]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - kernel/time/timekeeping.c
db087d7e106d25f8c542f3252443d260d5618169
[mirror_ubuntu-zesty-kernel.git] / kernel / time / timekeeping.c
1 /*
2 * linux/kernel/time/timekeeping.c
3 *
4 * Kernel timekeeping code and accessor functions
5 *
6 * This code was moved from linux/kernel/timer.c.
7 * Please see that file for copyright and history logs.
8 *
9 */
10
11 #include <linux/timekeeper_internal.h>
12 #include <linux/module.h>
13 #include <linux/interrupt.h>
14 #include <linux/percpu.h>
15 #include <linux/init.h>
16 #include <linux/mm.h>
17 #include <linux/sched.h>
18 #include <linux/syscore_ops.h>
19 #include <linux/clocksource.h>
20 #include <linux/jiffies.h>
21 #include <linux/time.h>
22 #include <linux/tick.h>
23 #include <linux/stop_machine.h>
24 #include <linux/pvclock_gtod.h>
25 #include <linux/compiler.h>
26
27 #include "tick-internal.h"
28 #include "ntp_internal.h"
29 #include "timekeeping_internal.h"
30
31 #define TK_CLEAR_NTP (1 << 0)
32 #define TK_MIRROR (1 << 1)
33 #define TK_CLOCK_WAS_SET (1 << 2)
34
35 /*
36 * The most important data for readout fits into a single 64 byte
37 * cache line.
38 */
39 static struct {
40 seqcount_t seq;
41 struct timekeeper timekeeper;
42 } tk_core ____cacheline_aligned;
43
44 static DEFINE_RAW_SPINLOCK(timekeeper_lock);
45 static struct timekeeper shadow_timekeeper;
46
47 /**
48 * struct tk_fast - NMI safe timekeeper
49 * @seq: Sequence counter for protecting updates. The lowest bit
50 * is the index for the tk_read_base array
51 * @base: tk_read_base array. Access is indexed by the lowest bit of
52 * @seq.
53 *
54 * See @update_fast_timekeeper() below.
55 */
56 struct tk_fast {
57 seqcount_t seq;
58 struct tk_read_base base[2];
59 };
60
61 static struct tk_fast tk_fast_mono ____cacheline_aligned;
62 static struct tk_fast tk_fast_raw ____cacheline_aligned;
63
64 /* flag for if timekeeping is suspended */
65 int __read_mostly timekeeping_suspended;
66
67 static inline void tk_normalize_xtime(struct timekeeper *tk)
68 {
69 while (tk->tkr_mono.xtime_nsec >= ((u64)NSEC_PER_SEC << tk->tkr_mono.shift)) {
70 tk->tkr_mono.xtime_nsec -= (u64)NSEC_PER_SEC << tk->tkr_mono.shift;
71 tk->xtime_sec++;
72 }
73 }
74
75 static inline struct timespec64 tk_xtime(struct timekeeper *tk)
76 {
77 struct timespec64 ts;
78
79 ts.tv_sec = tk->xtime_sec;
80 ts.tv_nsec = (long)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift);
81 return ts;
82 }
83
84 static void tk_set_xtime(struct timekeeper *tk, const struct timespec64 *ts)
85 {
86 tk->xtime_sec = ts->tv_sec;
87 tk->tkr_mono.xtime_nsec = (u64)ts->tv_nsec << tk->tkr_mono.shift;
88 }
89
90 static void tk_xtime_add(struct timekeeper *tk, const struct timespec64 *ts)
91 {
92 tk->xtime_sec += ts->tv_sec;
93 tk->tkr_mono.xtime_nsec += (u64)ts->tv_nsec << tk->tkr_mono.shift;
94 tk_normalize_xtime(tk);
95 }
96
97 static void tk_set_wall_to_mono(struct timekeeper *tk, struct timespec64 wtm)
98 {
99 struct timespec64 tmp;
100
101 /*
102 * Verify consistency of: offset_real = -wall_to_monotonic
103 * before modifying anything
104 */
105 set_normalized_timespec64(&tmp, -tk->wall_to_monotonic.tv_sec,
106 -tk->wall_to_monotonic.tv_nsec);
107 WARN_ON_ONCE(tk->offs_real != timespec64_to_ktime(tmp));
108 tk->wall_to_monotonic = wtm;
109 set_normalized_timespec64(&tmp, -wtm.tv_sec, -wtm.tv_nsec);
110 tk->offs_real = timespec64_to_ktime(tmp);
111 tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tk->tai_offset, 0));
112 }
113
114 static inline void tk_update_sleep_time(struct timekeeper *tk, ktime_t delta)
115 {
116 tk->offs_boot = ktime_add(tk->offs_boot, delta);
117 }
118
119 #ifdef CONFIG_DEBUG_TIMEKEEPING
120 #define WARNING_FREQ (HZ*300) /* 5 minute rate-limiting */
121
122 static void timekeeping_check_update(struct timekeeper *tk, u64 offset)
123 {
124
125 u64 max_cycles = tk->tkr_mono.clock->max_cycles;
126 const char *name = tk->tkr_mono.clock->name;
127
128 if (offset > max_cycles) {
129 printk_deferred("WARNING: timekeeping: Cycle offset (%lld) is larger than allowed by the '%s' clock's max_cycles value (%lld): time overflow danger\n",
130 offset, name, max_cycles);
131 printk_deferred(" timekeeping: Your kernel is sick, but tries to cope by capping time updates\n");
132 } else {
133 if (offset > (max_cycles >> 1)) {
134 printk_deferred("INFO: timekeeping: Cycle offset (%lld) is larger than the '%s' clock's 50%% safety margin (%lld)\n",
135 offset, name, max_cycles >> 1);
136 printk_deferred(" timekeeping: Your kernel is still fine, but is feeling a bit nervous\n");
137 }
138 }
139
140 if (tk->underflow_seen) {
141 if (jiffies - tk->last_warning > WARNING_FREQ) {
142 printk_deferred("WARNING: Underflow in clocksource '%s' observed, time update ignored.\n", name);
143 printk_deferred(" Please report this, consider using a different clocksource, if possible.\n");
144 printk_deferred(" Your kernel is probably still fine.\n");
145 tk->last_warning = jiffies;
146 }
147 tk->underflow_seen = 0;
148 }
149
150 if (tk->overflow_seen) {
151 if (jiffies - tk->last_warning > WARNING_FREQ) {
152 printk_deferred("WARNING: Overflow in clocksource '%s' observed, time update capped.\n", name);
153 printk_deferred(" Please report this, consider using a different clocksource, if possible.\n");
154 printk_deferred(" Your kernel is probably still fine.\n");
155 tk->last_warning = jiffies;
156 }
157 tk->overflow_seen = 0;
158 }
159 }
160
161 static inline u64 timekeeping_get_delta(struct tk_read_base *tkr)
162 {
163 struct timekeeper *tk = &tk_core.timekeeper;
164 u64 now, last, mask, max, delta;
165 unsigned int seq;
166
167 /*
168 * Since we're called holding a seqlock, the data may shift
169 * under us while we're doing the calculation. This can cause
170 * false positives, since we'd note a problem but throw the
171 * results away. So nest another seqlock here to atomically
172 * grab the points we are checking with.
173 */
174 do {
175 seq = read_seqcount_begin(&tk_core.seq);
176 now = tkr->read(tkr->clock);
177 last = tkr->cycle_last;
178 mask = tkr->mask;
179 max = tkr->clock->max_cycles;
180 } while (read_seqcount_retry(&tk_core.seq, seq));
181
182 delta = clocksource_delta(now, last, mask);
183
184 /*
185 * Try to catch underflows by checking if we are seeing small
186 * mask-relative negative values.
187 */
188 if (unlikely((~delta & mask) < (mask >> 3))) {
189 tk->underflow_seen = 1;
190 delta = 0;
191 }
192
193 /* Cap delta value to the max_cycles values to avoid mult overflows */
194 if (unlikely(delta > max)) {
195 tk->overflow_seen = 1;
196 delta = tkr->clock->max_cycles;
197 }
198
199 return delta;
200 }
201 #else
202 static inline void timekeeping_check_update(struct timekeeper *tk, u64 offset)
203 {
204 }
205 static inline u64 timekeeping_get_delta(struct tk_read_base *tkr)
206 {
207 u64 cycle_now, delta;
208
209 /* read clocksource */
210 cycle_now = tkr->read(tkr->clock);
211
212 /* calculate the delta since the last update_wall_time */
213 delta = clocksource_delta(cycle_now, tkr->cycle_last, tkr->mask);
214
215 return delta;
216 }
217 #endif
218
219 /**
220 * tk_setup_internals - Set up internals to use clocksource clock.
221 *
222 * @tk: The target timekeeper to setup.
223 * @clock: Pointer to clocksource.
224 *
225 * Calculates a fixed cycle/nsec interval for a given clocksource/adjustment
226 * pair and interval request.
227 *
228 * Unless you're the timekeeping code, you should not be using this!
229 */
230 static void tk_setup_internals(struct timekeeper *tk, struct clocksource *clock)
231 {
232 u64 interval;
233 u64 tmp, ntpinterval;
234 struct clocksource *old_clock;
235
236 ++tk->cs_was_changed_seq;
237 old_clock = tk->tkr_mono.clock;
238 tk->tkr_mono.clock = clock;
239 tk->tkr_mono.read = clock->read;
240 tk->tkr_mono.mask = clock->mask;
241 tk->tkr_mono.cycle_last = tk->tkr_mono.read(clock);
242
243 tk->tkr_raw.clock = clock;
244 tk->tkr_raw.read = clock->read;
245 tk->tkr_raw.mask = clock->mask;
246 tk->tkr_raw.cycle_last = tk->tkr_mono.cycle_last;
247
248 /* Do the ns -> cycle conversion first, using original mult */
249 tmp = NTP_INTERVAL_LENGTH;
250 tmp <<= clock->shift;
251 ntpinterval = tmp;
252 tmp += clock->mult/2;
253 do_div(tmp, clock->mult);
254 if (tmp == 0)
255 tmp = 1;
256
257 interval = (u64) tmp;
258 tk->cycle_interval = interval;
259
260 /* Go back from cycles -> shifted ns */
261 tk->xtime_interval = interval * clock->mult;
262 tk->xtime_remainder = ntpinterval - tk->xtime_interval;
263 tk->raw_interval = (interval * clock->mult) >> clock->shift;
264
265 /* if changing clocks, convert xtime_nsec shift units */
266 if (old_clock) {
267 int shift_change = clock->shift - old_clock->shift;
268 if (shift_change < 0)
269 tk->tkr_mono.xtime_nsec >>= -shift_change;
270 else
271 tk->tkr_mono.xtime_nsec <<= shift_change;
272 }
273 tk->tkr_raw.xtime_nsec = 0;
274
275 tk->tkr_mono.shift = clock->shift;
276 tk->tkr_raw.shift = clock->shift;
277
278 tk->ntp_error = 0;
279 tk->ntp_error_shift = NTP_SCALE_SHIFT - clock->shift;
280 tk->ntp_tick = ntpinterval << tk->ntp_error_shift;
281
282 /*
283 * The timekeeper keeps its own mult values for the currently
284 * active clocksource. These value will be adjusted via NTP
285 * to counteract clock drifting.
286 */
287 tk->tkr_mono.mult = clock->mult;
288 tk->tkr_raw.mult = clock->mult;
289 tk->ntp_err_mult = 0;
290 }
291
292 /* Timekeeper helper functions. */
293
294 #ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
295 static u32 default_arch_gettimeoffset(void) { return 0; }
296 u32 (*arch_gettimeoffset)(void) = default_arch_gettimeoffset;
297 #else
298 static inline u32 arch_gettimeoffset(void) { return 0; }
299 #endif
300
301 static inline u64 timekeeping_delta_to_ns(struct tk_read_base *tkr, u64 delta)
302 {
303 u64 nsec;
304
305 nsec = delta * tkr->mult + tkr->xtime_nsec;
306 nsec >>= tkr->shift;
307
308 /* If arch requires, add in get_arch_timeoffset() */
309 return nsec + arch_gettimeoffset();
310 }
311
312 static inline u64 timekeeping_get_ns(struct tk_read_base *tkr)
313 {
314 u64 delta;
315
316 delta = timekeeping_get_delta(tkr);
317 return timekeeping_delta_to_ns(tkr, delta);
318 }
319
320 static inline u64 timekeeping_cycles_to_ns(struct tk_read_base *tkr, u64 cycles)
321 {
322 u64 delta;
323
324 /* calculate the delta since the last update_wall_time */
325 delta = clocksource_delta(cycles, tkr->cycle_last, tkr->mask);
326 return timekeeping_delta_to_ns(tkr, delta);
327 }
328
329 /**
330 * update_fast_timekeeper - Update the fast and NMI safe monotonic timekeeper.
331 * @tkr: Timekeeping readout base from which we take the update
332 *
333 * We want to use this from any context including NMI and tracing /
334 * instrumenting the timekeeping code itself.
335 *
336 * Employ the latch technique; see @raw_write_seqcount_latch.
337 *
338 * So if a NMI hits the update of base[0] then it will use base[1]
339 * which is still consistent. In the worst case this can result is a
340 * slightly wrong timestamp (a few nanoseconds). See
341 * @ktime_get_mono_fast_ns.
342 */
343 static void update_fast_timekeeper(struct tk_read_base *tkr, struct tk_fast *tkf)
344 {
345 struct tk_read_base *base = tkf->base;
346
347 /* Force readers off to base[1] */
348 raw_write_seqcount_latch(&tkf->seq);
349
350 /* Update base[0] */
351 memcpy(base, tkr, sizeof(*base));
352
353 /* Force readers back to base[0] */
354 raw_write_seqcount_latch(&tkf->seq);
355
356 /* Update base[1] */
357 memcpy(base + 1, base, sizeof(*base));
358 }
359
360 /**
361 * ktime_get_mono_fast_ns - Fast NMI safe access to clock monotonic
362 *
363 * This timestamp is not guaranteed to be monotonic across an update.
364 * The timestamp is calculated by:
365 *
366 * now = base_mono + clock_delta * slope
367 *
368 * So if the update lowers the slope, readers who are forced to the
369 * not yet updated second array are still using the old steeper slope.
370 *
371 * tmono
372 * ^
373 * | o n
374 * | o n
375 * | u
376 * | o
377 * |o
378 * |12345678---> reader order
379 *
380 * o = old slope
381 * u = update
382 * n = new slope
383 *
384 * So reader 6 will observe time going backwards versus reader 5.
385 *
386 * While other CPUs are likely to be able observe that, the only way
387 * for a CPU local observation is when an NMI hits in the middle of
388 * the update. Timestamps taken from that NMI context might be ahead
389 * of the following timestamps. Callers need to be aware of that and
390 * deal with it.
391 */
392 static __always_inline u64 __ktime_get_fast_ns(struct tk_fast *tkf)
393 {
394 struct tk_read_base *tkr;
395 unsigned int seq;
396 u64 now;
397
398 do {
399 seq = raw_read_seqcount_latch(&tkf->seq);
400 tkr = tkf->base + (seq & 0x01);
401 now = ktime_to_ns(tkr->base);
402
403 now += timekeeping_delta_to_ns(tkr,
404 clocksource_delta(
405 tkr->read(tkr->clock),
406 tkr->cycle_last,
407 tkr->mask));
408 } while (read_seqcount_retry(&tkf->seq, seq));
409
410 return now;
411 }
412
413 u64 ktime_get_mono_fast_ns(void)
414 {
415 return __ktime_get_fast_ns(&tk_fast_mono);
416 }
417 EXPORT_SYMBOL_GPL(ktime_get_mono_fast_ns);
418
419 u64 ktime_get_raw_fast_ns(void)
420 {
421 return __ktime_get_fast_ns(&tk_fast_raw);
422 }
423 EXPORT_SYMBOL_GPL(ktime_get_raw_fast_ns);
424
425 /**
426 * ktime_get_boot_fast_ns - NMI safe and fast access to boot clock.
427 *
428 * To keep it NMI safe since we're accessing from tracing, we're not using a
429 * separate timekeeper with updates to monotonic clock and boot offset
430 * protected with seqlocks. This has the following minor side effects:
431 *
432 * (1) Its possible that a timestamp be taken after the boot offset is updated
433 * but before the timekeeper is updated. If this happens, the new boot offset
434 * is added to the old timekeeping making the clock appear to update slightly
435 * earlier:
436 * CPU 0 CPU 1
437 * timekeeping_inject_sleeptime64()
438 * __timekeeping_inject_sleeptime(tk, delta);
439 * timestamp();
440 * timekeeping_update(tk, TK_CLEAR_NTP...);
441 *
442 * (2) On 32-bit systems, the 64-bit boot offset (tk->offs_boot) may be
443 * partially updated. Since the tk->offs_boot update is a rare event, this
444 * should be a rare occurrence which postprocessing should be able to handle.
445 */
446 u64 notrace ktime_get_boot_fast_ns(void)
447 {
448 struct timekeeper *tk = &tk_core.timekeeper;
449
450 return (ktime_get_mono_fast_ns() + ktime_to_ns(tk->offs_boot));
451 }
452 EXPORT_SYMBOL_GPL(ktime_get_boot_fast_ns);
453
454 /* Suspend-time cycles value for halted fast timekeeper. */
455 static u64 cycles_at_suspend;
456
457 static u64 dummy_clock_read(struct clocksource *cs)
458 {
459 return cycles_at_suspend;
460 }
461
462 /**
463 * halt_fast_timekeeper - Prevent fast timekeeper from accessing clocksource.
464 * @tk: Timekeeper to snapshot.
465 *
466 * It generally is unsafe to access the clocksource after timekeeping has been
467 * suspended, so take a snapshot of the readout base of @tk and use it as the
468 * fast timekeeper's readout base while suspended. It will return the same
469 * number of cycles every time until timekeeping is resumed at which time the
470 * proper readout base for the fast timekeeper will be restored automatically.
471 */
472 static void halt_fast_timekeeper(struct timekeeper *tk)
473 {
474 static struct tk_read_base tkr_dummy;
475 struct tk_read_base *tkr = &tk->tkr_mono;
476
477 memcpy(&tkr_dummy, tkr, sizeof(tkr_dummy));
478 cycles_at_suspend = tkr->read(tkr->clock);
479 tkr_dummy.read = dummy_clock_read;
480 update_fast_timekeeper(&tkr_dummy, &tk_fast_mono);
481
482 tkr = &tk->tkr_raw;
483 memcpy(&tkr_dummy, tkr, sizeof(tkr_dummy));
484 tkr_dummy.read = dummy_clock_read;
485 update_fast_timekeeper(&tkr_dummy, &tk_fast_raw);
486 }
487
488 #ifdef CONFIG_GENERIC_TIME_VSYSCALL_OLD
489
490 static inline void update_vsyscall(struct timekeeper *tk)
491 {
492 struct timespec xt, wm;
493
494 xt = timespec64_to_timespec(tk_xtime(tk));
495 wm = timespec64_to_timespec(tk->wall_to_monotonic);
496 update_vsyscall_old(&xt, &wm, tk->tkr_mono.clock, tk->tkr_mono.mult,
497 tk->tkr_mono.cycle_last);
498 }
499
500 static inline void old_vsyscall_fixup(struct timekeeper *tk)
501 {
502 s64 remainder;
503
504 /*
505 * Store only full nanoseconds into xtime_nsec after rounding
506 * it up and add the remainder to the error difference.
507 * XXX - This is necessary to avoid small 1ns inconsistnecies caused
508 * by truncating the remainder in vsyscalls. However, it causes
509 * additional work to be done in timekeeping_adjust(). Once
510 * the vsyscall implementations are converted to use xtime_nsec
511 * (shifted nanoseconds), and CONFIG_GENERIC_TIME_VSYSCALL_OLD
512 * users are removed, this can be killed.
513 */
514 remainder = tk->tkr_mono.xtime_nsec & ((1ULL << tk->tkr_mono.shift) - 1);
515 if (remainder != 0) {
516 tk->tkr_mono.xtime_nsec -= remainder;
517 tk->tkr_mono.xtime_nsec += 1ULL << tk->tkr_mono.shift;
518 tk->ntp_error += remainder << tk->ntp_error_shift;
519 tk->ntp_error -= (1ULL << tk->tkr_mono.shift) << tk->ntp_error_shift;
520 }
521 }
522 #else
523 #define old_vsyscall_fixup(tk)
524 #endif
525
526 static RAW_NOTIFIER_HEAD(pvclock_gtod_chain);
527
528 static void update_pvclock_gtod(struct timekeeper *tk, bool was_set)
529 {
530 raw_notifier_call_chain(&pvclock_gtod_chain, was_set, tk);
531 }
532
533 /**
534 * pvclock_gtod_register_notifier - register a pvclock timedata update listener
535 */
536 int pvclock_gtod_register_notifier(struct notifier_block *nb)
537 {
538 struct timekeeper *tk = &tk_core.timekeeper;
539 unsigned long flags;
540 int ret;
541
542 raw_spin_lock_irqsave(&timekeeper_lock, flags);
543 ret = raw_notifier_chain_register(&pvclock_gtod_chain, nb);
544 update_pvclock_gtod(tk, true);
545 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
546
547 return ret;
548 }
549 EXPORT_SYMBOL_GPL(pvclock_gtod_register_notifier);
550
551 /**
552 * pvclock_gtod_unregister_notifier - unregister a pvclock
553 * timedata update listener
554 */
555 int pvclock_gtod_unregister_notifier(struct notifier_block *nb)
556 {
557 unsigned long flags;
558 int ret;
559
560 raw_spin_lock_irqsave(&timekeeper_lock, flags);
561 ret = raw_notifier_chain_unregister(&pvclock_gtod_chain, nb);
562 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
563
564 return ret;
565 }
566 EXPORT_SYMBOL_GPL(pvclock_gtod_unregister_notifier);
567
568 /*
569 * tk_update_leap_state - helper to update the next_leap_ktime
570 */
571 static inline void tk_update_leap_state(struct timekeeper *tk)
572 {
573 tk->next_leap_ktime = ntp_get_next_leap();
574 if (tk->next_leap_ktime != KTIME_MAX)
575 /* Convert to monotonic time */
576 tk->next_leap_ktime = ktime_sub(tk->next_leap_ktime, tk->offs_real);
577 }
578
579 /*
580 * Update the ktime_t based scalar nsec members of the timekeeper
581 */
582 static inline void tk_update_ktime_data(struct timekeeper *tk)
583 {
584 u64 seconds;
585 u32 nsec;
586
587 /*
588 * The xtime based monotonic readout is:
589 * nsec = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec + now();
590 * The ktime based monotonic readout is:
591 * nsec = base_mono + now();
592 * ==> base_mono = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec
593 */
594 seconds = (u64)(tk->xtime_sec + tk->wall_to_monotonic.tv_sec);
595 nsec = (u32) tk->wall_to_monotonic.tv_nsec;
596 tk->tkr_mono.base = ns_to_ktime(seconds * NSEC_PER_SEC + nsec);
597
598 /* Update the monotonic raw base */
599 tk->tkr_raw.base = timespec64_to_ktime(tk->raw_time);
600
601 /*
602 * The sum of the nanoseconds portions of xtime and
603 * wall_to_monotonic can be greater/equal one second. Take
604 * this into account before updating tk->ktime_sec.
605 */
606 nsec += (u32)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift);
607 if (nsec >= NSEC_PER_SEC)
608 seconds++;
609 tk->ktime_sec = seconds;
610 }
611
612 /* must hold timekeeper_lock */
613 static void timekeeping_update(struct timekeeper *tk, unsigned int action)
614 {
615 if (action & TK_CLEAR_NTP) {
616 tk->ntp_error = 0;
617 ntp_clear();
618 }
619
620 tk_update_leap_state(tk);
621 tk_update_ktime_data(tk);
622
623 update_vsyscall(tk);
624 update_pvclock_gtod(tk, action & TK_CLOCK_WAS_SET);
625
626 update_fast_timekeeper(&tk->tkr_mono, &tk_fast_mono);
627 update_fast_timekeeper(&tk->tkr_raw, &tk_fast_raw);
628
629 if (action & TK_CLOCK_WAS_SET)
630 tk->clock_was_set_seq++;
631 /*
632 * The mirroring of the data to the shadow-timekeeper needs
633 * to happen last here to ensure we don't over-write the
634 * timekeeper structure on the next update with stale data
635 */
636 if (action & TK_MIRROR)
637 memcpy(&shadow_timekeeper, &tk_core.timekeeper,
638 sizeof(tk_core.timekeeper));
639 }
640
641 /**
642 * timekeeping_forward_now - update clock to the current time
643 *
644 * Forward the current clock to update its state since the last call to
645 * update_wall_time(). This is useful before significant clock changes,
646 * as it avoids having to deal with this time offset explicitly.
647 */
648 static void timekeeping_forward_now(struct timekeeper *tk)
649 {
650 struct clocksource *clock = tk->tkr_mono.clock;
651 u64 cycle_now, delta;
652 u64 nsec;
653
654 cycle_now = tk->tkr_mono.read(clock);
655 delta = clocksource_delta(cycle_now, tk->tkr_mono.cycle_last, tk->tkr_mono.mask);
656 tk->tkr_mono.cycle_last = cycle_now;
657 tk->tkr_raw.cycle_last = cycle_now;
658
659 tk->tkr_mono.xtime_nsec += delta * tk->tkr_mono.mult;
660
661 /* If arch requires, add in get_arch_timeoffset() */
662 tk->tkr_mono.xtime_nsec += (u64)arch_gettimeoffset() << tk->tkr_mono.shift;
663
664 tk_normalize_xtime(tk);
665
666 nsec = clocksource_cyc2ns(delta, tk->tkr_raw.mult, tk->tkr_raw.shift);
667 timespec64_add_ns(&tk->raw_time, nsec);
668 }
669
670 /**
671 * __getnstimeofday64 - Returns the time of day in a timespec64.
672 * @ts: pointer to the timespec to be set
673 *
674 * Updates the time of day in the timespec.
675 * Returns 0 on success, or -ve when suspended (timespec will be undefined).
676 */
677 int __getnstimeofday64(struct timespec64 *ts)
678 {
679 struct timekeeper *tk = &tk_core.timekeeper;
680 unsigned long seq;
681 u64 nsecs;
682
683 do {
684 seq = read_seqcount_begin(&tk_core.seq);
685
686 ts->tv_sec = tk->xtime_sec;
687 nsecs = timekeeping_get_ns(&tk->tkr_mono);
688
689 } while (read_seqcount_retry(&tk_core.seq, seq));
690
691 ts->tv_nsec = 0;
692 timespec64_add_ns(ts, nsecs);
693
694 /*
695 * Do not bail out early, in case there were callers still using
696 * the value, even in the face of the WARN_ON.
697 */
698 if (unlikely(timekeeping_suspended))
699 return -EAGAIN;
700 return 0;
701 }
702 EXPORT_SYMBOL(__getnstimeofday64);
703
704 /**
705 * getnstimeofday64 - Returns the time of day in a timespec64.
706 * @ts: pointer to the timespec64 to be set
707 *
708 * Returns the time of day in a timespec64 (WARN if suspended).
709 */
710 void getnstimeofday64(struct timespec64 *ts)
711 {
712 WARN_ON(__getnstimeofday64(ts));
713 }
714 EXPORT_SYMBOL(getnstimeofday64);
715
716 ktime_t ktime_get(void)
717 {
718 struct timekeeper *tk = &tk_core.timekeeper;
719 unsigned int seq;
720 ktime_t base;
721 u64 nsecs;
722
723 WARN_ON(timekeeping_suspended);
724
725 do {
726 seq = read_seqcount_begin(&tk_core.seq);
727 base = tk->tkr_mono.base;
728 nsecs = timekeeping_get_ns(&tk->tkr_mono);
729
730 } while (read_seqcount_retry(&tk_core.seq, seq));
731
732 return ktime_add_ns(base, nsecs);
733 }
734 EXPORT_SYMBOL_GPL(ktime_get);
735
736 u32 ktime_get_resolution_ns(void)
737 {
738 struct timekeeper *tk = &tk_core.timekeeper;
739 unsigned int seq;
740 u32 nsecs;
741
742 WARN_ON(timekeeping_suspended);
743
744 do {
745 seq = read_seqcount_begin(&tk_core.seq);
746 nsecs = tk->tkr_mono.mult >> tk->tkr_mono.shift;
747 } while (read_seqcount_retry(&tk_core.seq, seq));
748
749 return nsecs;
750 }
751 EXPORT_SYMBOL_GPL(ktime_get_resolution_ns);
752
753 static ktime_t *offsets[TK_OFFS_MAX] = {
754 [TK_OFFS_REAL] = &tk_core.timekeeper.offs_real,
755 [TK_OFFS_BOOT] = &tk_core.timekeeper.offs_boot,
756 [TK_OFFS_TAI] = &tk_core.timekeeper.offs_tai,
757 };
758
759 ktime_t ktime_get_with_offset(enum tk_offsets offs)
760 {
761 struct timekeeper *tk = &tk_core.timekeeper;
762 unsigned int seq;
763 ktime_t base, *offset = offsets[offs];
764 u64 nsecs;
765
766 WARN_ON(timekeeping_suspended);
767
768 do {
769 seq = read_seqcount_begin(&tk_core.seq);
770 base = ktime_add(tk->tkr_mono.base, *offset);
771 nsecs = timekeeping_get_ns(&tk->tkr_mono);
772
773 } while (read_seqcount_retry(&tk_core.seq, seq));
774
775 return ktime_add_ns(base, nsecs);
776
777 }
778 EXPORT_SYMBOL_GPL(ktime_get_with_offset);
779
780 /**
781 * ktime_mono_to_any() - convert mononotic time to any other time
782 * @tmono: time to convert.
783 * @offs: which offset to use
784 */
785 ktime_t ktime_mono_to_any(ktime_t tmono, enum tk_offsets offs)
786 {
787 ktime_t *offset = offsets[offs];
788 unsigned long seq;
789 ktime_t tconv;
790
791 do {
792 seq = read_seqcount_begin(&tk_core.seq);
793 tconv = ktime_add(tmono, *offset);
794 } while (read_seqcount_retry(&tk_core.seq, seq));
795
796 return tconv;
797 }
798 EXPORT_SYMBOL_GPL(ktime_mono_to_any);
799
800 /**
801 * ktime_get_raw - Returns the raw monotonic time in ktime_t format
802 */
803 ktime_t ktime_get_raw(void)
804 {
805 struct timekeeper *tk = &tk_core.timekeeper;
806 unsigned int seq;
807 ktime_t base;
808 u64 nsecs;
809
810 do {
811 seq = read_seqcount_begin(&tk_core.seq);
812 base = tk->tkr_raw.base;
813 nsecs = timekeeping_get_ns(&tk->tkr_raw);
814
815 } while (read_seqcount_retry(&tk_core.seq, seq));
816
817 return ktime_add_ns(base, nsecs);
818 }
819 EXPORT_SYMBOL_GPL(ktime_get_raw);
820
821 /**
822 * ktime_get_ts64 - get the monotonic clock in timespec64 format
823 * @ts: pointer to timespec variable
824 *
825 * The function calculates the monotonic clock from the realtime
826 * clock and the wall_to_monotonic offset and stores the result
827 * in normalized timespec64 format in the variable pointed to by @ts.
828 */
829 void ktime_get_ts64(struct timespec64 *ts)
830 {
831 struct timekeeper *tk = &tk_core.timekeeper;
832 struct timespec64 tomono;
833 unsigned int seq;
834 u64 nsec;
835
836 WARN_ON(timekeeping_suspended);
837
838 do {
839 seq = read_seqcount_begin(&tk_core.seq);
840 ts->tv_sec = tk->xtime_sec;
841 nsec = timekeeping_get_ns(&tk->tkr_mono);
842 tomono = tk->wall_to_monotonic;
843
844 } while (read_seqcount_retry(&tk_core.seq, seq));
845
846 ts->tv_sec += tomono.tv_sec;
847 ts->tv_nsec = 0;
848 timespec64_add_ns(ts, nsec + tomono.tv_nsec);
849 }
850 EXPORT_SYMBOL_GPL(ktime_get_ts64);
851
852 /**
853 * ktime_get_seconds - Get the seconds portion of CLOCK_MONOTONIC
854 *
855 * Returns the seconds portion of CLOCK_MONOTONIC with a single non
856 * serialized read. tk->ktime_sec is of type 'unsigned long' so this
857 * works on both 32 and 64 bit systems. On 32 bit systems the readout
858 * covers ~136 years of uptime which should be enough to prevent
859 * premature wrap arounds.
860 */
861 time64_t ktime_get_seconds(void)
862 {
863 struct timekeeper *tk = &tk_core.timekeeper;
864
865 WARN_ON(timekeeping_suspended);
866 return tk->ktime_sec;
867 }
868 EXPORT_SYMBOL_GPL(ktime_get_seconds);
869
870 /**
871 * ktime_get_real_seconds - Get the seconds portion of CLOCK_REALTIME
872 *
873 * Returns the wall clock seconds since 1970. This replaces the
874 * get_seconds() interface which is not y2038 safe on 32bit systems.
875 *
876 * For 64bit systems the fast access to tk->xtime_sec is preserved. On
877 * 32bit systems the access must be protected with the sequence
878 * counter to provide "atomic" access to the 64bit tk->xtime_sec
879 * value.
880 */
881 time64_t ktime_get_real_seconds(void)
882 {
883 struct timekeeper *tk = &tk_core.timekeeper;
884 time64_t seconds;
885 unsigned int seq;
886
887 if (IS_ENABLED(CONFIG_64BIT))
888 return tk->xtime_sec;
889
890 do {
891 seq = read_seqcount_begin(&tk_core.seq);
892 seconds = tk->xtime_sec;
893
894 } while (read_seqcount_retry(&tk_core.seq, seq));
895
896 return seconds;
897 }
898 EXPORT_SYMBOL_GPL(ktime_get_real_seconds);
899
900 /**
901 * __ktime_get_real_seconds - The same as ktime_get_real_seconds
902 * but without the sequence counter protect. This internal function
903 * is called just when timekeeping lock is already held.
904 */
905 time64_t __ktime_get_real_seconds(void)
906 {
907 struct timekeeper *tk = &tk_core.timekeeper;
908
909 return tk->xtime_sec;
910 }
911
912 /**
913 * ktime_get_snapshot - snapshots the realtime/monotonic raw clocks with counter
914 * @systime_snapshot: pointer to struct receiving the system time snapshot
915 */
916 void ktime_get_snapshot(struct system_time_snapshot *systime_snapshot)
917 {
918 struct timekeeper *tk = &tk_core.timekeeper;
919 unsigned long seq;
920 ktime_t base_raw;
921 ktime_t base_real;
922 u64 nsec_raw;
923 u64 nsec_real;
924 u64 now;
925
926 WARN_ON_ONCE(timekeeping_suspended);
927
928 do {
929 seq = read_seqcount_begin(&tk_core.seq);
930
931 now = tk->tkr_mono.read(tk->tkr_mono.clock);
932 systime_snapshot->cs_was_changed_seq = tk->cs_was_changed_seq;
933 systime_snapshot->clock_was_set_seq = tk->clock_was_set_seq;
934 base_real = ktime_add(tk->tkr_mono.base,
935 tk_core.timekeeper.offs_real);
936 base_raw = tk->tkr_raw.base;
937 nsec_real = timekeeping_cycles_to_ns(&tk->tkr_mono, now);
938 nsec_raw = timekeeping_cycles_to_ns(&tk->tkr_raw, now);
939 } while (read_seqcount_retry(&tk_core.seq, seq));
940
941 systime_snapshot->cycles = now;
942 systime_snapshot->real = ktime_add_ns(base_real, nsec_real);
943 systime_snapshot->raw = ktime_add_ns(base_raw, nsec_raw);
944 }
945 EXPORT_SYMBOL_GPL(ktime_get_snapshot);
946
947 /* Scale base by mult/div checking for overflow */
948 static int scale64_check_overflow(u64 mult, u64 div, u64 *base)
949 {
950 u64 tmp, rem;
951
952 tmp = div64_u64_rem(*base, div, &rem);
953
954 if (((int)sizeof(u64)*8 - fls64(mult) < fls64(tmp)) ||
955 ((int)sizeof(u64)*8 - fls64(mult) < fls64(rem)))
956 return -EOVERFLOW;
957 tmp *= mult;
958 rem *= mult;
959
960 do_div(rem, div);
961 *base = tmp + rem;
962 return 0;
963 }
964
965 /**
966 * adjust_historical_crosststamp - adjust crosstimestamp previous to current interval
967 * @history: Snapshot representing start of history
968 * @partial_history_cycles: Cycle offset into history (fractional part)
969 * @total_history_cycles: Total history length in cycles
970 * @discontinuity: True indicates clock was set on history period
971 * @ts: Cross timestamp that should be adjusted using
972 * partial/total ratio
973 *
974 * Helper function used by get_device_system_crosststamp() to correct the
975 * crosstimestamp corresponding to the start of the current interval to the
976 * system counter value (timestamp point) provided by the driver. The
977 * total_history_* quantities are the total history starting at the provided
978 * reference point and ending at the start of the current interval. The cycle
979 * count between the driver timestamp point and the start of the current
980 * interval is partial_history_cycles.
981 */
982 static int adjust_historical_crosststamp(struct system_time_snapshot *history,
983 u64 partial_history_cycles,
984 u64 total_history_cycles,
985 bool discontinuity,
986 struct system_device_crosststamp *ts)
987 {
988 struct timekeeper *tk = &tk_core.timekeeper;
989 u64 corr_raw, corr_real;
990 bool interp_forward;
991 int ret;
992
993 if (total_history_cycles == 0 || partial_history_cycles == 0)
994 return 0;
995
996 /* Interpolate shortest distance from beginning or end of history */
997 interp_forward = partial_history_cycles > total_history_cycles/2 ?
998 true : false;
999 partial_history_cycles = interp_forward ?
1000 total_history_cycles - partial_history_cycles :
1001 partial_history_cycles;
1002
1003 /*
1004 * Scale the monotonic raw time delta by:
1005 * partial_history_cycles / total_history_cycles
1006 */
1007 corr_raw = (u64)ktime_to_ns(
1008 ktime_sub(ts->sys_monoraw, history->raw));
1009 ret = scale64_check_overflow(partial_history_cycles,
1010 total_history_cycles, &corr_raw);
1011 if (ret)
1012 return ret;
1013
1014 /*
1015 * If there is a discontinuity in the history, scale monotonic raw
1016 * correction by:
1017 * mult(real)/mult(raw) yielding the realtime correction
1018 * Otherwise, calculate the realtime correction similar to monotonic
1019 * raw calculation
1020 */
1021 if (discontinuity) {
1022 corr_real = mul_u64_u32_div
1023 (corr_raw, tk->tkr_mono.mult, tk->tkr_raw.mult);
1024 } else {
1025 corr_real = (u64)ktime_to_ns(
1026 ktime_sub(ts->sys_realtime, history->real));
1027 ret = scale64_check_overflow(partial_history_cycles,
1028 total_history_cycles, &corr_real);
1029 if (ret)
1030 return ret;
1031 }
1032
1033 /* Fixup monotonic raw and real time time values */
1034 if (interp_forward) {
1035 ts->sys_monoraw = ktime_add_ns(history->raw, corr_raw);
1036 ts->sys_realtime = ktime_add_ns(history->real, corr_real);
1037 } else {
1038 ts->sys_monoraw = ktime_sub_ns(ts->sys_monoraw, corr_raw);
1039 ts->sys_realtime = ktime_sub_ns(ts->sys_realtime, corr_real);
1040 }
1041
1042 return 0;
1043 }
1044
1045 /*
1046 * cycle_between - true if test occurs chronologically between before and after
1047 */
1048 static bool cycle_between(u64 before, u64 test, u64 after)
1049 {
1050 if (test > before && test < after)
1051 return true;
1052 if (test < before && before > after)
1053 return true;
1054 return false;
1055 }
1056
1057 /**
1058 * get_device_system_crosststamp - Synchronously capture system/device timestamp
1059 * @get_time_fn: Callback to get simultaneous device time and
1060 * system counter from the device driver
1061 * @ctx: Context passed to get_time_fn()
1062 * @history_begin: Historical reference point used to interpolate system
1063 * time when counter provided by the driver is before the current interval
1064 * @xtstamp: Receives simultaneously captured system and device time
1065 *
1066 * Reads a timestamp from a device and correlates it to system time
1067 */
1068 int get_device_system_crosststamp(int (*get_time_fn)
1069 (ktime_t *device_time,
1070 struct system_counterval_t *sys_counterval,
1071 void *ctx),
1072 void *ctx,
1073 struct system_time_snapshot *history_begin,
1074 struct system_device_crosststamp *xtstamp)
1075 {
1076 struct system_counterval_t system_counterval;
1077 struct timekeeper *tk = &tk_core.timekeeper;
1078 u64 cycles, now, interval_start;
1079 unsigned int clock_was_set_seq = 0;
1080 ktime_t base_real, base_raw;
1081 u64 nsec_real, nsec_raw;
1082 u8 cs_was_changed_seq;
1083 unsigned long seq;
1084 bool do_interp;
1085 int ret;
1086
1087 do {
1088 seq = read_seqcount_begin(&tk_core.seq);
1089 /*
1090 * Try to synchronously capture device time and a system
1091 * counter value calling back into the device driver
1092 */
1093 ret = get_time_fn(&xtstamp->device, &system_counterval, ctx);
1094 if (ret)
1095 return ret;
1096
1097 /*
1098 * Verify that the clocksource associated with the captured
1099 * system counter value is the same as the currently installed
1100 * timekeeper clocksource
1101 */
1102 if (tk->tkr_mono.clock != system_counterval.cs)
1103 return -ENODEV;
1104 cycles = system_counterval.cycles;
1105
1106 /*
1107 * Check whether the system counter value provided by the
1108 * device driver is on the current timekeeping interval.
1109 */
1110 now = tk->tkr_mono.read(tk->tkr_mono.clock);
1111 interval_start = tk->tkr_mono.cycle_last;
1112 if (!cycle_between(interval_start, cycles, now)) {
1113 clock_was_set_seq = tk->clock_was_set_seq;
1114 cs_was_changed_seq = tk->cs_was_changed_seq;
1115 cycles = interval_start;
1116 do_interp = true;
1117 } else {
1118 do_interp = false;
1119 }
1120
1121 base_real = ktime_add(tk->tkr_mono.base,
1122 tk_core.timekeeper.offs_real);
1123 base_raw = tk->tkr_raw.base;
1124
1125 nsec_real = timekeeping_cycles_to_ns(&tk->tkr_mono,
1126 system_counterval.cycles);
1127 nsec_raw = timekeeping_cycles_to_ns(&tk->tkr_raw,
1128 system_counterval.cycles);
1129 } while (read_seqcount_retry(&tk_core.seq, seq));
1130
1131 xtstamp->sys_realtime = ktime_add_ns(base_real, nsec_real);
1132 xtstamp->sys_monoraw = ktime_add_ns(base_raw, nsec_raw);
1133
1134 /*
1135 * Interpolate if necessary, adjusting back from the start of the
1136 * current interval
1137 */
1138 if (do_interp) {
1139 u64 partial_history_cycles, total_history_cycles;
1140 bool discontinuity;
1141
1142 /*
1143 * Check that the counter value occurs after the provided
1144 * history reference and that the history doesn't cross a
1145 * clocksource change
1146 */
1147 if (!history_begin ||
1148 !cycle_between(history_begin->cycles,
1149 system_counterval.cycles, cycles) ||
1150 history_begin->cs_was_changed_seq != cs_was_changed_seq)
1151 return -EINVAL;
1152 partial_history_cycles = cycles - system_counterval.cycles;
1153 total_history_cycles = cycles - history_begin->cycles;
1154 discontinuity =
1155 history_begin->clock_was_set_seq != clock_was_set_seq;
1156
1157 ret = adjust_historical_crosststamp(history_begin,
1158 partial_history_cycles,
1159 total_history_cycles,
1160 discontinuity, xtstamp);
1161 if (ret)
1162 return ret;
1163 }
1164
1165 return 0;
1166 }
1167 EXPORT_SYMBOL_GPL(get_device_system_crosststamp);
1168
1169 /**
1170 * do_gettimeofday - Returns the time of day in a timeval
1171 * @tv: pointer to the timeval to be set
1172 *
1173 * NOTE: Users should be converted to using getnstimeofday()
1174 */
1175 void do_gettimeofday(struct timeval *tv)
1176 {
1177 struct timespec64 now;
1178
1179 getnstimeofday64(&now);
1180 tv->tv_sec = now.tv_sec;
1181 tv->tv_usec = now.tv_nsec/1000;
1182 }
1183 EXPORT_SYMBOL(do_gettimeofday);
1184
1185 /**
1186 * do_settimeofday64 - Sets the time of day.
1187 * @ts: pointer to the timespec64 variable containing the new time
1188 *
1189 * Sets the time of day to the new time and update NTP and notify hrtimers
1190 */
1191 int do_settimeofday64(const struct timespec64 *ts)
1192 {
1193 struct timekeeper *tk = &tk_core.timekeeper;
1194 struct timespec64 ts_delta, xt;
1195 unsigned long flags;
1196 int ret = 0;
1197
1198 if (!timespec64_valid_strict(ts))
1199 return -EINVAL;
1200
1201 raw_spin_lock_irqsave(&timekeeper_lock, flags);
1202 write_seqcount_begin(&tk_core.seq);
1203
1204 timekeeping_forward_now(tk);
1205
1206 xt = tk_xtime(tk);
1207 ts_delta.tv_sec = ts->tv_sec - xt.tv_sec;
1208 ts_delta.tv_nsec = ts->tv_nsec - xt.tv_nsec;
1209
1210 if (timespec64_compare(&tk->wall_to_monotonic, &ts_delta) > 0) {
1211 ret = -EINVAL;
1212 goto out;
1213 }
1214
1215 tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, ts_delta));
1216
1217 tk_set_xtime(tk, ts);
1218 out:
1219 timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1220
1221 write_seqcount_end(&tk_core.seq);
1222 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1223
1224 /* signal hrtimers about time change */
1225 clock_was_set();
1226
1227 return ret;
1228 }
1229 EXPORT_SYMBOL(do_settimeofday64);
1230
1231 /**
1232 * timekeeping_inject_offset - Adds or subtracts from the current time.
1233 * @tv: pointer to the timespec variable containing the offset
1234 *
1235 * Adds or subtracts an offset value from the current time.
1236 */
1237 int timekeeping_inject_offset(struct timespec *ts)
1238 {
1239 struct timekeeper *tk = &tk_core.timekeeper;
1240 unsigned long flags;
1241 struct timespec64 ts64, tmp;
1242 int ret = 0;
1243
1244 if (!timespec_inject_offset_valid(ts))
1245 return -EINVAL;
1246
1247 ts64 = timespec_to_timespec64(*ts);
1248
1249 raw_spin_lock_irqsave(&timekeeper_lock, flags);
1250 write_seqcount_begin(&tk_core.seq);
1251
1252 timekeeping_forward_now(tk);
1253
1254 /* Make sure the proposed value is valid */
1255 tmp = timespec64_add(tk_xtime(tk), ts64);
1256 if (timespec64_compare(&tk->wall_to_monotonic, &ts64) > 0 ||
1257 !timespec64_valid_strict(&tmp)) {
1258 ret = -EINVAL;
1259 goto error;
1260 }
1261
1262 tk_xtime_add(tk, &ts64);
1263 tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, ts64));
1264
1265 error: /* even if we error out, we forwarded the time, so call update */
1266 timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1267
1268 write_seqcount_end(&tk_core.seq);
1269 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1270
1271 /* signal hrtimers about time change */
1272 clock_was_set();
1273
1274 return ret;
1275 }
1276 EXPORT_SYMBOL(timekeeping_inject_offset);
1277
1278
1279 /**
1280 * timekeeping_get_tai_offset - Returns current TAI offset from UTC
1281 *
1282 */
1283 s32 timekeeping_get_tai_offset(void)
1284 {
1285 struct timekeeper *tk = &tk_core.timekeeper;
1286 unsigned int seq;
1287 s32 ret;
1288
1289 do {
1290 seq = read_seqcount_begin(&tk_core.seq);
1291 ret = tk->tai_offset;
1292 } while (read_seqcount_retry(&tk_core.seq, seq));
1293
1294 return ret;
1295 }
1296
1297 /**
1298 * __timekeeping_set_tai_offset - Lock free worker function
1299 *
1300 */
1301 static void __timekeeping_set_tai_offset(struct timekeeper *tk, s32 tai_offset)
1302 {
1303 tk->tai_offset = tai_offset;
1304 tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tai_offset, 0));
1305 }
1306
1307 /**
1308 * timekeeping_set_tai_offset - Sets the current TAI offset from UTC
1309 *
1310 */
1311 void timekeeping_set_tai_offset(s32 tai_offset)
1312 {
1313 struct timekeeper *tk = &tk_core.timekeeper;
1314 unsigned long flags;
1315
1316 raw_spin_lock_irqsave(&timekeeper_lock, flags);
1317 write_seqcount_begin(&tk_core.seq);
1318 __timekeeping_set_tai_offset(tk, tai_offset);
1319 timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
1320 write_seqcount_end(&tk_core.seq);
1321 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1322 clock_was_set();
1323 }
1324
1325 /**
1326 * change_clocksource - Swaps clocksources if a new one is available
1327 *
1328 * Accumulates current time interval and initializes new clocksource
1329 */
1330 static int change_clocksource(void *data)
1331 {
1332 struct timekeeper *tk = &tk_core.timekeeper;
1333 struct clocksource *new, *old;
1334 unsigned long flags;
1335
1336 new = (struct clocksource *) data;
1337
1338 raw_spin_lock_irqsave(&timekeeper_lock, flags);
1339 write_seqcount_begin(&tk_core.seq);
1340
1341 timekeeping_forward_now(tk);
1342 /*
1343 * If the cs is in module, get a module reference. Succeeds
1344 * for built-in code (owner == NULL) as well.
1345 */
1346 if (try_module_get(new->owner)) {
1347 if (!new->enable || new->enable(new) == 0) {
1348 old = tk->tkr_mono.clock;
1349 tk_setup_internals(tk, new);
1350 if (old->disable)
1351 old->disable(old);
1352 module_put(old->owner);
1353 } else {
1354 module_put(new->owner);
1355 }
1356 }
1357 timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1358
1359 write_seqcount_end(&tk_core.seq);
1360 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1361
1362 return 0;
1363 }
1364
1365 /**
1366 * timekeeping_notify - Install a new clock source
1367 * @clock: pointer to the clock source
1368 *
1369 * This function is called from clocksource.c after a new, better clock
1370 * source has been registered. The caller holds the clocksource_mutex.
1371 */
1372 int timekeeping_notify(struct clocksource *clock)
1373 {
1374 struct timekeeper *tk = &tk_core.timekeeper;
1375
1376 if (tk->tkr_mono.clock == clock)
1377 return 0;
1378 stop_machine(change_clocksource, clock, NULL);
1379 tick_clock_notify();
1380 return tk->tkr_mono.clock == clock ? 0 : -1;
1381 }
1382
1383 /**
1384 * getrawmonotonic64 - Returns the raw monotonic time in a timespec
1385 * @ts: pointer to the timespec64 to be set
1386 *
1387 * Returns the raw monotonic time (completely un-modified by ntp)
1388 */
1389 void getrawmonotonic64(struct timespec64 *ts)
1390 {
1391 struct timekeeper *tk = &tk_core.timekeeper;
1392 struct timespec64 ts64;
1393 unsigned long seq;
1394 u64 nsecs;
1395
1396 do {
1397 seq = read_seqcount_begin(&tk_core.seq);
1398 nsecs = timekeeping_get_ns(&tk->tkr_raw);
1399 ts64 = tk->raw_time;
1400
1401 } while (read_seqcount_retry(&tk_core.seq, seq));
1402
1403 timespec64_add_ns(&ts64, nsecs);
1404 *ts = ts64;
1405 }
1406 EXPORT_SYMBOL(getrawmonotonic64);
1407
1408
1409 /**
1410 * timekeeping_valid_for_hres - Check if timekeeping is suitable for hres
1411 */
1412 int timekeeping_valid_for_hres(void)
1413 {
1414 struct timekeeper *tk = &tk_core.timekeeper;
1415 unsigned long seq;
1416 int ret;
1417
1418 do {
1419 seq = read_seqcount_begin(&tk_core.seq);
1420
1421 ret = tk->tkr_mono.clock->flags & CLOCK_SOURCE_VALID_FOR_HRES;
1422
1423 } while (read_seqcount_retry(&tk_core.seq, seq));
1424
1425 return ret;
1426 }
1427
1428 /**
1429 * timekeeping_max_deferment - Returns max time the clocksource can be deferred
1430 */
1431 u64 timekeeping_max_deferment(void)
1432 {
1433 struct timekeeper *tk = &tk_core.timekeeper;
1434 unsigned long seq;
1435 u64 ret;
1436
1437 do {
1438 seq = read_seqcount_begin(&tk_core.seq);
1439
1440 ret = tk->tkr_mono.clock->max_idle_ns;
1441
1442 } while (read_seqcount_retry(&tk_core.seq, seq));
1443
1444 return ret;
1445 }
1446
1447 /**
1448 * read_persistent_clock - Return time from the persistent clock.
1449 *
1450 * Weak dummy function for arches that do not yet support it.
1451 * Reads the time from the battery backed persistent clock.
1452 * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported.
1453 *
1454 * XXX - Do be sure to remove it once all arches implement it.
1455 */
1456 void __weak read_persistent_clock(struct timespec *ts)
1457 {
1458 ts->tv_sec = 0;
1459 ts->tv_nsec = 0;
1460 }
1461
1462 void __weak read_persistent_clock64(struct timespec64 *ts64)
1463 {
1464 struct timespec ts;
1465
1466 read_persistent_clock(&ts);
1467 *ts64 = timespec_to_timespec64(ts);
1468 }
1469
1470 /**
1471 * read_boot_clock64 - Return time of the system start.
1472 *
1473 * Weak dummy function for arches that do not yet support it.
1474 * Function to read the exact time the system has been started.
1475 * Returns a timespec64 with tv_sec=0 and tv_nsec=0 if unsupported.
1476 *
1477 * XXX - Do be sure to remove it once all arches implement it.
1478 */
1479 void __weak read_boot_clock64(struct timespec64 *ts)
1480 {
1481 ts->tv_sec = 0;
1482 ts->tv_nsec = 0;
1483 }
1484
1485 /* Flag for if timekeeping_resume() has injected sleeptime */
1486 static bool sleeptime_injected;
1487
1488 /* Flag for if there is a persistent clock on this platform */
1489 static bool persistent_clock_exists;
1490
1491 /*
1492 * timekeeping_init - Initializes the clocksource and common timekeeping values
1493 */
1494 void __init timekeeping_init(void)
1495 {
1496 struct timekeeper *tk = &tk_core.timekeeper;
1497 struct clocksource *clock;
1498 unsigned long flags;
1499 struct timespec64 now, boot, tmp;
1500
1501 read_persistent_clock64(&now);
1502 if (!timespec64_valid_strict(&now)) {
1503 pr_warn("WARNING: Persistent clock returned invalid value!\n"
1504 " Check your CMOS/BIOS settings.\n");
1505 now.tv_sec = 0;
1506 now.tv_nsec = 0;
1507 } else if (now.tv_sec || now.tv_nsec)
1508 persistent_clock_exists = true;
1509
1510 read_boot_clock64(&boot);
1511 if (!timespec64_valid_strict(&boot)) {
1512 pr_warn("WARNING: Boot clock returned invalid value!\n"
1513 " Check your CMOS/BIOS settings.\n");
1514 boot.tv_sec = 0;
1515 boot.tv_nsec = 0;
1516 }
1517
1518 raw_spin_lock_irqsave(&timekeeper_lock, flags);
1519 write_seqcount_begin(&tk_core.seq);
1520 ntp_init();
1521
1522 clock = clocksource_default_clock();
1523 if (clock->enable)
1524 clock->enable(clock);
1525 tk_setup_internals(tk, clock);
1526
1527 tk_set_xtime(tk, &now);
1528 tk->raw_time.tv_sec = 0;
1529 tk->raw_time.tv_nsec = 0;
1530 if (boot.tv_sec == 0 && boot.tv_nsec == 0)
1531 boot = tk_xtime(tk);
1532
1533 set_normalized_timespec64(&tmp, -boot.tv_sec, -boot.tv_nsec);
1534 tk_set_wall_to_mono(tk, tmp);
1535
1536 timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
1537
1538 write_seqcount_end(&tk_core.seq);
1539 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1540 }
1541
1542 /* time in seconds when suspend began for persistent clock */
1543 static struct timespec64 timekeeping_suspend_time;
1544
1545 /**
1546 * __timekeeping_inject_sleeptime - Internal function to add sleep interval
1547 * @delta: pointer to a timespec delta value
1548 *
1549 * Takes a timespec offset measuring a suspend interval and properly
1550 * adds the sleep offset to the timekeeping variables.
1551 */
1552 static void __timekeeping_inject_sleeptime(struct timekeeper *tk,
1553 struct timespec64 *delta)
1554 {
1555 if (!timespec64_valid_strict(delta)) {
1556 printk_deferred(KERN_WARNING
1557 "__timekeeping_inject_sleeptime: Invalid "
1558 "sleep delta value!\n");
1559 return;
1560 }
1561 tk_xtime_add(tk, delta);
1562 tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, *delta));
1563 tk_update_sleep_time(tk, timespec64_to_ktime(*delta));
1564 tk_debug_account_sleep_time(delta);
1565 }
1566
1567 #if defined(CONFIG_PM_SLEEP) && defined(CONFIG_RTC_HCTOSYS_DEVICE)
1568 /**
1569 * We have three kinds of time sources to use for sleep time
1570 * injection, the preference order is:
1571 * 1) non-stop clocksource
1572 * 2) persistent clock (ie: RTC accessible when irqs are off)
1573 * 3) RTC
1574 *
1575 * 1) and 2) are used by timekeeping, 3) by RTC subsystem.
1576 * If system has neither 1) nor 2), 3) will be used finally.
1577 *
1578 *
1579 * If timekeeping has injected sleeptime via either 1) or 2),
1580 * 3) becomes needless, so in this case we don't need to call
1581 * rtc_resume(), and this is what timekeeping_rtc_skipresume()
1582 * means.
1583 */
1584 bool timekeeping_rtc_skipresume(void)
1585 {
1586 return sleeptime_injected;
1587 }
1588
1589 /**
1590 * 1) can be determined whether to use or not only when doing
1591 * timekeeping_resume() which is invoked after rtc_suspend(),
1592 * so we can't skip rtc_suspend() surely if system has 1).
1593 *
1594 * But if system has 2), 2) will definitely be used, so in this
1595 * case we don't need to call rtc_suspend(), and this is what
1596 * timekeeping_rtc_skipsuspend() means.
1597 */
1598 bool timekeeping_rtc_skipsuspend(void)
1599 {
1600 return persistent_clock_exists;
1601 }
1602
1603 /**
1604 * timekeeping_inject_sleeptime64 - Adds suspend interval to timeekeeping values
1605 * @delta: pointer to a timespec64 delta value
1606 *
1607 * This hook is for architectures that cannot support read_persistent_clock64
1608 * because their RTC/persistent clock is only accessible when irqs are enabled.
1609 * and also don't have an effective nonstop clocksource.
1610 *
1611 * This function should only be called by rtc_resume(), and allows
1612 * a suspend offset to be injected into the timekeeping values.
1613 */
1614 void timekeeping_inject_sleeptime64(struct timespec64 *delta)
1615 {
1616 struct timekeeper *tk = &tk_core.timekeeper;
1617 unsigned long flags;
1618
1619 raw_spin_lock_irqsave(&timekeeper_lock, flags);
1620 write_seqcount_begin(&tk_core.seq);
1621
1622 timekeeping_forward_now(tk);
1623
1624 __timekeeping_inject_sleeptime(tk, delta);
1625
1626 timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1627
1628 write_seqcount_end(&tk_core.seq);
1629 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1630
1631 /* signal hrtimers about time change */
1632 clock_was_set();
1633 }
1634 #endif
1635
1636 /**
1637 * timekeeping_resume - Resumes the generic timekeeping subsystem.
1638 */
1639 void timekeeping_resume(void)
1640 {
1641 struct timekeeper *tk = &tk_core.timekeeper;
1642 struct clocksource *clock = tk->tkr_mono.clock;
1643 unsigned long flags;
1644 struct timespec64 ts_new, ts_delta;
1645 u64 cycle_now;
1646
1647 sleeptime_injected = false;
1648 read_persistent_clock64(&ts_new);
1649
1650 clockevents_resume();
1651 clocksource_resume();
1652
1653 raw_spin_lock_irqsave(&timekeeper_lock, flags);
1654 write_seqcount_begin(&tk_core.seq);
1655
1656 /*
1657 * After system resumes, we need to calculate the suspended time and
1658 * compensate it for the OS time. There are 3 sources that could be
1659 * used: Nonstop clocksource during suspend, persistent clock and rtc
1660 * device.
1661 *
1662 * One specific platform may have 1 or 2 or all of them, and the
1663 * preference will be:
1664 * suspend-nonstop clocksource -> persistent clock -> rtc
1665 * The less preferred source will only be tried if there is no better
1666 * usable source. The rtc part is handled separately in rtc core code.
1667 */
1668 cycle_now = tk->tkr_mono.read(clock);
1669 if ((clock->flags & CLOCK_SOURCE_SUSPEND_NONSTOP) &&
1670 cycle_now > tk->tkr_mono.cycle_last) {
1671 u64 nsec, cyc_delta;
1672
1673 cyc_delta = clocksource_delta(cycle_now, tk->tkr_mono.cycle_last,
1674 tk->tkr_mono.mask);
1675 nsec = mul_u64_u32_shr(cyc_delta, clock->mult, clock->shift);
1676 ts_delta = ns_to_timespec64(nsec);
1677 sleeptime_injected = true;
1678 } else if (timespec64_compare(&ts_new, &timekeeping_suspend_time) > 0) {
1679 ts_delta = timespec64_sub(ts_new, timekeeping_suspend_time);
1680 sleeptime_injected = true;
1681 }
1682
1683 if (sleeptime_injected)
1684 __timekeeping_inject_sleeptime(tk, &ts_delta);
1685
1686 /* Re-base the last cycle value */
1687 tk->tkr_mono.cycle_last = cycle_now;
1688 tk->tkr_raw.cycle_last = cycle_now;
1689
1690 tk->ntp_error = 0;
1691 timekeeping_suspended = 0;
1692 timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
1693 write_seqcount_end(&tk_core.seq);
1694 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1695
1696 touch_softlockup_watchdog();
1697
1698 tick_resume();
1699 hrtimers_resume();
1700 }
1701
1702 int timekeeping_suspend(void)
1703 {
1704 struct timekeeper *tk = &tk_core.timekeeper;
1705 unsigned long flags;
1706 struct timespec64 delta, delta_delta;
1707 static struct timespec64 old_delta;
1708
1709 read_persistent_clock64(&timekeeping_suspend_time);
1710
1711 /*
1712 * On some systems the persistent_clock can not be detected at
1713 * timekeeping_init by its return value, so if we see a valid
1714 * value returned, update the persistent_clock_exists flag.
1715 */
1716 if (timekeeping_suspend_time.tv_sec || timekeeping_suspend_time.tv_nsec)
1717 persistent_clock_exists = true;
1718
1719 raw_spin_lock_irqsave(&timekeeper_lock, flags);
1720 write_seqcount_begin(&tk_core.seq);
1721 timekeeping_forward_now(tk);
1722 timekeeping_suspended = 1;
1723
1724 if (persistent_clock_exists) {
1725 /*
1726 * To avoid drift caused by repeated suspend/resumes,
1727 * which each can add ~1 second drift error,
1728 * try to compensate so the difference in system time
1729 * and persistent_clock time stays close to constant.
1730 */
1731 delta = timespec64_sub(tk_xtime(tk), timekeeping_suspend_time);
1732 delta_delta = timespec64_sub(delta, old_delta);
1733 if (abs(delta_delta.tv_sec) >= 2) {
1734 /*
1735 * if delta_delta is too large, assume time correction
1736 * has occurred and set old_delta to the current delta.
1737 */
1738 old_delta = delta;
1739 } else {
1740 /* Otherwise try to adjust old_system to compensate */
1741 timekeeping_suspend_time =
1742 timespec64_add(timekeeping_suspend_time, delta_delta);
1743 }
1744 }
1745
1746 timekeeping_update(tk, TK_MIRROR);
1747 halt_fast_timekeeper(tk);
1748 write_seqcount_end(&tk_core.seq);
1749 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1750
1751 tick_suspend();
1752 clocksource_suspend();
1753 clockevents_suspend();
1754
1755 return 0;
1756 }
1757
1758 /* sysfs resume/suspend bits for timekeeping */
1759 static struct syscore_ops timekeeping_syscore_ops = {
1760 .resume = timekeeping_resume,
1761 .suspend = timekeeping_suspend,
1762 };
1763
1764 static int __init timekeeping_init_ops(void)
1765 {
1766 register_syscore_ops(&timekeeping_syscore_ops);
1767 return 0;
1768 }
1769 device_initcall(timekeeping_init_ops);
1770
1771 /*
1772 * Apply a multiplier adjustment to the timekeeper
1773 */
1774 static __always_inline void timekeeping_apply_adjustment(struct timekeeper *tk,
1775 s64 offset,
1776 bool negative,
1777 int adj_scale)
1778 {
1779 s64 interval = tk->cycle_interval;
1780 s32 mult_adj = 1;
1781
1782 if (negative) {
1783 mult_adj = -mult_adj;
1784 interval = -interval;
1785 offset = -offset;
1786 }
1787 mult_adj <<= adj_scale;
1788 interval <<= adj_scale;
1789 offset <<= adj_scale;
1790
1791 /*
1792 * So the following can be confusing.
1793 *
1794 * To keep things simple, lets assume mult_adj == 1 for now.
1795 *
1796 * When mult_adj != 1, remember that the interval and offset values
1797 * have been appropriately scaled so the math is the same.
1798 *
1799 * The basic idea here is that we're increasing the multiplier
1800 * by one, this causes the xtime_interval to be incremented by
1801 * one cycle_interval. This is because:
1802 * xtime_interval = cycle_interval * mult
1803 * So if mult is being incremented by one:
1804 * xtime_interval = cycle_interval * (mult + 1)
1805 * Its the same as:
1806 * xtime_interval = (cycle_interval * mult) + cycle_interval
1807 * Which can be shortened to:
1808 * xtime_interval += cycle_interval
1809 *
1810 * So offset stores the non-accumulated cycles. Thus the current
1811 * time (in shifted nanoseconds) is:
1812 * now = (offset * adj) + xtime_nsec
1813 * Now, even though we're adjusting the clock frequency, we have
1814 * to keep time consistent. In other words, we can't jump back
1815 * in time, and we also want to avoid jumping forward in time.
1816 *
1817 * So given the same offset value, we need the time to be the same
1818 * both before and after the freq adjustment.
1819 * now = (offset * adj_1) + xtime_nsec_1
1820 * now = (offset * adj_2) + xtime_nsec_2
1821 * So:
1822 * (offset * adj_1) + xtime_nsec_1 =
1823 * (offset * adj_2) + xtime_nsec_2
1824 * And we know:
1825 * adj_2 = adj_1 + 1
1826 * So:
1827 * (offset * adj_1) + xtime_nsec_1 =
1828 * (offset * (adj_1+1)) + xtime_nsec_2
1829 * (offset * adj_1) + xtime_nsec_1 =
1830 * (offset * adj_1) + offset + xtime_nsec_2
1831 * Canceling the sides:
1832 * xtime_nsec_1 = offset + xtime_nsec_2
1833 * Which gives us:
1834 * xtime_nsec_2 = xtime_nsec_1 - offset
1835 * Which simplfies to:
1836 * xtime_nsec -= offset
1837 *
1838 * XXX - TODO: Doc ntp_error calculation.
1839 */
1840 if ((mult_adj > 0) && (tk->tkr_mono.mult + mult_adj < mult_adj)) {
1841 /* NTP adjustment caused clocksource mult overflow */
1842 WARN_ON_ONCE(1);
1843 return;
1844 }
1845
1846 tk->tkr_mono.mult += mult_adj;
1847 tk->xtime_interval += interval;
1848 tk->tkr_mono.xtime_nsec -= offset;
1849 tk->ntp_error -= (interval - offset) << tk->ntp_error_shift;
1850 }
1851
1852 /*
1853 * Calculate the multiplier adjustment needed to match the frequency
1854 * specified by NTP
1855 */
1856 static __always_inline void timekeeping_freqadjust(struct timekeeper *tk,
1857 s64 offset)
1858 {
1859 s64 interval = tk->cycle_interval;
1860 s64 xinterval = tk->xtime_interval;
1861 u32 base = tk->tkr_mono.clock->mult;
1862 u32 max = tk->tkr_mono.clock->maxadj;
1863 u32 cur_adj = tk->tkr_mono.mult;
1864 s64 tick_error;
1865 bool negative;
1866 u32 adj_scale;
1867
1868 /* Remove any current error adj from freq calculation */
1869 if (tk->ntp_err_mult)
1870 xinterval -= tk->cycle_interval;
1871
1872 tk->ntp_tick = ntp_tick_length();
1873
1874 /* Calculate current error per tick */
1875 tick_error = ntp_tick_length() >> tk->ntp_error_shift;
1876 tick_error -= (xinterval + tk->xtime_remainder);
1877
1878 /* Don't worry about correcting it if its small */
1879 if (likely((tick_error >= 0) && (tick_error <= interval)))
1880 return;
1881
1882 /* preserve the direction of correction */
1883 negative = (tick_error < 0);
1884
1885 /* If any adjustment would pass the max, just return */
1886 if (negative && (cur_adj - 1) <= (base - max))
1887 return;
1888 if (!negative && (cur_adj + 1) >= (base + max))
1889 return;
1890 /*
1891 * Sort out the magnitude of the correction, but
1892 * avoid making so large a correction that we go
1893 * over the max adjustment.
1894 */
1895 adj_scale = 0;
1896 tick_error = abs(tick_error);
1897 while (tick_error > interval) {
1898 u32 adj = 1 << (adj_scale + 1);
1899
1900 /* Check if adjustment gets us within 1 unit from the max */
1901 if (negative && (cur_adj - adj) <= (base - max))
1902 break;
1903 if (!negative && (cur_adj + adj) >= (base + max))
1904 break;
1905
1906 adj_scale++;
1907 tick_error >>= 1;
1908 }
1909
1910 /* scale the corrections */
1911 timekeeping_apply_adjustment(tk, offset, negative, adj_scale);
1912 }
1913
1914 /*
1915 * Adjust the timekeeper's multiplier to the correct frequency
1916 * and also to reduce the accumulated error value.
1917 */
1918 static void timekeeping_adjust(struct timekeeper *tk, s64 offset)
1919 {
1920 /* Correct for the current frequency error */
1921 timekeeping_freqadjust(tk, offset);
1922
1923 /* Next make a small adjustment to fix any cumulative error */
1924 if (!tk->ntp_err_mult && (tk->ntp_error > 0)) {
1925 tk->ntp_err_mult = 1;
1926 timekeeping_apply_adjustment(tk, offset, 0, 0);
1927 } else if (tk->ntp_err_mult && (tk->ntp_error <= 0)) {
1928 /* Undo any existing error adjustment */
1929 timekeeping_apply_adjustment(tk, offset, 1, 0);
1930 tk->ntp_err_mult = 0;
1931 }
1932
1933 if (unlikely(tk->tkr_mono.clock->maxadj &&
1934 (abs(tk->tkr_mono.mult - tk->tkr_mono.clock->mult)
1935 > tk->tkr_mono.clock->maxadj))) {
1936 printk_once(KERN_WARNING
1937 "Adjusting %s more than 11%% (%ld vs %ld)\n",
1938 tk->tkr_mono.clock->name, (long)tk->tkr_mono.mult,
1939 (long)tk->tkr_mono.clock->mult + tk->tkr_mono.clock->maxadj);
1940 }
1941
1942 /*
1943 * It may be possible that when we entered this function, xtime_nsec
1944 * was very small. Further, if we're slightly speeding the clocksource
1945 * in the code above, its possible the required corrective factor to
1946 * xtime_nsec could cause it to underflow.
1947 *
1948 * Now, since we already accumulated the second, cannot simply roll
1949 * the accumulated second back, since the NTP subsystem has been
1950 * notified via second_overflow. So instead we push xtime_nsec forward
1951 * by the amount we underflowed, and add that amount into the error.
1952 *
1953 * We'll correct this error next time through this function, when
1954 * xtime_nsec is not as small.
1955 */
1956 if (unlikely((s64)tk->tkr_mono.xtime_nsec < 0)) {
1957 s64 neg = -(s64)tk->tkr_mono.xtime_nsec;
1958 tk->tkr_mono.xtime_nsec = 0;
1959 tk->ntp_error += neg << tk->ntp_error_shift;
1960 }
1961 }
1962
1963 /**
1964 * accumulate_nsecs_to_secs - Accumulates nsecs into secs
1965 *
1966 * Helper function that accumulates the nsecs greater than a second
1967 * from the xtime_nsec field to the xtime_secs field.
1968 * It also calls into the NTP code to handle leapsecond processing.
1969 *
1970 */
1971 static inline unsigned int accumulate_nsecs_to_secs(struct timekeeper *tk)
1972 {
1973 u64 nsecps = (u64)NSEC_PER_SEC << tk->tkr_mono.shift;
1974 unsigned int clock_set = 0;
1975
1976 while (tk->tkr_mono.xtime_nsec >= nsecps) {
1977 int leap;
1978
1979 tk->tkr_mono.xtime_nsec -= nsecps;
1980 tk->xtime_sec++;
1981
1982 /* Figure out if its a leap sec and apply if needed */
1983 leap = second_overflow(tk->xtime_sec);
1984 if (unlikely(leap)) {
1985 struct timespec64 ts;
1986
1987 tk->xtime_sec += leap;
1988
1989 ts.tv_sec = leap;
1990 ts.tv_nsec = 0;
1991 tk_set_wall_to_mono(tk,
1992 timespec64_sub(tk->wall_to_monotonic, ts));
1993
1994 __timekeeping_set_tai_offset(tk, tk->tai_offset - leap);
1995
1996 clock_set = TK_CLOCK_WAS_SET;
1997 }
1998 }
1999 return clock_set;
2000 }
2001
2002 /**
2003 * logarithmic_accumulation - shifted accumulation of cycles
2004 *
2005 * This functions accumulates a shifted interval of cycles into
2006 * into a shifted interval nanoseconds. Allows for O(log) accumulation
2007 * loop.
2008 *
2009 * Returns the unconsumed cycles.
2010 */
2011 static u64 logarithmic_accumulation(struct timekeeper *tk, u64 offset,
2012 u32 shift, unsigned int *clock_set)
2013 {
2014 u64 interval = tk->cycle_interval << shift;
2015 u64 raw_nsecs;
2016
2017 /* If the offset is smaller than a shifted interval, do nothing */
2018 if (offset < interval)
2019 return offset;
2020
2021 /* Accumulate one shifted interval */
2022 offset -= interval;
2023 tk->tkr_mono.cycle_last += interval;
2024 tk->tkr_raw.cycle_last += interval;
2025
2026 tk->tkr_mono.xtime_nsec += tk->xtime_interval << shift;
2027 *clock_set |= accumulate_nsecs_to_secs(tk);
2028
2029 /* Accumulate raw time */
2030 raw_nsecs = (u64)tk->raw_interval << shift;
2031 raw_nsecs += tk->raw_time.tv_nsec;
2032 if (raw_nsecs >= NSEC_PER_SEC) {
2033 u64 raw_secs = raw_nsecs;
2034 raw_nsecs = do_div(raw_secs, NSEC_PER_SEC);
2035 tk->raw_time.tv_sec += raw_secs;
2036 }
2037 tk->raw_time.tv_nsec = raw_nsecs;
2038
2039 /* Accumulate error between NTP and clock interval */
2040 tk->ntp_error += tk->ntp_tick << shift;
2041 tk->ntp_error -= (tk->xtime_interval + tk->xtime_remainder) <<
2042 (tk->ntp_error_shift + shift);
2043
2044 return offset;
2045 }
2046
2047 /**
2048 * update_wall_time - Uses the current clocksource to increment the wall time
2049 *
2050 */
2051 void update_wall_time(void)
2052 {
2053 struct timekeeper *real_tk = &tk_core.timekeeper;
2054 struct timekeeper *tk = &shadow_timekeeper;
2055 u64 offset;
2056 int shift = 0, maxshift;
2057 unsigned int clock_set = 0;
2058 unsigned long flags;
2059
2060 raw_spin_lock_irqsave(&timekeeper_lock, flags);
2061
2062 /* Make sure we're fully resumed: */
2063 if (unlikely(timekeeping_suspended))
2064 goto out;
2065
2066 #ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
2067 offset = real_tk->cycle_interval;
2068 #else
2069 offset = clocksource_delta(tk->tkr_mono.read(tk->tkr_mono.clock),
2070 tk->tkr_mono.cycle_last, tk->tkr_mono.mask);
2071 #endif
2072
2073 /* Check if there's really nothing to do */
2074 if (offset < real_tk->cycle_interval)
2075 goto out;
2076
2077 /* Do some additional sanity checking */
2078 timekeeping_check_update(real_tk, offset);
2079
2080 /*
2081 * With NO_HZ we may have to accumulate many cycle_intervals
2082 * (think "ticks") worth of time at once. To do this efficiently,
2083 * we calculate the largest doubling multiple of cycle_intervals
2084 * that is smaller than the offset. We then accumulate that
2085 * chunk in one go, and then try to consume the next smaller
2086 * doubled multiple.
2087 */
2088 shift = ilog2(offset) - ilog2(tk->cycle_interval);
2089 shift = max(0, shift);
2090 /* Bound shift to one less than what overflows tick_length */
2091 maxshift = (64 - (ilog2(ntp_tick_length())+1)) - 1;
2092 shift = min(shift, maxshift);
2093 while (offset >= tk->cycle_interval) {
2094 offset = logarithmic_accumulation(tk, offset, shift,
2095 &clock_set);
2096 if (offset < tk->cycle_interval<<shift)
2097 shift--;
2098 }
2099
2100 /* correct the clock when NTP error is too big */
2101 timekeeping_adjust(tk, offset);
2102
2103 /*
2104 * XXX This can be killed once everyone converts
2105 * to the new update_vsyscall.
2106 */
2107 old_vsyscall_fixup(tk);
2108
2109 /*
2110 * Finally, make sure that after the rounding
2111 * xtime_nsec isn't larger than NSEC_PER_SEC
2112 */
2113 clock_set |= accumulate_nsecs_to_secs(tk);
2114
2115 write_seqcount_begin(&tk_core.seq);
2116 /*
2117 * Update the real timekeeper.
2118 *
2119 * We could avoid this memcpy by switching pointers, but that
2120 * requires changes to all other timekeeper usage sites as
2121 * well, i.e. move the timekeeper pointer getter into the
2122 * spinlocked/seqcount protected sections. And we trade this
2123 * memcpy under the tk_core.seq against one before we start
2124 * updating.
2125 */
2126 timekeeping_update(tk, clock_set);
2127 memcpy(real_tk, tk, sizeof(*tk));
2128 /* The memcpy must come last. Do not put anything here! */
2129 write_seqcount_end(&tk_core.seq);
2130 out:
2131 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
2132 if (clock_set)
2133 /* Have to call _delayed version, since in irq context*/
2134 clock_was_set_delayed();
2135 }
2136
2137 /**
2138 * getboottime64 - Return the real time of system boot.
2139 * @ts: pointer to the timespec64 to be set
2140 *
2141 * Returns the wall-time of boot in a timespec64.
2142 *
2143 * This is based on the wall_to_monotonic offset and the total suspend
2144 * time. Calls to settimeofday will affect the value returned (which
2145 * basically means that however wrong your real time clock is at boot time,
2146 * you get the right time here).
2147 */
2148 void getboottime64(struct timespec64 *ts)
2149 {
2150 struct timekeeper *tk = &tk_core.timekeeper;
2151 ktime_t t = ktime_sub(tk->offs_real, tk->offs_boot);
2152
2153 *ts = ktime_to_timespec64(t);
2154 }
2155 EXPORT_SYMBOL_GPL(getboottime64);
2156
2157 unsigned long get_seconds(void)
2158 {
2159 struct timekeeper *tk = &tk_core.timekeeper;
2160
2161 return tk->xtime_sec;
2162 }
2163 EXPORT_SYMBOL(get_seconds);
2164
2165 struct timespec __current_kernel_time(void)
2166 {
2167 struct timekeeper *tk = &tk_core.timekeeper;
2168
2169 return timespec64_to_timespec(tk_xtime(tk));
2170 }
2171
2172 struct timespec64 current_kernel_time64(void)
2173 {
2174 struct timekeeper *tk = &tk_core.timekeeper;
2175 struct timespec64 now;
2176 unsigned long seq;
2177
2178 do {
2179 seq = read_seqcount_begin(&tk_core.seq);
2180
2181 now = tk_xtime(tk);
2182 } while (read_seqcount_retry(&tk_core.seq, seq));
2183
2184 return now;
2185 }
2186 EXPORT_SYMBOL(current_kernel_time64);
2187
2188 struct timespec64 get_monotonic_coarse64(void)
2189 {
2190 struct timekeeper *tk = &tk_core.timekeeper;
2191 struct timespec64 now, mono;
2192 unsigned long seq;
2193
2194 do {
2195 seq = read_seqcount_begin(&tk_core.seq);
2196
2197 now = tk_xtime(tk);
2198 mono = tk->wall_to_monotonic;
2199 } while (read_seqcount_retry(&tk_core.seq, seq));
2200
2201 set_normalized_timespec64(&now, now.tv_sec + mono.tv_sec,
2202 now.tv_nsec + mono.tv_nsec);
2203
2204 return now;
2205 }
2206 EXPORT_SYMBOL(get_monotonic_coarse64);
2207
2208 /*
2209 * Must hold jiffies_lock
2210 */
2211 void do_timer(unsigned long ticks)
2212 {
2213 jiffies_64 += ticks;
2214 calc_global_load(ticks);
2215 }
2216
2217 /**
2218 * ktime_get_update_offsets_now - hrtimer helper
2219 * @cwsseq: pointer to check and store the clock was set sequence number
2220 * @offs_real: pointer to storage for monotonic -> realtime offset
2221 * @offs_boot: pointer to storage for monotonic -> boottime offset
2222 * @offs_tai: pointer to storage for monotonic -> clock tai offset
2223 *
2224 * Returns current monotonic time and updates the offsets if the
2225 * sequence number in @cwsseq and timekeeper.clock_was_set_seq are
2226 * different.
2227 *
2228 * Called from hrtimer_interrupt() or retrigger_next_event()
2229 */
2230 ktime_t ktime_get_update_offsets_now(unsigned int *cwsseq, ktime_t *offs_real,
2231 ktime_t *offs_boot, ktime_t *offs_tai)
2232 {
2233 struct timekeeper *tk = &tk_core.timekeeper;
2234 unsigned int seq;
2235 ktime_t base;
2236 u64 nsecs;
2237
2238 do {
2239 seq = read_seqcount_begin(&tk_core.seq);
2240
2241 base = tk->tkr_mono.base;
2242 nsecs = timekeeping_get_ns(&tk->tkr_mono);
2243 base = ktime_add_ns(base, nsecs);
2244
2245 if (*cwsseq != tk->clock_was_set_seq) {
2246 *cwsseq = tk->clock_was_set_seq;
2247 *offs_real = tk->offs_real;
2248 *offs_boot = tk->offs_boot;
2249 *offs_tai = tk->offs_tai;
2250 }
2251
2252 /* Handle leapsecond insertion adjustments */
2253 if (unlikely(base >= tk->next_leap_ktime))
2254 *offs_real = ktime_sub(tk->offs_real, ktime_set(1, 0));
2255
2256 } while (read_seqcount_retry(&tk_core.seq, seq));
2257
2258 return base;
2259 }
2260
2261 /**
2262 * do_adjtimex() - Accessor function to NTP __do_adjtimex function
2263 */
2264 int do_adjtimex(struct timex *txc)
2265 {
2266 struct timekeeper *tk = &tk_core.timekeeper;
2267 unsigned long flags;
2268 struct timespec64 ts;
2269 s32 orig_tai, tai;
2270 int ret;
2271
2272 /* Validate the data before disabling interrupts */
2273 ret = ntp_validate_timex(txc);
2274 if (ret)
2275 return ret;
2276
2277 if (txc->modes & ADJ_SETOFFSET) {
2278 struct timespec delta;
2279 delta.tv_sec = txc->time.tv_sec;
2280 delta.tv_nsec = txc->time.tv_usec;
2281 if (!(txc->modes & ADJ_NANO))
2282 delta.tv_nsec *= 1000;
2283 ret = timekeeping_inject_offset(&delta);
2284 if (ret)
2285 return ret;
2286 }
2287
2288 getnstimeofday64(&ts);
2289
2290 raw_spin_lock_irqsave(&timekeeper_lock, flags);
2291 write_seqcount_begin(&tk_core.seq);
2292
2293 orig_tai = tai = tk->tai_offset;
2294 ret = __do_adjtimex(txc, &ts, &tai);
2295
2296 if (tai != orig_tai) {
2297 __timekeeping_set_tai_offset(tk, tai);
2298 timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
2299 }
2300 tk_update_leap_state(tk);
2301
2302 write_seqcount_end(&tk_core.seq);
2303 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
2304
2305 if (tai != orig_tai)
2306 clock_was_set();
2307
2308 ntp_notify_cmos_timer();
2309
2310 return ret;
2311 }
2312
2313 #ifdef CONFIG_NTP_PPS
2314 /**
2315 * hardpps() - Accessor function to NTP __hardpps function
2316 */
2317 void hardpps(const struct timespec64 *phase_ts, const struct timespec64 *raw_ts)
2318 {
2319 unsigned long flags;
2320
2321 raw_spin_lock_irqsave(&timekeeper_lock, flags);
2322 write_seqcount_begin(&tk_core.seq);
2323
2324 __hardpps(phase_ts, raw_ts);
2325
2326 write_seqcount_end(&tk_core.seq);
2327 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
2328 }
2329 EXPORT_SYMBOL(hardpps);
2330 #endif
2331
2332 /**
2333 * xtime_update() - advances the timekeeping infrastructure
2334 * @ticks: number of ticks, that have elapsed since the last call.
2335 *
2336 * Must be called with interrupts disabled.
2337 */
2338 void xtime_update(unsigned long ticks)
2339 {
2340 write_seqlock(&jiffies_lock);
2341 do_timer(ticks);
2342 write_sequnlock(&jiffies_lock);
2343 update_wall_time();
2344 }