]> git.proxmox.com Git - rustc.git/blob - library/std/src/path.rs
New upstream version 1.54.0+dfsg1
[rustc.git] / library / std / src / path.rs
1 //! Cross-platform path manipulation.
2 //!
3 //! This module provides two types, [`PathBuf`] and [`Path`] (akin to [`String`]
4 //! and [`str`]), for working with paths abstractly. These types are thin wrappers
5 //! around [`OsString`] and [`OsStr`] respectively, meaning that they work directly
6 //! on strings according to the local platform's path syntax.
7 //!
8 //! Paths can be parsed into [`Component`]s by iterating over the structure
9 //! returned by the [`components`] method on [`Path`]. [`Component`]s roughly
10 //! correspond to the substrings between path separators (`/` or `\`). You can
11 //! reconstruct an equivalent path from components with the [`push`] method on
12 //! [`PathBuf`]; note that the paths may differ syntactically by the
13 //! normalization described in the documentation for the [`components`] method.
14 //!
15 //! ## Simple usage
16 //!
17 //! Path manipulation includes both parsing components from slices and building
18 //! new owned paths.
19 //!
20 //! To parse a path, you can create a [`Path`] slice from a [`str`]
21 //! slice and start asking questions:
22 //!
23 //! ```
24 //! use std::path::Path;
25 //! use std::ffi::OsStr;
26 //!
27 //! let path = Path::new("/tmp/foo/bar.txt");
28 //!
29 //! let parent = path.parent();
30 //! assert_eq!(parent, Some(Path::new("/tmp/foo")));
31 //!
32 //! let file_stem = path.file_stem();
33 //! assert_eq!(file_stem, Some(OsStr::new("bar")));
34 //!
35 //! let extension = path.extension();
36 //! assert_eq!(extension, Some(OsStr::new("txt")));
37 //! ```
38 //!
39 //! To build or modify paths, use [`PathBuf`]:
40 //!
41 //! ```
42 //! use std::path::PathBuf;
43 //!
44 //! // This way works...
45 //! let mut path = PathBuf::from("c:\\");
46 //!
47 //! path.push("windows");
48 //! path.push("system32");
49 //!
50 //! path.set_extension("dll");
51 //!
52 //! // ... but push is best used if you don't know everything up
53 //! // front. If you do, this way is better:
54 //! let path: PathBuf = ["c:\\", "windows", "system32.dll"].iter().collect();
55 //! ```
56 //!
57 //! [`components`]: Path::components
58 //! [`push`]: PathBuf::push
59
60 #![stable(feature = "rust1", since = "1.0.0")]
61 #![deny(unsafe_op_in_unsafe_fn)]
62
63 #[cfg(test)]
64 mod tests;
65
66 use crate::borrow::{Borrow, Cow};
67 use crate::cmp;
68 use crate::error::Error;
69 use crate::fmt;
70 use crate::fs;
71 use crate::hash::{Hash, Hasher};
72 use crate::io;
73 use crate::iter::{self, FusedIterator};
74 use crate::ops::{self, Deref};
75 use crate::rc::Rc;
76 use crate::str::FromStr;
77 use crate::sync::Arc;
78
79 use crate::ffi::{OsStr, OsString};
80
81 use crate::sys::path::{is_sep_byte, is_verbatim_sep, parse_prefix, MAIN_SEP_STR};
82
83 ////////////////////////////////////////////////////////////////////////////////
84 // GENERAL NOTES
85 ////////////////////////////////////////////////////////////////////////////////
86 //
87 // Parsing in this module is done by directly transmuting OsStr to [u8] slices,
88 // taking advantage of the fact that OsStr always encodes ASCII characters
89 // as-is. Eventually, this transmutation should be replaced by direct uses of
90 // OsStr APIs for parsing, but it will take a while for those to become
91 // available.
92
93 ////////////////////////////////////////////////////////////////////////////////
94 // Windows Prefixes
95 ////////////////////////////////////////////////////////////////////////////////
96
97 /// Windows path prefixes, e.g., `C:` or `\\server\share`.
98 ///
99 /// Windows uses a variety of path prefix styles, including references to drive
100 /// volumes (like `C:`), network shared folders (like `\\server\share`), and
101 /// others. In addition, some path prefixes are "verbatim" (i.e., prefixed with
102 /// `\\?\`), in which case `/` is *not* treated as a separator and essentially
103 /// no normalization is performed.
104 ///
105 /// # Examples
106 ///
107 /// ```
108 /// use std::path::{Component, Path, Prefix};
109 /// use std::path::Prefix::*;
110 /// use std::ffi::OsStr;
111 ///
112 /// fn get_path_prefix(s: &str) -> Prefix {
113 /// let path = Path::new(s);
114 /// match path.components().next().unwrap() {
115 /// Component::Prefix(prefix_component) => prefix_component.kind(),
116 /// _ => panic!(),
117 /// }
118 /// }
119 ///
120 /// # if cfg!(windows) {
121 /// assert_eq!(Verbatim(OsStr::new("pictures")),
122 /// get_path_prefix(r"\\?\pictures\kittens"));
123 /// assert_eq!(VerbatimUNC(OsStr::new("server"), OsStr::new("share")),
124 /// get_path_prefix(r"\\?\UNC\server\share"));
125 /// assert_eq!(VerbatimDisk(b'C'), get_path_prefix(r"\\?\c:\"));
126 /// assert_eq!(DeviceNS(OsStr::new("BrainInterface")),
127 /// get_path_prefix(r"\\.\BrainInterface"));
128 /// assert_eq!(UNC(OsStr::new("server"), OsStr::new("share")),
129 /// get_path_prefix(r"\\server\share"));
130 /// assert_eq!(Disk(b'C'), get_path_prefix(r"C:\Users\Rust\Pictures\Ferris"));
131 /// # }
132 /// ```
133 #[derive(Copy, Clone, Debug, Hash, PartialOrd, Ord, PartialEq, Eq)]
134 #[stable(feature = "rust1", since = "1.0.0")]
135 pub enum Prefix<'a> {
136 /// Verbatim prefix, e.g., `\\?\cat_pics`.
137 ///
138 /// Verbatim prefixes consist of `\\?\` immediately followed by the given
139 /// component.
140 #[stable(feature = "rust1", since = "1.0.0")]
141 Verbatim(#[stable(feature = "rust1", since = "1.0.0")] &'a OsStr),
142
143 /// Verbatim prefix using Windows' _**U**niform **N**aming **C**onvention_,
144 /// e.g., `\\?\UNC\server\share`.
145 ///
146 /// Verbatim UNC prefixes consist of `\\?\UNC\` immediately followed by the
147 /// server's hostname and a share name.
148 #[stable(feature = "rust1", since = "1.0.0")]
149 VerbatimUNC(
150 #[stable(feature = "rust1", since = "1.0.0")] &'a OsStr,
151 #[stable(feature = "rust1", since = "1.0.0")] &'a OsStr,
152 ),
153
154 /// Verbatim disk prefix, e.g., `\\?\C:`.
155 ///
156 /// Verbatim disk prefixes consist of `\\?\` immediately followed by the
157 /// drive letter and `:`.
158 #[stable(feature = "rust1", since = "1.0.0")]
159 VerbatimDisk(#[stable(feature = "rust1", since = "1.0.0")] u8),
160
161 /// Device namespace prefix, e.g., `\\.\COM42`.
162 ///
163 /// Device namespace prefixes consist of `\\.\` immediately followed by the
164 /// device name.
165 #[stable(feature = "rust1", since = "1.0.0")]
166 DeviceNS(#[stable(feature = "rust1", since = "1.0.0")] &'a OsStr),
167
168 /// Prefix using Windows' _**U**niform **N**aming **C**onvention_, e.g.
169 /// `\\server\share`.
170 ///
171 /// UNC prefixes consist of the server's hostname and a share name.
172 #[stable(feature = "rust1", since = "1.0.0")]
173 UNC(
174 #[stable(feature = "rust1", since = "1.0.0")] &'a OsStr,
175 #[stable(feature = "rust1", since = "1.0.0")] &'a OsStr,
176 ),
177
178 /// Prefix `C:` for the given disk drive.
179 #[stable(feature = "rust1", since = "1.0.0")]
180 Disk(#[stable(feature = "rust1", since = "1.0.0")] u8),
181 }
182
183 impl<'a> Prefix<'a> {
184 #[inline]
185 fn len(&self) -> usize {
186 use self::Prefix::*;
187 fn os_str_len(s: &OsStr) -> usize {
188 os_str_as_u8_slice(s).len()
189 }
190 match *self {
191 Verbatim(x) => 4 + os_str_len(x),
192 VerbatimUNC(x, y) => {
193 8 + os_str_len(x) + if os_str_len(y) > 0 { 1 + os_str_len(y) } else { 0 }
194 }
195 VerbatimDisk(_) => 6,
196 UNC(x, y) => 2 + os_str_len(x) + if os_str_len(y) > 0 { 1 + os_str_len(y) } else { 0 },
197 DeviceNS(x) => 4 + os_str_len(x),
198 Disk(_) => 2,
199 }
200 }
201
202 /// Determines if the prefix is verbatim, i.e., begins with `\\?\`.
203 ///
204 /// # Examples
205 ///
206 /// ```
207 /// use std::path::Prefix::*;
208 /// use std::ffi::OsStr;
209 ///
210 /// assert!(Verbatim(OsStr::new("pictures")).is_verbatim());
211 /// assert!(VerbatimUNC(OsStr::new("server"), OsStr::new("share")).is_verbatim());
212 /// assert!(VerbatimDisk(b'C').is_verbatim());
213 /// assert!(!DeviceNS(OsStr::new("BrainInterface")).is_verbatim());
214 /// assert!(!UNC(OsStr::new("server"), OsStr::new("share")).is_verbatim());
215 /// assert!(!Disk(b'C').is_verbatim());
216 /// ```
217 #[inline]
218 #[stable(feature = "rust1", since = "1.0.0")]
219 pub fn is_verbatim(&self) -> bool {
220 use self::Prefix::*;
221 matches!(*self, Verbatim(_) | VerbatimDisk(_) | VerbatimUNC(..))
222 }
223
224 #[inline]
225 fn is_drive(&self) -> bool {
226 matches!(*self, Prefix::Disk(_))
227 }
228
229 #[inline]
230 fn has_implicit_root(&self) -> bool {
231 !self.is_drive()
232 }
233 }
234
235 ////////////////////////////////////////////////////////////////////////////////
236 // Exposed parsing helpers
237 ////////////////////////////////////////////////////////////////////////////////
238
239 /// Determines whether the character is one of the permitted path
240 /// separators for the current platform.
241 ///
242 /// # Examples
243 ///
244 /// ```
245 /// use std::path;
246 ///
247 /// assert!(path::is_separator('/')); // '/' works for both Unix and Windows
248 /// assert!(!path::is_separator('❤'));
249 /// ```
250 #[stable(feature = "rust1", since = "1.0.0")]
251 pub fn is_separator(c: char) -> bool {
252 c.is_ascii() && is_sep_byte(c as u8)
253 }
254
255 /// The primary separator of path components for the current platform.
256 ///
257 /// For example, `/` on Unix and `\` on Windows.
258 #[stable(feature = "rust1", since = "1.0.0")]
259 pub const MAIN_SEPARATOR: char = crate::sys::path::MAIN_SEP;
260
261 ////////////////////////////////////////////////////////////////////////////////
262 // Misc helpers
263 ////////////////////////////////////////////////////////////////////////////////
264
265 // Iterate through `iter` while it matches `prefix`; return `None` if `prefix`
266 // is not a prefix of `iter`, otherwise return `Some(iter_after_prefix)` giving
267 // `iter` after having exhausted `prefix`.
268 fn iter_after<'a, 'b, I, J>(mut iter: I, mut prefix: J) -> Option<I>
269 where
270 I: Iterator<Item = Component<'a>> + Clone,
271 J: Iterator<Item = Component<'b>>,
272 {
273 loop {
274 let mut iter_next = iter.clone();
275 match (iter_next.next(), prefix.next()) {
276 (Some(ref x), Some(ref y)) if x == y => (),
277 (Some(_), Some(_)) => return None,
278 (Some(_), None) => return Some(iter),
279 (None, None) => return Some(iter),
280 (None, Some(_)) => return None,
281 }
282 iter = iter_next;
283 }
284 }
285
286 // See note at the top of this module to understand why these are used:
287 //
288 // These casts are safe as OsStr is internally a wrapper around [u8] on all
289 // platforms.
290 //
291 // Note that currently this relies on the special knowledge that libstd has;
292 // these types are single-element structs but are not marked repr(transparent)
293 // or repr(C) which would make these casts allowable outside std.
294 fn os_str_as_u8_slice(s: &OsStr) -> &[u8] {
295 unsafe { &*(s as *const OsStr as *const [u8]) }
296 }
297 unsafe fn u8_slice_as_os_str(s: &[u8]) -> &OsStr {
298 // SAFETY: see the comment of `os_str_as_u8_slice`
299 unsafe { &*(s as *const [u8] as *const OsStr) }
300 }
301
302 // Detect scheme on Redox
303 fn has_redox_scheme(s: &[u8]) -> bool {
304 cfg!(target_os = "redox") && s.contains(&b':')
305 }
306
307 ////////////////////////////////////////////////////////////////////////////////
308 // Cross-platform, iterator-independent parsing
309 ////////////////////////////////////////////////////////////////////////////////
310
311 /// Says whether the first byte after the prefix is a separator.
312 fn has_physical_root(s: &[u8], prefix: Option<Prefix<'_>>) -> bool {
313 let path = if let Some(p) = prefix { &s[p.len()..] } else { s };
314 !path.is_empty() && is_sep_byte(path[0])
315 }
316
317 // basic workhorse for splitting stem and extension
318 fn split_file_at_dot(file: &OsStr) -> (Option<&OsStr>, Option<&OsStr>) {
319 if os_str_as_u8_slice(file) == b".." {
320 return (Some(file), None);
321 }
322
323 // The unsafety here stems from converting between &OsStr and &[u8]
324 // and back. This is safe to do because (1) we only look at ASCII
325 // contents of the encoding and (2) new &OsStr values are produced
326 // only from ASCII-bounded slices of existing &OsStr values.
327 let mut iter = os_str_as_u8_slice(file).rsplitn(2, |b| *b == b'.');
328 let after = iter.next();
329 let before = iter.next();
330 if before == Some(b"") {
331 (Some(file), None)
332 } else {
333 unsafe { (before.map(|s| u8_slice_as_os_str(s)), after.map(|s| u8_slice_as_os_str(s))) }
334 }
335 }
336
337 ////////////////////////////////////////////////////////////////////////////////
338 // The core iterators
339 ////////////////////////////////////////////////////////////////////////////////
340
341 /// Component parsing works by a double-ended state machine; the cursors at the
342 /// front and back of the path each keep track of what parts of the path have
343 /// been consumed so far.
344 ///
345 /// Going front to back, a path is made up of a prefix, a starting
346 /// directory component, and a body (of normal components)
347 #[derive(Copy, Clone, PartialEq, PartialOrd, Debug)]
348 enum State {
349 Prefix = 0, // c:
350 StartDir = 1, // / or . or nothing
351 Body = 2, // foo/bar/baz
352 Done = 3,
353 }
354
355 /// A structure wrapping a Windows path prefix as well as its unparsed string
356 /// representation.
357 ///
358 /// In addition to the parsed [`Prefix`] information returned by [`kind`],
359 /// `PrefixComponent` also holds the raw and unparsed [`OsStr`] slice,
360 /// returned by [`as_os_str`].
361 ///
362 /// Instances of this `struct` can be obtained by matching against the
363 /// [`Prefix` variant] on [`Component`].
364 ///
365 /// Does not occur on Unix.
366 ///
367 /// # Examples
368 ///
369 /// ```
370 /// # if cfg!(windows) {
371 /// use std::path::{Component, Path, Prefix};
372 /// use std::ffi::OsStr;
373 ///
374 /// let path = Path::new(r"c:\you\later\");
375 /// match path.components().next().unwrap() {
376 /// Component::Prefix(prefix_component) => {
377 /// assert_eq!(Prefix::Disk(b'C'), prefix_component.kind());
378 /// assert_eq!(OsStr::new("c:"), prefix_component.as_os_str());
379 /// }
380 /// _ => unreachable!(),
381 /// }
382 /// # }
383 /// ```
384 ///
385 /// [`as_os_str`]: PrefixComponent::as_os_str
386 /// [`kind`]: PrefixComponent::kind
387 /// [`Prefix` variant]: Component::Prefix
388 #[stable(feature = "rust1", since = "1.0.0")]
389 #[derive(Copy, Clone, Eq, Debug)]
390 pub struct PrefixComponent<'a> {
391 /// The prefix as an unparsed `OsStr` slice.
392 raw: &'a OsStr,
393
394 /// The parsed prefix data.
395 parsed: Prefix<'a>,
396 }
397
398 impl<'a> PrefixComponent<'a> {
399 /// Returns the parsed prefix data.
400 ///
401 /// See [`Prefix`]'s documentation for more information on the different
402 /// kinds of prefixes.
403 #[stable(feature = "rust1", since = "1.0.0")]
404 #[inline]
405 pub fn kind(&self) -> Prefix<'a> {
406 self.parsed
407 }
408
409 /// Returns the raw [`OsStr`] slice for this prefix.
410 #[stable(feature = "rust1", since = "1.0.0")]
411 #[inline]
412 pub fn as_os_str(&self) -> &'a OsStr {
413 self.raw
414 }
415 }
416
417 #[stable(feature = "rust1", since = "1.0.0")]
418 impl<'a> cmp::PartialEq for PrefixComponent<'a> {
419 #[inline]
420 fn eq(&self, other: &PrefixComponent<'a>) -> bool {
421 cmp::PartialEq::eq(&self.parsed, &other.parsed)
422 }
423 }
424
425 #[stable(feature = "rust1", since = "1.0.0")]
426 impl<'a> cmp::PartialOrd for PrefixComponent<'a> {
427 #[inline]
428 fn partial_cmp(&self, other: &PrefixComponent<'a>) -> Option<cmp::Ordering> {
429 cmp::PartialOrd::partial_cmp(&self.parsed, &other.parsed)
430 }
431 }
432
433 #[stable(feature = "rust1", since = "1.0.0")]
434 impl cmp::Ord for PrefixComponent<'_> {
435 #[inline]
436 fn cmp(&self, other: &Self) -> cmp::Ordering {
437 cmp::Ord::cmp(&self.parsed, &other.parsed)
438 }
439 }
440
441 #[stable(feature = "rust1", since = "1.0.0")]
442 impl Hash for PrefixComponent<'_> {
443 fn hash<H: Hasher>(&self, h: &mut H) {
444 self.parsed.hash(h);
445 }
446 }
447
448 /// A single component of a path.
449 ///
450 /// A `Component` roughly corresponds to a substring between path separators
451 /// (`/` or `\`).
452 ///
453 /// This `enum` is created by iterating over [`Components`], which in turn is
454 /// created by the [`components`](Path::components) method on [`Path`].
455 ///
456 /// # Examples
457 ///
458 /// ```rust
459 /// use std::path::{Component, Path};
460 ///
461 /// let path = Path::new("/tmp/foo/bar.txt");
462 /// let components = path.components().collect::<Vec<_>>();
463 /// assert_eq!(&components, &[
464 /// Component::RootDir,
465 /// Component::Normal("tmp".as_ref()),
466 /// Component::Normal("foo".as_ref()),
467 /// Component::Normal("bar.txt".as_ref()),
468 /// ]);
469 /// ```
470 #[derive(Copy, Clone, PartialEq, Eq, PartialOrd, Ord, Hash, Debug)]
471 #[stable(feature = "rust1", since = "1.0.0")]
472 pub enum Component<'a> {
473 /// A Windows path prefix, e.g., `C:` or `\\server\share`.
474 ///
475 /// There is a large variety of prefix types, see [`Prefix`]'s documentation
476 /// for more.
477 ///
478 /// Does not occur on Unix.
479 #[stable(feature = "rust1", since = "1.0.0")]
480 Prefix(#[stable(feature = "rust1", since = "1.0.0")] PrefixComponent<'a>),
481
482 /// The root directory component, appears after any prefix and before anything else.
483 ///
484 /// It represents a separator that designates that a path starts from root.
485 #[stable(feature = "rust1", since = "1.0.0")]
486 RootDir,
487
488 /// A reference to the current directory, i.e., `.`.
489 #[stable(feature = "rust1", since = "1.0.0")]
490 CurDir,
491
492 /// A reference to the parent directory, i.e., `..`.
493 #[stable(feature = "rust1", since = "1.0.0")]
494 ParentDir,
495
496 /// A normal component, e.g., `a` and `b` in `a/b`.
497 ///
498 /// This variant is the most common one, it represents references to files
499 /// or directories.
500 #[stable(feature = "rust1", since = "1.0.0")]
501 Normal(#[stable(feature = "rust1", since = "1.0.0")] &'a OsStr),
502 }
503
504 impl<'a> Component<'a> {
505 /// Extracts the underlying [`OsStr`] slice.
506 ///
507 /// # Examples
508 ///
509 /// ```
510 /// use std::path::Path;
511 ///
512 /// let path = Path::new("./tmp/foo/bar.txt");
513 /// let components: Vec<_> = path.components().map(|comp| comp.as_os_str()).collect();
514 /// assert_eq!(&components, &[".", "tmp", "foo", "bar.txt"]);
515 /// ```
516 #[stable(feature = "rust1", since = "1.0.0")]
517 pub fn as_os_str(self) -> &'a OsStr {
518 match self {
519 Component::Prefix(p) => p.as_os_str(),
520 Component::RootDir => OsStr::new(MAIN_SEP_STR),
521 Component::CurDir => OsStr::new("."),
522 Component::ParentDir => OsStr::new(".."),
523 Component::Normal(path) => path,
524 }
525 }
526 }
527
528 #[stable(feature = "rust1", since = "1.0.0")]
529 impl AsRef<OsStr> for Component<'_> {
530 #[inline]
531 fn as_ref(&self) -> &OsStr {
532 self.as_os_str()
533 }
534 }
535
536 #[stable(feature = "path_component_asref", since = "1.25.0")]
537 impl AsRef<Path> for Component<'_> {
538 #[inline]
539 fn as_ref(&self) -> &Path {
540 self.as_os_str().as_ref()
541 }
542 }
543
544 /// An iterator over the [`Component`]s of a [`Path`].
545 ///
546 /// This `struct` is created by the [`components`] method on [`Path`].
547 /// See its documentation for more.
548 ///
549 /// # Examples
550 ///
551 /// ```
552 /// use std::path::Path;
553 ///
554 /// let path = Path::new("/tmp/foo/bar.txt");
555 ///
556 /// for component in path.components() {
557 /// println!("{:?}", component);
558 /// }
559 /// ```
560 ///
561 /// [`components`]: Path::components
562 #[derive(Clone)]
563 #[stable(feature = "rust1", since = "1.0.0")]
564 pub struct Components<'a> {
565 // The path left to parse components from
566 path: &'a [u8],
567
568 // The prefix as it was originally parsed, if any
569 prefix: Option<Prefix<'a>>,
570
571 // true if path *physically* has a root separator; for most Windows
572 // prefixes, it may have a "logical" root separator for the purposes of
573 // normalization, e.g., \\server\share == \\server\share\.
574 has_physical_root: bool,
575
576 // The iterator is double-ended, and these two states keep track of what has
577 // been produced from either end
578 front: State,
579 back: State,
580 }
581
582 /// An iterator over the [`Component`]s of a [`Path`], as [`OsStr`] slices.
583 ///
584 /// This `struct` is created by the [`iter`] method on [`Path`].
585 /// See its documentation for more.
586 ///
587 /// [`iter`]: Path::iter
588 #[derive(Clone)]
589 #[stable(feature = "rust1", since = "1.0.0")]
590 pub struct Iter<'a> {
591 inner: Components<'a>,
592 }
593
594 #[stable(feature = "path_components_debug", since = "1.13.0")]
595 impl fmt::Debug for Components<'_> {
596 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
597 struct DebugHelper<'a>(&'a Path);
598
599 impl fmt::Debug for DebugHelper<'_> {
600 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
601 f.debug_list().entries(self.0.components()).finish()
602 }
603 }
604
605 f.debug_tuple("Components").field(&DebugHelper(self.as_path())).finish()
606 }
607 }
608
609 impl<'a> Components<'a> {
610 // how long is the prefix, if any?
611 #[inline]
612 fn prefix_len(&self) -> usize {
613 self.prefix.as_ref().map(Prefix::len).unwrap_or(0)
614 }
615
616 #[inline]
617 fn prefix_verbatim(&self) -> bool {
618 self.prefix.as_ref().map(Prefix::is_verbatim).unwrap_or(false)
619 }
620
621 /// how much of the prefix is left from the point of view of iteration?
622 #[inline]
623 fn prefix_remaining(&self) -> usize {
624 if self.front == State::Prefix { self.prefix_len() } else { 0 }
625 }
626
627 // Given the iteration so far, how much of the pre-State::Body path is left?
628 #[inline]
629 fn len_before_body(&self) -> usize {
630 let root = if self.front <= State::StartDir && self.has_physical_root { 1 } else { 0 };
631 let cur_dir = if self.front <= State::StartDir && self.include_cur_dir() { 1 } else { 0 };
632 self.prefix_remaining() + root + cur_dir
633 }
634
635 // is the iteration complete?
636 #[inline]
637 fn finished(&self) -> bool {
638 self.front == State::Done || self.back == State::Done || self.front > self.back
639 }
640
641 #[inline]
642 fn is_sep_byte(&self, b: u8) -> bool {
643 if self.prefix_verbatim() { is_verbatim_sep(b) } else { is_sep_byte(b) }
644 }
645
646 /// Extracts a slice corresponding to the portion of the path remaining for iteration.
647 ///
648 /// # Examples
649 ///
650 /// ```
651 /// use std::path::Path;
652 ///
653 /// let mut components = Path::new("/tmp/foo/bar.txt").components();
654 /// components.next();
655 /// components.next();
656 ///
657 /// assert_eq!(Path::new("foo/bar.txt"), components.as_path());
658 /// ```
659 #[stable(feature = "rust1", since = "1.0.0")]
660 pub fn as_path(&self) -> &'a Path {
661 let mut comps = self.clone();
662 if comps.front == State::Body {
663 comps.trim_left();
664 }
665 if comps.back == State::Body {
666 comps.trim_right();
667 }
668 unsafe { Path::from_u8_slice(comps.path) }
669 }
670
671 /// Is the *original* path rooted?
672 fn has_root(&self) -> bool {
673 if self.has_physical_root {
674 return true;
675 }
676 if let Some(p) = self.prefix {
677 if p.has_implicit_root() {
678 return true;
679 }
680 }
681 false
682 }
683
684 /// Should the normalized path include a leading . ?
685 fn include_cur_dir(&self) -> bool {
686 if self.has_root() {
687 return false;
688 }
689 let mut iter = self.path[self.prefix_len()..].iter();
690 match (iter.next(), iter.next()) {
691 (Some(&b'.'), None) => true,
692 (Some(&b'.'), Some(&b)) => self.is_sep_byte(b),
693 _ => false,
694 }
695 }
696
697 // parse a given byte sequence into the corresponding path component
698 fn parse_single_component<'b>(&self, comp: &'b [u8]) -> Option<Component<'b>> {
699 match comp {
700 b"." if self.prefix_verbatim() => Some(Component::CurDir),
701 b"." => None, // . components are normalized away, except at
702 // the beginning of a path, which is treated
703 // separately via `include_cur_dir`
704 b".." => Some(Component::ParentDir),
705 b"" => None,
706 _ => Some(Component::Normal(unsafe { u8_slice_as_os_str(comp) })),
707 }
708 }
709
710 // parse a component from the left, saying how many bytes to consume to
711 // remove the component
712 fn parse_next_component(&self) -> (usize, Option<Component<'a>>) {
713 debug_assert!(self.front == State::Body);
714 let (extra, comp) = match self.path.iter().position(|b| self.is_sep_byte(*b)) {
715 None => (0, self.path),
716 Some(i) => (1, &self.path[..i]),
717 };
718 (comp.len() + extra, self.parse_single_component(comp))
719 }
720
721 // parse a component from the right, saying how many bytes to consume to
722 // remove the component
723 fn parse_next_component_back(&self) -> (usize, Option<Component<'a>>) {
724 debug_assert!(self.back == State::Body);
725 let start = self.len_before_body();
726 let (extra, comp) = match self.path[start..].iter().rposition(|b| self.is_sep_byte(*b)) {
727 None => (0, &self.path[start..]),
728 Some(i) => (1, &self.path[start + i + 1..]),
729 };
730 (comp.len() + extra, self.parse_single_component(comp))
731 }
732
733 // trim away repeated separators (i.e., empty components) on the left
734 fn trim_left(&mut self) {
735 while !self.path.is_empty() {
736 let (size, comp) = self.parse_next_component();
737 if comp.is_some() {
738 return;
739 } else {
740 self.path = &self.path[size..];
741 }
742 }
743 }
744
745 // trim away repeated separators (i.e., empty components) on the right
746 fn trim_right(&mut self) {
747 while self.path.len() > self.len_before_body() {
748 let (size, comp) = self.parse_next_component_back();
749 if comp.is_some() {
750 return;
751 } else {
752 self.path = &self.path[..self.path.len() - size];
753 }
754 }
755 }
756 }
757
758 #[stable(feature = "rust1", since = "1.0.0")]
759 impl AsRef<Path> for Components<'_> {
760 #[inline]
761 fn as_ref(&self) -> &Path {
762 self.as_path()
763 }
764 }
765
766 #[stable(feature = "rust1", since = "1.0.0")]
767 impl AsRef<OsStr> for Components<'_> {
768 #[inline]
769 fn as_ref(&self) -> &OsStr {
770 self.as_path().as_os_str()
771 }
772 }
773
774 #[stable(feature = "path_iter_debug", since = "1.13.0")]
775 impl fmt::Debug for Iter<'_> {
776 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
777 struct DebugHelper<'a>(&'a Path);
778
779 impl fmt::Debug for DebugHelper<'_> {
780 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
781 f.debug_list().entries(self.0.iter()).finish()
782 }
783 }
784
785 f.debug_tuple("Iter").field(&DebugHelper(self.as_path())).finish()
786 }
787 }
788
789 impl<'a> Iter<'a> {
790 /// Extracts a slice corresponding to the portion of the path remaining for iteration.
791 ///
792 /// # Examples
793 ///
794 /// ```
795 /// use std::path::Path;
796 ///
797 /// let mut iter = Path::new("/tmp/foo/bar.txt").iter();
798 /// iter.next();
799 /// iter.next();
800 ///
801 /// assert_eq!(Path::new("foo/bar.txt"), iter.as_path());
802 /// ```
803 #[stable(feature = "rust1", since = "1.0.0")]
804 #[inline]
805 pub fn as_path(&self) -> &'a Path {
806 self.inner.as_path()
807 }
808 }
809
810 #[stable(feature = "rust1", since = "1.0.0")]
811 impl AsRef<Path> for Iter<'_> {
812 #[inline]
813 fn as_ref(&self) -> &Path {
814 self.as_path()
815 }
816 }
817
818 #[stable(feature = "rust1", since = "1.0.0")]
819 impl AsRef<OsStr> for Iter<'_> {
820 #[inline]
821 fn as_ref(&self) -> &OsStr {
822 self.as_path().as_os_str()
823 }
824 }
825
826 #[stable(feature = "rust1", since = "1.0.0")]
827 impl<'a> Iterator for Iter<'a> {
828 type Item = &'a OsStr;
829
830 #[inline]
831 fn next(&mut self) -> Option<&'a OsStr> {
832 self.inner.next().map(Component::as_os_str)
833 }
834 }
835
836 #[stable(feature = "rust1", since = "1.0.0")]
837 impl<'a> DoubleEndedIterator for Iter<'a> {
838 #[inline]
839 fn next_back(&mut self) -> Option<&'a OsStr> {
840 self.inner.next_back().map(Component::as_os_str)
841 }
842 }
843
844 #[stable(feature = "fused", since = "1.26.0")]
845 impl FusedIterator for Iter<'_> {}
846
847 #[stable(feature = "rust1", since = "1.0.0")]
848 impl<'a> Iterator for Components<'a> {
849 type Item = Component<'a>;
850
851 fn next(&mut self) -> Option<Component<'a>> {
852 while !self.finished() {
853 match self.front {
854 State::Prefix if self.prefix_len() > 0 => {
855 self.front = State::StartDir;
856 debug_assert!(self.prefix_len() <= self.path.len());
857 let raw = &self.path[..self.prefix_len()];
858 self.path = &self.path[self.prefix_len()..];
859 return Some(Component::Prefix(PrefixComponent {
860 raw: unsafe { u8_slice_as_os_str(raw) },
861 parsed: self.prefix.unwrap(),
862 }));
863 }
864 State::Prefix => {
865 self.front = State::StartDir;
866 }
867 State::StartDir => {
868 self.front = State::Body;
869 if self.has_physical_root {
870 debug_assert!(!self.path.is_empty());
871 self.path = &self.path[1..];
872 return Some(Component::RootDir);
873 } else if let Some(p) = self.prefix {
874 if p.has_implicit_root() && !p.is_verbatim() {
875 return Some(Component::RootDir);
876 }
877 } else if self.include_cur_dir() {
878 debug_assert!(!self.path.is_empty());
879 self.path = &self.path[1..];
880 return Some(Component::CurDir);
881 }
882 }
883 State::Body if !self.path.is_empty() => {
884 let (size, comp) = self.parse_next_component();
885 self.path = &self.path[size..];
886 if comp.is_some() {
887 return comp;
888 }
889 }
890 State::Body => {
891 self.front = State::Done;
892 }
893 State::Done => unreachable!(),
894 }
895 }
896 None
897 }
898 }
899
900 #[stable(feature = "rust1", since = "1.0.0")]
901 impl<'a> DoubleEndedIterator for Components<'a> {
902 fn next_back(&mut self) -> Option<Component<'a>> {
903 while !self.finished() {
904 match self.back {
905 State::Body if self.path.len() > self.len_before_body() => {
906 let (size, comp) = self.parse_next_component_back();
907 self.path = &self.path[..self.path.len() - size];
908 if comp.is_some() {
909 return comp;
910 }
911 }
912 State::Body => {
913 self.back = State::StartDir;
914 }
915 State::StartDir => {
916 self.back = State::Prefix;
917 if self.has_physical_root {
918 self.path = &self.path[..self.path.len() - 1];
919 return Some(Component::RootDir);
920 } else if let Some(p) = self.prefix {
921 if p.has_implicit_root() && !p.is_verbatim() {
922 return Some(Component::RootDir);
923 }
924 } else if self.include_cur_dir() {
925 self.path = &self.path[..self.path.len() - 1];
926 return Some(Component::CurDir);
927 }
928 }
929 State::Prefix if self.prefix_len() > 0 => {
930 self.back = State::Done;
931 return Some(Component::Prefix(PrefixComponent {
932 raw: unsafe { u8_slice_as_os_str(self.path) },
933 parsed: self.prefix.unwrap(),
934 }));
935 }
936 State::Prefix => {
937 self.back = State::Done;
938 return None;
939 }
940 State::Done => unreachable!(),
941 }
942 }
943 None
944 }
945 }
946
947 #[stable(feature = "fused", since = "1.26.0")]
948 impl FusedIterator for Components<'_> {}
949
950 #[stable(feature = "rust1", since = "1.0.0")]
951 impl<'a> cmp::PartialEq for Components<'a> {
952 #[inline]
953 fn eq(&self, other: &Components<'a>) -> bool {
954 Iterator::eq(self.clone(), other.clone())
955 }
956 }
957
958 #[stable(feature = "rust1", since = "1.0.0")]
959 impl cmp::Eq for Components<'_> {}
960
961 #[stable(feature = "rust1", since = "1.0.0")]
962 impl<'a> cmp::PartialOrd for Components<'a> {
963 #[inline]
964 fn partial_cmp(&self, other: &Components<'a>) -> Option<cmp::Ordering> {
965 Iterator::partial_cmp(self.clone(), other.clone())
966 }
967 }
968
969 #[stable(feature = "rust1", since = "1.0.0")]
970 impl cmp::Ord for Components<'_> {
971 #[inline]
972 fn cmp(&self, other: &Self) -> cmp::Ordering {
973 Iterator::cmp(self.clone(), other.clone())
974 }
975 }
976
977 /// An iterator over [`Path`] and its ancestors.
978 ///
979 /// This `struct` is created by the [`ancestors`] method on [`Path`].
980 /// See its documentation for more.
981 ///
982 /// # Examples
983 ///
984 /// ```
985 /// use std::path::Path;
986 ///
987 /// let path = Path::new("/foo/bar");
988 ///
989 /// for ancestor in path.ancestors() {
990 /// println!("{}", ancestor.display());
991 /// }
992 /// ```
993 ///
994 /// [`ancestors`]: Path::ancestors
995 #[derive(Copy, Clone, Debug)]
996 #[stable(feature = "path_ancestors", since = "1.28.0")]
997 pub struct Ancestors<'a> {
998 next: Option<&'a Path>,
999 }
1000
1001 #[stable(feature = "path_ancestors", since = "1.28.0")]
1002 impl<'a> Iterator for Ancestors<'a> {
1003 type Item = &'a Path;
1004
1005 #[inline]
1006 fn next(&mut self) -> Option<Self::Item> {
1007 let next = self.next;
1008 self.next = next.and_then(Path::parent);
1009 next
1010 }
1011 }
1012
1013 #[stable(feature = "path_ancestors", since = "1.28.0")]
1014 impl FusedIterator for Ancestors<'_> {}
1015
1016 ////////////////////////////////////////////////////////////////////////////////
1017 // Basic types and traits
1018 ////////////////////////////////////////////////////////////////////////////////
1019
1020 /// An owned, mutable path (akin to [`String`]).
1021 ///
1022 /// This type provides methods like [`push`] and [`set_extension`] that mutate
1023 /// the path in place. It also implements [`Deref`] to [`Path`], meaning that
1024 /// all methods on [`Path`] slices are available on `PathBuf` values as well.
1025 ///
1026 /// [`push`]: PathBuf::push
1027 /// [`set_extension`]: PathBuf::set_extension
1028 ///
1029 /// More details about the overall approach can be found in
1030 /// the [module documentation](self).
1031 ///
1032 /// # Examples
1033 ///
1034 /// You can use [`push`] to build up a `PathBuf` from
1035 /// components:
1036 ///
1037 /// ```
1038 /// use std::path::PathBuf;
1039 ///
1040 /// let mut path = PathBuf::new();
1041 ///
1042 /// path.push(r"C:\");
1043 /// path.push("windows");
1044 /// path.push("system32");
1045 ///
1046 /// path.set_extension("dll");
1047 /// ```
1048 ///
1049 /// However, [`push`] is best used for dynamic situations. This is a better way
1050 /// to do this when you know all of the components ahead of time:
1051 ///
1052 /// ```
1053 /// use std::path::PathBuf;
1054 ///
1055 /// let path: PathBuf = [r"C:\", "windows", "system32.dll"].iter().collect();
1056 /// ```
1057 ///
1058 /// We can still do better than this! Since these are all strings, we can use
1059 /// `From::from`:
1060 ///
1061 /// ```
1062 /// use std::path::PathBuf;
1063 ///
1064 /// let path = PathBuf::from(r"C:\windows\system32.dll");
1065 /// ```
1066 ///
1067 /// Which method works best depends on what kind of situation you're in.
1068 #[cfg_attr(not(test), rustc_diagnostic_item = "PathBuf")]
1069 #[stable(feature = "rust1", since = "1.0.0")]
1070 // FIXME:
1071 // `PathBuf::as_mut_vec` current implementation relies
1072 // on `PathBuf` being layout-compatible with `Vec<u8>`.
1073 // When attribute privacy is implemented, `PathBuf` should be annotated as `#[repr(transparent)]`.
1074 // Anyway, `PathBuf` representation and layout are considered implementation detail, are
1075 // not documented and must not be relied upon.
1076 pub struct PathBuf {
1077 inner: OsString,
1078 }
1079
1080 impl PathBuf {
1081 #[inline]
1082 fn as_mut_vec(&mut self) -> &mut Vec<u8> {
1083 unsafe { &mut *(self as *mut PathBuf as *mut Vec<u8>) }
1084 }
1085
1086 /// Allocates an empty `PathBuf`.
1087 ///
1088 /// # Examples
1089 ///
1090 /// ```
1091 /// use std::path::PathBuf;
1092 ///
1093 /// let path = PathBuf::new();
1094 /// ```
1095 #[stable(feature = "rust1", since = "1.0.0")]
1096 #[inline]
1097 pub fn new() -> PathBuf {
1098 PathBuf { inner: OsString::new() }
1099 }
1100
1101 /// Creates a new `PathBuf` with a given capacity used to create the
1102 /// internal [`OsString`]. See [`with_capacity`] defined on [`OsString`].
1103 ///
1104 /// # Examples
1105 ///
1106 /// ```
1107 /// use std::path::PathBuf;
1108 ///
1109 /// let mut path = PathBuf::with_capacity(10);
1110 /// let capacity = path.capacity();
1111 ///
1112 /// // This push is done without reallocating
1113 /// path.push(r"C:\");
1114 ///
1115 /// assert_eq!(capacity, path.capacity());
1116 /// ```
1117 ///
1118 /// [`with_capacity`]: OsString::with_capacity
1119 #[stable(feature = "path_buf_capacity", since = "1.44.0")]
1120 #[inline]
1121 pub fn with_capacity(capacity: usize) -> PathBuf {
1122 PathBuf { inner: OsString::with_capacity(capacity) }
1123 }
1124
1125 /// Coerces to a [`Path`] slice.
1126 ///
1127 /// # Examples
1128 ///
1129 /// ```
1130 /// use std::path::{Path, PathBuf};
1131 ///
1132 /// let p = PathBuf::from("/test");
1133 /// assert_eq!(Path::new("/test"), p.as_path());
1134 /// ```
1135 #[stable(feature = "rust1", since = "1.0.0")]
1136 #[inline]
1137 pub fn as_path(&self) -> &Path {
1138 self
1139 }
1140
1141 /// Extends `self` with `path`.
1142 ///
1143 /// If `path` is absolute, it replaces the current path.
1144 ///
1145 /// On Windows:
1146 ///
1147 /// * if `path` has a root but no prefix (e.g., `\windows`), it
1148 /// replaces everything except for the prefix (if any) of `self`.
1149 /// * if `path` has a prefix but no root, it replaces `self`.
1150 ///
1151 /// # Examples
1152 ///
1153 /// Pushing a relative path extends the existing path:
1154 ///
1155 /// ```
1156 /// use std::path::PathBuf;
1157 ///
1158 /// let mut path = PathBuf::from("/tmp");
1159 /// path.push("file.bk");
1160 /// assert_eq!(path, PathBuf::from("/tmp/file.bk"));
1161 /// ```
1162 ///
1163 /// Pushing an absolute path replaces the existing path:
1164 ///
1165 /// ```
1166 /// use std::path::PathBuf;
1167 ///
1168 /// let mut path = PathBuf::from("/tmp");
1169 /// path.push("/etc");
1170 /// assert_eq!(path, PathBuf::from("/etc"));
1171 /// ```
1172 #[stable(feature = "rust1", since = "1.0.0")]
1173 pub fn push<P: AsRef<Path>>(&mut self, path: P) {
1174 self._push(path.as_ref())
1175 }
1176
1177 fn _push(&mut self, path: &Path) {
1178 // in general, a separator is needed if the rightmost byte is not a separator
1179 let mut need_sep = self.as_mut_vec().last().map(|c| !is_sep_byte(*c)).unwrap_or(false);
1180
1181 // in the special case of `C:` on Windows, do *not* add a separator
1182 {
1183 let comps = self.components();
1184 if comps.prefix_len() > 0
1185 && comps.prefix_len() == comps.path.len()
1186 && comps.prefix.unwrap().is_drive()
1187 {
1188 need_sep = false
1189 }
1190 }
1191
1192 // absolute `path` replaces `self`
1193 if path.is_absolute() || path.prefix().is_some() {
1194 self.as_mut_vec().truncate(0);
1195
1196 // `path` has a root but no prefix, e.g., `\windows` (Windows only)
1197 } else if path.has_root() {
1198 let prefix_len = self.components().prefix_remaining();
1199 self.as_mut_vec().truncate(prefix_len);
1200
1201 // `path` is a pure relative path
1202 } else if need_sep {
1203 self.inner.push(MAIN_SEP_STR);
1204 }
1205
1206 self.inner.push(path);
1207 }
1208
1209 /// Truncates `self` to [`self.parent`].
1210 ///
1211 /// Returns `false` and does nothing if [`self.parent`] is [`None`].
1212 /// Otherwise, returns `true`.
1213 ///
1214 /// [`self.parent`]: Path::parent
1215 ///
1216 /// # Examples
1217 ///
1218 /// ```
1219 /// use std::path::{Path, PathBuf};
1220 ///
1221 /// let mut p = PathBuf::from("/spirited/away.rs");
1222 ///
1223 /// p.pop();
1224 /// assert_eq!(Path::new("/spirited"), p);
1225 /// p.pop();
1226 /// assert_eq!(Path::new("/"), p);
1227 /// ```
1228 #[stable(feature = "rust1", since = "1.0.0")]
1229 pub fn pop(&mut self) -> bool {
1230 match self.parent().map(|p| p.as_u8_slice().len()) {
1231 Some(len) => {
1232 self.as_mut_vec().truncate(len);
1233 true
1234 }
1235 None => false,
1236 }
1237 }
1238
1239 /// Updates [`self.file_name`] to `file_name`.
1240 ///
1241 /// If [`self.file_name`] was [`None`], this is equivalent to pushing
1242 /// `file_name`.
1243 ///
1244 /// Otherwise it is equivalent to calling [`pop`] and then pushing
1245 /// `file_name`. The new path will be a sibling of the original path.
1246 /// (That is, it will have the same parent.)
1247 ///
1248 /// [`self.file_name`]: Path::file_name
1249 /// [`pop`]: PathBuf::pop
1250 ///
1251 /// # Examples
1252 ///
1253 /// ```
1254 /// use std::path::PathBuf;
1255 ///
1256 /// let mut buf = PathBuf::from("/");
1257 /// assert!(buf.file_name() == None);
1258 /// buf.set_file_name("bar");
1259 /// assert!(buf == PathBuf::from("/bar"));
1260 /// assert!(buf.file_name().is_some());
1261 /// buf.set_file_name("baz.txt");
1262 /// assert!(buf == PathBuf::from("/baz.txt"));
1263 /// ```
1264 #[stable(feature = "rust1", since = "1.0.0")]
1265 pub fn set_file_name<S: AsRef<OsStr>>(&mut self, file_name: S) {
1266 self._set_file_name(file_name.as_ref())
1267 }
1268
1269 fn _set_file_name(&mut self, file_name: &OsStr) {
1270 if self.file_name().is_some() {
1271 let popped = self.pop();
1272 debug_assert!(popped);
1273 }
1274 self.push(file_name);
1275 }
1276
1277 /// Updates [`self.extension`] to `extension`.
1278 ///
1279 /// Returns `false` and does nothing if [`self.file_name`] is [`None`],
1280 /// returns `true` and updates the extension otherwise.
1281 ///
1282 /// If [`self.extension`] is [`None`], the extension is added; otherwise
1283 /// it is replaced.
1284 ///
1285 /// [`self.file_name`]: Path::file_name
1286 /// [`self.extension`]: Path::extension
1287 ///
1288 /// # Examples
1289 ///
1290 /// ```
1291 /// use std::path::{Path, PathBuf};
1292 ///
1293 /// let mut p = PathBuf::from("/feel/the");
1294 ///
1295 /// p.set_extension("force");
1296 /// assert_eq!(Path::new("/feel/the.force"), p.as_path());
1297 ///
1298 /// p.set_extension("dark_side");
1299 /// assert_eq!(Path::new("/feel/the.dark_side"), p.as_path());
1300 /// ```
1301 #[stable(feature = "rust1", since = "1.0.0")]
1302 pub fn set_extension<S: AsRef<OsStr>>(&mut self, extension: S) -> bool {
1303 self._set_extension(extension.as_ref())
1304 }
1305
1306 fn _set_extension(&mut self, extension: &OsStr) -> bool {
1307 let file_stem = match self.file_stem() {
1308 None => return false,
1309 Some(f) => os_str_as_u8_slice(f),
1310 };
1311
1312 // truncate until right after the file stem
1313 let end_file_stem = file_stem[file_stem.len()..].as_ptr() as usize;
1314 let start = os_str_as_u8_slice(&self.inner).as_ptr() as usize;
1315 let v = self.as_mut_vec();
1316 v.truncate(end_file_stem.wrapping_sub(start));
1317
1318 // add the new extension, if any
1319 let new = os_str_as_u8_slice(extension);
1320 if !new.is_empty() {
1321 v.reserve_exact(new.len() + 1);
1322 v.push(b'.');
1323 v.extend_from_slice(new);
1324 }
1325
1326 true
1327 }
1328
1329 /// Consumes the `PathBuf`, yielding its internal [`OsString`] storage.
1330 ///
1331 /// # Examples
1332 ///
1333 /// ```
1334 /// use std::path::PathBuf;
1335 ///
1336 /// let p = PathBuf::from("/the/head");
1337 /// let os_str = p.into_os_string();
1338 /// ```
1339 #[stable(feature = "rust1", since = "1.0.0")]
1340 #[inline]
1341 pub fn into_os_string(self) -> OsString {
1342 self.inner
1343 }
1344
1345 /// Converts this `PathBuf` into a [boxed](Box) [`Path`].
1346 #[stable(feature = "into_boxed_path", since = "1.20.0")]
1347 #[inline]
1348 pub fn into_boxed_path(self) -> Box<Path> {
1349 let rw = Box::into_raw(self.inner.into_boxed_os_str()) as *mut Path;
1350 unsafe { Box::from_raw(rw) }
1351 }
1352
1353 /// Invokes [`capacity`] on the underlying instance of [`OsString`].
1354 ///
1355 /// [`capacity`]: OsString::capacity
1356 #[stable(feature = "path_buf_capacity", since = "1.44.0")]
1357 #[inline]
1358 pub fn capacity(&self) -> usize {
1359 self.inner.capacity()
1360 }
1361
1362 /// Invokes [`clear`] on the underlying instance of [`OsString`].
1363 ///
1364 /// [`clear`]: OsString::clear
1365 #[stable(feature = "path_buf_capacity", since = "1.44.0")]
1366 #[inline]
1367 pub fn clear(&mut self) {
1368 self.inner.clear()
1369 }
1370
1371 /// Invokes [`reserve`] on the underlying instance of [`OsString`].
1372 ///
1373 /// [`reserve`]: OsString::reserve
1374 #[stable(feature = "path_buf_capacity", since = "1.44.0")]
1375 #[inline]
1376 pub fn reserve(&mut self, additional: usize) {
1377 self.inner.reserve(additional)
1378 }
1379
1380 /// Invokes [`reserve_exact`] on the underlying instance of [`OsString`].
1381 ///
1382 /// [`reserve_exact`]: OsString::reserve_exact
1383 #[stable(feature = "path_buf_capacity", since = "1.44.0")]
1384 #[inline]
1385 pub fn reserve_exact(&mut self, additional: usize) {
1386 self.inner.reserve_exact(additional)
1387 }
1388
1389 /// Invokes [`shrink_to_fit`] on the underlying instance of [`OsString`].
1390 ///
1391 /// [`shrink_to_fit`]: OsString::shrink_to_fit
1392 #[stable(feature = "path_buf_capacity", since = "1.44.0")]
1393 #[inline]
1394 pub fn shrink_to_fit(&mut self) {
1395 self.inner.shrink_to_fit()
1396 }
1397
1398 /// Invokes [`shrink_to`] on the underlying instance of [`OsString`].
1399 ///
1400 /// [`shrink_to`]: OsString::shrink_to
1401 #[unstable(feature = "shrink_to", issue = "56431")]
1402 #[inline]
1403 pub fn shrink_to(&mut self, min_capacity: usize) {
1404 self.inner.shrink_to(min_capacity)
1405 }
1406 }
1407
1408 #[stable(feature = "rust1", since = "1.0.0")]
1409 impl Clone for PathBuf {
1410 #[inline]
1411 fn clone(&self) -> Self {
1412 PathBuf { inner: self.inner.clone() }
1413 }
1414
1415 #[inline]
1416 fn clone_from(&mut self, source: &Self) {
1417 self.inner.clone_from(&source.inner)
1418 }
1419 }
1420
1421 #[stable(feature = "box_from_path", since = "1.17.0")]
1422 impl From<&Path> for Box<Path> {
1423 /// Creates a boxed [`Path`] from a reference.
1424 ///
1425 /// This will allocate and clone `path` to it.
1426 fn from(path: &Path) -> Box<Path> {
1427 let boxed: Box<OsStr> = path.inner.into();
1428 let rw = Box::into_raw(boxed) as *mut Path;
1429 unsafe { Box::from_raw(rw) }
1430 }
1431 }
1432
1433 #[stable(feature = "box_from_cow", since = "1.45.0")]
1434 impl From<Cow<'_, Path>> for Box<Path> {
1435 /// Creates a boxed [`Path`] from a clone-on-write pointer.
1436 ///
1437 /// Converting from a `Cow::Owned` does not clone or allocate.
1438 #[inline]
1439 fn from(cow: Cow<'_, Path>) -> Box<Path> {
1440 match cow {
1441 Cow::Borrowed(path) => Box::from(path),
1442 Cow::Owned(path) => Box::from(path),
1443 }
1444 }
1445 }
1446
1447 #[stable(feature = "path_buf_from_box", since = "1.18.0")]
1448 impl From<Box<Path>> for PathBuf {
1449 /// Converts a `Box<Path>` into a `PathBuf`
1450 ///
1451 /// This conversion does not allocate or copy memory.
1452 #[inline]
1453 fn from(boxed: Box<Path>) -> PathBuf {
1454 boxed.into_path_buf()
1455 }
1456 }
1457
1458 #[stable(feature = "box_from_path_buf", since = "1.20.0")]
1459 impl From<PathBuf> for Box<Path> {
1460 /// Converts a `PathBuf` into a `Box<Path>`
1461 ///
1462 /// This conversion currently should not allocate memory,
1463 /// but this behavior is not guaranteed on all platforms or in all future versions.
1464 #[inline]
1465 fn from(p: PathBuf) -> Box<Path> {
1466 p.into_boxed_path()
1467 }
1468 }
1469
1470 #[stable(feature = "more_box_slice_clone", since = "1.29.0")]
1471 impl Clone for Box<Path> {
1472 #[inline]
1473 fn clone(&self) -> Self {
1474 self.to_path_buf().into_boxed_path()
1475 }
1476 }
1477
1478 #[stable(feature = "rust1", since = "1.0.0")]
1479 impl<T: ?Sized + AsRef<OsStr>> From<&T> for PathBuf {
1480 /// Converts a borrowed `OsStr` to a `PathBuf`.
1481 ///
1482 /// Allocates a [`PathBuf`] and copies the data into it.
1483 #[inline]
1484 fn from(s: &T) -> PathBuf {
1485 PathBuf::from(s.as_ref().to_os_string())
1486 }
1487 }
1488
1489 #[stable(feature = "rust1", since = "1.0.0")]
1490 impl From<OsString> for PathBuf {
1491 /// Converts an [`OsString`] into a [`PathBuf`]
1492 ///
1493 /// This conversion does not allocate or copy memory.
1494 #[inline]
1495 fn from(s: OsString) -> PathBuf {
1496 PathBuf { inner: s }
1497 }
1498 }
1499
1500 #[stable(feature = "from_path_buf_for_os_string", since = "1.14.0")]
1501 impl From<PathBuf> for OsString {
1502 /// Converts a [`PathBuf`] into an [`OsString`]
1503 ///
1504 /// This conversion does not allocate or copy memory.
1505 #[inline]
1506 fn from(path_buf: PathBuf) -> OsString {
1507 path_buf.inner
1508 }
1509 }
1510
1511 #[stable(feature = "rust1", since = "1.0.0")]
1512 impl From<String> for PathBuf {
1513 /// Converts a [`String`] into a [`PathBuf`]
1514 ///
1515 /// This conversion does not allocate or copy memory.
1516 #[inline]
1517 fn from(s: String) -> PathBuf {
1518 PathBuf::from(OsString::from(s))
1519 }
1520 }
1521
1522 #[stable(feature = "path_from_str", since = "1.32.0")]
1523 impl FromStr for PathBuf {
1524 type Err = core::convert::Infallible;
1525
1526 #[inline]
1527 fn from_str(s: &str) -> Result<Self, Self::Err> {
1528 Ok(PathBuf::from(s))
1529 }
1530 }
1531
1532 #[stable(feature = "rust1", since = "1.0.0")]
1533 impl<P: AsRef<Path>> iter::FromIterator<P> for PathBuf {
1534 fn from_iter<I: IntoIterator<Item = P>>(iter: I) -> PathBuf {
1535 let mut buf = PathBuf::new();
1536 buf.extend(iter);
1537 buf
1538 }
1539 }
1540
1541 #[stable(feature = "rust1", since = "1.0.0")]
1542 impl<P: AsRef<Path>> iter::Extend<P> for PathBuf {
1543 fn extend<I: IntoIterator<Item = P>>(&mut self, iter: I) {
1544 iter.into_iter().for_each(move |p| self.push(p.as_ref()));
1545 }
1546
1547 #[inline]
1548 fn extend_one(&mut self, p: P) {
1549 self.push(p.as_ref());
1550 }
1551 }
1552
1553 #[stable(feature = "rust1", since = "1.0.0")]
1554 impl fmt::Debug for PathBuf {
1555 fn fmt(&self, formatter: &mut fmt::Formatter<'_>) -> fmt::Result {
1556 fmt::Debug::fmt(&**self, formatter)
1557 }
1558 }
1559
1560 #[stable(feature = "rust1", since = "1.0.0")]
1561 impl ops::Deref for PathBuf {
1562 type Target = Path;
1563 #[inline]
1564 fn deref(&self) -> &Path {
1565 Path::new(&self.inner)
1566 }
1567 }
1568
1569 #[stable(feature = "rust1", since = "1.0.0")]
1570 impl Borrow<Path> for PathBuf {
1571 #[inline]
1572 fn borrow(&self) -> &Path {
1573 self.deref()
1574 }
1575 }
1576
1577 #[stable(feature = "default_for_pathbuf", since = "1.17.0")]
1578 impl Default for PathBuf {
1579 #[inline]
1580 fn default() -> Self {
1581 PathBuf::new()
1582 }
1583 }
1584
1585 #[stable(feature = "cow_from_path", since = "1.6.0")]
1586 impl<'a> From<&'a Path> for Cow<'a, Path> {
1587 /// Creates a clone-on-write pointer from a reference to
1588 /// [`Path`].
1589 ///
1590 /// This conversion does not clone or allocate.
1591 #[inline]
1592 fn from(s: &'a Path) -> Cow<'a, Path> {
1593 Cow::Borrowed(s)
1594 }
1595 }
1596
1597 #[stable(feature = "cow_from_path", since = "1.6.0")]
1598 impl<'a> From<PathBuf> for Cow<'a, Path> {
1599 /// Creates a clone-on-write pointer from an owned
1600 /// instance of [`PathBuf`].
1601 ///
1602 /// This conversion does not clone or allocate.
1603 #[inline]
1604 fn from(s: PathBuf) -> Cow<'a, Path> {
1605 Cow::Owned(s)
1606 }
1607 }
1608
1609 #[stable(feature = "cow_from_pathbuf_ref", since = "1.28.0")]
1610 impl<'a> From<&'a PathBuf> for Cow<'a, Path> {
1611 /// Creates a clone-on-write pointer from a reference to
1612 /// [`PathBuf`].
1613 ///
1614 /// This conversion does not clone or allocate.
1615 #[inline]
1616 fn from(p: &'a PathBuf) -> Cow<'a, Path> {
1617 Cow::Borrowed(p.as_path())
1618 }
1619 }
1620
1621 #[stable(feature = "pathbuf_from_cow_path", since = "1.28.0")]
1622 impl<'a> From<Cow<'a, Path>> for PathBuf {
1623 /// Converts a clone-on-write pointer to an owned path.
1624 ///
1625 /// Converting from a `Cow::Owned` does not clone or allocate.
1626 #[inline]
1627 fn from(p: Cow<'a, Path>) -> Self {
1628 p.into_owned()
1629 }
1630 }
1631
1632 #[stable(feature = "shared_from_slice2", since = "1.24.0")]
1633 impl From<PathBuf> for Arc<Path> {
1634 /// Converts a [`PathBuf`] into an [`Arc`] by moving the [`PathBuf`] data into a new [`Arc`] buffer.
1635 #[inline]
1636 fn from(s: PathBuf) -> Arc<Path> {
1637 let arc: Arc<OsStr> = Arc::from(s.into_os_string());
1638 unsafe { Arc::from_raw(Arc::into_raw(arc) as *const Path) }
1639 }
1640 }
1641
1642 #[stable(feature = "shared_from_slice2", since = "1.24.0")]
1643 impl From<&Path> for Arc<Path> {
1644 /// Converts a [`Path`] into an [`Arc`] by copying the [`Path`] data into a new [`Arc`] buffer.
1645 #[inline]
1646 fn from(s: &Path) -> Arc<Path> {
1647 let arc: Arc<OsStr> = Arc::from(s.as_os_str());
1648 unsafe { Arc::from_raw(Arc::into_raw(arc) as *const Path) }
1649 }
1650 }
1651
1652 #[stable(feature = "shared_from_slice2", since = "1.24.0")]
1653 impl From<PathBuf> for Rc<Path> {
1654 /// Converts a [`PathBuf`] into an [`Rc`] by moving the [`PathBuf`] data into a new `Rc` buffer.
1655 #[inline]
1656 fn from(s: PathBuf) -> Rc<Path> {
1657 let rc: Rc<OsStr> = Rc::from(s.into_os_string());
1658 unsafe { Rc::from_raw(Rc::into_raw(rc) as *const Path) }
1659 }
1660 }
1661
1662 #[stable(feature = "shared_from_slice2", since = "1.24.0")]
1663 impl From<&Path> for Rc<Path> {
1664 /// Converts a [`Path`] into an [`Rc`] by copying the [`Path`] data into a new `Rc` buffer.
1665 #[inline]
1666 fn from(s: &Path) -> Rc<Path> {
1667 let rc: Rc<OsStr> = Rc::from(s.as_os_str());
1668 unsafe { Rc::from_raw(Rc::into_raw(rc) as *const Path) }
1669 }
1670 }
1671
1672 #[stable(feature = "rust1", since = "1.0.0")]
1673 impl ToOwned for Path {
1674 type Owned = PathBuf;
1675 #[inline]
1676 fn to_owned(&self) -> PathBuf {
1677 self.to_path_buf()
1678 }
1679 #[inline]
1680 fn clone_into(&self, target: &mut PathBuf) {
1681 self.inner.clone_into(&mut target.inner);
1682 }
1683 }
1684
1685 #[stable(feature = "rust1", since = "1.0.0")]
1686 impl cmp::PartialEq for PathBuf {
1687 #[inline]
1688 fn eq(&self, other: &PathBuf) -> bool {
1689 self.components() == other.components()
1690 }
1691 }
1692
1693 #[stable(feature = "rust1", since = "1.0.0")]
1694 impl Hash for PathBuf {
1695 fn hash<H: Hasher>(&self, h: &mut H) {
1696 self.as_path().hash(h)
1697 }
1698 }
1699
1700 #[stable(feature = "rust1", since = "1.0.0")]
1701 impl cmp::Eq for PathBuf {}
1702
1703 #[stable(feature = "rust1", since = "1.0.0")]
1704 impl cmp::PartialOrd for PathBuf {
1705 #[inline]
1706 fn partial_cmp(&self, other: &PathBuf) -> Option<cmp::Ordering> {
1707 self.components().partial_cmp(other.components())
1708 }
1709 }
1710
1711 #[stable(feature = "rust1", since = "1.0.0")]
1712 impl cmp::Ord for PathBuf {
1713 #[inline]
1714 fn cmp(&self, other: &PathBuf) -> cmp::Ordering {
1715 self.components().cmp(other.components())
1716 }
1717 }
1718
1719 #[stable(feature = "rust1", since = "1.0.0")]
1720 impl AsRef<OsStr> for PathBuf {
1721 #[inline]
1722 fn as_ref(&self) -> &OsStr {
1723 &self.inner[..]
1724 }
1725 }
1726
1727 /// A slice of a path (akin to [`str`]).
1728 ///
1729 /// This type supports a number of operations for inspecting a path, including
1730 /// breaking the path into its components (separated by `/` on Unix and by either
1731 /// `/` or `\` on Windows), extracting the file name, determining whether the path
1732 /// is absolute, and so on.
1733 ///
1734 /// This is an *unsized* type, meaning that it must always be used behind a
1735 /// pointer like `&` or [`Box`]. For an owned version of this type,
1736 /// see [`PathBuf`].
1737 ///
1738 /// More details about the overall approach can be found in
1739 /// the [module documentation](self).
1740 ///
1741 /// # Examples
1742 ///
1743 /// ```
1744 /// use std::path::Path;
1745 /// use std::ffi::OsStr;
1746 ///
1747 /// // Note: this example does work on Windows
1748 /// let path = Path::new("./foo/bar.txt");
1749 ///
1750 /// let parent = path.parent();
1751 /// assert_eq!(parent, Some(Path::new("./foo")));
1752 ///
1753 /// let file_stem = path.file_stem();
1754 /// assert_eq!(file_stem, Some(OsStr::new("bar")));
1755 ///
1756 /// let extension = path.extension();
1757 /// assert_eq!(extension, Some(OsStr::new("txt")));
1758 /// ```
1759 #[cfg_attr(not(test), rustc_diagnostic_item = "Path")]
1760 #[stable(feature = "rust1", since = "1.0.0")]
1761 // FIXME:
1762 // `Path::new` current implementation relies
1763 // on `Path` being layout-compatible with `OsStr`.
1764 // When attribute privacy is implemented, `Path` should be annotated as `#[repr(transparent)]`.
1765 // Anyway, `Path` representation and layout are considered implementation detail, are
1766 // not documented and must not be relied upon.
1767 pub struct Path {
1768 inner: OsStr,
1769 }
1770
1771 /// An error returned from [`Path::strip_prefix`] if the prefix was not found.
1772 ///
1773 /// This `struct` is created by the [`strip_prefix`] method on [`Path`].
1774 /// See its documentation for more.
1775 ///
1776 /// [`strip_prefix`]: Path::strip_prefix
1777 #[derive(Debug, Clone, PartialEq, Eq)]
1778 #[stable(since = "1.7.0", feature = "strip_prefix")]
1779 pub struct StripPrefixError(());
1780
1781 impl Path {
1782 // The following (private!) function allows construction of a path from a u8
1783 // slice, which is only safe when it is known to follow the OsStr encoding.
1784 unsafe fn from_u8_slice(s: &[u8]) -> &Path {
1785 unsafe { Path::new(u8_slice_as_os_str(s)) }
1786 }
1787 // The following (private!) function reveals the byte encoding used for OsStr.
1788 fn as_u8_slice(&self) -> &[u8] {
1789 os_str_as_u8_slice(&self.inner)
1790 }
1791
1792 /// Directly wraps a string slice as a `Path` slice.
1793 ///
1794 /// This is a cost-free conversion.
1795 ///
1796 /// # Examples
1797 ///
1798 /// ```
1799 /// use std::path::Path;
1800 ///
1801 /// Path::new("foo.txt");
1802 /// ```
1803 ///
1804 /// You can create `Path`s from `String`s, or even other `Path`s:
1805 ///
1806 /// ```
1807 /// use std::path::Path;
1808 ///
1809 /// let string = String::from("foo.txt");
1810 /// let from_string = Path::new(&string);
1811 /// let from_path = Path::new(&from_string);
1812 /// assert_eq!(from_string, from_path);
1813 /// ```
1814 #[stable(feature = "rust1", since = "1.0.0")]
1815 pub fn new<S: AsRef<OsStr> + ?Sized>(s: &S) -> &Path {
1816 unsafe { &*(s.as_ref() as *const OsStr as *const Path) }
1817 }
1818
1819 /// Yields the underlying [`OsStr`] slice.
1820 ///
1821 /// # Examples
1822 ///
1823 /// ```
1824 /// use std::path::Path;
1825 ///
1826 /// let os_str = Path::new("foo.txt").as_os_str();
1827 /// assert_eq!(os_str, std::ffi::OsStr::new("foo.txt"));
1828 /// ```
1829 #[stable(feature = "rust1", since = "1.0.0")]
1830 #[inline]
1831 pub fn as_os_str(&self) -> &OsStr {
1832 &self.inner
1833 }
1834
1835 /// Yields a [`&str`] slice if the `Path` is valid unicode.
1836 ///
1837 /// This conversion may entail doing a check for UTF-8 validity.
1838 /// Note that validation is performed because non-UTF-8 strings are
1839 /// perfectly valid for some OS.
1840 ///
1841 /// [`&str`]: str
1842 ///
1843 /// # Examples
1844 ///
1845 /// ```
1846 /// use std::path::Path;
1847 ///
1848 /// let path = Path::new("foo.txt");
1849 /// assert_eq!(path.to_str(), Some("foo.txt"));
1850 /// ```
1851 #[stable(feature = "rust1", since = "1.0.0")]
1852 #[inline]
1853 pub fn to_str(&self) -> Option<&str> {
1854 self.inner.to_str()
1855 }
1856
1857 /// Converts a `Path` to a [`Cow<str>`].
1858 ///
1859 /// Any non-Unicode sequences are replaced with
1860 /// [`U+FFFD REPLACEMENT CHARACTER`][U+FFFD].
1861 ///
1862 /// [U+FFFD]: super::char::REPLACEMENT_CHARACTER
1863 ///
1864 /// # Examples
1865 ///
1866 /// Calling `to_string_lossy` on a `Path` with valid unicode:
1867 ///
1868 /// ```
1869 /// use std::path::Path;
1870 ///
1871 /// let path = Path::new("foo.txt");
1872 /// assert_eq!(path.to_string_lossy(), "foo.txt");
1873 /// ```
1874 ///
1875 /// Had `path` contained invalid unicode, the `to_string_lossy` call might
1876 /// have returned `"fo�.txt"`.
1877 #[stable(feature = "rust1", since = "1.0.0")]
1878 #[inline]
1879 pub fn to_string_lossy(&self) -> Cow<'_, str> {
1880 self.inner.to_string_lossy()
1881 }
1882
1883 /// Converts a `Path` to an owned [`PathBuf`].
1884 ///
1885 /// # Examples
1886 ///
1887 /// ```
1888 /// use std::path::Path;
1889 ///
1890 /// let path_buf = Path::new("foo.txt").to_path_buf();
1891 /// assert_eq!(path_buf, std::path::PathBuf::from("foo.txt"));
1892 /// ```
1893 #[rustc_conversion_suggestion]
1894 #[stable(feature = "rust1", since = "1.0.0")]
1895 pub fn to_path_buf(&self) -> PathBuf {
1896 PathBuf::from(self.inner.to_os_string())
1897 }
1898
1899 /// Returns `true` if the `Path` is absolute, i.e., if it is independent of
1900 /// the current directory.
1901 ///
1902 /// * On Unix, a path is absolute if it starts with the root, so
1903 /// `is_absolute` and [`has_root`] are equivalent.
1904 ///
1905 /// * On Windows, a path is absolute if it has a prefix and starts with the
1906 /// root: `c:\windows` is absolute, while `c:temp` and `\temp` are not.
1907 ///
1908 /// # Examples
1909 ///
1910 /// ```
1911 /// use std::path::Path;
1912 ///
1913 /// assert!(!Path::new("foo.txt").is_absolute());
1914 /// ```
1915 ///
1916 /// [`has_root`]: Path::has_root
1917 #[stable(feature = "rust1", since = "1.0.0")]
1918 #[allow(deprecated)]
1919 pub fn is_absolute(&self) -> bool {
1920 if cfg!(target_os = "redox") {
1921 // FIXME: Allow Redox prefixes
1922 self.has_root() || has_redox_scheme(self.as_u8_slice())
1923 } else {
1924 self.has_root() && (cfg!(any(unix, target_os = "wasi")) || self.prefix().is_some())
1925 }
1926 }
1927
1928 /// Returns `true` if the `Path` is relative, i.e., not absolute.
1929 ///
1930 /// See [`is_absolute`]'s documentation for more details.
1931 ///
1932 /// # Examples
1933 ///
1934 /// ```
1935 /// use std::path::Path;
1936 ///
1937 /// assert!(Path::new("foo.txt").is_relative());
1938 /// ```
1939 ///
1940 /// [`is_absolute`]: Path::is_absolute
1941 #[stable(feature = "rust1", since = "1.0.0")]
1942 #[inline]
1943 pub fn is_relative(&self) -> bool {
1944 !self.is_absolute()
1945 }
1946
1947 fn prefix(&self) -> Option<Prefix<'_>> {
1948 self.components().prefix
1949 }
1950
1951 /// Returns `true` if the `Path` has a root.
1952 ///
1953 /// * On Unix, a path has a root if it begins with `/`.
1954 ///
1955 /// * On Windows, a path has a root if it:
1956 /// * has no prefix and begins with a separator, e.g., `\windows`
1957 /// * has a prefix followed by a separator, e.g., `c:\windows` but not `c:windows`
1958 /// * has any non-disk prefix, e.g., `\\server\share`
1959 ///
1960 /// # Examples
1961 ///
1962 /// ```
1963 /// use std::path::Path;
1964 ///
1965 /// assert!(Path::new("/etc/passwd").has_root());
1966 /// ```
1967 #[stable(feature = "rust1", since = "1.0.0")]
1968 #[inline]
1969 pub fn has_root(&self) -> bool {
1970 self.components().has_root()
1971 }
1972
1973 /// Returns the `Path` without its final component, if there is one.
1974 ///
1975 /// Returns [`None`] if the path terminates in a root or prefix.
1976 ///
1977 /// # Examples
1978 ///
1979 /// ```
1980 /// use std::path::Path;
1981 ///
1982 /// let path = Path::new("/foo/bar");
1983 /// let parent = path.parent().unwrap();
1984 /// assert_eq!(parent, Path::new("/foo"));
1985 ///
1986 /// let grand_parent = parent.parent().unwrap();
1987 /// assert_eq!(grand_parent, Path::new("/"));
1988 /// assert_eq!(grand_parent.parent(), None);
1989 /// ```
1990 #[stable(feature = "rust1", since = "1.0.0")]
1991 pub fn parent(&self) -> Option<&Path> {
1992 let mut comps = self.components();
1993 let comp = comps.next_back();
1994 comp.and_then(|p| match p {
1995 Component::Normal(_) | Component::CurDir | Component::ParentDir => {
1996 Some(comps.as_path())
1997 }
1998 _ => None,
1999 })
2000 }
2001
2002 /// Produces an iterator over `Path` and its ancestors.
2003 ///
2004 /// The iterator will yield the `Path` that is returned if the [`parent`] method is used zero
2005 /// or more times. That means, the iterator will yield `&self`, `&self.parent().unwrap()`,
2006 /// `&self.parent().unwrap().parent().unwrap()` and so on. If the [`parent`] method returns
2007 /// [`None`], the iterator will do likewise. The iterator will always yield at least one value,
2008 /// namely `&self`.
2009 ///
2010 /// # Examples
2011 ///
2012 /// ```
2013 /// use std::path::Path;
2014 ///
2015 /// let mut ancestors = Path::new("/foo/bar").ancestors();
2016 /// assert_eq!(ancestors.next(), Some(Path::new("/foo/bar")));
2017 /// assert_eq!(ancestors.next(), Some(Path::new("/foo")));
2018 /// assert_eq!(ancestors.next(), Some(Path::new("/")));
2019 /// assert_eq!(ancestors.next(), None);
2020 ///
2021 /// let mut ancestors = Path::new("../foo/bar").ancestors();
2022 /// assert_eq!(ancestors.next(), Some(Path::new("../foo/bar")));
2023 /// assert_eq!(ancestors.next(), Some(Path::new("../foo")));
2024 /// assert_eq!(ancestors.next(), Some(Path::new("..")));
2025 /// assert_eq!(ancestors.next(), Some(Path::new("")));
2026 /// assert_eq!(ancestors.next(), None);
2027 /// ```
2028 ///
2029 /// [`parent`]: Path::parent
2030 #[stable(feature = "path_ancestors", since = "1.28.0")]
2031 #[inline]
2032 pub fn ancestors(&self) -> Ancestors<'_> {
2033 Ancestors { next: Some(&self) }
2034 }
2035
2036 /// Returns the final component of the `Path`, if there is one.
2037 ///
2038 /// If the path is a normal file, this is the file name. If it's the path of a directory, this
2039 /// is the directory name.
2040 ///
2041 /// Returns [`None`] if the path terminates in `..`.
2042 ///
2043 /// # Examples
2044 ///
2045 /// ```
2046 /// use std::path::Path;
2047 /// use std::ffi::OsStr;
2048 ///
2049 /// assert_eq!(Some(OsStr::new("bin")), Path::new("/usr/bin/").file_name());
2050 /// assert_eq!(Some(OsStr::new("foo.txt")), Path::new("tmp/foo.txt").file_name());
2051 /// assert_eq!(Some(OsStr::new("foo.txt")), Path::new("foo.txt/.").file_name());
2052 /// assert_eq!(Some(OsStr::new("foo.txt")), Path::new("foo.txt/.//").file_name());
2053 /// assert_eq!(None, Path::new("foo.txt/..").file_name());
2054 /// assert_eq!(None, Path::new("/").file_name());
2055 /// ```
2056 #[stable(feature = "rust1", since = "1.0.0")]
2057 pub fn file_name(&self) -> Option<&OsStr> {
2058 self.components().next_back().and_then(|p| match p {
2059 Component::Normal(p) => Some(p),
2060 _ => None,
2061 })
2062 }
2063
2064 /// Returns a path that, when joined onto `base`, yields `self`.
2065 ///
2066 /// # Errors
2067 ///
2068 /// If `base` is not a prefix of `self` (i.e., [`starts_with`]
2069 /// returns `false`), returns [`Err`].
2070 ///
2071 /// [`starts_with`]: Path::starts_with
2072 ///
2073 /// # Examples
2074 ///
2075 /// ```
2076 /// use std::path::{Path, PathBuf};
2077 ///
2078 /// let path = Path::new("/test/haha/foo.txt");
2079 ///
2080 /// assert_eq!(path.strip_prefix("/"), Ok(Path::new("test/haha/foo.txt")));
2081 /// assert_eq!(path.strip_prefix("/test"), Ok(Path::new("haha/foo.txt")));
2082 /// assert_eq!(path.strip_prefix("/test/"), Ok(Path::new("haha/foo.txt")));
2083 /// assert_eq!(path.strip_prefix("/test/haha/foo.txt"), Ok(Path::new("")));
2084 /// assert_eq!(path.strip_prefix("/test/haha/foo.txt/"), Ok(Path::new("")));
2085 ///
2086 /// assert!(path.strip_prefix("test").is_err());
2087 /// assert!(path.strip_prefix("/haha").is_err());
2088 ///
2089 /// let prefix = PathBuf::from("/test/");
2090 /// assert_eq!(path.strip_prefix(prefix), Ok(Path::new("haha/foo.txt")));
2091 /// ```
2092 #[stable(since = "1.7.0", feature = "path_strip_prefix")]
2093 pub fn strip_prefix<P>(&self, base: P) -> Result<&Path, StripPrefixError>
2094 where
2095 P: AsRef<Path>,
2096 {
2097 self._strip_prefix(base.as_ref())
2098 }
2099
2100 fn _strip_prefix(&self, base: &Path) -> Result<&Path, StripPrefixError> {
2101 iter_after(self.components(), base.components())
2102 .map(|c| c.as_path())
2103 .ok_or(StripPrefixError(()))
2104 }
2105
2106 /// Determines whether `base` is a prefix of `self`.
2107 ///
2108 /// Only considers whole path components to match.
2109 ///
2110 /// # Examples
2111 ///
2112 /// ```
2113 /// use std::path::Path;
2114 ///
2115 /// let path = Path::new("/etc/passwd");
2116 ///
2117 /// assert!(path.starts_with("/etc"));
2118 /// assert!(path.starts_with("/etc/"));
2119 /// assert!(path.starts_with("/etc/passwd"));
2120 /// assert!(path.starts_with("/etc/passwd/")); // extra slash is okay
2121 /// assert!(path.starts_with("/etc/passwd///")); // multiple extra slashes are okay
2122 ///
2123 /// assert!(!path.starts_with("/e"));
2124 /// assert!(!path.starts_with("/etc/passwd.txt"));
2125 ///
2126 /// assert!(!Path::new("/etc/foo.rs").starts_with("/etc/foo"));
2127 /// ```
2128 #[stable(feature = "rust1", since = "1.0.0")]
2129 pub fn starts_with<P: AsRef<Path>>(&self, base: P) -> bool {
2130 self._starts_with(base.as_ref())
2131 }
2132
2133 fn _starts_with(&self, base: &Path) -> bool {
2134 iter_after(self.components(), base.components()).is_some()
2135 }
2136
2137 /// Determines whether `child` is a suffix of `self`.
2138 ///
2139 /// Only considers whole path components to match.
2140 ///
2141 /// # Examples
2142 ///
2143 /// ```
2144 /// use std::path::Path;
2145 ///
2146 /// let path = Path::new("/etc/resolv.conf");
2147 ///
2148 /// assert!(path.ends_with("resolv.conf"));
2149 /// assert!(path.ends_with("etc/resolv.conf"));
2150 /// assert!(path.ends_with("/etc/resolv.conf"));
2151 ///
2152 /// assert!(!path.ends_with("/resolv.conf"));
2153 /// assert!(!path.ends_with("conf")); // use .extension() instead
2154 /// ```
2155 #[stable(feature = "rust1", since = "1.0.0")]
2156 pub fn ends_with<P: AsRef<Path>>(&self, child: P) -> bool {
2157 self._ends_with(child.as_ref())
2158 }
2159
2160 fn _ends_with(&self, child: &Path) -> bool {
2161 iter_after(self.components().rev(), child.components().rev()).is_some()
2162 }
2163
2164 /// Extracts the stem (non-extension) portion of [`self.file_name`].
2165 ///
2166 /// [`self.file_name`]: Path::file_name
2167 ///
2168 /// The stem is:
2169 ///
2170 /// * [`None`], if there is no file name;
2171 /// * The entire file name if there is no embedded `.`;
2172 /// * The entire file name if the file name begins with `.` and has no other `.`s within;
2173 /// * Otherwise, the portion of the file name before the final `.`
2174 ///
2175 /// # Examples
2176 ///
2177 /// ```
2178 /// use std::path::Path;
2179 ///
2180 /// assert_eq!("foo", Path::new("foo.rs").file_stem().unwrap());
2181 /// assert_eq!("foo.tar", Path::new("foo.tar.gz").file_stem().unwrap());
2182 /// ```
2183 #[stable(feature = "rust1", since = "1.0.0")]
2184 pub fn file_stem(&self) -> Option<&OsStr> {
2185 self.file_name().map(split_file_at_dot).and_then(|(before, after)| before.or(after))
2186 }
2187
2188 /// Extracts the extension of [`self.file_name`], if possible.
2189 ///
2190 /// The extension is:
2191 ///
2192 /// * [`None`], if there is no file name;
2193 /// * [`None`], if there is no embedded `.`;
2194 /// * [`None`], if the file name begins with `.` and has no other `.`s within;
2195 /// * Otherwise, the portion of the file name after the final `.`
2196 ///
2197 /// [`self.file_name`]: Path::file_name
2198 ///
2199 /// # Examples
2200 ///
2201 /// ```
2202 /// use std::path::Path;
2203 ///
2204 /// assert_eq!("rs", Path::new("foo.rs").extension().unwrap());
2205 /// assert_eq!("gz", Path::new("foo.tar.gz").extension().unwrap());
2206 /// ```
2207 #[stable(feature = "rust1", since = "1.0.0")]
2208 pub fn extension(&self) -> Option<&OsStr> {
2209 self.file_name().map(split_file_at_dot).and_then(|(before, after)| before.and(after))
2210 }
2211
2212 /// Creates an owned [`PathBuf`] with `path` adjoined to `self`.
2213 ///
2214 /// See [`PathBuf::push`] for more details on what it means to adjoin a path.
2215 ///
2216 /// # Examples
2217 ///
2218 /// ```
2219 /// use std::path::{Path, PathBuf};
2220 ///
2221 /// assert_eq!(Path::new("/etc").join("passwd"), PathBuf::from("/etc/passwd"));
2222 /// ```
2223 #[stable(feature = "rust1", since = "1.0.0")]
2224 #[must_use]
2225 pub fn join<P: AsRef<Path>>(&self, path: P) -> PathBuf {
2226 self._join(path.as_ref())
2227 }
2228
2229 fn _join(&self, path: &Path) -> PathBuf {
2230 let mut buf = self.to_path_buf();
2231 buf.push(path);
2232 buf
2233 }
2234
2235 /// Creates an owned [`PathBuf`] like `self` but with the given file name.
2236 ///
2237 /// See [`PathBuf::set_file_name`] for more details.
2238 ///
2239 /// # Examples
2240 ///
2241 /// ```
2242 /// use std::path::{Path, PathBuf};
2243 ///
2244 /// let path = Path::new("/tmp/foo.txt");
2245 /// assert_eq!(path.with_file_name("bar.txt"), PathBuf::from("/tmp/bar.txt"));
2246 ///
2247 /// let path = Path::new("/tmp");
2248 /// assert_eq!(path.with_file_name("var"), PathBuf::from("/var"));
2249 /// ```
2250 #[stable(feature = "rust1", since = "1.0.0")]
2251 pub fn with_file_name<S: AsRef<OsStr>>(&self, file_name: S) -> PathBuf {
2252 self._with_file_name(file_name.as_ref())
2253 }
2254
2255 fn _with_file_name(&self, file_name: &OsStr) -> PathBuf {
2256 let mut buf = self.to_path_buf();
2257 buf.set_file_name(file_name);
2258 buf
2259 }
2260
2261 /// Creates an owned [`PathBuf`] like `self` but with the given extension.
2262 ///
2263 /// See [`PathBuf::set_extension`] for more details.
2264 ///
2265 /// # Examples
2266 ///
2267 /// ```
2268 /// use std::path::{Path, PathBuf};
2269 ///
2270 /// let path = Path::new("foo.rs");
2271 /// assert_eq!(path.with_extension("txt"), PathBuf::from("foo.txt"));
2272 ///
2273 /// let path = Path::new("foo.tar.gz");
2274 /// assert_eq!(path.with_extension(""), PathBuf::from("foo.tar"));
2275 /// assert_eq!(path.with_extension("xz"), PathBuf::from("foo.tar.xz"));
2276 /// assert_eq!(path.with_extension("").with_extension("txt"), PathBuf::from("foo.txt"));
2277 /// ```
2278 #[stable(feature = "rust1", since = "1.0.0")]
2279 pub fn with_extension<S: AsRef<OsStr>>(&self, extension: S) -> PathBuf {
2280 self._with_extension(extension.as_ref())
2281 }
2282
2283 fn _with_extension(&self, extension: &OsStr) -> PathBuf {
2284 let mut buf = self.to_path_buf();
2285 buf.set_extension(extension);
2286 buf
2287 }
2288
2289 /// Produces an iterator over the [`Component`]s of the path.
2290 ///
2291 /// When parsing the path, there is a small amount of normalization:
2292 ///
2293 /// * Repeated separators are ignored, so `a/b` and `a//b` both have
2294 /// `a` and `b` as components.
2295 ///
2296 /// * Occurrences of `.` are normalized away, except if they are at the
2297 /// beginning of the path. For example, `a/./b`, `a/b/`, `a/b/.` and
2298 /// `a/b` all have `a` and `b` as components, but `./a/b` starts with
2299 /// an additional [`CurDir`] component.
2300 ///
2301 /// * A trailing slash is normalized away, `/a/b` and `/a/b/` are equivalent.
2302 ///
2303 /// Note that no other normalization takes place; in particular, `a/c`
2304 /// and `a/b/../c` are distinct, to account for the possibility that `b`
2305 /// is a symbolic link (so its parent isn't `a`).
2306 ///
2307 /// # Examples
2308 ///
2309 /// ```
2310 /// use std::path::{Path, Component};
2311 /// use std::ffi::OsStr;
2312 ///
2313 /// let mut components = Path::new("/tmp/foo.txt").components();
2314 ///
2315 /// assert_eq!(components.next(), Some(Component::RootDir));
2316 /// assert_eq!(components.next(), Some(Component::Normal(OsStr::new("tmp"))));
2317 /// assert_eq!(components.next(), Some(Component::Normal(OsStr::new("foo.txt"))));
2318 /// assert_eq!(components.next(), None)
2319 /// ```
2320 ///
2321 /// [`CurDir`]: Component::CurDir
2322 #[stable(feature = "rust1", since = "1.0.0")]
2323 pub fn components(&self) -> Components<'_> {
2324 let prefix = parse_prefix(self.as_os_str());
2325 Components {
2326 path: self.as_u8_slice(),
2327 prefix,
2328 has_physical_root: has_physical_root(self.as_u8_slice(), prefix)
2329 || has_redox_scheme(self.as_u8_slice()),
2330 front: State::Prefix,
2331 back: State::Body,
2332 }
2333 }
2334
2335 /// Produces an iterator over the path's components viewed as [`OsStr`]
2336 /// slices.
2337 ///
2338 /// For more information about the particulars of how the path is separated
2339 /// into components, see [`components`].
2340 ///
2341 /// [`components`]: Path::components
2342 ///
2343 /// # Examples
2344 ///
2345 /// ```
2346 /// use std::path::{self, Path};
2347 /// use std::ffi::OsStr;
2348 ///
2349 /// let mut it = Path::new("/tmp/foo.txt").iter();
2350 /// assert_eq!(it.next(), Some(OsStr::new(&path::MAIN_SEPARATOR.to_string())));
2351 /// assert_eq!(it.next(), Some(OsStr::new("tmp")));
2352 /// assert_eq!(it.next(), Some(OsStr::new("foo.txt")));
2353 /// assert_eq!(it.next(), None)
2354 /// ```
2355 #[stable(feature = "rust1", since = "1.0.0")]
2356 #[inline]
2357 pub fn iter(&self) -> Iter<'_> {
2358 Iter { inner: self.components() }
2359 }
2360
2361 /// Returns an object that implements [`Display`] for safely printing paths
2362 /// that may contain non-Unicode data. This may perform lossy conversion,
2363 /// depending on the platform. If you would like an implementation which
2364 /// escapes the path please use [`Debug`] instead.
2365 ///
2366 /// [`Display`]: fmt::Display
2367 ///
2368 /// # Examples
2369 ///
2370 /// ```
2371 /// use std::path::Path;
2372 ///
2373 /// let path = Path::new("/tmp/foo.rs");
2374 ///
2375 /// println!("{}", path.display());
2376 /// ```
2377 #[stable(feature = "rust1", since = "1.0.0")]
2378 #[inline]
2379 pub fn display(&self) -> Display<'_> {
2380 Display { path: self }
2381 }
2382
2383 /// Queries the file system to get information about a file, directory, etc.
2384 ///
2385 /// This function will traverse symbolic links to query information about the
2386 /// destination file.
2387 ///
2388 /// This is an alias to [`fs::metadata`].
2389 ///
2390 /// # Examples
2391 ///
2392 /// ```no_run
2393 /// use std::path::Path;
2394 ///
2395 /// let path = Path::new("/Minas/tirith");
2396 /// let metadata = path.metadata().expect("metadata call failed");
2397 /// println!("{:?}", metadata.file_type());
2398 /// ```
2399 #[stable(feature = "path_ext", since = "1.5.0")]
2400 #[inline]
2401 pub fn metadata(&self) -> io::Result<fs::Metadata> {
2402 fs::metadata(self)
2403 }
2404
2405 /// Queries the metadata about a file without following symlinks.
2406 ///
2407 /// This is an alias to [`fs::symlink_metadata`].
2408 ///
2409 /// # Examples
2410 ///
2411 /// ```no_run
2412 /// use std::path::Path;
2413 ///
2414 /// let path = Path::new("/Minas/tirith");
2415 /// let metadata = path.symlink_metadata().expect("symlink_metadata call failed");
2416 /// println!("{:?}", metadata.file_type());
2417 /// ```
2418 #[stable(feature = "path_ext", since = "1.5.0")]
2419 #[inline]
2420 pub fn symlink_metadata(&self) -> io::Result<fs::Metadata> {
2421 fs::symlink_metadata(self)
2422 }
2423
2424 /// Returns the canonical, absolute form of the path with all intermediate
2425 /// components normalized and symbolic links resolved.
2426 ///
2427 /// This is an alias to [`fs::canonicalize`].
2428 ///
2429 /// # Examples
2430 ///
2431 /// ```no_run
2432 /// use std::path::{Path, PathBuf};
2433 ///
2434 /// let path = Path::new("/foo/test/../test/bar.rs");
2435 /// assert_eq!(path.canonicalize().unwrap(), PathBuf::from("/foo/test/bar.rs"));
2436 /// ```
2437 #[stable(feature = "path_ext", since = "1.5.0")]
2438 #[inline]
2439 pub fn canonicalize(&self) -> io::Result<PathBuf> {
2440 fs::canonicalize(self)
2441 }
2442
2443 /// Reads a symbolic link, returning the file that the link points to.
2444 ///
2445 /// This is an alias to [`fs::read_link`].
2446 ///
2447 /// # Examples
2448 ///
2449 /// ```no_run
2450 /// use std::path::Path;
2451 ///
2452 /// let path = Path::new("/laputa/sky_castle.rs");
2453 /// let path_link = path.read_link().expect("read_link call failed");
2454 /// ```
2455 #[stable(feature = "path_ext", since = "1.5.0")]
2456 #[inline]
2457 pub fn read_link(&self) -> io::Result<PathBuf> {
2458 fs::read_link(self)
2459 }
2460
2461 /// Returns an iterator over the entries within a directory.
2462 ///
2463 /// The iterator will yield instances of [`io::Result`]`<`[`fs::DirEntry`]`>`. New
2464 /// errors may be encountered after an iterator is initially constructed.
2465 ///
2466 /// This is an alias to [`fs::read_dir`].
2467 ///
2468 /// # Examples
2469 ///
2470 /// ```no_run
2471 /// use std::path::Path;
2472 ///
2473 /// let path = Path::new("/laputa");
2474 /// for entry in path.read_dir().expect("read_dir call failed") {
2475 /// if let Ok(entry) = entry {
2476 /// println!("{:?}", entry.path());
2477 /// }
2478 /// }
2479 /// ```
2480 #[stable(feature = "path_ext", since = "1.5.0")]
2481 #[inline]
2482 pub fn read_dir(&self) -> io::Result<fs::ReadDir> {
2483 fs::read_dir(self)
2484 }
2485
2486 /// Returns `true` if the path points at an existing entity.
2487 ///
2488 /// This function will traverse symbolic links to query information about the
2489 /// destination file.
2490 ///
2491 /// If you cannot access the metadata of the file, e.g. because of a
2492 /// permission error or broken symbolic links, this will return `false`.
2493 ///
2494 /// # Examples
2495 ///
2496 /// ```no_run
2497 /// use std::path::Path;
2498 /// assert!(!Path::new("does_not_exist.txt").exists());
2499 /// ```
2500 ///
2501 /// # See Also
2502 ///
2503 /// This is a convenience function that coerces errors to false. If you want to
2504 /// check errors, call [`fs::metadata`].
2505 #[stable(feature = "path_ext", since = "1.5.0")]
2506 #[inline]
2507 pub fn exists(&self) -> bool {
2508 fs::metadata(self).is_ok()
2509 }
2510
2511 /// Returns `Ok(true)` if the path points at an existing entity.
2512 ///
2513 /// This function will traverse symbolic links to query information about the
2514 /// destination file. In case of broken symbolic links this will return `Ok(false)`.
2515 ///
2516 /// As opposed to the `exists()` method, this one doesn't silently ignore errors
2517 /// unrelated to the path not existing. (E.g. it will return `Err(_)` in case of permission
2518 /// denied on some of the parent directories.)
2519 ///
2520 /// # Examples
2521 ///
2522 /// ```no_run
2523 /// #![feature(path_try_exists)]
2524 ///
2525 /// use std::path::Path;
2526 /// assert!(!Path::new("does_not_exist.txt").try_exists().expect("Can't check existence of file does_not_exist.txt"));
2527 /// assert!(Path::new("/root/secret_file.txt").try_exists().is_err());
2528 /// ```
2529 // FIXME: stabilization should modify documentation of `exists()` to recommend this method
2530 // instead.
2531 #[unstable(feature = "path_try_exists", issue = "83186")]
2532 #[inline]
2533 pub fn try_exists(&self) -> io::Result<bool> {
2534 fs::try_exists(self)
2535 }
2536
2537 /// Returns `true` if the path exists on disk and is pointing at a regular file.
2538 ///
2539 /// This function will traverse symbolic links to query information about the
2540 /// destination file.
2541 ///
2542 /// If you cannot access the metadata of the file, e.g. because of a
2543 /// permission error or broken symbolic links, this will return `false`.
2544 ///
2545 /// # Examples
2546 ///
2547 /// ```no_run
2548 /// use std::path::Path;
2549 /// assert_eq!(Path::new("./is_a_directory/").is_file(), false);
2550 /// assert_eq!(Path::new("a_file.txt").is_file(), true);
2551 /// ```
2552 ///
2553 /// # See Also
2554 ///
2555 /// This is a convenience function that coerces errors to false. If you want to
2556 /// check errors, call [`fs::metadata`] and handle its [`Result`]. Then call
2557 /// [`fs::Metadata::is_file`] if it was [`Ok`].
2558 ///
2559 /// When the goal is simply to read from (or write to) the source, the most
2560 /// reliable way to test the source can be read (or written to) is to open
2561 /// it. Only using `is_file` can break workflows like `diff <( prog_a )` on
2562 /// a Unix-like system for example. See [`fs::File::open`] or
2563 /// [`fs::OpenOptions::open`] for more information.
2564 #[stable(feature = "path_ext", since = "1.5.0")]
2565 pub fn is_file(&self) -> bool {
2566 fs::metadata(self).map(|m| m.is_file()).unwrap_or(false)
2567 }
2568
2569 /// Returns `true` if the path exists on disk and is pointing at a directory.
2570 ///
2571 /// This function will traverse symbolic links to query information about the
2572 /// destination file.
2573 ///
2574 /// If you cannot access the metadata of the file, e.g. because of a
2575 /// permission error or broken symbolic links, this will return `false`.
2576 ///
2577 /// # Examples
2578 ///
2579 /// ```no_run
2580 /// use std::path::Path;
2581 /// assert_eq!(Path::new("./is_a_directory/").is_dir(), true);
2582 /// assert_eq!(Path::new("a_file.txt").is_dir(), false);
2583 /// ```
2584 ///
2585 /// # See Also
2586 ///
2587 /// This is a convenience function that coerces errors to false. If you want to
2588 /// check errors, call [`fs::metadata`] and handle its [`Result`]. Then call
2589 /// [`fs::Metadata::is_dir`] if it was [`Ok`].
2590 #[stable(feature = "path_ext", since = "1.5.0")]
2591 pub fn is_dir(&self) -> bool {
2592 fs::metadata(self).map(|m| m.is_dir()).unwrap_or(false)
2593 }
2594
2595 /// Converts a [`Box<Path>`](Box) into a [`PathBuf`] without copying or
2596 /// allocating.
2597 #[stable(feature = "into_boxed_path", since = "1.20.0")]
2598 pub fn into_path_buf(self: Box<Path>) -> PathBuf {
2599 let rw = Box::into_raw(self) as *mut OsStr;
2600 let inner = unsafe { Box::from_raw(rw) };
2601 PathBuf { inner: OsString::from(inner) }
2602 }
2603 }
2604
2605 #[stable(feature = "rust1", since = "1.0.0")]
2606 impl AsRef<OsStr> for Path {
2607 #[inline]
2608 fn as_ref(&self) -> &OsStr {
2609 &self.inner
2610 }
2611 }
2612
2613 #[stable(feature = "rust1", since = "1.0.0")]
2614 impl fmt::Debug for Path {
2615 fn fmt(&self, formatter: &mut fmt::Formatter<'_>) -> fmt::Result {
2616 fmt::Debug::fmt(&self.inner, formatter)
2617 }
2618 }
2619
2620 /// Helper struct for safely printing paths with [`format!`] and `{}`.
2621 ///
2622 /// A [`Path`] might contain non-Unicode data. This `struct` implements the
2623 /// [`Display`] trait in a way that mitigates that. It is created by the
2624 /// [`display`](Path::display) method on [`Path`]. This may perform lossy
2625 /// conversion, depending on the platform. If you would like an implementation
2626 /// which escapes the path please use [`Debug`] instead.
2627 ///
2628 /// # Examples
2629 ///
2630 /// ```
2631 /// use std::path::Path;
2632 ///
2633 /// let path = Path::new("/tmp/foo.rs");
2634 ///
2635 /// println!("{}", path.display());
2636 /// ```
2637 ///
2638 /// [`Display`]: fmt::Display
2639 /// [`format!`]: crate::format
2640 #[stable(feature = "rust1", since = "1.0.0")]
2641 pub struct Display<'a> {
2642 path: &'a Path,
2643 }
2644
2645 #[stable(feature = "rust1", since = "1.0.0")]
2646 impl fmt::Debug for Display<'_> {
2647 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
2648 fmt::Debug::fmt(&self.path, f)
2649 }
2650 }
2651
2652 #[stable(feature = "rust1", since = "1.0.0")]
2653 impl fmt::Display for Display<'_> {
2654 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
2655 self.path.inner.display(f)
2656 }
2657 }
2658
2659 #[stable(feature = "rust1", since = "1.0.0")]
2660 impl cmp::PartialEq for Path {
2661 #[inline]
2662 fn eq(&self, other: &Path) -> bool {
2663 self.components().eq(other.components())
2664 }
2665 }
2666
2667 #[stable(feature = "rust1", since = "1.0.0")]
2668 impl Hash for Path {
2669 fn hash<H: Hasher>(&self, h: &mut H) {
2670 for component in self.components() {
2671 component.hash(h);
2672 }
2673 }
2674 }
2675
2676 #[stable(feature = "rust1", since = "1.0.0")]
2677 impl cmp::Eq for Path {}
2678
2679 #[stable(feature = "rust1", since = "1.0.0")]
2680 impl cmp::PartialOrd for Path {
2681 #[inline]
2682 fn partial_cmp(&self, other: &Path) -> Option<cmp::Ordering> {
2683 self.components().partial_cmp(other.components())
2684 }
2685 }
2686
2687 #[stable(feature = "rust1", since = "1.0.0")]
2688 impl cmp::Ord for Path {
2689 #[inline]
2690 fn cmp(&self, other: &Path) -> cmp::Ordering {
2691 self.components().cmp(other.components())
2692 }
2693 }
2694
2695 #[stable(feature = "rust1", since = "1.0.0")]
2696 impl AsRef<Path> for Path {
2697 #[inline]
2698 fn as_ref(&self) -> &Path {
2699 self
2700 }
2701 }
2702
2703 #[stable(feature = "rust1", since = "1.0.0")]
2704 impl AsRef<Path> for OsStr {
2705 #[inline]
2706 fn as_ref(&self) -> &Path {
2707 Path::new(self)
2708 }
2709 }
2710
2711 #[stable(feature = "cow_os_str_as_ref_path", since = "1.8.0")]
2712 impl AsRef<Path> for Cow<'_, OsStr> {
2713 #[inline]
2714 fn as_ref(&self) -> &Path {
2715 Path::new(self)
2716 }
2717 }
2718
2719 #[stable(feature = "rust1", since = "1.0.0")]
2720 impl AsRef<Path> for OsString {
2721 #[inline]
2722 fn as_ref(&self) -> &Path {
2723 Path::new(self)
2724 }
2725 }
2726
2727 #[stable(feature = "rust1", since = "1.0.0")]
2728 impl AsRef<Path> for str {
2729 #[inline]
2730 fn as_ref(&self) -> &Path {
2731 Path::new(self)
2732 }
2733 }
2734
2735 #[stable(feature = "rust1", since = "1.0.0")]
2736 impl AsRef<Path> for String {
2737 #[inline]
2738 fn as_ref(&self) -> &Path {
2739 Path::new(self)
2740 }
2741 }
2742
2743 #[stable(feature = "rust1", since = "1.0.0")]
2744 impl AsRef<Path> for PathBuf {
2745 #[inline]
2746 fn as_ref(&self) -> &Path {
2747 self
2748 }
2749 }
2750
2751 #[stable(feature = "path_into_iter", since = "1.6.0")]
2752 impl<'a> IntoIterator for &'a PathBuf {
2753 type Item = &'a OsStr;
2754 type IntoIter = Iter<'a>;
2755 #[inline]
2756 fn into_iter(self) -> Iter<'a> {
2757 self.iter()
2758 }
2759 }
2760
2761 #[stable(feature = "path_into_iter", since = "1.6.0")]
2762 impl<'a> IntoIterator for &'a Path {
2763 type Item = &'a OsStr;
2764 type IntoIter = Iter<'a>;
2765 #[inline]
2766 fn into_iter(self) -> Iter<'a> {
2767 self.iter()
2768 }
2769 }
2770
2771 macro_rules! impl_cmp {
2772 ($lhs:ty, $rhs: ty) => {
2773 #[stable(feature = "partialeq_path", since = "1.6.0")]
2774 impl<'a, 'b> PartialEq<$rhs> for $lhs {
2775 #[inline]
2776 fn eq(&self, other: &$rhs) -> bool {
2777 <Path as PartialEq>::eq(self, other)
2778 }
2779 }
2780
2781 #[stable(feature = "partialeq_path", since = "1.6.0")]
2782 impl<'a, 'b> PartialEq<$lhs> for $rhs {
2783 #[inline]
2784 fn eq(&self, other: &$lhs) -> bool {
2785 <Path as PartialEq>::eq(self, other)
2786 }
2787 }
2788
2789 #[stable(feature = "cmp_path", since = "1.8.0")]
2790 impl<'a, 'b> PartialOrd<$rhs> for $lhs {
2791 #[inline]
2792 fn partial_cmp(&self, other: &$rhs) -> Option<cmp::Ordering> {
2793 <Path as PartialOrd>::partial_cmp(self, other)
2794 }
2795 }
2796
2797 #[stable(feature = "cmp_path", since = "1.8.0")]
2798 impl<'a, 'b> PartialOrd<$lhs> for $rhs {
2799 #[inline]
2800 fn partial_cmp(&self, other: &$lhs) -> Option<cmp::Ordering> {
2801 <Path as PartialOrd>::partial_cmp(self, other)
2802 }
2803 }
2804 };
2805 }
2806
2807 impl_cmp!(PathBuf, Path);
2808 impl_cmp!(PathBuf, &'a Path);
2809 impl_cmp!(Cow<'a, Path>, Path);
2810 impl_cmp!(Cow<'a, Path>, &'b Path);
2811 impl_cmp!(Cow<'a, Path>, PathBuf);
2812
2813 macro_rules! impl_cmp_os_str {
2814 ($lhs:ty, $rhs: ty) => {
2815 #[stable(feature = "cmp_path", since = "1.8.0")]
2816 impl<'a, 'b> PartialEq<$rhs> for $lhs {
2817 #[inline]
2818 fn eq(&self, other: &$rhs) -> bool {
2819 <Path as PartialEq>::eq(self, other.as_ref())
2820 }
2821 }
2822
2823 #[stable(feature = "cmp_path", since = "1.8.0")]
2824 impl<'a, 'b> PartialEq<$lhs> for $rhs {
2825 #[inline]
2826 fn eq(&self, other: &$lhs) -> bool {
2827 <Path as PartialEq>::eq(self.as_ref(), other)
2828 }
2829 }
2830
2831 #[stable(feature = "cmp_path", since = "1.8.0")]
2832 impl<'a, 'b> PartialOrd<$rhs> for $lhs {
2833 #[inline]
2834 fn partial_cmp(&self, other: &$rhs) -> Option<cmp::Ordering> {
2835 <Path as PartialOrd>::partial_cmp(self, other.as_ref())
2836 }
2837 }
2838
2839 #[stable(feature = "cmp_path", since = "1.8.0")]
2840 impl<'a, 'b> PartialOrd<$lhs> for $rhs {
2841 #[inline]
2842 fn partial_cmp(&self, other: &$lhs) -> Option<cmp::Ordering> {
2843 <Path as PartialOrd>::partial_cmp(self.as_ref(), other)
2844 }
2845 }
2846 };
2847 }
2848
2849 impl_cmp_os_str!(PathBuf, OsStr);
2850 impl_cmp_os_str!(PathBuf, &'a OsStr);
2851 impl_cmp_os_str!(PathBuf, Cow<'a, OsStr>);
2852 impl_cmp_os_str!(PathBuf, OsString);
2853 impl_cmp_os_str!(Path, OsStr);
2854 impl_cmp_os_str!(Path, &'a OsStr);
2855 impl_cmp_os_str!(Path, Cow<'a, OsStr>);
2856 impl_cmp_os_str!(Path, OsString);
2857 impl_cmp_os_str!(&'a Path, OsStr);
2858 impl_cmp_os_str!(&'a Path, Cow<'b, OsStr>);
2859 impl_cmp_os_str!(&'a Path, OsString);
2860 impl_cmp_os_str!(Cow<'a, Path>, OsStr);
2861 impl_cmp_os_str!(Cow<'a, Path>, &'b OsStr);
2862 impl_cmp_os_str!(Cow<'a, Path>, OsString);
2863
2864 #[stable(since = "1.7.0", feature = "strip_prefix")]
2865 impl fmt::Display for StripPrefixError {
2866 #[allow(deprecated, deprecated_in_future)]
2867 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
2868 self.description().fmt(f)
2869 }
2870 }
2871
2872 #[stable(since = "1.7.0", feature = "strip_prefix")]
2873 impl Error for StripPrefixError {
2874 #[allow(deprecated)]
2875 fn description(&self) -> &str {
2876 "prefix not found"
2877 }
2878 }