]> git.proxmox.com Git - rustc.git/blob - library/core/src/result.rs
New upstream version 1.65.0+dfsg1
[rustc.git] / library / core / src / result.rs
1 //! Error handling with the `Result` type.
2 //!
3 //! [`Result<T, E>`][`Result`] is the type used for returning and propagating
4 //! errors. It is an enum with the variants, [`Ok(T)`], representing
5 //! success and containing a value, and [`Err(E)`], representing error
6 //! and containing an error value.
7 //!
8 //! ```
9 //! # #[allow(dead_code)]
10 //! enum Result<T, E> {
11 //! Ok(T),
12 //! Err(E),
13 //! }
14 //! ```
15 //!
16 //! Functions return [`Result`] whenever errors are expected and
17 //! recoverable. In the `std` crate, [`Result`] is most prominently used
18 //! for [I/O](../../std/io/index.html).
19 //!
20 //! A simple function returning [`Result`] might be
21 //! defined and used like so:
22 //!
23 //! ```
24 //! #[derive(Debug)]
25 //! enum Version { Version1, Version2 }
26 //!
27 //! fn parse_version(header: &[u8]) -> Result<Version, &'static str> {
28 //! match header.get(0) {
29 //! None => Err("invalid header length"),
30 //! Some(&1) => Ok(Version::Version1),
31 //! Some(&2) => Ok(Version::Version2),
32 //! Some(_) => Err("invalid version"),
33 //! }
34 //! }
35 //!
36 //! let version = parse_version(&[1, 2, 3, 4]);
37 //! match version {
38 //! Ok(v) => println!("working with version: {v:?}"),
39 //! Err(e) => println!("error parsing header: {e:?}"),
40 //! }
41 //! ```
42 //!
43 //! Pattern matching on [`Result`]s is clear and straightforward for
44 //! simple cases, but [`Result`] comes with some convenience methods
45 //! that make working with it more succinct.
46 //!
47 //! ```
48 //! let good_result: Result<i32, i32> = Ok(10);
49 //! let bad_result: Result<i32, i32> = Err(10);
50 //!
51 //! // The `is_ok` and `is_err` methods do what they say.
52 //! assert!(good_result.is_ok() && !good_result.is_err());
53 //! assert!(bad_result.is_err() && !bad_result.is_ok());
54 //!
55 //! // `map` consumes the `Result` and produces another.
56 //! let good_result: Result<i32, i32> = good_result.map(|i| i + 1);
57 //! let bad_result: Result<i32, i32> = bad_result.map(|i| i - 1);
58 //!
59 //! // Use `and_then` to continue the computation.
60 //! let good_result: Result<bool, i32> = good_result.and_then(|i| Ok(i == 11));
61 //!
62 //! // Use `or_else` to handle the error.
63 //! let bad_result: Result<i32, i32> = bad_result.or_else(|i| Ok(i + 20));
64 //!
65 //! // Consume the result and return the contents with `unwrap`.
66 //! let final_awesome_result = good_result.unwrap();
67 //! ```
68 //!
69 //! # Results must be used
70 //!
71 //! A common problem with using return values to indicate errors is
72 //! that it is easy to ignore the return value, thus failing to handle
73 //! the error. [`Result`] is annotated with the `#[must_use]` attribute,
74 //! which will cause the compiler to issue a warning when a Result
75 //! value is ignored. This makes [`Result`] especially useful with
76 //! functions that may encounter errors but don't otherwise return a
77 //! useful value.
78 //!
79 //! Consider the [`write_all`] method defined for I/O types
80 //! by the [`Write`] trait:
81 //!
82 //! ```
83 //! use std::io;
84 //!
85 //! trait Write {
86 //! fn write_all(&mut self, bytes: &[u8]) -> Result<(), io::Error>;
87 //! }
88 //! ```
89 //!
90 //! *Note: The actual definition of [`Write`] uses [`io::Result`], which
91 //! is just a synonym for <code>[Result]<T, [io::Error]></code>.*
92 //!
93 //! This method doesn't produce a value, but the write may
94 //! fail. It's crucial to handle the error case, and *not* write
95 //! something like this:
96 //!
97 //! ```no_run
98 //! # #![allow(unused_must_use)] // \o/
99 //! use std::fs::File;
100 //! use std::io::prelude::*;
101 //!
102 //! let mut file = File::create("valuable_data.txt").unwrap();
103 //! // If `write_all` errors, then we'll never know, because the return
104 //! // value is ignored.
105 //! file.write_all(b"important message");
106 //! ```
107 //!
108 //! If you *do* write that in Rust, the compiler will give you a
109 //! warning (by default, controlled by the `unused_must_use` lint).
110 //!
111 //! You might instead, if you don't want to handle the error, simply
112 //! assert success with [`expect`]. This will panic if the
113 //! write fails, providing a marginally useful message indicating why:
114 //!
115 //! ```no_run
116 //! use std::fs::File;
117 //! use std::io::prelude::*;
118 //!
119 //! let mut file = File::create("valuable_data.txt").unwrap();
120 //! file.write_all(b"important message").expect("failed to write message");
121 //! ```
122 //!
123 //! You might also simply assert success:
124 //!
125 //! ```no_run
126 //! # use std::fs::File;
127 //! # use std::io::prelude::*;
128 //! # let mut file = File::create("valuable_data.txt").unwrap();
129 //! assert!(file.write_all(b"important message").is_ok());
130 //! ```
131 //!
132 //! Or propagate the error up the call stack with [`?`]:
133 //!
134 //! ```
135 //! # use std::fs::File;
136 //! # use std::io::prelude::*;
137 //! # use std::io;
138 //! # #[allow(dead_code)]
139 //! fn write_message() -> io::Result<()> {
140 //! let mut file = File::create("valuable_data.txt")?;
141 //! file.write_all(b"important message")?;
142 //! Ok(())
143 //! }
144 //! ```
145 //!
146 //! # The question mark operator, `?`
147 //!
148 //! When writing code that calls many functions that return the
149 //! [`Result`] type, the error handling can be tedious. The question mark
150 //! operator, [`?`], hides some of the boilerplate of propagating errors
151 //! up the call stack.
152 //!
153 //! It replaces this:
154 //!
155 //! ```
156 //! # #![allow(dead_code)]
157 //! use std::fs::File;
158 //! use std::io::prelude::*;
159 //! use std::io;
160 //!
161 //! struct Info {
162 //! name: String,
163 //! age: i32,
164 //! rating: i32,
165 //! }
166 //!
167 //! fn write_info(info: &Info) -> io::Result<()> {
168 //! // Early return on error
169 //! let mut file = match File::create("my_best_friends.txt") {
170 //! Err(e) => return Err(e),
171 //! Ok(f) => f,
172 //! };
173 //! if let Err(e) = file.write_all(format!("name: {}\n", info.name).as_bytes()) {
174 //! return Err(e)
175 //! }
176 //! if let Err(e) = file.write_all(format!("age: {}\n", info.age).as_bytes()) {
177 //! return Err(e)
178 //! }
179 //! if let Err(e) = file.write_all(format!("rating: {}\n", info.rating).as_bytes()) {
180 //! return Err(e)
181 //! }
182 //! Ok(())
183 //! }
184 //! ```
185 //!
186 //! With this:
187 //!
188 //! ```
189 //! # #![allow(dead_code)]
190 //! use std::fs::File;
191 //! use std::io::prelude::*;
192 //! use std::io;
193 //!
194 //! struct Info {
195 //! name: String,
196 //! age: i32,
197 //! rating: i32,
198 //! }
199 //!
200 //! fn write_info(info: &Info) -> io::Result<()> {
201 //! let mut file = File::create("my_best_friends.txt")?;
202 //! // Early return on error
203 //! file.write_all(format!("name: {}\n", info.name).as_bytes())?;
204 //! file.write_all(format!("age: {}\n", info.age).as_bytes())?;
205 //! file.write_all(format!("rating: {}\n", info.rating).as_bytes())?;
206 //! Ok(())
207 //! }
208 //! ```
209 //!
210 //! *It's much nicer!*
211 //!
212 //! Ending the expression with [`?`] will result in the unwrapped
213 //! success ([`Ok`]) value, unless the result is [`Err`], in which case
214 //! [`Err`] is returned early from the enclosing function.
215 //!
216 //! [`?`] can only be used in functions that return [`Result`] because of the
217 //! early return of [`Err`] that it provides.
218 //!
219 //! [`expect`]: Result::expect
220 //! [`Write`]: ../../std/io/trait.Write.html "io::Write"
221 //! [`write_all`]: ../../std/io/trait.Write.html#method.write_all "io::Write::write_all"
222 //! [`io::Result`]: ../../std/io/type.Result.html "io::Result"
223 //! [`?`]: crate::ops::Try
224 //! [`Ok(T)`]: Ok
225 //! [`Err(E)`]: Err
226 //! [io::Error]: ../../std/io/struct.Error.html "io::Error"
227 //!
228 //! # Method overview
229 //!
230 //! In addition to working with pattern matching, [`Result`] provides a
231 //! wide variety of different methods.
232 //!
233 //! ## Querying the variant
234 //!
235 //! The [`is_ok`] and [`is_err`] methods return [`true`] if the [`Result`]
236 //! is [`Ok`] or [`Err`], respectively.
237 //!
238 //! [`is_err`]: Result::is_err
239 //! [`is_ok`]: Result::is_ok
240 //!
241 //! ## Adapters for working with references
242 //!
243 //! * [`as_ref`] converts from `&Result<T, E>` to `Result<&T, &E>`
244 //! * [`as_mut`] converts from `&mut Result<T, E>` to `Result<&mut T, &mut E>`
245 //! * [`as_deref`] converts from `&Result<T, E>` to `Result<&T::Target, &E>`
246 //! * [`as_deref_mut`] converts from `&mut Result<T, E>` to
247 //! `Result<&mut T::Target, &mut E>`
248 //!
249 //! [`as_deref`]: Result::as_deref
250 //! [`as_deref_mut`]: Result::as_deref_mut
251 //! [`as_mut`]: Result::as_mut
252 //! [`as_ref`]: Result::as_ref
253 //!
254 //! ## Extracting contained values
255 //!
256 //! These methods extract the contained value in a [`Result<T, E>`] when it
257 //! is the [`Ok`] variant. If the [`Result`] is [`Err`]:
258 //!
259 //! * [`expect`] panics with a provided custom message
260 //! * [`unwrap`] panics with a generic message
261 //! * [`unwrap_or`] returns the provided default value
262 //! * [`unwrap_or_default`] returns the default value of the type `T`
263 //! (which must implement the [`Default`] trait)
264 //! * [`unwrap_or_else`] returns the result of evaluating the provided
265 //! function
266 //!
267 //! The panicking methods [`expect`] and [`unwrap`] require `E` to
268 //! implement the [`Debug`] trait.
269 //!
270 //! [`Debug`]: crate::fmt::Debug
271 //! [`expect`]: Result::expect
272 //! [`unwrap`]: Result::unwrap
273 //! [`unwrap_or`]: Result::unwrap_or
274 //! [`unwrap_or_default`]: Result::unwrap_or_default
275 //! [`unwrap_or_else`]: Result::unwrap_or_else
276 //!
277 //! These methods extract the contained value in a [`Result<T, E>`] when it
278 //! is the [`Err`] variant. They require `T` to implement the [`Debug`]
279 //! trait. If the [`Result`] is [`Ok`]:
280 //!
281 //! * [`expect_err`] panics with a provided custom message
282 //! * [`unwrap_err`] panics with a generic message
283 //!
284 //! [`Debug`]: crate::fmt::Debug
285 //! [`expect_err`]: Result::expect_err
286 //! [`unwrap_err`]: Result::unwrap_err
287 //!
288 //! ## Transforming contained values
289 //!
290 //! These methods transform [`Result`] to [`Option`]:
291 //!
292 //! * [`err`][Result::err] transforms [`Result<T, E>`] into [`Option<E>`],
293 //! mapping [`Err(e)`] to [`Some(e)`] and [`Ok(v)`] to [`None`]
294 //! * [`ok`][Result::ok] transforms [`Result<T, E>`] into [`Option<T>`],
295 //! mapping [`Ok(v)`] to [`Some(v)`] and [`Err(e)`] to [`None`]
296 //! * [`transpose`] transposes a [`Result`] of an [`Option`] into an
297 //! [`Option`] of a [`Result`]
298 //!
299 // Do NOT add link reference definitions for `err` or `ok`, because they
300 // will generate numerous incorrect URLs for `Err` and `Ok` elsewhere, due
301 // to case folding.
302 //!
303 //! [`Err(e)`]: Err
304 //! [`Ok(v)`]: Ok
305 //! [`Some(e)`]: Option::Some
306 //! [`Some(v)`]: Option::Some
307 //! [`transpose`]: Result::transpose
308 //!
309 //! This method transforms the contained value of the [`Ok`] variant:
310 //!
311 //! * [`map`] transforms [`Result<T, E>`] into [`Result<U, E>`] by applying
312 //! the provided function to the contained value of [`Ok`] and leaving
313 //! [`Err`] values unchanged
314 //!
315 //! [`map`]: Result::map
316 //!
317 //! This method transforms the contained value of the [`Err`] variant:
318 //!
319 //! * [`map_err`] transforms [`Result<T, E>`] into [`Result<T, F>`] by
320 //! applying the provided function to the contained value of [`Err`] and
321 //! leaving [`Ok`] values unchanged
322 //!
323 //! [`map_err`]: Result::map_err
324 //!
325 //! These methods transform a [`Result<T, E>`] into a value of a possibly
326 //! different type `U`:
327 //!
328 //! * [`map_or`] applies the provided function to the contained value of
329 //! [`Ok`], or returns the provided default value if the [`Result`] is
330 //! [`Err`]
331 //! * [`map_or_else`] applies the provided function to the contained value
332 //! of [`Ok`], or applies the provided default fallback function to the
333 //! contained value of [`Err`]
334 //!
335 //! [`map_or`]: Result::map_or
336 //! [`map_or_else`]: Result::map_or_else
337 //!
338 //! ## Boolean operators
339 //!
340 //! These methods treat the [`Result`] as a boolean value, where [`Ok`]
341 //! acts like [`true`] and [`Err`] acts like [`false`]. There are two
342 //! categories of these methods: ones that take a [`Result`] as input, and
343 //! ones that take a function as input (to be lazily evaluated).
344 //!
345 //! The [`and`] and [`or`] methods take another [`Result`] as input, and
346 //! produce a [`Result`] as output. The [`and`] method can produce a
347 //! [`Result<U, E>`] value having a different inner type `U` than
348 //! [`Result<T, E>`]. The [`or`] method can produce a [`Result<T, F>`]
349 //! value having a different error type `F` than [`Result<T, E>`].
350 //!
351 //! | method | self | input | output |
352 //! |---------|----------|-----------|----------|
353 //! | [`and`] | `Err(e)` | (ignored) | `Err(e)` |
354 //! | [`and`] | `Ok(x)` | `Err(d)` | `Err(d)` |
355 //! | [`and`] | `Ok(x)` | `Ok(y)` | `Ok(y)` |
356 //! | [`or`] | `Err(e)` | `Err(d)` | `Err(d)` |
357 //! | [`or`] | `Err(e)` | `Ok(y)` | `Ok(y)` |
358 //! | [`or`] | `Ok(x)` | (ignored) | `Ok(x)` |
359 //!
360 //! [`and`]: Result::and
361 //! [`or`]: Result::or
362 //!
363 //! The [`and_then`] and [`or_else`] methods take a function as input, and
364 //! only evaluate the function when they need to produce a new value. The
365 //! [`and_then`] method can produce a [`Result<U, E>`] value having a
366 //! different inner type `U` than [`Result<T, E>`]. The [`or_else`] method
367 //! can produce a [`Result<T, F>`] value having a different error type `F`
368 //! than [`Result<T, E>`].
369 //!
370 //! | method | self | function input | function result | output |
371 //! |--------------|----------|----------------|-----------------|----------|
372 //! | [`and_then`] | `Err(e)` | (not provided) | (not evaluated) | `Err(e)` |
373 //! | [`and_then`] | `Ok(x)` | `x` | `Err(d)` | `Err(d)` |
374 //! | [`and_then`] | `Ok(x)` | `x` | `Ok(y)` | `Ok(y)` |
375 //! | [`or_else`] | `Err(e)` | `e` | `Err(d)` | `Err(d)` |
376 //! | [`or_else`] | `Err(e)` | `e` | `Ok(y)` | `Ok(y)` |
377 //! | [`or_else`] | `Ok(x)` | (not provided) | (not evaluated) | `Ok(x)` |
378 //!
379 //! [`and_then`]: Result::and_then
380 //! [`or_else`]: Result::or_else
381 //!
382 //! ## Comparison operators
383 //!
384 //! If `T` and `E` both implement [`PartialOrd`] then [`Result<T, E>`] will
385 //! derive its [`PartialOrd`] implementation. With this order, an [`Ok`]
386 //! compares as less than any [`Err`], while two [`Ok`] or two [`Err`]
387 //! compare as their contained values would in `T` or `E` respectively. If `T`
388 //! and `E` both also implement [`Ord`], then so does [`Result<T, E>`].
389 //!
390 //! ```
391 //! assert!(Ok(1) < Err(0));
392 //! let x: Result<i32, ()> = Ok(0);
393 //! let y = Ok(1);
394 //! assert!(x < y);
395 //! let x: Result<(), i32> = Err(0);
396 //! let y = Err(1);
397 //! assert!(x < y);
398 //! ```
399 //!
400 //! ## Iterating over `Result`
401 //!
402 //! A [`Result`] can be iterated over. This can be helpful if you need an
403 //! iterator that is conditionally empty. The iterator will either produce
404 //! a single value (when the [`Result`] is [`Ok`]), or produce no values
405 //! (when the [`Result`] is [`Err`]). For example, [`into_iter`] acts like
406 //! [`once(v)`] if the [`Result`] is [`Ok(v)`], and like [`empty()`] if the
407 //! [`Result`] is [`Err`].
408 //!
409 //! [`Ok(v)`]: Ok
410 //! [`empty()`]: crate::iter::empty
411 //! [`once(v)`]: crate::iter::once
412 //!
413 //! Iterators over [`Result<T, E>`] come in three types:
414 //!
415 //! * [`into_iter`] consumes the [`Result`] and produces the contained
416 //! value
417 //! * [`iter`] produces an immutable reference of type `&T` to the
418 //! contained value
419 //! * [`iter_mut`] produces a mutable reference of type `&mut T` to the
420 //! contained value
421 //!
422 //! See [Iterating over `Option`] for examples of how this can be useful.
423 //!
424 //! [Iterating over `Option`]: crate::option#iterating-over-option
425 //! [`into_iter`]: Result::into_iter
426 //! [`iter`]: Result::iter
427 //! [`iter_mut`]: Result::iter_mut
428 //!
429 //! You might want to use an iterator chain to do multiple instances of an
430 //! operation that can fail, but would like to ignore failures while
431 //! continuing to process the successful results. In this example, we take
432 //! advantage of the iterable nature of [`Result`] to select only the
433 //! [`Ok`] values using [`flatten`][Iterator::flatten].
434 //!
435 //! ```
436 //! # use std::str::FromStr;
437 //! let mut results = vec![];
438 //! let mut errs = vec![];
439 //! let nums: Vec<_> = ["17", "not a number", "99", "-27", "768"]
440 //! .into_iter()
441 //! .map(u8::from_str)
442 //! // Save clones of the raw `Result` values to inspect
443 //! .inspect(|x| results.push(x.clone()))
444 //! // Challenge: explain how this captures only the `Err` values
445 //! .inspect(|x| errs.extend(x.clone().err()))
446 //! .flatten()
447 //! .collect();
448 //! assert_eq!(errs.len(), 3);
449 //! assert_eq!(nums, [17, 99]);
450 //! println!("results {results:?}");
451 //! println!("errs {errs:?}");
452 //! println!("nums {nums:?}");
453 //! ```
454 //!
455 //! ## Collecting into `Result`
456 //!
457 //! [`Result`] implements the [`FromIterator`][impl-FromIterator] trait,
458 //! which allows an iterator over [`Result`] values to be collected into a
459 //! [`Result`] of a collection of each contained value of the original
460 //! [`Result`] values, or [`Err`] if any of the elements was [`Err`].
461 //!
462 //! [impl-FromIterator]: Result#impl-FromIterator%3CResult%3CA%2C%20E%3E%3E-for-Result%3CV%2C%20E%3E
463 //!
464 //! ```
465 //! let v = [Ok(2), Ok(4), Err("err!"), Ok(8)];
466 //! let res: Result<Vec<_>, &str> = v.into_iter().collect();
467 //! assert_eq!(res, Err("err!"));
468 //! let v = [Ok(2), Ok(4), Ok(8)];
469 //! let res: Result<Vec<_>, &str> = v.into_iter().collect();
470 //! assert_eq!(res, Ok(vec![2, 4, 8]));
471 //! ```
472 //!
473 //! [`Result`] also implements the [`Product`][impl-Product] and
474 //! [`Sum`][impl-Sum] traits, allowing an iterator over [`Result`] values
475 //! to provide the [`product`][Iterator::product] and
476 //! [`sum`][Iterator::sum] methods.
477 //!
478 //! [impl-Product]: Result#impl-Product%3CResult%3CU%2C%20E%3E%3E-for-Result%3CT%2C%20E%3E
479 //! [impl-Sum]: Result#impl-Sum%3CResult%3CU%2C%20E%3E%3E-for-Result%3CT%2C%20E%3E
480 //!
481 //! ```
482 //! let v = [Err("error!"), Ok(1), Ok(2), Ok(3), Err("foo")];
483 //! let res: Result<i32, &str> = v.into_iter().sum();
484 //! assert_eq!(res, Err("error!"));
485 //! let v = [Ok(1), Ok(2), Ok(21)];
486 //! let res: Result<i32, &str> = v.into_iter().product();
487 //! assert_eq!(res, Ok(42));
488 //! ```
489
490 #![stable(feature = "rust1", since = "1.0.0")]
491
492 use crate::iter::{self, FromIterator, FusedIterator, TrustedLen};
493 use crate::marker::Destruct;
494 use crate::ops::{self, ControlFlow, Deref, DerefMut};
495 use crate::{convert, fmt, hint};
496
497 /// `Result` is a type that represents either success ([`Ok`]) or failure ([`Err`]).
498 ///
499 /// See the [module documentation](self) for details.
500 #[derive(Copy, PartialEq, PartialOrd, Eq, Ord, Debug, Hash)]
501 #[must_use = "this `Result` may be an `Err` variant, which should be handled"]
502 #[rustc_diagnostic_item = "Result"]
503 #[stable(feature = "rust1", since = "1.0.0")]
504 pub enum Result<T, E> {
505 /// Contains the success value
506 #[lang = "Ok"]
507 #[stable(feature = "rust1", since = "1.0.0")]
508 Ok(#[stable(feature = "rust1", since = "1.0.0")] T),
509
510 /// Contains the error value
511 #[lang = "Err"]
512 #[stable(feature = "rust1", since = "1.0.0")]
513 Err(#[stable(feature = "rust1", since = "1.0.0")] E),
514 }
515
516 /////////////////////////////////////////////////////////////////////////////
517 // Type implementation
518 /////////////////////////////////////////////////////////////////////////////
519
520 impl<T, E> Result<T, E> {
521 /////////////////////////////////////////////////////////////////////////
522 // Querying the contained values
523 /////////////////////////////////////////////////////////////////////////
524
525 /// Returns `true` if the result is [`Ok`].
526 ///
527 /// # Examples
528 ///
529 /// Basic usage:
530 ///
531 /// ```
532 /// let x: Result<i32, &str> = Ok(-3);
533 /// assert_eq!(x.is_ok(), true);
534 ///
535 /// let x: Result<i32, &str> = Err("Some error message");
536 /// assert_eq!(x.is_ok(), false);
537 /// ```
538 #[must_use = "if you intended to assert that this is ok, consider `.unwrap()` instead"]
539 #[rustc_const_stable(feature = "const_result_basics", since = "1.48.0")]
540 #[inline]
541 #[stable(feature = "rust1", since = "1.0.0")]
542 pub const fn is_ok(&self) -> bool {
543 matches!(*self, Ok(_))
544 }
545
546 /// Returns `true` if the result is [`Ok`] and the value inside of it matches a predicate.
547 ///
548 /// # Examples
549 ///
550 /// ```
551 /// #![feature(is_some_with)]
552 ///
553 /// let x: Result<u32, &str> = Ok(2);
554 /// assert_eq!(x.is_ok_and(|&x| x > 1), true);
555 ///
556 /// let x: Result<u32, &str> = Ok(0);
557 /// assert_eq!(x.is_ok_and(|&x| x > 1), false);
558 ///
559 /// let x: Result<u32, &str> = Err("hey");
560 /// assert_eq!(x.is_ok_and(|&x| x > 1), false);
561 /// ```
562 #[must_use]
563 #[inline]
564 #[unstable(feature = "is_some_with", issue = "93050")]
565 pub fn is_ok_and(&self, f: impl FnOnce(&T) -> bool) -> bool {
566 matches!(self, Ok(x) if f(x))
567 }
568
569 /// Returns `true` if the result is [`Err`].
570 ///
571 /// # Examples
572 ///
573 /// Basic usage:
574 ///
575 /// ```
576 /// let x: Result<i32, &str> = Ok(-3);
577 /// assert_eq!(x.is_err(), false);
578 ///
579 /// let x: Result<i32, &str> = Err("Some error message");
580 /// assert_eq!(x.is_err(), true);
581 /// ```
582 #[must_use = "if you intended to assert that this is err, consider `.unwrap_err()` instead"]
583 #[rustc_const_stable(feature = "const_result_basics", since = "1.48.0")]
584 #[inline]
585 #[stable(feature = "rust1", since = "1.0.0")]
586 pub const fn is_err(&self) -> bool {
587 !self.is_ok()
588 }
589
590 /// Returns `true` if the result is [`Err`] and the value inside of it matches a predicate.
591 ///
592 /// # Examples
593 ///
594 /// ```
595 /// #![feature(is_some_with)]
596 /// use std::io::{Error, ErrorKind};
597 ///
598 /// let x: Result<u32, Error> = Err(Error::new(ErrorKind::NotFound, "!"));
599 /// assert_eq!(x.is_err_and(|x| x.kind() == ErrorKind::NotFound), true);
600 ///
601 /// let x: Result<u32, Error> = Err(Error::new(ErrorKind::PermissionDenied, "!"));
602 /// assert_eq!(x.is_err_and(|x| x.kind() == ErrorKind::NotFound), false);
603 ///
604 /// let x: Result<u32, Error> = Ok(123);
605 /// assert_eq!(x.is_err_and(|x| x.kind() == ErrorKind::NotFound), false);
606 /// ```
607 #[must_use]
608 #[inline]
609 #[unstable(feature = "is_some_with", issue = "93050")]
610 pub fn is_err_and(&self, f: impl FnOnce(&E) -> bool) -> bool {
611 matches!(self, Err(x) if f(x))
612 }
613
614 /////////////////////////////////////////////////////////////////////////
615 // Adapter for each variant
616 /////////////////////////////////////////////////////////////////////////
617
618 /// Converts from `Result<T, E>` to [`Option<T>`].
619 ///
620 /// Converts `self` into an [`Option<T>`], consuming `self`,
621 /// and discarding the error, if any.
622 ///
623 /// # Examples
624 ///
625 /// Basic usage:
626 ///
627 /// ```
628 /// let x: Result<u32, &str> = Ok(2);
629 /// assert_eq!(x.ok(), Some(2));
630 ///
631 /// let x: Result<u32, &str> = Err("Nothing here");
632 /// assert_eq!(x.ok(), None);
633 /// ```
634 #[inline]
635 #[stable(feature = "rust1", since = "1.0.0")]
636 #[rustc_const_unstable(feature = "const_result_drop", issue = "92384")]
637 pub const fn ok(self) -> Option<T>
638 where
639 E: ~const Destruct,
640 {
641 match self {
642 Ok(x) => Some(x),
643 // FIXME: ~const Drop doesn't quite work right yet
644 #[allow(unused_variables)]
645 Err(x) => None,
646 }
647 }
648
649 /// Converts from `Result<T, E>` to [`Option<E>`].
650 ///
651 /// Converts `self` into an [`Option<E>`], consuming `self`,
652 /// and discarding the success value, if any.
653 ///
654 /// # Examples
655 ///
656 /// Basic usage:
657 ///
658 /// ```
659 /// let x: Result<u32, &str> = Ok(2);
660 /// assert_eq!(x.err(), None);
661 ///
662 /// let x: Result<u32, &str> = Err("Nothing here");
663 /// assert_eq!(x.err(), Some("Nothing here"));
664 /// ```
665 #[inline]
666 #[stable(feature = "rust1", since = "1.0.0")]
667 #[rustc_const_unstable(feature = "const_result_drop", issue = "92384")]
668 pub const fn err(self) -> Option<E>
669 where
670 T: ~const Destruct,
671 {
672 match self {
673 // FIXME: ~const Drop doesn't quite work right yet
674 #[allow(unused_variables)]
675 Ok(x) => None,
676 Err(x) => Some(x),
677 }
678 }
679
680 /////////////////////////////////////////////////////////////////////////
681 // Adapter for working with references
682 /////////////////////////////////////////////////////////////////////////
683
684 /// Converts from `&Result<T, E>` to `Result<&T, &E>`.
685 ///
686 /// Produces a new `Result`, containing a reference
687 /// into the original, leaving the original in place.
688 ///
689 /// # Examples
690 ///
691 /// Basic usage:
692 ///
693 /// ```
694 /// let x: Result<u32, &str> = Ok(2);
695 /// assert_eq!(x.as_ref(), Ok(&2));
696 ///
697 /// let x: Result<u32, &str> = Err("Error");
698 /// assert_eq!(x.as_ref(), Err(&"Error"));
699 /// ```
700 #[inline]
701 #[rustc_const_stable(feature = "const_result_basics", since = "1.48.0")]
702 #[stable(feature = "rust1", since = "1.0.0")]
703 pub const fn as_ref(&self) -> Result<&T, &E> {
704 match *self {
705 Ok(ref x) => Ok(x),
706 Err(ref x) => Err(x),
707 }
708 }
709
710 /// Converts from `&mut Result<T, E>` to `Result<&mut T, &mut E>`.
711 ///
712 /// # Examples
713 ///
714 /// Basic usage:
715 ///
716 /// ```
717 /// fn mutate(r: &mut Result<i32, i32>) {
718 /// match r.as_mut() {
719 /// Ok(v) => *v = 42,
720 /// Err(e) => *e = 0,
721 /// }
722 /// }
723 ///
724 /// let mut x: Result<i32, i32> = Ok(2);
725 /// mutate(&mut x);
726 /// assert_eq!(x.unwrap(), 42);
727 ///
728 /// let mut x: Result<i32, i32> = Err(13);
729 /// mutate(&mut x);
730 /// assert_eq!(x.unwrap_err(), 0);
731 /// ```
732 #[inline]
733 #[stable(feature = "rust1", since = "1.0.0")]
734 #[rustc_const_unstable(feature = "const_result", issue = "82814")]
735 pub const fn as_mut(&mut self) -> Result<&mut T, &mut E> {
736 match *self {
737 Ok(ref mut x) => Ok(x),
738 Err(ref mut x) => Err(x),
739 }
740 }
741
742 /////////////////////////////////////////////////////////////////////////
743 // Transforming contained values
744 /////////////////////////////////////////////////////////////////////////
745
746 /// Maps a `Result<T, E>` to `Result<U, E>` by applying a function to a
747 /// contained [`Ok`] value, leaving an [`Err`] value untouched.
748 ///
749 /// This function can be used to compose the results of two functions.
750 ///
751 /// # Examples
752 ///
753 /// Print the numbers on each line of a string multiplied by two.
754 ///
755 /// ```
756 /// let line = "1\n2\n3\n4\n";
757 ///
758 /// for num in line.lines() {
759 /// match num.parse::<i32>().map(|i| i * 2) {
760 /// Ok(n) => println!("{n}"),
761 /// Err(..) => {}
762 /// }
763 /// }
764 /// ```
765 #[inline]
766 #[stable(feature = "rust1", since = "1.0.0")]
767 pub fn map<U, F: FnOnce(T) -> U>(self, op: F) -> Result<U, E> {
768 match self {
769 Ok(t) => Ok(op(t)),
770 Err(e) => Err(e),
771 }
772 }
773
774 /// Returns the provided default (if [`Err`]), or
775 /// applies a function to the contained value (if [`Ok`]),
776 ///
777 /// Arguments passed to `map_or` are eagerly evaluated; if you are passing
778 /// the result of a function call, it is recommended to use [`map_or_else`],
779 /// which is lazily evaluated.
780 ///
781 /// [`map_or_else`]: Result::map_or_else
782 ///
783 /// # Examples
784 ///
785 /// ```
786 /// let x: Result<_, &str> = Ok("foo");
787 /// assert_eq!(x.map_or(42, |v| v.len()), 3);
788 ///
789 /// let x: Result<&str, _> = Err("bar");
790 /// assert_eq!(x.map_or(42, |v| v.len()), 42);
791 /// ```
792 #[inline]
793 #[stable(feature = "result_map_or", since = "1.41.0")]
794 pub fn map_or<U, F: FnOnce(T) -> U>(self, default: U, f: F) -> U {
795 match self {
796 Ok(t) => f(t),
797 Err(_) => default,
798 }
799 }
800
801 /// Maps a `Result<T, E>` to `U` by applying fallback function `default` to
802 /// a contained [`Err`] value, or function `f` to a contained [`Ok`] value.
803 ///
804 /// This function can be used to unpack a successful result
805 /// while handling an error.
806 ///
807 ///
808 /// # Examples
809 ///
810 /// Basic usage:
811 ///
812 /// ```
813 /// let k = 21;
814 ///
815 /// let x : Result<_, &str> = Ok("foo");
816 /// assert_eq!(x.map_or_else(|e| k * 2, |v| v.len()), 3);
817 ///
818 /// let x : Result<&str, _> = Err("bar");
819 /// assert_eq!(x.map_or_else(|e| k * 2, |v| v.len()), 42);
820 /// ```
821 #[inline]
822 #[stable(feature = "result_map_or_else", since = "1.41.0")]
823 pub fn map_or_else<U, D: FnOnce(E) -> U, F: FnOnce(T) -> U>(self, default: D, f: F) -> U {
824 match self {
825 Ok(t) => f(t),
826 Err(e) => default(e),
827 }
828 }
829
830 /// Maps a `Result<T, E>` to `Result<T, F>` by applying a function to a
831 /// contained [`Err`] value, leaving an [`Ok`] value untouched.
832 ///
833 /// This function can be used to pass through a successful result while handling
834 /// an error.
835 ///
836 ///
837 /// # Examples
838 ///
839 /// Basic usage:
840 ///
841 /// ```
842 /// fn stringify(x: u32) -> String { format!("error code: {x}") }
843 ///
844 /// let x: Result<u32, u32> = Ok(2);
845 /// assert_eq!(x.map_err(stringify), Ok(2));
846 ///
847 /// let x: Result<u32, u32> = Err(13);
848 /// assert_eq!(x.map_err(stringify), Err("error code: 13".to_string()));
849 /// ```
850 #[inline]
851 #[stable(feature = "rust1", since = "1.0.0")]
852 pub fn map_err<F, O: FnOnce(E) -> F>(self, op: O) -> Result<T, F> {
853 match self {
854 Ok(t) => Ok(t),
855 Err(e) => Err(op(e)),
856 }
857 }
858
859 /// Calls the provided closure with a reference to the contained value (if [`Ok`]).
860 ///
861 /// # Examples
862 ///
863 /// ```
864 /// #![feature(result_option_inspect)]
865 ///
866 /// let x: u8 = "4"
867 /// .parse::<u8>()
868 /// .inspect(|x| println!("original: {x}"))
869 /// .map(|x| x.pow(3))
870 /// .expect("failed to parse number");
871 /// ```
872 #[inline]
873 #[unstable(feature = "result_option_inspect", issue = "91345")]
874 pub fn inspect<F: FnOnce(&T)>(self, f: F) -> Self {
875 if let Ok(ref t) = self {
876 f(t);
877 }
878
879 self
880 }
881
882 /// Calls the provided closure with a reference to the contained error (if [`Err`]).
883 ///
884 /// # Examples
885 ///
886 /// ```
887 /// #![feature(result_option_inspect)]
888 ///
889 /// use std::{fs, io};
890 ///
891 /// fn read() -> io::Result<String> {
892 /// fs::read_to_string("address.txt")
893 /// .inspect_err(|e| eprintln!("failed to read file: {e}"))
894 /// }
895 /// ```
896 #[inline]
897 #[unstable(feature = "result_option_inspect", issue = "91345")]
898 pub fn inspect_err<F: FnOnce(&E)>(self, f: F) -> Self {
899 if let Err(ref e) = self {
900 f(e);
901 }
902
903 self
904 }
905
906 /// Converts from `Result<T, E>` (or `&Result<T, E>`) to `Result<&<T as Deref>::Target, &E>`.
907 ///
908 /// Coerces the [`Ok`] variant of the original [`Result`] via [`Deref`](crate::ops::Deref)
909 /// and returns the new [`Result`].
910 ///
911 /// # Examples
912 ///
913 /// ```
914 /// let x: Result<String, u32> = Ok("hello".to_string());
915 /// let y: Result<&str, &u32> = Ok("hello");
916 /// assert_eq!(x.as_deref(), y);
917 ///
918 /// let x: Result<String, u32> = Err(42);
919 /// let y: Result<&str, &u32> = Err(&42);
920 /// assert_eq!(x.as_deref(), y);
921 /// ```
922 #[stable(feature = "inner_deref", since = "1.47.0")]
923 pub fn as_deref(&self) -> Result<&T::Target, &E>
924 where
925 T: Deref,
926 {
927 self.as_ref().map(|t| t.deref())
928 }
929
930 /// Converts from `Result<T, E>` (or `&mut Result<T, E>`) to `Result<&mut <T as DerefMut>::Target, &mut E>`.
931 ///
932 /// Coerces the [`Ok`] variant of the original [`Result`] via [`DerefMut`](crate::ops::DerefMut)
933 /// and returns the new [`Result`].
934 ///
935 /// # Examples
936 ///
937 /// ```
938 /// let mut s = "HELLO".to_string();
939 /// let mut x: Result<String, u32> = Ok("hello".to_string());
940 /// let y: Result<&mut str, &mut u32> = Ok(&mut s);
941 /// assert_eq!(x.as_deref_mut().map(|x| { x.make_ascii_uppercase(); x }), y);
942 ///
943 /// let mut i = 42;
944 /// let mut x: Result<String, u32> = Err(42);
945 /// let y: Result<&mut str, &mut u32> = Err(&mut i);
946 /// assert_eq!(x.as_deref_mut().map(|x| { x.make_ascii_uppercase(); x }), y);
947 /// ```
948 #[stable(feature = "inner_deref", since = "1.47.0")]
949 pub fn as_deref_mut(&mut self) -> Result<&mut T::Target, &mut E>
950 where
951 T: DerefMut,
952 {
953 self.as_mut().map(|t| t.deref_mut())
954 }
955
956 /////////////////////////////////////////////////////////////////////////
957 // Iterator constructors
958 /////////////////////////////////////////////////////////////////////////
959
960 /// Returns an iterator over the possibly contained value.
961 ///
962 /// The iterator yields one value if the result is [`Result::Ok`], otherwise none.
963 ///
964 /// # Examples
965 ///
966 /// Basic usage:
967 ///
968 /// ```
969 /// let x: Result<u32, &str> = Ok(7);
970 /// assert_eq!(x.iter().next(), Some(&7));
971 ///
972 /// let x: Result<u32, &str> = Err("nothing!");
973 /// assert_eq!(x.iter().next(), None);
974 /// ```
975 #[inline]
976 #[stable(feature = "rust1", since = "1.0.0")]
977 pub fn iter(&self) -> Iter<'_, T> {
978 Iter { inner: self.as_ref().ok() }
979 }
980
981 /// Returns a mutable iterator over the possibly contained value.
982 ///
983 /// The iterator yields one value if the result is [`Result::Ok`], otherwise none.
984 ///
985 /// # Examples
986 ///
987 /// Basic usage:
988 ///
989 /// ```
990 /// let mut x: Result<u32, &str> = Ok(7);
991 /// match x.iter_mut().next() {
992 /// Some(v) => *v = 40,
993 /// None => {},
994 /// }
995 /// assert_eq!(x, Ok(40));
996 ///
997 /// let mut x: Result<u32, &str> = Err("nothing!");
998 /// assert_eq!(x.iter_mut().next(), None);
999 /// ```
1000 #[inline]
1001 #[stable(feature = "rust1", since = "1.0.0")]
1002 pub fn iter_mut(&mut self) -> IterMut<'_, T> {
1003 IterMut { inner: self.as_mut().ok() }
1004 }
1005
1006 /////////////////////////////////////////////////////////////////////////
1007 // Extract a value
1008 /////////////////////////////////////////////////////////////////////////
1009
1010 /// Returns the contained [`Ok`] value, consuming the `self` value.
1011 ///
1012 /// Because this function may panic, its use is generally discouraged.
1013 /// Instead, prefer to use pattern matching and handle the [`Err`]
1014 /// case explicitly, or call [`unwrap_or`], [`unwrap_or_else`], or
1015 /// [`unwrap_or_default`].
1016 ///
1017 /// [`unwrap_or`]: Result::unwrap_or
1018 /// [`unwrap_or_else`]: Result::unwrap_or_else
1019 /// [`unwrap_or_default`]: Result::unwrap_or_default
1020 ///
1021 /// # Panics
1022 ///
1023 /// Panics if the value is an [`Err`], with a panic message including the
1024 /// passed message, and the content of the [`Err`].
1025 ///
1026 ///
1027 /// # Examples
1028 ///
1029 /// Basic usage:
1030 ///
1031 /// ```should_panic
1032 /// let x: Result<u32, &str> = Err("emergency failure");
1033 /// x.expect("Testing expect"); // panics with `Testing expect: emergency failure`
1034 /// ```
1035 ///
1036 /// # Recommended Message Style
1037 ///
1038 /// We recommend that `expect` messages are used to describe the reason you
1039 /// _expect_ the `Result` should be `Ok`.
1040 ///
1041 /// ```should_panic
1042 /// let path = std::env::var("IMPORTANT_PATH")
1043 /// .expect("env variable `IMPORTANT_PATH` should be set by `wrapper_script.sh`");
1044 /// ```
1045 ///
1046 /// **Hint**: If you're having trouble remembering how to phrase expect
1047 /// error messages remember to focus on the word "should" as in "env
1048 /// variable should be set by blah" or "the given binary should be available
1049 /// and executable by the current user".
1050 ///
1051 /// For more detail on expect message styles and the reasoning behind our recommendation please
1052 /// refer to the section on ["Common Message
1053 /// Styles"](../../std/error/index.html#common-message-styles) in the
1054 /// [`std::error`](../../std/error/index.html) module docs.
1055 #[inline]
1056 #[track_caller]
1057 #[stable(feature = "result_expect", since = "1.4.0")]
1058 pub fn expect(self, msg: &str) -> T
1059 where
1060 E: fmt::Debug,
1061 {
1062 match self {
1063 Ok(t) => t,
1064 Err(e) => unwrap_failed(msg, &e),
1065 }
1066 }
1067
1068 /// Returns the contained [`Ok`] value, consuming the `self` value.
1069 ///
1070 /// Because this function may panic, its use is generally discouraged.
1071 /// Instead, prefer to use pattern matching and handle the [`Err`]
1072 /// case explicitly, or call [`unwrap_or`], [`unwrap_or_else`], or
1073 /// [`unwrap_or_default`].
1074 ///
1075 /// [`unwrap_or`]: Result::unwrap_or
1076 /// [`unwrap_or_else`]: Result::unwrap_or_else
1077 /// [`unwrap_or_default`]: Result::unwrap_or_default
1078 ///
1079 /// # Panics
1080 ///
1081 /// Panics if the value is an [`Err`], with a panic message provided by the
1082 /// [`Err`]'s value.
1083 ///
1084 ///
1085 /// # Examples
1086 ///
1087 /// Basic usage:
1088 ///
1089 /// ```
1090 /// let x: Result<u32, &str> = Ok(2);
1091 /// assert_eq!(x.unwrap(), 2);
1092 /// ```
1093 ///
1094 /// ```should_panic
1095 /// let x: Result<u32, &str> = Err("emergency failure");
1096 /// x.unwrap(); // panics with `emergency failure`
1097 /// ```
1098 #[inline]
1099 #[track_caller]
1100 #[stable(feature = "rust1", since = "1.0.0")]
1101 pub fn unwrap(self) -> T
1102 where
1103 E: fmt::Debug,
1104 {
1105 match self {
1106 Ok(t) => t,
1107 Err(e) => unwrap_failed("called `Result::unwrap()` on an `Err` value", &e),
1108 }
1109 }
1110
1111 /// Returns the contained [`Ok`] value or a default
1112 ///
1113 /// Consumes the `self` argument then, if [`Ok`], returns the contained
1114 /// value, otherwise if [`Err`], returns the default value for that
1115 /// type.
1116 ///
1117 /// # Examples
1118 ///
1119 /// Converts a string to an integer, turning poorly-formed strings
1120 /// into 0 (the default value for integers). [`parse`] converts
1121 /// a string to any other type that implements [`FromStr`], returning an
1122 /// [`Err`] on error.
1123 ///
1124 /// ```
1125 /// let good_year_from_input = "1909";
1126 /// let bad_year_from_input = "190blarg";
1127 /// let good_year = good_year_from_input.parse().unwrap_or_default();
1128 /// let bad_year = bad_year_from_input.parse().unwrap_or_default();
1129 ///
1130 /// assert_eq!(1909, good_year);
1131 /// assert_eq!(0, bad_year);
1132 /// ```
1133 ///
1134 /// [`parse`]: str::parse
1135 /// [`FromStr`]: crate::str::FromStr
1136 #[inline]
1137 #[stable(feature = "result_unwrap_or_default", since = "1.16.0")]
1138 pub fn unwrap_or_default(self) -> T
1139 where
1140 T: Default,
1141 {
1142 match self {
1143 Ok(x) => x,
1144 Err(_) => Default::default(),
1145 }
1146 }
1147
1148 /// Returns the contained [`Err`] value, consuming the `self` value.
1149 ///
1150 /// # Panics
1151 ///
1152 /// Panics if the value is an [`Ok`], with a panic message including the
1153 /// passed message, and the content of the [`Ok`].
1154 ///
1155 ///
1156 /// # Examples
1157 ///
1158 /// Basic usage:
1159 ///
1160 /// ```should_panic
1161 /// let x: Result<u32, &str> = Ok(10);
1162 /// x.expect_err("Testing expect_err"); // panics with `Testing expect_err: 10`
1163 /// ```
1164 #[inline]
1165 #[track_caller]
1166 #[stable(feature = "result_expect_err", since = "1.17.0")]
1167 pub fn expect_err(self, msg: &str) -> E
1168 where
1169 T: fmt::Debug,
1170 {
1171 match self {
1172 Ok(t) => unwrap_failed(msg, &t),
1173 Err(e) => e,
1174 }
1175 }
1176
1177 /// Returns the contained [`Err`] value, consuming the `self` value.
1178 ///
1179 /// # Panics
1180 ///
1181 /// Panics if the value is an [`Ok`], with a custom panic message provided
1182 /// by the [`Ok`]'s value.
1183 ///
1184 /// # Examples
1185 ///
1186 /// ```should_panic
1187 /// let x: Result<u32, &str> = Ok(2);
1188 /// x.unwrap_err(); // panics with `2`
1189 /// ```
1190 ///
1191 /// ```
1192 /// let x: Result<u32, &str> = Err("emergency failure");
1193 /// assert_eq!(x.unwrap_err(), "emergency failure");
1194 /// ```
1195 #[inline]
1196 #[track_caller]
1197 #[stable(feature = "rust1", since = "1.0.0")]
1198 pub fn unwrap_err(self) -> E
1199 where
1200 T: fmt::Debug,
1201 {
1202 match self {
1203 Ok(t) => unwrap_failed("called `Result::unwrap_err()` on an `Ok` value", &t),
1204 Err(e) => e,
1205 }
1206 }
1207
1208 /// Returns the contained [`Ok`] value, but never panics.
1209 ///
1210 /// Unlike [`unwrap`], this method is known to never panic on the
1211 /// result types it is implemented for. Therefore, it can be used
1212 /// instead of `unwrap` as a maintainability safeguard that will fail
1213 /// to compile if the error type of the `Result` is later changed
1214 /// to an error that can actually occur.
1215 ///
1216 /// [`unwrap`]: Result::unwrap
1217 ///
1218 /// # Examples
1219 ///
1220 /// Basic usage:
1221 ///
1222 /// ```
1223 /// # #![feature(never_type)]
1224 /// # #![feature(unwrap_infallible)]
1225 ///
1226 /// fn only_good_news() -> Result<String, !> {
1227 /// Ok("this is fine".into())
1228 /// }
1229 ///
1230 /// let s: String = only_good_news().into_ok();
1231 /// println!("{s}");
1232 /// ```
1233 #[unstable(feature = "unwrap_infallible", reason = "newly added", issue = "61695")]
1234 #[inline]
1235 pub fn into_ok(self) -> T
1236 where
1237 E: Into<!>,
1238 {
1239 match self {
1240 Ok(x) => x,
1241 Err(e) => e.into(),
1242 }
1243 }
1244
1245 /// Returns the contained [`Err`] value, but never panics.
1246 ///
1247 /// Unlike [`unwrap_err`], this method is known to never panic on the
1248 /// result types it is implemented for. Therefore, it can be used
1249 /// instead of `unwrap_err` as a maintainability safeguard that will fail
1250 /// to compile if the ok type of the `Result` is later changed
1251 /// to a type that can actually occur.
1252 ///
1253 /// [`unwrap_err`]: Result::unwrap_err
1254 ///
1255 /// # Examples
1256 ///
1257 /// Basic usage:
1258 ///
1259 /// ```
1260 /// # #![feature(never_type)]
1261 /// # #![feature(unwrap_infallible)]
1262 ///
1263 /// fn only_bad_news() -> Result<!, String> {
1264 /// Err("Oops, it failed".into())
1265 /// }
1266 ///
1267 /// let error: String = only_bad_news().into_err();
1268 /// println!("{error}");
1269 /// ```
1270 #[unstable(feature = "unwrap_infallible", reason = "newly added", issue = "61695")]
1271 #[inline]
1272 pub fn into_err(self) -> E
1273 where
1274 T: Into<!>,
1275 {
1276 match self {
1277 Ok(x) => x.into(),
1278 Err(e) => e,
1279 }
1280 }
1281
1282 ////////////////////////////////////////////////////////////////////////
1283 // Boolean operations on the values, eager and lazy
1284 /////////////////////////////////////////////////////////////////////////
1285
1286 /// Returns `res` if the result is [`Ok`], otherwise returns the [`Err`] value of `self`.
1287 ///
1288 /// Arguments passed to `and` are eagerly evaluated; if you are passing the
1289 /// result of a function call, it is recommended to use [`and_then`], which is
1290 /// lazily evaluated.
1291 ///
1292 /// [`and_then`]: Result::and_then
1293 ///
1294 /// # Examples
1295 ///
1296 /// Basic usage:
1297 ///
1298 /// ```
1299 /// let x: Result<u32, &str> = Ok(2);
1300 /// let y: Result<&str, &str> = Err("late error");
1301 /// assert_eq!(x.and(y), Err("late error"));
1302 ///
1303 /// let x: Result<u32, &str> = Err("early error");
1304 /// let y: Result<&str, &str> = Ok("foo");
1305 /// assert_eq!(x.and(y), Err("early error"));
1306 ///
1307 /// let x: Result<u32, &str> = Err("not a 2");
1308 /// let y: Result<&str, &str> = Err("late error");
1309 /// assert_eq!(x.and(y), Err("not a 2"));
1310 ///
1311 /// let x: Result<u32, &str> = Ok(2);
1312 /// let y: Result<&str, &str> = Ok("different result type");
1313 /// assert_eq!(x.and(y), Ok("different result type"));
1314 /// ```
1315 #[inline]
1316 #[rustc_const_unstable(feature = "const_result_drop", issue = "92384")]
1317 #[stable(feature = "rust1", since = "1.0.0")]
1318 pub const fn and<U>(self, res: Result<U, E>) -> Result<U, E>
1319 where
1320 T: ~const Destruct,
1321 U: ~const Destruct,
1322 E: ~const Destruct,
1323 {
1324 match self {
1325 // FIXME: ~const Drop doesn't quite work right yet
1326 #[allow(unused_variables)]
1327 Ok(x) => res,
1328 Err(e) => Err(e),
1329 }
1330 }
1331
1332 /// Calls `op` if the result is [`Ok`], otherwise returns the [`Err`] value of `self`.
1333 ///
1334 ///
1335 /// This function can be used for control flow based on `Result` values.
1336 ///
1337 /// # Examples
1338 ///
1339 /// ```
1340 /// fn sq_then_to_string(x: u32) -> Result<String, &'static str> {
1341 /// x.checked_mul(x).map(|sq| sq.to_string()).ok_or("overflowed")
1342 /// }
1343 ///
1344 /// assert_eq!(Ok(2).and_then(sq_then_to_string), Ok(4.to_string()));
1345 /// assert_eq!(Ok(1_000_000).and_then(sq_then_to_string), Err("overflowed"));
1346 /// assert_eq!(Err("not a number").and_then(sq_then_to_string), Err("not a number"));
1347 /// ```
1348 ///
1349 /// Often used to chain fallible operations that may return [`Err`].
1350 ///
1351 /// ```
1352 /// use std::{io::ErrorKind, path::Path};
1353 ///
1354 /// // Note: on Windows "/" maps to "C:\"
1355 /// let root_modified_time = Path::new("/").metadata().and_then(|md| md.modified());
1356 /// assert!(root_modified_time.is_ok());
1357 ///
1358 /// let should_fail = Path::new("/bad/path").metadata().and_then(|md| md.modified());
1359 /// assert!(should_fail.is_err());
1360 /// assert_eq!(should_fail.unwrap_err().kind(), ErrorKind::NotFound);
1361 /// ```
1362 #[inline]
1363 #[stable(feature = "rust1", since = "1.0.0")]
1364 pub fn and_then<U, F: FnOnce(T) -> Result<U, E>>(self, op: F) -> Result<U, E> {
1365 match self {
1366 Ok(t) => op(t),
1367 Err(e) => Err(e),
1368 }
1369 }
1370
1371 /// Returns `res` if the result is [`Err`], otherwise returns the [`Ok`] value of `self`.
1372 ///
1373 /// Arguments passed to `or` are eagerly evaluated; if you are passing the
1374 /// result of a function call, it is recommended to use [`or_else`], which is
1375 /// lazily evaluated.
1376 ///
1377 /// [`or_else`]: Result::or_else
1378 ///
1379 /// # Examples
1380 ///
1381 /// Basic usage:
1382 ///
1383 /// ```
1384 /// let x: Result<u32, &str> = Ok(2);
1385 /// let y: Result<u32, &str> = Err("late error");
1386 /// assert_eq!(x.or(y), Ok(2));
1387 ///
1388 /// let x: Result<u32, &str> = Err("early error");
1389 /// let y: Result<u32, &str> = Ok(2);
1390 /// assert_eq!(x.or(y), Ok(2));
1391 ///
1392 /// let x: Result<u32, &str> = Err("not a 2");
1393 /// let y: Result<u32, &str> = Err("late error");
1394 /// assert_eq!(x.or(y), Err("late error"));
1395 ///
1396 /// let x: Result<u32, &str> = Ok(2);
1397 /// let y: Result<u32, &str> = Ok(100);
1398 /// assert_eq!(x.or(y), Ok(2));
1399 /// ```
1400 #[inline]
1401 #[rustc_const_unstable(feature = "const_result_drop", issue = "92384")]
1402 #[stable(feature = "rust1", since = "1.0.0")]
1403 pub const fn or<F>(self, res: Result<T, F>) -> Result<T, F>
1404 where
1405 T: ~const Destruct,
1406 E: ~const Destruct,
1407 F: ~const Destruct,
1408 {
1409 match self {
1410 Ok(v) => Ok(v),
1411 // FIXME: ~const Drop doesn't quite work right yet
1412 #[allow(unused_variables)]
1413 Err(e) => res,
1414 }
1415 }
1416
1417 /// Calls `op` if the result is [`Err`], otherwise returns the [`Ok`] value of `self`.
1418 ///
1419 /// This function can be used for control flow based on result values.
1420 ///
1421 ///
1422 /// # Examples
1423 ///
1424 /// Basic usage:
1425 ///
1426 /// ```
1427 /// fn sq(x: u32) -> Result<u32, u32> { Ok(x * x) }
1428 /// fn err(x: u32) -> Result<u32, u32> { Err(x) }
1429 ///
1430 /// assert_eq!(Ok(2).or_else(sq).or_else(sq), Ok(2));
1431 /// assert_eq!(Ok(2).or_else(err).or_else(sq), Ok(2));
1432 /// assert_eq!(Err(3).or_else(sq).or_else(err), Ok(9));
1433 /// assert_eq!(Err(3).or_else(err).or_else(err), Err(3));
1434 /// ```
1435 #[inline]
1436 #[stable(feature = "rust1", since = "1.0.0")]
1437 pub fn or_else<F, O: FnOnce(E) -> Result<T, F>>(self, op: O) -> Result<T, F> {
1438 match self {
1439 Ok(t) => Ok(t),
1440 Err(e) => op(e),
1441 }
1442 }
1443
1444 /// Returns the contained [`Ok`] value or a provided default.
1445 ///
1446 /// Arguments passed to `unwrap_or` are eagerly evaluated; if you are passing
1447 /// the result of a function call, it is recommended to use [`unwrap_or_else`],
1448 /// which is lazily evaluated.
1449 ///
1450 /// [`unwrap_or_else`]: Result::unwrap_or_else
1451 ///
1452 /// # Examples
1453 ///
1454 /// Basic usage:
1455 ///
1456 /// ```
1457 /// let default = 2;
1458 /// let x: Result<u32, &str> = Ok(9);
1459 /// assert_eq!(x.unwrap_or(default), 9);
1460 ///
1461 /// let x: Result<u32, &str> = Err("error");
1462 /// assert_eq!(x.unwrap_or(default), default);
1463 /// ```
1464 #[inline]
1465 #[rustc_const_unstable(feature = "const_result_drop", issue = "92384")]
1466 #[stable(feature = "rust1", since = "1.0.0")]
1467 pub const fn unwrap_or(self, default: T) -> T
1468 where
1469 T: ~const Destruct,
1470 E: ~const Destruct,
1471 {
1472 match self {
1473 Ok(t) => t,
1474 // FIXME: ~const Drop doesn't quite work right yet
1475 #[allow(unused_variables)]
1476 Err(e) => default,
1477 }
1478 }
1479
1480 /// Returns the contained [`Ok`] value or computes it from a closure.
1481 ///
1482 ///
1483 /// # Examples
1484 ///
1485 /// Basic usage:
1486 ///
1487 /// ```
1488 /// fn count(x: &str) -> usize { x.len() }
1489 ///
1490 /// assert_eq!(Ok(2).unwrap_or_else(count), 2);
1491 /// assert_eq!(Err("foo").unwrap_or_else(count), 3);
1492 /// ```
1493 #[inline]
1494 #[stable(feature = "rust1", since = "1.0.0")]
1495 pub fn unwrap_or_else<F: FnOnce(E) -> T>(self, op: F) -> T {
1496 match self {
1497 Ok(t) => t,
1498 Err(e) => op(e),
1499 }
1500 }
1501
1502 /// Returns the contained [`Ok`] value, consuming the `self` value,
1503 /// without checking that the value is not an [`Err`].
1504 ///
1505 /// # Safety
1506 ///
1507 /// Calling this method on an [`Err`] is *[undefined behavior]*.
1508 ///
1509 /// [undefined behavior]: https://doc.rust-lang.org/reference/behavior-considered-undefined.html
1510 ///
1511 /// # Examples
1512 ///
1513 /// ```
1514 /// let x: Result<u32, &str> = Ok(2);
1515 /// assert_eq!(unsafe { x.unwrap_unchecked() }, 2);
1516 /// ```
1517 ///
1518 /// ```no_run
1519 /// let x: Result<u32, &str> = Err("emergency failure");
1520 /// unsafe { x.unwrap_unchecked(); } // Undefined behavior!
1521 /// ```
1522 #[inline]
1523 #[track_caller]
1524 #[stable(feature = "option_result_unwrap_unchecked", since = "1.58.0")]
1525 pub unsafe fn unwrap_unchecked(self) -> T {
1526 debug_assert!(self.is_ok());
1527 match self {
1528 Ok(t) => t,
1529 // SAFETY: the safety contract must be upheld by the caller.
1530 Err(_) => unsafe { hint::unreachable_unchecked() },
1531 }
1532 }
1533
1534 /// Returns the contained [`Err`] value, consuming the `self` value,
1535 /// without checking that the value is not an [`Ok`].
1536 ///
1537 /// # Safety
1538 ///
1539 /// Calling this method on an [`Ok`] is *[undefined behavior]*.
1540 ///
1541 /// [undefined behavior]: https://doc.rust-lang.org/reference/behavior-considered-undefined.html
1542 ///
1543 /// # Examples
1544 ///
1545 /// ```no_run
1546 /// let x: Result<u32, &str> = Ok(2);
1547 /// unsafe { x.unwrap_err_unchecked() }; // Undefined behavior!
1548 /// ```
1549 ///
1550 /// ```
1551 /// let x: Result<u32, &str> = Err("emergency failure");
1552 /// assert_eq!(unsafe { x.unwrap_err_unchecked() }, "emergency failure");
1553 /// ```
1554 #[inline]
1555 #[track_caller]
1556 #[stable(feature = "option_result_unwrap_unchecked", since = "1.58.0")]
1557 pub unsafe fn unwrap_err_unchecked(self) -> E {
1558 debug_assert!(self.is_err());
1559 match self {
1560 // SAFETY: the safety contract must be upheld by the caller.
1561 Ok(_) => unsafe { hint::unreachable_unchecked() },
1562 Err(e) => e,
1563 }
1564 }
1565
1566 /////////////////////////////////////////////////////////////////////////
1567 // Misc or niche
1568 /////////////////////////////////////////////////////////////////////////
1569
1570 /// Returns `true` if the result is an [`Ok`] value containing the given value.
1571 ///
1572 /// # Examples
1573 ///
1574 /// ```
1575 /// #![feature(option_result_contains)]
1576 ///
1577 /// let x: Result<u32, &str> = Ok(2);
1578 /// assert_eq!(x.contains(&2), true);
1579 ///
1580 /// let x: Result<u32, &str> = Ok(3);
1581 /// assert_eq!(x.contains(&2), false);
1582 ///
1583 /// let x: Result<u32, &str> = Err("Some error message");
1584 /// assert_eq!(x.contains(&2), false);
1585 /// ```
1586 #[must_use]
1587 #[inline]
1588 #[unstable(feature = "option_result_contains", issue = "62358")]
1589 pub fn contains<U>(&self, x: &U) -> bool
1590 where
1591 U: PartialEq<T>,
1592 {
1593 match self {
1594 Ok(y) => x == y,
1595 Err(_) => false,
1596 }
1597 }
1598
1599 /// Returns `true` if the result is an [`Err`] value containing the given value.
1600 ///
1601 /// # Examples
1602 ///
1603 /// ```
1604 /// #![feature(result_contains_err)]
1605 ///
1606 /// let x: Result<u32, &str> = Ok(2);
1607 /// assert_eq!(x.contains_err(&"Some error message"), false);
1608 ///
1609 /// let x: Result<u32, &str> = Err("Some error message");
1610 /// assert_eq!(x.contains_err(&"Some error message"), true);
1611 ///
1612 /// let x: Result<u32, &str> = Err("Some other error message");
1613 /// assert_eq!(x.contains_err(&"Some error message"), false);
1614 /// ```
1615 #[must_use]
1616 #[inline]
1617 #[unstable(feature = "result_contains_err", issue = "62358")]
1618 pub fn contains_err<F>(&self, f: &F) -> bool
1619 where
1620 F: PartialEq<E>,
1621 {
1622 match self {
1623 Ok(_) => false,
1624 Err(e) => f == e,
1625 }
1626 }
1627 }
1628
1629 impl<T, E> Result<&T, E> {
1630 /// Maps a `Result<&T, E>` to a `Result<T, E>` by copying the contents of the
1631 /// `Ok` part.
1632 ///
1633 /// # Examples
1634 ///
1635 /// ```
1636 /// let val = 12;
1637 /// let x: Result<&i32, i32> = Ok(&val);
1638 /// assert_eq!(x, Ok(&12));
1639 /// let copied = x.copied();
1640 /// assert_eq!(copied, Ok(12));
1641 /// ```
1642 #[inline]
1643 #[stable(feature = "result_copied", since = "1.59.0")]
1644 pub fn copied(self) -> Result<T, E>
1645 where
1646 T: Copy,
1647 {
1648 self.map(|&t| t)
1649 }
1650
1651 /// Maps a `Result<&T, E>` to a `Result<T, E>` by cloning the contents of the
1652 /// `Ok` part.
1653 ///
1654 /// # Examples
1655 ///
1656 /// ```
1657 /// let val = 12;
1658 /// let x: Result<&i32, i32> = Ok(&val);
1659 /// assert_eq!(x, Ok(&12));
1660 /// let cloned = x.cloned();
1661 /// assert_eq!(cloned, Ok(12));
1662 /// ```
1663 #[inline]
1664 #[stable(feature = "result_cloned", since = "1.59.0")]
1665 pub fn cloned(self) -> Result<T, E>
1666 where
1667 T: Clone,
1668 {
1669 self.map(|t| t.clone())
1670 }
1671 }
1672
1673 impl<T, E> Result<&mut T, E> {
1674 /// Maps a `Result<&mut T, E>` to a `Result<T, E>` by copying the contents of the
1675 /// `Ok` part.
1676 ///
1677 /// # Examples
1678 ///
1679 /// ```
1680 /// let mut val = 12;
1681 /// let x: Result<&mut i32, i32> = Ok(&mut val);
1682 /// assert_eq!(x, Ok(&mut 12));
1683 /// let copied = x.copied();
1684 /// assert_eq!(copied, Ok(12));
1685 /// ```
1686 #[inline]
1687 #[stable(feature = "result_copied", since = "1.59.0")]
1688 pub fn copied(self) -> Result<T, E>
1689 where
1690 T: Copy,
1691 {
1692 self.map(|&mut t| t)
1693 }
1694
1695 /// Maps a `Result<&mut T, E>` to a `Result<T, E>` by cloning the contents of the
1696 /// `Ok` part.
1697 ///
1698 /// # Examples
1699 ///
1700 /// ```
1701 /// let mut val = 12;
1702 /// let x: Result<&mut i32, i32> = Ok(&mut val);
1703 /// assert_eq!(x, Ok(&mut 12));
1704 /// let cloned = x.cloned();
1705 /// assert_eq!(cloned, Ok(12));
1706 /// ```
1707 #[inline]
1708 #[stable(feature = "result_cloned", since = "1.59.0")]
1709 pub fn cloned(self) -> Result<T, E>
1710 where
1711 T: Clone,
1712 {
1713 self.map(|t| t.clone())
1714 }
1715 }
1716
1717 impl<T, E> Result<Option<T>, E> {
1718 /// Transposes a `Result` of an `Option` into an `Option` of a `Result`.
1719 ///
1720 /// `Ok(None)` will be mapped to `None`.
1721 /// `Ok(Some(_))` and `Err(_)` will be mapped to `Some(Ok(_))` and `Some(Err(_))`.
1722 ///
1723 /// # Examples
1724 ///
1725 /// ```
1726 /// #[derive(Debug, Eq, PartialEq)]
1727 /// struct SomeErr;
1728 ///
1729 /// let x: Result<Option<i32>, SomeErr> = Ok(Some(5));
1730 /// let y: Option<Result<i32, SomeErr>> = Some(Ok(5));
1731 /// assert_eq!(x.transpose(), y);
1732 /// ```
1733 #[inline]
1734 #[stable(feature = "transpose_result", since = "1.33.0")]
1735 #[rustc_const_unstable(feature = "const_result", issue = "82814")]
1736 pub const fn transpose(self) -> Option<Result<T, E>> {
1737 match self {
1738 Ok(Some(x)) => Some(Ok(x)),
1739 Ok(None) => None,
1740 Err(e) => Some(Err(e)),
1741 }
1742 }
1743 }
1744
1745 impl<T, E> Result<Result<T, E>, E> {
1746 /// Converts from `Result<Result<T, E>, E>` to `Result<T, E>`
1747 ///
1748 /// # Examples
1749 ///
1750 /// Basic usage:
1751 ///
1752 /// ```
1753 /// #![feature(result_flattening)]
1754 /// let x: Result<Result<&'static str, u32>, u32> = Ok(Ok("hello"));
1755 /// assert_eq!(Ok("hello"), x.flatten());
1756 ///
1757 /// let x: Result<Result<&'static str, u32>, u32> = Ok(Err(6));
1758 /// assert_eq!(Err(6), x.flatten());
1759 ///
1760 /// let x: Result<Result<&'static str, u32>, u32> = Err(6);
1761 /// assert_eq!(Err(6), x.flatten());
1762 /// ```
1763 ///
1764 /// Flattening only removes one level of nesting at a time:
1765 ///
1766 /// ```
1767 /// #![feature(result_flattening)]
1768 /// let x: Result<Result<Result<&'static str, u32>, u32>, u32> = Ok(Ok(Ok("hello")));
1769 /// assert_eq!(Ok(Ok("hello")), x.flatten());
1770 /// assert_eq!(Ok("hello"), x.flatten().flatten());
1771 /// ```
1772 #[inline]
1773 #[unstable(feature = "result_flattening", issue = "70142")]
1774 pub fn flatten(self) -> Result<T, E> {
1775 self.and_then(convert::identity)
1776 }
1777 }
1778
1779 // This is a separate function to reduce the code size of the methods
1780 #[cfg(not(feature = "panic_immediate_abort"))]
1781 #[inline(never)]
1782 #[cold]
1783 #[track_caller]
1784 fn unwrap_failed(msg: &str, error: &dyn fmt::Debug) -> ! {
1785 panic!("{msg}: {error:?}")
1786 }
1787
1788 // This is a separate function to avoid constructing a `dyn Debug`
1789 // that gets immediately thrown away, since vtables don't get cleaned up
1790 // by dead code elimination if a trait object is constructed even if it goes
1791 // unused
1792 #[cfg(feature = "panic_immediate_abort")]
1793 #[inline]
1794 #[cold]
1795 #[track_caller]
1796 fn unwrap_failed<T>(_msg: &str, _error: &T) -> ! {
1797 panic!()
1798 }
1799
1800 /////////////////////////////////////////////////////////////////////////////
1801 // Trait implementations
1802 /////////////////////////////////////////////////////////////////////////////
1803
1804 #[stable(feature = "rust1", since = "1.0.0")]
1805 #[rustc_const_unstable(feature = "const_clone", issue = "91805")]
1806 impl<T, E> const Clone for Result<T, E>
1807 where
1808 T: ~const Clone + ~const Destruct,
1809 E: ~const Clone + ~const Destruct,
1810 {
1811 #[inline]
1812 fn clone(&self) -> Self {
1813 match self {
1814 Ok(x) => Ok(x.clone()),
1815 Err(x) => Err(x.clone()),
1816 }
1817 }
1818
1819 #[inline]
1820 fn clone_from(&mut self, source: &Self) {
1821 match (self, source) {
1822 (Ok(to), Ok(from)) => to.clone_from(from),
1823 (Err(to), Err(from)) => to.clone_from(from),
1824 (to, from) => *to = from.clone(),
1825 }
1826 }
1827 }
1828
1829 #[stable(feature = "rust1", since = "1.0.0")]
1830 impl<T, E> IntoIterator for Result<T, E> {
1831 type Item = T;
1832 type IntoIter = IntoIter<T>;
1833
1834 /// Returns a consuming iterator over the possibly contained value.
1835 ///
1836 /// The iterator yields one value if the result is [`Result::Ok`], otherwise none.
1837 ///
1838 /// # Examples
1839 ///
1840 /// Basic usage:
1841 ///
1842 /// ```
1843 /// let x: Result<u32, &str> = Ok(5);
1844 /// let v: Vec<u32> = x.into_iter().collect();
1845 /// assert_eq!(v, [5]);
1846 ///
1847 /// let x: Result<u32, &str> = Err("nothing!");
1848 /// let v: Vec<u32> = x.into_iter().collect();
1849 /// assert_eq!(v, []);
1850 /// ```
1851 #[inline]
1852 fn into_iter(self) -> IntoIter<T> {
1853 IntoIter { inner: self.ok() }
1854 }
1855 }
1856
1857 #[stable(since = "1.4.0", feature = "result_iter")]
1858 impl<'a, T, E> IntoIterator for &'a Result<T, E> {
1859 type Item = &'a T;
1860 type IntoIter = Iter<'a, T>;
1861
1862 fn into_iter(self) -> Iter<'a, T> {
1863 self.iter()
1864 }
1865 }
1866
1867 #[stable(since = "1.4.0", feature = "result_iter")]
1868 impl<'a, T, E> IntoIterator for &'a mut Result<T, E> {
1869 type Item = &'a mut T;
1870 type IntoIter = IterMut<'a, T>;
1871
1872 fn into_iter(self) -> IterMut<'a, T> {
1873 self.iter_mut()
1874 }
1875 }
1876
1877 /////////////////////////////////////////////////////////////////////////////
1878 // The Result Iterators
1879 /////////////////////////////////////////////////////////////////////////////
1880
1881 /// An iterator over a reference to the [`Ok`] variant of a [`Result`].
1882 ///
1883 /// The iterator yields one value if the result is [`Ok`], otherwise none.
1884 ///
1885 /// Created by [`Result::iter`].
1886 #[derive(Debug)]
1887 #[stable(feature = "rust1", since = "1.0.0")]
1888 pub struct Iter<'a, T: 'a> {
1889 inner: Option<&'a T>,
1890 }
1891
1892 #[stable(feature = "rust1", since = "1.0.0")]
1893 impl<'a, T> Iterator for Iter<'a, T> {
1894 type Item = &'a T;
1895
1896 #[inline]
1897 fn next(&mut self) -> Option<&'a T> {
1898 self.inner.take()
1899 }
1900 #[inline]
1901 fn size_hint(&self) -> (usize, Option<usize>) {
1902 let n = if self.inner.is_some() { 1 } else { 0 };
1903 (n, Some(n))
1904 }
1905 }
1906
1907 #[stable(feature = "rust1", since = "1.0.0")]
1908 impl<'a, T> DoubleEndedIterator for Iter<'a, T> {
1909 #[inline]
1910 fn next_back(&mut self) -> Option<&'a T> {
1911 self.inner.take()
1912 }
1913 }
1914
1915 #[stable(feature = "rust1", since = "1.0.0")]
1916 impl<T> ExactSizeIterator for Iter<'_, T> {}
1917
1918 #[stable(feature = "fused", since = "1.26.0")]
1919 impl<T> FusedIterator for Iter<'_, T> {}
1920
1921 #[unstable(feature = "trusted_len", issue = "37572")]
1922 unsafe impl<A> TrustedLen for Iter<'_, A> {}
1923
1924 #[stable(feature = "rust1", since = "1.0.0")]
1925 impl<T> Clone for Iter<'_, T> {
1926 #[inline]
1927 fn clone(&self) -> Self {
1928 Iter { inner: self.inner }
1929 }
1930 }
1931
1932 /// An iterator over a mutable reference to the [`Ok`] variant of a [`Result`].
1933 ///
1934 /// Created by [`Result::iter_mut`].
1935 #[derive(Debug)]
1936 #[stable(feature = "rust1", since = "1.0.0")]
1937 pub struct IterMut<'a, T: 'a> {
1938 inner: Option<&'a mut T>,
1939 }
1940
1941 #[stable(feature = "rust1", since = "1.0.0")]
1942 impl<'a, T> Iterator for IterMut<'a, T> {
1943 type Item = &'a mut T;
1944
1945 #[inline]
1946 fn next(&mut self) -> Option<&'a mut T> {
1947 self.inner.take()
1948 }
1949 #[inline]
1950 fn size_hint(&self) -> (usize, Option<usize>) {
1951 let n = if self.inner.is_some() { 1 } else { 0 };
1952 (n, Some(n))
1953 }
1954 }
1955
1956 #[stable(feature = "rust1", since = "1.0.0")]
1957 impl<'a, T> DoubleEndedIterator for IterMut<'a, T> {
1958 #[inline]
1959 fn next_back(&mut self) -> Option<&'a mut T> {
1960 self.inner.take()
1961 }
1962 }
1963
1964 #[stable(feature = "rust1", since = "1.0.0")]
1965 impl<T> ExactSizeIterator for IterMut<'_, T> {}
1966
1967 #[stable(feature = "fused", since = "1.26.0")]
1968 impl<T> FusedIterator for IterMut<'_, T> {}
1969
1970 #[unstable(feature = "trusted_len", issue = "37572")]
1971 unsafe impl<A> TrustedLen for IterMut<'_, A> {}
1972
1973 /// An iterator over the value in a [`Ok`] variant of a [`Result`].
1974 ///
1975 /// The iterator yields one value if the result is [`Ok`], otherwise none.
1976 ///
1977 /// This struct is created by the [`into_iter`] method on
1978 /// [`Result`] (provided by the [`IntoIterator`] trait).
1979 ///
1980 /// [`into_iter`]: IntoIterator::into_iter
1981 #[derive(Clone, Debug)]
1982 #[stable(feature = "rust1", since = "1.0.0")]
1983 pub struct IntoIter<T> {
1984 inner: Option<T>,
1985 }
1986
1987 #[stable(feature = "rust1", since = "1.0.0")]
1988 impl<T> Iterator for IntoIter<T> {
1989 type Item = T;
1990
1991 #[inline]
1992 fn next(&mut self) -> Option<T> {
1993 self.inner.take()
1994 }
1995 #[inline]
1996 fn size_hint(&self) -> (usize, Option<usize>) {
1997 let n = if self.inner.is_some() { 1 } else { 0 };
1998 (n, Some(n))
1999 }
2000 }
2001
2002 #[stable(feature = "rust1", since = "1.0.0")]
2003 impl<T> DoubleEndedIterator for IntoIter<T> {
2004 #[inline]
2005 fn next_back(&mut self) -> Option<T> {
2006 self.inner.take()
2007 }
2008 }
2009
2010 #[stable(feature = "rust1", since = "1.0.0")]
2011 impl<T> ExactSizeIterator for IntoIter<T> {}
2012
2013 #[stable(feature = "fused", since = "1.26.0")]
2014 impl<T> FusedIterator for IntoIter<T> {}
2015
2016 #[unstable(feature = "trusted_len", issue = "37572")]
2017 unsafe impl<A> TrustedLen for IntoIter<A> {}
2018
2019 /////////////////////////////////////////////////////////////////////////////
2020 // FromIterator
2021 /////////////////////////////////////////////////////////////////////////////
2022
2023 #[stable(feature = "rust1", since = "1.0.0")]
2024 impl<A, E, V: FromIterator<A>> FromIterator<Result<A, E>> for Result<V, E> {
2025 /// Takes each element in the `Iterator`: if it is an `Err`, no further
2026 /// elements are taken, and the `Err` is returned. Should no `Err` occur, a
2027 /// container with the values of each `Result` is returned.
2028 ///
2029 /// Here is an example which increments every integer in a vector,
2030 /// checking for overflow:
2031 ///
2032 /// ```
2033 /// let v = vec![1, 2];
2034 /// let res: Result<Vec<u32>, &'static str> = v.iter().map(|x: &u32|
2035 /// x.checked_add(1).ok_or("Overflow!")
2036 /// ).collect();
2037 /// assert_eq!(res, Ok(vec![2, 3]));
2038 /// ```
2039 ///
2040 /// Here is another example that tries to subtract one from another list
2041 /// of integers, this time checking for underflow:
2042 ///
2043 /// ```
2044 /// let v = vec![1, 2, 0];
2045 /// let res: Result<Vec<u32>, &'static str> = v.iter().map(|x: &u32|
2046 /// x.checked_sub(1).ok_or("Underflow!")
2047 /// ).collect();
2048 /// assert_eq!(res, Err("Underflow!"));
2049 /// ```
2050 ///
2051 /// Here is a variation on the previous example, showing that no
2052 /// further elements are taken from `iter` after the first `Err`.
2053 ///
2054 /// ```
2055 /// let v = vec![3, 2, 1, 10];
2056 /// let mut shared = 0;
2057 /// let res: Result<Vec<u32>, &'static str> = v.iter().map(|x: &u32| {
2058 /// shared += x;
2059 /// x.checked_sub(2).ok_or("Underflow!")
2060 /// }).collect();
2061 /// assert_eq!(res, Err("Underflow!"));
2062 /// assert_eq!(shared, 6);
2063 /// ```
2064 ///
2065 /// Since the third element caused an underflow, no further elements were taken,
2066 /// so the final value of `shared` is 6 (= `3 + 2 + 1`), not 16.
2067 #[inline]
2068 fn from_iter<I: IntoIterator<Item = Result<A, E>>>(iter: I) -> Result<V, E> {
2069 // FIXME(#11084): This could be replaced with Iterator::scan when this
2070 // performance bug is closed.
2071
2072 iter::try_process(iter.into_iter(), |i| i.collect())
2073 }
2074 }
2075
2076 #[unstable(feature = "try_trait_v2", issue = "84277")]
2077 #[rustc_const_unstable(feature = "const_convert", issue = "88674")]
2078 impl<T, E> const ops::Try for Result<T, E> {
2079 type Output = T;
2080 type Residual = Result<convert::Infallible, E>;
2081
2082 #[inline]
2083 fn from_output(output: Self::Output) -> Self {
2084 Ok(output)
2085 }
2086
2087 #[inline]
2088 fn branch(self) -> ControlFlow<Self::Residual, Self::Output> {
2089 match self {
2090 Ok(v) => ControlFlow::Continue(v),
2091 Err(e) => ControlFlow::Break(Err(e)),
2092 }
2093 }
2094 }
2095
2096 #[unstable(feature = "try_trait_v2", issue = "84277")]
2097 #[rustc_const_unstable(feature = "const_convert", issue = "88674")]
2098 impl<T, E, F: ~const From<E>> const ops::FromResidual<Result<convert::Infallible, E>>
2099 for Result<T, F>
2100 {
2101 #[inline]
2102 #[track_caller]
2103 fn from_residual(residual: Result<convert::Infallible, E>) -> Self {
2104 match residual {
2105 Err(e) => Err(From::from(e)),
2106 }
2107 }
2108 }
2109
2110 #[unstable(feature = "try_trait_v2_yeet", issue = "96374")]
2111 impl<T, E, F: From<E>> ops::FromResidual<ops::Yeet<E>> for Result<T, F> {
2112 #[inline]
2113 fn from_residual(ops::Yeet(e): ops::Yeet<E>) -> Self {
2114 Err(From::from(e))
2115 }
2116 }
2117
2118 #[unstable(feature = "try_trait_v2_residual", issue = "91285")]
2119 impl<T, E> ops::Residual<T> for Result<convert::Infallible, E> {
2120 type TryType = Result<T, E>;
2121 }