]> git.proxmox.com Git - mirror_ubuntu-eoan-kernel.git/blob - kernel/time/hrtimer.c
cpuidle: teo: Fix intervals[] array indexing bug
[mirror_ubuntu-eoan-kernel.git] / kernel / time / hrtimer.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
4 * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
5 * Copyright(C) 2006-2007 Timesys Corp., Thomas Gleixner
6 *
7 * High-resolution kernel timers
8 *
9 * In contrast to the low-resolution timeout API, aka timer wheel,
10 * hrtimers provide finer resolution and accuracy depending on system
11 * configuration and capabilities.
12 *
13 * Started by: Thomas Gleixner and Ingo Molnar
14 *
15 * Credits:
16 * Based on the original timer wheel code
17 *
18 * Help, testing, suggestions, bugfixes, improvements were
19 * provided by:
20 *
21 * George Anzinger, Andrew Morton, Steven Rostedt, Roman Zippel
22 * et. al.
23 */
24
25 #include <linux/cpu.h>
26 #include <linux/export.h>
27 #include <linux/percpu.h>
28 #include <linux/hrtimer.h>
29 #include <linux/notifier.h>
30 #include <linux/syscalls.h>
31 #include <linux/interrupt.h>
32 #include <linux/tick.h>
33 #include <linux/err.h>
34 #include <linux/debugobjects.h>
35 #include <linux/sched/signal.h>
36 #include <linux/sched/sysctl.h>
37 #include <linux/sched/rt.h>
38 #include <linux/sched/deadline.h>
39 #include <linux/sched/nohz.h>
40 #include <linux/sched/debug.h>
41 #include <linux/timer.h>
42 #include <linux/freezer.h>
43 #include <linux/compat.h>
44
45 #include <linux/uaccess.h>
46
47 #include <trace/events/timer.h>
48
49 #include "tick-internal.h"
50
51 /*
52 * Masks for selecting the soft and hard context timers from
53 * cpu_base->active
54 */
55 #define MASK_SHIFT (HRTIMER_BASE_MONOTONIC_SOFT)
56 #define HRTIMER_ACTIVE_HARD ((1U << MASK_SHIFT) - 1)
57 #define HRTIMER_ACTIVE_SOFT (HRTIMER_ACTIVE_HARD << MASK_SHIFT)
58 #define HRTIMER_ACTIVE_ALL (HRTIMER_ACTIVE_SOFT | HRTIMER_ACTIVE_HARD)
59
60 /*
61 * The timer bases:
62 *
63 * There are more clockids than hrtimer bases. Thus, we index
64 * into the timer bases by the hrtimer_base_type enum. When trying
65 * to reach a base using a clockid, hrtimer_clockid_to_base()
66 * is used to convert from clockid to the proper hrtimer_base_type.
67 */
68 DEFINE_PER_CPU(struct hrtimer_cpu_base, hrtimer_bases) =
69 {
70 .lock = __RAW_SPIN_LOCK_UNLOCKED(hrtimer_bases.lock),
71 .clock_base =
72 {
73 {
74 .index = HRTIMER_BASE_MONOTONIC,
75 .clockid = CLOCK_MONOTONIC,
76 .get_time = &ktime_get,
77 },
78 {
79 .index = HRTIMER_BASE_REALTIME,
80 .clockid = CLOCK_REALTIME,
81 .get_time = &ktime_get_real,
82 },
83 {
84 .index = HRTIMER_BASE_BOOTTIME,
85 .clockid = CLOCK_BOOTTIME,
86 .get_time = &ktime_get_boottime,
87 },
88 {
89 .index = HRTIMER_BASE_TAI,
90 .clockid = CLOCK_TAI,
91 .get_time = &ktime_get_clocktai,
92 },
93 {
94 .index = HRTIMER_BASE_MONOTONIC_SOFT,
95 .clockid = CLOCK_MONOTONIC,
96 .get_time = &ktime_get,
97 },
98 {
99 .index = HRTIMER_BASE_REALTIME_SOFT,
100 .clockid = CLOCK_REALTIME,
101 .get_time = &ktime_get_real,
102 },
103 {
104 .index = HRTIMER_BASE_BOOTTIME_SOFT,
105 .clockid = CLOCK_BOOTTIME,
106 .get_time = &ktime_get_boottime,
107 },
108 {
109 .index = HRTIMER_BASE_TAI_SOFT,
110 .clockid = CLOCK_TAI,
111 .get_time = &ktime_get_clocktai,
112 },
113 }
114 };
115
116 static const int hrtimer_clock_to_base_table[MAX_CLOCKS] = {
117 /* Make sure we catch unsupported clockids */
118 [0 ... MAX_CLOCKS - 1] = HRTIMER_MAX_CLOCK_BASES,
119
120 [CLOCK_REALTIME] = HRTIMER_BASE_REALTIME,
121 [CLOCK_MONOTONIC] = HRTIMER_BASE_MONOTONIC,
122 [CLOCK_BOOTTIME] = HRTIMER_BASE_BOOTTIME,
123 [CLOCK_TAI] = HRTIMER_BASE_TAI,
124 };
125
126 /*
127 * Functions and macros which are different for UP/SMP systems are kept in a
128 * single place
129 */
130 #ifdef CONFIG_SMP
131
132 /*
133 * We require the migration_base for lock_hrtimer_base()/switch_hrtimer_base()
134 * such that hrtimer_callback_running() can unconditionally dereference
135 * timer->base->cpu_base
136 */
137 static struct hrtimer_cpu_base migration_cpu_base = {
138 .clock_base = { { .cpu_base = &migration_cpu_base, }, },
139 };
140
141 #define migration_base migration_cpu_base.clock_base[0]
142
143 /*
144 * We are using hashed locking: holding per_cpu(hrtimer_bases)[n].lock
145 * means that all timers which are tied to this base via timer->base are
146 * locked, and the base itself is locked too.
147 *
148 * So __run_timers/migrate_timers can safely modify all timers which could
149 * be found on the lists/queues.
150 *
151 * When the timer's base is locked, and the timer removed from list, it is
152 * possible to set timer->base = &migration_base and drop the lock: the timer
153 * remains locked.
154 */
155 static
156 struct hrtimer_clock_base *lock_hrtimer_base(const struct hrtimer *timer,
157 unsigned long *flags)
158 {
159 struct hrtimer_clock_base *base;
160
161 for (;;) {
162 base = timer->base;
163 if (likely(base != &migration_base)) {
164 raw_spin_lock_irqsave(&base->cpu_base->lock, *flags);
165 if (likely(base == timer->base))
166 return base;
167 /* The timer has migrated to another CPU: */
168 raw_spin_unlock_irqrestore(&base->cpu_base->lock, *flags);
169 }
170 cpu_relax();
171 }
172 }
173
174 /*
175 * We do not migrate the timer when it is expiring before the next
176 * event on the target cpu. When high resolution is enabled, we cannot
177 * reprogram the target cpu hardware and we would cause it to fire
178 * late. To keep it simple, we handle the high resolution enabled and
179 * disabled case similar.
180 *
181 * Called with cpu_base->lock of target cpu held.
182 */
183 static int
184 hrtimer_check_target(struct hrtimer *timer, struct hrtimer_clock_base *new_base)
185 {
186 ktime_t expires;
187
188 expires = ktime_sub(hrtimer_get_expires(timer), new_base->offset);
189 return expires < new_base->cpu_base->expires_next;
190 }
191
192 static inline
193 struct hrtimer_cpu_base *get_target_base(struct hrtimer_cpu_base *base,
194 int pinned)
195 {
196 #if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON)
197 if (static_branch_likely(&timers_migration_enabled) && !pinned)
198 return &per_cpu(hrtimer_bases, get_nohz_timer_target());
199 #endif
200 return base;
201 }
202
203 /*
204 * We switch the timer base to a power-optimized selected CPU target,
205 * if:
206 * - NO_HZ_COMMON is enabled
207 * - timer migration is enabled
208 * - the timer callback is not running
209 * - the timer is not the first expiring timer on the new target
210 *
211 * If one of the above requirements is not fulfilled we move the timer
212 * to the current CPU or leave it on the previously assigned CPU if
213 * the timer callback is currently running.
214 */
215 static inline struct hrtimer_clock_base *
216 switch_hrtimer_base(struct hrtimer *timer, struct hrtimer_clock_base *base,
217 int pinned)
218 {
219 struct hrtimer_cpu_base *new_cpu_base, *this_cpu_base;
220 struct hrtimer_clock_base *new_base;
221 int basenum = base->index;
222
223 this_cpu_base = this_cpu_ptr(&hrtimer_bases);
224 new_cpu_base = get_target_base(this_cpu_base, pinned);
225 again:
226 new_base = &new_cpu_base->clock_base[basenum];
227
228 if (base != new_base) {
229 /*
230 * We are trying to move timer to new_base.
231 * However we can't change timer's base while it is running,
232 * so we keep it on the same CPU. No hassle vs. reprogramming
233 * the event source in the high resolution case. The softirq
234 * code will take care of this when the timer function has
235 * completed. There is no conflict as we hold the lock until
236 * the timer is enqueued.
237 */
238 if (unlikely(hrtimer_callback_running(timer)))
239 return base;
240
241 /* See the comment in lock_hrtimer_base() */
242 timer->base = &migration_base;
243 raw_spin_unlock(&base->cpu_base->lock);
244 raw_spin_lock(&new_base->cpu_base->lock);
245
246 if (new_cpu_base != this_cpu_base &&
247 hrtimer_check_target(timer, new_base)) {
248 raw_spin_unlock(&new_base->cpu_base->lock);
249 raw_spin_lock(&base->cpu_base->lock);
250 new_cpu_base = this_cpu_base;
251 timer->base = base;
252 goto again;
253 }
254 timer->base = new_base;
255 } else {
256 if (new_cpu_base != this_cpu_base &&
257 hrtimer_check_target(timer, new_base)) {
258 new_cpu_base = this_cpu_base;
259 goto again;
260 }
261 }
262 return new_base;
263 }
264
265 #else /* CONFIG_SMP */
266
267 static inline struct hrtimer_clock_base *
268 lock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
269 {
270 struct hrtimer_clock_base *base = timer->base;
271
272 raw_spin_lock_irqsave(&base->cpu_base->lock, *flags);
273
274 return base;
275 }
276
277 # define switch_hrtimer_base(t, b, p) (b)
278
279 #endif /* !CONFIG_SMP */
280
281 /*
282 * Functions for the union type storage format of ktime_t which are
283 * too large for inlining:
284 */
285 #if BITS_PER_LONG < 64
286 /*
287 * Divide a ktime value by a nanosecond value
288 */
289 s64 __ktime_divns(const ktime_t kt, s64 div)
290 {
291 int sft = 0;
292 s64 dclc;
293 u64 tmp;
294
295 dclc = ktime_to_ns(kt);
296 tmp = dclc < 0 ? -dclc : dclc;
297
298 /* Make sure the divisor is less than 2^32: */
299 while (div >> 32) {
300 sft++;
301 div >>= 1;
302 }
303 tmp >>= sft;
304 do_div(tmp, (unsigned long) div);
305 return dclc < 0 ? -tmp : tmp;
306 }
307 EXPORT_SYMBOL_GPL(__ktime_divns);
308 #endif /* BITS_PER_LONG >= 64 */
309
310 /*
311 * Add two ktime values and do a safety check for overflow:
312 */
313 ktime_t ktime_add_safe(const ktime_t lhs, const ktime_t rhs)
314 {
315 ktime_t res = ktime_add_unsafe(lhs, rhs);
316
317 /*
318 * We use KTIME_SEC_MAX here, the maximum timeout which we can
319 * return to user space in a timespec:
320 */
321 if (res < 0 || res < lhs || res < rhs)
322 res = ktime_set(KTIME_SEC_MAX, 0);
323
324 return res;
325 }
326
327 EXPORT_SYMBOL_GPL(ktime_add_safe);
328
329 #ifdef CONFIG_DEBUG_OBJECTS_TIMERS
330
331 static struct debug_obj_descr hrtimer_debug_descr;
332
333 static void *hrtimer_debug_hint(void *addr)
334 {
335 return ((struct hrtimer *) addr)->function;
336 }
337
338 /*
339 * fixup_init is called when:
340 * - an active object is initialized
341 */
342 static bool hrtimer_fixup_init(void *addr, enum debug_obj_state state)
343 {
344 struct hrtimer *timer = addr;
345
346 switch (state) {
347 case ODEBUG_STATE_ACTIVE:
348 hrtimer_cancel(timer);
349 debug_object_init(timer, &hrtimer_debug_descr);
350 return true;
351 default:
352 return false;
353 }
354 }
355
356 /*
357 * fixup_activate is called when:
358 * - an active object is activated
359 * - an unknown non-static object is activated
360 */
361 static bool hrtimer_fixup_activate(void *addr, enum debug_obj_state state)
362 {
363 switch (state) {
364 case ODEBUG_STATE_ACTIVE:
365 WARN_ON(1);
366 /* fall through */
367 default:
368 return false;
369 }
370 }
371
372 /*
373 * fixup_free is called when:
374 * - an active object is freed
375 */
376 static bool hrtimer_fixup_free(void *addr, enum debug_obj_state state)
377 {
378 struct hrtimer *timer = addr;
379
380 switch (state) {
381 case ODEBUG_STATE_ACTIVE:
382 hrtimer_cancel(timer);
383 debug_object_free(timer, &hrtimer_debug_descr);
384 return true;
385 default:
386 return false;
387 }
388 }
389
390 static struct debug_obj_descr hrtimer_debug_descr = {
391 .name = "hrtimer",
392 .debug_hint = hrtimer_debug_hint,
393 .fixup_init = hrtimer_fixup_init,
394 .fixup_activate = hrtimer_fixup_activate,
395 .fixup_free = hrtimer_fixup_free,
396 };
397
398 static inline void debug_hrtimer_init(struct hrtimer *timer)
399 {
400 debug_object_init(timer, &hrtimer_debug_descr);
401 }
402
403 static inline void debug_hrtimer_activate(struct hrtimer *timer,
404 enum hrtimer_mode mode)
405 {
406 debug_object_activate(timer, &hrtimer_debug_descr);
407 }
408
409 static inline void debug_hrtimer_deactivate(struct hrtimer *timer)
410 {
411 debug_object_deactivate(timer, &hrtimer_debug_descr);
412 }
413
414 static inline void debug_hrtimer_free(struct hrtimer *timer)
415 {
416 debug_object_free(timer, &hrtimer_debug_descr);
417 }
418
419 static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
420 enum hrtimer_mode mode);
421
422 void hrtimer_init_on_stack(struct hrtimer *timer, clockid_t clock_id,
423 enum hrtimer_mode mode)
424 {
425 debug_object_init_on_stack(timer, &hrtimer_debug_descr);
426 __hrtimer_init(timer, clock_id, mode);
427 }
428 EXPORT_SYMBOL_GPL(hrtimer_init_on_stack);
429
430 void destroy_hrtimer_on_stack(struct hrtimer *timer)
431 {
432 debug_object_free(timer, &hrtimer_debug_descr);
433 }
434 EXPORT_SYMBOL_GPL(destroy_hrtimer_on_stack);
435
436 #else
437
438 static inline void debug_hrtimer_init(struct hrtimer *timer) { }
439 static inline void debug_hrtimer_activate(struct hrtimer *timer,
440 enum hrtimer_mode mode) { }
441 static inline void debug_hrtimer_deactivate(struct hrtimer *timer) { }
442 #endif
443
444 static inline void
445 debug_init(struct hrtimer *timer, clockid_t clockid,
446 enum hrtimer_mode mode)
447 {
448 debug_hrtimer_init(timer);
449 trace_hrtimer_init(timer, clockid, mode);
450 }
451
452 static inline void debug_activate(struct hrtimer *timer,
453 enum hrtimer_mode mode)
454 {
455 debug_hrtimer_activate(timer, mode);
456 trace_hrtimer_start(timer, mode);
457 }
458
459 static inline void debug_deactivate(struct hrtimer *timer)
460 {
461 debug_hrtimer_deactivate(timer);
462 trace_hrtimer_cancel(timer);
463 }
464
465 static struct hrtimer_clock_base *
466 __next_base(struct hrtimer_cpu_base *cpu_base, unsigned int *active)
467 {
468 unsigned int idx;
469
470 if (!*active)
471 return NULL;
472
473 idx = __ffs(*active);
474 *active &= ~(1U << idx);
475
476 return &cpu_base->clock_base[idx];
477 }
478
479 #define for_each_active_base(base, cpu_base, active) \
480 while ((base = __next_base((cpu_base), &(active))))
481
482 static ktime_t __hrtimer_next_event_base(struct hrtimer_cpu_base *cpu_base,
483 const struct hrtimer *exclude,
484 unsigned int active,
485 ktime_t expires_next)
486 {
487 struct hrtimer_clock_base *base;
488 ktime_t expires;
489
490 for_each_active_base(base, cpu_base, active) {
491 struct timerqueue_node *next;
492 struct hrtimer *timer;
493
494 next = timerqueue_getnext(&base->active);
495 timer = container_of(next, struct hrtimer, node);
496 if (timer == exclude) {
497 /* Get to the next timer in the queue. */
498 next = timerqueue_iterate_next(next);
499 if (!next)
500 continue;
501
502 timer = container_of(next, struct hrtimer, node);
503 }
504 expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
505 if (expires < expires_next) {
506 expires_next = expires;
507
508 /* Skip cpu_base update if a timer is being excluded. */
509 if (exclude)
510 continue;
511
512 if (timer->is_soft)
513 cpu_base->softirq_next_timer = timer;
514 else
515 cpu_base->next_timer = timer;
516 }
517 }
518 /*
519 * clock_was_set() might have changed base->offset of any of
520 * the clock bases so the result might be negative. Fix it up
521 * to prevent a false positive in clockevents_program_event().
522 */
523 if (expires_next < 0)
524 expires_next = 0;
525 return expires_next;
526 }
527
528 /*
529 * Recomputes cpu_base::*next_timer and returns the earliest expires_next but
530 * does not set cpu_base::*expires_next, that is done by hrtimer_reprogram.
531 *
532 * When a softirq is pending, we can ignore the HRTIMER_ACTIVE_SOFT bases,
533 * those timers will get run whenever the softirq gets handled, at the end of
534 * hrtimer_run_softirq(), hrtimer_update_softirq_timer() will re-add these bases.
535 *
536 * Therefore softirq values are those from the HRTIMER_ACTIVE_SOFT clock bases.
537 * The !softirq values are the minima across HRTIMER_ACTIVE_ALL, unless an actual
538 * softirq is pending, in which case they're the minima of HRTIMER_ACTIVE_HARD.
539 *
540 * @active_mask must be one of:
541 * - HRTIMER_ACTIVE_ALL,
542 * - HRTIMER_ACTIVE_SOFT, or
543 * - HRTIMER_ACTIVE_HARD.
544 */
545 static ktime_t
546 __hrtimer_get_next_event(struct hrtimer_cpu_base *cpu_base, unsigned int active_mask)
547 {
548 unsigned int active;
549 struct hrtimer *next_timer = NULL;
550 ktime_t expires_next = KTIME_MAX;
551
552 if (!cpu_base->softirq_activated && (active_mask & HRTIMER_ACTIVE_SOFT)) {
553 active = cpu_base->active_bases & HRTIMER_ACTIVE_SOFT;
554 cpu_base->softirq_next_timer = NULL;
555 expires_next = __hrtimer_next_event_base(cpu_base, NULL,
556 active, KTIME_MAX);
557
558 next_timer = cpu_base->softirq_next_timer;
559 }
560
561 if (active_mask & HRTIMER_ACTIVE_HARD) {
562 active = cpu_base->active_bases & HRTIMER_ACTIVE_HARD;
563 cpu_base->next_timer = next_timer;
564 expires_next = __hrtimer_next_event_base(cpu_base, NULL, active,
565 expires_next);
566 }
567
568 return expires_next;
569 }
570
571 static inline ktime_t hrtimer_update_base(struct hrtimer_cpu_base *base)
572 {
573 ktime_t *offs_real = &base->clock_base[HRTIMER_BASE_REALTIME].offset;
574 ktime_t *offs_boot = &base->clock_base[HRTIMER_BASE_BOOTTIME].offset;
575 ktime_t *offs_tai = &base->clock_base[HRTIMER_BASE_TAI].offset;
576
577 ktime_t now = ktime_get_update_offsets_now(&base->clock_was_set_seq,
578 offs_real, offs_boot, offs_tai);
579
580 base->clock_base[HRTIMER_BASE_REALTIME_SOFT].offset = *offs_real;
581 base->clock_base[HRTIMER_BASE_BOOTTIME_SOFT].offset = *offs_boot;
582 base->clock_base[HRTIMER_BASE_TAI_SOFT].offset = *offs_tai;
583
584 return now;
585 }
586
587 /*
588 * Is the high resolution mode active ?
589 */
590 static inline int __hrtimer_hres_active(struct hrtimer_cpu_base *cpu_base)
591 {
592 return IS_ENABLED(CONFIG_HIGH_RES_TIMERS) ?
593 cpu_base->hres_active : 0;
594 }
595
596 static inline int hrtimer_hres_active(void)
597 {
598 return __hrtimer_hres_active(this_cpu_ptr(&hrtimer_bases));
599 }
600
601 /*
602 * Reprogram the event source with checking both queues for the
603 * next event
604 * Called with interrupts disabled and base->lock held
605 */
606 static void
607 hrtimer_force_reprogram(struct hrtimer_cpu_base *cpu_base, int skip_equal)
608 {
609 ktime_t expires_next;
610
611 /*
612 * Find the current next expiration time.
613 */
614 expires_next = __hrtimer_get_next_event(cpu_base, HRTIMER_ACTIVE_ALL);
615
616 if (cpu_base->next_timer && cpu_base->next_timer->is_soft) {
617 /*
618 * When the softirq is activated, hrtimer has to be
619 * programmed with the first hard hrtimer because soft
620 * timer interrupt could occur too late.
621 */
622 if (cpu_base->softirq_activated)
623 expires_next = __hrtimer_get_next_event(cpu_base,
624 HRTIMER_ACTIVE_HARD);
625 else
626 cpu_base->softirq_expires_next = expires_next;
627 }
628
629 if (skip_equal && expires_next == cpu_base->expires_next)
630 return;
631
632 cpu_base->expires_next = expires_next;
633
634 /*
635 * If hres is not active, hardware does not have to be
636 * reprogrammed yet.
637 *
638 * If a hang was detected in the last timer interrupt then we
639 * leave the hang delay active in the hardware. We want the
640 * system to make progress. That also prevents the following
641 * scenario:
642 * T1 expires 50ms from now
643 * T2 expires 5s from now
644 *
645 * T1 is removed, so this code is called and would reprogram
646 * the hardware to 5s from now. Any hrtimer_start after that
647 * will not reprogram the hardware due to hang_detected being
648 * set. So we'd effectivly block all timers until the T2 event
649 * fires.
650 */
651 if (!__hrtimer_hres_active(cpu_base) || cpu_base->hang_detected)
652 return;
653
654 tick_program_event(cpu_base->expires_next, 1);
655 }
656
657 /* High resolution timer related functions */
658 #ifdef CONFIG_HIGH_RES_TIMERS
659
660 /*
661 * High resolution timer enabled ?
662 */
663 static bool hrtimer_hres_enabled __read_mostly = true;
664 unsigned int hrtimer_resolution __read_mostly = LOW_RES_NSEC;
665 EXPORT_SYMBOL_GPL(hrtimer_resolution);
666
667 /*
668 * Enable / Disable high resolution mode
669 */
670 static int __init setup_hrtimer_hres(char *str)
671 {
672 return (kstrtobool(str, &hrtimer_hres_enabled) == 0);
673 }
674
675 __setup("highres=", setup_hrtimer_hres);
676
677 /*
678 * hrtimer_high_res_enabled - query, if the highres mode is enabled
679 */
680 static inline int hrtimer_is_hres_enabled(void)
681 {
682 return hrtimer_hres_enabled;
683 }
684
685 /*
686 * Retrigger next event is called after clock was set
687 *
688 * Called with interrupts disabled via on_each_cpu()
689 */
690 static void retrigger_next_event(void *arg)
691 {
692 struct hrtimer_cpu_base *base = this_cpu_ptr(&hrtimer_bases);
693
694 if (!__hrtimer_hres_active(base))
695 return;
696
697 raw_spin_lock(&base->lock);
698 hrtimer_update_base(base);
699 hrtimer_force_reprogram(base, 0);
700 raw_spin_unlock(&base->lock);
701 }
702
703 /*
704 * Switch to high resolution mode
705 */
706 static void hrtimer_switch_to_hres(void)
707 {
708 struct hrtimer_cpu_base *base = this_cpu_ptr(&hrtimer_bases);
709
710 if (tick_init_highres()) {
711 pr_warn("Could not switch to high resolution mode on CPU %u\n",
712 base->cpu);
713 return;
714 }
715 base->hres_active = 1;
716 hrtimer_resolution = HIGH_RES_NSEC;
717
718 tick_setup_sched_timer();
719 /* "Retrigger" the interrupt to get things going */
720 retrigger_next_event(NULL);
721 }
722
723 static void clock_was_set_work(struct work_struct *work)
724 {
725 clock_was_set();
726 }
727
728 static DECLARE_WORK(hrtimer_work, clock_was_set_work);
729
730 /*
731 * Called from timekeeping and resume code to reprogram the hrtimer
732 * interrupt device on all cpus.
733 */
734 void clock_was_set_delayed(void)
735 {
736 schedule_work(&hrtimer_work);
737 }
738
739 #else
740
741 static inline int hrtimer_is_hres_enabled(void) { return 0; }
742 static inline void hrtimer_switch_to_hres(void) { }
743 static inline void retrigger_next_event(void *arg) { }
744
745 #endif /* CONFIG_HIGH_RES_TIMERS */
746
747 /*
748 * When a timer is enqueued and expires earlier than the already enqueued
749 * timers, we have to check, whether it expires earlier than the timer for
750 * which the clock event device was armed.
751 *
752 * Called with interrupts disabled and base->cpu_base.lock held
753 */
754 static void hrtimer_reprogram(struct hrtimer *timer, bool reprogram)
755 {
756 struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
757 struct hrtimer_clock_base *base = timer->base;
758 ktime_t expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
759
760 WARN_ON_ONCE(hrtimer_get_expires_tv64(timer) < 0);
761
762 /*
763 * CLOCK_REALTIME timer might be requested with an absolute
764 * expiry time which is less than base->offset. Set it to 0.
765 */
766 if (expires < 0)
767 expires = 0;
768
769 if (timer->is_soft) {
770 /*
771 * soft hrtimer could be started on a remote CPU. In this
772 * case softirq_expires_next needs to be updated on the
773 * remote CPU. The soft hrtimer will not expire before the
774 * first hard hrtimer on the remote CPU -
775 * hrtimer_check_target() prevents this case.
776 */
777 struct hrtimer_cpu_base *timer_cpu_base = base->cpu_base;
778
779 if (timer_cpu_base->softirq_activated)
780 return;
781
782 if (!ktime_before(expires, timer_cpu_base->softirq_expires_next))
783 return;
784
785 timer_cpu_base->softirq_next_timer = timer;
786 timer_cpu_base->softirq_expires_next = expires;
787
788 if (!ktime_before(expires, timer_cpu_base->expires_next) ||
789 !reprogram)
790 return;
791 }
792
793 /*
794 * If the timer is not on the current cpu, we cannot reprogram
795 * the other cpus clock event device.
796 */
797 if (base->cpu_base != cpu_base)
798 return;
799
800 /*
801 * If the hrtimer interrupt is running, then it will
802 * reevaluate the clock bases and reprogram the clock event
803 * device. The callbacks are always executed in hard interrupt
804 * context so we don't need an extra check for a running
805 * callback.
806 */
807 if (cpu_base->in_hrtirq)
808 return;
809
810 if (expires >= cpu_base->expires_next)
811 return;
812
813 /* Update the pointer to the next expiring timer */
814 cpu_base->next_timer = timer;
815 cpu_base->expires_next = expires;
816
817 /*
818 * If hres is not active, hardware does not have to be
819 * programmed yet.
820 *
821 * If a hang was detected in the last timer interrupt then we
822 * do not schedule a timer which is earlier than the expiry
823 * which we enforced in the hang detection. We want the system
824 * to make progress.
825 */
826 if (!__hrtimer_hres_active(cpu_base) || cpu_base->hang_detected)
827 return;
828
829 /*
830 * Program the timer hardware. We enforce the expiry for
831 * events which are already in the past.
832 */
833 tick_program_event(expires, 1);
834 }
835
836 /*
837 * Clock realtime was set
838 *
839 * Change the offset of the realtime clock vs. the monotonic
840 * clock.
841 *
842 * We might have to reprogram the high resolution timer interrupt. On
843 * SMP we call the architecture specific code to retrigger _all_ high
844 * resolution timer interrupts. On UP we just disable interrupts and
845 * call the high resolution interrupt code.
846 */
847 void clock_was_set(void)
848 {
849 #ifdef CONFIG_HIGH_RES_TIMERS
850 /* Retrigger the CPU local events everywhere */
851 on_each_cpu(retrigger_next_event, NULL, 1);
852 #endif
853 timerfd_clock_was_set();
854 }
855
856 /*
857 * During resume we might have to reprogram the high resolution timer
858 * interrupt on all online CPUs. However, all other CPUs will be
859 * stopped with IRQs interrupts disabled so the clock_was_set() call
860 * must be deferred.
861 */
862 void hrtimers_resume(void)
863 {
864 lockdep_assert_irqs_disabled();
865 /* Retrigger on the local CPU */
866 retrigger_next_event(NULL);
867 /* And schedule a retrigger for all others */
868 clock_was_set_delayed();
869 }
870
871 /*
872 * Counterpart to lock_hrtimer_base above:
873 */
874 static inline
875 void unlock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
876 {
877 raw_spin_unlock_irqrestore(&timer->base->cpu_base->lock, *flags);
878 }
879
880 /**
881 * hrtimer_forward - forward the timer expiry
882 * @timer: hrtimer to forward
883 * @now: forward past this time
884 * @interval: the interval to forward
885 *
886 * Forward the timer expiry so it will expire in the future.
887 * Returns the number of overruns.
888 *
889 * Can be safely called from the callback function of @timer. If
890 * called from other contexts @timer must neither be enqueued nor
891 * running the callback and the caller needs to take care of
892 * serialization.
893 *
894 * Note: This only updates the timer expiry value and does not requeue
895 * the timer.
896 */
897 u64 hrtimer_forward(struct hrtimer *timer, ktime_t now, ktime_t interval)
898 {
899 u64 orun = 1;
900 ktime_t delta;
901
902 delta = ktime_sub(now, hrtimer_get_expires(timer));
903
904 if (delta < 0)
905 return 0;
906
907 if (WARN_ON(timer->state & HRTIMER_STATE_ENQUEUED))
908 return 0;
909
910 if (interval < hrtimer_resolution)
911 interval = hrtimer_resolution;
912
913 if (unlikely(delta >= interval)) {
914 s64 incr = ktime_to_ns(interval);
915
916 orun = ktime_divns(delta, incr);
917 hrtimer_add_expires_ns(timer, incr * orun);
918 if (hrtimer_get_expires_tv64(timer) > now)
919 return orun;
920 /*
921 * This (and the ktime_add() below) is the
922 * correction for exact:
923 */
924 orun++;
925 }
926 hrtimer_add_expires(timer, interval);
927
928 return orun;
929 }
930 EXPORT_SYMBOL_GPL(hrtimer_forward);
931
932 /*
933 * enqueue_hrtimer - internal function to (re)start a timer
934 *
935 * The timer is inserted in expiry order. Insertion into the
936 * red black tree is O(log(n)). Must hold the base lock.
937 *
938 * Returns 1 when the new timer is the leftmost timer in the tree.
939 */
940 static int enqueue_hrtimer(struct hrtimer *timer,
941 struct hrtimer_clock_base *base,
942 enum hrtimer_mode mode)
943 {
944 debug_activate(timer, mode);
945
946 base->cpu_base->active_bases |= 1 << base->index;
947
948 /* Pairs with the lockless read in hrtimer_is_queued() */
949 WRITE_ONCE(timer->state, HRTIMER_STATE_ENQUEUED);
950
951 return timerqueue_add(&base->active, &timer->node);
952 }
953
954 /*
955 * __remove_hrtimer - internal function to remove a timer
956 *
957 * Caller must hold the base lock.
958 *
959 * High resolution timer mode reprograms the clock event device when the
960 * timer is the one which expires next. The caller can disable this by setting
961 * reprogram to zero. This is useful, when the context does a reprogramming
962 * anyway (e.g. timer interrupt)
963 */
964 static void __remove_hrtimer(struct hrtimer *timer,
965 struct hrtimer_clock_base *base,
966 u8 newstate, int reprogram)
967 {
968 struct hrtimer_cpu_base *cpu_base = base->cpu_base;
969 u8 state = timer->state;
970
971 /* Pairs with the lockless read in hrtimer_is_queued() */
972 WRITE_ONCE(timer->state, newstate);
973 if (!(state & HRTIMER_STATE_ENQUEUED))
974 return;
975
976 if (!timerqueue_del(&base->active, &timer->node))
977 cpu_base->active_bases &= ~(1 << base->index);
978
979 /*
980 * Note: If reprogram is false we do not update
981 * cpu_base->next_timer. This happens when we remove the first
982 * timer on a remote cpu. No harm as we never dereference
983 * cpu_base->next_timer. So the worst thing what can happen is
984 * an superflous call to hrtimer_force_reprogram() on the
985 * remote cpu later on if the same timer gets enqueued again.
986 */
987 if (reprogram && timer == cpu_base->next_timer)
988 hrtimer_force_reprogram(cpu_base, 1);
989 }
990
991 /*
992 * remove hrtimer, called with base lock held
993 */
994 static inline int
995 remove_hrtimer(struct hrtimer *timer, struct hrtimer_clock_base *base, bool restart)
996 {
997 u8 state = timer->state;
998
999 if (state & HRTIMER_STATE_ENQUEUED) {
1000 int reprogram;
1001
1002 /*
1003 * Remove the timer and force reprogramming when high
1004 * resolution mode is active and the timer is on the current
1005 * CPU. If we remove a timer on another CPU, reprogramming is
1006 * skipped. The interrupt event on this CPU is fired and
1007 * reprogramming happens in the interrupt handler. This is a
1008 * rare case and less expensive than a smp call.
1009 */
1010 debug_deactivate(timer);
1011 reprogram = base->cpu_base == this_cpu_ptr(&hrtimer_bases);
1012
1013 if (!restart)
1014 state = HRTIMER_STATE_INACTIVE;
1015
1016 __remove_hrtimer(timer, base, state, reprogram);
1017 return 1;
1018 }
1019 return 0;
1020 }
1021
1022 static inline ktime_t hrtimer_update_lowres(struct hrtimer *timer, ktime_t tim,
1023 const enum hrtimer_mode mode)
1024 {
1025 #ifdef CONFIG_TIME_LOW_RES
1026 /*
1027 * CONFIG_TIME_LOW_RES indicates that the system has no way to return
1028 * granular time values. For relative timers we add hrtimer_resolution
1029 * (i.e. one jiffie) to prevent short timeouts.
1030 */
1031 timer->is_rel = mode & HRTIMER_MODE_REL;
1032 if (timer->is_rel)
1033 tim = ktime_add_safe(tim, hrtimer_resolution);
1034 #endif
1035 return tim;
1036 }
1037
1038 static void
1039 hrtimer_update_softirq_timer(struct hrtimer_cpu_base *cpu_base, bool reprogram)
1040 {
1041 ktime_t expires;
1042
1043 /*
1044 * Find the next SOFT expiration.
1045 */
1046 expires = __hrtimer_get_next_event(cpu_base, HRTIMER_ACTIVE_SOFT);
1047
1048 /*
1049 * reprogramming needs to be triggered, even if the next soft
1050 * hrtimer expires at the same time than the next hard
1051 * hrtimer. cpu_base->softirq_expires_next needs to be updated!
1052 */
1053 if (expires == KTIME_MAX)
1054 return;
1055
1056 /*
1057 * cpu_base->*next_timer is recomputed by __hrtimer_get_next_event()
1058 * cpu_base->*expires_next is only set by hrtimer_reprogram()
1059 */
1060 hrtimer_reprogram(cpu_base->softirq_next_timer, reprogram);
1061 }
1062
1063 static int __hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim,
1064 u64 delta_ns, const enum hrtimer_mode mode,
1065 struct hrtimer_clock_base *base)
1066 {
1067 struct hrtimer_clock_base *new_base;
1068
1069 /* Remove an active timer from the queue: */
1070 remove_hrtimer(timer, base, true);
1071
1072 if (mode & HRTIMER_MODE_REL)
1073 tim = ktime_add_safe(tim, base->get_time());
1074
1075 tim = hrtimer_update_lowres(timer, tim, mode);
1076
1077 hrtimer_set_expires_range_ns(timer, tim, delta_ns);
1078
1079 /* Switch the timer base, if necessary: */
1080 new_base = switch_hrtimer_base(timer, base, mode & HRTIMER_MODE_PINNED);
1081
1082 return enqueue_hrtimer(timer, new_base, mode);
1083 }
1084
1085 /**
1086 * hrtimer_start_range_ns - (re)start an hrtimer
1087 * @timer: the timer to be added
1088 * @tim: expiry time
1089 * @delta_ns: "slack" range for the timer
1090 * @mode: timer mode: absolute (HRTIMER_MODE_ABS) or
1091 * relative (HRTIMER_MODE_REL), and pinned (HRTIMER_MODE_PINNED);
1092 * softirq based mode is considered for debug purpose only!
1093 */
1094 void hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim,
1095 u64 delta_ns, const enum hrtimer_mode mode)
1096 {
1097 struct hrtimer_clock_base *base;
1098 unsigned long flags;
1099
1100 /*
1101 * Check whether the HRTIMER_MODE_SOFT bit and hrtimer.is_soft
1102 * match.
1103 */
1104 WARN_ON_ONCE(!(mode & HRTIMER_MODE_SOFT) ^ !timer->is_soft);
1105
1106 base = lock_hrtimer_base(timer, &flags);
1107
1108 if (__hrtimer_start_range_ns(timer, tim, delta_ns, mode, base))
1109 hrtimer_reprogram(timer, true);
1110
1111 unlock_hrtimer_base(timer, &flags);
1112 }
1113 EXPORT_SYMBOL_GPL(hrtimer_start_range_ns);
1114
1115 /**
1116 * hrtimer_try_to_cancel - try to deactivate a timer
1117 * @timer: hrtimer to stop
1118 *
1119 * Returns:
1120 *
1121 * * 0 when the timer was not active
1122 * * 1 when the timer was active
1123 * * -1 when the timer is currently executing the callback function and
1124 * cannot be stopped
1125 */
1126 int hrtimer_try_to_cancel(struct hrtimer *timer)
1127 {
1128 struct hrtimer_clock_base *base;
1129 unsigned long flags;
1130 int ret = -1;
1131
1132 /*
1133 * Check lockless first. If the timer is not active (neither
1134 * enqueued nor running the callback, nothing to do here. The
1135 * base lock does not serialize against a concurrent enqueue,
1136 * so we can avoid taking it.
1137 */
1138 if (!hrtimer_active(timer))
1139 return 0;
1140
1141 base = lock_hrtimer_base(timer, &flags);
1142
1143 if (!hrtimer_callback_running(timer))
1144 ret = remove_hrtimer(timer, base, false);
1145
1146 unlock_hrtimer_base(timer, &flags);
1147
1148 return ret;
1149
1150 }
1151 EXPORT_SYMBOL_GPL(hrtimer_try_to_cancel);
1152
1153 /**
1154 * hrtimer_cancel - cancel a timer and wait for the handler to finish.
1155 * @timer: the timer to be cancelled
1156 *
1157 * Returns:
1158 * 0 when the timer was not active
1159 * 1 when the timer was active
1160 */
1161 int hrtimer_cancel(struct hrtimer *timer)
1162 {
1163 for (;;) {
1164 int ret = hrtimer_try_to_cancel(timer);
1165
1166 if (ret >= 0)
1167 return ret;
1168 cpu_relax();
1169 }
1170 }
1171 EXPORT_SYMBOL_GPL(hrtimer_cancel);
1172
1173 /**
1174 * hrtimer_get_remaining - get remaining time for the timer
1175 * @timer: the timer to read
1176 * @adjust: adjust relative timers when CONFIG_TIME_LOW_RES=y
1177 */
1178 ktime_t __hrtimer_get_remaining(const struct hrtimer *timer, bool adjust)
1179 {
1180 unsigned long flags;
1181 ktime_t rem;
1182
1183 lock_hrtimer_base(timer, &flags);
1184 if (IS_ENABLED(CONFIG_TIME_LOW_RES) && adjust)
1185 rem = hrtimer_expires_remaining_adjusted(timer);
1186 else
1187 rem = hrtimer_expires_remaining(timer);
1188 unlock_hrtimer_base(timer, &flags);
1189
1190 return rem;
1191 }
1192 EXPORT_SYMBOL_GPL(__hrtimer_get_remaining);
1193
1194 #ifdef CONFIG_NO_HZ_COMMON
1195 /**
1196 * hrtimer_get_next_event - get the time until next expiry event
1197 *
1198 * Returns the next expiry time or KTIME_MAX if no timer is pending.
1199 */
1200 u64 hrtimer_get_next_event(void)
1201 {
1202 struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
1203 u64 expires = KTIME_MAX;
1204 unsigned long flags;
1205
1206 raw_spin_lock_irqsave(&cpu_base->lock, flags);
1207
1208 if (!__hrtimer_hres_active(cpu_base))
1209 expires = __hrtimer_get_next_event(cpu_base, HRTIMER_ACTIVE_ALL);
1210
1211 raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1212
1213 return expires;
1214 }
1215
1216 /**
1217 * hrtimer_next_event_without - time until next expiry event w/o one timer
1218 * @exclude: timer to exclude
1219 *
1220 * Returns the next expiry time over all timers except for the @exclude one or
1221 * KTIME_MAX if none of them is pending.
1222 */
1223 u64 hrtimer_next_event_without(const struct hrtimer *exclude)
1224 {
1225 struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
1226 u64 expires = KTIME_MAX;
1227 unsigned long flags;
1228
1229 raw_spin_lock_irqsave(&cpu_base->lock, flags);
1230
1231 if (__hrtimer_hres_active(cpu_base)) {
1232 unsigned int active;
1233
1234 if (!cpu_base->softirq_activated) {
1235 active = cpu_base->active_bases & HRTIMER_ACTIVE_SOFT;
1236 expires = __hrtimer_next_event_base(cpu_base, exclude,
1237 active, KTIME_MAX);
1238 }
1239 active = cpu_base->active_bases & HRTIMER_ACTIVE_HARD;
1240 expires = __hrtimer_next_event_base(cpu_base, exclude, active,
1241 expires);
1242 }
1243
1244 raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1245
1246 return expires;
1247 }
1248 #endif
1249
1250 static inline int hrtimer_clockid_to_base(clockid_t clock_id)
1251 {
1252 if (likely(clock_id < MAX_CLOCKS)) {
1253 int base = hrtimer_clock_to_base_table[clock_id];
1254
1255 if (likely(base != HRTIMER_MAX_CLOCK_BASES))
1256 return base;
1257 }
1258 WARN(1, "Invalid clockid %d. Using MONOTONIC\n", clock_id);
1259 return HRTIMER_BASE_MONOTONIC;
1260 }
1261
1262 static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
1263 enum hrtimer_mode mode)
1264 {
1265 bool softtimer = !!(mode & HRTIMER_MODE_SOFT);
1266 int base = softtimer ? HRTIMER_MAX_CLOCK_BASES / 2 : 0;
1267 struct hrtimer_cpu_base *cpu_base;
1268
1269 memset(timer, 0, sizeof(struct hrtimer));
1270
1271 cpu_base = raw_cpu_ptr(&hrtimer_bases);
1272
1273 /*
1274 * POSIX magic: Relative CLOCK_REALTIME timers are not affected by
1275 * clock modifications, so they needs to become CLOCK_MONOTONIC to
1276 * ensure POSIX compliance.
1277 */
1278 if (clock_id == CLOCK_REALTIME && mode & HRTIMER_MODE_REL)
1279 clock_id = CLOCK_MONOTONIC;
1280
1281 base += hrtimer_clockid_to_base(clock_id);
1282 timer->is_soft = softtimer;
1283 timer->base = &cpu_base->clock_base[base];
1284 timerqueue_init(&timer->node);
1285 }
1286
1287 /**
1288 * hrtimer_init - initialize a timer to the given clock
1289 * @timer: the timer to be initialized
1290 * @clock_id: the clock to be used
1291 * @mode: The modes which are relevant for intitialization:
1292 * HRTIMER_MODE_ABS, HRTIMER_MODE_REL, HRTIMER_MODE_ABS_SOFT,
1293 * HRTIMER_MODE_REL_SOFT
1294 *
1295 * The PINNED variants of the above can be handed in,
1296 * but the PINNED bit is ignored as pinning happens
1297 * when the hrtimer is started
1298 */
1299 void hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
1300 enum hrtimer_mode mode)
1301 {
1302 debug_init(timer, clock_id, mode);
1303 __hrtimer_init(timer, clock_id, mode);
1304 }
1305 EXPORT_SYMBOL_GPL(hrtimer_init);
1306
1307 /*
1308 * A timer is active, when it is enqueued into the rbtree or the
1309 * callback function is running or it's in the state of being migrated
1310 * to another cpu.
1311 *
1312 * It is important for this function to not return a false negative.
1313 */
1314 bool hrtimer_active(const struct hrtimer *timer)
1315 {
1316 struct hrtimer_clock_base *base;
1317 unsigned int seq;
1318
1319 do {
1320 base = READ_ONCE(timer->base);
1321 seq = raw_read_seqcount_begin(&base->seq);
1322
1323 if (timer->state != HRTIMER_STATE_INACTIVE ||
1324 base->running == timer)
1325 return true;
1326
1327 } while (read_seqcount_retry(&base->seq, seq) ||
1328 base != READ_ONCE(timer->base));
1329
1330 return false;
1331 }
1332 EXPORT_SYMBOL_GPL(hrtimer_active);
1333
1334 /*
1335 * The write_seqcount_barrier()s in __run_hrtimer() split the thing into 3
1336 * distinct sections:
1337 *
1338 * - queued: the timer is queued
1339 * - callback: the timer is being ran
1340 * - post: the timer is inactive or (re)queued
1341 *
1342 * On the read side we ensure we observe timer->state and cpu_base->running
1343 * from the same section, if anything changed while we looked at it, we retry.
1344 * This includes timer->base changing because sequence numbers alone are
1345 * insufficient for that.
1346 *
1347 * The sequence numbers are required because otherwise we could still observe
1348 * a false negative if the read side got smeared over multiple consequtive
1349 * __run_hrtimer() invocations.
1350 */
1351
1352 static void __run_hrtimer(struct hrtimer_cpu_base *cpu_base,
1353 struct hrtimer_clock_base *base,
1354 struct hrtimer *timer, ktime_t *now,
1355 unsigned long flags)
1356 {
1357 enum hrtimer_restart (*fn)(struct hrtimer *);
1358 int restart;
1359
1360 lockdep_assert_held(&cpu_base->lock);
1361
1362 debug_deactivate(timer);
1363 base->running = timer;
1364
1365 /*
1366 * Separate the ->running assignment from the ->state assignment.
1367 *
1368 * As with a regular write barrier, this ensures the read side in
1369 * hrtimer_active() cannot observe base->running == NULL &&
1370 * timer->state == INACTIVE.
1371 */
1372 raw_write_seqcount_barrier(&base->seq);
1373
1374 __remove_hrtimer(timer, base, HRTIMER_STATE_INACTIVE, 0);
1375 fn = timer->function;
1376
1377 /*
1378 * Clear the 'is relative' flag for the TIME_LOW_RES case. If the
1379 * timer is restarted with a period then it becomes an absolute
1380 * timer. If its not restarted it does not matter.
1381 */
1382 if (IS_ENABLED(CONFIG_TIME_LOW_RES))
1383 timer->is_rel = false;
1384
1385 /*
1386 * The timer is marked as running in the CPU base, so it is
1387 * protected against migration to a different CPU even if the lock
1388 * is dropped.
1389 */
1390 raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1391 trace_hrtimer_expire_entry(timer, now);
1392 restart = fn(timer);
1393 trace_hrtimer_expire_exit(timer);
1394 raw_spin_lock_irq(&cpu_base->lock);
1395
1396 /*
1397 * Note: We clear the running state after enqueue_hrtimer and
1398 * we do not reprogram the event hardware. Happens either in
1399 * hrtimer_start_range_ns() or in hrtimer_interrupt()
1400 *
1401 * Note: Because we dropped the cpu_base->lock above,
1402 * hrtimer_start_range_ns() can have popped in and enqueued the timer
1403 * for us already.
1404 */
1405 if (restart != HRTIMER_NORESTART &&
1406 !(timer->state & HRTIMER_STATE_ENQUEUED))
1407 enqueue_hrtimer(timer, base, HRTIMER_MODE_ABS);
1408
1409 /*
1410 * Separate the ->running assignment from the ->state assignment.
1411 *
1412 * As with a regular write barrier, this ensures the read side in
1413 * hrtimer_active() cannot observe base->running.timer == NULL &&
1414 * timer->state == INACTIVE.
1415 */
1416 raw_write_seqcount_barrier(&base->seq);
1417
1418 WARN_ON_ONCE(base->running != timer);
1419 base->running = NULL;
1420 }
1421
1422 static void __hrtimer_run_queues(struct hrtimer_cpu_base *cpu_base, ktime_t now,
1423 unsigned long flags, unsigned int active_mask)
1424 {
1425 struct hrtimer_clock_base *base;
1426 unsigned int active = cpu_base->active_bases & active_mask;
1427
1428 for_each_active_base(base, cpu_base, active) {
1429 struct timerqueue_node *node;
1430 ktime_t basenow;
1431
1432 basenow = ktime_add(now, base->offset);
1433
1434 while ((node = timerqueue_getnext(&base->active))) {
1435 struct hrtimer *timer;
1436
1437 timer = container_of(node, struct hrtimer, node);
1438
1439 /*
1440 * The immediate goal for using the softexpires is
1441 * minimizing wakeups, not running timers at the
1442 * earliest interrupt after their soft expiration.
1443 * This allows us to avoid using a Priority Search
1444 * Tree, which can answer a stabbing querry for
1445 * overlapping intervals and instead use the simple
1446 * BST we already have.
1447 * We don't add extra wakeups by delaying timers that
1448 * are right-of a not yet expired timer, because that
1449 * timer will have to trigger a wakeup anyway.
1450 */
1451 if (basenow < hrtimer_get_softexpires_tv64(timer))
1452 break;
1453
1454 __run_hrtimer(cpu_base, base, timer, &basenow, flags);
1455 }
1456 }
1457 }
1458
1459 static __latent_entropy void hrtimer_run_softirq(struct softirq_action *h)
1460 {
1461 struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
1462 unsigned long flags;
1463 ktime_t now;
1464
1465 raw_spin_lock_irqsave(&cpu_base->lock, flags);
1466
1467 now = hrtimer_update_base(cpu_base);
1468 __hrtimer_run_queues(cpu_base, now, flags, HRTIMER_ACTIVE_SOFT);
1469
1470 cpu_base->softirq_activated = 0;
1471 hrtimer_update_softirq_timer(cpu_base, true);
1472
1473 raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1474 }
1475
1476 #ifdef CONFIG_HIGH_RES_TIMERS
1477
1478 /*
1479 * High resolution timer interrupt
1480 * Called with interrupts disabled
1481 */
1482 void hrtimer_interrupt(struct clock_event_device *dev)
1483 {
1484 struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
1485 ktime_t expires_next, now, entry_time, delta;
1486 unsigned long flags;
1487 int retries = 0;
1488
1489 BUG_ON(!cpu_base->hres_active);
1490 cpu_base->nr_events++;
1491 dev->next_event = KTIME_MAX;
1492
1493 raw_spin_lock_irqsave(&cpu_base->lock, flags);
1494 entry_time = now = hrtimer_update_base(cpu_base);
1495 retry:
1496 cpu_base->in_hrtirq = 1;
1497 /*
1498 * We set expires_next to KTIME_MAX here with cpu_base->lock
1499 * held to prevent that a timer is enqueued in our queue via
1500 * the migration code. This does not affect enqueueing of
1501 * timers which run their callback and need to be requeued on
1502 * this CPU.
1503 */
1504 cpu_base->expires_next = KTIME_MAX;
1505
1506 if (!ktime_before(now, cpu_base->softirq_expires_next)) {
1507 cpu_base->softirq_expires_next = KTIME_MAX;
1508 cpu_base->softirq_activated = 1;
1509 raise_softirq_irqoff(HRTIMER_SOFTIRQ);
1510 }
1511
1512 __hrtimer_run_queues(cpu_base, now, flags, HRTIMER_ACTIVE_HARD);
1513
1514 /* Reevaluate the clock bases for the next expiry */
1515 expires_next = __hrtimer_get_next_event(cpu_base, HRTIMER_ACTIVE_ALL);
1516 /*
1517 * Store the new expiry value so the migration code can verify
1518 * against it.
1519 */
1520 cpu_base->expires_next = expires_next;
1521 cpu_base->in_hrtirq = 0;
1522 raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1523
1524 /* Reprogramming necessary ? */
1525 if (!tick_program_event(expires_next, 0)) {
1526 cpu_base->hang_detected = 0;
1527 return;
1528 }
1529
1530 /*
1531 * The next timer was already expired due to:
1532 * - tracing
1533 * - long lasting callbacks
1534 * - being scheduled away when running in a VM
1535 *
1536 * We need to prevent that we loop forever in the hrtimer
1537 * interrupt routine. We give it 3 attempts to avoid
1538 * overreacting on some spurious event.
1539 *
1540 * Acquire base lock for updating the offsets and retrieving
1541 * the current time.
1542 */
1543 raw_spin_lock_irqsave(&cpu_base->lock, flags);
1544 now = hrtimer_update_base(cpu_base);
1545 cpu_base->nr_retries++;
1546 if (++retries < 3)
1547 goto retry;
1548 /*
1549 * Give the system a chance to do something else than looping
1550 * here. We stored the entry time, so we know exactly how long
1551 * we spent here. We schedule the next event this amount of
1552 * time away.
1553 */
1554 cpu_base->nr_hangs++;
1555 cpu_base->hang_detected = 1;
1556 raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1557
1558 delta = ktime_sub(now, entry_time);
1559 if ((unsigned int)delta > cpu_base->max_hang_time)
1560 cpu_base->max_hang_time = (unsigned int) delta;
1561 /*
1562 * Limit it to a sensible value as we enforce a longer
1563 * delay. Give the CPU at least 100ms to catch up.
1564 */
1565 if (delta > 100 * NSEC_PER_MSEC)
1566 expires_next = ktime_add_ns(now, 100 * NSEC_PER_MSEC);
1567 else
1568 expires_next = ktime_add(now, delta);
1569 tick_program_event(expires_next, 1);
1570 pr_warn_once("hrtimer: interrupt took %llu ns\n", ktime_to_ns(delta));
1571 }
1572
1573 /* called with interrupts disabled */
1574 static inline void __hrtimer_peek_ahead_timers(void)
1575 {
1576 struct tick_device *td;
1577
1578 if (!hrtimer_hres_active())
1579 return;
1580
1581 td = this_cpu_ptr(&tick_cpu_device);
1582 if (td && td->evtdev)
1583 hrtimer_interrupt(td->evtdev);
1584 }
1585
1586 #else /* CONFIG_HIGH_RES_TIMERS */
1587
1588 static inline void __hrtimer_peek_ahead_timers(void) { }
1589
1590 #endif /* !CONFIG_HIGH_RES_TIMERS */
1591
1592 /*
1593 * Called from run_local_timers in hardirq context every jiffy
1594 */
1595 void hrtimer_run_queues(void)
1596 {
1597 struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
1598 unsigned long flags;
1599 ktime_t now;
1600
1601 if (__hrtimer_hres_active(cpu_base))
1602 return;
1603
1604 /*
1605 * This _is_ ugly: We have to check periodically, whether we
1606 * can switch to highres and / or nohz mode. The clocksource
1607 * switch happens with xtime_lock held. Notification from
1608 * there only sets the check bit in the tick_oneshot code,
1609 * otherwise we might deadlock vs. xtime_lock.
1610 */
1611 if (tick_check_oneshot_change(!hrtimer_is_hres_enabled())) {
1612 hrtimer_switch_to_hres();
1613 return;
1614 }
1615
1616 raw_spin_lock_irqsave(&cpu_base->lock, flags);
1617 now = hrtimer_update_base(cpu_base);
1618
1619 if (!ktime_before(now, cpu_base->softirq_expires_next)) {
1620 cpu_base->softirq_expires_next = KTIME_MAX;
1621 cpu_base->softirq_activated = 1;
1622 raise_softirq_irqoff(HRTIMER_SOFTIRQ);
1623 }
1624
1625 __hrtimer_run_queues(cpu_base, now, flags, HRTIMER_ACTIVE_HARD);
1626 raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1627 }
1628
1629 /*
1630 * Sleep related functions:
1631 */
1632 static enum hrtimer_restart hrtimer_wakeup(struct hrtimer *timer)
1633 {
1634 struct hrtimer_sleeper *t =
1635 container_of(timer, struct hrtimer_sleeper, timer);
1636 struct task_struct *task = t->task;
1637
1638 t->task = NULL;
1639 if (task)
1640 wake_up_process(task);
1641
1642 return HRTIMER_NORESTART;
1643 }
1644
1645 void hrtimer_init_sleeper(struct hrtimer_sleeper *sl, struct task_struct *task)
1646 {
1647 sl->timer.function = hrtimer_wakeup;
1648 sl->task = task;
1649 }
1650 EXPORT_SYMBOL_GPL(hrtimer_init_sleeper);
1651
1652 int nanosleep_copyout(struct restart_block *restart, struct timespec64 *ts)
1653 {
1654 switch(restart->nanosleep.type) {
1655 #ifdef CONFIG_COMPAT_32BIT_TIME
1656 case TT_COMPAT:
1657 if (put_old_timespec32(ts, restart->nanosleep.compat_rmtp))
1658 return -EFAULT;
1659 break;
1660 #endif
1661 case TT_NATIVE:
1662 if (put_timespec64(ts, restart->nanosleep.rmtp))
1663 return -EFAULT;
1664 break;
1665 default:
1666 BUG();
1667 }
1668 return -ERESTART_RESTARTBLOCK;
1669 }
1670
1671 static int __sched do_nanosleep(struct hrtimer_sleeper *t, enum hrtimer_mode mode)
1672 {
1673 struct restart_block *restart;
1674
1675 hrtimer_init_sleeper(t, current);
1676
1677 do {
1678 set_current_state(TASK_INTERRUPTIBLE);
1679 hrtimer_start_expires(&t->timer, mode);
1680
1681 if (likely(t->task))
1682 freezable_schedule();
1683
1684 hrtimer_cancel(&t->timer);
1685 mode = HRTIMER_MODE_ABS;
1686
1687 } while (t->task && !signal_pending(current));
1688
1689 __set_current_state(TASK_RUNNING);
1690
1691 if (!t->task)
1692 return 0;
1693
1694 restart = &current->restart_block;
1695 if (restart->nanosleep.type != TT_NONE) {
1696 ktime_t rem = hrtimer_expires_remaining(&t->timer);
1697 struct timespec64 rmt;
1698
1699 if (rem <= 0)
1700 return 0;
1701 rmt = ktime_to_timespec64(rem);
1702
1703 return nanosleep_copyout(restart, &rmt);
1704 }
1705 return -ERESTART_RESTARTBLOCK;
1706 }
1707
1708 static long __sched hrtimer_nanosleep_restart(struct restart_block *restart)
1709 {
1710 struct hrtimer_sleeper t;
1711 int ret;
1712
1713 hrtimer_init_on_stack(&t.timer, restart->nanosleep.clockid,
1714 HRTIMER_MODE_ABS);
1715 hrtimer_set_expires_tv64(&t.timer, restart->nanosleep.expires);
1716
1717 ret = do_nanosleep(&t, HRTIMER_MODE_ABS);
1718 destroy_hrtimer_on_stack(&t.timer);
1719 return ret;
1720 }
1721
1722 long hrtimer_nanosleep(const struct timespec64 *rqtp,
1723 const enum hrtimer_mode mode, const clockid_t clockid)
1724 {
1725 struct restart_block *restart;
1726 struct hrtimer_sleeper t;
1727 int ret = 0;
1728 u64 slack;
1729
1730 slack = current->timer_slack_ns;
1731 if (dl_task(current) || rt_task(current))
1732 slack = 0;
1733
1734 hrtimer_init_on_stack(&t.timer, clockid, mode);
1735 hrtimer_set_expires_range_ns(&t.timer, timespec64_to_ktime(*rqtp), slack);
1736 ret = do_nanosleep(&t, mode);
1737 if (ret != -ERESTART_RESTARTBLOCK)
1738 goto out;
1739
1740 /* Absolute timers do not update the rmtp value and restart: */
1741 if (mode == HRTIMER_MODE_ABS) {
1742 ret = -ERESTARTNOHAND;
1743 goto out;
1744 }
1745
1746 restart = &current->restart_block;
1747 restart->fn = hrtimer_nanosleep_restart;
1748 restart->nanosleep.clockid = t.timer.base->clockid;
1749 restart->nanosleep.expires = hrtimer_get_expires_tv64(&t.timer);
1750 out:
1751 destroy_hrtimer_on_stack(&t.timer);
1752 return ret;
1753 }
1754
1755 #if !defined(CONFIG_64BIT_TIME) || defined(CONFIG_64BIT)
1756
1757 SYSCALL_DEFINE2(nanosleep, struct __kernel_timespec __user *, rqtp,
1758 struct __kernel_timespec __user *, rmtp)
1759 {
1760 struct timespec64 tu;
1761
1762 if (get_timespec64(&tu, rqtp))
1763 return -EFAULT;
1764
1765 if (!timespec64_valid(&tu))
1766 return -EINVAL;
1767
1768 current->restart_block.nanosleep.type = rmtp ? TT_NATIVE : TT_NONE;
1769 current->restart_block.nanosleep.rmtp = rmtp;
1770 return hrtimer_nanosleep(&tu, HRTIMER_MODE_REL, CLOCK_MONOTONIC);
1771 }
1772
1773 #endif
1774
1775 #ifdef CONFIG_COMPAT_32BIT_TIME
1776
1777 SYSCALL_DEFINE2(nanosleep_time32, struct old_timespec32 __user *, rqtp,
1778 struct old_timespec32 __user *, rmtp)
1779 {
1780 struct timespec64 tu;
1781
1782 if (get_old_timespec32(&tu, rqtp))
1783 return -EFAULT;
1784
1785 if (!timespec64_valid(&tu))
1786 return -EINVAL;
1787
1788 current->restart_block.nanosleep.type = rmtp ? TT_COMPAT : TT_NONE;
1789 current->restart_block.nanosleep.compat_rmtp = rmtp;
1790 return hrtimer_nanosleep(&tu, HRTIMER_MODE_REL, CLOCK_MONOTONIC);
1791 }
1792 #endif
1793
1794 /*
1795 * Functions related to boot-time initialization:
1796 */
1797 int hrtimers_prepare_cpu(unsigned int cpu)
1798 {
1799 struct hrtimer_cpu_base *cpu_base = &per_cpu(hrtimer_bases, cpu);
1800 int i;
1801
1802 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
1803 cpu_base->clock_base[i].cpu_base = cpu_base;
1804 timerqueue_init_head(&cpu_base->clock_base[i].active);
1805 }
1806
1807 cpu_base->cpu = cpu;
1808 cpu_base->active_bases = 0;
1809 cpu_base->hres_active = 0;
1810 cpu_base->hang_detected = 0;
1811 cpu_base->next_timer = NULL;
1812 cpu_base->softirq_next_timer = NULL;
1813 cpu_base->expires_next = KTIME_MAX;
1814 cpu_base->softirq_expires_next = KTIME_MAX;
1815 return 0;
1816 }
1817
1818 #ifdef CONFIG_HOTPLUG_CPU
1819
1820 static void migrate_hrtimer_list(struct hrtimer_clock_base *old_base,
1821 struct hrtimer_clock_base *new_base)
1822 {
1823 struct hrtimer *timer;
1824 struct timerqueue_node *node;
1825
1826 while ((node = timerqueue_getnext(&old_base->active))) {
1827 timer = container_of(node, struct hrtimer, node);
1828 BUG_ON(hrtimer_callback_running(timer));
1829 debug_deactivate(timer);
1830
1831 /*
1832 * Mark it as ENQUEUED not INACTIVE otherwise the
1833 * timer could be seen as !active and just vanish away
1834 * under us on another CPU
1835 */
1836 __remove_hrtimer(timer, old_base, HRTIMER_STATE_ENQUEUED, 0);
1837 timer->base = new_base;
1838 /*
1839 * Enqueue the timers on the new cpu. This does not
1840 * reprogram the event device in case the timer
1841 * expires before the earliest on this CPU, but we run
1842 * hrtimer_interrupt after we migrated everything to
1843 * sort out already expired timers and reprogram the
1844 * event device.
1845 */
1846 enqueue_hrtimer(timer, new_base, HRTIMER_MODE_ABS);
1847 }
1848 }
1849
1850 int hrtimers_dead_cpu(unsigned int scpu)
1851 {
1852 struct hrtimer_cpu_base *old_base, *new_base;
1853 int i;
1854
1855 BUG_ON(cpu_online(scpu));
1856 tick_cancel_sched_timer(scpu);
1857
1858 /*
1859 * this BH disable ensures that raise_softirq_irqoff() does
1860 * not wakeup ksoftirqd (and acquire the pi-lock) while
1861 * holding the cpu_base lock
1862 */
1863 local_bh_disable();
1864 local_irq_disable();
1865 old_base = &per_cpu(hrtimer_bases, scpu);
1866 new_base = this_cpu_ptr(&hrtimer_bases);
1867 /*
1868 * The caller is globally serialized and nobody else
1869 * takes two locks at once, deadlock is not possible.
1870 */
1871 raw_spin_lock(&new_base->lock);
1872 raw_spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING);
1873
1874 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
1875 migrate_hrtimer_list(&old_base->clock_base[i],
1876 &new_base->clock_base[i]);
1877 }
1878
1879 /*
1880 * The migration might have changed the first expiring softirq
1881 * timer on this CPU. Update it.
1882 */
1883 hrtimer_update_softirq_timer(new_base, false);
1884
1885 raw_spin_unlock(&old_base->lock);
1886 raw_spin_unlock(&new_base->lock);
1887
1888 /* Check, if we got expired work to do */
1889 __hrtimer_peek_ahead_timers();
1890 local_irq_enable();
1891 local_bh_enable();
1892 return 0;
1893 }
1894
1895 #endif /* CONFIG_HOTPLUG_CPU */
1896
1897 void __init hrtimers_init(void)
1898 {
1899 hrtimers_prepare_cpu(smp_processor_id());
1900 open_softirq(HRTIMER_SOFTIRQ, hrtimer_run_softirq);
1901 }
1902
1903 /**
1904 * schedule_hrtimeout_range_clock - sleep until timeout
1905 * @expires: timeout value (ktime_t)
1906 * @delta: slack in expires timeout (ktime_t)
1907 * @mode: timer mode
1908 * @clock_id: timer clock to be used
1909 */
1910 int __sched
1911 schedule_hrtimeout_range_clock(ktime_t *expires, u64 delta,
1912 const enum hrtimer_mode mode, clockid_t clock_id)
1913 {
1914 struct hrtimer_sleeper t;
1915
1916 /*
1917 * Optimize when a zero timeout value is given. It does not
1918 * matter whether this is an absolute or a relative time.
1919 */
1920 if (expires && *expires == 0) {
1921 __set_current_state(TASK_RUNNING);
1922 return 0;
1923 }
1924
1925 /*
1926 * A NULL parameter means "infinite"
1927 */
1928 if (!expires) {
1929 schedule();
1930 return -EINTR;
1931 }
1932
1933 hrtimer_init_on_stack(&t.timer, clock_id, mode);
1934 hrtimer_set_expires_range_ns(&t.timer, *expires, delta);
1935
1936 hrtimer_init_sleeper(&t, current);
1937
1938 hrtimer_start_expires(&t.timer, mode);
1939
1940 if (likely(t.task))
1941 schedule();
1942
1943 hrtimer_cancel(&t.timer);
1944 destroy_hrtimer_on_stack(&t.timer);
1945
1946 __set_current_state(TASK_RUNNING);
1947
1948 return !t.task ? 0 : -EINTR;
1949 }
1950
1951 /**
1952 * schedule_hrtimeout_range - sleep until timeout
1953 * @expires: timeout value (ktime_t)
1954 * @delta: slack in expires timeout (ktime_t)
1955 * @mode: timer mode
1956 *
1957 * Make the current task sleep until the given expiry time has
1958 * elapsed. The routine will return immediately unless
1959 * the current task state has been set (see set_current_state()).
1960 *
1961 * The @delta argument gives the kernel the freedom to schedule the
1962 * actual wakeup to a time that is both power and performance friendly.
1963 * The kernel give the normal best effort behavior for "@expires+@delta",
1964 * but may decide to fire the timer earlier, but no earlier than @expires.
1965 *
1966 * You can set the task state as follows -
1967 *
1968 * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
1969 * pass before the routine returns unless the current task is explicitly
1970 * woken up, (e.g. by wake_up_process()).
1971 *
1972 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1973 * delivered to the current task or the current task is explicitly woken
1974 * up.
1975 *
1976 * The current task state is guaranteed to be TASK_RUNNING when this
1977 * routine returns.
1978 *
1979 * Returns 0 when the timer has expired. If the task was woken before the
1980 * timer expired by a signal (only possible in state TASK_INTERRUPTIBLE) or
1981 * by an explicit wakeup, it returns -EINTR.
1982 */
1983 int __sched schedule_hrtimeout_range(ktime_t *expires, u64 delta,
1984 const enum hrtimer_mode mode)
1985 {
1986 return schedule_hrtimeout_range_clock(expires, delta, mode,
1987 CLOCK_MONOTONIC);
1988 }
1989 EXPORT_SYMBOL_GPL(schedule_hrtimeout_range);
1990
1991 /**
1992 * schedule_hrtimeout - sleep until timeout
1993 * @expires: timeout value (ktime_t)
1994 * @mode: timer mode
1995 *
1996 * Make the current task sleep until the given expiry time has
1997 * elapsed. The routine will return immediately unless
1998 * the current task state has been set (see set_current_state()).
1999 *
2000 * You can set the task state as follows -
2001 *
2002 * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
2003 * pass before the routine returns unless the current task is explicitly
2004 * woken up, (e.g. by wake_up_process()).
2005 *
2006 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
2007 * delivered to the current task or the current task is explicitly woken
2008 * up.
2009 *
2010 * The current task state is guaranteed to be TASK_RUNNING when this
2011 * routine returns.
2012 *
2013 * Returns 0 when the timer has expired. If the task was woken before the
2014 * timer expired by a signal (only possible in state TASK_INTERRUPTIBLE) or
2015 * by an explicit wakeup, it returns -EINTR.
2016 */
2017 int __sched schedule_hrtimeout(ktime_t *expires,
2018 const enum hrtimer_mode mode)
2019 {
2020 return schedule_hrtimeout_range(expires, 0, mode);
2021 }
2022 EXPORT_SYMBOL_GPL(schedule_hrtimeout);