]> git.proxmox.com Git - mirror_ovs.git/blob - lib/meta-flow.c
flow: Enable matching on new field 'pkt_mark'.
[mirror_ovs.git] / lib / meta-flow.c
1 /*
2 * Copyright (c) 2011, 2012, 2013 Nicira, Inc.
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at:
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #include <config.h>
18
19 #include "meta-flow.h"
20
21 #include <errno.h>
22 #include <limits.h>
23 #include <netinet/icmp6.h>
24 #include <netinet/ip6.h>
25
26 #include "classifier.h"
27 #include "dynamic-string.h"
28 #include "ofp-errors.h"
29 #include "ofp-util.h"
30 #include "ovs-thread.h"
31 #include "packets.h"
32 #include "random.h"
33 #include "shash.h"
34 #include "socket-util.h"
35 #include "unaligned.h"
36 #include "vlog.h"
37
38 VLOG_DEFINE_THIS_MODULE(meta_flow);
39
40 #define MF_FIELD_SIZES(MEMBER) \
41 sizeof ((union mf_value *)0)->MEMBER, \
42 8 * sizeof ((union mf_value *)0)->MEMBER
43
44 static const struct mf_field mf_fields[MFF_N_IDS] = {
45 /* ## -------- ## */
46 /* ## metadata ## */
47 /* ## -------- ## */
48
49 {
50 MFF_TUN_ID, "tun_id", NULL,
51 MF_FIELD_SIZES(be64),
52 MFM_FULLY,
53 MFS_HEXADECIMAL,
54 MFP_NONE,
55 true,
56 NXM_NX_TUN_ID, "NXM_NX_TUN_ID",
57 OXM_OF_TUNNEL_ID, "OXM_OF_TUNNEL_ID",
58 }, {
59 MFF_TUN_SRC, "tun_src", NULL,
60 MF_FIELD_SIZES(be32),
61 MFM_FULLY,
62 MFS_IPV4,
63 MFP_NONE,
64 true,
65 NXM_NX_TUN_IPV4_SRC, "NXM_NX_TUN_IPV4_SRC",
66 NXM_NX_TUN_IPV4_SRC, "NXM_NX_TUN_IPV4_SRC",
67 }, {
68 MFF_TUN_DST, "tun_dst", NULL,
69 MF_FIELD_SIZES(be32),
70 MFM_FULLY,
71 MFS_IPV4,
72 MFP_NONE,
73 true,
74 NXM_NX_TUN_IPV4_DST, "NXM_NX_TUN_IPV4_DST",
75 NXM_NX_TUN_IPV4_DST, "NXM_NX_TUN_IPV4_DST",
76 }, {
77 MFF_TUN_FLAGS, "tun_flags", NULL,
78 MF_FIELD_SIZES(be16),
79 MFM_NONE,
80 MFS_TNL_FLAGS,
81 MFP_NONE,
82 false,
83 0, NULL,
84 0, NULL,
85 }, {
86 MFF_TUN_TOS, "tun_tos", NULL,
87 MF_FIELD_SIZES(u8),
88 MFM_NONE,
89 MFS_DECIMAL,
90 MFP_NONE,
91 false,
92 0, NULL,
93 0, NULL,
94 }, {
95 MFF_TUN_TTL, "tun_ttl", NULL,
96 MF_FIELD_SIZES(u8),
97 MFM_NONE,
98 MFS_DECIMAL,
99 MFP_NONE,
100 false,
101 0, NULL,
102 0, NULL,
103 }, {
104 MFF_METADATA, "metadata", NULL,
105 MF_FIELD_SIZES(be64),
106 MFM_FULLY,
107 MFS_HEXADECIMAL,
108 MFP_NONE,
109 true,
110 OXM_OF_METADATA, "OXM_OF_METADATA",
111 OXM_OF_METADATA, "OXM_OF_METADATA",
112 }, {
113 MFF_IN_PORT, "in_port", NULL,
114 MF_FIELD_SIZES(be16),
115 MFM_NONE,
116 MFS_OFP_PORT,
117 MFP_NONE,
118 true,
119 NXM_OF_IN_PORT, "NXM_OF_IN_PORT",
120 NXM_OF_IN_PORT, "NXM_OF_IN_PORT",
121 }, {
122 MFF_IN_PORT_OXM, "in_port_oxm", NULL,
123 MF_FIELD_SIZES(be32),
124 MFM_NONE,
125 MFS_OFP_PORT_OXM,
126 MFP_NONE,
127 true,
128 OXM_OF_IN_PORT, "OXM_OF_IN_PORT",
129 OXM_OF_IN_PORT, "OXM_OF_IN_PORT",
130 }, {
131 MFF_SKB_PRIORITY, "skb_priority", NULL,
132 MF_FIELD_SIZES(be32),
133 MFM_NONE,
134 MFS_HEXADECIMAL,
135 MFP_NONE,
136 false,
137 0, NULL,
138 0, NULL,
139 }, {
140 MFF_PKT_MARK, "pkt_mark", NULL,
141 MF_FIELD_SIZES(be32),
142 MFM_FULLY,
143 MFS_HEXADECIMAL,
144 MFP_NONE,
145 true,
146 NXM_NX_PKT_MARK, "NXM_NX_PKT_MARK",
147 NXM_NX_PKT_MARK, "NXM_NX_PKT_MARK",
148 },
149
150 #define REGISTER(IDX) \
151 { \
152 MFF_REG##IDX, "reg" #IDX, NULL, \
153 MF_FIELD_SIZES(be32), \
154 MFM_FULLY, \
155 MFS_HEXADECIMAL, \
156 MFP_NONE, \
157 true, \
158 NXM_NX_REG(IDX), "NXM_NX_REG" #IDX, \
159 NXM_NX_REG(IDX), "NXM_NX_REG" #IDX, \
160 }
161 #if FLOW_N_REGS > 0
162 REGISTER(0),
163 #endif
164 #if FLOW_N_REGS > 1
165 REGISTER(1),
166 #endif
167 #if FLOW_N_REGS > 2
168 REGISTER(2),
169 #endif
170 #if FLOW_N_REGS > 3
171 REGISTER(3),
172 #endif
173 #if FLOW_N_REGS > 4
174 REGISTER(4),
175 #endif
176 #if FLOW_N_REGS > 5
177 REGISTER(5),
178 #endif
179 #if FLOW_N_REGS > 6
180 REGISTER(6),
181 #endif
182 #if FLOW_N_REGS > 7
183 REGISTER(7),
184 #endif
185 #if FLOW_N_REGS > 8
186 #error
187 #endif
188
189 /* ## -- ## */
190 /* ## L2 ## */
191 /* ## -- ## */
192
193 {
194 MFF_ETH_SRC, "eth_src", "dl_src",
195 MF_FIELD_SIZES(mac),
196 MFM_FULLY,
197 MFS_ETHERNET,
198 MFP_NONE,
199 true,
200 NXM_OF_ETH_SRC, "NXM_OF_ETH_SRC",
201 OXM_OF_ETH_SRC, "OXM_OF_ETH_SRC",
202 }, {
203 MFF_ETH_DST, "eth_dst", "dl_dst",
204 MF_FIELD_SIZES(mac),
205 MFM_FULLY,
206 MFS_ETHERNET,
207 MFP_NONE,
208 true,
209 NXM_OF_ETH_DST, "NXM_OF_ETH_DST",
210 OXM_OF_ETH_DST, "OXM_OF_ETH_DST",
211 }, {
212 MFF_ETH_TYPE, "eth_type", "dl_type",
213 MF_FIELD_SIZES(be16),
214 MFM_NONE,
215 MFS_HEXADECIMAL,
216 MFP_NONE,
217 false,
218 NXM_OF_ETH_TYPE, "NXM_OF_ETH_TYPE",
219 OXM_OF_ETH_TYPE, "OXM_OF_ETH_TYPE",
220 },
221
222 {
223 MFF_VLAN_TCI, "vlan_tci", NULL,
224 MF_FIELD_SIZES(be16),
225 MFM_FULLY,
226 MFS_HEXADECIMAL,
227 MFP_NONE,
228 true,
229 NXM_OF_VLAN_TCI, "NXM_OF_VLAN_TCI",
230 NXM_OF_VLAN_TCI, "NXM_OF_VLAN_TCI",
231 }, {
232 MFF_DL_VLAN, "dl_vlan", NULL,
233 sizeof(ovs_be16), 12,
234 MFM_NONE,
235 MFS_DECIMAL,
236 MFP_NONE,
237 true,
238 0, NULL,
239 0, NULL,
240 }, {
241 MFF_VLAN_VID, "vlan_vid", NULL,
242 sizeof(ovs_be16), 12,
243 MFM_FULLY,
244 MFS_DECIMAL,
245 MFP_NONE,
246 true,
247 OXM_OF_VLAN_VID, "OXM_OF_VLAN_VID",
248 OXM_OF_VLAN_VID, "OXM_OF_VLAN_VID",
249 }, {
250 MFF_DL_VLAN_PCP, "dl_vlan_pcp", NULL,
251 1, 3,
252 MFM_NONE,
253 MFS_DECIMAL,
254 MFP_NONE,
255 true,
256 0, NULL,
257 0, NULL,
258 }, {
259 MFF_VLAN_PCP, "vlan_pcp", NULL,
260 1, 3,
261 MFM_NONE,
262 MFS_DECIMAL,
263 MFP_VLAN_VID,
264 true,
265 OXM_OF_VLAN_PCP, "OXM_OF_VLAN_PCP",
266 OXM_OF_VLAN_PCP, "OXM_OF_VLAN_PCP",
267 },
268
269 /* ## ---- ## */
270 /* ## L2.5 ## */
271 /* ## ---- ## */
272 {
273 MFF_MPLS_LABEL, "mpls_label", NULL,
274 4, 20,
275 MFM_NONE,
276 MFS_DECIMAL,
277 MFP_MPLS,
278 true,
279 OXM_OF_MPLS_LABEL, "OXM_OF_MPLS_LABEL",
280 OXM_OF_MPLS_LABEL, "OXM_OF_MPLS_LABEL",
281 }, {
282 MFF_MPLS_TC, "mpls_tc", NULL,
283 1, 3,
284 MFM_NONE,
285 MFS_DECIMAL,
286 MFP_MPLS,
287 true,
288 OXM_OF_MPLS_TC, "OXM_OF_MPLS_TC",
289 OXM_OF_MPLS_TC, "OXM_OF_MPLS_TC",
290 }, {
291 MFF_MPLS_BOS, "mpls_bos", NULL,
292 1, 1,
293 MFM_NONE,
294 MFS_DECIMAL,
295 MFP_MPLS,
296 false,
297 OXM_OF_MPLS_BOS, "OXM_OF_MPLS_BOS",
298 OXM_OF_MPLS_BOS, "OXM_OF_MPLS_BOS",
299 },
300
301 /* ## -- ## */
302 /* ## L3 ## */
303 /* ## -- ## */
304
305 {
306 MFF_IPV4_SRC, "ip_src", "nw_src",
307 MF_FIELD_SIZES(be32),
308 MFM_FULLY,
309 MFS_IPV4,
310 MFP_IPV4,
311 true,
312 NXM_OF_IP_SRC, "NXM_OF_IP_SRC",
313 OXM_OF_IPV4_SRC, "OXM_OF_IPV4_SRC",
314 }, {
315 MFF_IPV4_DST, "ip_dst", "nw_dst",
316 MF_FIELD_SIZES(be32),
317 MFM_FULLY,
318 MFS_IPV4,
319 MFP_IPV4,
320 true,
321 NXM_OF_IP_DST, "NXM_OF_IP_DST",
322 OXM_OF_IPV4_DST, "OXM_OF_IPV4_DST",
323 },
324
325 {
326 MFF_IPV6_SRC, "ipv6_src", NULL,
327 MF_FIELD_SIZES(ipv6),
328 MFM_FULLY,
329 MFS_IPV6,
330 MFP_IPV6,
331 true,
332 NXM_NX_IPV6_SRC, "NXM_NX_IPV6_SRC",
333 OXM_OF_IPV6_SRC, "OXM_OF_IPV6_SRC",
334 }, {
335 MFF_IPV6_DST, "ipv6_dst", NULL,
336 MF_FIELD_SIZES(ipv6),
337 MFM_FULLY,
338 MFS_IPV6,
339 MFP_IPV6,
340 true,
341 NXM_NX_IPV6_DST, "NXM_NX_IPV6_DST",
342 OXM_OF_IPV6_DST, "OXM_OF_IPV6_DST",
343 },
344 {
345 MFF_IPV6_LABEL, "ipv6_label", NULL,
346 4, 20,
347 MFM_FULLY,
348 MFS_HEXADECIMAL,
349 MFP_IPV6,
350 false,
351 NXM_NX_IPV6_LABEL, "NXM_NX_IPV6_LABEL",
352 OXM_OF_IPV6_FLABEL, "OXM_OF_IPV6_FLABEL",
353 },
354
355 {
356 MFF_IP_PROTO, "nw_proto", NULL,
357 MF_FIELD_SIZES(u8),
358 MFM_NONE,
359 MFS_DECIMAL,
360 MFP_IP_ANY,
361 false,
362 NXM_OF_IP_PROTO, "NXM_OF_IP_PROTO",
363 OXM_OF_IP_PROTO, "OXM_OF_IP_PROTO",
364 }, {
365 MFF_IP_DSCP, "nw_tos", NULL,
366 MF_FIELD_SIZES(u8),
367 MFM_NONE,
368 MFS_DECIMAL,
369 MFP_IP_ANY,
370 true,
371 NXM_OF_IP_TOS, "NXM_OF_IP_TOS",
372 NXM_OF_IP_TOS, "NXM_OF_IP_TOS",
373 }, {
374 MFF_IP_DSCP_SHIFTED, "nw_tos_shifted", NULL,
375 MF_FIELD_SIZES(u8),
376 MFM_NONE,
377 MFS_DECIMAL,
378 MFP_IP_ANY,
379 true,
380 OXM_OF_IP_DSCP, "OXM_OF_IP_DSCP",
381 OXM_OF_IP_DSCP, "OXM_OF_IP_DSCP",
382 }, {
383 MFF_IP_ECN, "nw_ecn", NULL,
384 1, 2,
385 MFM_NONE,
386 MFS_DECIMAL,
387 MFP_IP_ANY,
388 true,
389 NXM_NX_IP_ECN, "NXM_NX_IP_ECN",
390 OXM_OF_IP_ECN, "OXM_OF_IP_ECN",
391 }, {
392 MFF_IP_TTL, "nw_ttl", NULL,
393 MF_FIELD_SIZES(u8),
394 MFM_NONE,
395 MFS_DECIMAL,
396 MFP_IP_ANY,
397 true,
398 NXM_NX_IP_TTL, "NXM_NX_IP_TTL",
399 NXM_NX_IP_TTL, "NXM_NX_IP_TTL",
400 }, {
401 MFF_IP_FRAG, "ip_frag", NULL,
402 1, 2,
403 MFM_FULLY,
404 MFS_FRAG,
405 MFP_IP_ANY,
406 false,
407 NXM_NX_IP_FRAG, "NXM_NX_IP_FRAG",
408 NXM_NX_IP_FRAG, "NXM_NX_IP_FRAG",
409 },
410
411 {
412 MFF_ARP_OP, "arp_op", NULL,
413 MF_FIELD_SIZES(be16),
414 MFM_NONE,
415 MFS_DECIMAL,
416 MFP_ARP,
417 false,
418 NXM_OF_ARP_OP, "NXM_OF_ARP_OP",
419 OXM_OF_ARP_OP, "OXM_OF_ARP_OP",
420 }, {
421 MFF_ARP_SPA, "arp_spa", NULL,
422 MF_FIELD_SIZES(be32),
423 MFM_FULLY,
424 MFS_IPV4,
425 MFP_ARP,
426 false,
427 NXM_OF_ARP_SPA, "NXM_OF_ARP_SPA",
428 OXM_OF_ARP_SPA, "OXM_OF_ARP_SPA",
429 }, {
430 MFF_ARP_TPA, "arp_tpa", NULL,
431 MF_FIELD_SIZES(be32),
432 MFM_FULLY,
433 MFS_IPV4,
434 MFP_ARP,
435 false,
436 NXM_OF_ARP_TPA, "NXM_OF_ARP_TPA",
437 OXM_OF_ARP_TPA, "OXM_OF_ARP_TPA",
438 }, {
439 MFF_ARP_SHA, "arp_sha", NULL,
440 MF_FIELD_SIZES(mac),
441 MFM_FULLY,
442 MFS_ETHERNET,
443 MFP_ARP,
444 false,
445 NXM_NX_ARP_SHA, "NXM_NX_ARP_SHA",
446 OXM_OF_ARP_SHA, "OXM_OF_ARP_SHA",
447 }, {
448 MFF_ARP_THA, "arp_tha", NULL,
449 MF_FIELD_SIZES(mac),
450 MFM_FULLY,
451 MFS_ETHERNET,
452 MFP_ARP,
453 false,
454 NXM_NX_ARP_THA, "NXM_NX_ARP_THA",
455 OXM_OF_ARP_THA, "OXM_OF_ARP_THA",
456 },
457
458 /* ## -- ## */
459 /* ## L4 ## */
460 /* ## -- ## */
461
462 {
463 MFF_TCP_SRC, "tcp_src", "tp_src",
464 MF_FIELD_SIZES(be16),
465 MFM_FULLY,
466 MFS_DECIMAL,
467 MFP_TCP,
468 true,
469 NXM_OF_TCP_SRC, "NXM_OF_TCP_SRC",
470 OXM_OF_TCP_SRC, "OXM_OF_TCP_SRC",
471 }, {
472 MFF_TCP_DST, "tcp_dst", "tp_dst",
473 MF_FIELD_SIZES(be16),
474 MFM_FULLY,
475 MFS_DECIMAL,
476 MFP_TCP,
477 true,
478 NXM_OF_TCP_DST, "NXM_OF_TCP_DST",
479 OXM_OF_TCP_DST, "OXM_OF_TCP_DST",
480 },
481
482 {
483 MFF_UDP_SRC, "udp_src", NULL,
484 MF_FIELD_SIZES(be16),
485 MFM_FULLY,
486 MFS_DECIMAL,
487 MFP_UDP,
488 true,
489 NXM_OF_UDP_SRC, "NXM_OF_UDP_SRC",
490 OXM_OF_UDP_SRC, "OXM_OF_UDP_SRC",
491 }, {
492 MFF_UDP_DST, "udp_dst", NULL,
493 MF_FIELD_SIZES(be16),
494 MFM_FULLY,
495 MFS_DECIMAL,
496 MFP_UDP,
497 true,
498 NXM_OF_UDP_DST, "NXM_OF_UDP_DST",
499 OXM_OF_UDP_DST, "OXM_OF_UDP_DST",
500 },
501
502 {
503 MFF_ICMPV4_TYPE, "icmp_type", NULL,
504 MF_FIELD_SIZES(u8),
505 MFM_NONE,
506 MFS_DECIMAL,
507 MFP_ICMPV4,
508 false,
509 NXM_OF_ICMP_TYPE, "NXM_OF_ICMP_TYPE",
510 OXM_OF_ICMPV4_TYPE, "OXM_OF_ICMPV4_TYPE",
511 }, {
512 MFF_ICMPV4_CODE, "icmp_code", NULL,
513 MF_FIELD_SIZES(u8),
514 MFM_NONE,
515 MFS_DECIMAL,
516 MFP_ICMPV4,
517 false,
518 NXM_OF_ICMP_CODE, "NXM_OF_ICMP_CODE",
519 OXM_OF_ICMPV4_CODE, "OXM_OF_ICMPV4_CODE",
520 },
521
522 {
523 MFF_ICMPV6_TYPE, "icmpv6_type", NULL,
524 MF_FIELD_SIZES(u8),
525 MFM_NONE,
526 MFS_DECIMAL,
527 MFP_ICMPV6,
528 false,
529 NXM_NX_ICMPV6_TYPE, "NXM_NX_ICMPV6_TYPE",
530 OXM_OF_ICMPV6_TYPE, "OXM_OF_ICMPV6_TYPE",
531 }, {
532 MFF_ICMPV6_CODE, "icmpv6_code", NULL,
533 MF_FIELD_SIZES(u8),
534 MFM_NONE,
535 MFS_DECIMAL,
536 MFP_ICMPV6,
537 false,
538 NXM_NX_ICMPV6_CODE, "NXM_NX_ICMPV6_CODE",
539 OXM_OF_ICMPV6_CODE, "OXM_OF_ICMPV6_CODE",
540 },
541
542 /* ## ---- ## */
543 /* ## L"5" ## */
544 /* ## ---- ## */
545
546 {
547 MFF_ND_TARGET, "nd_target", NULL,
548 MF_FIELD_SIZES(ipv6),
549 MFM_FULLY,
550 MFS_IPV6,
551 MFP_ND,
552 false,
553 NXM_NX_ND_TARGET, "NXM_NX_ND_TARGET",
554 OXM_OF_IPV6_ND_TARGET, "OXM_OF_IPV6_ND_TARGET",
555 }, {
556 MFF_ND_SLL, "nd_sll", NULL,
557 MF_FIELD_SIZES(mac),
558 MFM_FULLY,
559 MFS_ETHERNET,
560 MFP_ND_SOLICIT,
561 false,
562 NXM_NX_ND_SLL, "NXM_NX_ND_SLL",
563 OXM_OF_IPV6_ND_SLL, "OXM_OF_IPV6_ND_SLL",
564 }, {
565 MFF_ND_TLL, "nd_tll", NULL,
566 MF_FIELD_SIZES(mac),
567 MFM_FULLY,
568 MFS_ETHERNET,
569 MFP_ND_ADVERT,
570 false,
571 NXM_NX_ND_TLL, "NXM_NX_ND_TLL",
572 OXM_OF_IPV6_ND_TLL, "OXM_OF_IPV6_ND_TLL",
573 }
574 };
575
576 /* Maps an NXM or OXM header value to an mf_field. */
577 struct nxm_field {
578 struct hmap_node hmap_node; /* In 'all_fields' hmap. */
579 uint32_t header; /* NXM or OXM header value. */
580 const struct mf_field *mf;
581 };
582
583 /* Contains 'struct nxm_field's. */
584 static struct hmap all_fields;
585
586 /* Maps from an mf_field's 'name' or 'extra_name' to the mf_field. */
587 static struct shash mf_by_name;
588
589 /* Rate limit for parse errors. These always indicate a bug in an OpenFlow
590 * controller and so there's not much point in showing a lot of them. */
591 static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(1, 5);
592
593 const struct mf_field *mf_from_nxm_header__(uint32_t header);
594 static void nxm_init(void);
595
596 /* Returns the field with the given 'id'. */
597 const struct mf_field *
598 mf_from_id(enum mf_field_id id)
599 {
600 ovs_assert((unsigned int) id < MFF_N_IDS);
601 return &mf_fields[id];
602 }
603
604 /* Returns the field with the given 'name', or a null pointer if no field has
605 * that name. */
606 const struct mf_field *
607 mf_from_name(const char *name)
608 {
609 nxm_init();
610 return shash_find_data(&mf_by_name, name);
611 }
612
613 static void
614 add_nxm_field(uint32_t header, const struct mf_field *mf)
615 {
616 struct nxm_field *f;
617
618 f = xmalloc(sizeof *f);
619 hmap_insert(&all_fields, &f->hmap_node, hash_int(header, 0));
620 f->header = header;
621 f->mf = mf;
622 }
623
624 static void
625 nxm_init_add_field(const struct mf_field *mf, uint32_t header)
626 {
627 if (header) {
628 ovs_assert(!mf_from_nxm_header__(header));
629 add_nxm_field(header, mf);
630 if (mf->maskable != MFM_NONE) {
631 add_nxm_field(NXM_MAKE_WILD_HEADER(header), mf);
632 }
633 }
634 }
635
636 static void
637 nxm_do_init(void)
638 {
639 const struct mf_field *mf;
640
641 hmap_init(&all_fields);
642 shash_init(&mf_by_name);
643 for (mf = mf_fields; mf < &mf_fields[MFF_N_IDS]; mf++) {
644 nxm_init_add_field(mf, mf->nxm_header);
645 if (mf->oxm_header != mf->nxm_header) {
646 nxm_init_add_field(mf, mf->oxm_header);
647 }
648
649 shash_add_once(&mf_by_name, mf->name, mf);
650 if (mf->extra_name) {
651 shash_add_once(&mf_by_name, mf->extra_name, mf);
652 }
653 }
654 }
655
656 static void
657 nxm_init(void)
658 {
659 static pthread_once_t once = PTHREAD_ONCE_INIT;
660 pthread_once(&once, nxm_do_init);
661 }
662
663 const struct mf_field *
664 mf_from_nxm_header(uint32_t header)
665 {
666 nxm_init();
667 return mf_from_nxm_header__(header);
668 }
669
670 const struct mf_field *
671 mf_from_nxm_header__(uint32_t header)
672 {
673 const struct nxm_field *f;
674
675 HMAP_FOR_EACH_IN_BUCKET (f, hmap_node, hash_int(header, 0), &all_fields) {
676 if (f->header == header) {
677 return f->mf;
678 }
679 }
680
681 return NULL;
682 }
683
684 /* Returns true if 'wc' wildcards all the bits in field 'mf', false if 'wc'
685 * specifies at least one bit in the field.
686 *
687 * The caller is responsible for ensuring that 'wc' corresponds to a flow that
688 * meets 'mf''s prerequisites. */
689 bool
690 mf_is_all_wild(const struct mf_field *mf, const struct flow_wildcards *wc)
691 {
692 switch (mf->id) {
693 case MFF_TUN_SRC:
694 return !wc->masks.tunnel.ip_src;
695 case MFF_TUN_DST:
696 return !wc->masks.tunnel.ip_dst;
697 case MFF_TUN_ID:
698 case MFF_TUN_TOS:
699 case MFF_TUN_TTL:
700 case MFF_TUN_FLAGS:
701 return !wc->masks.tunnel.tun_id;
702 case MFF_METADATA:
703 return !wc->masks.metadata;
704 case MFF_IN_PORT:
705 case MFF_IN_PORT_OXM:
706 return !wc->masks.in_port.ofp_port;
707 case MFF_SKB_PRIORITY:
708 return !wc->masks.skb_priority;
709 case MFF_PKT_MARK:
710 return !wc->masks.pkt_mark;
711 CASE_MFF_REGS:
712 return !wc->masks.regs[mf->id - MFF_REG0];
713
714 case MFF_ETH_SRC:
715 return eth_addr_is_zero(wc->masks.dl_src);
716 case MFF_ETH_DST:
717 return eth_addr_is_zero(wc->masks.dl_dst);
718 case MFF_ETH_TYPE:
719 return !wc->masks.dl_type;
720
721 case MFF_ARP_SHA:
722 case MFF_ND_SLL:
723 return eth_addr_is_zero(wc->masks.arp_sha);
724
725 case MFF_ARP_THA:
726 case MFF_ND_TLL:
727 return eth_addr_is_zero(wc->masks.arp_tha);
728
729 case MFF_VLAN_TCI:
730 return !wc->masks.vlan_tci;
731 case MFF_DL_VLAN:
732 return !(wc->masks.vlan_tci & htons(VLAN_VID_MASK));
733 case MFF_VLAN_VID:
734 return !(wc->masks.vlan_tci & htons(VLAN_VID_MASK | VLAN_CFI));
735 case MFF_DL_VLAN_PCP:
736 case MFF_VLAN_PCP:
737 return !(wc->masks.vlan_tci & htons(VLAN_PCP_MASK));
738
739 case MFF_MPLS_LABEL:
740 return !(wc->masks.mpls_lse & htonl(MPLS_LABEL_MASK));
741 case MFF_MPLS_TC:
742 return !(wc->masks.mpls_lse & htonl(MPLS_TC_MASK));
743 case MFF_MPLS_BOS:
744 return !(wc->masks.mpls_lse & htonl(MPLS_BOS_MASK));
745
746 case MFF_IPV4_SRC:
747 return !wc->masks.nw_src;
748 case MFF_IPV4_DST:
749 return !wc->masks.nw_dst;
750
751 case MFF_IPV6_SRC:
752 return ipv6_mask_is_any(&wc->masks.ipv6_src);
753 case MFF_IPV6_DST:
754 return ipv6_mask_is_any(&wc->masks.ipv6_dst);
755
756 case MFF_IPV6_LABEL:
757 return !wc->masks.ipv6_label;
758
759 case MFF_IP_PROTO:
760 return !wc->masks.nw_proto;
761 case MFF_IP_DSCP:
762 case MFF_IP_DSCP_SHIFTED:
763 return !(wc->masks.nw_tos & IP_DSCP_MASK);
764 case MFF_IP_ECN:
765 return !(wc->masks.nw_tos & IP_ECN_MASK);
766 case MFF_IP_TTL:
767 return !wc->masks.nw_ttl;
768
769 case MFF_ND_TARGET:
770 return ipv6_mask_is_any(&wc->masks.nd_target);
771
772 case MFF_IP_FRAG:
773 return !(wc->masks.nw_frag & FLOW_NW_FRAG_MASK);
774
775 case MFF_ARP_OP:
776 return !wc->masks.nw_proto;
777 case MFF_ARP_SPA:
778 return !wc->masks.nw_src;
779 case MFF_ARP_TPA:
780 return !wc->masks.nw_dst;
781
782 case MFF_TCP_SRC:
783 case MFF_UDP_SRC:
784 case MFF_ICMPV4_TYPE:
785 case MFF_ICMPV6_TYPE:
786 return !wc->masks.tp_src;
787 case MFF_TCP_DST:
788 case MFF_UDP_DST:
789 case MFF_ICMPV4_CODE:
790 case MFF_ICMPV6_CODE:
791 return !wc->masks.tp_dst;
792
793 case MFF_N_IDS:
794 default:
795 NOT_REACHED();
796 }
797 }
798
799 /* Initializes 'mask' with the wildcard bit pattern for field 'mf' within 'wc'.
800 * Each bit in 'mask' will be set to 1 if the bit is significant for matching
801 * purposes, or to 0 if it is wildcarded.
802 *
803 * The caller is responsible for ensuring that 'wc' corresponds to a flow that
804 * meets 'mf''s prerequisites. */
805 void
806 mf_get_mask(const struct mf_field *mf, const struct flow_wildcards *wc,
807 union mf_value *mask)
808 {
809 mf_get_value(mf, &wc->masks, mask);
810 }
811
812 /* Tests whether 'mask' is a valid wildcard bit pattern for 'mf'. Returns true
813 * if the mask is valid, false otherwise. */
814 bool
815 mf_is_mask_valid(const struct mf_field *mf, const union mf_value *mask)
816 {
817 switch (mf->maskable) {
818 case MFM_NONE:
819 return (is_all_zeros((const uint8_t *) mask, mf->n_bytes) ||
820 is_all_ones((const uint8_t *) mask, mf->n_bytes));
821
822 case MFM_FULLY:
823 return true;
824 }
825
826 NOT_REACHED();
827 }
828
829 static bool
830 is_icmpv4(const struct flow *flow)
831 {
832 return (flow->dl_type == htons(ETH_TYPE_IP)
833 && flow->nw_proto == IPPROTO_ICMP);
834 }
835
836 static bool
837 is_icmpv6(const struct flow *flow)
838 {
839 return (flow->dl_type == htons(ETH_TYPE_IPV6)
840 && flow->nw_proto == IPPROTO_ICMPV6);
841 }
842
843 /* Returns true if 'flow' meets the prerequisites for 'mf', false otherwise. */
844 bool
845 mf_are_prereqs_ok(const struct mf_field *mf, const struct flow *flow)
846 {
847 switch (mf->prereqs) {
848 case MFP_NONE:
849 return true;
850
851 case MFP_ARP:
852 return (flow->dl_type == htons(ETH_TYPE_ARP) ||
853 flow->dl_type == htons(ETH_TYPE_RARP));
854 case MFP_IPV4:
855 return flow->dl_type == htons(ETH_TYPE_IP);
856 case MFP_IPV6:
857 return flow->dl_type == htons(ETH_TYPE_IPV6);
858 case MFP_VLAN_VID:
859 return (flow->vlan_tci & htons(VLAN_CFI)) != 0;
860 case MFP_MPLS:
861 return eth_type_mpls(flow->dl_type);
862 case MFP_IP_ANY:
863 return is_ip_any(flow);
864
865 case MFP_TCP:
866 return is_ip_any(flow) && flow->nw_proto == IPPROTO_TCP;
867 case MFP_UDP:
868 return is_ip_any(flow) && flow->nw_proto == IPPROTO_UDP;
869 case MFP_ICMPV4:
870 return is_icmpv4(flow);
871 case MFP_ICMPV6:
872 return is_icmpv6(flow);
873
874 case MFP_ND:
875 return (is_icmpv6(flow)
876 && flow->tp_dst == htons(0)
877 && (flow->tp_src == htons(ND_NEIGHBOR_SOLICIT) ||
878 flow->tp_src == htons(ND_NEIGHBOR_ADVERT)));
879 case MFP_ND_SOLICIT:
880 return (is_icmpv6(flow)
881 && flow->tp_dst == htons(0)
882 && (flow->tp_src == htons(ND_NEIGHBOR_SOLICIT)));
883 case MFP_ND_ADVERT:
884 return (is_icmpv6(flow)
885 && flow->tp_dst == htons(0)
886 && (flow->tp_src == htons(ND_NEIGHBOR_ADVERT)));
887 }
888
889 NOT_REACHED();
890 }
891
892 /* Returns true if 'value' may be a valid value *as part of a masked match*,
893 * false otherwise.
894 *
895 * A value is not rejected just because it is not valid for the field in
896 * question, but only if it doesn't make sense to test the bits in question at
897 * all. For example, the MFF_VLAN_TCI field will never have a nonzero value
898 * without the VLAN_CFI bit being set, but we can't reject those values because
899 * it is still legitimate to test just for those bits (see the documentation
900 * for NXM_OF_VLAN_TCI in nicira-ext.h). On the other hand, there is never a
901 * reason to set the low bit of MFF_IP_DSCP to 1, so we reject that. */
902 bool
903 mf_is_value_valid(const struct mf_field *mf, const union mf_value *value)
904 {
905 switch (mf->id) {
906 case MFF_TUN_ID:
907 case MFF_TUN_SRC:
908 case MFF_TUN_DST:
909 case MFF_TUN_TOS:
910 case MFF_TUN_TTL:
911 case MFF_TUN_FLAGS:
912 case MFF_METADATA:
913 case MFF_IN_PORT:
914 case MFF_SKB_PRIORITY:
915 case MFF_PKT_MARK:
916 CASE_MFF_REGS:
917 case MFF_ETH_SRC:
918 case MFF_ETH_DST:
919 case MFF_ETH_TYPE:
920 case MFF_VLAN_TCI:
921 case MFF_IPV4_SRC:
922 case MFF_IPV4_DST:
923 case MFF_IPV6_SRC:
924 case MFF_IPV6_DST:
925 case MFF_IP_PROTO:
926 case MFF_IP_TTL:
927 case MFF_ARP_SPA:
928 case MFF_ARP_TPA:
929 case MFF_ARP_SHA:
930 case MFF_ARP_THA:
931 case MFF_TCP_SRC:
932 case MFF_TCP_DST:
933 case MFF_UDP_SRC:
934 case MFF_UDP_DST:
935 case MFF_ICMPV4_TYPE:
936 case MFF_ICMPV4_CODE:
937 case MFF_ICMPV6_TYPE:
938 case MFF_ICMPV6_CODE:
939 case MFF_ND_TARGET:
940 case MFF_ND_SLL:
941 case MFF_ND_TLL:
942 return true;
943
944 case MFF_IN_PORT_OXM: {
945 ofp_port_t port;
946 return !ofputil_port_from_ofp11(value->be32, &port);
947 }
948
949 case MFF_IP_DSCP:
950 return !(value->u8 & ~IP_DSCP_MASK);
951 case MFF_IP_DSCP_SHIFTED:
952 return !(value->u8 & (~IP_DSCP_MASK >> 2));
953 case MFF_IP_ECN:
954 return !(value->u8 & ~IP_ECN_MASK);
955 case MFF_IP_FRAG:
956 return !(value->u8 & ~FLOW_NW_FRAG_MASK);
957
958 case MFF_ARP_OP:
959 return !(value->be16 & htons(0xff00));
960
961 case MFF_DL_VLAN:
962 return !(value->be16 & htons(VLAN_CFI | VLAN_PCP_MASK));
963 case MFF_VLAN_VID:
964 return !(value->be16 & htons(VLAN_PCP_MASK));
965
966 case MFF_DL_VLAN_PCP:
967 case MFF_VLAN_PCP:
968 return !(value->u8 & ~(VLAN_PCP_MASK >> VLAN_PCP_SHIFT));
969
970 case MFF_IPV6_LABEL:
971 return !(value->be32 & ~htonl(IPV6_LABEL_MASK));
972
973 case MFF_MPLS_LABEL:
974 return !(value->be32 & ~htonl(MPLS_LABEL_MASK >> MPLS_LABEL_SHIFT));
975
976 case MFF_MPLS_TC:
977 return !(value->u8 & ~(MPLS_TC_MASK >> MPLS_TC_SHIFT));
978
979 case MFF_MPLS_BOS:
980 return !(value->u8 & ~(MPLS_BOS_MASK >> MPLS_BOS_SHIFT));
981
982 case MFF_N_IDS:
983 default:
984 NOT_REACHED();
985 }
986 }
987
988 /* Copies the value of field 'mf' from 'flow' into 'value'. The caller is
989 * responsible for ensuring that 'flow' meets 'mf''s prerequisites. */
990 void
991 mf_get_value(const struct mf_field *mf, const struct flow *flow,
992 union mf_value *value)
993 {
994 switch (mf->id) {
995 case MFF_TUN_ID:
996 value->be64 = flow->tunnel.tun_id;
997 break;
998 case MFF_TUN_SRC:
999 value->be32 = flow->tunnel.ip_src;
1000 break;
1001 case MFF_TUN_DST:
1002 value->be32 = flow->tunnel.ip_dst;
1003 break;
1004 case MFF_TUN_FLAGS:
1005 value->be16 = htons(flow->tunnel.flags);
1006 break;
1007 case MFF_TUN_TTL:
1008 value->u8 = flow->tunnel.ip_ttl;
1009 break;
1010 case MFF_TUN_TOS:
1011 value->u8 = flow->tunnel.ip_tos;
1012 break;
1013
1014 case MFF_METADATA:
1015 value->be64 = flow->metadata;
1016 break;
1017
1018 case MFF_IN_PORT:
1019 value->be16 = htons(ofp_to_u16(flow->in_port.ofp_port));
1020 break;
1021 case MFF_IN_PORT_OXM:
1022 value->be32 = ofputil_port_to_ofp11(flow->in_port.ofp_port);
1023 break;
1024
1025 case MFF_SKB_PRIORITY:
1026 value->be32 = htonl(flow->skb_priority);
1027 break;
1028
1029 case MFF_PKT_MARK:
1030 value->be32 = htonl(flow->pkt_mark);
1031 break;
1032
1033 CASE_MFF_REGS:
1034 value->be32 = htonl(flow->regs[mf->id - MFF_REG0]);
1035 break;
1036
1037 case MFF_ETH_SRC:
1038 memcpy(value->mac, flow->dl_src, ETH_ADDR_LEN);
1039 break;
1040
1041 case MFF_ETH_DST:
1042 memcpy(value->mac, flow->dl_dst, ETH_ADDR_LEN);
1043 break;
1044
1045 case MFF_ETH_TYPE:
1046 value->be16 = flow->dl_type;
1047 break;
1048
1049 case MFF_VLAN_TCI:
1050 value->be16 = flow->vlan_tci;
1051 break;
1052
1053 case MFF_DL_VLAN:
1054 value->be16 = flow->vlan_tci & htons(VLAN_VID_MASK);
1055 break;
1056 case MFF_VLAN_VID:
1057 value->be16 = flow->vlan_tci & htons(VLAN_VID_MASK | VLAN_CFI);
1058 break;
1059
1060 case MFF_DL_VLAN_PCP:
1061 case MFF_VLAN_PCP:
1062 value->u8 = vlan_tci_to_pcp(flow->vlan_tci);
1063 break;
1064
1065 case MFF_MPLS_LABEL:
1066 value->be32 = htonl(mpls_lse_to_label(flow->mpls_lse));
1067 break;
1068
1069 case MFF_MPLS_TC:
1070 value->u8 = mpls_lse_to_tc(flow->mpls_lse);
1071 break;
1072
1073 case MFF_MPLS_BOS:
1074 value->u8 = mpls_lse_to_bos(flow->mpls_lse);
1075 break;
1076
1077 case MFF_IPV4_SRC:
1078 value->be32 = flow->nw_src;
1079 break;
1080
1081 case MFF_IPV4_DST:
1082 value->be32 = flow->nw_dst;
1083 break;
1084
1085 case MFF_IPV6_SRC:
1086 value->ipv6 = flow->ipv6_src;
1087 break;
1088
1089 case MFF_IPV6_DST:
1090 value->ipv6 = flow->ipv6_dst;
1091 break;
1092
1093 case MFF_IPV6_LABEL:
1094 value->be32 = flow->ipv6_label;
1095 break;
1096
1097 case MFF_IP_PROTO:
1098 value->u8 = flow->nw_proto;
1099 break;
1100
1101 case MFF_IP_DSCP:
1102 value->u8 = flow->nw_tos & IP_DSCP_MASK;
1103 break;
1104
1105 case MFF_IP_DSCP_SHIFTED:
1106 value->u8 = flow->nw_tos >> 2;
1107 break;
1108
1109 case MFF_IP_ECN:
1110 value->u8 = flow->nw_tos & IP_ECN_MASK;
1111 break;
1112
1113 case MFF_IP_TTL:
1114 value->u8 = flow->nw_ttl;
1115 break;
1116
1117 case MFF_IP_FRAG:
1118 value->u8 = flow->nw_frag;
1119 break;
1120
1121 case MFF_ARP_OP:
1122 value->be16 = htons(flow->nw_proto);
1123 break;
1124
1125 case MFF_ARP_SPA:
1126 value->be32 = flow->nw_src;
1127 break;
1128
1129 case MFF_ARP_TPA:
1130 value->be32 = flow->nw_dst;
1131 break;
1132
1133 case MFF_ARP_SHA:
1134 case MFF_ND_SLL:
1135 memcpy(value->mac, flow->arp_sha, ETH_ADDR_LEN);
1136 break;
1137
1138 case MFF_ARP_THA:
1139 case MFF_ND_TLL:
1140 memcpy(value->mac, flow->arp_tha, ETH_ADDR_LEN);
1141 break;
1142
1143 case MFF_TCP_SRC:
1144 case MFF_UDP_SRC:
1145 value->be16 = flow->tp_src;
1146 break;
1147
1148 case MFF_TCP_DST:
1149 case MFF_UDP_DST:
1150 value->be16 = flow->tp_dst;
1151 break;
1152
1153 case MFF_ICMPV4_TYPE:
1154 case MFF_ICMPV6_TYPE:
1155 value->u8 = ntohs(flow->tp_src);
1156 break;
1157
1158 case MFF_ICMPV4_CODE:
1159 case MFF_ICMPV6_CODE:
1160 value->u8 = ntohs(flow->tp_dst);
1161 break;
1162
1163 case MFF_ND_TARGET:
1164 value->ipv6 = flow->nd_target;
1165 break;
1166
1167 case MFF_N_IDS:
1168 default:
1169 NOT_REACHED();
1170 }
1171 }
1172
1173 /* Makes 'match' match field 'mf' exactly, with the value matched taken from
1174 * 'value'. The caller is responsible for ensuring that 'match' meets 'mf''s
1175 * prerequisites. */
1176 void
1177 mf_set_value(const struct mf_field *mf,
1178 const union mf_value *value, struct match *match)
1179 {
1180 switch (mf->id) {
1181 case MFF_TUN_ID:
1182 match_set_tun_id(match, value->be64);
1183 break;
1184 case MFF_TUN_SRC:
1185 match_set_tun_src(match, value->be32);
1186 break;
1187 case MFF_TUN_DST:
1188 match_set_tun_dst(match, value->be32);
1189 break;
1190 case MFF_TUN_FLAGS:
1191 match_set_tun_flags(match, ntohs(value->be16));
1192 break;
1193 case MFF_TUN_TOS:
1194 match_set_tun_tos(match, value->u8);
1195 break;
1196 case MFF_TUN_TTL:
1197 match_set_tun_ttl(match, value->u8);
1198 break;
1199
1200 case MFF_METADATA:
1201 match_set_metadata(match, value->be64);
1202 break;
1203
1204 case MFF_IN_PORT:
1205 match_set_in_port(match, u16_to_ofp(ntohs(value->be16)));
1206 break;
1207
1208 case MFF_IN_PORT_OXM: {
1209 ofp_port_t port;
1210 ofputil_port_from_ofp11(value->be32, &port);
1211 match_set_in_port(match, port);
1212 break;
1213 }
1214
1215 case MFF_SKB_PRIORITY:
1216 match_set_skb_priority(match, ntohl(value->be32));
1217 break;
1218
1219 case MFF_PKT_MARK:
1220 match_set_pkt_mark(match, ntohl(value->be32));
1221 break;
1222
1223 CASE_MFF_REGS:
1224 match_set_reg(match, mf->id - MFF_REG0, ntohl(value->be32));
1225 break;
1226
1227 case MFF_ETH_SRC:
1228 match_set_dl_src(match, value->mac);
1229 break;
1230
1231 case MFF_ETH_DST:
1232 match_set_dl_dst(match, value->mac);
1233 break;
1234
1235 case MFF_ETH_TYPE:
1236 match_set_dl_type(match, value->be16);
1237 break;
1238
1239 case MFF_VLAN_TCI:
1240 match_set_dl_tci(match, value->be16);
1241 break;
1242
1243 case MFF_DL_VLAN:
1244 match_set_dl_vlan(match, value->be16);
1245 break;
1246 case MFF_VLAN_VID:
1247 match_set_vlan_vid(match, value->be16);
1248 break;
1249
1250 case MFF_DL_VLAN_PCP:
1251 case MFF_VLAN_PCP:
1252 match_set_dl_vlan_pcp(match, value->u8);
1253 break;
1254
1255 case MFF_MPLS_LABEL:
1256 match_set_mpls_label(match, value->be32);
1257 break;
1258
1259 case MFF_MPLS_TC:
1260 match_set_mpls_tc(match, value->u8);
1261 break;
1262
1263 case MFF_MPLS_BOS:
1264 match_set_mpls_bos(match, value->u8);
1265 break;
1266
1267 case MFF_IPV4_SRC:
1268 match_set_nw_src(match, value->be32);
1269 break;
1270
1271 case MFF_IPV4_DST:
1272 match_set_nw_dst(match, value->be32);
1273 break;
1274
1275 case MFF_IPV6_SRC:
1276 match_set_ipv6_src(match, &value->ipv6);
1277 break;
1278
1279 case MFF_IPV6_DST:
1280 match_set_ipv6_dst(match, &value->ipv6);
1281 break;
1282
1283 case MFF_IPV6_LABEL:
1284 match_set_ipv6_label(match, value->be32);
1285 break;
1286
1287 case MFF_IP_PROTO:
1288 match_set_nw_proto(match, value->u8);
1289 break;
1290
1291 case MFF_IP_DSCP:
1292 match_set_nw_dscp(match, value->u8);
1293 break;
1294
1295 case MFF_IP_DSCP_SHIFTED:
1296 match_set_nw_dscp(match, value->u8 << 2);
1297 break;
1298
1299 case MFF_IP_ECN:
1300 match_set_nw_ecn(match, value->u8);
1301 break;
1302
1303 case MFF_IP_TTL:
1304 match_set_nw_ttl(match, value->u8);
1305 break;
1306
1307 case MFF_IP_FRAG:
1308 match_set_nw_frag(match, value->u8);
1309 break;
1310
1311 case MFF_ARP_OP:
1312 match_set_nw_proto(match, ntohs(value->be16));
1313 break;
1314
1315 case MFF_ARP_SPA:
1316 match_set_nw_src(match, value->be32);
1317 break;
1318
1319 case MFF_ARP_TPA:
1320 match_set_nw_dst(match, value->be32);
1321 break;
1322
1323 case MFF_ARP_SHA:
1324 case MFF_ND_SLL:
1325 match_set_arp_sha(match, value->mac);
1326 break;
1327
1328 case MFF_ARP_THA:
1329 case MFF_ND_TLL:
1330 match_set_arp_tha(match, value->mac);
1331 break;
1332
1333 case MFF_TCP_SRC:
1334 case MFF_UDP_SRC:
1335 match_set_tp_src(match, value->be16);
1336 break;
1337
1338 case MFF_TCP_DST:
1339 case MFF_UDP_DST:
1340 match_set_tp_dst(match, value->be16);
1341 break;
1342
1343 case MFF_ICMPV4_TYPE:
1344 case MFF_ICMPV6_TYPE:
1345 match_set_icmp_type(match, value->u8);
1346 break;
1347
1348 case MFF_ICMPV4_CODE:
1349 case MFF_ICMPV6_CODE:
1350 match_set_icmp_code(match, value->u8);
1351 break;
1352
1353 case MFF_ND_TARGET:
1354 match_set_nd_target(match, &value->ipv6);
1355 break;
1356
1357 case MFF_N_IDS:
1358 default:
1359 NOT_REACHED();
1360 }
1361 }
1362
1363 /* Sets 'flow' member field described by 'mf' to 'value'. The caller is
1364 * responsible for ensuring that 'flow' meets 'mf''s prerequisites.*/
1365 void
1366 mf_set_flow_value(const struct mf_field *mf,
1367 const union mf_value *value, struct flow *flow)
1368 {
1369 switch (mf->id) {
1370 case MFF_TUN_ID:
1371 flow->tunnel.tun_id = value->be64;
1372 break;
1373 case MFF_TUN_SRC:
1374 flow->tunnel.ip_src = value->be32;
1375 break;
1376 case MFF_TUN_DST:
1377 flow->tunnel.ip_dst = value->be32;
1378 break;
1379 case MFF_TUN_FLAGS:
1380 flow->tunnel.flags = ntohs(value->be16);
1381 break;
1382 case MFF_TUN_TOS:
1383 flow->tunnel.ip_tos = value->u8;
1384 break;
1385 case MFF_TUN_TTL:
1386 flow->tunnel.ip_ttl = value->u8;
1387 break;
1388
1389 case MFF_METADATA:
1390 flow->metadata = value->be64;
1391 break;
1392
1393 case MFF_IN_PORT:
1394 flow->in_port.ofp_port = u16_to_ofp(ntohs(value->be16));
1395 break;
1396
1397 case MFF_IN_PORT_OXM: {
1398 ofp_port_t port;
1399 ofputil_port_from_ofp11(value->be32, &port);
1400 flow->in_port.ofp_port = port;
1401 break;
1402 }
1403
1404 case MFF_SKB_PRIORITY:
1405 flow->skb_priority = ntohl(value->be32);
1406 break;
1407
1408 case MFF_PKT_MARK:
1409 flow->pkt_mark = ntohl(value->be32);
1410 break;
1411
1412 CASE_MFF_REGS:
1413 flow->regs[mf->id - MFF_REG0] = ntohl(value->be32);
1414 break;
1415
1416 case MFF_ETH_SRC:
1417 memcpy(flow->dl_src, value->mac, ETH_ADDR_LEN);
1418 break;
1419
1420 case MFF_ETH_DST:
1421 memcpy(flow->dl_dst, value->mac, ETH_ADDR_LEN);
1422 break;
1423
1424 case MFF_ETH_TYPE:
1425 flow->dl_type = value->be16;
1426 break;
1427
1428 case MFF_VLAN_TCI:
1429 flow->vlan_tci = value->be16;
1430 break;
1431
1432 case MFF_DL_VLAN:
1433 flow_set_dl_vlan(flow, value->be16);
1434 break;
1435 case MFF_VLAN_VID:
1436 flow_set_vlan_vid(flow, value->be16);
1437 break;
1438
1439 case MFF_DL_VLAN_PCP:
1440 case MFF_VLAN_PCP:
1441 flow_set_vlan_pcp(flow, value->u8);
1442 break;
1443
1444 case MFF_MPLS_LABEL:
1445 flow_set_mpls_label(flow, value->be32);
1446 break;
1447
1448 case MFF_MPLS_TC:
1449 flow_set_mpls_tc(flow, value->u8);
1450 break;
1451
1452 case MFF_MPLS_BOS:
1453 flow_set_mpls_bos(flow, value->u8);
1454 break;
1455
1456 case MFF_IPV4_SRC:
1457 flow->nw_src = value->be32;
1458 break;
1459
1460 case MFF_IPV4_DST:
1461 flow->nw_dst = value->be32;
1462 break;
1463
1464 case MFF_IPV6_SRC:
1465 flow->ipv6_src = value->ipv6;
1466 break;
1467
1468 case MFF_IPV6_DST:
1469 flow->ipv6_dst = value->ipv6;
1470 break;
1471
1472 case MFF_IPV6_LABEL:
1473 flow->ipv6_label = value->be32 & ~htonl(IPV6_LABEL_MASK);
1474 break;
1475
1476 case MFF_IP_PROTO:
1477 flow->nw_proto = value->u8;
1478 break;
1479
1480 case MFF_IP_DSCP:
1481 flow->nw_tos &= ~IP_DSCP_MASK;
1482 flow->nw_tos |= value->u8 & IP_DSCP_MASK;
1483 break;
1484
1485 case MFF_IP_DSCP_SHIFTED:
1486 flow->nw_tos &= ~IP_DSCP_MASK;
1487 flow->nw_tos |= value->u8 << 2;
1488 break;
1489
1490 case MFF_IP_ECN:
1491 flow->nw_tos &= ~IP_ECN_MASK;
1492 flow->nw_tos |= value->u8 & IP_ECN_MASK;
1493 break;
1494
1495 case MFF_IP_TTL:
1496 flow->nw_ttl = value->u8;
1497 break;
1498
1499 case MFF_IP_FRAG:
1500 flow->nw_frag &= value->u8;
1501 break;
1502
1503 case MFF_ARP_OP:
1504 flow->nw_proto = ntohs(value->be16);
1505 break;
1506
1507 case MFF_ARP_SPA:
1508 flow->nw_src = value->be32;
1509 break;
1510
1511 case MFF_ARP_TPA:
1512 flow->nw_dst = value->be32;
1513 break;
1514
1515 case MFF_ARP_SHA:
1516 case MFF_ND_SLL:
1517 memcpy(flow->arp_sha, value->mac, ETH_ADDR_LEN);
1518 break;
1519
1520 case MFF_ARP_THA:
1521 case MFF_ND_TLL:
1522 memcpy(flow->arp_tha, value->mac, ETH_ADDR_LEN);
1523 break;
1524
1525 case MFF_TCP_SRC:
1526 case MFF_UDP_SRC:
1527 flow->tp_src = value->be16;
1528 break;
1529
1530 case MFF_TCP_DST:
1531 case MFF_UDP_DST:
1532 flow->tp_dst = value->be16;
1533 break;
1534
1535 case MFF_ICMPV4_TYPE:
1536 case MFF_ICMPV6_TYPE:
1537 flow->tp_src = htons(value->u8);
1538 break;
1539
1540 case MFF_ICMPV4_CODE:
1541 case MFF_ICMPV6_CODE:
1542 flow->tp_dst = htons(value->u8);
1543 break;
1544
1545 case MFF_ND_TARGET:
1546 flow->nd_target = value->ipv6;
1547 break;
1548
1549 case MFF_N_IDS:
1550 default:
1551 NOT_REACHED();
1552 }
1553 }
1554
1555 /* Returns true if 'mf' has a zero value in 'flow', false if it is nonzero.
1556 *
1557 * The caller is responsible for ensuring that 'flow' meets 'mf''s
1558 * prerequisites. */
1559 bool
1560 mf_is_zero(const struct mf_field *mf, const struct flow *flow)
1561 {
1562 union mf_value value;
1563
1564 mf_get_value(mf, flow, &value);
1565 return is_all_zeros((const uint8_t *) &value, mf->n_bytes);
1566 }
1567
1568 /* Makes 'match' wildcard field 'mf'.
1569 *
1570 * The caller is responsible for ensuring that 'match' meets 'mf''s
1571 * prerequisites. */
1572 void
1573 mf_set_wild(const struct mf_field *mf, struct match *match)
1574 {
1575 switch (mf->id) {
1576 case MFF_TUN_ID:
1577 match_set_tun_id_masked(match, htonll(0), htonll(0));
1578 break;
1579 case MFF_TUN_SRC:
1580 match_set_tun_src_masked(match, htonl(0), htonl(0));
1581 break;
1582 case MFF_TUN_DST:
1583 match_set_tun_dst_masked(match, htonl(0), htonl(0));
1584 break;
1585 case MFF_TUN_FLAGS:
1586 match_set_tun_flags_masked(match, 0, 0);
1587 break;
1588 case MFF_TUN_TOS:
1589 match_set_tun_tos_masked(match, 0, 0);
1590 break;
1591 case MFF_TUN_TTL:
1592 match_set_tun_ttl_masked(match, 0, 0);
1593 break;
1594
1595 case MFF_METADATA:
1596 match_set_metadata_masked(match, htonll(0), htonll(0));
1597 break;
1598
1599 case MFF_IN_PORT:
1600 case MFF_IN_PORT_OXM:
1601 match->flow.in_port.ofp_port = 0;
1602 match->wc.masks.in_port.ofp_port = 0;
1603 break;
1604
1605 case MFF_SKB_PRIORITY:
1606 match->flow.skb_priority = 0;
1607 match->wc.masks.skb_priority = 0;
1608 break;
1609
1610 case MFF_PKT_MARK:
1611 match->flow.pkt_mark = 0;
1612 match->wc.masks.pkt_mark = 0;
1613 break;
1614
1615 CASE_MFF_REGS:
1616 match_set_reg_masked(match, mf->id - MFF_REG0, 0, 0);
1617 break;
1618
1619 case MFF_ETH_SRC:
1620 memset(match->flow.dl_src, 0, ETH_ADDR_LEN);
1621 memset(match->wc.masks.dl_src, 0, ETH_ADDR_LEN);
1622 break;
1623
1624 case MFF_ETH_DST:
1625 memset(match->flow.dl_dst, 0, ETH_ADDR_LEN);
1626 memset(match->wc.masks.dl_dst, 0, ETH_ADDR_LEN);
1627 break;
1628
1629 case MFF_ETH_TYPE:
1630 match->flow.dl_type = htons(0);
1631 match->wc.masks.dl_type = htons(0);
1632 break;
1633
1634 case MFF_VLAN_TCI:
1635 match_set_dl_tci_masked(match, htons(0), htons(0));
1636 break;
1637
1638 case MFF_DL_VLAN:
1639 case MFF_VLAN_VID:
1640 match_set_any_vid(match);
1641 break;
1642
1643 case MFF_DL_VLAN_PCP:
1644 case MFF_VLAN_PCP:
1645 match_set_any_pcp(match);
1646 break;
1647
1648 case MFF_MPLS_LABEL:
1649 match_set_any_mpls_label(match);
1650 break;
1651
1652 case MFF_MPLS_TC:
1653 match_set_any_mpls_tc(match);
1654 break;
1655
1656 case MFF_MPLS_BOS:
1657 match_set_any_mpls_bos(match);
1658 break;
1659
1660 case MFF_IPV4_SRC:
1661 case MFF_ARP_SPA:
1662 match_set_nw_src_masked(match, htonl(0), htonl(0));
1663 break;
1664
1665 case MFF_IPV4_DST:
1666 case MFF_ARP_TPA:
1667 match_set_nw_dst_masked(match, htonl(0), htonl(0));
1668 break;
1669
1670 case MFF_IPV6_SRC:
1671 memset(&match->wc.masks.ipv6_src, 0, sizeof match->wc.masks.ipv6_src);
1672 memset(&match->flow.ipv6_src, 0, sizeof match->flow.ipv6_src);
1673 break;
1674
1675 case MFF_IPV6_DST:
1676 memset(&match->wc.masks.ipv6_dst, 0, sizeof match->wc.masks.ipv6_dst);
1677 memset(&match->flow.ipv6_dst, 0, sizeof match->flow.ipv6_dst);
1678 break;
1679
1680 case MFF_IPV6_LABEL:
1681 match->wc.masks.ipv6_label = htonl(0);
1682 match->flow.ipv6_label = htonl(0);
1683 break;
1684
1685 case MFF_IP_PROTO:
1686 match->wc.masks.nw_proto = 0;
1687 match->flow.nw_proto = 0;
1688 break;
1689
1690 case MFF_IP_DSCP:
1691 case MFF_IP_DSCP_SHIFTED:
1692 match->wc.masks.nw_tos &= ~IP_DSCP_MASK;
1693 match->flow.nw_tos &= ~IP_DSCP_MASK;
1694 break;
1695
1696 case MFF_IP_ECN:
1697 match->wc.masks.nw_tos &= ~IP_ECN_MASK;
1698 match->flow.nw_tos &= ~IP_ECN_MASK;
1699 break;
1700
1701 case MFF_IP_TTL:
1702 match->wc.masks.nw_ttl = 0;
1703 match->flow.nw_ttl = 0;
1704 break;
1705
1706 case MFF_IP_FRAG:
1707 match->wc.masks.nw_frag |= FLOW_NW_FRAG_MASK;
1708 match->flow.nw_frag &= ~FLOW_NW_FRAG_MASK;
1709 break;
1710
1711 case MFF_ARP_OP:
1712 match->wc.masks.nw_proto = 0;
1713 match->flow.nw_proto = 0;
1714 break;
1715
1716 case MFF_ARP_SHA:
1717 case MFF_ND_SLL:
1718 memset(match->flow.arp_sha, 0, ETH_ADDR_LEN);
1719 memset(match->wc.masks.arp_sha, 0, ETH_ADDR_LEN);
1720 break;
1721
1722 case MFF_ARP_THA:
1723 case MFF_ND_TLL:
1724 memset(match->flow.arp_tha, 0, ETH_ADDR_LEN);
1725 memset(match->wc.masks.arp_tha, 0, ETH_ADDR_LEN);
1726 break;
1727
1728 case MFF_TCP_SRC:
1729 case MFF_UDP_SRC:
1730 case MFF_ICMPV4_TYPE:
1731 case MFF_ICMPV6_TYPE:
1732 match->wc.masks.tp_src = htons(0);
1733 match->flow.tp_src = htons(0);
1734 break;
1735
1736 case MFF_TCP_DST:
1737 case MFF_UDP_DST:
1738 case MFF_ICMPV4_CODE:
1739 case MFF_ICMPV6_CODE:
1740 match->wc.masks.tp_dst = htons(0);
1741 match->flow.tp_dst = htons(0);
1742 break;
1743
1744 case MFF_ND_TARGET:
1745 memset(&match->wc.masks.nd_target, 0,
1746 sizeof match->wc.masks.nd_target);
1747 memset(&match->flow.nd_target, 0, sizeof match->flow.nd_target);
1748 break;
1749
1750 case MFF_N_IDS:
1751 default:
1752 NOT_REACHED();
1753 }
1754 }
1755
1756 /* Makes 'match' match field 'mf' with the specified 'value' and 'mask'.
1757 * 'value' specifies a value to match and 'mask' specifies a wildcard pattern,
1758 * with a 1-bit indicating that the corresponding value bit must match and a
1759 * 0-bit indicating a don't-care.
1760 *
1761 * If 'mask' is NULL or points to all-1-bits, then this call is equivalent to
1762 * mf_set_value(mf, value, match). If 'mask' points to all-0-bits, then this
1763 * call is equivalent to mf_set_wild(mf, match).
1764 *
1765 * 'mask' must be a valid mask for 'mf' (see mf_is_mask_valid()). The caller
1766 * is responsible for ensuring that 'match' meets 'mf''s prerequisites. */
1767 void
1768 mf_set(const struct mf_field *mf,
1769 const union mf_value *value, const union mf_value *mask,
1770 struct match *match)
1771 {
1772 if (!mask || is_all_ones((const uint8_t *) mask, mf->n_bytes)) {
1773 mf_set_value(mf, value, match);
1774 return;
1775 } else if (is_all_zeros((const uint8_t *) mask, mf->n_bytes)) {
1776 mf_set_wild(mf, match);
1777 return;
1778 }
1779
1780 switch (mf->id) {
1781 case MFF_IN_PORT:
1782 case MFF_IN_PORT_OXM:
1783 case MFF_SKB_PRIORITY:
1784 case MFF_ETH_TYPE:
1785 case MFF_DL_VLAN:
1786 case MFF_DL_VLAN_PCP:
1787 case MFF_VLAN_PCP:
1788 case MFF_MPLS_LABEL:
1789 case MFF_MPLS_TC:
1790 case MFF_MPLS_BOS:
1791 case MFF_IP_PROTO:
1792 case MFF_IP_TTL:
1793 case MFF_IP_DSCP:
1794 case MFF_IP_DSCP_SHIFTED:
1795 case MFF_IP_ECN:
1796 case MFF_ARP_OP:
1797 case MFF_ICMPV4_TYPE:
1798 case MFF_ICMPV4_CODE:
1799 case MFF_ICMPV6_TYPE:
1800 case MFF_ICMPV6_CODE:
1801 NOT_REACHED();
1802
1803 case MFF_TUN_ID:
1804 match_set_tun_id_masked(match, value->be64, mask->be64);
1805 break;
1806 case MFF_TUN_SRC:
1807 match_set_tun_src_masked(match, value->be32, mask->be32);
1808 break;
1809 case MFF_TUN_DST:
1810 match_set_tun_dst_masked(match, value->be32, mask->be32);
1811 break;
1812 case MFF_TUN_FLAGS:
1813 match_set_tun_flags_masked(match, ntohs(value->be16), ntohs(mask->be16));
1814 break;
1815 case MFF_TUN_TTL:
1816 match_set_tun_ttl_masked(match, value->u8, mask->u8);
1817 break;
1818 case MFF_TUN_TOS:
1819 match_set_tun_tos_masked(match, value->u8, mask->u8);
1820 break;
1821
1822 case MFF_METADATA:
1823 match_set_metadata_masked(match, value->be64, mask->be64);
1824 break;
1825
1826 CASE_MFF_REGS:
1827 match_set_reg_masked(match, mf->id - MFF_REG0,
1828 ntohl(value->be32), ntohl(mask->be32));
1829 break;
1830
1831 case MFF_PKT_MARK:
1832 match_set_pkt_mark_masked(match, ntohl(value->be32),
1833 ntohl(mask->be32));
1834 break;
1835
1836 case MFF_ETH_DST:
1837 match_set_dl_dst_masked(match, value->mac, mask->mac);
1838 break;
1839
1840 case MFF_ETH_SRC:
1841 match_set_dl_src_masked(match, value->mac, mask->mac);
1842 break;
1843
1844 case MFF_ARP_SHA:
1845 case MFF_ND_SLL:
1846 match_set_arp_sha_masked(match, value->mac, mask->mac);
1847 break;
1848
1849 case MFF_ARP_THA:
1850 case MFF_ND_TLL:
1851 match_set_arp_tha_masked(match, value->mac, mask->mac);
1852 break;
1853
1854 case MFF_VLAN_TCI:
1855 match_set_dl_tci_masked(match, value->be16, mask->be16);
1856 break;
1857
1858 case MFF_VLAN_VID:
1859 match_set_vlan_vid_masked(match, value->be16, mask->be16);
1860 break;
1861
1862 case MFF_IPV4_SRC:
1863 match_set_nw_src_masked(match, value->be32, mask->be32);
1864 break;
1865
1866 case MFF_IPV4_DST:
1867 match_set_nw_dst_masked(match, value->be32, mask->be32);
1868 break;
1869
1870 case MFF_IPV6_SRC:
1871 match_set_ipv6_src_masked(match, &value->ipv6, &mask->ipv6);
1872 break;
1873
1874 case MFF_IPV6_DST:
1875 match_set_ipv6_dst_masked(match, &value->ipv6, &mask->ipv6);
1876 break;
1877
1878 case MFF_IPV6_LABEL:
1879 if ((mask->be32 & htonl(IPV6_LABEL_MASK)) == htonl(IPV6_LABEL_MASK)) {
1880 mf_set_value(mf, value, match);
1881 } else {
1882 match_set_ipv6_label_masked(match, value->be32, mask->be32);
1883 }
1884 break;
1885
1886 case MFF_ND_TARGET:
1887 match_set_nd_target_masked(match, &value->ipv6, &mask->ipv6);
1888 break;
1889
1890 case MFF_IP_FRAG:
1891 match_set_nw_frag_masked(match, value->u8, mask->u8);
1892 break;
1893
1894 case MFF_ARP_SPA:
1895 match_set_nw_src_masked(match, value->be32, mask->be32);
1896 break;
1897
1898 case MFF_ARP_TPA:
1899 match_set_nw_dst_masked(match, value->be32, mask->be32);
1900 break;
1901
1902 case MFF_TCP_SRC:
1903 case MFF_UDP_SRC:
1904 match_set_tp_src_masked(match, value->be16, mask->be16);
1905 break;
1906
1907 case MFF_TCP_DST:
1908 case MFF_UDP_DST:
1909 match_set_tp_dst_masked(match, value->be16, mask->be16);
1910 break;
1911
1912 case MFF_N_IDS:
1913 default:
1914 NOT_REACHED();
1915 }
1916 }
1917
1918 static enum ofperr
1919 mf_check__(const struct mf_subfield *sf, const struct flow *flow,
1920 const char *type)
1921 {
1922 if (!sf->field) {
1923 VLOG_WARN_RL(&rl, "unknown %s field", type);
1924 } else if (!sf->n_bits) {
1925 VLOG_WARN_RL(&rl, "zero bit %s field %s", type, sf->field->name);
1926 } else if (sf->ofs >= sf->field->n_bits) {
1927 VLOG_WARN_RL(&rl, "bit offset %d exceeds %d-bit width of %s field %s",
1928 sf->ofs, sf->field->n_bits, type, sf->field->name);
1929 } else if (sf->ofs + sf->n_bits > sf->field->n_bits) {
1930 VLOG_WARN_RL(&rl, "bit offset %d and width %d exceeds %d-bit width "
1931 "of %s field %s", sf->ofs, sf->n_bits,
1932 sf->field->n_bits, type, sf->field->name);
1933 } else if (flow && !mf_are_prereqs_ok(sf->field, flow)) {
1934 VLOG_WARN_RL(&rl, "%s field %s lacks correct prerequisites",
1935 type, sf->field->name);
1936 } else {
1937 return 0;
1938 }
1939
1940 return OFPERR_OFPBAC_BAD_ARGUMENT;
1941 }
1942
1943 /* Checks whether 'sf' is valid for reading a subfield out of 'flow'. Returns
1944 * 0 if so, otherwise an OpenFlow error code (e.g. as returned by
1945 * ofp_mkerr()). */
1946 enum ofperr
1947 mf_check_src(const struct mf_subfield *sf, const struct flow *flow)
1948 {
1949 return mf_check__(sf, flow, "source");
1950 }
1951
1952 /* Checks whether 'sf' is valid for writing a subfield into 'flow'. Returns 0
1953 * if so, otherwise an OpenFlow error code (e.g. as returned by
1954 * ofp_mkerr()). */
1955 enum ofperr
1956 mf_check_dst(const struct mf_subfield *sf, const struct flow *flow)
1957 {
1958 int error = mf_check__(sf, flow, "destination");
1959 if (!error && !sf->field->writable) {
1960 VLOG_WARN_RL(&rl, "destination field %s is not writable",
1961 sf->field->name);
1962 return OFPERR_OFPBAC_BAD_ARGUMENT;
1963 }
1964 return error;
1965 }
1966
1967 /* Copies the value and wildcard bit pattern for 'mf' from 'match' into the
1968 * 'value' and 'mask', respectively. */
1969 void
1970 mf_get(const struct mf_field *mf, const struct match *match,
1971 union mf_value *value, union mf_value *mask)
1972 {
1973 mf_get_value(mf, &match->flow, value);
1974 mf_get_mask(mf, &match->wc, mask);
1975 }
1976
1977 /* Assigns a random value for field 'mf' to 'value'. */
1978 void
1979 mf_random_value(const struct mf_field *mf, union mf_value *value)
1980 {
1981 random_bytes(value, mf->n_bytes);
1982
1983 switch (mf->id) {
1984 case MFF_TUN_ID:
1985 case MFF_TUN_SRC:
1986 case MFF_TUN_DST:
1987 case MFF_TUN_TOS:
1988 case MFF_TUN_TTL:
1989 case MFF_TUN_FLAGS:
1990 case MFF_METADATA:
1991 case MFF_IN_PORT:
1992 case MFF_PKT_MARK:
1993 case MFF_SKB_PRIORITY:
1994 CASE_MFF_REGS:
1995 case MFF_ETH_SRC:
1996 case MFF_ETH_DST:
1997 case MFF_ETH_TYPE:
1998 case MFF_VLAN_TCI:
1999 case MFF_IPV4_SRC:
2000 case MFF_IPV4_DST:
2001 case MFF_IPV6_SRC:
2002 case MFF_IPV6_DST:
2003 case MFF_IP_PROTO:
2004 case MFF_IP_TTL:
2005 case MFF_ARP_SPA:
2006 case MFF_ARP_TPA:
2007 case MFF_ARP_SHA:
2008 case MFF_ARP_THA:
2009 case MFF_TCP_SRC:
2010 case MFF_TCP_DST:
2011 case MFF_UDP_SRC:
2012 case MFF_UDP_DST:
2013 case MFF_ICMPV4_TYPE:
2014 case MFF_ICMPV4_CODE:
2015 case MFF_ICMPV6_TYPE:
2016 case MFF_ICMPV6_CODE:
2017 case MFF_ND_TARGET:
2018 case MFF_ND_SLL:
2019 case MFF_ND_TLL:
2020 break;
2021
2022 case MFF_IN_PORT_OXM:
2023 value->be32 = ofputil_port_to_ofp11(u16_to_ofp(ntohs(value->be16)));
2024 break;
2025
2026 case MFF_IPV6_LABEL:
2027 value->be32 &= ~htonl(IPV6_LABEL_MASK);
2028 break;
2029
2030 case MFF_IP_DSCP:
2031 value->u8 &= IP_DSCP_MASK;
2032 break;
2033
2034 case MFF_IP_DSCP_SHIFTED:
2035 value->u8 &= IP_DSCP_MASK >> 2;
2036 break;
2037
2038 case MFF_IP_ECN:
2039 value->u8 &= IP_ECN_MASK;
2040 break;
2041
2042 case MFF_IP_FRAG:
2043 value->u8 &= FLOW_NW_FRAG_MASK;
2044 break;
2045
2046 case MFF_ARP_OP:
2047 value->be16 &= htons(0xff);
2048 break;
2049
2050 case MFF_DL_VLAN:
2051 value->be16 &= htons(VLAN_VID_MASK);
2052 break;
2053 case MFF_VLAN_VID:
2054 value->be16 &= htons(VLAN_VID_MASK | VLAN_CFI);
2055 break;
2056
2057 case MFF_DL_VLAN_PCP:
2058 case MFF_VLAN_PCP:
2059 value->u8 &= 0x07;
2060 break;
2061
2062 case MFF_MPLS_LABEL:
2063 value->be32 &= htonl(MPLS_LABEL_MASK >> MPLS_LABEL_SHIFT);
2064 break;
2065
2066 case MFF_MPLS_TC:
2067 value->u8 &= MPLS_TC_MASK >> MPLS_TC_SHIFT;
2068 break;
2069
2070 case MFF_MPLS_BOS:
2071 value->u8 &= MPLS_BOS_MASK >> MPLS_BOS_SHIFT;
2072 break;
2073
2074 case MFF_N_IDS:
2075 default:
2076 NOT_REACHED();
2077 }
2078 }
2079
2080 static char *
2081 mf_from_integer_string(const struct mf_field *mf, const char *s,
2082 uint8_t *valuep, uint8_t *maskp)
2083 {
2084 unsigned long long int integer, mask;
2085 char *tail;
2086 int i;
2087
2088 errno = 0;
2089 integer = strtoull(s, &tail, 0);
2090 if (errno || (*tail != '\0' && *tail != '/')) {
2091 goto syntax_error;
2092 }
2093
2094 if (*tail == '/') {
2095 mask = strtoull(tail + 1, &tail, 0);
2096 if (errno || *tail != '\0') {
2097 goto syntax_error;
2098 }
2099 } else {
2100 mask = ULLONG_MAX;
2101 }
2102
2103 for (i = mf->n_bytes - 1; i >= 0; i--) {
2104 valuep[i] = integer;
2105 maskp[i] = mask;
2106 integer >>= 8;
2107 mask >>= 8;
2108 }
2109 if (integer) {
2110 return xasprintf("%s: value too large for %u-byte field %s",
2111 s, mf->n_bytes, mf->name);
2112 }
2113 return NULL;
2114
2115 syntax_error:
2116 return xasprintf("%s: bad syntax for %s", s, mf->name);
2117 }
2118
2119 static char *
2120 mf_from_ethernet_string(const struct mf_field *mf, const char *s,
2121 uint8_t mac[ETH_ADDR_LEN],
2122 uint8_t mask[ETH_ADDR_LEN])
2123 {
2124 int n;
2125
2126 ovs_assert(mf->n_bytes == ETH_ADDR_LEN);
2127
2128 n = -1;
2129 if (sscanf(s, ETH_ADDR_SCAN_FMT"%n", ETH_ADDR_SCAN_ARGS(mac), &n) > 0
2130 && n == strlen(s)) {
2131 memset(mask, 0xff, ETH_ADDR_LEN);
2132 return NULL;
2133 }
2134
2135 n = -1;
2136 if (sscanf(s, ETH_ADDR_SCAN_FMT"/"ETH_ADDR_SCAN_FMT"%n",
2137 ETH_ADDR_SCAN_ARGS(mac), ETH_ADDR_SCAN_ARGS(mask), &n) > 0
2138 && n == strlen(s)) {
2139 return NULL;
2140 }
2141
2142 return xasprintf("%s: invalid Ethernet address", s);
2143 }
2144
2145 static char *
2146 mf_from_ipv4_string(const struct mf_field *mf, const char *s,
2147 ovs_be32 *ip, ovs_be32 *mask)
2148 {
2149 int prefix;
2150
2151 ovs_assert(mf->n_bytes == sizeof *ip);
2152
2153 if (sscanf(s, IP_SCAN_FMT"/"IP_SCAN_FMT,
2154 IP_SCAN_ARGS(ip), IP_SCAN_ARGS(mask)) == IP_SCAN_COUNT * 2) {
2155 /* OK. */
2156 } else if (sscanf(s, IP_SCAN_FMT"/%d",
2157 IP_SCAN_ARGS(ip), &prefix) == IP_SCAN_COUNT + 1) {
2158 if (prefix <= 0 || prefix > 32) {
2159 return xasprintf("%s: network prefix bits not between 1 and "
2160 "32", s);
2161 } else if (prefix == 32) {
2162 *mask = htonl(UINT32_MAX);
2163 } else {
2164 *mask = htonl(((1u << prefix) - 1) << (32 - prefix));
2165 }
2166 } else if (sscanf(s, IP_SCAN_FMT, IP_SCAN_ARGS(ip)) == IP_SCAN_COUNT) {
2167 *mask = htonl(UINT32_MAX);
2168 } else {
2169 return xasprintf("%s: invalid IP address", s);
2170 }
2171 return NULL;
2172 }
2173
2174 static char *
2175 mf_from_ipv6_string(const struct mf_field *mf, const char *s,
2176 struct in6_addr *value, struct in6_addr *mask)
2177 {
2178 char *str = xstrdup(s);
2179 char *save_ptr = NULL;
2180 const char *name, *netmask;
2181 int retval;
2182
2183 ovs_assert(mf->n_bytes == sizeof *value);
2184
2185 name = strtok_r(str, "/", &save_ptr);
2186 retval = name ? lookup_ipv6(name, value) : EINVAL;
2187 if (retval) {
2188 char *err;
2189
2190 err = xasprintf("%s: could not convert to IPv6 address", str);
2191 free(str);
2192
2193 return err;
2194 }
2195
2196 netmask = strtok_r(NULL, "/", &save_ptr);
2197 if (netmask) {
2198 if (inet_pton(AF_INET6, netmask, mask) != 1) {
2199 int prefix = atoi(netmask);
2200 if (prefix <= 0 || prefix > 128) {
2201 free(str);
2202 return xasprintf("%s: prefix bits not between 1 and 128", s);
2203 } else {
2204 *mask = ipv6_create_mask(prefix);
2205 }
2206 }
2207 } else {
2208 *mask = in6addr_exact;
2209 }
2210 free(str);
2211
2212 return NULL;
2213 }
2214
2215 static char *
2216 mf_from_ofp_port_string(const struct mf_field *mf, const char *s,
2217 ovs_be16 *valuep, ovs_be16 *maskp)
2218 {
2219 ofp_port_t port;
2220
2221 ovs_assert(mf->n_bytes == sizeof(ovs_be16));
2222
2223 if (ofputil_port_from_string(s, &port)) {
2224 *valuep = htons(ofp_to_u16(port));
2225 *maskp = htons(UINT16_MAX);
2226 return NULL;
2227 }
2228 return xasprintf("%s: port value out of range for %s", s, mf->name);
2229 }
2230
2231 static char *
2232 mf_from_ofp_port_string32(const struct mf_field *mf, const char *s,
2233 ovs_be32 *valuep, ovs_be32 *maskp)
2234 {
2235 ofp_port_t port;
2236
2237 ovs_assert(mf->n_bytes == sizeof(ovs_be32));
2238 if (ofputil_port_from_string(s, &port)) {
2239 *valuep = ofputil_port_to_ofp11(port);
2240 *maskp = htonl(UINT32_MAX);
2241 return NULL;
2242 }
2243 return xasprintf("%s: port value out of range for %s", s, mf->name);
2244 }
2245
2246 struct frag_handling {
2247 const char *name;
2248 uint8_t mask;
2249 uint8_t value;
2250 };
2251
2252 static const struct frag_handling all_frags[] = {
2253 #define A FLOW_NW_FRAG_ANY
2254 #define L FLOW_NW_FRAG_LATER
2255 /* name mask value */
2256
2257 { "no", A|L, 0 },
2258 { "first", A|L, A },
2259 { "later", A|L, A|L },
2260
2261 { "no", A, 0 },
2262 { "yes", A, A },
2263
2264 { "not_later", L, 0 },
2265 { "later", L, L },
2266 #undef A
2267 #undef L
2268 };
2269
2270 static char *
2271 mf_from_frag_string(const char *s, uint8_t *valuep, uint8_t *maskp)
2272 {
2273 const struct frag_handling *h;
2274
2275 for (h = all_frags; h < &all_frags[ARRAY_SIZE(all_frags)]; h++) {
2276 if (!strcasecmp(s, h->name)) {
2277 /* We force the upper bits of the mask on to make mf_parse_value()
2278 * happy (otherwise it will never think it's an exact match.) */
2279 *maskp = h->mask | ~FLOW_NW_FRAG_MASK;
2280 *valuep = h->value;
2281 return NULL;
2282 }
2283 }
2284
2285 return xasprintf("%s: unknown fragment type (valid types are \"no\", "
2286 "\"yes\", \"first\", \"later\", \"not_first\"", s);
2287 }
2288
2289 static int
2290 parse_flow_tun_flags(const char *s_, const char *(*bit_to_string)(uint32_t),
2291 ovs_be16 *res)
2292 {
2293 uint32_t result = 0;
2294 char *save_ptr = NULL;
2295 char *name;
2296 int rc = 0;
2297 char *s = xstrdup(s_);
2298
2299 for (name = strtok_r((char *)s, " |", &save_ptr); name;
2300 name = strtok_r(NULL, " |", &save_ptr)) {
2301 int name_len;
2302 unsigned long long int flags;
2303 uint32_t bit;
2304 int n0;
2305
2306 if (sscanf(name, "%lli%n", &flags, &n0) > 0 && n0 > 0) {
2307 result |= flags;
2308 continue;
2309 }
2310 name_len = strlen(name);
2311 for (bit = 1; bit; bit <<= 1) {
2312 const char *fname = bit_to_string(bit);
2313 size_t len;
2314
2315 if (!fname) {
2316 continue;
2317 }
2318
2319 len = strlen(fname);
2320 if (len != name_len) {
2321 continue;
2322 }
2323 if (!strncmp(name, fname, len)) {
2324 result |= bit;
2325 break;
2326 }
2327 }
2328
2329 if (!bit) {
2330 rc = -ENOENT;
2331 goto out;
2332 }
2333 }
2334
2335 *res = htons(result);
2336 out:
2337 free(s);
2338 return rc;
2339 }
2340
2341 static char *
2342 mf_from_tun_flags_string(const char *s, ovs_be16 *valuep, ovs_be16 *maskp)
2343 {
2344 if (!parse_flow_tun_flags(s, flow_tun_flag_to_string, valuep)) {
2345 *maskp = htons(UINT16_MAX);
2346 return NULL;
2347 }
2348
2349 return xasprintf("%s: unknown tunnel flags (valid flags are \"df\", "
2350 "\"csum\", \"key\"", s);
2351 }
2352
2353 /* Parses 's', a string value for field 'mf', into 'value' and 'mask'. Returns
2354 * NULL if successful, otherwise a malloc()'d string describing the error. */
2355 char *
2356 mf_parse(const struct mf_field *mf, const char *s,
2357 union mf_value *value, union mf_value *mask)
2358 {
2359 if (!strcmp(s, "*")) {
2360 memset(value, 0, mf->n_bytes);
2361 memset(mask, 0, mf->n_bytes);
2362 return NULL;
2363 }
2364
2365 switch (mf->string) {
2366 case MFS_DECIMAL:
2367 case MFS_HEXADECIMAL:
2368 return mf_from_integer_string(mf, s,
2369 (uint8_t *) value, (uint8_t *) mask);
2370
2371 case MFS_ETHERNET:
2372 return mf_from_ethernet_string(mf, s, value->mac, mask->mac);
2373
2374 case MFS_IPV4:
2375 return mf_from_ipv4_string(mf, s, &value->be32, &mask->be32);
2376
2377 case MFS_IPV6:
2378 return mf_from_ipv6_string(mf, s, &value->ipv6, &mask->ipv6);
2379
2380 case MFS_OFP_PORT:
2381 return mf_from_ofp_port_string(mf, s, &value->be16, &mask->be16);
2382
2383 case MFS_OFP_PORT_OXM:
2384 return mf_from_ofp_port_string32(mf, s, &value->be32, &mask->be32);
2385
2386 case MFS_FRAG:
2387 return mf_from_frag_string(s, &value->u8, &mask->u8);
2388
2389 case MFS_TNL_FLAGS:
2390 ovs_assert(mf->n_bytes == sizeof(ovs_be16));
2391 return mf_from_tun_flags_string(s, &value->be16, &mask->be16);
2392 }
2393 NOT_REACHED();
2394 }
2395
2396 /* Parses 's', a string value for field 'mf', into 'value'. Returns NULL if
2397 * successful, otherwise a malloc()'d string describing the error. */
2398 char *
2399 mf_parse_value(const struct mf_field *mf, const char *s, union mf_value *value)
2400 {
2401 union mf_value mask;
2402 char *error;
2403
2404 error = mf_parse(mf, s, value, &mask);
2405 if (error) {
2406 return error;
2407 }
2408
2409 if (!is_all_ones((const uint8_t *) &mask, mf->n_bytes)) {
2410 return xasprintf("%s: wildcards not allowed here", s);
2411 }
2412 return NULL;
2413 }
2414
2415 static void
2416 mf_format_integer_string(const struct mf_field *mf, const uint8_t *valuep,
2417 const uint8_t *maskp, struct ds *s)
2418 {
2419 unsigned long long int integer;
2420 int i;
2421
2422 ovs_assert(mf->n_bytes <= 8);
2423
2424 integer = 0;
2425 for (i = 0; i < mf->n_bytes; i++) {
2426 integer = (integer << 8) | valuep[i];
2427 }
2428 if (mf->string == MFS_HEXADECIMAL) {
2429 ds_put_format(s, "%#llx", integer);
2430 } else {
2431 ds_put_format(s, "%lld", integer);
2432 }
2433
2434 if (maskp) {
2435 unsigned long long int mask;
2436
2437 mask = 0;
2438 for (i = 0; i < mf->n_bytes; i++) {
2439 mask = (mask << 8) | maskp[i];
2440 }
2441
2442 /* I guess we could write the mask in decimal for MFS_DECIMAL but I'm
2443 * not sure that that a bit-mask written in decimal is ever easier to
2444 * understand than the same bit-mask written in hexadecimal. */
2445 ds_put_format(s, "/%#llx", mask);
2446 }
2447 }
2448
2449 static void
2450 mf_format_frag_string(uint8_t value, uint8_t mask, struct ds *s)
2451 {
2452 const struct frag_handling *h;
2453
2454 mask &= FLOW_NW_FRAG_MASK;
2455 value &= mask;
2456
2457 for (h = all_frags; h < &all_frags[ARRAY_SIZE(all_frags)]; h++) {
2458 if (value == h->value && mask == h->mask) {
2459 ds_put_cstr(s, h->name);
2460 return;
2461 }
2462 }
2463 ds_put_cstr(s, "<error>");
2464 }
2465
2466 static void
2467 mf_format_tnl_flags_string(const ovs_be16 *valuep, struct ds *s)
2468 {
2469 format_flags(s, flow_tun_flag_to_string, ntohs(*valuep), '|');
2470 }
2471
2472 /* Appends to 's' a string representation of field 'mf' whose value is in
2473 * 'value' and 'mask'. 'mask' may be NULL to indicate an exact match. */
2474 void
2475 mf_format(const struct mf_field *mf,
2476 const union mf_value *value, const union mf_value *mask,
2477 struct ds *s)
2478 {
2479 if (mask) {
2480 if (is_all_zeros((const uint8_t *) mask, mf->n_bytes)) {
2481 ds_put_cstr(s, "ANY");
2482 return;
2483 } else if (is_all_ones((const uint8_t *) mask, mf->n_bytes)) {
2484 mask = NULL;
2485 }
2486 }
2487
2488 switch (mf->string) {
2489 case MFS_OFP_PORT_OXM:
2490 if (!mask) {
2491 ofp_port_t port;
2492 ofputil_port_from_ofp11(value->be32, &port);
2493 ofputil_format_port(port, s);
2494 break;
2495 }
2496 /* fall through */
2497 case MFS_OFP_PORT:
2498 if (!mask) {
2499 ofputil_format_port(u16_to_ofp(ntohs(value->be16)), s);
2500 break;
2501 }
2502 /* fall through */
2503 case MFS_DECIMAL:
2504 case MFS_HEXADECIMAL:
2505 mf_format_integer_string(mf, (uint8_t *) value, (uint8_t *) mask, s);
2506 break;
2507
2508 case MFS_ETHERNET:
2509 eth_format_masked(value->mac, mask->mac, s);
2510 break;
2511
2512 case MFS_IPV4:
2513 ip_format_masked(value->be32, mask ? mask->be32 : htonl(UINT32_MAX),
2514 s);
2515 break;
2516
2517 case MFS_IPV6:
2518 print_ipv6_masked(s, &value->ipv6, mask ? &mask->ipv6 : NULL);
2519 break;
2520
2521 case MFS_FRAG:
2522 mf_format_frag_string(value->u8, mask ? mask->u8 : UINT8_MAX, s);
2523 break;
2524
2525 case MFS_TNL_FLAGS:
2526 mf_format_tnl_flags_string(&value->be16, s);
2527 break;
2528
2529 default:
2530 NOT_REACHED();
2531 }
2532 }
2533 \f
2534 /* Makes subfield 'sf' within 'flow' exactly match the 'sf->n_bits'
2535 * least-significant bits in 'x'.
2536 */
2537 void
2538 mf_write_subfield_flow(const struct mf_subfield *sf,
2539 const union mf_subvalue *x, struct flow *flow)
2540 {
2541 const struct mf_field *field = sf->field;
2542 union mf_value value;
2543
2544 mf_get_value(field, flow, &value);
2545 bitwise_copy(x, sizeof *x, 0, &value, field->n_bytes,
2546 sf->ofs, sf->n_bits);
2547 mf_set_flow_value(field, &value, flow);
2548 }
2549
2550 /* Makes subfield 'sf' within 'match' exactly match the 'sf->n_bits'
2551 * least-significant bits in 'x'.
2552 */
2553 void
2554 mf_write_subfield(const struct mf_subfield *sf, const union mf_subvalue *x,
2555 struct match *match)
2556 {
2557 const struct mf_field *field = sf->field;
2558 union mf_value value, mask;
2559
2560 mf_get(field, match, &value, &mask);
2561 bitwise_copy(x, sizeof *x, 0, &value, field->n_bytes, sf->ofs, sf->n_bits);
2562 bitwise_one ( &mask, field->n_bytes, sf->ofs, sf->n_bits);
2563 mf_set(field, &value, &mask, match);
2564 }
2565
2566 /* Initializes 'x' to the value of 'sf' within 'flow'. 'sf' must be valid for
2567 * reading 'flow', e.g. as checked by mf_check_src(). */
2568 void
2569 mf_read_subfield(const struct mf_subfield *sf, const struct flow *flow,
2570 union mf_subvalue *x)
2571 {
2572 union mf_value value;
2573
2574 mf_get_value(sf->field, flow, &value);
2575
2576 memset(x, 0, sizeof *x);
2577 bitwise_copy(&value, sf->field->n_bytes, sf->ofs,
2578 x, sizeof *x, 0,
2579 sf->n_bits);
2580 }
2581
2582 /* Returns the value of 'sf' within 'flow'. 'sf' must be valid for reading
2583 * 'flow', e.g. as checked by mf_check_src() and sf->n_bits must be 64 or
2584 * less. */
2585 uint64_t
2586 mf_get_subfield(const struct mf_subfield *sf, const struct flow *flow)
2587 {
2588 union mf_value value;
2589
2590 mf_get_value(sf->field, flow, &value);
2591 return bitwise_get(&value, sf->field->n_bytes, sf->ofs, sf->n_bits);
2592 }
2593
2594 /* Formats 'sf' into 's' in a format normally acceptable to
2595 * mf_parse_subfield(). (It won't be acceptable if sf->field is NULL or if
2596 * sf->field has no NXM name.) */
2597 void
2598 mf_format_subfield(const struct mf_subfield *sf, struct ds *s)
2599 {
2600 if (!sf->field) {
2601 ds_put_cstr(s, "<unknown>");
2602 } else if (sf->field->nxm_name) {
2603 ds_put_cstr(s, sf->field->nxm_name);
2604 } else if (sf->field->nxm_header) {
2605 uint32_t header = sf->field->nxm_header;
2606 ds_put_format(s, "%d:%d", NXM_VENDOR(header), NXM_FIELD(header));
2607 } else {
2608 ds_put_cstr(s, sf->field->name);
2609 }
2610
2611 if (sf->field && sf->ofs == 0 && sf->n_bits == sf->field->n_bits) {
2612 ds_put_cstr(s, "[]");
2613 } else if (sf->n_bits == 1) {
2614 ds_put_format(s, "[%d]", sf->ofs);
2615 } else {
2616 ds_put_format(s, "[%d..%d]", sf->ofs, sf->ofs + sf->n_bits - 1);
2617 }
2618 }
2619
2620 static const struct mf_field *
2621 mf_parse_subfield_name(const char *name, int name_len, bool *wild)
2622 {
2623 int i;
2624
2625 *wild = name_len > 2 && !memcmp(&name[name_len - 2], "_W", 2);
2626 if (*wild) {
2627 name_len -= 2;
2628 }
2629
2630 for (i = 0; i < MFF_N_IDS; i++) {
2631 const struct mf_field *mf = mf_from_id(i);
2632
2633 if (mf->nxm_name
2634 && !strncmp(mf->nxm_name, name, name_len)
2635 && mf->nxm_name[name_len] == '\0') {
2636 return mf;
2637 }
2638 if (mf->oxm_name
2639 && !strncmp(mf->oxm_name, name, name_len)
2640 && mf->oxm_name[name_len] == '\0') {
2641 return mf;
2642 }
2643 }
2644
2645 return NULL;
2646 }
2647
2648 /* Parses a subfield from the beginning of '*sp' into 'sf'. If successful,
2649 * returns NULL and advances '*sp' to the first byte following the parsed
2650 * string. On failure, returns a malloc()'d error message, does not modify
2651 * '*sp', and does not properly initialize 'sf'.
2652 *
2653 * The syntax parsed from '*sp' takes the form "header[start..end]" where
2654 * 'header' is the name of an NXM field and 'start' and 'end' are (inclusive)
2655 * bit indexes. "..end" may be omitted to indicate a single bit. "start..end"
2656 * may both be omitted (the [] are still required) to indicate an entire
2657 * field. */
2658 char * WARN_UNUSED_RESULT
2659 mf_parse_subfield__(struct mf_subfield *sf, const char **sp)
2660 {
2661 const struct mf_field *field;
2662 const char *name;
2663 int start, end;
2664 const char *s;
2665 int name_len;
2666 bool wild;
2667
2668 s = *sp;
2669 name = s;
2670 name_len = strcspn(s, "[");
2671 if (s[name_len] != '[') {
2672 return xasprintf("%s: missing [ looking for field name", *sp);
2673 }
2674
2675 field = mf_parse_subfield_name(name, name_len, &wild);
2676 if (!field) {
2677 return xasprintf("%s: unknown field `%.*s'", *sp, name_len, s);
2678 }
2679
2680 s += name_len;
2681 if (sscanf(s, "[%d..%d]", &start, &end) == 2) {
2682 /* Nothing to do. */
2683 } else if (sscanf(s, "[%d]", &start) == 1) {
2684 end = start;
2685 } else if (!strncmp(s, "[]", 2)) {
2686 start = 0;
2687 end = field->n_bits - 1;
2688 } else {
2689 return xasprintf("%s: syntax error expecting [] or [<bit>] or "
2690 "[<start>..<end>]", *sp);
2691 }
2692 s = strchr(s, ']') + 1;
2693
2694 if (start > end) {
2695 return xasprintf("%s: starting bit %d is after ending bit %d",
2696 *sp, start, end);
2697 } else if (start >= field->n_bits) {
2698 return xasprintf("%s: starting bit %d is not valid because field is "
2699 "only %d bits wide", *sp, start, field->n_bits);
2700 } else if (end >= field->n_bits){
2701 return xasprintf("%s: ending bit %d is not valid because field is "
2702 "only %d bits wide", *sp, end, field->n_bits);
2703 }
2704
2705 sf->field = field;
2706 sf->ofs = start;
2707 sf->n_bits = end - start + 1;
2708
2709 *sp = s;
2710 return NULL;
2711 }
2712
2713 /* Parses a subfield from the entirety of 's' into 'sf'. Returns NULL if
2714 * successful, otherwise a malloc()'d string describing the error. The caller
2715 * is responsible for freeing the returned string.
2716 *
2717 * The syntax parsed from 's' takes the form "header[start..end]" where
2718 * 'header' is the name of an NXM field and 'start' and 'end' are (inclusive)
2719 * bit indexes. "..end" may be omitted to indicate a single bit. "start..end"
2720 * may both be omitted (the [] are still required) to indicate an entire
2721 * field. */
2722 char * WARN_UNUSED_RESULT
2723 mf_parse_subfield(struct mf_subfield *sf, const char *s)
2724 {
2725 char *error = mf_parse_subfield__(sf, &s);
2726 if (!error && s[0]) {
2727 error = xstrdup("unexpected input following field syntax");
2728 }
2729 return error;
2730 }
2731
2732 void
2733 mf_format_subvalue(const union mf_subvalue *subvalue, struct ds *s)
2734 {
2735 int i;
2736
2737 for (i = 0; i < ARRAY_SIZE(subvalue->u8); i++) {
2738 if (subvalue->u8[i]) {
2739 ds_put_format(s, "0x%"PRIx8, subvalue->u8[i]);
2740 for (i++; i < ARRAY_SIZE(subvalue->u8); i++) {
2741 ds_put_format(s, "%02"PRIx8, subvalue->u8[i]);
2742 }
2743 return;
2744 }
2745 }
2746 ds_put_char(s, '0');
2747 }