]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - lib/rhashtable.c
Merge branch 'rhashtable-allocation-failure-during-insertion'
[mirror_ubuntu-zesty-kernel.git] / lib / rhashtable.c
1 /*
2 * Resizable, Scalable, Concurrent Hash Table
3 *
4 * Copyright (c) 2015 Herbert Xu <herbert@gondor.apana.org.au>
5 * Copyright (c) 2014-2015 Thomas Graf <tgraf@suug.ch>
6 * Copyright (c) 2008-2014 Patrick McHardy <kaber@trash.net>
7 *
8 * Code partially derived from nft_hash
9 * Rewritten with rehash code from br_multicast plus single list
10 * pointer as suggested by Josh Triplett
11 *
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License version 2 as
14 * published by the Free Software Foundation.
15 */
16
17 #include <linux/atomic.h>
18 #include <linux/kernel.h>
19 #include <linux/init.h>
20 #include <linux/log2.h>
21 #include <linux/sched.h>
22 #include <linux/slab.h>
23 #include <linux/vmalloc.h>
24 #include <linux/mm.h>
25 #include <linux/jhash.h>
26 #include <linux/random.h>
27 #include <linux/rhashtable.h>
28 #include <linux/err.h>
29 #include <linux/export.h>
30
31 #define HASH_DEFAULT_SIZE 64UL
32 #define HASH_MIN_SIZE 4U
33 #define BUCKET_LOCKS_PER_CPU 32UL
34
35 union nested_table {
36 union nested_table __rcu *table;
37 struct rhash_head __rcu *bucket;
38 };
39
40 static u32 head_hashfn(struct rhashtable *ht,
41 const struct bucket_table *tbl,
42 const struct rhash_head *he)
43 {
44 return rht_head_hashfn(ht, tbl, he, ht->p);
45 }
46
47 #ifdef CONFIG_PROVE_LOCKING
48 #define ASSERT_RHT_MUTEX(HT) BUG_ON(!lockdep_rht_mutex_is_held(HT))
49
50 int lockdep_rht_mutex_is_held(struct rhashtable *ht)
51 {
52 return (debug_locks) ? lockdep_is_held(&ht->mutex) : 1;
53 }
54 EXPORT_SYMBOL_GPL(lockdep_rht_mutex_is_held);
55
56 int lockdep_rht_bucket_is_held(const struct bucket_table *tbl, u32 hash)
57 {
58 spinlock_t *lock = rht_bucket_lock(tbl, hash);
59
60 return (debug_locks) ? lockdep_is_held(lock) : 1;
61 }
62 EXPORT_SYMBOL_GPL(lockdep_rht_bucket_is_held);
63 #else
64 #define ASSERT_RHT_MUTEX(HT)
65 #endif
66
67
68 static int alloc_bucket_locks(struct rhashtable *ht, struct bucket_table *tbl,
69 gfp_t gfp)
70 {
71 unsigned int i, size;
72 #if defined(CONFIG_PROVE_LOCKING)
73 unsigned int nr_pcpus = 2;
74 #else
75 unsigned int nr_pcpus = num_possible_cpus();
76 #endif
77
78 nr_pcpus = min_t(unsigned int, nr_pcpus, 64UL);
79 size = roundup_pow_of_two(nr_pcpus * ht->p.locks_mul);
80
81 /* Never allocate more than 0.5 locks per bucket */
82 size = min_t(unsigned int, size, tbl->size >> 1);
83
84 if (tbl->nest)
85 size = min(size, 1U << tbl->nest);
86
87 if (sizeof(spinlock_t) != 0) {
88 tbl->locks = NULL;
89 #ifdef CONFIG_NUMA
90 if (size * sizeof(spinlock_t) > PAGE_SIZE &&
91 gfp == GFP_KERNEL)
92 tbl->locks = vmalloc(size * sizeof(spinlock_t));
93 #endif
94 if (gfp != GFP_KERNEL)
95 gfp |= __GFP_NOWARN | __GFP_NORETRY;
96
97 if (!tbl->locks)
98 tbl->locks = kmalloc_array(size, sizeof(spinlock_t),
99 gfp);
100 if (!tbl->locks)
101 return -ENOMEM;
102 for (i = 0; i < size; i++)
103 spin_lock_init(&tbl->locks[i]);
104 }
105 tbl->locks_mask = size - 1;
106
107 return 0;
108 }
109
110 static void nested_table_free(union nested_table *ntbl, unsigned int size)
111 {
112 const unsigned int shift = PAGE_SHIFT - ilog2(sizeof(void *));
113 const unsigned int len = 1 << shift;
114 unsigned int i;
115
116 ntbl = rcu_dereference_raw(ntbl->table);
117 if (!ntbl)
118 return;
119
120 if (size > len) {
121 size >>= shift;
122 for (i = 0; i < len; i++)
123 nested_table_free(ntbl + i, size);
124 }
125
126 kfree(ntbl);
127 }
128
129 static void nested_bucket_table_free(const struct bucket_table *tbl)
130 {
131 unsigned int size = tbl->size >> tbl->nest;
132 unsigned int len = 1 << tbl->nest;
133 union nested_table *ntbl;
134 unsigned int i;
135
136 ntbl = (union nested_table *)rcu_dereference_raw(tbl->buckets[0]);
137
138 for (i = 0; i < len; i++)
139 nested_table_free(ntbl + i, size);
140
141 kfree(ntbl);
142 }
143
144 static void bucket_table_free(const struct bucket_table *tbl)
145 {
146 if (tbl->nest)
147 nested_bucket_table_free(tbl);
148
149 if (tbl)
150 kvfree(tbl->locks);
151
152 kvfree(tbl);
153 }
154
155 static void bucket_table_free_rcu(struct rcu_head *head)
156 {
157 bucket_table_free(container_of(head, struct bucket_table, rcu));
158 }
159
160 static union nested_table *nested_table_alloc(struct rhashtable *ht,
161 union nested_table __rcu **prev,
162 unsigned int shifted,
163 unsigned int nhash)
164 {
165 union nested_table *ntbl;
166 int i;
167
168 ntbl = rcu_dereference(*prev);
169 if (ntbl)
170 return ntbl;
171
172 ntbl = kzalloc(PAGE_SIZE, GFP_ATOMIC);
173
174 if (ntbl && shifted) {
175 for (i = 0; i < PAGE_SIZE / sizeof(ntbl[0].bucket); i++)
176 INIT_RHT_NULLS_HEAD(ntbl[i].bucket, ht,
177 (i << shifted) | nhash);
178 }
179
180 rcu_assign_pointer(*prev, ntbl);
181
182 return ntbl;
183 }
184
185 static struct bucket_table *nested_bucket_table_alloc(struct rhashtable *ht,
186 size_t nbuckets,
187 gfp_t gfp)
188 {
189 const unsigned int shift = PAGE_SHIFT - ilog2(sizeof(void *));
190 struct bucket_table *tbl;
191 size_t size;
192
193 if (nbuckets < (1 << (shift + 1)))
194 return NULL;
195
196 size = sizeof(*tbl) + sizeof(tbl->buckets[0]);
197
198 tbl = kzalloc(size, gfp);
199 if (!tbl)
200 return NULL;
201
202 if (!nested_table_alloc(ht, (union nested_table __rcu **)tbl->buckets,
203 0, 0)) {
204 kfree(tbl);
205 return NULL;
206 }
207
208 tbl->nest = (ilog2(nbuckets) - 1) % shift + 1;
209
210 return tbl;
211 }
212
213 static struct bucket_table *bucket_table_alloc(struct rhashtable *ht,
214 size_t nbuckets,
215 gfp_t gfp)
216 {
217 struct bucket_table *tbl = NULL;
218 size_t size;
219 int i;
220
221 size = sizeof(*tbl) + nbuckets * sizeof(tbl->buckets[0]);
222 if (size <= (PAGE_SIZE << PAGE_ALLOC_COSTLY_ORDER) ||
223 gfp != GFP_KERNEL)
224 tbl = kzalloc(size, gfp | __GFP_NOWARN | __GFP_NORETRY);
225 if (tbl == NULL && gfp == GFP_KERNEL)
226 tbl = vzalloc(size);
227
228 size = nbuckets;
229
230 if (tbl == NULL && gfp != GFP_KERNEL) {
231 tbl = nested_bucket_table_alloc(ht, nbuckets, gfp);
232 nbuckets = 0;
233 }
234 if (tbl == NULL)
235 return NULL;
236
237 tbl->size = size;
238
239 if (alloc_bucket_locks(ht, tbl, gfp) < 0) {
240 bucket_table_free(tbl);
241 return NULL;
242 }
243
244 INIT_LIST_HEAD(&tbl->walkers);
245
246 get_random_bytes(&tbl->hash_rnd, sizeof(tbl->hash_rnd));
247
248 for (i = 0; i < nbuckets; i++)
249 INIT_RHT_NULLS_HEAD(tbl->buckets[i], ht, i);
250
251 return tbl;
252 }
253
254 static struct bucket_table *rhashtable_last_table(struct rhashtable *ht,
255 struct bucket_table *tbl)
256 {
257 struct bucket_table *new_tbl;
258
259 do {
260 new_tbl = tbl;
261 tbl = rht_dereference_rcu(tbl->future_tbl, ht);
262 } while (tbl);
263
264 return new_tbl;
265 }
266
267 static int rhashtable_rehash_one(struct rhashtable *ht, unsigned int old_hash)
268 {
269 struct bucket_table *old_tbl = rht_dereference(ht->tbl, ht);
270 struct bucket_table *new_tbl = rhashtable_last_table(ht,
271 rht_dereference_rcu(old_tbl->future_tbl, ht));
272 struct rhash_head __rcu **pprev = rht_bucket_var(old_tbl, old_hash);
273 int err = -EAGAIN;
274 struct rhash_head *head, *next, *entry;
275 spinlock_t *new_bucket_lock;
276 unsigned int new_hash;
277
278 if (new_tbl->nest)
279 goto out;
280
281 err = -ENOENT;
282
283 rht_for_each(entry, old_tbl, old_hash) {
284 err = 0;
285 next = rht_dereference_bucket(entry->next, old_tbl, old_hash);
286
287 if (rht_is_a_nulls(next))
288 break;
289
290 pprev = &entry->next;
291 }
292
293 if (err)
294 goto out;
295
296 new_hash = head_hashfn(ht, new_tbl, entry);
297
298 new_bucket_lock = rht_bucket_lock(new_tbl, new_hash);
299
300 spin_lock_nested(new_bucket_lock, SINGLE_DEPTH_NESTING);
301 head = rht_dereference_bucket(new_tbl->buckets[new_hash],
302 new_tbl, new_hash);
303
304 RCU_INIT_POINTER(entry->next, head);
305
306 rcu_assign_pointer(new_tbl->buckets[new_hash], entry);
307 spin_unlock(new_bucket_lock);
308
309 rcu_assign_pointer(*pprev, next);
310
311 out:
312 return err;
313 }
314
315 static int rhashtable_rehash_chain(struct rhashtable *ht,
316 unsigned int old_hash)
317 {
318 struct bucket_table *old_tbl = rht_dereference(ht->tbl, ht);
319 spinlock_t *old_bucket_lock;
320 int err;
321
322 old_bucket_lock = rht_bucket_lock(old_tbl, old_hash);
323
324 spin_lock_bh(old_bucket_lock);
325 while (!(err = rhashtable_rehash_one(ht, old_hash)))
326 ;
327
328 if (err == -ENOENT) {
329 old_tbl->rehash++;
330 err = 0;
331 }
332 spin_unlock_bh(old_bucket_lock);
333
334 return err;
335 }
336
337 static int rhashtable_rehash_attach(struct rhashtable *ht,
338 struct bucket_table *old_tbl,
339 struct bucket_table *new_tbl)
340 {
341 /* Protect future_tbl using the first bucket lock. */
342 spin_lock_bh(old_tbl->locks);
343
344 /* Did somebody beat us to it? */
345 if (rcu_access_pointer(old_tbl->future_tbl)) {
346 spin_unlock_bh(old_tbl->locks);
347 return -EEXIST;
348 }
349
350 /* Make insertions go into the new, empty table right away. Deletions
351 * and lookups will be attempted in both tables until we synchronize.
352 */
353 rcu_assign_pointer(old_tbl->future_tbl, new_tbl);
354
355 spin_unlock_bh(old_tbl->locks);
356
357 return 0;
358 }
359
360 static int rhashtable_rehash_table(struct rhashtable *ht)
361 {
362 struct bucket_table *old_tbl = rht_dereference(ht->tbl, ht);
363 struct bucket_table *new_tbl;
364 struct rhashtable_walker *walker;
365 unsigned int old_hash;
366 int err;
367
368 new_tbl = rht_dereference(old_tbl->future_tbl, ht);
369 if (!new_tbl)
370 return 0;
371
372 for (old_hash = 0; old_hash < old_tbl->size; old_hash++) {
373 err = rhashtable_rehash_chain(ht, old_hash);
374 if (err)
375 return err;
376 }
377
378 /* Publish the new table pointer. */
379 rcu_assign_pointer(ht->tbl, new_tbl);
380
381 spin_lock(&ht->lock);
382 list_for_each_entry(walker, &old_tbl->walkers, list)
383 walker->tbl = NULL;
384 spin_unlock(&ht->lock);
385
386 /* Wait for readers. All new readers will see the new
387 * table, and thus no references to the old table will
388 * remain.
389 */
390 call_rcu(&old_tbl->rcu, bucket_table_free_rcu);
391
392 return rht_dereference(new_tbl->future_tbl, ht) ? -EAGAIN : 0;
393 }
394
395 static int rhashtable_rehash_alloc(struct rhashtable *ht,
396 struct bucket_table *old_tbl,
397 unsigned int size)
398 {
399 struct bucket_table *new_tbl;
400 int err;
401
402 ASSERT_RHT_MUTEX(ht);
403
404 new_tbl = bucket_table_alloc(ht, size, GFP_KERNEL);
405 if (new_tbl == NULL)
406 return -ENOMEM;
407
408 err = rhashtable_rehash_attach(ht, old_tbl, new_tbl);
409 if (err)
410 bucket_table_free(new_tbl);
411
412 return err;
413 }
414
415 /**
416 * rhashtable_shrink - Shrink hash table while allowing concurrent lookups
417 * @ht: the hash table to shrink
418 *
419 * This function shrinks the hash table to fit, i.e., the smallest
420 * size would not cause it to expand right away automatically.
421 *
422 * The caller must ensure that no concurrent resizing occurs by holding
423 * ht->mutex.
424 *
425 * The caller must ensure that no concurrent table mutations take place.
426 * It is however valid to have concurrent lookups if they are RCU protected.
427 *
428 * It is valid to have concurrent insertions and deletions protected by per
429 * bucket locks or concurrent RCU protected lookups and traversals.
430 */
431 static int rhashtable_shrink(struct rhashtable *ht)
432 {
433 struct bucket_table *old_tbl = rht_dereference(ht->tbl, ht);
434 unsigned int nelems = atomic_read(&ht->nelems);
435 unsigned int size = 0;
436
437 if (nelems)
438 size = roundup_pow_of_two(nelems * 3 / 2);
439 if (size < ht->p.min_size)
440 size = ht->p.min_size;
441
442 if (old_tbl->size <= size)
443 return 0;
444
445 if (rht_dereference(old_tbl->future_tbl, ht))
446 return -EEXIST;
447
448 return rhashtable_rehash_alloc(ht, old_tbl, size);
449 }
450
451 static void rht_deferred_worker(struct work_struct *work)
452 {
453 struct rhashtable *ht;
454 struct bucket_table *tbl;
455 int err = 0;
456
457 ht = container_of(work, struct rhashtable, run_work);
458 mutex_lock(&ht->mutex);
459
460 tbl = rht_dereference(ht->tbl, ht);
461 tbl = rhashtable_last_table(ht, tbl);
462
463 if (rht_grow_above_75(ht, tbl))
464 err = rhashtable_rehash_alloc(ht, tbl, tbl->size * 2);
465 else if (ht->p.automatic_shrinking && rht_shrink_below_30(ht, tbl))
466 err = rhashtable_shrink(ht);
467 else if (tbl->nest)
468 err = rhashtable_rehash_alloc(ht, tbl, tbl->size);
469
470 if (!err)
471 err = rhashtable_rehash_table(ht);
472
473 mutex_unlock(&ht->mutex);
474
475 if (err)
476 schedule_work(&ht->run_work);
477 }
478
479 static int rhashtable_insert_rehash(struct rhashtable *ht,
480 struct bucket_table *tbl)
481 {
482 struct bucket_table *old_tbl;
483 struct bucket_table *new_tbl;
484 unsigned int size;
485 int err;
486
487 old_tbl = rht_dereference_rcu(ht->tbl, ht);
488
489 size = tbl->size;
490
491 err = -EBUSY;
492
493 if (rht_grow_above_75(ht, tbl))
494 size *= 2;
495 /* Do not schedule more than one rehash */
496 else if (old_tbl != tbl)
497 goto fail;
498
499 err = -ENOMEM;
500
501 new_tbl = bucket_table_alloc(ht, size, GFP_ATOMIC);
502 if (new_tbl == NULL)
503 goto fail;
504
505 err = rhashtable_rehash_attach(ht, tbl, new_tbl);
506 if (err) {
507 bucket_table_free(new_tbl);
508 if (err == -EEXIST)
509 err = 0;
510 } else
511 schedule_work(&ht->run_work);
512
513 return err;
514
515 fail:
516 /* Do not fail the insert if someone else did a rehash. */
517 if (likely(rcu_dereference_raw(tbl->future_tbl)))
518 return 0;
519
520 /* Schedule async rehash to retry allocation in process context. */
521 if (err == -ENOMEM)
522 schedule_work(&ht->run_work);
523
524 return err;
525 }
526
527 static void *rhashtable_lookup_one(struct rhashtable *ht,
528 struct bucket_table *tbl, unsigned int hash,
529 const void *key, struct rhash_head *obj)
530 {
531 struct rhashtable_compare_arg arg = {
532 .ht = ht,
533 .key = key,
534 };
535 struct rhash_head __rcu **pprev;
536 struct rhash_head *head;
537 int elasticity;
538
539 elasticity = ht->elasticity;
540 pprev = rht_bucket_var(tbl, hash);
541 rht_for_each_continue(head, *pprev, tbl, hash) {
542 struct rhlist_head *list;
543 struct rhlist_head *plist;
544
545 elasticity--;
546 if (!key ||
547 (ht->p.obj_cmpfn ?
548 ht->p.obj_cmpfn(&arg, rht_obj(ht, head)) :
549 rhashtable_compare(&arg, rht_obj(ht, head))))
550 continue;
551
552 if (!ht->rhlist)
553 return rht_obj(ht, head);
554
555 list = container_of(obj, struct rhlist_head, rhead);
556 plist = container_of(head, struct rhlist_head, rhead);
557
558 RCU_INIT_POINTER(list->next, plist);
559 head = rht_dereference_bucket(head->next, tbl, hash);
560 RCU_INIT_POINTER(list->rhead.next, head);
561 rcu_assign_pointer(*pprev, obj);
562
563 return NULL;
564 }
565
566 if (elasticity <= 0)
567 return ERR_PTR(-EAGAIN);
568
569 return ERR_PTR(-ENOENT);
570 }
571
572 static struct bucket_table *rhashtable_insert_one(struct rhashtable *ht,
573 struct bucket_table *tbl,
574 unsigned int hash,
575 struct rhash_head *obj,
576 void *data)
577 {
578 struct rhash_head __rcu **pprev;
579 struct bucket_table *new_tbl;
580 struct rhash_head *head;
581
582 if (!IS_ERR_OR_NULL(data))
583 return ERR_PTR(-EEXIST);
584
585 if (PTR_ERR(data) != -EAGAIN && PTR_ERR(data) != -ENOENT)
586 return ERR_CAST(data);
587
588 new_tbl = rcu_dereference(tbl->future_tbl);
589 if (new_tbl)
590 return new_tbl;
591
592 if (PTR_ERR(data) != -ENOENT)
593 return ERR_CAST(data);
594
595 if (unlikely(rht_grow_above_max(ht, tbl)))
596 return ERR_PTR(-E2BIG);
597
598 if (unlikely(rht_grow_above_100(ht, tbl)))
599 return ERR_PTR(-EAGAIN);
600
601 pprev = rht_bucket_insert(ht, tbl, hash);
602 if (!pprev)
603 return ERR_PTR(-ENOMEM);
604
605 head = rht_dereference_bucket(*pprev, tbl, hash);
606
607 RCU_INIT_POINTER(obj->next, head);
608 if (ht->rhlist) {
609 struct rhlist_head *list;
610
611 list = container_of(obj, struct rhlist_head, rhead);
612 RCU_INIT_POINTER(list->next, NULL);
613 }
614
615 rcu_assign_pointer(*pprev, obj);
616
617 atomic_inc(&ht->nelems);
618 if (rht_grow_above_75(ht, tbl))
619 schedule_work(&ht->run_work);
620
621 return NULL;
622 }
623
624 static void *rhashtable_try_insert(struct rhashtable *ht, const void *key,
625 struct rhash_head *obj)
626 {
627 struct bucket_table *new_tbl;
628 struct bucket_table *tbl;
629 unsigned int hash;
630 spinlock_t *lock;
631 void *data;
632
633 tbl = rcu_dereference(ht->tbl);
634
635 /* All insertions must grab the oldest table containing
636 * the hashed bucket that is yet to be rehashed.
637 */
638 for (;;) {
639 hash = rht_head_hashfn(ht, tbl, obj, ht->p);
640 lock = rht_bucket_lock(tbl, hash);
641 spin_lock_bh(lock);
642
643 if (tbl->rehash <= hash)
644 break;
645
646 spin_unlock_bh(lock);
647 tbl = rcu_dereference(tbl->future_tbl);
648 }
649
650 data = rhashtable_lookup_one(ht, tbl, hash, key, obj);
651 new_tbl = rhashtable_insert_one(ht, tbl, hash, obj, data);
652 if (PTR_ERR(new_tbl) != -EEXIST)
653 data = ERR_CAST(new_tbl);
654
655 while (!IS_ERR_OR_NULL(new_tbl)) {
656 tbl = new_tbl;
657 hash = rht_head_hashfn(ht, tbl, obj, ht->p);
658 spin_lock_nested(rht_bucket_lock(tbl, hash),
659 SINGLE_DEPTH_NESTING);
660
661 data = rhashtable_lookup_one(ht, tbl, hash, key, obj);
662 new_tbl = rhashtable_insert_one(ht, tbl, hash, obj, data);
663 if (PTR_ERR(new_tbl) != -EEXIST)
664 data = ERR_CAST(new_tbl);
665
666 spin_unlock(rht_bucket_lock(tbl, hash));
667 }
668
669 spin_unlock_bh(lock);
670
671 if (PTR_ERR(data) == -EAGAIN)
672 data = ERR_PTR(rhashtable_insert_rehash(ht, tbl) ?:
673 -EAGAIN);
674
675 return data;
676 }
677
678 void *rhashtable_insert_slow(struct rhashtable *ht, const void *key,
679 struct rhash_head *obj)
680 {
681 void *data;
682
683 do {
684 rcu_read_lock();
685 data = rhashtable_try_insert(ht, key, obj);
686 rcu_read_unlock();
687 } while (PTR_ERR(data) == -EAGAIN);
688
689 return data;
690 }
691 EXPORT_SYMBOL_GPL(rhashtable_insert_slow);
692
693 /**
694 * rhashtable_walk_enter - Initialise an iterator
695 * @ht: Table to walk over
696 * @iter: Hash table Iterator
697 *
698 * This function prepares a hash table walk.
699 *
700 * Note that if you restart a walk after rhashtable_walk_stop you
701 * may see the same object twice. Also, you may miss objects if
702 * there are removals in between rhashtable_walk_stop and the next
703 * call to rhashtable_walk_start.
704 *
705 * For a completely stable walk you should construct your own data
706 * structure outside the hash table.
707 *
708 * This function may sleep so you must not call it from interrupt
709 * context or with spin locks held.
710 *
711 * You must call rhashtable_walk_exit after this function returns.
712 */
713 void rhashtable_walk_enter(struct rhashtable *ht, struct rhashtable_iter *iter)
714 {
715 iter->ht = ht;
716 iter->p = NULL;
717 iter->slot = 0;
718 iter->skip = 0;
719
720 spin_lock(&ht->lock);
721 iter->walker.tbl =
722 rcu_dereference_protected(ht->tbl, lockdep_is_held(&ht->lock));
723 list_add(&iter->walker.list, &iter->walker.tbl->walkers);
724 spin_unlock(&ht->lock);
725 }
726 EXPORT_SYMBOL_GPL(rhashtable_walk_enter);
727
728 /**
729 * rhashtable_walk_exit - Free an iterator
730 * @iter: Hash table Iterator
731 *
732 * This function frees resources allocated by rhashtable_walk_init.
733 */
734 void rhashtable_walk_exit(struct rhashtable_iter *iter)
735 {
736 spin_lock(&iter->ht->lock);
737 if (iter->walker.tbl)
738 list_del(&iter->walker.list);
739 spin_unlock(&iter->ht->lock);
740 }
741 EXPORT_SYMBOL_GPL(rhashtable_walk_exit);
742
743 /**
744 * rhashtable_walk_start - Start a hash table walk
745 * @iter: Hash table iterator
746 *
747 * Start a hash table walk. Note that we take the RCU lock in all
748 * cases including when we return an error. So you must always call
749 * rhashtable_walk_stop to clean up.
750 *
751 * Returns zero if successful.
752 *
753 * Returns -EAGAIN if resize event occured. Note that the iterator
754 * will rewind back to the beginning and you may use it immediately
755 * by calling rhashtable_walk_next.
756 */
757 int rhashtable_walk_start(struct rhashtable_iter *iter)
758 __acquires(RCU)
759 {
760 struct rhashtable *ht = iter->ht;
761
762 rcu_read_lock();
763
764 spin_lock(&ht->lock);
765 if (iter->walker.tbl)
766 list_del(&iter->walker.list);
767 spin_unlock(&ht->lock);
768
769 if (!iter->walker.tbl) {
770 iter->walker.tbl = rht_dereference_rcu(ht->tbl, ht);
771 return -EAGAIN;
772 }
773
774 return 0;
775 }
776 EXPORT_SYMBOL_GPL(rhashtable_walk_start);
777
778 /**
779 * rhashtable_walk_next - Return the next object and advance the iterator
780 * @iter: Hash table iterator
781 *
782 * Note that you must call rhashtable_walk_stop when you are finished
783 * with the walk.
784 *
785 * Returns the next object or NULL when the end of the table is reached.
786 *
787 * Returns -EAGAIN if resize event occured. Note that the iterator
788 * will rewind back to the beginning and you may continue to use it.
789 */
790 void *rhashtable_walk_next(struct rhashtable_iter *iter)
791 {
792 struct bucket_table *tbl = iter->walker.tbl;
793 struct rhlist_head *list = iter->list;
794 struct rhashtable *ht = iter->ht;
795 struct rhash_head *p = iter->p;
796 bool rhlist = ht->rhlist;
797
798 if (p) {
799 if (!rhlist || !(list = rcu_dereference(list->next))) {
800 p = rcu_dereference(p->next);
801 list = container_of(p, struct rhlist_head, rhead);
802 }
803 goto next;
804 }
805
806 for (; iter->slot < tbl->size; iter->slot++) {
807 int skip = iter->skip;
808
809 rht_for_each_rcu(p, tbl, iter->slot) {
810 if (rhlist) {
811 list = container_of(p, struct rhlist_head,
812 rhead);
813 do {
814 if (!skip)
815 goto next;
816 skip--;
817 list = rcu_dereference(list->next);
818 } while (list);
819
820 continue;
821 }
822 if (!skip)
823 break;
824 skip--;
825 }
826
827 next:
828 if (!rht_is_a_nulls(p)) {
829 iter->skip++;
830 iter->p = p;
831 iter->list = list;
832 return rht_obj(ht, rhlist ? &list->rhead : p);
833 }
834
835 iter->skip = 0;
836 }
837
838 iter->p = NULL;
839
840 /* Ensure we see any new tables. */
841 smp_rmb();
842
843 iter->walker.tbl = rht_dereference_rcu(tbl->future_tbl, ht);
844 if (iter->walker.tbl) {
845 iter->slot = 0;
846 iter->skip = 0;
847 return ERR_PTR(-EAGAIN);
848 }
849
850 return NULL;
851 }
852 EXPORT_SYMBOL_GPL(rhashtable_walk_next);
853
854 /**
855 * rhashtable_walk_stop - Finish a hash table walk
856 * @iter: Hash table iterator
857 *
858 * Finish a hash table walk.
859 */
860 void rhashtable_walk_stop(struct rhashtable_iter *iter)
861 __releases(RCU)
862 {
863 struct rhashtable *ht;
864 struct bucket_table *tbl = iter->walker.tbl;
865
866 if (!tbl)
867 goto out;
868
869 ht = iter->ht;
870
871 spin_lock(&ht->lock);
872 if (tbl->rehash < tbl->size)
873 list_add(&iter->walker.list, &tbl->walkers);
874 else
875 iter->walker.tbl = NULL;
876 spin_unlock(&ht->lock);
877
878 iter->p = NULL;
879
880 out:
881 rcu_read_unlock();
882 }
883 EXPORT_SYMBOL_GPL(rhashtable_walk_stop);
884
885 static size_t rounded_hashtable_size(const struct rhashtable_params *params)
886 {
887 return max(roundup_pow_of_two(params->nelem_hint * 4 / 3),
888 (unsigned long)params->min_size);
889 }
890
891 static u32 rhashtable_jhash2(const void *key, u32 length, u32 seed)
892 {
893 return jhash2(key, length, seed);
894 }
895
896 /**
897 * rhashtable_init - initialize a new hash table
898 * @ht: hash table to be initialized
899 * @params: configuration parameters
900 *
901 * Initializes a new hash table based on the provided configuration
902 * parameters. A table can be configured either with a variable or
903 * fixed length key:
904 *
905 * Configuration Example 1: Fixed length keys
906 * struct test_obj {
907 * int key;
908 * void * my_member;
909 * struct rhash_head node;
910 * };
911 *
912 * struct rhashtable_params params = {
913 * .head_offset = offsetof(struct test_obj, node),
914 * .key_offset = offsetof(struct test_obj, key),
915 * .key_len = sizeof(int),
916 * .hashfn = jhash,
917 * .nulls_base = (1U << RHT_BASE_SHIFT),
918 * };
919 *
920 * Configuration Example 2: Variable length keys
921 * struct test_obj {
922 * [...]
923 * struct rhash_head node;
924 * };
925 *
926 * u32 my_hash_fn(const void *data, u32 len, u32 seed)
927 * {
928 * struct test_obj *obj = data;
929 *
930 * return [... hash ...];
931 * }
932 *
933 * struct rhashtable_params params = {
934 * .head_offset = offsetof(struct test_obj, node),
935 * .hashfn = jhash,
936 * .obj_hashfn = my_hash_fn,
937 * };
938 */
939 int rhashtable_init(struct rhashtable *ht,
940 const struct rhashtable_params *params)
941 {
942 struct bucket_table *tbl;
943 size_t size;
944
945 size = HASH_DEFAULT_SIZE;
946
947 if ((!params->key_len && !params->obj_hashfn) ||
948 (params->obj_hashfn && !params->obj_cmpfn))
949 return -EINVAL;
950
951 if (params->nulls_base && params->nulls_base < (1U << RHT_BASE_SHIFT))
952 return -EINVAL;
953
954 memset(ht, 0, sizeof(*ht));
955 mutex_init(&ht->mutex);
956 spin_lock_init(&ht->lock);
957 memcpy(&ht->p, params, sizeof(*params));
958
959 if (params->min_size)
960 ht->p.min_size = roundup_pow_of_two(params->min_size);
961
962 if (params->max_size)
963 ht->p.max_size = rounddown_pow_of_two(params->max_size);
964
965 if (params->insecure_max_entries)
966 ht->p.insecure_max_entries =
967 rounddown_pow_of_two(params->insecure_max_entries);
968 else
969 ht->p.insecure_max_entries = ht->p.max_size * 2;
970
971 ht->p.min_size = max(ht->p.min_size, HASH_MIN_SIZE);
972
973 if (params->nelem_hint)
974 size = rounded_hashtable_size(&ht->p);
975
976 /* The maximum (not average) chain length grows with the
977 * size of the hash table, at a rate of (log N)/(log log N).
978 * The value of 16 is selected so that even if the hash
979 * table grew to 2^32 you would not expect the maximum
980 * chain length to exceed it unless we are under attack
981 * (or extremely unlucky).
982 *
983 * As this limit is only to detect attacks, we don't need
984 * to set it to a lower value as you'd need the chain
985 * length to vastly exceed 16 to have any real effect
986 * on the system.
987 */
988 if (!params->insecure_elasticity)
989 ht->elasticity = 16;
990
991 if (params->locks_mul)
992 ht->p.locks_mul = roundup_pow_of_two(params->locks_mul);
993 else
994 ht->p.locks_mul = BUCKET_LOCKS_PER_CPU;
995
996 ht->key_len = ht->p.key_len;
997 if (!params->hashfn) {
998 ht->p.hashfn = jhash;
999
1000 if (!(ht->key_len & (sizeof(u32) - 1))) {
1001 ht->key_len /= sizeof(u32);
1002 ht->p.hashfn = rhashtable_jhash2;
1003 }
1004 }
1005
1006 tbl = bucket_table_alloc(ht, size, GFP_KERNEL);
1007 if (tbl == NULL)
1008 return -ENOMEM;
1009
1010 atomic_set(&ht->nelems, 0);
1011
1012 RCU_INIT_POINTER(ht->tbl, tbl);
1013
1014 INIT_WORK(&ht->run_work, rht_deferred_worker);
1015
1016 return 0;
1017 }
1018 EXPORT_SYMBOL_GPL(rhashtable_init);
1019
1020 /**
1021 * rhltable_init - initialize a new hash list table
1022 * @hlt: hash list table to be initialized
1023 * @params: configuration parameters
1024 *
1025 * Initializes a new hash list table.
1026 *
1027 * See documentation for rhashtable_init.
1028 */
1029 int rhltable_init(struct rhltable *hlt, const struct rhashtable_params *params)
1030 {
1031 int err;
1032
1033 /* No rhlist NULLs marking for now. */
1034 if (params->nulls_base)
1035 return -EINVAL;
1036
1037 err = rhashtable_init(&hlt->ht, params);
1038 hlt->ht.rhlist = true;
1039 return err;
1040 }
1041 EXPORT_SYMBOL_GPL(rhltable_init);
1042
1043 static void rhashtable_free_one(struct rhashtable *ht, struct rhash_head *obj,
1044 void (*free_fn)(void *ptr, void *arg),
1045 void *arg)
1046 {
1047 struct rhlist_head *list;
1048
1049 if (!ht->rhlist) {
1050 free_fn(rht_obj(ht, obj), arg);
1051 return;
1052 }
1053
1054 list = container_of(obj, struct rhlist_head, rhead);
1055 do {
1056 obj = &list->rhead;
1057 list = rht_dereference(list->next, ht);
1058 free_fn(rht_obj(ht, obj), arg);
1059 } while (list);
1060 }
1061
1062 /**
1063 * rhashtable_free_and_destroy - free elements and destroy hash table
1064 * @ht: the hash table to destroy
1065 * @free_fn: callback to release resources of element
1066 * @arg: pointer passed to free_fn
1067 *
1068 * Stops an eventual async resize. If defined, invokes free_fn for each
1069 * element to releasal resources. Please note that RCU protected
1070 * readers may still be accessing the elements. Releasing of resources
1071 * must occur in a compatible manner. Then frees the bucket array.
1072 *
1073 * This function will eventually sleep to wait for an async resize
1074 * to complete. The caller is responsible that no further write operations
1075 * occurs in parallel.
1076 */
1077 void rhashtable_free_and_destroy(struct rhashtable *ht,
1078 void (*free_fn)(void *ptr, void *arg),
1079 void *arg)
1080 {
1081 struct bucket_table *tbl;
1082 unsigned int i;
1083
1084 cancel_work_sync(&ht->run_work);
1085
1086 mutex_lock(&ht->mutex);
1087 tbl = rht_dereference(ht->tbl, ht);
1088 if (free_fn) {
1089 for (i = 0; i < tbl->size; i++) {
1090 struct rhash_head *pos, *next;
1091
1092 for (pos = rht_dereference(*rht_bucket(tbl, i), ht),
1093 next = !rht_is_a_nulls(pos) ?
1094 rht_dereference(pos->next, ht) : NULL;
1095 !rht_is_a_nulls(pos);
1096 pos = next,
1097 next = !rht_is_a_nulls(pos) ?
1098 rht_dereference(pos->next, ht) : NULL)
1099 rhashtable_free_one(ht, pos, free_fn, arg);
1100 }
1101 }
1102
1103 bucket_table_free(tbl);
1104 mutex_unlock(&ht->mutex);
1105 }
1106 EXPORT_SYMBOL_GPL(rhashtable_free_and_destroy);
1107
1108 void rhashtable_destroy(struct rhashtable *ht)
1109 {
1110 return rhashtable_free_and_destroy(ht, NULL, NULL);
1111 }
1112 EXPORT_SYMBOL_GPL(rhashtable_destroy);
1113
1114 struct rhash_head __rcu **rht_bucket_nested(const struct bucket_table *tbl,
1115 unsigned int hash)
1116 {
1117 const unsigned int shift = PAGE_SHIFT - ilog2(sizeof(void *));
1118 static struct rhash_head __rcu *rhnull =
1119 (struct rhash_head __rcu *)NULLS_MARKER(0);
1120 unsigned int index = hash & ((1 << tbl->nest) - 1);
1121 unsigned int size = tbl->size >> tbl->nest;
1122 unsigned int subhash = hash;
1123 union nested_table *ntbl;
1124
1125 ntbl = (union nested_table *)rcu_dereference_raw(tbl->buckets[0]);
1126 ntbl = rht_dereference_bucket(ntbl[index].table, tbl, hash);
1127 subhash >>= tbl->nest;
1128
1129 while (ntbl && size > (1 << shift)) {
1130 index = subhash & ((1 << shift) - 1);
1131 ntbl = rht_dereference_bucket(ntbl[index].table, tbl, hash);
1132 size >>= shift;
1133 subhash >>= shift;
1134 }
1135
1136 if (!ntbl)
1137 return &rhnull;
1138
1139 return &ntbl[subhash].bucket;
1140
1141 }
1142 EXPORT_SYMBOL_GPL(rht_bucket_nested);
1143
1144 struct rhash_head __rcu **rht_bucket_nested_insert(struct rhashtable *ht,
1145 struct bucket_table *tbl,
1146 unsigned int hash)
1147 {
1148 const unsigned int shift = PAGE_SHIFT - ilog2(sizeof(void *));
1149 unsigned int index = hash & ((1 << tbl->nest) - 1);
1150 unsigned int size = tbl->size >> tbl->nest;
1151 union nested_table *ntbl;
1152 unsigned int shifted;
1153 unsigned int nhash;
1154
1155 ntbl = (union nested_table *)rcu_dereference_raw(tbl->buckets[0]);
1156 hash >>= tbl->nest;
1157 nhash = index;
1158 shifted = tbl->nest;
1159 ntbl = nested_table_alloc(ht, &ntbl[index].table,
1160 size <= (1 << shift) ? shifted : 0, nhash);
1161
1162 while (ntbl && size > (1 << shift)) {
1163 index = hash & ((1 << shift) - 1);
1164 size >>= shift;
1165 hash >>= shift;
1166 nhash |= index << shifted;
1167 shifted += shift;
1168 ntbl = nested_table_alloc(ht, &ntbl[index].table,
1169 size <= (1 << shift) ? shifted : 0,
1170 nhash);
1171 }
1172
1173 if (!ntbl)
1174 return NULL;
1175
1176 return &ntbl[hash].bucket;
1177
1178 }
1179 EXPORT_SYMBOL_GPL(rht_bucket_nested_insert);