]> git.proxmox.com Git - mirror_zfs.git/blob - lib/libzfs/libzfs_util.c
Remove FRU and LIBTOPO Support
[mirror_zfs.git] / lib / libzfs / libzfs_util.c
1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22 /*
23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright (c) 2013, Joyent, Inc. All rights reserved.
25 * Copyright (c) 2011, 2014 by Delphix. All rights reserved.
26 * Copyright 2016 Igor Kozhukhov <ikozhukhov@gmail.com>
27 * Copyright (c) 2017 Datto Inc.
28 */
29
30 /*
31 * Internal utility routines for the ZFS library.
32 */
33
34 #include <errno.h>
35 #include <fcntl.h>
36 #include <libintl.h>
37 #include <stdarg.h>
38 #include <stdio.h>
39 #include <stdlib.h>
40 #include <strings.h>
41 #include <unistd.h>
42 #include <ctype.h>
43 #include <math.h>
44 #include <sys/stat.h>
45 #include <sys/mnttab.h>
46 #include <sys/mntent.h>
47 #include <sys/types.h>
48 #include <sys/wait.h>
49
50 #include <libzfs.h>
51 #include <libzfs_core.h>
52
53 #include "libzfs_impl.h"
54 #include "zfs_prop.h"
55 #include "zfeature_common.h"
56 #include <zfs_fletcher.h>
57
58 int
59 libzfs_errno(libzfs_handle_t *hdl)
60 {
61 return (hdl->libzfs_error);
62 }
63
64 const char *
65 libzfs_error_init(int error)
66 {
67 switch (error) {
68 case ENXIO:
69 return (dgettext(TEXT_DOMAIN, "The ZFS modules are not "
70 "loaded.\nTry running '/sbin/modprobe zfs' as root "
71 "to load them.\n"));
72 case ENOENT:
73 return (dgettext(TEXT_DOMAIN, "/dev/zfs and /proc/self/mounts "
74 "are required.\nTry running 'udevadm trigger' and 'mount "
75 "-t proc proc /proc' as root.\n"));
76 case ENOEXEC:
77 return (dgettext(TEXT_DOMAIN, "The ZFS modules cannot be "
78 "auto-loaded.\nTry running '/sbin/modprobe zfs' as "
79 "root to manually load them.\n"));
80 case EACCES:
81 return (dgettext(TEXT_DOMAIN, "Permission denied the "
82 "ZFS utilities must be run as root.\n"));
83 default:
84 return (dgettext(TEXT_DOMAIN, "Failed to initialize the "
85 "libzfs library.\n"));
86 }
87 }
88
89 const char *
90 libzfs_error_action(libzfs_handle_t *hdl)
91 {
92 return (hdl->libzfs_action);
93 }
94
95 const char *
96 libzfs_error_description(libzfs_handle_t *hdl)
97 {
98 if (hdl->libzfs_desc[0] != '\0')
99 return (hdl->libzfs_desc);
100
101 switch (hdl->libzfs_error) {
102 case EZFS_NOMEM:
103 return (dgettext(TEXT_DOMAIN, "out of memory"));
104 case EZFS_BADPROP:
105 return (dgettext(TEXT_DOMAIN, "invalid property value"));
106 case EZFS_PROPREADONLY:
107 return (dgettext(TEXT_DOMAIN, "read-only property"));
108 case EZFS_PROPTYPE:
109 return (dgettext(TEXT_DOMAIN, "property doesn't apply to "
110 "datasets of this type"));
111 case EZFS_PROPNONINHERIT:
112 return (dgettext(TEXT_DOMAIN, "property cannot be inherited"));
113 case EZFS_PROPSPACE:
114 return (dgettext(TEXT_DOMAIN, "invalid quota or reservation"));
115 case EZFS_BADTYPE:
116 return (dgettext(TEXT_DOMAIN, "operation not applicable to "
117 "datasets of this type"));
118 case EZFS_BUSY:
119 return (dgettext(TEXT_DOMAIN, "pool or dataset is busy"));
120 case EZFS_EXISTS:
121 return (dgettext(TEXT_DOMAIN, "pool or dataset exists"));
122 case EZFS_NOENT:
123 return (dgettext(TEXT_DOMAIN, "no such pool or dataset"));
124 case EZFS_BADSTREAM:
125 return (dgettext(TEXT_DOMAIN, "invalid backup stream"));
126 case EZFS_DSREADONLY:
127 return (dgettext(TEXT_DOMAIN, "dataset is read-only"));
128 case EZFS_VOLTOOBIG:
129 return (dgettext(TEXT_DOMAIN, "volume size exceeds limit for "
130 "this system"));
131 case EZFS_INVALIDNAME:
132 return (dgettext(TEXT_DOMAIN, "invalid name"));
133 case EZFS_BADRESTORE:
134 return (dgettext(TEXT_DOMAIN, "unable to restore to "
135 "destination"));
136 case EZFS_BADBACKUP:
137 return (dgettext(TEXT_DOMAIN, "backup failed"));
138 case EZFS_BADTARGET:
139 return (dgettext(TEXT_DOMAIN, "invalid target vdev"));
140 case EZFS_NODEVICE:
141 return (dgettext(TEXT_DOMAIN, "no such device in pool"));
142 case EZFS_BADDEV:
143 return (dgettext(TEXT_DOMAIN, "invalid device"));
144 case EZFS_NOREPLICAS:
145 return (dgettext(TEXT_DOMAIN, "no valid replicas"));
146 case EZFS_RESILVERING:
147 return (dgettext(TEXT_DOMAIN, "currently resilvering"));
148 case EZFS_BADVERSION:
149 return (dgettext(TEXT_DOMAIN, "unsupported version or "
150 "feature"));
151 case EZFS_POOLUNAVAIL:
152 return (dgettext(TEXT_DOMAIN, "pool is unavailable"));
153 case EZFS_DEVOVERFLOW:
154 return (dgettext(TEXT_DOMAIN, "too many devices in one vdev"));
155 case EZFS_BADPATH:
156 return (dgettext(TEXT_DOMAIN, "must be an absolute path"));
157 case EZFS_CROSSTARGET:
158 return (dgettext(TEXT_DOMAIN, "operation crosses datasets or "
159 "pools"));
160 case EZFS_ZONED:
161 return (dgettext(TEXT_DOMAIN, "dataset in use by local zone"));
162 case EZFS_MOUNTFAILED:
163 return (dgettext(TEXT_DOMAIN, "mount failed"));
164 case EZFS_UMOUNTFAILED:
165 return (dgettext(TEXT_DOMAIN, "umount failed"));
166 case EZFS_UNSHARENFSFAILED:
167 return (dgettext(TEXT_DOMAIN, "unshare(1M) failed"));
168 case EZFS_SHARENFSFAILED:
169 return (dgettext(TEXT_DOMAIN, "share(1M) failed"));
170 case EZFS_UNSHARESMBFAILED:
171 return (dgettext(TEXT_DOMAIN, "smb remove share failed"));
172 case EZFS_SHARESMBFAILED:
173 return (dgettext(TEXT_DOMAIN, "smb add share failed"));
174 case EZFS_PERM:
175 return (dgettext(TEXT_DOMAIN, "permission denied"));
176 case EZFS_NOSPC:
177 return (dgettext(TEXT_DOMAIN, "out of space"));
178 case EZFS_FAULT:
179 return (dgettext(TEXT_DOMAIN, "bad address"));
180 case EZFS_IO:
181 return (dgettext(TEXT_DOMAIN, "I/O error"));
182 case EZFS_INTR:
183 return (dgettext(TEXT_DOMAIN, "signal received"));
184 case EZFS_ISSPARE:
185 return (dgettext(TEXT_DOMAIN, "device is reserved as a hot "
186 "spare"));
187 case EZFS_INVALCONFIG:
188 return (dgettext(TEXT_DOMAIN, "invalid vdev configuration"));
189 case EZFS_RECURSIVE:
190 return (dgettext(TEXT_DOMAIN, "recursive dataset dependency"));
191 case EZFS_NOHISTORY:
192 return (dgettext(TEXT_DOMAIN, "no history available"));
193 case EZFS_POOLPROPS:
194 return (dgettext(TEXT_DOMAIN, "failed to retrieve "
195 "pool properties"));
196 case EZFS_POOL_NOTSUP:
197 return (dgettext(TEXT_DOMAIN, "operation not supported "
198 "on this type of pool"));
199 case EZFS_POOL_INVALARG:
200 return (dgettext(TEXT_DOMAIN, "invalid argument for "
201 "this pool operation"));
202 case EZFS_NAMETOOLONG:
203 return (dgettext(TEXT_DOMAIN, "dataset name is too long"));
204 case EZFS_OPENFAILED:
205 return (dgettext(TEXT_DOMAIN, "open failed"));
206 case EZFS_NOCAP:
207 return (dgettext(TEXT_DOMAIN,
208 "disk capacity information could not be retrieved"));
209 case EZFS_LABELFAILED:
210 return (dgettext(TEXT_DOMAIN, "write of label failed"));
211 case EZFS_BADWHO:
212 return (dgettext(TEXT_DOMAIN, "invalid user/group"));
213 case EZFS_BADPERM:
214 return (dgettext(TEXT_DOMAIN, "invalid permission"));
215 case EZFS_BADPERMSET:
216 return (dgettext(TEXT_DOMAIN, "invalid permission set name"));
217 case EZFS_NODELEGATION:
218 return (dgettext(TEXT_DOMAIN, "delegated administration is "
219 "disabled on pool"));
220 case EZFS_BADCACHE:
221 return (dgettext(TEXT_DOMAIN, "invalid or missing cache file"));
222 case EZFS_ISL2CACHE:
223 return (dgettext(TEXT_DOMAIN, "device is in use as a cache"));
224 case EZFS_VDEVNOTSUP:
225 return (dgettext(TEXT_DOMAIN, "vdev specification is not "
226 "supported"));
227 case EZFS_NOTSUP:
228 return (dgettext(TEXT_DOMAIN, "operation not supported "
229 "on this dataset"));
230 case EZFS_ACTIVE_SPARE:
231 return (dgettext(TEXT_DOMAIN, "pool has active shared spare "
232 "device"));
233 case EZFS_UNPLAYED_LOGS:
234 return (dgettext(TEXT_DOMAIN, "log device has unplayed intent "
235 "logs"));
236 case EZFS_REFTAG_RELE:
237 return (dgettext(TEXT_DOMAIN, "no such tag on this dataset"));
238 case EZFS_REFTAG_HOLD:
239 return (dgettext(TEXT_DOMAIN, "tag already exists on this "
240 "dataset"));
241 case EZFS_TAGTOOLONG:
242 return (dgettext(TEXT_DOMAIN, "tag too long"));
243 case EZFS_PIPEFAILED:
244 return (dgettext(TEXT_DOMAIN, "pipe create failed"));
245 case EZFS_THREADCREATEFAILED:
246 return (dgettext(TEXT_DOMAIN, "thread create failed"));
247 case EZFS_POSTSPLIT_ONLINE:
248 return (dgettext(TEXT_DOMAIN, "disk was split from this pool "
249 "into a new one"));
250 case EZFS_SCRUB_PAUSED:
251 return (dgettext(TEXT_DOMAIN, "scrub is paused; "
252 "use 'zpool scrub' to resume"));
253 case EZFS_SCRUBBING:
254 return (dgettext(TEXT_DOMAIN, "currently scrubbing; "
255 "use 'zpool scrub -s' to cancel current scrub"));
256 case EZFS_NO_SCRUB:
257 return (dgettext(TEXT_DOMAIN, "there is no active scrub"));
258 case EZFS_DIFF:
259 return (dgettext(TEXT_DOMAIN, "unable to generate diffs"));
260 case EZFS_DIFFDATA:
261 return (dgettext(TEXT_DOMAIN, "invalid diff data"));
262 case EZFS_POOLREADONLY:
263 return (dgettext(TEXT_DOMAIN, "pool is read-only"));
264 case EZFS_ACTIVE_POOL:
265 return (dgettext(TEXT_DOMAIN, "pool is imported on a "
266 "different host"));
267 case EZFS_CRYPTOFAILED:
268 return (dgettext(TEXT_DOMAIN, "encryption failure"));
269 case EZFS_UNKNOWN:
270 return (dgettext(TEXT_DOMAIN, "unknown error"));
271 default:
272 assert(hdl->libzfs_error == 0);
273 return (dgettext(TEXT_DOMAIN, "no error"));
274 }
275 }
276
277 /*PRINTFLIKE2*/
278 void
279 zfs_error_aux(libzfs_handle_t *hdl, const char *fmt, ...)
280 {
281 va_list ap;
282
283 va_start(ap, fmt);
284
285 (void) vsnprintf(hdl->libzfs_desc, sizeof (hdl->libzfs_desc),
286 fmt, ap);
287 hdl->libzfs_desc_active = 1;
288
289 va_end(ap);
290 }
291
292 static void
293 zfs_verror(libzfs_handle_t *hdl, int error, const char *fmt, va_list ap)
294 {
295 (void) vsnprintf(hdl->libzfs_action, sizeof (hdl->libzfs_action),
296 fmt, ap);
297 hdl->libzfs_error = error;
298
299 if (hdl->libzfs_desc_active)
300 hdl->libzfs_desc_active = 0;
301 else
302 hdl->libzfs_desc[0] = '\0';
303
304 if (hdl->libzfs_printerr) {
305 if (error == EZFS_UNKNOWN) {
306 (void) fprintf(stderr, dgettext(TEXT_DOMAIN, "internal "
307 "error: %s\n"), libzfs_error_description(hdl));
308 abort();
309 }
310
311 (void) fprintf(stderr, "%s: %s\n", hdl->libzfs_action,
312 libzfs_error_description(hdl));
313 if (error == EZFS_NOMEM)
314 exit(1);
315 }
316 }
317
318 int
319 zfs_error(libzfs_handle_t *hdl, int error, const char *msg)
320 {
321 return (zfs_error_fmt(hdl, error, "%s", msg));
322 }
323
324 /*PRINTFLIKE3*/
325 int
326 zfs_error_fmt(libzfs_handle_t *hdl, int error, const char *fmt, ...)
327 {
328 va_list ap;
329
330 va_start(ap, fmt);
331
332 zfs_verror(hdl, error, fmt, ap);
333
334 va_end(ap);
335
336 return (-1);
337 }
338
339 static int
340 zfs_common_error(libzfs_handle_t *hdl, int error, const char *fmt,
341 va_list ap)
342 {
343 switch (error) {
344 case EPERM:
345 case EACCES:
346 zfs_verror(hdl, EZFS_PERM, fmt, ap);
347 return (-1);
348
349 case ECANCELED:
350 zfs_verror(hdl, EZFS_NODELEGATION, fmt, ap);
351 return (-1);
352
353 case EIO:
354 zfs_verror(hdl, EZFS_IO, fmt, ap);
355 return (-1);
356
357 case EFAULT:
358 zfs_verror(hdl, EZFS_FAULT, fmt, ap);
359 return (-1);
360
361 case EINTR:
362 zfs_verror(hdl, EZFS_INTR, fmt, ap);
363 return (-1);
364 }
365
366 return (0);
367 }
368
369 int
370 zfs_standard_error(libzfs_handle_t *hdl, int error, const char *msg)
371 {
372 return (zfs_standard_error_fmt(hdl, error, "%s", msg));
373 }
374
375 /*PRINTFLIKE3*/
376 int
377 zfs_standard_error_fmt(libzfs_handle_t *hdl, int error, const char *fmt, ...)
378 {
379 va_list ap;
380
381 va_start(ap, fmt);
382
383 if (zfs_common_error(hdl, error, fmt, ap) != 0) {
384 va_end(ap);
385 return (-1);
386 }
387
388 switch (error) {
389 case ENXIO:
390 case ENODEV:
391 case EPIPE:
392 zfs_verror(hdl, EZFS_IO, fmt, ap);
393 break;
394
395 case ENOENT:
396 zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
397 "dataset does not exist"));
398 zfs_verror(hdl, EZFS_NOENT, fmt, ap);
399 break;
400
401 case ENOSPC:
402 case EDQUOT:
403 zfs_verror(hdl, EZFS_NOSPC, fmt, ap);
404 break;
405
406 case EEXIST:
407 zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
408 "dataset already exists"));
409 zfs_verror(hdl, EZFS_EXISTS, fmt, ap);
410 break;
411
412 case EBUSY:
413 zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
414 "dataset is busy"));
415 zfs_verror(hdl, EZFS_BUSY, fmt, ap);
416 break;
417 case EROFS:
418 zfs_verror(hdl, EZFS_POOLREADONLY, fmt, ap);
419 break;
420 case ENAMETOOLONG:
421 zfs_verror(hdl, EZFS_NAMETOOLONG, fmt, ap);
422 break;
423 case ENOTSUP:
424 zfs_verror(hdl, EZFS_BADVERSION, fmt, ap);
425 break;
426 case EAGAIN:
427 zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
428 "pool I/O is currently suspended"));
429 zfs_verror(hdl, EZFS_POOLUNAVAIL, fmt, ap);
430 break;
431 case EREMOTEIO:
432 zfs_verror(hdl, EZFS_ACTIVE_POOL, fmt, ap);
433 break;
434 default:
435 zfs_error_aux(hdl, strerror(error));
436 zfs_verror(hdl, EZFS_UNKNOWN, fmt, ap);
437 break;
438 }
439
440 va_end(ap);
441 return (-1);
442 }
443
444 int
445 zpool_standard_error(libzfs_handle_t *hdl, int error, const char *msg)
446 {
447 return (zpool_standard_error_fmt(hdl, error, "%s", msg));
448 }
449
450 /*PRINTFLIKE3*/
451 int
452 zpool_standard_error_fmt(libzfs_handle_t *hdl, int error, const char *fmt, ...)
453 {
454 va_list ap;
455
456 va_start(ap, fmt);
457
458 if (zfs_common_error(hdl, error, fmt, ap) != 0) {
459 va_end(ap);
460 return (-1);
461 }
462
463 switch (error) {
464 case ENODEV:
465 zfs_verror(hdl, EZFS_NODEVICE, fmt, ap);
466 break;
467
468 case ENOENT:
469 zfs_error_aux(hdl,
470 dgettext(TEXT_DOMAIN, "no such pool or dataset"));
471 zfs_verror(hdl, EZFS_NOENT, fmt, ap);
472 break;
473
474 case EEXIST:
475 zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
476 "pool already exists"));
477 zfs_verror(hdl, EZFS_EXISTS, fmt, ap);
478 break;
479
480 case EBUSY:
481 zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "pool is busy"));
482 zfs_verror(hdl, EZFS_BUSY, fmt, ap);
483 break;
484
485 case ENXIO:
486 zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
487 "one or more devices is currently unavailable"));
488 zfs_verror(hdl, EZFS_BADDEV, fmt, ap);
489 break;
490
491 case ENAMETOOLONG:
492 zfs_verror(hdl, EZFS_DEVOVERFLOW, fmt, ap);
493 break;
494
495 case ENOTSUP:
496 zfs_verror(hdl, EZFS_POOL_NOTSUP, fmt, ap);
497 break;
498
499 case EINVAL:
500 zfs_verror(hdl, EZFS_POOL_INVALARG, fmt, ap);
501 break;
502
503 case ENOSPC:
504 case EDQUOT:
505 zfs_verror(hdl, EZFS_NOSPC, fmt, ap);
506 return (-1);
507
508 case EAGAIN:
509 zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
510 "pool I/O is currently suspended"));
511 zfs_verror(hdl, EZFS_POOLUNAVAIL, fmt, ap);
512 break;
513
514 case EROFS:
515 zfs_verror(hdl, EZFS_POOLREADONLY, fmt, ap);
516 break;
517 case EDOM:
518 zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
519 "block size out of range or does not match"));
520 zfs_verror(hdl, EZFS_BADPROP, fmt, ap);
521 break;
522 case EREMOTEIO:
523 zfs_verror(hdl, EZFS_ACTIVE_POOL, fmt, ap);
524 break;
525
526 default:
527 zfs_error_aux(hdl, strerror(error));
528 zfs_verror(hdl, EZFS_UNKNOWN, fmt, ap);
529 }
530
531 va_end(ap);
532 return (-1);
533 }
534
535 /*
536 * Display an out of memory error message and abort the current program.
537 */
538 int
539 no_memory(libzfs_handle_t *hdl)
540 {
541 return (zfs_error(hdl, EZFS_NOMEM, "internal error"));
542 }
543
544 /*
545 * A safe form of malloc() which will die if the allocation fails.
546 */
547 void *
548 zfs_alloc(libzfs_handle_t *hdl, size_t size)
549 {
550 void *data;
551
552 if ((data = calloc(1, size)) == NULL)
553 (void) no_memory(hdl);
554
555 return (data);
556 }
557
558 /*
559 * A safe form of asprintf() which will die if the allocation fails.
560 */
561 /*PRINTFLIKE2*/
562 char *
563 zfs_asprintf(libzfs_handle_t *hdl, const char *fmt, ...)
564 {
565 va_list ap;
566 char *ret;
567 int err;
568
569 va_start(ap, fmt);
570
571 err = vasprintf(&ret, fmt, ap);
572
573 va_end(ap);
574
575 if (err < 0)
576 (void) no_memory(hdl);
577
578 return (ret);
579 }
580
581 /*
582 * A safe form of realloc(), which also zeroes newly allocated space.
583 */
584 void *
585 zfs_realloc(libzfs_handle_t *hdl, void *ptr, size_t oldsize, size_t newsize)
586 {
587 void *ret;
588
589 if ((ret = realloc(ptr, newsize)) == NULL) {
590 (void) no_memory(hdl);
591 return (NULL);
592 }
593
594 bzero((char *)ret + oldsize, (newsize - oldsize));
595 return (ret);
596 }
597
598 /*
599 * A safe form of strdup() which will die if the allocation fails.
600 */
601 char *
602 zfs_strdup(libzfs_handle_t *hdl, const char *str)
603 {
604 char *ret;
605
606 if ((ret = strdup(str)) == NULL)
607 (void) no_memory(hdl);
608
609 return (ret);
610 }
611
612 /*
613 * Convert a number to an appropriately human-readable output.
614 */
615 void
616 zfs_nicenum_format(uint64_t num, char *buf, size_t buflen,
617 enum zfs_nicenum_format format)
618 {
619 uint64_t n = num;
620 int index = 0;
621 const char *u;
622 const char *units[3][7] = {
623 [ZFS_NICENUM_1024] = {"", "K", "M", "G", "T", "P", "E"},
624 [ZFS_NICENUM_BYTES] = {"B", "K", "M", "G", "T", "P", "E"},
625 [ZFS_NICENUM_TIME] = {"ns", "us", "ms", "s", "?", "?", "?"}
626 };
627
628 const int units_len[] = {[ZFS_NICENUM_1024] = 6,
629 [ZFS_NICENUM_BYTES] = 6,
630 [ZFS_NICENUM_TIME] = 4};
631
632 const int k_unit[] = { [ZFS_NICENUM_1024] = 1024,
633 [ZFS_NICENUM_BYTES] = 1024,
634 [ZFS_NICENUM_TIME] = 1000};
635
636 double val;
637
638 if (format == ZFS_NICENUM_RAW) {
639 snprintf(buf, buflen, "%llu", (u_longlong_t)num);
640 return;
641 } else if (format == ZFS_NICENUM_RAWTIME && num > 0) {
642 snprintf(buf, buflen, "%llu", (u_longlong_t)num);
643 return;
644 } else if (format == ZFS_NICENUM_RAWTIME && num == 0) {
645 snprintf(buf, buflen, "%s", "-");
646 return;
647 }
648
649 while (n >= k_unit[format] && index < units_len[format]) {
650 n /= k_unit[format];
651 index++;
652 }
653
654 u = units[format][index];
655
656 /* Don't print zero latencies since they're invalid */
657 if ((format == ZFS_NICENUM_TIME) && (num == 0)) {
658 (void) snprintf(buf, buflen, "-");
659 } else if ((index == 0) || ((num %
660 (uint64_t)powl(k_unit[format], index)) == 0)) {
661 /*
662 * If this is an even multiple of the base, always display
663 * without any decimal precision.
664 */
665 (void) snprintf(buf, buflen, "%llu%s", (u_longlong_t)n, u);
666
667 } else {
668 /*
669 * We want to choose a precision that reflects the best choice
670 * for fitting in 5 characters. This can get rather tricky when
671 * we have numbers that are very close to an order of magnitude.
672 * For example, when displaying 10239 (which is really 9.999K),
673 * we want only a single place of precision for 10.0K. We could
674 * develop some complex heuristics for this, but it's much
675 * easier just to try each combination in turn.
676 */
677 int i;
678 for (i = 2; i >= 0; i--) {
679 val = (double)num /
680 (uint64_t)powl(k_unit[format], index);
681
682 /*
683 * Don't print floating point values for time. Note,
684 * we use floor() instead of round() here, since
685 * round can result in undesirable results. For
686 * example, if "num" is in the range of
687 * 999500-999999, it will print out "1000us". This
688 * doesn't happen if we use floor().
689 */
690 if (format == ZFS_NICENUM_TIME) {
691 if (snprintf(buf, buflen, "%d%s",
692 (unsigned int) floor(val), u) <= 5)
693 break;
694
695 } else {
696 if (snprintf(buf, buflen, "%.*f%s", i,
697 val, u) <= 5)
698 break;
699 }
700 }
701 }
702 }
703
704 /*
705 * Convert a number to an appropriately human-readable output.
706 */
707 void
708 zfs_nicenum(uint64_t num, char *buf, size_t buflen)
709 {
710 zfs_nicenum_format(num, buf, buflen, ZFS_NICENUM_1024);
711 }
712
713 /*
714 * Convert a time to an appropriately human-readable output.
715 * @num: Time in nanoseconds
716 */
717 void
718 zfs_nicetime(uint64_t num, char *buf, size_t buflen)
719 {
720 zfs_nicenum_format(num, buf, buflen, ZFS_NICENUM_TIME);
721 }
722
723 /*
724 * Print out a raw number with correct column spacing
725 */
726 void
727 zfs_niceraw(uint64_t num, char *buf, size_t buflen)
728 {
729 zfs_nicenum_format(num, buf, buflen, ZFS_NICENUM_RAW);
730 }
731
732 /*
733 * Convert a number of bytes to an appropriately human-readable output.
734 */
735 void
736 zfs_nicebytes(uint64_t num, char *buf, size_t buflen)
737 {
738 zfs_nicenum_format(num, buf, buflen, ZFS_NICENUM_BYTES);
739 }
740
741 void
742 libzfs_print_on_error(libzfs_handle_t *hdl, boolean_t printerr)
743 {
744 hdl->libzfs_printerr = printerr;
745 }
746
747 static int
748 libzfs_module_loaded(const char *module)
749 {
750 const char path_prefix[] = "/sys/module/";
751 char path[256];
752
753 memcpy(path, path_prefix, sizeof (path_prefix) - 1);
754 strcpy(path + sizeof (path_prefix) - 1, module);
755
756 return (access(path, F_OK) == 0);
757 }
758
759
760 /*
761 * Read lines from an open file descriptor and store them in an array of
762 * strings until EOF. lines[] will be allocated and populated with all the
763 * lines read. All newlines are replaced with NULL terminators for
764 * convenience. lines[] must be freed after use with libzfs_free_str_array().
765 *
766 * Returns the number of lines read.
767 */
768 static int
769 libzfs_read_stdout_from_fd(int fd, char **lines[])
770 {
771
772 FILE *fp;
773 int lines_cnt = 0;
774 size_t len = 0;
775 char *line = NULL;
776 char **tmp_lines = NULL, **tmp;
777 char *nl = NULL;
778 int rc;
779
780 fp = fdopen(fd, "r");
781 if (fp == NULL)
782 return (0);
783 while (1) {
784 rc = getline(&line, &len, fp);
785 if (rc == -1)
786 break;
787
788 tmp = realloc(tmp_lines, sizeof (*tmp_lines) * (lines_cnt + 1));
789 if (tmp == NULL) {
790 /* Return the lines we were able to process */
791 break;
792 }
793 tmp_lines = tmp;
794
795 /* Terminate newlines */
796 if ((nl = strchr(line, '\n')) != NULL)
797 *nl = '\0';
798 tmp_lines[lines_cnt] = line;
799 lines_cnt++;
800 line = NULL;
801 }
802 fclose(fp);
803 *lines = tmp_lines;
804 return (lines_cnt);
805 }
806
807 static int
808 libzfs_run_process_impl(const char *path, char *argv[], char *env[], int flags,
809 char **lines[], int *lines_cnt)
810 {
811 pid_t pid;
812 int error, devnull_fd;
813 int link[2];
814
815 /*
816 * Setup a pipe between our child and parent process if we're
817 * reading stdout.
818 */
819 if ((lines != NULL) && pipe(link) == -1)
820 return (-ESTRPIPE);
821
822 pid = vfork();
823 if (pid == 0) {
824 /* Child process */
825 devnull_fd = open("/dev/null", O_WRONLY);
826
827 if (devnull_fd < 0)
828 _exit(-1);
829
830 if (!(flags & STDOUT_VERBOSE) && (lines == NULL))
831 (void) dup2(devnull_fd, STDOUT_FILENO);
832 else if (lines != NULL) {
833 /* Save the output to lines[] */
834 dup2(link[1], STDOUT_FILENO);
835 close(link[0]);
836 close(link[1]);
837 }
838
839 if (!(flags & STDERR_VERBOSE))
840 (void) dup2(devnull_fd, STDERR_FILENO);
841
842 close(devnull_fd);
843
844 if (flags & NO_DEFAULT_PATH) {
845 if (env == NULL)
846 execv(path, argv);
847 else
848 execve(path, argv, env);
849 } else {
850 if (env == NULL)
851 execvp(path, argv);
852 else
853 execvpe(path, argv, env);
854 }
855
856 _exit(-1);
857 } else if (pid > 0) {
858 /* Parent process */
859 int status;
860
861 while ((error = waitpid(pid, &status, 0)) == -1 &&
862 errno == EINTR) { }
863 if (error < 0 || !WIFEXITED(status))
864 return (-1);
865
866 if (lines != NULL) {
867 close(link[1]);
868 *lines_cnt = libzfs_read_stdout_from_fd(link[0], lines);
869 }
870 return (WEXITSTATUS(status));
871 }
872
873 return (-1);
874 }
875
876 int
877 libzfs_run_process(const char *path, char *argv[], int flags)
878 {
879 return (libzfs_run_process_impl(path, argv, NULL, flags, NULL, NULL));
880 }
881
882 /*
883 * Run a command and store its stdout lines in an array of strings (lines[]).
884 * lines[] is allocated and populated for you, and the number of lines is set in
885 * lines_cnt. lines[] must be freed after use with libzfs_free_str_array().
886 * All newlines (\n) in lines[] are terminated for convenience.
887 */
888 int
889 libzfs_run_process_get_stdout(const char *path, char *argv[], char *env[],
890 char **lines[], int *lines_cnt)
891 {
892 return (libzfs_run_process_impl(path, argv, env, 0, lines, lines_cnt));
893 }
894
895 /*
896 * Same as libzfs_run_process_get_stdout(), but run without $PATH set. This
897 * means that *path needs to be the full path to the executable.
898 */
899 int
900 libzfs_run_process_get_stdout_nopath(const char *path, char *argv[],
901 char *env[], char **lines[], int *lines_cnt)
902 {
903 return (libzfs_run_process_impl(path, argv, env, NO_DEFAULT_PATH,
904 lines, lines_cnt));
905 }
906
907 /*
908 * Free an array of strings. Free both the strings contained in the array and
909 * the array itself.
910 */
911 void
912 libzfs_free_str_array(char **strs, int count)
913 {
914 while (--count >= 0)
915 free(strs[count]);
916
917 free(strs);
918 }
919
920 /*
921 * Returns 1 if environment variable is set to "YES", "yes", "ON", "on", or
922 * a non-zero number.
923 *
924 * Returns 0 otherwise.
925 */
926 int
927 libzfs_envvar_is_set(char *envvar)
928 {
929 char *env = getenv(envvar);
930 if (env && (strtoul(env, NULL, 0) > 0 ||
931 (!strncasecmp(env, "YES", 3) && strnlen(env, 4) == 3) ||
932 (!strncasecmp(env, "ON", 2) && strnlen(env, 3) == 2)))
933 return (1);
934
935 return (0);
936 }
937
938 /*
939 * Verify the required ZFS_DEV device is available and optionally attempt
940 * to load the ZFS modules. Under normal circumstances the modules
941 * should already have been loaded by some external mechanism.
942 *
943 * Environment variables:
944 * - ZFS_MODULE_LOADING="YES|yes|ON|on" - Attempt to load modules.
945 * - ZFS_MODULE_TIMEOUT="<seconds>" - Seconds to wait for ZFS_DEV
946 */
947 static int
948 libzfs_load_module(const char *module)
949 {
950 char *argv[4] = {"/sbin/modprobe", "-q", (char *)module, (char *)0};
951 char *load_str, *timeout_str;
952 long timeout = 10; /* seconds */
953 long busy_timeout = 10; /* milliseconds */
954 int load = 0, fd;
955 hrtime_t start;
956
957 /* Optionally request module loading */
958 if (!libzfs_module_loaded(module)) {
959 load_str = getenv("ZFS_MODULE_LOADING");
960 if (load_str) {
961 if (!strncasecmp(load_str, "YES", strlen("YES")) ||
962 !strncasecmp(load_str, "ON", strlen("ON")))
963 load = 1;
964 else
965 load = 0;
966 }
967
968 if (load && libzfs_run_process("/sbin/modprobe", argv, 0))
969 return (ENOEXEC);
970 }
971
972 /* Module loading is synchronous it must be available */
973 if (!libzfs_module_loaded(module))
974 return (ENXIO);
975
976 /*
977 * Device creation by udev is asynchronous and waiting may be
978 * required. Busy wait for 10ms and then fall back to polling every
979 * 10ms for the allowed timeout (default 10s, max 10m). This is
980 * done to optimize for the common case where the device is
981 * immediately available and to avoid penalizing the possible
982 * case where udev is slow or unable to create the device.
983 */
984 timeout_str = getenv("ZFS_MODULE_TIMEOUT");
985 if (timeout_str) {
986 timeout = strtol(timeout_str, NULL, 0);
987 timeout = MAX(MIN(timeout, (10 * 60)), 0); /* 0 <= N <= 600 */
988 }
989
990 start = gethrtime();
991 do {
992 fd = open(ZFS_DEV, O_RDWR);
993 if (fd >= 0) {
994 (void) close(fd);
995 return (0);
996 } else if (errno != ENOENT) {
997 return (errno);
998 } else if (NSEC2MSEC(gethrtime() - start) < busy_timeout) {
999 sched_yield();
1000 } else {
1001 usleep(10 * MILLISEC);
1002 }
1003 } while (NSEC2MSEC(gethrtime() - start) < (timeout * MILLISEC));
1004
1005 return (ENOENT);
1006 }
1007
1008 libzfs_handle_t *
1009 libzfs_init(void)
1010 {
1011 libzfs_handle_t *hdl;
1012 int error;
1013
1014 error = libzfs_load_module(ZFS_DRIVER);
1015 if (error) {
1016 errno = error;
1017 return (NULL);
1018 }
1019
1020 if ((hdl = calloc(1, sizeof (libzfs_handle_t))) == NULL) {
1021 return (NULL);
1022 }
1023
1024 if ((hdl->libzfs_fd = open(ZFS_DEV, O_RDWR)) < 0) {
1025 free(hdl);
1026 return (NULL);
1027 }
1028
1029 #ifdef HAVE_SETMNTENT
1030 if ((hdl->libzfs_mnttab = setmntent(MNTTAB, "r")) == NULL) {
1031 #else
1032 if ((hdl->libzfs_mnttab = fopen(MNTTAB, "r")) == NULL) {
1033 #endif
1034 (void) close(hdl->libzfs_fd);
1035 free(hdl);
1036 return (NULL);
1037 }
1038
1039 hdl->libzfs_sharetab = fopen(ZFS_SHARETAB, "r");
1040
1041 if (libzfs_core_init() != 0) {
1042 (void) close(hdl->libzfs_fd);
1043 (void) fclose(hdl->libzfs_mnttab);
1044 if (hdl->libzfs_sharetab)
1045 (void) fclose(hdl->libzfs_sharetab);
1046 free(hdl);
1047 return (NULL);
1048 }
1049
1050 zfs_prop_init();
1051 zpool_prop_init();
1052 zpool_feature_init();
1053 libzfs_mnttab_init(hdl);
1054 fletcher_4_init();
1055
1056 return (hdl);
1057 }
1058
1059 void
1060 libzfs_fini(libzfs_handle_t *hdl)
1061 {
1062 (void) close(hdl->libzfs_fd);
1063 if (hdl->libzfs_mnttab)
1064 #ifdef HAVE_SETMNTENT
1065 (void) endmntent(hdl->libzfs_mnttab);
1066 #else
1067 (void) fclose(hdl->libzfs_mnttab);
1068 #endif
1069 if (hdl->libzfs_sharetab)
1070 (void) fclose(hdl->libzfs_sharetab);
1071 zfs_uninit_libshare(hdl);
1072 zpool_free_handles(hdl);
1073 namespace_clear(hdl);
1074 libzfs_mnttab_fini(hdl);
1075 libzfs_core_fini();
1076 fletcher_4_fini();
1077 free(hdl);
1078 }
1079
1080 libzfs_handle_t *
1081 zpool_get_handle(zpool_handle_t *zhp)
1082 {
1083 return (zhp->zpool_hdl);
1084 }
1085
1086 libzfs_handle_t *
1087 zfs_get_handle(zfs_handle_t *zhp)
1088 {
1089 return (zhp->zfs_hdl);
1090 }
1091
1092 zpool_handle_t *
1093 zfs_get_pool_handle(const zfs_handle_t *zhp)
1094 {
1095 return (zhp->zpool_hdl);
1096 }
1097
1098 /*
1099 * Given a name, determine whether or not it's a valid path
1100 * (starts with '/' or "./"). If so, walk the mnttab trying
1101 * to match the device number. If not, treat the path as an
1102 * fs/vol/snap/bkmark name.
1103 */
1104 zfs_handle_t *
1105 zfs_path_to_zhandle(libzfs_handle_t *hdl, char *path, zfs_type_t argtype)
1106 {
1107 struct stat64 statbuf;
1108 struct extmnttab entry;
1109 int ret;
1110
1111 if (path[0] != '/' && strncmp(path, "./", strlen("./")) != 0) {
1112 /*
1113 * It's not a valid path, assume it's a name of type 'argtype'.
1114 */
1115 return (zfs_open(hdl, path, argtype));
1116 }
1117
1118 if (stat64(path, &statbuf) != 0) {
1119 (void) fprintf(stderr, "%s: %s\n", path, strerror(errno));
1120 return (NULL);
1121 }
1122
1123 /* Reopen MNTTAB to prevent reading stale data from open file */
1124 if (freopen(MNTTAB, "r", hdl->libzfs_mnttab) == NULL)
1125 return (NULL);
1126
1127 while ((ret = getextmntent(hdl->libzfs_mnttab, &entry, 0)) == 0) {
1128 if (makedevice(entry.mnt_major, entry.mnt_minor) ==
1129 statbuf.st_dev) {
1130 break;
1131 }
1132 }
1133 if (ret != 0) {
1134 return (NULL);
1135 }
1136
1137 if (strcmp(entry.mnt_fstype, MNTTYPE_ZFS) != 0) {
1138 (void) fprintf(stderr, gettext("'%s': not a ZFS filesystem\n"),
1139 path);
1140 return (NULL);
1141 }
1142
1143 return (zfs_open(hdl, entry.mnt_special, ZFS_TYPE_FILESYSTEM));
1144 }
1145
1146 /*
1147 * Append partition suffix to an otherwise fully qualified device path.
1148 * This is used to generate the name the full path as its stored in
1149 * ZPOOL_CONFIG_PATH for whole disk devices. On success the new length
1150 * of 'path' will be returned on error a negative value is returned.
1151 */
1152 int
1153 zfs_append_partition(char *path, size_t max_len)
1154 {
1155 int len = strlen(path);
1156
1157 if ((strncmp(path, UDISK_ROOT, strlen(UDISK_ROOT)) == 0) ||
1158 (strncmp(path, ZVOL_ROOT, strlen(ZVOL_ROOT)) == 0)) {
1159 if (len + 6 >= max_len)
1160 return (-1);
1161
1162 (void) strcat(path, "-part1");
1163 len += 6;
1164 } else {
1165 if (len + 2 >= max_len)
1166 return (-1);
1167
1168 if (isdigit(path[len-1])) {
1169 (void) strcat(path, "p1");
1170 len += 2;
1171 } else {
1172 (void) strcat(path, "1");
1173 len += 1;
1174 }
1175 }
1176
1177 return (len);
1178 }
1179
1180 /*
1181 * Given a shorthand device name check if a file by that name exists in any
1182 * of the 'zpool_default_import_path' or ZPOOL_IMPORT_PATH directories. If
1183 * one is found, store its fully qualified path in the 'path' buffer passed
1184 * by the caller and return 0, otherwise return an error.
1185 */
1186 int
1187 zfs_resolve_shortname(const char *name, char *path, size_t len)
1188 {
1189 int i, error = -1;
1190 char *dir, *env, *envdup;
1191
1192 env = getenv("ZPOOL_IMPORT_PATH");
1193 errno = ENOENT;
1194
1195 if (env) {
1196 envdup = strdup(env);
1197 dir = strtok(envdup, ":");
1198 while (dir && error) {
1199 (void) snprintf(path, len, "%s/%s", dir, name);
1200 error = access(path, F_OK);
1201 dir = strtok(NULL, ":");
1202 }
1203 free(envdup);
1204 } else {
1205 for (i = 0; i < DEFAULT_IMPORT_PATH_SIZE && error < 0; i++) {
1206 (void) snprintf(path, len, "%s/%s",
1207 zpool_default_import_path[i], name);
1208 error = access(path, F_OK);
1209 }
1210 }
1211
1212 return (error ? ENOENT : 0);
1213 }
1214
1215 /*
1216 * Given a shorthand device name look for a match against 'cmp_name'. This
1217 * is done by checking all prefix expansions using either the default
1218 * 'zpool_default_import_paths' or the ZPOOL_IMPORT_PATH environment
1219 * variable. Proper partition suffixes will be appended if this is a
1220 * whole disk. When a match is found 0 is returned otherwise ENOENT.
1221 */
1222 static int
1223 zfs_strcmp_shortname(char *name, char *cmp_name, int wholedisk)
1224 {
1225 int path_len, cmp_len, i = 0, error = ENOENT;
1226 char *dir, *env, *envdup = NULL;
1227 char path_name[MAXPATHLEN];
1228
1229 cmp_len = strlen(cmp_name);
1230 env = getenv("ZPOOL_IMPORT_PATH");
1231
1232 if (env) {
1233 envdup = strdup(env);
1234 dir = strtok(envdup, ":");
1235 } else {
1236 dir = zpool_default_import_path[i];
1237 }
1238
1239 while (dir) {
1240 /* Trim trailing directory slashes from ZPOOL_IMPORT_PATH */
1241 while (dir[strlen(dir)-1] == '/')
1242 dir[strlen(dir)-1] = '\0';
1243
1244 path_len = snprintf(path_name, MAXPATHLEN, "%s/%s", dir, name);
1245 if (wholedisk)
1246 path_len = zfs_append_partition(path_name, MAXPATHLEN);
1247
1248 if ((path_len == cmp_len) && strcmp(path_name, cmp_name) == 0) {
1249 error = 0;
1250 break;
1251 }
1252
1253 if (env) {
1254 dir = strtok(NULL, ":");
1255 } else if (++i < DEFAULT_IMPORT_PATH_SIZE) {
1256 dir = zpool_default_import_path[i];
1257 } else {
1258 dir = NULL;
1259 }
1260 }
1261
1262 if (env)
1263 free(envdup);
1264
1265 return (error);
1266 }
1267
1268 /*
1269 * Given either a shorthand or fully qualified path name look for a match
1270 * against 'cmp'. The passed name will be expanded as needed for comparison
1271 * purposes and redundant slashes stripped to ensure an accurate match.
1272 */
1273 int
1274 zfs_strcmp_pathname(char *name, char *cmp, int wholedisk)
1275 {
1276 int path_len, cmp_len;
1277 char path_name[MAXPATHLEN];
1278 char cmp_name[MAXPATHLEN];
1279 char *dir, *dup;
1280
1281 /* Strip redundant slashes if one exists due to ZPOOL_IMPORT_PATH */
1282 memset(cmp_name, 0, MAXPATHLEN);
1283 dup = strdup(cmp);
1284 dir = strtok(dup, "/");
1285 while (dir) {
1286 strlcat(cmp_name, "/", sizeof (cmp_name));
1287 strlcat(cmp_name, dir, sizeof (cmp_name));
1288 dir = strtok(NULL, "/");
1289 }
1290 free(dup);
1291
1292 if (name[0] != '/')
1293 return (zfs_strcmp_shortname(name, cmp_name, wholedisk));
1294
1295 (void) strlcpy(path_name, name, MAXPATHLEN);
1296 path_len = strlen(path_name);
1297 cmp_len = strlen(cmp_name);
1298
1299 if (wholedisk) {
1300 path_len = zfs_append_partition(path_name, MAXPATHLEN);
1301 if (path_len == -1)
1302 return (ENOMEM);
1303 }
1304
1305 if ((path_len != cmp_len) || strcmp(path_name, cmp_name))
1306 return (ENOENT);
1307
1308 return (0);
1309 }
1310
1311 /*
1312 * Given a full path to a device determine if that device appears in the
1313 * import search path. If it does return the first match and store the
1314 * index in the passed 'order' variable, otherwise return an error.
1315 */
1316 int
1317 zfs_path_order(char *name, int *order)
1318 {
1319 int i = 0, error = ENOENT;
1320 char *dir, *env, *envdup;
1321
1322 env = getenv("ZPOOL_IMPORT_PATH");
1323 if (env) {
1324 envdup = strdup(env);
1325 dir = strtok(envdup, ":");
1326 while (dir) {
1327 if (strncmp(name, dir, strlen(dir)) == 0) {
1328 *order = i;
1329 error = 0;
1330 break;
1331 }
1332 dir = strtok(NULL, ":");
1333 i++;
1334 }
1335 free(envdup);
1336 } else {
1337 for (i = 0; i < DEFAULT_IMPORT_PATH_SIZE; i++) {
1338 if (strncmp(name, zpool_default_import_path[i],
1339 strlen(zpool_default_import_path[i])) == 0) {
1340 *order = i;
1341 error = 0;
1342 break;
1343 }
1344 }
1345 }
1346
1347 return (error);
1348 }
1349
1350 /*
1351 * Initialize the zc_nvlist_dst member to prepare for receiving an nvlist from
1352 * an ioctl().
1353 */
1354 int
1355 zcmd_alloc_dst_nvlist(libzfs_handle_t *hdl, zfs_cmd_t *zc, size_t len)
1356 {
1357 if (len == 0)
1358 len = 16 * 1024;
1359 zc->zc_nvlist_dst_size = len;
1360 zc->zc_nvlist_dst =
1361 (uint64_t)(uintptr_t)zfs_alloc(hdl, zc->zc_nvlist_dst_size);
1362 if (zc->zc_nvlist_dst == 0)
1363 return (-1);
1364
1365 return (0);
1366 }
1367
1368 /*
1369 * Called when an ioctl() which returns an nvlist fails with ENOMEM. This will
1370 * expand the nvlist to the size specified in 'zc_nvlist_dst_size', which was
1371 * filled in by the kernel to indicate the actual required size.
1372 */
1373 int
1374 zcmd_expand_dst_nvlist(libzfs_handle_t *hdl, zfs_cmd_t *zc)
1375 {
1376 free((void *)(uintptr_t)zc->zc_nvlist_dst);
1377 zc->zc_nvlist_dst =
1378 (uint64_t)(uintptr_t)zfs_alloc(hdl, zc->zc_nvlist_dst_size);
1379 if (zc->zc_nvlist_dst == 0)
1380 return (-1);
1381
1382 return (0);
1383 }
1384
1385 /*
1386 * Called to free the src and dst nvlists stored in the command structure.
1387 */
1388 void
1389 zcmd_free_nvlists(zfs_cmd_t *zc)
1390 {
1391 free((void *)(uintptr_t)zc->zc_nvlist_conf);
1392 free((void *)(uintptr_t)zc->zc_nvlist_src);
1393 free((void *)(uintptr_t)zc->zc_nvlist_dst);
1394 zc->zc_nvlist_conf = 0;
1395 zc->zc_nvlist_src = 0;
1396 zc->zc_nvlist_dst = 0;
1397 }
1398
1399 static int
1400 zcmd_write_nvlist_com(libzfs_handle_t *hdl, uint64_t *outnv, uint64_t *outlen,
1401 nvlist_t *nvl)
1402 {
1403 char *packed;
1404 size_t len;
1405
1406 verify(nvlist_size(nvl, &len, NV_ENCODE_NATIVE) == 0);
1407
1408 if ((packed = zfs_alloc(hdl, len)) == NULL)
1409 return (-1);
1410
1411 verify(nvlist_pack(nvl, &packed, &len, NV_ENCODE_NATIVE, 0) == 0);
1412
1413 *outnv = (uint64_t)(uintptr_t)packed;
1414 *outlen = len;
1415
1416 return (0);
1417 }
1418
1419 int
1420 zcmd_write_conf_nvlist(libzfs_handle_t *hdl, zfs_cmd_t *zc, nvlist_t *nvl)
1421 {
1422 return (zcmd_write_nvlist_com(hdl, &zc->zc_nvlist_conf,
1423 &zc->zc_nvlist_conf_size, nvl));
1424 }
1425
1426 int
1427 zcmd_write_src_nvlist(libzfs_handle_t *hdl, zfs_cmd_t *zc, nvlist_t *nvl)
1428 {
1429 return (zcmd_write_nvlist_com(hdl, &zc->zc_nvlist_src,
1430 &zc->zc_nvlist_src_size, nvl));
1431 }
1432
1433 /*
1434 * Unpacks an nvlist from the ZFS ioctl command structure.
1435 */
1436 int
1437 zcmd_read_dst_nvlist(libzfs_handle_t *hdl, zfs_cmd_t *zc, nvlist_t **nvlp)
1438 {
1439 if (nvlist_unpack((void *)(uintptr_t)zc->zc_nvlist_dst,
1440 zc->zc_nvlist_dst_size, nvlp, 0) != 0)
1441 return (no_memory(hdl));
1442
1443 return (0);
1444 }
1445
1446 int
1447 zfs_ioctl(libzfs_handle_t *hdl, int request, zfs_cmd_t *zc)
1448 {
1449 return (ioctl(hdl->libzfs_fd, request, zc));
1450 }
1451
1452 /*
1453 * ================================================================
1454 * API shared by zfs and zpool property management
1455 * ================================================================
1456 */
1457
1458 static void
1459 zprop_print_headers(zprop_get_cbdata_t *cbp, zfs_type_t type)
1460 {
1461 zprop_list_t *pl = cbp->cb_proplist;
1462 int i;
1463 char *title;
1464 size_t len;
1465
1466 cbp->cb_first = B_FALSE;
1467 if (cbp->cb_scripted)
1468 return;
1469
1470 /*
1471 * Start with the length of the column headers.
1472 */
1473 cbp->cb_colwidths[GET_COL_NAME] = strlen(dgettext(TEXT_DOMAIN, "NAME"));
1474 cbp->cb_colwidths[GET_COL_PROPERTY] = strlen(dgettext(TEXT_DOMAIN,
1475 "PROPERTY"));
1476 cbp->cb_colwidths[GET_COL_VALUE] = strlen(dgettext(TEXT_DOMAIN,
1477 "VALUE"));
1478 cbp->cb_colwidths[GET_COL_RECVD] = strlen(dgettext(TEXT_DOMAIN,
1479 "RECEIVED"));
1480 cbp->cb_colwidths[GET_COL_SOURCE] = strlen(dgettext(TEXT_DOMAIN,
1481 "SOURCE"));
1482
1483 /* first property is always NAME */
1484 assert(cbp->cb_proplist->pl_prop ==
1485 ((type == ZFS_TYPE_POOL) ? ZPOOL_PROP_NAME : ZFS_PROP_NAME));
1486
1487 /*
1488 * Go through and calculate the widths for each column. For the
1489 * 'source' column, we kludge it up by taking the worst-case scenario of
1490 * inheriting from the longest name. This is acceptable because in the
1491 * majority of cases 'SOURCE' is the last column displayed, and we don't
1492 * use the width anyway. Note that the 'VALUE' column can be oversized,
1493 * if the name of the property is much longer than any values we find.
1494 */
1495 for (pl = cbp->cb_proplist; pl != NULL; pl = pl->pl_next) {
1496 /*
1497 * 'PROPERTY' column
1498 */
1499 if (pl->pl_prop != ZPROP_INVAL) {
1500 const char *propname = (type == ZFS_TYPE_POOL) ?
1501 zpool_prop_to_name(pl->pl_prop) :
1502 zfs_prop_to_name(pl->pl_prop);
1503
1504 len = strlen(propname);
1505 if (len > cbp->cb_colwidths[GET_COL_PROPERTY])
1506 cbp->cb_colwidths[GET_COL_PROPERTY] = len;
1507 } else {
1508 len = strlen(pl->pl_user_prop);
1509 if (len > cbp->cb_colwidths[GET_COL_PROPERTY])
1510 cbp->cb_colwidths[GET_COL_PROPERTY] = len;
1511 }
1512
1513 /*
1514 * 'VALUE' column. The first property is always the 'name'
1515 * property that was tacked on either by /sbin/zfs's
1516 * zfs_do_get() or when calling zprop_expand_list(), so we
1517 * ignore its width. If the user specified the name property
1518 * to display, then it will be later in the list in any case.
1519 */
1520 if (pl != cbp->cb_proplist &&
1521 pl->pl_width > cbp->cb_colwidths[GET_COL_VALUE])
1522 cbp->cb_colwidths[GET_COL_VALUE] = pl->pl_width;
1523
1524 /* 'RECEIVED' column. */
1525 if (pl != cbp->cb_proplist &&
1526 pl->pl_recvd_width > cbp->cb_colwidths[GET_COL_RECVD])
1527 cbp->cb_colwidths[GET_COL_RECVD] = pl->pl_recvd_width;
1528
1529 /*
1530 * 'NAME' and 'SOURCE' columns
1531 */
1532 if (pl->pl_prop == (type == ZFS_TYPE_POOL ? ZPOOL_PROP_NAME :
1533 ZFS_PROP_NAME) &&
1534 pl->pl_width > cbp->cb_colwidths[GET_COL_NAME]) {
1535 cbp->cb_colwidths[GET_COL_NAME] = pl->pl_width;
1536 cbp->cb_colwidths[GET_COL_SOURCE] = pl->pl_width +
1537 strlen(dgettext(TEXT_DOMAIN, "inherited from"));
1538 }
1539 }
1540
1541 /*
1542 * Now go through and print the headers.
1543 */
1544 for (i = 0; i < ZFS_GET_NCOLS; i++) {
1545 switch (cbp->cb_columns[i]) {
1546 case GET_COL_NAME:
1547 title = dgettext(TEXT_DOMAIN, "NAME");
1548 break;
1549 case GET_COL_PROPERTY:
1550 title = dgettext(TEXT_DOMAIN, "PROPERTY");
1551 break;
1552 case GET_COL_VALUE:
1553 title = dgettext(TEXT_DOMAIN, "VALUE");
1554 break;
1555 case GET_COL_RECVD:
1556 title = dgettext(TEXT_DOMAIN, "RECEIVED");
1557 break;
1558 case GET_COL_SOURCE:
1559 title = dgettext(TEXT_DOMAIN, "SOURCE");
1560 break;
1561 default:
1562 title = NULL;
1563 }
1564
1565 if (title != NULL) {
1566 if (i == (ZFS_GET_NCOLS - 1) ||
1567 cbp->cb_columns[i + 1] == GET_COL_NONE)
1568 (void) printf("%s", title);
1569 else
1570 (void) printf("%-*s ",
1571 cbp->cb_colwidths[cbp->cb_columns[i]],
1572 title);
1573 }
1574 }
1575 (void) printf("\n");
1576 }
1577
1578 /*
1579 * Display a single line of output, according to the settings in the callback
1580 * structure.
1581 */
1582 void
1583 zprop_print_one_property(const char *name, zprop_get_cbdata_t *cbp,
1584 const char *propname, const char *value, zprop_source_t sourcetype,
1585 const char *source, const char *recvd_value)
1586 {
1587 int i;
1588 const char *str = NULL;
1589 char buf[128];
1590
1591 /*
1592 * Ignore those source types that the user has chosen to ignore.
1593 */
1594 if ((sourcetype & cbp->cb_sources) == 0)
1595 return;
1596
1597 if (cbp->cb_first)
1598 zprop_print_headers(cbp, cbp->cb_type);
1599
1600 for (i = 0; i < ZFS_GET_NCOLS; i++) {
1601 switch (cbp->cb_columns[i]) {
1602 case GET_COL_NAME:
1603 str = name;
1604 break;
1605
1606 case GET_COL_PROPERTY:
1607 str = propname;
1608 break;
1609
1610 case GET_COL_VALUE:
1611 str = value;
1612 break;
1613
1614 case GET_COL_SOURCE:
1615 switch (sourcetype) {
1616 case ZPROP_SRC_NONE:
1617 str = "-";
1618 break;
1619
1620 case ZPROP_SRC_DEFAULT:
1621 str = "default";
1622 break;
1623
1624 case ZPROP_SRC_LOCAL:
1625 str = "local";
1626 break;
1627
1628 case ZPROP_SRC_TEMPORARY:
1629 str = "temporary";
1630 break;
1631
1632 case ZPROP_SRC_INHERITED:
1633 (void) snprintf(buf, sizeof (buf),
1634 "inherited from %s", source);
1635 str = buf;
1636 break;
1637 case ZPROP_SRC_RECEIVED:
1638 str = "received";
1639 break;
1640
1641 default:
1642 str = NULL;
1643 assert(!"unhandled zprop_source_t");
1644 }
1645 break;
1646
1647 case GET_COL_RECVD:
1648 str = (recvd_value == NULL ? "-" : recvd_value);
1649 break;
1650
1651 default:
1652 continue;
1653 }
1654
1655 if (i == (ZFS_GET_NCOLS - 1) ||
1656 cbp->cb_columns[i + 1] == GET_COL_NONE)
1657 (void) printf("%s", str);
1658 else if (cbp->cb_scripted)
1659 (void) printf("%s\t", str);
1660 else
1661 (void) printf("%-*s ",
1662 cbp->cb_colwidths[cbp->cb_columns[i]],
1663 str);
1664 }
1665
1666 (void) printf("\n");
1667 }
1668
1669 /*
1670 * Given a numeric suffix, convert the value into a number of bits that the
1671 * resulting value must be shifted.
1672 */
1673 static int
1674 str2shift(libzfs_handle_t *hdl, const char *buf)
1675 {
1676 const char *ends = "BKMGTPEZ";
1677 int i;
1678
1679 if (buf[0] == '\0')
1680 return (0);
1681 for (i = 0; i < strlen(ends); i++) {
1682 if (toupper(buf[0]) == ends[i])
1683 break;
1684 }
1685 if (i == strlen(ends)) {
1686 if (hdl)
1687 zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
1688 "invalid numeric suffix '%s'"), buf);
1689 return (-1);
1690 }
1691
1692 /*
1693 * Allow 'G' = 'GB' = 'GiB', case-insensitively.
1694 * However, 'BB' and 'BiB' are disallowed.
1695 */
1696 if (buf[1] == '\0' ||
1697 (toupper(buf[0]) != 'B' &&
1698 ((toupper(buf[1]) == 'B' && buf[2] == '\0') ||
1699 (toupper(buf[1]) == 'I' && toupper(buf[2]) == 'B' &&
1700 buf[3] == '\0'))))
1701 return (10 * i);
1702
1703 if (hdl)
1704 zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
1705 "invalid numeric suffix '%s'"), buf);
1706 return (-1);
1707 }
1708
1709 /*
1710 * Convert a string of the form '100G' into a real number. Used when setting
1711 * properties or creating a volume. 'buf' is used to place an extended error
1712 * message for the caller to use.
1713 */
1714 int
1715 zfs_nicestrtonum(libzfs_handle_t *hdl, const char *value, uint64_t *num)
1716 {
1717 char *end;
1718 int shift;
1719
1720 *num = 0;
1721
1722 /* Check to see if this looks like a number. */
1723 if ((value[0] < '0' || value[0] > '9') && value[0] != '.') {
1724 if (hdl)
1725 zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
1726 "bad numeric value '%s'"), value);
1727 return (-1);
1728 }
1729
1730 /* Rely on strtoull() to process the numeric portion. */
1731 errno = 0;
1732 *num = strtoull(value, &end, 10);
1733
1734 /*
1735 * Check for ERANGE, which indicates that the value is too large to fit
1736 * in a 64-bit value.
1737 */
1738 if (errno == ERANGE) {
1739 if (hdl)
1740 zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
1741 "numeric value is too large"));
1742 return (-1);
1743 }
1744
1745 /*
1746 * If we have a decimal value, then do the computation with floating
1747 * point arithmetic. Otherwise, use standard arithmetic.
1748 */
1749 if (*end == '.') {
1750 double fval = strtod(value, &end);
1751
1752 if ((shift = str2shift(hdl, end)) == -1)
1753 return (-1);
1754
1755 fval *= pow(2, shift);
1756
1757 if (fval > UINT64_MAX) {
1758 if (hdl)
1759 zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
1760 "numeric value is too large"));
1761 return (-1);
1762 }
1763
1764 *num = (uint64_t)fval;
1765 } else {
1766 if ((shift = str2shift(hdl, end)) == -1)
1767 return (-1);
1768
1769 /* Check for overflow */
1770 if (shift >= 64 || (*num << shift) >> shift != *num) {
1771 if (hdl)
1772 zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
1773 "numeric value is too large"));
1774 return (-1);
1775 }
1776
1777 *num <<= shift;
1778 }
1779
1780 return (0);
1781 }
1782
1783 /*
1784 * Given a propname=value nvpair to set, parse any numeric properties
1785 * (index, boolean, etc) if they are specified as strings and add the
1786 * resulting nvpair to the returned nvlist.
1787 *
1788 * At the DSL layer, all properties are either 64-bit numbers or strings.
1789 * We want the user to be able to ignore this fact and specify properties
1790 * as native values (numbers, for example) or as strings (to simplify
1791 * command line utilities). This also handles converting index types
1792 * (compression, checksum, etc) from strings to their on-disk index.
1793 */
1794 int
1795 zprop_parse_value(libzfs_handle_t *hdl, nvpair_t *elem, int prop,
1796 zfs_type_t type, nvlist_t *ret, char **svalp, uint64_t *ivalp,
1797 const char *errbuf)
1798 {
1799 data_type_t datatype = nvpair_type(elem);
1800 zprop_type_t proptype;
1801 const char *propname;
1802 char *value;
1803 boolean_t isnone = B_FALSE;
1804 int err = 0;
1805
1806 if (type == ZFS_TYPE_POOL) {
1807 proptype = zpool_prop_get_type(prop);
1808 propname = zpool_prop_to_name(prop);
1809 } else {
1810 proptype = zfs_prop_get_type(prop);
1811 propname = zfs_prop_to_name(prop);
1812 }
1813
1814 /*
1815 * Convert any properties to the internal DSL value types.
1816 */
1817 *svalp = NULL;
1818 *ivalp = 0;
1819
1820 switch (proptype) {
1821 case PROP_TYPE_STRING:
1822 if (datatype != DATA_TYPE_STRING) {
1823 zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
1824 "'%s' must be a string"), nvpair_name(elem));
1825 goto error;
1826 }
1827 err = nvpair_value_string(elem, svalp);
1828 if (err != 0) {
1829 zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
1830 "'%s' is invalid"), nvpair_name(elem));
1831 goto error;
1832 }
1833 if (strlen(*svalp) >= ZFS_MAXPROPLEN) {
1834 zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
1835 "'%s' is too long"), nvpair_name(elem));
1836 goto error;
1837 }
1838 break;
1839
1840 case PROP_TYPE_NUMBER:
1841 if (datatype == DATA_TYPE_STRING) {
1842 (void) nvpair_value_string(elem, &value);
1843 if (strcmp(value, "none") == 0) {
1844 isnone = B_TRUE;
1845 } else if (zfs_nicestrtonum(hdl, value, ivalp)
1846 != 0) {
1847 goto error;
1848 }
1849 } else if (datatype == DATA_TYPE_UINT64) {
1850 (void) nvpair_value_uint64(elem, ivalp);
1851 } else {
1852 zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
1853 "'%s' must be a number"), nvpair_name(elem));
1854 goto error;
1855 }
1856
1857 /*
1858 * Quota special: force 'none' and don't allow 0.
1859 */
1860 if ((type & ZFS_TYPE_DATASET) && *ivalp == 0 && !isnone &&
1861 (prop == ZFS_PROP_QUOTA || prop == ZFS_PROP_REFQUOTA)) {
1862 zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
1863 "use 'none' to disable quota/refquota"));
1864 goto error;
1865 }
1866
1867 /*
1868 * Special handling for "*_limit=none". In this case it's not
1869 * 0 but UINT64_MAX.
1870 */
1871 if ((type & ZFS_TYPE_DATASET) && isnone &&
1872 (prop == ZFS_PROP_FILESYSTEM_LIMIT ||
1873 prop == ZFS_PROP_SNAPSHOT_LIMIT)) {
1874 *ivalp = UINT64_MAX;
1875 }
1876 break;
1877
1878 case PROP_TYPE_INDEX:
1879 if (datatype != DATA_TYPE_STRING) {
1880 zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
1881 "'%s' must be a string"), nvpair_name(elem));
1882 goto error;
1883 }
1884
1885 (void) nvpair_value_string(elem, &value);
1886
1887 if (zprop_string_to_index(prop, value, ivalp, type) != 0) {
1888 zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
1889 "'%s' must be one of '%s'"), propname,
1890 zprop_values(prop, type));
1891 goto error;
1892 }
1893 break;
1894
1895 default:
1896 abort();
1897 }
1898
1899 /*
1900 * Add the result to our return set of properties.
1901 */
1902 if (*svalp != NULL) {
1903 if (nvlist_add_string(ret, propname, *svalp) != 0) {
1904 (void) no_memory(hdl);
1905 return (-1);
1906 }
1907 } else {
1908 if (nvlist_add_uint64(ret, propname, *ivalp) != 0) {
1909 (void) no_memory(hdl);
1910 return (-1);
1911 }
1912 }
1913
1914 return (0);
1915 error:
1916 (void) zfs_error(hdl, EZFS_BADPROP, errbuf);
1917 return (-1);
1918 }
1919
1920 static int
1921 addlist(libzfs_handle_t *hdl, char *propname, zprop_list_t **listp,
1922 zfs_type_t type)
1923 {
1924 int prop;
1925 zprop_list_t *entry;
1926
1927 prop = zprop_name_to_prop(propname, type);
1928
1929 if (prop != ZPROP_INVAL && !zprop_valid_for_type(prop, type, B_FALSE))
1930 prop = ZPROP_INVAL;
1931
1932 /*
1933 * When no property table entry can be found, return failure if
1934 * this is a pool property or if this isn't a user-defined
1935 * dataset property,
1936 */
1937 if (prop == ZPROP_INVAL && ((type == ZFS_TYPE_POOL &&
1938 !zpool_prop_feature(propname) &&
1939 !zpool_prop_unsupported(propname)) ||
1940 (type == ZFS_TYPE_DATASET && !zfs_prop_user(propname) &&
1941 !zfs_prop_userquota(propname) && !zfs_prop_written(propname)))) {
1942 zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
1943 "invalid property '%s'"), propname);
1944 return (zfs_error(hdl, EZFS_BADPROP,
1945 dgettext(TEXT_DOMAIN, "bad property list")));
1946 }
1947
1948 if ((entry = zfs_alloc(hdl, sizeof (zprop_list_t))) == NULL)
1949 return (-1);
1950
1951 entry->pl_prop = prop;
1952 if (prop == ZPROP_INVAL) {
1953 if ((entry->pl_user_prop = zfs_strdup(hdl, propname)) ==
1954 NULL) {
1955 free(entry);
1956 return (-1);
1957 }
1958 entry->pl_width = strlen(propname);
1959 } else {
1960 entry->pl_width = zprop_width(prop, &entry->pl_fixed,
1961 type);
1962 }
1963
1964 *listp = entry;
1965
1966 return (0);
1967 }
1968
1969 /*
1970 * Given a comma-separated list of properties, construct a property list
1971 * containing both user-defined and native properties. This function will
1972 * return a NULL list if 'all' is specified, which can later be expanded
1973 * by zprop_expand_list().
1974 */
1975 int
1976 zprop_get_list(libzfs_handle_t *hdl, char *props, zprop_list_t **listp,
1977 zfs_type_t type)
1978 {
1979 *listp = NULL;
1980
1981 /*
1982 * If 'all' is specified, return a NULL list.
1983 */
1984 if (strcmp(props, "all") == 0)
1985 return (0);
1986
1987 /*
1988 * If no props were specified, return an error.
1989 */
1990 if (props[0] == '\0') {
1991 zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
1992 "no properties specified"));
1993 return (zfs_error(hdl, EZFS_BADPROP, dgettext(TEXT_DOMAIN,
1994 "bad property list")));
1995 }
1996
1997 /*
1998 * It would be nice to use getsubopt() here, but the inclusion of column
1999 * aliases makes this more effort than it's worth.
2000 */
2001 while (*props != '\0') {
2002 size_t len;
2003 char *p;
2004 char c;
2005
2006 if ((p = strchr(props, ',')) == NULL) {
2007 len = strlen(props);
2008 p = props + len;
2009 } else {
2010 len = p - props;
2011 }
2012
2013 /*
2014 * Check for empty options.
2015 */
2016 if (len == 0) {
2017 zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
2018 "empty property name"));
2019 return (zfs_error(hdl, EZFS_BADPROP,
2020 dgettext(TEXT_DOMAIN, "bad property list")));
2021 }
2022
2023 /*
2024 * Check all regular property names.
2025 */
2026 c = props[len];
2027 props[len] = '\0';
2028
2029 if (strcmp(props, "space") == 0) {
2030 static char *spaceprops[] = {
2031 "name", "avail", "used", "usedbysnapshots",
2032 "usedbydataset", "usedbyrefreservation",
2033 "usedbychildren", NULL
2034 };
2035 int i;
2036
2037 for (i = 0; spaceprops[i]; i++) {
2038 if (addlist(hdl, spaceprops[i], listp, type))
2039 return (-1);
2040 listp = &(*listp)->pl_next;
2041 }
2042 } else {
2043 if (addlist(hdl, props, listp, type))
2044 return (-1);
2045 listp = &(*listp)->pl_next;
2046 }
2047
2048 props = p;
2049 if (c == ',')
2050 props++;
2051 }
2052
2053 return (0);
2054 }
2055
2056 void
2057 zprop_free_list(zprop_list_t *pl)
2058 {
2059 zprop_list_t *next;
2060
2061 while (pl != NULL) {
2062 next = pl->pl_next;
2063 free(pl->pl_user_prop);
2064 free(pl);
2065 pl = next;
2066 }
2067 }
2068
2069 typedef struct expand_data {
2070 zprop_list_t **last;
2071 libzfs_handle_t *hdl;
2072 zfs_type_t type;
2073 } expand_data_t;
2074
2075 int
2076 zprop_expand_list_cb(int prop, void *cb)
2077 {
2078 zprop_list_t *entry;
2079 expand_data_t *edp = cb;
2080
2081 if ((entry = zfs_alloc(edp->hdl, sizeof (zprop_list_t))) == NULL)
2082 return (ZPROP_INVAL);
2083
2084 entry->pl_prop = prop;
2085 entry->pl_width = zprop_width(prop, &entry->pl_fixed, edp->type);
2086 entry->pl_all = B_TRUE;
2087
2088 *(edp->last) = entry;
2089 edp->last = &entry->pl_next;
2090
2091 return (ZPROP_CONT);
2092 }
2093
2094 int
2095 zprop_expand_list(libzfs_handle_t *hdl, zprop_list_t **plp, zfs_type_t type)
2096 {
2097 zprop_list_t *entry;
2098 zprop_list_t **last;
2099 expand_data_t exp;
2100
2101 if (*plp == NULL) {
2102 /*
2103 * If this is the very first time we've been called for an 'all'
2104 * specification, expand the list to include all native
2105 * properties.
2106 */
2107 last = plp;
2108
2109 exp.last = last;
2110 exp.hdl = hdl;
2111 exp.type = type;
2112
2113 if (zprop_iter_common(zprop_expand_list_cb, &exp, B_FALSE,
2114 B_FALSE, type) == ZPROP_INVAL)
2115 return (-1);
2116
2117 /*
2118 * Add 'name' to the beginning of the list, which is handled
2119 * specially.
2120 */
2121 if ((entry = zfs_alloc(hdl, sizeof (zprop_list_t))) == NULL)
2122 return (-1);
2123
2124 entry->pl_prop = (type == ZFS_TYPE_POOL) ? ZPOOL_PROP_NAME :
2125 ZFS_PROP_NAME;
2126 entry->pl_width = zprop_width(entry->pl_prop,
2127 &entry->pl_fixed, type);
2128 entry->pl_all = B_TRUE;
2129 entry->pl_next = *plp;
2130 *plp = entry;
2131 }
2132 return (0);
2133 }
2134
2135 int
2136 zprop_iter(zprop_func func, void *cb, boolean_t show_all, boolean_t ordered,
2137 zfs_type_t type)
2138 {
2139 return (zprop_iter_common(func, cb, show_all, ordered, type));
2140 }