]> git.proxmox.com Git - mirror_ovs.git/blob - lib/sha1.c
Merge branch 'master' into next
[mirror_ovs.git] / lib / sha1.c
1 /*
2 * This file is from the Apache Portable Runtime Library.
3 * The full upstream copyright and license statement is included below.
4 * Modifications copyright (c) 2009 Nicira Networks.
5 */
6
7 /* Licensed to the Apache Software Foundation (ASF) under one or more
8 * contributor license agreements. See the NOTICE file distributed with
9 * this work for additional information regarding copyright ownership.
10 * The ASF licenses this file to You under the Apache License, Version 2.0
11 * (the "License"); you may not use this file except in compliance with
12 * the License. You may obtain a copy of the License at
13 *
14 * http://www.apache.org/licenses/LICENSE-2.0
15 *
16 * Unless required by applicable law or agreed to in writing, software
17 * distributed under the License is distributed on an "AS IS" BASIS,
18 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
19 * See the License for the specific language governing permissions and
20 * limitations under the License.
21 */
22
23 /* This software also makes use of the following component:
24 *
25 * NIST Secure Hash Algorithm
26 * heavily modified by Uwe Hollerbach uh@alumni.caltech edu
27 * from Peter C. Gutmann's implementation as found in
28 * Applied Cryptography by Bruce Schneier
29 * This code is hereby placed in the public domain
30 */
31
32 #include <config.h>
33 #include "sha1.h"
34 #include <ctype.h>
35 #include <string.h>
36 #include "util.h"
37
38 /* a bit faster & bigger, if defined */
39 #define UNROLL_LOOPS
40
41 /* SHA f()-functions */
42 static inline uint32_t
43 f1(uint32_t x, uint32_t y, uint32_t z)
44 {
45 return (x & y) | (~x & z);
46 }
47
48 static inline uint32_t
49 f2(uint32_t x, uint32_t y, uint32_t z)
50 {
51 return x ^ y ^ z;
52 }
53
54 static inline uint32_t
55 f3(uint32_t x, uint32_t y, uint32_t z)
56 {
57 return (x & y) | (x & z) | (y & z);
58 }
59
60 static inline uint32_t
61 f4(uint32_t x, uint32_t y, uint32_t z)
62 {
63 return x ^ y ^ z;
64 }
65
66 /* SHA constants */
67 #define CONST1 0x5a827999L
68 #define CONST2 0x6ed9eba1L
69 #define CONST3 0x8f1bbcdcL
70 #define CONST4 0xca62c1d6L
71
72 /* 32-bit rotate */
73 static inline uint32_t
74 rotate32(uint32_t x, int n)
75 {
76 return ((x << n) | (x >> (32 - n)));
77 }
78
79 #define FUNC(n, i) \
80 do { \
81 temp = rotate32(A, 5) + f##n(B, C, D) + E + W[i] + CONST##n; \
82 E = D; \
83 D = C; \
84 C = rotate32(B, 30); \
85 B = A; \
86 A = temp; \
87 } while (0)
88
89 #define SHA_BLOCK_SIZE 64
90
91 /* Do SHA transformation. */
92 static void
93 sha_transform(struct sha1_ctx *sha_info)
94 {
95 int i;
96 uint32_t temp, A, B, C, D, E, W[80];
97
98 for (i = 0; i < 16; ++i) {
99 W[i] = sha_info->data[i];
100 }
101 for (i = 16; i < 80; ++i) {
102 W[i] = W[i-3] ^ W[i-8] ^ W[i-14] ^ W[i-16];
103 W[i] = rotate32(W[i], 1);
104 }
105 A = sha_info->digest[0];
106 B = sha_info->digest[1];
107 C = sha_info->digest[2];
108 D = sha_info->digest[3];
109 E = sha_info->digest[4];
110 #ifdef UNROLL_LOOPS
111 FUNC(1, 0); FUNC(1, 1); FUNC(1, 2); FUNC(1, 3); FUNC(1, 4);
112 FUNC(1, 5); FUNC(1, 6); FUNC(1, 7); FUNC(1, 8); FUNC(1, 9);
113 FUNC(1,10); FUNC(1,11); FUNC(1,12); FUNC(1,13); FUNC(1,14);
114 FUNC(1,15); FUNC(1,16); FUNC(1,17); FUNC(1,18); FUNC(1,19);
115
116 FUNC(2,20); FUNC(2,21); FUNC(2,22); FUNC(2,23); FUNC(2,24);
117 FUNC(2,25); FUNC(2,26); FUNC(2,27); FUNC(2,28); FUNC(2,29);
118 FUNC(2,30); FUNC(2,31); FUNC(2,32); FUNC(2,33); FUNC(2,34);
119 FUNC(2,35); FUNC(2,36); FUNC(2,37); FUNC(2,38); FUNC(2,39);
120
121 FUNC(3,40); FUNC(3,41); FUNC(3,42); FUNC(3,43); FUNC(3,44);
122 FUNC(3,45); FUNC(3,46); FUNC(3,47); FUNC(3,48); FUNC(3,49);
123 FUNC(3,50); FUNC(3,51); FUNC(3,52); FUNC(3,53); FUNC(3,54);
124 FUNC(3,55); FUNC(3,56); FUNC(3,57); FUNC(3,58); FUNC(3,59);
125
126 FUNC(4,60); FUNC(4,61); FUNC(4,62); FUNC(4,63); FUNC(4,64);
127 FUNC(4,65); FUNC(4,66); FUNC(4,67); FUNC(4,68); FUNC(4,69);
128 FUNC(4,70); FUNC(4,71); FUNC(4,72); FUNC(4,73); FUNC(4,74);
129 FUNC(4,75); FUNC(4,76); FUNC(4,77); FUNC(4,78); FUNC(4,79);
130 #else /* !UNROLL_LOOPS */
131 for (i = 0; i < 20; ++i) {
132 FUNC(1,i);
133 }
134 for (i = 20; i < 40; ++i) {
135 FUNC(2,i);
136 }
137 for (i = 40; i < 60; ++i) {
138 FUNC(3,i);
139 }
140 for (i = 60; i < 80; ++i) {
141 FUNC(4,i);
142 }
143 #endif /* !UNROLL_LOOPS */
144 sha_info->digest[0] += A;
145 sha_info->digest[1] += B;
146 sha_info->digest[2] += C;
147 sha_info->digest[3] += D;
148 sha_info->digest[4] += E;
149 }
150
151 /* 'count' is the number of bytes to do an endian flip. */
152 static void
153 maybe_byte_reverse(uint32_t *buffer, int count)
154 {
155 int i;
156 uint8_t ct[4], *cp;
157
158 #if !WORDS_BIGENDIAN
159 count /= sizeof(uint32_t);
160 cp = (uint8_t *) buffer;
161 for (i = 0; i < count; i++) {
162 ct[0] = cp[0];
163 ct[1] = cp[1];
164 ct[2] = cp[2];
165 ct[3] = cp[3];
166 cp[0] = ct[3];
167 cp[1] = ct[2];
168 cp[2] = ct[1];
169 cp[3] = ct[0];
170 cp += sizeof(uint32_t);
171 }
172 #endif
173 }
174
175 /*
176 * Initialize the SHA digest.
177 * context: The SHA context to initialize
178 */
179 void
180 sha1_init(struct sha1_ctx *sha_info)
181 {
182 sha_info->digest[0] = 0x67452301L;
183 sha_info->digest[1] = 0xefcdab89L;
184 sha_info->digest[2] = 0x98badcfeL;
185 sha_info->digest[3] = 0x10325476L;
186 sha_info->digest[4] = 0xc3d2e1f0L;
187 sha_info->count_lo = 0L;
188 sha_info->count_hi = 0L;
189 sha_info->local = 0;
190 }
191
192 /*
193 * Update the SHA digest.
194 * context: The SHA1 context to update.
195 * input: The buffer to add to the SHA digest.
196 * inputLen: The length of the input buffer.
197 */
198 void
199 sha1_update(struct sha1_ctx *ctx, const void *buffer_, size_t count)
200 {
201 const uint8_t *buffer = buffer_;
202 unsigned int i;
203
204 if ((ctx->count_lo + (count << 3)) < ctx->count_lo) {
205 ctx->count_hi++;
206 }
207 ctx->count_lo += count << 3;
208 ctx->count_hi += count >> 29;
209 if (ctx->local) {
210 i = SHA_BLOCK_SIZE - ctx->local;
211 if (i > count) {
212 i = count;
213 }
214 memcpy(((uint8_t *) ctx->data) + ctx->local, buffer, i);
215 count -= i;
216 buffer += i;
217 ctx->local += i;
218 if (ctx->local == SHA_BLOCK_SIZE) {
219 maybe_byte_reverse(ctx->data, SHA_BLOCK_SIZE);
220 sha_transform(ctx);
221 } else {
222 return;
223 }
224 }
225 while (count >= SHA_BLOCK_SIZE) {
226 memcpy(ctx->data, buffer, SHA_BLOCK_SIZE);
227 buffer += SHA_BLOCK_SIZE;
228 count -= SHA_BLOCK_SIZE;
229 maybe_byte_reverse(ctx->data, SHA_BLOCK_SIZE);
230 sha_transform(ctx);
231 }
232 memcpy(ctx->data, buffer, count);
233 ctx->local = count;
234 }
235
236 /*
237 * Finish computing the SHA digest.
238 * digest: the output buffer in which to store the digest.
239 * context: The context to finalize.
240 */
241 void
242 sha1_final(struct sha1_ctx *ctx, uint8_t digest[SHA1_DIGEST_SIZE])
243 {
244 int count, i, j;
245 uint32_t lo_bit_count, hi_bit_count, k;
246
247 lo_bit_count = ctx->count_lo;
248 hi_bit_count = ctx->count_hi;
249 count = (int) ((lo_bit_count >> 3) & 0x3f);
250 ((uint8_t *) ctx->data)[count++] = 0x80;
251 if (count > SHA_BLOCK_SIZE - 8) {
252 memset(((uint8_t *) ctx->data) + count, 0, SHA_BLOCK_SIZE - count);
253 maybe_byte_reverse(ctx->data, SHA_BLOCK_SIZE);
254 sha_transform(ctx);
255 memset((uint8_t *) ctx->data, 0, SHA_BLOCK_SIZE - 8);
256 } else {
257 memset(((uint8_t *) ctx->data) + count, 0,
258 SHA_BLOCK_SIZE - 8 - count);
259 }
260 maybe_byte_reverse(ctx->data, SHA_BLOCK_SIZE);
261 ctx->data[14] = hi_bit_count;
262 ctx->data[15] = lo_bit_count;
263 sha_transform(ctx);
264
265 for (i = j = 0; j < SHA1_DIGEST_SIZE; i++) {
266 k = ctx->digest[i];
267 digest[j++] = k >> 24;
268 digest[j++] = k >> 16;
269 digest[j++] = k >> 8;
270 digest[j++] = k;
271 }
272 }
273
274 /* Computes the hash of 'n' bytes in 'data' into 'digest'. */
275 void
276 sha1_bytes(const void *data, size_t n, uint8_t digest[SHA1_DIGEST_SIZE])
277 {
278 struct sha1_ctx ctx;
279
280 sha1_init(&ctx);
281 sha1_update(&ctx, data, n);
282 sha1_final(&ctx, digest);
283 }
284
285 void
286 sha1_to_hex(const uint8_t digest[SHA1_DIGEST_SIZE],
287 char hex[SHA1_HEX_DIGEST_LEN + 1])
288 {
289 int i;
290
291 for (i = 0; i < SHA1_DIGEST_SIZE; i++) {
292 *hex++ = "0123456789abcdef"[digest[i] >> 4];
293 *hex++ = "0123456789abcdef"[digest[i] & 15];
294 }
295 *hex = '\0';
296 }
297
298 bool
299 sha1_from_hex(uint8_t digest[SHA1_DIGEST_SIZE], const char *hex)
300 {
301 int i;
302
303 for (i = 0; i < SHA1_DIGEST_SIZE; i++) {
304 if (!isxdigit(hex[0]) || !isxdigit(hex[1])) {
305 return false;
306 }
307 digest[i] = (hexit_value(hex[0]) << 4) | hexit_value(hex[1]);
308 hex += 2;
309 }
310 return true;
311 }
312