base))
1399 return;
1400
1401 /*
1402 * This _is_ ugly: We have to check periodically, whether we
1403 * can switch to highres and / or nohz mode. The clocksource
1404 * switch happens with xtime_lock held. Notification from
1405 * there only sets the check bit in the tick_oneshot code,
1406 * otherwise we might deadlock vs. xtime_lock.
1407 */
1408 if (tick_check_oneshot_change(!hrtimer_is_hres_enabled())) {
1409 hrtimer_switch_to_hres();
1410 return;
1411 }
1412
1413 raw_spin_lock(&cpu_base->lock);
1414 now = hrtimer_update_base(cpu_base);
1415 __hrtimer_run_queues(cpu_base, now);
1416 raw_spin_unlock(&cpu_base->lock);
1417 }
1418
1419 /*
1420 * Sleep related functions:
1421 */
1422 static enum hrtimer_restart hrtimer_wakeup(struct hrtimer *timer)
1423 {
1424 struct hrtimer_sleeper *t =
1425 container_of(timer, struct hrtimer_sleeper, timer);
1426 struct task_struct *task = t->task;
1427
1428 t->task = NULL;
1429 if (task)
1430 wake_up_process(task);
1431
1432 return HRTIMER_NORESTART;
1433 }
1434
1435 void hrtimer_init_sleeper(struct hrtimer_sleeper *sl, struct task_struct *task)
1436 {
1437 sl->timer.function = hrtimer_wakeup;
1438 sl->task = task;
1439 }
1440 EXPORT_SYMBOL_GPL(hrtimer_init_sleeper);
1441
1442 static int __sched do_nanosleep(struct hrtimer_sleeper *t, enum hrtimer_mode mode)
1443 {
1444 hrtimer_init_sleeper(t, current);
1445
1446 do {
1447 set_current_state(TASK_INTERRUPTIBLE);
1448 hrtimer_start_expires(&t->timer, mode);
1449
1450 if (likely(t->task))
1451 freezable_schedule();
1452
1453 hrtimer_cancel(&t->timer);
1454 mode = HRTIMER_MODE_ABS;
1455
1456 } while (t->task && !signal_pending(current));
1457
1458 __set_current_state(TASK_RUNNING);
1459
1460 return t->task == NULL;
1461 }
1462
1463 static int update_rmtp(struct hrtimer *timer, struct timespec __user *rmtp)
1464 {
1465 struct timespec rmt;
1466 ktime_t rem;
1467
1468 rem = hrtimer_expires_remaining(timer);
1469 if (rem <= 0)
1470 return 0;
1471 rmt = ktime_to_timespec(rem);
1472
1473 if (copy_to_user(rmtp, &rmt, sizeof(*rmtp)))
1474 return -EFAULT;
1475
1476 return 1;
1477 }
1478
1479 long __sched hrtimer_nanosleep_restart(struct restart_block *restart)
1480 {
1481 struct hrtimer_sleeper t;
1482 struct timespec __user *rmtp;
1483 int ret = 0;
1484
1485 hrtimer_init_on_stack(&t.timer, restart->nanosleep.clockid,
1486 HRTIMER_MODE_ABS);
1487 hrtimer_set_expires_tv64(&t.timer, restart->nanosleep.expires);
1488
1489 if (do_nanosleep(&t, HRTIMER_MODE_ABS))
1490 goto out;
1491
1492 rmtp = restart->nanosleep.rmtp;
1493 if (rmtp) {
1494 ret = update_rmtp(&t.timer, rmtp);
1495 if (ret <= 0)
1496 goto out;
1497 }
1498
1499 /* The other values in restart are already filled in */
1500 ret = -ERESTART_RESTARTBLOCK;
1501 out:
1502 destroy_hrtimer_on_stack(&t.timer);
1503 return ret;
1504 }
1505
1506 long hrtimer_nanosleep(struct timespec64 *rqtp, struct timespec __user *rmtp,
1507 const enum hrtimer_mode mode, const clockid_t clockid)
1508 {
1509 struct restart_block *restart;
1510 struct hrtimer_sleeper t;
1511 int ret = 0;
1512 u64 slack;
1513
1514 slack = current->timer_slack_ns;
1515 if (dl_task(current) || rt_task(current))
1516 slack = 0;
1517
1518 hrtimer_init_on_stack(&t.timer, clockid, mode);
1519 hrtimer_set_expires_range_ns(&t.timer, timespec64_to_ktime(*rqtp), slack);
1520 if (do_nanosleep(&t, mode))
1521 goto out;
1522
1523 /* Absolute timers do not update the rmtp value and restart: */
1524 if (mode == HRTIMER_MODE_ABS) {
1525 ret = -ERESTARTNOHAND;
1526 goto out;
1527 }
1528
1529 if (rmtp) {
1530 ret = update_rmtp(&t.timer, rmtp);
1531 if (ret <= 0)
1532 goto out;
1533 }
1534
1535 restart = &current->restart_block;
1536 restart->fn = hrtimer_nanosleep_restart;
1537 restart->nanosleep.clockid = t.timer.base->clockid;
1538 restart->nanosleep.rmtp = rmtp;
1539 restart->nanosleep.expires = hrtimer_get_expires_tv64(&t.timer);
1540
1541 ret = -ERESTART_RESTARTBLOCK;
1542 out:
1543 destroy_hrtimer_on_stack(&t.timer);
1544 return ret;
1545 }
1546
1547 SYSCALL_DEFINE2(nanosleep, struct timespec __user *, rqtp,
1548 struct timespec __user *, rmtp)
1549 {
1550 struct timespec64 tu64;
1551 struct timespec tu;
1552
1553 if (copy_from_user(&tu, rqtp, sizeof(tu)))
1554 return -EFAULT;
1555
1556 tu64 = timespec_to_timespec64(tu);
1557 if (!timespec64_valid(&tu64))
1558 return -EINVAL;
1559
1560 return hrtimer_nanosleep(&tu64, rmtp, HRTIMER_MODE_REL, CLOCK_MONOTONIC);
1561 }
1562
1563 /*
1564 * Functions related to boot-time initialization:
1565 */
1566 int hrtimers_prepare_cpu(unsigned int cpu)
1567 {
1568 struct hrtimer_cpu_base *cpu_base = &per_cpu(hrtimer_bases, cpu);
1569 int i;
1570
1571 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
1572 cpu_base->clock_base[i].cpu_base = cpu_base;
1573 timerqueue_init_head(&cpu_base->clock_base[i].active);
1574 }
1575
1576 cpu_base->cpu = cpu;
1577 hrtimer_init_hres(cpu_base);
1578 return 0;
1579 }
1580
1581 #ifdef CONFIG_HOTPLUG_CPU
1582
1583 static void migrate_hrtimer_list(struct hrtimer_clock_base *old_base,
1584 struct hrtimer_clock_base *new_base)
1585 {
1586 struct hrtimer *timer;
1587 struct timerqueue_node *node;
1588
1589 while ((node = timerqueue_getnext(&old_base->active))) {
1590 timer = container_of(node, struct hrtimer, node);
1591 BUG_ON(hrtimer_callback_running(timer));
1592 debug_deactivate(timer);
1593
1594 /*
1595 * Mark it as ENQUEUED not INACTIVE otherwise the
1596 * timer could be seen as !active and just vanish away
1597 * under us on another CPU
1598 */
1599 __remove_hrtimer(timer, old_base, HRTIMER_STATE_ENQUEUED, 0);
1600 timer->base = new_base;
1601 /*
1602 * Enqueue the timers on the new cpu. This does not
1603 * reprogram the event device in case the timer
1604 * expires before the earliest on this CPU, but we run
1605 * hrtimer_interrupt after we migrated everything to
1606 * sort out already expired timers and reprogram the
1607 * event device.
1608 */
1609 enqueue_hrtimer(timer, new_base);
1610 }
1611 }
1612
1613 int hrtimers_dead_cpu(unsigned int scpu)
1614 {
1615 struct hrtimer_cpu_base *old_base, *new_base;
1616 int i;
1617
1618 BUG_ON(cpu_online(scpu));
1619 tick_cancel_sched_timer(scpu);
1620
1621 local_irq_disable();
1622 old_base = &per_cpu(hrtimer_bases, scpu);
1623 new_base = this_cpu_ptr(&hrtimer_bases);
1624 /*
1625 * The caller is globally serialized and nobody else
1626 * takes two locks at once, deadlock is not possible.
1627 */
1628 raw_spin_lock(&new_base->lock);
1629 raw_spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING);
1630
1631 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
1632 migrate_hrtimer_list(&old_base->clock_base[i],
1633 &new_base->clock_base[i]);
1634 }
1635
1636 raw_spin_unlock(&old_base->lock);
1637 raw_spin_unlock(&new_base->lock);
1638
1639 /* Check, if we got expired work to do */
1640 __hrtimer_peek_ahead_timers();
1641 local_irq_enable();
1642 return 0;
1643 }
1644
1645 #endif /* CONFIG_HOTPLUG_CPU */
1646
1647 void __init hrtimers_init(void)
1648 {
1649 hrtimers_prepare_cpu(smp_processor_id());
1650 }
1651
1652 /**
1653 * schedule_hrtimeout_range_clock - sleep until timeout
1654 * @expires: timeout value (ktime_t)
1655 * @delta: slack in expires timeout (ktime_t)
1656 * @mode: timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
1657 * @clock: timer clock, CLOCK_MONOTONIC or CLOCK_REALTIME
1658 */
1659 int __sched
1660 schedule_hrtimeout_range_clock(ktime_t *expires, u64 delta,
1661 const enum hrtimer_mode mode, int clock)
1662 {
1663 struct hrtimer_sleeper t;
1664
1665 /*
1666 * Optimize when a zero timeout value is given. It does not
1667 * matter whether this is an absolute or a relative time.
1668 */
1669 if (expires && *expires == 0) {
1670 __set_current_state(TASK_RUNNING);
1671 return 0;
1672 }
1673
1674 /*
1675 * A NULL parameter means "infinite"
1676 */
1677 if (!expires) {
1678 schedule();
1679 return -EINTR;
1680 }
1681
1682 hrtimer_init_on_stack(&t.timer, clock, mode);
1683 hrtimer_set_expires_range_ns(&t.timer, *expires, delta);
1684
1685 hrtimer_init_sleeper(&t, current);
1686
1687 hrtimer_start_expires(&t.timer, mode);
1688
1689 if (likely(t.task))
1690 schedule();
1691
1692 hrtimer_cancel(&t.timer);
1693 destroy_hrtimer_on_stack(&t.timer);
1694
1695 __set_current_state(TASK_RUNNING);
1696
1697 return !t.task ? 0 : -EINTR;
1698 }
1699
1700 /**
1701 * schedule_hrtimeout_range - sleep until timeout
1702 * @expires: timeout value (ktime_t)
1703 * @delta: slack in expires timeout (ktime_t)
1704 * @mode: timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
1705 *
1706 * Make the current task sleep until the given expiry time has
1707 * elapsed. The routine will return immediately unless
1708 * the current task state has been set (see set_current_state()).
1709 *
1710 * The @delta argument gives the kernel the freedom to schedule the
1711 * actual wakeup to a time that is both power and performance friendly.
1712 * The kernel give the normal best effort behavior for "@expires+@delta",
1713 * but may decide to fire the timer earlier, but no earlier than @expires.
1714 *
1715 * You can set the task state as follows -
1716 *
1717 * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
1718 * pass before the routine returns unless the current task is explicitly
1719 * woken up, (e.g. by wake_up_process()).
1720 *
1721 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1722 * delivered to the current task or the current task is explicitly woken
1723 * up.
1724 *
1725 * The current task state is guaranteed to be TASK_RUNNING when this
1726 * routine returns.
1727 *
1728 * Returns 0 when the timer has expired. If the task was woken before the
1729 * timer expired by a signal (only possible in state TASK_INTERRUPTIBLE) or
1730 * by an explicit wakeup, it returns -EINTR.
1731 */
1732 int __sched schedule_hrtimeout_range(ktime_t *expires, u64 delta,
1733 const enum hrtimer_mode mode)
1734 {
1735 return schedule_hrtimeout_range_clock(expires, delta, mode,
1736 CLOCK_MONOTONIC);
1737 }
1738 EXPORT_SYMBOL_GPL(schedule_hrtimeout_range);
1739
1740 /**
1741 * schedule_hrtimeout - sleep until timeout
1742 * @expires: timeout value (ktime_t)
1743 * @mode: timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
1744 *
1745 * Make the current task sleep until the given expiry time has
1746 * elapsed. The routine will return immediately unless
1747 * the current task state has been set (see set_current_state()).
1748 *
1749 * You can set the task state as follows -
1750 *
1751 * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
1752 * pass before the routine returns unless the current task is explicitly
1753 * woken up, (e.g. by wake_up_process()).
1754 *
1755 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1756 * delivered to the current task or the current task is explicitly woken
1757 * up.
1758 *
1759 * The current task state is guaranteed to be TASK_RUNNING when this
1760 * routine returns.
1761 *
1762 * Returns 0 when the timer has expired. If the task was woken before the
1763 * timer expired by a signal (only possible in state TASK_INTERRUPTIBLE) or
1764 * by an explicit wakeup, it returns -EINTR.
1765 */
1766 int __sched schedule_hrtimeout(ktime_t *expires,
1767 const enum hrtimer_mode mode)
1768 {
1769 return schedule_hrtimeout_range(expires, 0, mode);
1770 }
1771 EXPORT_SYMBOL_GPL(schedule_hrtimeout);