]> git.proxmox.com Git - rustc.git/blob - library/alloc/src/raw_vec.rs
New upstream version 1.69.0+dfsg1
[rustc.git] / library / alloc / src / raw_vec.rs
1 #![unstable(feature = "raw_vec_internals", reason = "unstable const warnings", issue = "none")]
2
3 use core::alloc::LayoutError;
4 use core::cmp;
5 use core::intrinsics;
6 use core::mem::{self, ManuallyDrop, MaybeUninit, SizedTypeProperties};
7 use core::ops::Drop;
8 use core::ptr::{self, NonNull, Unique};
9 use core::slice;
10
11 #[cfg(not(no_global_oom_handling))]
12 use crate::alloc::handle_alloc_error;
13 use crate::alloc::{Allocator, Global, Layout};
14 use crate::boxed::Box;
15 use crate::collections::TryReserveError;
16 use crate::collections::TryReserveErrorKind::*;
17
18 #[cfg(test)]
19 mod tests;
20
21 #[cfg(not(no_global_oom_handling))]
22 enum AllocInit {
23 /// The contents of the new memory are uninitialized.
24 Uninitialized,
25 /// The new memory is guaranteed to be zeroed.
26 Zeroed,
27 }
28
29 /// A low-level utility for more ergonomically allocating, reallocating, and deallocating
30 /// a buffer of memory on the heap without having to worry about all the corner cases
31 /// involved. This type is excellent for building your own data structures like Vec and VecDeque.
32 /// In particular:
33 ///
34 /// * Produces `Unique::dangling()` on zero-sized types.
35 /// * Produces `Unique::dangling()` on zero-length allocations.
36 /// * Avoids freeing `Unique::dangling()`.
37 /// * Catches all overflows in capacity computations (promotes them to "capacity overflow" panics).
38 /// * Guards against 32-bit systems allocating more than isize::MAX bytes.
39 /// * Guards against overflowing your length.
40 /// * Calls `handle_alloc_error` for fallible allocations.
41 /// * Contains a `ptr::Unique` and thus endows the user with all related benefits.
42 /// * Uses the excess returned from the allocator to use the largest available capacity.
43 ///
44 /// This type does not in anyway inspect the memory that it manages. When dropped it *will*
45 /// free its memory, but it *won't* try to drop its contents. It is up to the user of `RawVec`
46 /// to handle the actual things *stored* inside of a `RawVec`.
47 ///
48 /// Note that the excess of a zero-sized types is always infinite, so `capacity()` always returns
49 /// `usize::MAX`. This means that you need to be careful when round-tripping this type with a
50 /// `Box<[T]>`, since `capacity()` won't yield the length.
51 #[allow(missing_debug_implementations)]
52 pub(crate) struct RawVec<T, A: Allocator = Global> {
53 ptr: Unique<T>,
54 cap: usize,
55 alloc: A,
56 }
57
58 impl<T> RawVec<T, Global> {
59 /// HACK(Centril): This exists because stable `const fn` can only call stable `const fn`, so
60 /// they cannot call `Self::new()`.
61 ///
62 /// If you change `RawVec<T>::new` or dependencies, please take care to not introduce anything
63 /// that would truly const-call something unstable.
64 pub const NEW: Self = Self::new();
65
66 /// Creates the biggest possible `RawVec` (on the system heap)
67 /// without allocating. If `T` has positive size, then this makes a
68 /// `RawVec` with capacity `0`. If `T` is zero-sized, then it makes a
69 /// `RawVec` with capacity `usize::MAX`. Useful for implementing
70 /// delayed allocation.
71 #[must_use]
72 pub const fn new() -> Self {
73 Self::new_in(Global)
74 }
75
76 /// Creates a `RawVec` (on the system heap) with exactly the
77 /// capacity and alignment requirements for a `[T; capacity]`. This is
78 /// equivalent to calling `RawVec::new` when `capacity` is `0` or `T` is
79 /// zero-sized. Note that if `T` is zero-sized this means you will
80 /// *not* get a `RawVec` with the requested capacity.
81 ///
82 /// # Panics
83 ///
84 /// Panics if the requested capacity exceeds `isize::MAX` bytes.
85 ///
86 /// # Aborts
87 ///
88 /// Aborts on OOM.
89 #[cfg(not(any(no_global_oom_handling, test)))]
90 #[must_use]
91 #[inline]
92 pub fn with_capacity(capacity: usize) -> Self {
93 Self::with_capacity_in(capacity, Global)
94 }
95
96 /// Like `with_capacity`, but guarantees the buffer is zeroed.
97 #[cfg(not(any(no_global_oom_handling, test)))]
98 #[must_use]
99 #[inline]
100 pub fn with_capacity_zeroed(capacity: usize) -> Self {
101 Self::with_capacity_zeroed_in(capacity, Global)
102 }
103 }
104
105 impl<T, A: Allocator> RawVec<T, A> {
106 // Tiny Vecs are dumb. Skip to:
107 // - 8 if the element size is 1, because any heap allocators is likely
108 // to round up a request of less than 8 bytes to at least 8 bytes.
109 // - 4 if elements are moderate-sized (<= 1 KiB).
110 // - 1 otherwise, to avoid wasting too much space for very short Vecs.
111 pub(crate) const MIN_NON_ZERO_CAP: usize = if mem::size_of::<T>() == 1 {
112 8
113 } else if mem::size_of::<T>() <= 1024 {
114 4
115 } else {
116 1
117 };
118
119 /// Like `new`, but parameterized over the choice of allocator for
120 /// the returned `RawVec`.
121 pub const fn new_in(alloc: A) -> Self {
122 // `cap: 0` means "unallocated". zero-sized types are ignored.
123 Self { ptr: Unique::dangling(), cap: 0, alloc }
124 }
125
126 /// Like `with_capacity`, but parameterized over the choice of
127 /// allocator for the returned `RawVec`.
128 #[cfg(not(no_global_oom_handling))]
129 #[inline]
130 pub fn with_capacity_in(capacity: usize, alloc: A) -> Self {
131 Self::allocate_in(capacity, AllocInit::Uninitialized, alloc)
132 }
133
134 /// Like `with_capacity_zeroed`, but parameterized over the choice
135 /// of allocator for the returned `RawVec`.
136 #[cfg(not(no_global_oom_handling))]
137 #[inline]
138 pub fn with_capacity_zeroed_in(capacity: usize, alloc: A) -> Self {
139 Self::allocate_in(capacity, AllocInit::Zeroed, alloc)
140 }
141
142 /// Converts the entire buffer into `Box<[MaybeUninit<T>]>` with the specified `len`.
143 ///
144 /// Note that this will correctly reconstitute any `cap` changes
145 /// that may have been performed. (See description of type for details.)
146 ///
147 /// # Safety
148 ///
149 /// * `len` must be greater than or equal to the most recently requested capacity, and
150 /// * `len` must be less than or equal to `self.capacity()`.
151 ///
152 /// Note, that the requested capacity and `self.capacity()` could differ, as
153 /// an allocator could overallocate and return a greater memory block than requested.
154 pub unsafe fn into_box(self, len: usize) -> Box<[MaybeUninit<T>], A> {
155 // Sanity-check one half of the safety requirement (we cannot check the other half).
156 debug_assert!(
157 len <= self.capacity(),
158 "`len` must be smaller than or equal to `self.capacity()`"
159 );
160
161 let me = ManuallyDrop::new(self);
162 unsafe {
163 let slice = slice::from_raw_parts_mut(me.ptr() as *mut MaybeUninit<T>, len);
164 Box::from_raw_in(slice, ptr::read(&me.alloc))
165 }
166 }
167
168 #[cfg(not(no_global_oom_handling))]
169 fn allocate_in(capacity: usize, init: AllocInit, alloc: A) -> Self {
170 // Don't allocate here because `Drop` will not deallocate when `capacity` is 0.
171 if T::IS_ZST || capacity == 0 {
172 Self::new_in(alloc)
173 } else {
174 // We avoid `unwrap_or_else` here because it bloats the amount of
175 // LLVM IR generated.
176 let layout = match Layout::array::<T>(capacity) {
177 Ok(layout) => layout,
178 Err(_) => capacity_overflow(),
179 };
180 match alloc_guard(layout.size()) {
181 Ok(_) => {}
182 Err(_) => capacity_overflow(),
183 }
184 let result = match init {
185 AllocInit::Uninitialized => alloc.allocate(layout),
186 AllocInit::Zeroed => alloc.allocate_zeroed(layout),
187 };
188 let ptr = match result {
189 Ok(ptr) => ptr,
190 Err(_) => handle_alloc_error(layout),
191 };
192
193 // Allocators currently return a `NonNull<[u8]>` whose length
194 // matches the size requested. If that ever changes, the capacity
195 // here should change to `ptr.len() / mem::size_of::<T>()`.
196 Self {
197 ptr: unsafe { Unique::new_unchecked(ptr.cast().as_ptr()) },
198 cap: capacity,
199 alloc,
200 }
201 }
202 }
203
204 /// Reconstitutes a `RawVec` from a pointer, capacity, and allocator.
205 ///
206 /// # Safety
207 ///
208 /// The `ptr` must be allocated (via the given allocator `alloc`), and with the given
209 /// `capacity`.
210 /// The `capacity` cannot exceed `isize::MAX` for sized types. (only a concern on 32-bit
211 /// systems). ZST vectors may have a capacity up to `usize::MAX`.
212 /// If the `ptr` and `capacity` come from a `RawVec` created via `alloc`, then this is
213 /// guaranteed.
214 #[inline]
215 pub unsafe fn from_raw_parts_in(ptr: *mut T, capacity: usize, alloc: A) -> Self {
216 Self { ptr: unsafe { Unique::new_unchecked(ptr) }, cap: capacity, alloc }
217 }
218
219 /// Gets a raw pointer to the start of the allocation. Note that this is
220 /// `Unique::dangling()` if `capacity == 0` or `T` is zero-sized. In the former case, you must
221 /// be careful.
222 #[inline]
223 pub fn ptr(&self) -> *mut T {
224 self.ptr.as_ptr()
225 }
226
227 /// Gets the capacity of the allocation.
228 ///
229 /// This will always be `usize::MAX` if `T` is zero-sized.
230 #[inline(always)]
231 pub fn capacity(&self) -> usize {
232 if T::IS_ZST { usize::MAX } else { self.cap }
233 }
234
235 /// Returns a shared reference to the allocator backing this `RawVec`.
236 pub fn allocator(&self) -> &A {
237 &self.alloc
238 }
239
240 fn current_memory(&self) -> Option<(NonNull<u8>, Layout)> {
241 if T::IS_ZST || self.cap == 0 {
242 None
243 } else {
244 // We could use Layout::array here which ensures the absence of isize and usize overflows
245 // and could hypothetically handle differences between stride and size, but this memory
246 // has already been allocated so we know it can't overflow and currently rust does not
247 // support such types. So we can do better by skipping some checks and avoid an unwrap.
248 let _: () = const { assert!(mem::size_of::<T>() % mem::align_of::<T>() == 0) };
249 unsafe {
250 let align = mem::align_of::<T>();
251 let size = mem::size_of::<T>().unchecked_mul(self.cap);
252 let layout = Layout::from_size_align_unchecked(size, align);
253 Some((self.ptr.cast().into(), layout))
254 }
255 }
256 }
257
258 /// Ensures that the buffer contains at least enough space to hold `len +
259 /// additional` elements. If it doesn't already have enough capacity, will
260 /// reallocate enough space plus comfortable slack space to get amortized
261 /// *O*(1) behavior. Will limit this behavior if it would needlessly cause
262 /// itself to panic.
263 ///
264 /// If `len` exceeds `self.capacity()`, this may fail to actually allocate
265 /// the requested space. This is not really unsafe, but the unsafe
266 /// code *you* write that relies on the behavior of this function may break.
267 ///
268 /// This is ideal for implementing a bulk-push operation like `extend`.
269 ///
270 /// # Panics
271 ///
272 /// Panics if the new capacity exceeds `isize::MAX` bytes.
273 ///
274 /// # Aborts
275 ///
276 /// Aborts on OOM.
277 #[cfg(not(no_global_oom_handling))]
278 #[inline]
279 pub fn reserve(&mut self, len: usize, additional: usize) {
280 // Callers expect this function to be very cheap when there is already sufficient capacity.
281 // Therefore, we move all the resizing and error-handling logic from grow_amortized and
282 // handle_reserve behind a call, while making sure that this function is likely to be
283 // inlined as just a comparison and a call if the comparison fails.
284 #[cold]
285 fn do_reserve_and_handle<T, A: Allocator>(
286 slf: &mut RawVec<T, A>,
287 len: usize,
288 additional: usize,
289 ) {
290 handle_reserve(slf.grow_amortized(len, additional));
291 }
292
293 if self.needs_to_grow(len, additional) {
294 do_reserve_and_handle(self, len, additional);
295 }
296 }
297
298 /// A specialized version of `reserve()` used only by the hot and
299 /// oft-instantiated `Vec::push()`, which does its own capacity check.
300 #[cfg(not(no_global_oom_handling))]
301 #[inline(never)]
302 pub fn reserve_for_push(&mut self, len: usize) {
303 handle_reserve(self.grow_amortized(len, 1));
304 }
305
306 /// The same as `reserve`, but returns on errors instead of panicking or aborting.
307 pub fn try_reserve(&mut self, len: usize, additional: usize) -> Result<(), TryReserveError> {
308 if self.needs_to_grow(len, additional) {
309 self.grow_amortized(len, additional)
310 } else {
311 Ok(())
312 }
313 }
314
315 /// Ensures that the buffer contains at least enough space to hold `len +
316 /// additional` elements. If it doesn't already, will reallocate the
317 /// minimum possible amount of memory necessary. Generally this will be
318 /// exactly the amount of memory necessary, but in principle the allocator
319 /// is free to give back more than we asked for.
320 ///
321 /// If `len` exceeds `self.capacity()`, this may fail to actually allocate
322 /// the requested space. This is not really unsafe, but the unsafe code
323 /// *you* write that relies on the behavior of this function may break.
324 ///
325 /// # Panics
326 ///
327 /// Panics if the new capacity exceeds `isize::MAX` bytes.
328 ///
329 /// # Aborts
330 ///
331 /// Aborts on OOM.
332 #[cfg(not(no_global_oom_handling))]
333 pub fn reserve_exact(&mut self, len: usize, additional: usize) {
334 handle_reserve(self.try_reserve_exact(len, additional));
335 }
336
337 /// The same as `reserve_exact`, but returns on errors instead of panicking or aborting.
338 pub fn try_reserve_exact(
339 &mut self,
340 len: usize,
341 additional: usize,
342 ) -> Result<(), TryReserveError> {
343 if self.needs_to_grow(len, additional) { self.grow_exact(len, additional) } else { Ok(()) }
344 }
345
346 /// Shrinks the buffer down to the specified capacity. If the given amount
347 /// is 0, actually completely deallocates.
348 ///
349 /// # Panics
350 ///
351 /// Panics if the given amount is *larger* than the current capacity.
352 ///
353 /// # Aborts
354 ///
355 /// Aborts on OOM.
356 #[cfg(not(no_global_oom_handling))]
357 pub fn shrink_to_fit(&mut self, cap: usize) {
358 handle_reserve(self.shrink(cap));
359 }
360 }
361
362 impl<T, A: Allocator> RawVec<T, A> {
363 /// Returns if the buffer needs to grow to fulfill the needed extra capacity.
364 /// Mainly used to make inlining reserve-calls possible without inlining `grow`.
365 fn needs_to_grow(&self, len: usize, additional: usize) -> bool {
366 additional > self.capacity().wrapping_sub(len)
367 }
368
369 fn set_ptr_and_cap(&mut self, ptr: NonNull<[u8]>, cap: usize) {
370 // Allocators currently return a `NonNull<[u8]>` whose length matches
371 // the size requested. If that ever changes, the capacity here should
372 // change to `ptr.len() / mem::size_of::<T>()`.
373 self.ptr = unsafe { Unique::new_unchecked(ptr.cast().as_ptr()) };
374 self.cap = cap;
375 }
376
377 // This method is usually instantiated many times. So we want it to be as
378 // small as possible, to improve compile times. But we also want as much of
379 // its contents to be statically computable as possible, to make the
380 // generated code run faster. Therefore, this method is carefully written
381 // so that all of the code that depends on `T` is within it, while as much
382 // of the code that doesn't depend on `T` as possible is in functions that
383 // are non-generic over `T`.
384 fn grow_amortized(&mut self, len: usize, additional: usize) -> Result<(), TryReserveError> {
385 // This is ensured by the calling contexts.
386 debug_assert!(additional > 0);
387
388 if T::IS_ZST {
389 // Since we return a capacity of `usize::MAX` when `elem_size` is
390 // 0, getting to here necessarily means the `RawVec` is overfull.
391 return Err(CapacityOverflow.into());
392 }
393
394 // Nothing we can really do about these checks, sadly.
395 let required_cap = len.checked_add(additional).ok_or(CapacityOverflow)?;
396
397 // This guarantees exponential growth. The doubling cannot overflow
398 // because `cap <= isize::MAX` and the type of `cap` is `usize`.
399 let cap = cmp::max(self.cap * 2, required_cap);
400 let cap = cmp::max(Self::MIN_NON_ZERO_CAP, cap);
401
402 let new_layout = Layout::array::<T>(cap);
403
404 // `finish_grow` is non-generic over `T`.
405 let ptr = finish_grow(new_layout, self.current_memory(), &mut self.alloc)?;
406 self.set_ptr_and_cap(ptr, cap);
407 Ok(())
408 }
409
410 // The constraints on this method are much the same as those on
411 // `grow_amortized`, but this method is usually instantiated less often so
412 // it's less critical.
413 fn grow_exact(&mut self, len: usize, additional: usize) -> Result<(), TryReserveError> {
414 if T::IS_ZST {
415 // Since we return a capacity of `usize::MAX` when the type size is
416 // 0, getting to here necessarily means the `RawVec` is overfull.
417 return Err(CapacityOverflow.into());
418 }
419
420 let cap = len.checked_add(additional).ok_or(CapacityOverflow)?;
421 let new_layout = Layout::array::<T>(cap);
422
423 // `finish_grow` is non-generic over `T`.
424 let ptr = finish_grow(new_layout, self.current_memory(), &mut self.alloc)?;
425 self.set_ptr_and_cap(ptr, cap);
426 Ok(())
427 }
428
429 #[cfg(not(no_global_oom_handling))]
430 fn shrink(&mut self, cap: usize) -> Result<(), TryReserveError> {
431 assert!(cap <= self.capacity(), "Tried to shrink to a larger capacity");
432
433 let (ptr, layout) = if let Some(mem) = self.current_memory() { mem } else { return Ok(()) };
434 // See current_memory() why this assert is here
435 let _: () = const { assert!(mem::size_of::<T>() % mem::align_of::<T>() == 0) };
436 let ptr = unsafe {
437 // `Layout::array` cannot overflow here because it would have
438 // overflowed earlier when capacity was larger.
439 let new_size = mem::size_of::<T>().unchecked_mul(cap);
440 let new_layout = Layout::from_size_align_unchecked(new_size, layout.align());
441 self.alloc
442 .shrink(ptr, layout, new_layout)
443 .map_err(|_| AllocError { layout: new_layout, non_exhaustive: () })?
444 };
445 self.set_ptr_and_cap(ptr, cap);
446 Ok(())
447 }
448 }
449
450 // This function is outside `RawVec` to minimize compile times. See the comment
451 // above `RawVec::grow_amortized` for details. (The `A` parameter isn't
452 // significant, because the number of different `A` types seen in practice is
453 // much smaller than the number of `T` types.)
454 #[inline(never)]
455 fn finish_grow<A>(
456 new_layout: Result<Layout, LayoutError>,
457 current_memory: Option<(NonNull<u8>, Layout)>,
458 alloc: &mut A,
459 ) -> Result<NonNull<[u8]>, TryReserveError>
460 where
461 A: Allocator,
462 {
463 // Check for the error here to minimize the size of `RawVec::grow_*`.
464 let new_layout = new_layout.map_err(|_| CapacityOverflow)?;
465
466 alloc_guard(new_layout.size())?;
467
468 let memory = if let Some((ptr, old_layout)) = current_memory {
469 debug_assert_eq!(old_layout.align(), new_layout.align());
470 unsafe {
471 // The allocator checks for alignment equality
472 intrinsics::assume(old_layout.align() == new_layout.align());
473 alloc.grow(ptr, old_layout, new_layout)
474 }
475 } else {
476 alloc.allocate(new_layout)
477 };
478
479 memory.map_err(|_| AllocError { layout: new_layout, non_exhaustive: () }.into())
480 }
481
482 unsafe impl<#[may_dangle] T, A: Allocator> Drop for RawVec<T, A> {
483 /// Frees the memory owned by the `RawVec` *without* trying to drop its contents.
484 fn drop(&mut self) {
485 if let Some((ptr, layout)) = self.current_memory() {
486 unsafe { self.alloc.deallocate(ptr, layout) }
487 }
488 }
489 }
490
491 // Central function for reserve error handling.
492 #[cfg(not(no_global_oom_handling))]
493 #[inline]
494 fn handle_reserve(result: Result<(), TryReserveError>) {
495 match result.map_err(|e| e.kind()) {
496 Err(CapacityOverflow) => capacity_overflow(),
497 Err(AllocError { layout, .. }) => handle_alloc_error(layout),
498 Ok(()) => { /* yay */ }
499 }
500 }
501
502 // We need to guarantee the following:
503 // * We don't ever allocate `> isize::MAX` byte-size objects.
504 // * We don't overflow `usize::MAX` and actually allocate too little.
505 //
506 // On 64-bit we just need to check for overflow since trying to allocate
507 // `> isize::MAX` bytes will surely fail. On 32-bit and 16-bit we need to add
508 // an extra guard for this in case we're running on a platform which can use
509 // all 4GB in user-space, e.g., PAE or x32.
510
511 #[inline]
512 fn alloc_guard(alloc_size: usize) -> Result<(), TryReserveError> {
513 if usize::BITS < 64 && alloc_size > isize::MAX as usize {
514 Err(CapacityOverflow.into())
515 } else {
516 Ok(())
517 }
518 }
519
520 // One central function responsible for reporting capacity overflows. This'll
521 // ensure that the code generation related to these panics is minimal as there's
522 // only one location which panics rather than a bunch throughout the module.
523 #[cfg(not(no_global_oom_handling))]
524 fn capacity_overflow() -> ! {
525 panic!("capacity overflow");
526 }