]> git.proxmox.com Git - mirror_qemu.git/blob - linux-user/elfload.c
Merge remote-tracking branch 'remotes/ehabkost/tags/machine-next-pull-request' into...
[mirror_qemu.git] / linux-user / elfload.c
1 /* This is the Linux kernel elf-loading code, ported into user space */
2 #include "qemu/osdep.h"
3 #include <sys/param.h>
4
5 #include <sys/resource.h>
6
7 #include "qemu.h"
8 #include "disas/disas.h"
9 #include "qemu/path.h"
10
11 #ifdef _ARCH_PPC64
12 #undef ARCH_DLINFO
13 #undef ELF_PLATFORM
14 #undef ELF_HWCAP
15 #undef ELF_HWCAP2
16 #undef ELF_CLASS
17 #undef ELF_DATA
18 #undef ELF_ARCH
19 #endif
20
21 #define ELF_OSABI ELFOSABI_SYSV
22
23 /* from personality.h */
24
25 /*
26 * Flags for bug emulation.
27 *
28 * These occupy the top three bytes.
29 */
30 enum {
31 ADDR_NO_RANDOMIZE = 0x0040000, /* disable randomization of VA space */
32 FDPIC_FUNCPTRS = 0x0080000, /* userspace function ptrs point to
33 descriptors (signal handling) */
34 MMAP_PAGE_ZERO = 0x0100000,
35 ADDR_COMPAT_LAYOUT = 0x0200000,
36 READ_IMPLIES_EXEC = 0x0400000,
37 ADDR_LIMIT_32BIT = 0x0800000,
38 SHORT_INODE = 0x1000000,
39 WHOLE_SECONDS = 0x2000000,
40 STICKY_TIMEOUTS = 0x4000000,
41 ADDR_LIMIT_3GB = 0x8000000,
42 };
43
44 /*
45 * Personality types.
46 *
47 * These go in the low byte. Avoid using the top bit, it will
48 * conflict with error returns.
49 */
50 enum {
51 PER_LINUX = 0x0000,
52 PER_LINUX_32BIT = 0x0000 | ADDR_LIMIT_32BIT,
53 PER_LINUX_FDPIC = 0x0000 | FDPIC_FUNCPTRS,
54 PER_SVR4 = 0x0001 | STICKY_TIMEOUTS | MMAP_PAGE_ZERO,
55 PER_SVR3 = 0x0002 | STICKY_TIMEOUTS | SHORT_INODE,
56 PER_SCOSVR3 = 0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS | SHORT_INODE,
57 PER_OSR5 = 0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS,
58 PER_WYSEV386 = 0x0004 | STICKY_TIMEOUTS | SHORT_INODE,
59 PER_ISCR4 = 0x0005 | STICKY_TIMEOUTS,
60 PER_BSD = 0x0006,
61 PER_SUNOS = 0x0006 | STICKY_TIMEOUTS,
62 PER_XENIX = 0x0007 | STICKY_TIMEOUTS | SHORT_INODE,
63 PER_LINUX32 = 0x0008,
64 PER_LINUX32_3GB = 0x0008 | ADDR_LIMIT_3GB,
65 PER_IRIX32 = 0x0009 | STICKY_TIMEOUTS,/* IRIX5 32-bit */
66 PER_IRIXN32 = 0x000a | STICKY_TIMEOUTS,/* IRIX6 new 32-bit */
67 PER_IRIX64 = 0x000b | STICKY_TIMEOUTS,/* IRIX6 64-bit */
68 PER_RISCOS = 0x000c,
69 PER_SOLARIS = 0x000d | STICKY_TIMEOUTS,
70 PER_UW7 = 0x000e | STICKY_TIMEOUTS | MMAP_PAGE_ZERO,
71 PER_OSF4 = 0x000f, /* OSF/1 v4 */
72 PER_HPUX = 0x0010,
73 PER_MASK = 0x00ff,
74 };
75
76 /*
77 * Return the base personality without flags.
78 */
79 #define personality(pers) (pers & PER_MASK)
80
81 int info_is_fdpic(struct image_info *info)
82 {
83 return info->personality == PER_LINUX_FDPIC;
84 }
85
86 /* this flag is uneffective under linux too, should be deleted */
87 #ifndef MAP_DENYWRITE
88 #define MAP_DENYWRITE 0
89 #endif
90
91 /* should probably go in elf.h */
92 #ifndef ELIBBAD
93 #define ELIBBAD 80
94 #endif
95
96 #ifdef TARGET_WORDS_BIGENDIAN
97 #define ELF_DATA ELFDATA2MSB
98 #else
99 #define ELF_DATA ELFDATA2LSB
100 #endif
101
102 #ifdef TARGET_ABI_MIPSN32
103 typedef abi_ullong target_elf_greg_t;
104 #define tswapreg(ptr) tswap64(ptr)
105 #else
106 typedef abi_ulong target_elf_greg_t;
107 #define tswapreg(ptr) tswapal(ptr)
108 #endif
109
110 #ifdef USE_UID16
111 typedef abi_ushort target_uid_t;
112 typedef abi_ushort target_gid_t;
113 #else
114 typedef abi_uint target_uid_t;
115 typedef abi_uint target_gid_t;
116 #endif
117 typedef abi_int target_pid_t;
118
119 #ifdef TARGET_I386
120
121 #define ELF_PLATFORM get_elf_platform()
122
123 static const char *get_elf_platform(void)
124 {
125 static char elf_platform[] = "i386";
126 int family = object_property_get_int(OBJECT(thread_cpu), "family", NULL);
127 if (family > 6)
128 family = 6;
129 if (family >= 3)
130 elf_platform[1] = '0' + family;
131 return elf_platform;
132 }
133
134 #define ELF_HWCAP get_elf_hwcap()
135
136 static uint32_t get_elf_hwcap(void)
137 {
138 X86CPU *cpu = X86_CPU(thread_cpu);
139
140 return cpu->env.features[FEAT_1_EDX];
141 }
142
143 #ifdef TARGET_X86_64
144 #define ELF_START_MMAP 0x2aaaaab000ULL
145
146 #define ELF_CLASS ELFCLASS64
147 #define ELF_ARCH EM_X86_64
148
149 static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop)
150 {
151 regs->rax = 0;
152 regs->rsp = infop->start_stack;
153 regs->rip = infop->entry;
154 }
155
156 #define ELF_NREG 27
157 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
158
159 /*
160 * Note that ELF_NREG should be 29 as there should be place for
161 * TRAPNO and ERR "registers" as well but linux doesn't dump
162 * those.
163 *
164 * See linux kernel: arch/x86/include/asm/elf.h
165 */
166 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUX86State *env)
167 {
168 (*regs)[0] = env->regs[15];
169 (*regs)[1] = env->regs[14];
170 (*regs)[2] = env->regs[13];
171 (*regs)[3] = env->regs[12];
172 (*regs)[4] = env->regs[R_EBP];
173 (*regs)[5] = env->regs[R_EBX];
174 (*regs)[6] = env->regs[11];
175 (*regs)[7] = env->regs[10];
176 (*regs)[8] = env->regs[9];
177 (*regs)[9] = env->regs[8];
178 (*regs)[10] = env->regs[R_EAX];
179 (*regs)[11] = env->regs[R_ECX];
180 (*regs)[12] = env->regs[R_EDX];
181 (*regs)[13] = env->regs[R_ESI];
182 (*regs)[14] = env->regs[R_EDI];
183 (*regs)[15] = env->regs[R_EAX]; /* XXX */
184 (*regs)[16] = env->eip;
185 (*regs)[17] = env->segs[R_CS].selector & 0xffff;
186 (*regs)[18] = env->eflags;
187 (*regs)[19] = env->regs[R_ESP];
188 (*regs)[20] = env->segs[R_SS].selector & 0xffff;
189 (*regs)[21] = env->segs[R_FS].selector & 0xffff;
190 (*regs)[22] = env->segs[R_GS].selector & 0xffff;
191 (*regs)[23] = env->segs[R_DS].selector & 0xffff;
192 (*regs)[24] = env->segs[R_ES].selector & 0xffff;
193 (*regs)[25] = env->segs[R_FS].selector & 0xffff;
194 (*regs)[26] = env->segs[R_GS].selector & 0xffff;
195 }
196
197 #else
198
199 #define ELF_START_MMAP 0x80000000
200
201 /*
202 * This is used to ensure we don't load something for the wrong architecture.
203 */
204 #define elf_check_arch(x) ( ((x) == EM_386) || ((x) == EM_486) )
205
206 /*
207 * These are used to set parameters in the core dumps.
208 */
209 #define ELF_CLASS ELFCLASS32
210 #define ELF_ARCH EM_386
211
212 static inline void init_thread(struct target_pt_regs *regs,
213 struct image_info *infop)
214 {
215 regs->esp = infop->start_stack;
216 regs->eip = infop->entry;
217
218 /* SVR4/i386 ABI (pages 3-31, 3-32) says that when the program
219 starts %edx contains a pointer to a function which might be
220 registered using `atexit'. This provides a mean for the
221 dynamic linker to call DT_FINI functions for shared libraries
222 that have been loaded before the code runs.
223
224 A value of 0 tells we have no such handler. */
225 regs->edx = 0;
226 }
227
228 #define ELF_NREG 17
229 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
230
231 /*
232 * Note that ELF_NREG should be 19 as there should be place for
233 * TRAPNO and ERR "registers" as well but linux doesn't dump
234 * those.
235 *
236 * See linux kernel: arch/x86/include/asm/elf.h
237 */
238 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUX86State *env)
239 {
240 (*regs)[0] = env->regs[R_EBX];
241 (*regs)[1] = env->regs[R_ECX];
242 (*regs)[2] = env->regs[R_EDX];
243 (*regs)[3] = env->regs[R_ESI];
244 (*regs)[4] = env->regs[R_EDI];
245 (*regs)[5] = env->regs[R_EBP];
246 (*regs)[6] = env->regs[R_EAX];
247 (*regs)[7] = env->segs[R_DS].selector & 0xffff;
248 (*regs)[8] = env->segs[R_ES].selector & 0xffff;
249 (*regs)[9] = env->segs[R_FS].selector & 0xffff;
250 (*regs)[10] = env->segs[R_GS].selector & 0xffff;
251 (*regs)[11] = env->regs[R_EAX]; /* XXX */
252 (*regs)[12] = env->eip;
253 (*regs)[13] = env->segs[R_CS].selector & 0xffff;
254 (*regs)[14] = env->eflags;
255 (*regs)[15] = env->regs[R_ESP];
256 (*regs)[16] = env->segs[R_SS].selector & 0xffff;
257 }
258 #endif
259
260 #define USE_ELF_CORE_DUMP
261 #define ELF_EXEC_PAGESIZE 4096
262
263 #endif
264
265 #ifdef TARGET_ARM
266
267 #ifndef TARGET_AARCH64
268 /* 32 bit ARM definitions */
269
270 #define ELF_START_MMAP 0x80000000
271
272 #define ELF_ARCH EM_ARM
273 #define ELF_CLASS ELFCLASS32
274
275 static inline void init_thread(struct target_pt_regs *regs,
276 struct image_info *infop)
277 {
278 abi_long stack = infop->start_stack;
279 memset(regs, 0, sizeof(*regs));
280
281 regs->uregs[16] = ARM_CPU_MODE_USR;
282 if (infop->entry & 1) {
283 regs->uregs[16] |= CPSR_T;
284 }
285 regs->uregs[15] = infop->entry & 0xfffffffe;
286 regs->uregs[13] = infop->start_stack;
287 /* FIXME - what to for failure of get_user()? */
288 get_user_ual(regs->uregs[2], stack + 8); /* envp */
289 get_user_ual(regs->uregs[1], stack + 4); /* envp */
290 /* XXX: it seems that r0 is zeroed after ! */
291 regs->uregs[0] = 0;
292 /* For uClinux PIC binaries. */
293 /* XXX: Linux does this only on ARM with no MMU (do we care ?) */
294 regs->uregs[10] = infop->start_data;
295
296 /* Support ARM FDPIC. */
297 if (info_is_fdpic(infop)) {
298 /* As described in the ABI document, r7 points to the loadmap info
299 * prepared by the kernel. If an interpreter is needed, r8 points
300 * to the interpreter loadmap and r9 points to the interpreter
301 * PT_DYNAMIC info. If no interpreter is needed, r8 is zero, and
302 * r9 points to the main program PT_DYNAMIC info.
303 */
304 regs->uregs[7] = infop->loadmap_addr;
305 if (infop->interpreter_loadmap_addr) {
306 /* Executable is dynamically loaded. */
307 regs->uregs[8] = infop->interpreter_loadmap_addr;
308 regs->uregs[9] = infop->interpreter_pt_dynamic_addr;
309 } else {
310 regs->uregs[8] = 0;
311 regs->uregs[9] = infop->pt_dynamic_addr;
312 }
313 }
314 }
315
316 #define ELF_NREG 18
317 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
318
319 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUARMState *env)
320 {
321 (*regs)[0] = tswapreg(env->regs[0]);
322 (*regs)[1] = tswapreg(env->regs[1]);
323 (*regs)[2] = tswapreg(env->regs[2]);
324 (*regs)[3] = tswapreg(env->regs[3]);
325 (*regs)[4] = tswapreg(env->regs[4]);
326 (*regs)[5] = tswapreg(env->regs[5]);
327 (*regs)[6] = tswapreg(env->regs[6]);
328 (*regs)[7] = tswapreg(env->regs[7]);
329 (*regs)[8] = tswapreg(env->regs[8]);
330 (*regs)[9] = tswapreg(env->regs[9]);
331 (*regs)[10] = tswapreg(env->regs[10]);
332 (*regs)[11] = tswapreg(env->regs[11]);
333 (*regs)[12] = tswapreg(env->regs[12]);
334 (*regs)[13] = tswapreg(env->regs[13]);
335 (*regs)[14] = tswapreg(env->regs[14]);
336 (*regs)[15] = tswapreg(env->regs[15]);
337
338 (*regs)[16] = tswapreg(cpsr_read((CPUARMState *)env));
339 (*regs)[17] = tswapreg(env->regs[0]); /* XXX */
340 }
341
342 #define USE_ELF_CORE_DUMP
343 #define ELF_EXEC_PAGESIZE 4096
344
345 enum
346 {
347 ARM_HWCAP_ARM_SWP = 1 << 0,
348 ARM_HWCAP_ARM_HALF = 1 << 1,
349 ARM_HWCAP_ARM_THUMB = 1 << 2,
350 ARM_HWCAP_ARM_26BIT = 1 << 3,
351 ARM_HWCAP_ARM_FAST_MULT = 1 << 4,
352 ARM_HWCAP_ARM_FPA = 1 << 5,
353 ARM_HWCAP_ARM_VFP = 1 << 6,
354 ARM_HWCAP_ARM_EDSP = 1 << 7,
355 ARM_HWCAP_ARM_JAVA = 1 << 8,
356 ARM_HWCAP_ARM_IWMMXT = 1 << 9,
357 ARM_HWCAP_ARM_CRUNCH = 1 << 10,
358 ARM_HWCAP_ARM_THUMBEE = 1 << 11,
359 ARM_HWCAP_ARM_NEON = 1 << 12,
360 ARM_HWCAP_ARM_VFPv3 = 1 << 13,
361 ARM_HWCAP_ARM_VFPv3D16 = 1 << 14,
362 ARM_HWCAP_ARM_TLS = 1 << 15,
363 ARM_HWCAP_ARM_VFPv4 = 1 << 16,
364 ARM_HWCAP_ARM_IDIVA = 1 << 17,
365 ARM_HWCAP_ARM_IDIVT = 1 << 18,
366 ARM_HWCAP_ARM_VFPD32 = 1 << 19,
367 ARM_HWCAP_ARM_LPAE = 1 << 20,
368 ARM_HWCAP_ARM_EVTSTRM = 1 << 21,
369 };
370
371 enum {
372 ARM_HWCAP2_ARM_AES = 1 << 0,
373 ARM_HWCAP2_ARM_PMULL = 1 << 1,
374 ARM_HWCAP2_ARM_SHA1 = 1 << 2,
375 ARM_HWCAP2_ARM_SHA2 = 1 << 3,
376 ARM_HWCAP2_ARM_CRC32 = 1 << 4,
377 };
378
379 /* The commpage only exists for 32 bit kernels */
380
381 /* Return 1 if the proposed guest space is suitable for the guest.
382 * Return 0 if the proposed guest space isn't suitable, but another
383 * address space should be tried.
384 * Return -1 if there is no way the proposed guest space can be
385 * valid regardless of the base.
386 * The guest code may leave a page mapped and populate it if the
387 * address is suitable.
388 */
389 static int init_guest_commpage(unsigned long guest_base,
390 unsigned long guest_size)
391 {
392 unsigned long real_start, test_page_addr;
393
394 /* We need to check that we can force a fault on access to the
395 * commpage at 0xffff0fxx
396 */
397 test_page_addr = guest_base + (0xffff0f00 & qemu_host_page_mask);
398
399 /* If the commpage lies within the already allocated guest space,
400 * then there is no way we can allocate it.
401 *
402 * You may be thinking that that this check is redundant because
403 * we already validated the guest size against MAX_RESERVED_VA;
404 * but if qemu_host_page_mask is unusually large, then
405 * test_page_addr may be lower.
406 */
407 if (test_page_addr >= guest_base
408 && test_page_addr < (guest_base + guest_size)) {
409 return -1;
410 }
411
412 /* Note it needs to be writeable to let us initialise it */
413 real_start = (unsigned long)
414 mmap((void *)test_page_addr, qemu_host_page_size,
415 PROT_READ | PROT_WRITE,
416 MAP_ANONYMOUS | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
417
418 /* If we can't map it then try another address */
419 if (real_start == -1ul) {
420 return 0;
421 }
422
423 if (real_start != test_page_addr) {
424 /* OS didn't put the page where we asked - unmap and reject */
425 munmap((void *)real_start, qemu_host_page_size);
426 return 0;
427 }
428
429 /* Leave the page mapped
430 * Populate it (mmap should have left it all 0'd)
431 */
432
433 /* Kernel helper versions */
434 __put_user(5, (uint32_t *)g2h(0xffff0ffcul));
435
436 /* Now it's populated make it RO */
437 if (mprotect((void *)test_page_addr, qemu_host_page_size, PROT_READ)) {
438 perror("Protecting guest commpage");
439 exit(-1);
440 }
441
442 return 1; /* All good */
443 }
444
445 #define ELF_HWCAP get_elf_hwcap()
446 #define ELF_HWCAP2 get_elf_hwcap2()
447
448 static uint32_t get_elf_hwcap(void)
449 {
450 ARMCPU *cpu = ARM_CPU(thread_cpu);
451 uint32_t hwcaps = 0;
452
453 hwcaps |= ARM_HWCAP_ARM_SWP;
454 hwcaps |= ARM_HWCAP_ARM_HALF;
455 hwcaps |= ARM_HWCAP_ARM_THUMB;
456 hwcaps |= ARM_HWCAP_ARM_FAST_MULT;
457
458 /* probe for the extra features */
459 #define GET_FEATURE(feat, hwcap) \
460 do { if (arm_feature(&cpu->env, feat)) { hwcaps |= hwcap; } } while (0)
461
462 #define GET_FEATURE_ID(feat, hwcap) \
463 do { if (cpu_isar_feature(feat, cpu)) { hwcaps |= hwcap; } } while (0)
464
465 /* EDSP is in v5TE and above, but all our v5 CPUs are v5TE */
466 GET_FEATURE(ARM_FEATURE_V5, ARM_HWCAP_ARM_EDSP);
467 GET_FEATURE(ARM_FEATURE_VFP, ARM_HWCAP_ARM_VFP);
468 GET_FEATURE(ARM_FEATURE_IWMMXT, ARM_HWCAP_ARM_IWMMXT);
469 GET_FEATURE(ARM_FEATURE_THUMB2EE, ARM_HWCAP_ARM_THUMBEE);
470 GET_FEATURE(ARM_FEATURE_NEON, ARM_HWCAP_ARM_NEON);
471 GET_FEATURE(ARM_FEATURE_VFP3, ARM_HWCAP_ARM_VFPv3);
472 GET_FEATURE(ARM_FEATURE_V6K, ARM_HWCAP_ARM_TLS);
473 GET_FEATURE(ARM_FEATURE_VFP4, ARM_HWCAP_ARM_VFPv4);
474 GET_FEATURE_ID(arm_div, ARM_HWCAP_ARM_IDIVA);
475 GET_FEATURE_ID(thumb_div, ARM_HWCAP_ARM_IDIVT);
476 /* All QEMU's VFPv3 CPUs have 32 registers, see VFP_DREG in translate.c.
477 * Note that the ARM_HWCAP_ARM_VFPv3D16 bit is always the inverse of
478 * ARM_HWCAP_ARM_VFPD32 (and so always clear for QEMU); it is unrelated
479 * to our VFP_FP16 feature bit.
480 */
481 GET_FEATURE(ARM_FEATURE_VFP3, ARM_HWCAP_ARM_VFPD32);
482 GET_FEATURE(ARM_FEATURE_LPAE, ARM_HWCAP_ARM_LPAE);
483
484 return hwcaps;
485 }
486
487 static uint32_t get_elf_hwcap2(void)
488 {
489 ARMCPU *cpu = ARM_CPU(thread_cpu);
490 uint32_t hwcaps = 0;
491
492 GET_FEATURE_ID(aa32_aes, ARM_HWCAP2_ARM_AES);
493 GET_FEATURE_ID(aa32_pmull, ARM_HWCAP2_ARM_PMULL);
494 GET_FEATURE_ID(aa32_sha1, ARM_HWCAP2_ARM_SHA1);
495 GET_FEATURE_ID(aa32_sha2, ARM_HWCAP2_ARM_SHA2);
496 GET_FEATURE_ID(aa32_crc32, ARM_HWCAP2_ARM_CRC32);
497 return hwcaps;
498 }
499
500 #undef GET_FEATURE
501 #undef GET_FEATURE_ID
502
503 #else
504 /* 64 bit ARM definitions */
505 #define ELF_START_MMAP 0x80000000
506
507 #define ELF_ARCH EM_AARCH64
508 #define ELF_CLASS ELFCLASS64
509 #define ELF_PLATFORM "aarch64"
510
511 static inline void init_thread(struct target_pt_regs *regs,
512 struct image_info *infop)
513 {
514 abi_long stack = infop->start_stack;
515 memset(regs, 0, sizeof(*regs));
516
517 regs->pc = infop->entry & ~0x3ULL;
518 regs->sp = stack;
519 }
520
521 #define ELF_NREG 34
522 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
523
524 static void elf_core_copy_regs(target_elf_gregset_t *regs,
525 const CPUARMState *env)
526 {
527 int i;
528
529 for (i = 0; i < 32; i++) {
530 (*regs)[i] = tswapreg(env->xregs[i]);
531 }
532 (*regs)[32] = tswapreg(env->pc);
533 (*regs)[33] = tswapreg(pstate_read((CPUARMState *)env));
534 }
535
536 #define USE_ELF_CORE_DUMP
537 #define ELF_EXEC_PAGESIZE 4096
538
539 enum {
540 ARM_HWCAP_A64_FP = 1 << 0,
541 ARM_HWCAP_A64_ASIMD = 1 << 1,
542 ARM_HWCAP_A64_EVTSTRM = 1 << 2,
543 ARM_HWCAP_A64_AES = 1 << 3,
544 ARM_HWCAP_A64_PMULL = 1 << 4,
545 ARM_HWCAP_A64_SHA1 = 1 << 5,
546 ARM_HWCAP_A64_SHA2 = 1 << 6,
547 ARM_HWCAP_A64_CRC32 = 1 << 7,
548 ARM_HWCAP_A64_ATOMICS = 1 << 8,
549 ARM_HWCAP_A64_FPHP = 1 << 9,
550 ARM_HWCAP_A64_ASIMDHP = 1 << 10,
551 ARM_HWCAP_A64_CPUID = 1 << 11,
552 ARM_HWCAP_A64_ASIMDRDM = 1 << 12,
553 ARM_HWCAP_A64_JSCVT = 1 << 13,
554 ARM_HWCAP_A64_FCMA = 1 << 14,
555 ARM_HWCAP_A64_LRCPC = 1 << 15,
556 ARM_HWCAP_A64_DCPOP = 1 << 16,
557 ARM_HWCAP_A64_SHA3 = 1 << 17,
558 ARM_HWCAP_A64_SM3 = 1 << 18,
559 ARM_HWCAP_A64_SM4 = 1 << 19,
560 ARM_HWCAP_A64_ASIMDDP = 1 << 20,
561 ARM_HWCAP_A64_SHA512 = 1 << 21,
562 ARM_HWCAP_A64_SVE = 1 << 22,
563 };
564
565 #define ELF_HWCAP get_elf_hwcap()
566
567 static uint32_t get_elf_hwcap(void)
568 {
569 ARMCPU *cpu = ARM_CPU(thread_cpu);
570 uint32_t hwcaps = 0;
571
572 hwcaps |= ARM_HWCAP_A64_FP;
573 hwcaps |= ARM_HWCAP_A64_ASIMD;
574
575 /* probe for the extra features */
576 #define GET_FEATURE_ID(feat, hwcap) \
577 do { if (cpu_isar_feature(feat, cpu)) { hwcaps |= hwcap; } } while (0)
578
579 GET_FEATURE_ID(aa64_aes, ARM_HWCAP_A64_AES);
580 GET_FEATURE_ID(aa64_pmull, ARM_HWCAP_A64_PMULL);
581 GET_FEATURE_ID(aa64_sha1, ARM_HWCAP_A64_SHA1);
582 GET_FEATURE_ID(aa64_sha256, ARM_HWCAP_A64_SHA2);
583 GET_FEATURE_ID(aa64_sha512, ARM_HWCAP_A64_SHA512);
584 GET_FEATURE_ID(aa64_crc32, ARM_HWCAP_A64_CRC32);
585 GET_FEATURE_ID(aa64_sha3, ARM_HWCAP_A64_SHA3);
586 GET_FEATURE_ID(aa64_sm3, ARM_HWCAP_A64_SM3);
587 GET_FEATURE_ID(aa64_sm4, ARM_HWCAP_A64_SM4);
588 GET_FEATURE_ID(aa64_fp16, ARM_HWCAP_A64_FPHP | ARM_HWCAP_A64_ASIMDHP);
589 GET_FEATURE_ID(aa64_atomics, ARM_HWCAP_A64_ATOMICS);
590 GET_FEATURE_ID(aa64_rdm, ARM_HWCAP_A64_ASIMDRDM);
591 GET_FEATURE_ID(aa64_dp, ARM_HWCAP_A64_ASIMDDP);
592 GET_FEATURE_ID(aa64_fcma, ARM_HWCAP_A64_FCMA);
593 GET_FEATURE_ID(aa64_sve, ARM_HWCAP_A64_SVE);
594
595 #undef GET_FEATURE_ID
596
597 return hwcaps;
598 }
599
600 #endif /* not TARGET_AARCH64 */
601 #endif /* TARGET_ARM */
602
603 #ifdef TARGET_SPARC
604 #ifdef TARGET_SPARC64
605
606 #define ELF_START_MMAP 0x80000000
607 #define ELF_HWCAP (HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR | HWCAP_SPARC_SWAP \
608 | HWCAP_SPARC_MULDIV | HWCAP_SPARC_V9)
609 #ifndef TARGET_ABI32
610 #define elf_check_arch(x) ( (x) == EM_SPARCV9 || (x) == EM_SPARC32PLUS )
611 #else
612 #define elf_check_arch(x) ( (x) == EM_SPARC32PLUS || (x) == EM_SPARC )
613 #endif
614
615 #define ELF_CLASS ELFCLASS64
616 #define ELF_ARCH EM_SPARCV9
617
618 #define STACK_BIAS 2047
619
620 static inline void init_thread(struct target_pt_regs *regs,
621 struct image_info *infop)
622 {
623 #ifndef TARGET_ABI32
624 regs->tstate = 0;
625 #endif
626 regs->pc = infop->entry;
627 regs->npc = regs->pc + 4;
628 regs->y = 0;
629 #ifdef TARGET_ABI32
630 regs->u_regs[14] = infop->start_stack - 16 * 4;
631 #else
632 if (personality(infop->personality) == PER_LINUX32)
633 regs->u_regs[14] = infop->start_stack - 16 * 4;
634 else
635 regs->u_regs[14] = infop->start_stack - 16 * 8 - STACK_BIAS;
636 #endif
637 }
638
639 #else
640 #define ELF_START_MMAP 0x80000000
641 #define ELF_HWCAP (HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR | HWCAP_SPARC_SWAP \
642 | HWCAP_SPARC_MULDIV)
643
644 #define ELF_CLASS ELFCLASS32
645 #define ELF_ARCH EM_SPARC
646
647 static inline void init_thread(struct target_pt_regs *regs,
648 struct image_info *infop)
649 {
650 regs->psr = 0;
651 regs->pc = infop->entry;
652 regs->npc = regs->pc + 4;
653 regs->y = 0;
654 regs->u_regs[14] = infop->start_stack - 16 * 4;
655 }
656
657 #endif
658 #endif
659
660 #ifdef TARGET_PPC
661
662 #define ELF_MACHINE PPC_ELF_MACHINE
663 #define ELF_START_MMAP 0x80000000
664
665 #if defined(TARGET_PPC64) && !defined(TARGET_ABI32)
666
667 #define elf_check_arch(x) ( (x) == EM_PPC64 )
668
669 #define ELF_CLASS ELFCLASS64
670
671 #else
672
673 #define ELF_CLASS ELFCLASS32
674
675 #endif
676
677 #define ELF_ARCH EM_PPC
678
679 /* Feature masks for the Aux Vector Hardware Capabilities (AT_HWCAP).
680 See arch/powerpc/include/asm/cputable.h. */
681 enum {
682 QEMU_PPC_FEATURE_32 = 0x80000000,
683 QEMU_PPC_FEATURE_64 = 0x40000000,
684 QEMU_PPC_FEATURE_601_INSTR = 0x20000000,
685 QEMU_PPC_FEATURE_HAS_ALTIVEC = 0x10000000,
686 QEMU_PPC_FEATURE_HAS_FPU = 0x08000000,
687 QEMU_PPC_FEATURE_HAS_MMU = 0x04000000,
688 QEMU_PPC_FEATURE_HAS_4xxMAC = 0x02000000,
689 QEMU_PPC_FEATURE_UNIFIED_CACHE = 0x01000000,
690 QEMU_PPC_FEATURE_HAS_SPE = 0x00800000,
691 QEMU_PPC_FEATURE_HAS_EFP_SINGLE = 0x00400000,
692 QEMU_PPC_FEATURE_HAS_EFP_DOUBLE = 0x00200000,
693 QEMU_PPC_FEATURE_NO_TB = 0x00100000,
694 QEMU_PPC_FEATURE_POWER4 = 0x00080000,
695 QEMU_PPC_FEATURE_POWER5 = 0x00040000,
696 QEMU_PPC_FEATURE_POWER5_PLUS = 0x00020000,
697 QEMU_PPC_FEATURE_CELL = 0x00010000,
698 QEMU_PPC_FEATURE_BOOKE = 0x00008000,
699 QEMU_PPC_FEATURE_SMT = 0x00004000,
700 QEMU_PPC_FEATURE_ICACHE_SNOOP = 0x00002000,
701 QEMU_PPC_FEATURE_ARCH_2_05 = 0x00001000,
702 QEMU_PPC_FEATURE_PA6T = 0x00000800,
703 QEMU_PPC_FEATURE_HAS_DFP = 0x00000400,
704 QEMU_PPC_FEATURE_POWER6_EXT = 0x00000200,
705 QEMU_PPC_FEATURE_ARCH_2_06 = 0x00000100,
706 QEMU_PPC_FEATURE_HAS_VSX = 0x00000080,
707 QEMU_PPC_FEATURE_PSERIES_PERFMON_COMPAT = 0x00000040,
708
709 QEMU_PPC_FEATURE_TRUE_LE = 0x00000002,
710 QEMU_PPC_FEATURE_PPC_LE = 0x00000001,
711
712 /* Feature definitions in AT_HWCAP2. */
713 QEMU_PPC_FEATURE2_ARCH_2_07 = 0x80000000, /* ISA 2.07 */
714 QEMU_PPC_FEATURE2_HAS_HTM = 0x40000000, /* Hardware Transactional Memory */
715 QEMU_PPC_FEATURE2_HAS_DSCR = 0x20000000, /* Data Stream Control Register */
716 QEMU_PPC_FEATURE2_HAS_EBB = 0x10000000, /* Event Base Branching */
717 QEMU_PPC_FEATURE2_HAS_ISEL = 0x08000000, /* Integer Select */
718 QEMU_PPC_FEATURE2_HAS_TAR = 0x04000000, /* Target Address Register */
719 QEMU_PPC_FEATURE2_ARCH_3_00 = 0x00800000, /* ISA 3.00 */
720 };
721
722 #define ELF_HWCAP get_elf_hwcap()
723
724 static uint32_t get_elf_hwcap(void)
725 {
726 PowerPCCPU *cpu = POWERPC_CPU(thread_cpu);
727 uint32_t features = 0;
728
729 /* We don't have to be terribly complete here; the high points are
730 Altivec/FP/SPE support. Anything else is just a bonus. */
731 #define GET_FEATURE(flag, feature) \
732 do { if (cpu->env.insns_flags & flag) { features |= feature; } } while (0)
733 #define GET_FEATURE2(flags, feature) \
734 do { \
735 if ((cpu->env.insns_flags2 & flags) == flags) { \
736 features |= feature; \
737 } \
738 } while (0)
739 GET_FEATURE(PPC_64B, QEMU_PPC_FEATURE_64);
740 GET_FEATURE(PPC_FLOAT, QEMU_PPC_FEATURE_HAS_FPU);
741 GET_FEATURE(PPC_ALTIVEC, QEMU_PPC_FEATURE_HAS_ALTIVEC);
742 GET_FEATURE(PPC_SPE, QEMU_PPC_FEATURE_HAS_SPE);
743 GET_FEATURE(PPC_SPE_SINGLE, QEMU_PPC_FEATURE_HAS_EFP_SINGLE);
744 GET_FEATURE(PPC_SPE_DOUBLE, QEMU_PPC_FEATURE_HAS_EFP_DOUBLE);
745 GET_FEATURE(PPC_BOOKE, QEMU_PPC_FEATURE_BOOKE);
746 GET_FEATURE(PPC_405_MAC, QEMU_PPC_FEATURE_HAS_4xxMAC);
747 GET_FEATURE2(PPC2_DFP, QEMU_PPC_FEATURE_HAS_DFP);
748 GET_FEATURE2(PPC2_VSX, QEMU_PPC_FEATURE_HAS_VSX);
749 GET_FEATURE2((PPC2_PERM_ISA206 | PPC2_DIVE_ISA206 | PPC2_ATOMIC_ISA206 |
750 PPC2_FP_CVT_ISA206 | PPC2_FP_TST_ISA206),
751 QEMU_PPC_FEATURE_ARCH_2_06);
752 #undef GET_FEATURE
753 #undef GET_FEATURE2
754
755 return features;
756 }
757
758 #define ELF_HWCAP2 get_elf_hwcap2()
759
760 static uint32_t get_elf_hwcap2(void)
761 {
762 PowerPCCPU *cpu = POWERPC_CPU(thread_cpu);
763 uint32_t features = 0;
764
765 #define GET_FEATURE(flag, feature) \
766 do { if (cpu->env.insns_flags & flag) { features |= feature; } } while (0)
767 #define GET_FEATURE2(flag, feature) \
768 do { if (cpu->env.insns_flags2 & flag) { features |= feature; } } while (0)
769
770 GET_FEATURE(PPC_ISEL, QEMU_PPC_FEATURE2_HAS_ISEL);
771 GET_FEATURE2(PPC2_BCTAR_ISA207, QEMU_PPC_FEATURE2_HAS_TAR);
772 GET_FEATURE2((PPC2_BCTAR_ISA207 | PPC2_LSQ_ISA207 | PPC2_ALTIVEC_207 |
773 PPC2_ISA207S), QEMU_PPC_FEATURE2_ARCH_2_07);
774 GET_FEATURE2(PPC2_ISA300, QEMU_PPC_FEATURE2_ARCH_3_00);
775
776 #undef GET_FEATURE
777 #undef GET_FEATURE2
778
779 return features;
780 }
781
782 /*
783 * The requirements here are:
784 * - keep the final alignment of sp (sp & 0xf)
785 * - make sure the 32-bit value at the first 16 byte aligned position of
786 * AUXV is greater than 16 for glibc compatibility.
787 * AT_IGNOREPPC is used for that.
788 * - for compatibility with glibc ARCH_DLINFO must always be defined on PPC,
789 * even if DLINFO_ARCH_ITEMS goes to zero or is undefined.
790 */
791 #define DLINFO_ARCH_ITEMS 5
792 #define ARCH_DLINFO \
793 do { \
794 PowerPCCPU *cpu = POWERPC_CPU(thread_cpu); \
795 /* \
796 * Handle glibc compatibility: these magic entries must \
797 * be at the lowest addresses in the final auxv. \
798 */ \
799 NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC); \
800 NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC); \
801 NEW_AUX_ENT(AT_DCACHEBSIZE, cpu->env.dcache_line_size); \
802 NEW_AUX_ENT(AT_ICACHEBSIZE, cpu->env.icache_line_size); \
803 NEW_AUX_ENT(AT_UCACHEBSIZE, 0); \
804 } while (0)
805
806 static inline void init_thread(struct target_pt_regs *_regs, struct image_info *infop)
807 {
808 _regs->gpr[1] = infop->start_stack;
809 #if defined(TARGET_PPC64) && !defined(TARGET_ABI32)
810 if (get_ppc64_abi(infop) < 2) {
811 uint64_t val;
812 get_user_u64(val, infop->entry + 8);
813 _regs->gpr[2] = val + infop->load_bias;
814 get_user_u64(val, infop->entry);
815 infop->entry = val + infop->load_bias;
816 } else {
817 _regs->gpr[12] = infop->entry; /* r12 set to global entry address */
818 }
819 #endif
820 _regs->nip = infop->entry;
821 }
822
823 /* See linux kernel: arch/powerpc/include/asm/elf.h. */
824 #define ELF_NREG 48
825 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
826
827 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUPPCState *env)
828 {
829 int i;
830 target_ulong ccr = 0;
831
832 for (i = 0; i < ARRAY_SIZE(env->gpr); i++) {
833 (*regs)[i] = tswapreg(env->gpr[i]);
834 }
835
836 (*regs)[32] = tswapreg(env->nip);
837 (*regs)[33] = tswapreg(env->msr);
838 (*regs)[35] = tswapreg(env->ctr);
839 (*regs)[36] = tswapreg(env->lr);
840 (*regs)[37] = tswapreg(env->xer);
841
842 for (i = 0; i < ARRAY_SIZE(env->crf); i++) {
843 ccr |= env->crf[i] << (32 - ((i + 1) * 4));
844 }
845 (*regs)[38] = tswapreg(ccr);
846 }
847
848 #define USE_ELF_CORE_DUMP
849 #define ELF_EXEC_PAGESIZE 4096
850
851 #endif
852
853 #ifdef TARGET_MIPS
854
855 #define ELF_START_MMAP 0x80000000
856
857 #ifdef TARGET_MIPS64
858 #define ELF_CLASS ELFCLASS64
859 #else
860 #define ELF_CLASS ELFCLASS32
861 #endif
862 #define ELF_ARCH EM_MIPS
863
864 #define elf_check_arch(x) ((x) == EM_MIPS || (x) == EM_NANOMIPS)
865
866 static inline void init_thread(struct target_pt_regs *regs,
867 struct image_info *infop)
868 {
869 regs->cp0_status = 2 << CP0St_KSU;
870 regs->cp0_epc = infop->entry;
871 regs->regs[29] = infop->start_stack;
872 }
873
874 /* See linux kernel: arch/mips/include/asm/elf.h. */
875 #define ELF_NREG 45
876 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
877
878 /* See linux kernel: arch/mips/include/asm/reg.h. */
879 enum {
880 #ifdef TARGET_MIPS64
881 TARGET_EF_R0 = 0,
882 #else
883 TARGET_EF_R0 = 6,
884 #endif
885 TARGET_EF_R26 = TARGET_EF_R0 + 26,
886 TARGET_EF_R27 = TARGET_EF_R0 + 27,
887 TARGET_EF_LO = TARGET_EF_R0 + 32,
888 TARGET_EF_HI = TARGET_EF_R0 + 33,
889 TARGET_EF_CP0_EPC = TARGET_EF_R0 + 34,
890 TARGET_EF_CP0_BADVADDR = TARGET_EF_R0 + 35,
891 TARGET_EF_CP0_STATUS = TARGET_EF_R0 + 36,
892 TARGET_EF_CP0_CAUSE = TARGET_EF_R0 + 37
893 };
894
895 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */
896 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUMIPSState *env)
897 {
898 int i;
899
900 for (i = 0; i < TARGET_EF_R0; i++) {
901 (*regs)[i] = 0;
902 }
903 (*regs)[TARGET_EF_R0] = 0;
904
905 for (i = 1; i < ARRAY_SIZE(env->active_tc.gpr); i++) {
906 (*regs)[TARGET_EF_R0 + i] = tswapreg(env->active_tc.gpr[i]);
907 }
908
909 (*regs)[TARGET_EF_R26] = 0;
910 (*regs)[TARGET_EF_R27] = 0;
911 (*regs)[TARGET_EF_LO] = tswapreg(env->active_tc.LO[0]);
912 (*regs)[TARGET_EF_HI] = tswapreg(env->active_tc.HI[0]);
913 (*regs)[TARGET_EF_CP0_EPC] = tswapreg(env->active_tc.PC);
914 (*regs)[TARGET_EF_CP0_BADVADDR] = tswapreg(env->CP0_BadVAddr);
915 (*regs)[TARGET_EF_CP0_STATUS] = tswapreg(env->CP0_Status);
916 (*regs)[TARGET_EF_CP0_CAUSE] = tswapreg(env->CP0_Cause);
917 }
918
919 #define USE_ELF_CORE_DUMP
920 #define ELF_EXEC_PAGESIZE 4096
921
922 /* See arch/mips/include/uapi/asm/hwcap.h. */
923 enum {
924 HWCAP_MIPS_R6 = (1 << 0),
925 HWCAP_MIPS_MSA = (1 << 1),
926 };
927
928 #define ELF_HWCAP get_elf_hwcap()
929
930 static uint32_t get_elf_hwcap(void)
931 {
932 MIPSCPU *cpu = MIPS_CPU(thread_cpu);
933 uint32_t hwcaps = 0;
934
935 #define GET_FEATURE(flag, hwcap) \
936 do { if (cpu->env.insn_flags & (flag)) { hwcaps |= hwcap; } } while (0)
937
938 GET_FEATURE(ISA_MIPS32R6 | ISA_MIPS64R6, HWCAP_MIPS_R6);
939 GET_FEATURE(ASE_MSA, HWCAP_MIPS_MSA);
940
941 #undef GET_FEATURE
942
943 return hwcaps;
944 }
945
946 #endif /* TARGET_MIPS */
947
948 #ifdef TARGET_MICROBLAZE
949
950 #define ELF_START_MMAP 0x80000000
951
952 #define elf_check_arch(x) ( (x) == EM_MICROBLAZE || (x) == EM_MICROBLAZE_OLD)
953
954 #define ELF_CLASS ELFCLASS32
955 #define ELF_ARCH EM_MICROBLAZE
956
957 static inline void init_thread(struct target_pt_regs *regs,
958 struct image_info *infop)
959 {
960 regs->pc = infop->entry;
961 regs->r1 = infop->start_stack;
962
963 }
964
965 #define ELF_EXEC_PAGESIZE 4096
966
967 #define USE_ELF_CORE_DUMP
968 #define ELF_NREG 38
969 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
970
971 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */
972 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUMBState *env)
973 {
974 int i, pos = 0;
975
976 for (i = 0; i < 32; i++) {
977 (*regs)[pos++] = tswapreg(env->regs[i]);
978 }
979
980 for (i = 0; i < 6; i++) {
981 (*regs)[pos++] = tswapreg(env->sregs[i]);
982 }
983 }
984
985 #endif /* TARGET_MICROBLAZE */
986
987 #ifdef TARGET_NIOS2
988
989 #define ELF_START_MMAP 0x80000000
990
991 #define elf_check_arch(x) ((x) == EM_ALTERA_NIOS2)
992
993 #define ELF_CLASS ELFCLASS32
994 #define ELF_ARCH EM_ALTERA_NIOS2
995
996 static void init_thread(struct target_pt_regs *regs, struct image_info *infop)
997 {
998 regs->ea = infop->entry;
999 regs->sp = infop->start_stack;
1000 regs->estatus = 0x3;
1001 }
1002
1003 #define ELF_EXEC_PAGESIZE 4096
1004
1005 #define USE_ELF_CORE_DUMP
1006 #define ELF_NREG 49
1007 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1008
1009 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */
1010 static void elf_core_copy_regs(target_elf_gregset_t *regs,
1011 const CPUNios2State *env)
1012 {
1013 int i;
1014
1015 (*regs)[0] = -1;
1016 for (i = 1; i < 8; i++) /* r0-r7 */
1017 (*regs)[i] = tswapreg(env->regs[i + 7]);
1018
1019 for (i = 8; i < 16; i++) /* r8-r15 */
1020 (*regs)[i] = tswapreg(env->regs[i - 8]);
1021
1022 for (i = 16; i < 24; i++) /* r16-r23 */
1023 (*regs)[i] = tswapreg(env->regs[i + 7]);
1024 (*regs)[24] = -1; /* R_ET */
1025 (*regs)[25] = -1; /* R_BT */
1026 (*regs)[26] = tswapreg(env->regs[R_GP]);
1027 (*regs)[27] = tswapreg(env->regs[R_SP]);
1028 (*regs)[28] = tswapreg(env->regs[R_FP]);
1029 (*regs)[29] = tswapreg(env->regs[R_EA]);
1030 (*regs)[30] = -1; /* R_SSTATUS */
1031 (*regs)[31] = tswapreg(env->regs[R_RA]);
1032
1033 (*regs)[32] = tswapreg(env->regs[R_PC]);
1034
1035 (*regs)[33] = -1; /* R_STATUS */
1036 (*regs)[34] = tswapreg(env->regs[CR_ESTATUS]);
1037
1038 for (i = 35; i < 49; i++) /* ... */
1039 (*regs)[i] = -1;
1040 }
1041
1042 #endif /* TARGET_NIOS2 */
1043
1044 #ifdef TARGET_OPENRISC
1045
1046 #define ELF_START_MMAP 0x08000000
1047
1048 #define ELF_ARCH EM_OPENRISC
1049 #define ELF_CLASS ELFCLASS32
1050 #define ELF_DATA ELFDATA2MSB
1051
1052 static inline void init_thread(struct target_pt_regs *regs,
1053 struct image_info *infop)
1054 {
1055 regs->pc = infop->entry;
1056 regs->gpr[1] = infop->start_stack;
1057 }
1058
1059 #define USE_ELF_CORE_DUMP
1060 #define ELF_EXEC_PAGESIZE 8192
1061
1062 /* See linux kernel arch/openrisc/include/asm/elf.h. */
1063 #define ELF_NREG 34 /* gprs and pc, sr */
1064 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1065
1066 static void elf_core_copy_regs(target_elf_gregset_t *regs,
1067 const CPUOpenRISCState *env)
1068 {
1069 int i;
1070
1071 for (i = 0; i < 32; i++) {
1072 (*regs)[i] = tswapreg(cpu_get_gpr(env, i));
1073 }
1074 (*regs)[32] = tswapreg(env->pc);
1075 (*regs)[33] = tswapreg(cpu_get_sr(env));
1076 }
1077 #define ELF_HWCAP 0
1078 #define ELF_PLATFORM NULL
1079
1080 #endif /* TARGET_OPENRISC */
1081
1082 #ifdef TARGET_SH4
1083
1084 #define ELF_START_MMAP 0x80000000
1085
1086 #define ELF_CLASS ELFCLASS32
1087 #define ELF_ARCH EM_SH
1088
1089 static inline void init_thread(struct target_pt_regs *regs,
1090 struct image_info *infop)
1091 {
1092 /* Check other registers XXXXX */
1093 regs->pc = infop->entry;
1094 regs->regs[15] = infop->start_stack;
1095 }
1096
1097 /* See linux kernel: arch/sh/include/asm/elf.h. */
1098 #define ELF_NREG 23
1099 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1100
1101 /* See linux kernel: arch/sh/include/asm/ptrace.h. */
1102 enum {
1103 TARGET_REG_PC = 16,
1104 TARGET_REG_PR = 17,
1105 TARGET_REG_SR = 18,
1106 TARGET_REG_GBR = 19,
1107 TARGET_REG_MACH = 20,
1108 TARGET_REG_MACL = 21,
1109 TARGET_REG_SYSCALL = 22
1110 };
1111
1112 static inline void elf_core_copy_regs(target_elf_gregset_t *regs,
1113 const CPUSH4State *env)
1114 {
1115 int i;
1116
1117 for (i = 0; i < 16; i++) {
1118 (*regs)[i] = tswapreg(env->gregs[i]);
1119 }
1120
1121 (*regs)[TARGET_REG_PC] = tswapreg(env->pc);
1122 (*regs)[TARGET_REG_PR] = tswapreg(env->pr);
1123 (*regs)[TARGET_REG_SR] = tswapreg(env->sr);
1124 (*regs)[TARGET_REG_GBR] = tswapreg(env->gbr);
1125 (*regs)[TARGET_REG_MACH] = tswapreg(env->mach);
1126 (*regs)[TARGET_REG_MACL] = tswapreg(env->macl);
1127 (*regs)[TARGET_REG_SYSCALL] = 0; /* FIXME */
1128 }
1129
1130 #define USE_ELF_CORE_DUMP
1131 #define ELF_EXEC_PAGESIZE 4096
1132
1133 enum {
1134 SH_CPU_HAS_FPU = 0x0001, /* Hardware FPU support */
1135 SH_CPU_HAS_P2_FLUSH_BUG = 0x0002, /* Need to flush the cache in P2 area */
1136 SH_CPU_HAS_MMU_PAGE_ASSOC = 0x0004, /* SH3: TLB way selection bit support */
1137 SH_CPU_HAS_DSP = 0x0008, /* SH-DSP: DSP support */
1138 SH_CPU_HAS_PERF_COUNTER = 0x0010, /* Hardware performance counters */
1139 SH_CPU_HAS_PTEA = 0x0020, /* PTEA register */
1140 SH_CPU_HAS_LLSC = 0x0040, /* movli.l/movco.l */
1141 SH_CPU_HAS_L2_CACHE = 0x0080, /* Secondary cache / URAM */
1142 SH_CPU_HAS_OP32 = 0x0100, /* 32-bit instruction support */
1143 SH_CPU_HAS_PTEAEX = 0x0200, /* PTE ASID Extension support */
1144 };
1145
1146 #define ELF_HWCAP get_elf_hwcap()
1147
1148 static uint32_t get_elf_hwcap(void)
1149 {
1150 SuperHCPU *cpu = SUPERH_CPU(thread_cpu);
1151 uint32_t hwcap = 0;
1152
1153 hwcap |= SH_CPU_HAS_FPU;
1154
1155 if (cpu->env.features & SH_FEATURE_SH4A) {
1156 hwcap |= SH_CPU_HAS_LLSC;
1157 }
1158
1159 return hwcap;
1160 }
1161
1162 #endif
1163
1164 #ifdef TARGET_CRIS
1165
1166 #define ELF_START_MMAP 0x80000000
1167
1168 #define ELF_CLASS ELFCLASS32
1169 #define ELF_ARCH EM_CRIS
1170
1171 static inline void init_thread(struct target_pt_regs *regs,
1172 struct image_info *infop)
1173 {
1174 regs->erp = infop->entry;
1175 }
1176
1177 #define ELF_EXEC_PAGESIZE 8192
1178
1179 #endif
1180
1181 #ifdef TARGET_M68K
1182
1183 #define ELF_START_MMAP 0x80000000
1184
1185 #define ELF_CLASS ELFCLASS32
1186 #define ELF_ARCH EM_68K
1187
1188 /* ??? Does this need to do anything?
1189 #define ELF_PLAT_INIT(_r) */
1190
1191 static inline void init_thread(struct target_pt_regs *regs,
1192 struct image_info *infop)
1193 {
1194 regs->usp = infop->start_stack;
1195 regs->sr = 0;
1196 regs->pc = infop->entry;
1197 }
1198
1199 /* See linux kernel: arch/m68k/include/asm/elf.h. */
1200 #define ELF_NREG 20
1201 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1202
1203 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUM68KState *env)
1204 {
1205 (*regs)[0] = tswapreg(env->dregs[1]);
1206 (*regs)[1] = tswapreg(env->dregs[2]);
1207 (*regs)[2] = tswapreg(env->dregs[3]);
1208 (*regs)[3] = tswapreg(env->dregs[4]);
1209 (*regs)[4] = tswapreg(env->dregs[5]);
1210 (*regs)[5] = tswapreg(env->dregs[6]);
1211 (*regs)[6] = tswapreg(env->dregs[7]);
1212 (*regs)[7] = tswapreg(env->aregs[0]);
1213 (*regs)[8] = tswapreg(env->aregs[1]);
1214 (*regs)[9] = tswapreg(env->aregs[2]);
1215 (*regs)[10] = tswapreg(env->aregs[3]);
1216 (*regs)[11] = tswapreg(env->aregs[4]);
1217 (*regs)[12] = tswapreg(env->aregs[5]);
1218 (*regs)[13] = tswapreg(env->aregs[6]);
1219 (*regs)[14] = tswapreg(env->dregs[0]);
1220 (*regs)[15] = tswapreg(env->aregs[7]);
1221 (*regs)[16] = tswapreg(env->dregs[0]); /* FIXME: orig_d0 */
1222 (*regs)[17] = tswapreg(env->sr);
1223 (*regs)[18] = tswapreg(env->pc);
1224 (*regs)[19] = 0; /* FIXME: regs->format | regs->vector */
1225 }
1226
1227 #define USE_ELF_CORE_DUMP
1228 #define ELF_EXEC_PAGESIZE 8192
1229
1230 #endif
1231
1232 #ifdef TARGET_ALPHA
1233
1234 #define ELF_START_MMAP (0x30000000000ULL)
1235
1236 #define ELF_CLASS ELFCLASS64
1237 #define ELF_ARCH EM_ALPHA
1238
1239 static inline void init_thread(struct target_pt_regs *regs,
1240 struct image_info *infop)
1241 {
1242 regs->pc = infop->entry;
1243 regs->ps = 8;
1244 regs->usp = infop->start_stack;
1245 }
1246
1247 #define ELF_EXEC_PAGESIZE 8192
1248
1249 #endif /* TARGET_ALPHA */
1250
1251 #ifdef TARGET_S390X
1252
1253 #define ELF_START_MMAP (0x20000000000ULL)
1254
1255 #define ELF_CLASS ELFCLASS64
1256 #define ELF_DATA ELFDATA2MSB
1257 #define ELF_ARCH EM_S390
1258
1259 static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop)
1260 {
1261 regs->psw.addr = infop->entry;
1262 regs->psw.mask = PSW_MASK_64 | PSW_MASK_32;
1263 regs->gprs[15] = infop->start_stack;
1264 }
1265
1266 #endif /* TARGET_S390X */
1267
1268 #ifdef TARGET_TILEGX
1269
1270 /* 42 bits real used address, a half for user mode */
1271 #define ELF_START_MMAP (0x00000020000000000ULL)
1272
1273 #define elf_check_arch(x) ((x) == EM_TILEGX)
1274
1275 #define ELF_CLASS ELFCLASS64
1276 #define ELF_DATA ELFDATA2LSB
1277 #define ELF_ARCH EM_TILEGX
1278
1279 static inline void init_thread(struct target_pt_regs *regs,
1280 struct image_info *infop)
1281 {
1282 regs->pc = infop->entry;
1283 regs->sp = infop->start_stack;
1284
1285 }
1286
1287 #define ELF_EXEC_PAGESIZE 65536 /* TILE-Gx page size is 64KB */
1288
1289 #endif /* TARGET_TILEGX */
1290
1291 #ifdef TARGET_RISCV
1292
1293 #define ELF_START_MMAP 0x80000000
1294 #define ELF_ARCH EM_RISCV
1295
1296 #ifdef TARGET_RISCV32
1297 #define ELF_CLASS ELFCLASS32
1298 #else
1299 #define ELF_CLASS ELFCLASS64
1300 #endif
1301
1302 static inline void init_thread(struct target_pt_regs *regs,
1303 struct image_info *infop)
1304 {
1305 regs->sepc = infop->entry;
1306 regs->sp = infop->start_stack;
1307 }
1308
1309 #define ELF_EXEC_PAGESIZE 4096
1310
1311 #endif /* TARGET_RISCV */
1312
1313 #ifdef TARGET_HPPA
1314
1315 #define ELF_START_MMAP 0x80000000
1316 #define ELF_CLASS ELFCLASS32
1317 #define ELF_ARCH EM_PARISC
1318 #define ELF_PLATFORM "PARISC"
1319 #define STACK_GROWS_DOWN 0
1320 #define STACK_ALIGNMENT 64
1321
1322 static inline void init_thread(struct target_pt_regs *regs,
1323 struct image_info *infop)
1324 {
1325 regs->iaoq[0] = infop->entry;
1326 regs->iaoq[1] = infop->entry + 4;
1327 regs->gr[23] = 0;
1328 regs->gr[24] = infop->arg_start;
1329 regs->gr[25] = (infop->arg_end - infop->arg_start) / sizeof(abi_ulong);
1330 /* The top-of-stack contains a linkage buffer. */
1331 regs->gr[30] = infop->start_stack + 64;
1332 regs->gr[31] = infop->entry;
1333 }
1334
1335 #endif /* TARGET_HPPA */
1336
1337 #ifdef TARGET_XTENSA
1338
1339 #define ELF_START_MMAP 0x20000000
1340
1341 #define ELF_CLASS ELFCLASS32
1342 #define ELF_ARCH EM_XTENSA
1343
1344 static inline void init_thread(struct target_pt_regs *regs,
1345 struct image_info *infop)
1346 {
1347 regs->windowbase = 0;
1348 regs->windowstart = 1;
1349 regs->areg[1] = infop->start_stack;
1350 regs->pc = infop->entry;
1351 }
1352
1353 /* See linux kernel: arch/xtensa/include/asm/elf.h. */
1354 #define ELF_NREG 128
1355 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1356
1357 enum {
1358 TARGET_REG_PC,
1359 TARGET_REG_PS,
1360 TARGET_REG_LBEG,
1361 TARGET_REG_LEND,
1362 TARGET_REG_LCOUNT,
1363 TARGET_REG_SAR,
1364 TARGET_REG_WINDOWSTART,
1365 TARGET_REG_WINDOWBASE,
1366 TARGET_REG_THREADPTR,
1367 TARGET_REG_AR0 = 64,
1368 };
1369
1370 static void elf_core_copy_regs(target_elf_gregset_t *regs,
1371 const CPUXtensaState *env)
1372 {
1373 unsigned i;
1374
1375 (*regs)[TARGET_REG_PC] = tswapreg(env->pc);
1376 (*regs)[TARGET_REG_PS] = tswapreg(env->sregs[PS] & ~PS_EXCM);
1377 (*regs)[TARGET_REG_LBEG] = tswapreg(env->sregs[LBEG]);
1378 (*regs)[TARGET_REG_LEND] = tswapreg(env->sregs[LEND]);
1379 (*regs)[TARGET_REG_LCOUNT] = tswapreg(env->sregs[LCOUNT]);
1380 (*regs)[TARGET_REG_SAR] = tswapreg(env->sregs[SAR]);
1381 (*regs)[TARGET_REG_WINDOWSTART] = tswapreg(env->sregs[WINDOW_START]);
1382 (*regs)[TARGET_REG_WINDOWBASE] = tswapreg(env->sregs[WINDOW_BASE]);
1383 (*regs)[TARGET_REG_THREADPTR] = tswapreg(env->uregs[THREADPTR]);
1384 xtensa_sync_phys_from_window((CPUXtensaState *)env);
1385 for (i = 0; i < env->config->nareg; ++i) {
1386 (*regs)[TARGET_REG_AR0 + i] = tswapreg(env->phys_regs[i]);
1387 }
1388 }
1389
1390 #define USE_ELF_CORE_DUMP
1391 #define ELF_EXEC_PAGESIZE 4096
1392
1393 #endif /* TARGET_XTENSA */
1394
1395 #ifndef ELF_PLATFORM
1396 #define ELF_PLATFORM (NULL)
1397 #endif
1398
1399 #ifndef ELF_MACHINE
1400 #define ELF_MACHINE ELF_ARCH
1401 #endif
1402
1403 #ifndef elf_check_arch
1404 #define elf_check_arch(x) ((x) == ELF_ARCH)
1405 #endif
1406
1407 #ifndef ELF_HWCAP
1408 #define ELF_HWCAP 0
1409 #endif
1410
1411 #ifndef STACK_GROWS_DOWN
1412 #define STACK_GROWS_DOWN 1
1413 #endif
1414
1415 #ifndef STACK_ALIGNMENT
1416 #define STACK_ALIGNMENT 16
1417 #endif
1418
1419 #ifdef TARGET_ABI32
1420 #undef ELF_CLASS
1421 #define ELF_CLASS ELFCLASS32
1422 #undef bswaptls
1423 #define bswaptls(ptr) bswap32s(ptr)
1424 #endif
1425
1426 #include "elf.h"
1427
1428 struct exec
1429 {
1430 unsigned int a_info; /* Use macros N_MAGIC, etc for access */
1431 unsigned int a_text; /* length of text, in bytes */
1432 unsigned int a_data; /* length of data, in bytes */
1433 unsigned int a_bss; /* length of uninitialized data area, in bytes */
1434 unsigned int a_syms; /* length of symbol table data in file, in bytes */
1435 unsigned int a_entry; /* start address */
1436 unsigned int a_trsize; /* length of relocation info for text, in bytes */
1437 unsigned int a_drsize; /* length of relocation info for data, in bytes */
1438 };
1439
1440
1441 #define N_MAGIC(exec) ((exec).a_info & 0xffff)
1442 #define OMAGIC 0407
1443 #define NMAGIC 0410
1444 #define ZMAGIC 0413
1445 #define QMAGIC 0314
1446
1447 /* Necessary parameters */
1448 #define TARGET_ELF_EXEC_PAGESIZE \
1449 (((eppnt->p_align & ~qemu_host_page_mask) != 0) ? \
1450 TARGET_PAGE_SIZE : MAX(qemu_host_page_size, TARGET_PAGE_SIZE))
1451 #define TARGET_ELF_PAGELENGTH(_v) ROUND_UP((_v), TARGET_ELF_EXEC_PAGESIZE)
1452 #define TARGET_ELF_PAGESTART(_v) ((_v) & \
1453 ~(abi_ulong)(TARGET_ELF_EXEC_PAGESIZE-1))
1454 #define TARGET_ELF_PAGEOFFSET(_v) ((_v) & (TARGET_ELF_EXEC_PAGESIZE-1))
1455
1456 #define DLINFO_ITEMS 15
1457
1458 static inline void memcpy_fromfs(void * to, const void * from, unsigned long n)
1459 {
1460 memcpy(to, from, n);
1461 }
1462
1463 #ifdef BSWAP_NEEDED
1464 static void bswap_ehdr(struct elfhdr *ehdr)
1465 {
1466 bswap16s(&ehdr->e_type); /* Object file type */
1467 bswap16s(&ehdr->e_machine); /* Architecture */
1468 bswap32s(&ehdr->e_version); /* Object file version */
1469 bswaptls(&ehdr->e_entry); /* Entry point virtual address */
1470 bswaptls(&ehdr->e_phoff); /* Program header table file offset */
1471 bswaptls(&ehdr->e_shoff); /* Section header table file offset */
1472 bswap32s(&ehdr->e_flags); /* Processor-specific flags */
1473 bswap16s(&ehdr->e_ehsize); /* ELF header size in bytes */
1474 bswap16s(&ehdr->e_phentsize); /* Program header table entry size */
1475 bswap16s(&ehdr->e_phnum); /* Program header table entry count */
1476 bswap16s(&ehdr->e_shentsize); /* Section header table entry size */
1477 bswap16s(&ehdr->e_shnum); /* Section header table entry count */
1478 bswap16s(&ehdr->e_shstrndx); /* Section header string table index */
1479 }
1480
1481 static void bswap_phdr(struct elf_phdr *phdr, int phnum)
1482 {
1483 int i;
1484 for (i = 0; i < phnum; ++i, ++phdr) {
1485 bswap32s(&phdr->p_type); /* Segment type */
1486 bswap32s(&phdr->p_flags); /* Segment flags */
1487 bswaptls(&phdr->p_offset); /* Segment file offset */
1488 bswaptls(&phdr->p_vaddr); /* Segment virtual address */
1489 bswaptls(&phdr->p_paddr); /* Segment physical address */
1490 bswaptls(&phdr->p_filesz); /* Segment size in file */
1491 bswaptls(&phdr->p_memsz); /* Segment size in memory */
1492 bswaptls(&phdr->p_align); /* Segment alignment */
1493 }
1494 }
1495
1496 static void bswap_shdr(struct elf_shdr *shdr, int shnum)
1497 {
1498 int i;
1499 for (i = 0; i < shnum; ++i, ++shdr) {
1500 bswap32s(&shdr->sh_name);
1501 bswap32s(&shdr->sh_type);
1502 bswaptls(&shdr->sh_flags);
1503 bswaptls(&shdr->sh_addr);
1504 bswaptls(&shdr->sh_offset);
1505 bswaptls(&shdr->sh_size);
1506 bswap32s(&shdr->sh_link);
1507 bswap32s(&shdr->sh_info);
1508 bswaptls(&shdr->sh_addralign);
1509 bswaptls(&shdr->sh_entsize);
1510 }
1511 }
1512
1513 static void bswap_sym(struct elf_sym *sym)
1514 {
1515 bswap32s(&sym->st_name);
1516 bswaptls(&sym->st_value);
1517 bswaptls(&sym->st_size);
1518 bswap16s(&sym->st_shndx);
1519 }
1520 #else
1521 static inline void bswap_ehdr(struct elfhdr *ehdr) { }
1522 static inline void bswap_phdr(struct elf_phdr *phdr, int phnum) { }
1523 static inline void bswap_shdr(struct elf_shdr *shdr, int shnum) { }
1524 static inline void bswap_sym(struct elf_sym *sym) { }
1525 #endif
1526
1527 #ifdef USE_ELF_CORE_DUMP
1528 static int elf_core_dump(int, const CPUArchState *);
1529 #endif /* USE_ELF_CORE_DUMP */
1530 static void load_symbols(struct elfhdr *hdr, int fd, abi_ulong load_bias);
1531
1532 /* Verify the portions of EHDR within E_IDENT for the target.
1533 This can be performed before bswapping the entire header. */
1534 static bool elf_check_ident(struct elfhdr *ehdr)
1535 {
1536 return (ehdr->e_ident[EI_MAG0] == ELFMAG0
1537 && ehdr->e_ident[EI_MAG1] == ELFMAG1
1538 && ehdr->e_ident[EI_MAG2] == ELFMAG2
1539 && ehdr->e_ident[EI_MAG3] == ELFMAG3
1540 && ehdr->e_ident[EI_CLASS] == ELF_CLASS
1541 && ehdr->e_ident[EI_DATA] == ELF_DATA
1542 && ehdr->e_ident[EI_VERSION] == EV_CURRENT);
1543 }
1544
1545 /* Verify the portions of EHDR outside of E_IDENT for the target.
1546 This has to wait until after bswapping the header. */
1547 static bool elf_check_ehdr(struct elfhdr *ehdr)
1548 {
1549 return (elf_check_arch(ehdr->e_machine)
1550 && ehdr->e_ehsize == sizeof(struct elfhdr)
1551 && ehdr->e_phentsize == sizeof(struct elf_phdr)
1552 && (ehdr->e_type == ET_EXEC || ehdr->e_type == ET_DYN));
1553 }
1554
1555 /*
1556 * 'copy_elf_strings()' copies argument/envelope strings from user
1557 * memory to free pages in kernel mem. These are in a format ready
1558 * to be put directly into the top of new user memory.
1559 *
1560 */
1561 static abi_ulong copy_elf_strings(int argc, char **argv, char *scratch,
1562 abi_ulong p, abi_ulong stack_limit)
1563 {
1564 char *tmp;
1565 int len, i;
1566 abi_ulong top = p;
1567
1568 if (!p) {
1569 return 0; /* bullet-proofing */
1570 }
1571
1572 if (STACK_GROWS_DOWN) {
1573 int offset = ((p - 1) % TARGET_PAGE_SIZE) + 1;
1574 for (i = argc - 1; i >= 0; --i) {
1575 tmp = argv[i];
1576 if (!tmp) {
1577 fprintf(stderr, "VFS: argc is wrong");
1578 exit(-1);
1579 }
1580 len = strlen(tmp) + 1;
1581 tmp += len;
1582
1583 if (len > (p - stack_limit)) {
1584 return 0;
1585 }
1586 while (len) {
1587 int bytes_to_copy = (len > offset) ? offset : len;
1588 tmp -= bytes_to_copy;
1589 p -= bytes_to_copy;
1590 offset -= bytes_to_copy;
1591 len -= bytes_to_copy;
1592
1593 memcpy_fromfs(scratch + offset, tmp, bytes_to_copy);
1594
1595 if (offset == 0) {
1596 memcpy_to_target(p, scratch, top - p);
1597 top = p;
1598 offset = TARGET_PAGE_SIZE;
1599 }
1600 }
1601 }
1602 if (p != top) {
1603 memcpy_to_target(p, scratch + offset, top - p);
1604 }
1605 } else {
1606 int remaining = TARGET_PAGE_SIZE - (p % TARGET_PAGE_SIZE);
1607 for (i = 0; i < argc; ++i) {
1608 tmp = argv[i];
1609 if (!tmp) {
1610 fprintf(stderr, "VFS: argc is wrong");
1611 exit(-1);
1612 }
1613 len = strlen(tmp) + 1;
1614 if (len > (stack_limit - p)) {
1615 return 0;
1616 }
1617 while (len) {
1618 int bytes_to_copy = (len > remaining) ? remaining : len;
1619
1620 memcpy_fromfs(scratch + (p - top), tmp, bytes_to_copy);
1621
1622 tmp += bytes_to_copy;
1623 remaining -= bytes_to_copy;
1624 p += bytes_to_copy;
1625 len -= bytes_to_copy;
1626
1627 if (remaining == 0) {
1628 memcpy_to_target(top, scratch, p - top);
1629 top = p;
1630 remaining = TARGET_PAGE_SIZE;
1631 }
1632 }
1633 }
1634 if (p != top) {
1635 memcpy_to_target(top, scratch, p - top);
1636 }
1637 }
1638
1639 return p;
1640 }
1641
1642 /* Older linux kernels provide up to MAX_ARG_PAGES (default: 32) of
1643 * argument/environment space. Newer kernels (>2.6.33) allow more,
1644 * dependent on stack size, but guarantee at least 32 pages for
1645 * backwards compatibility.
1646 */
1647 #define STACK_LOWER_LIMIT (32 * TARGET_PAGE_SIZE)
1648
1649 static abi_ulong setup_arg_pages(struct linux_binprm *bprm,
1650 struct image_info *info)
1651 {
1652 abi_ulong size, error, guard;
1653
1654 size = guest_stack_size;
1655 if (size < STACK_LOWER_LIMIT) {
1656 size = STACK_LOWER_LIMIT;
1657 }
1658 guard = TARGET_PAGE_SIZE;
1659 if (guard < qemu_real_host_page_size) {
1660 guard = qemu_real_host_page_size;
1661 }
1662
1663 error = target_mmap(0, size + guard, PROT_READ | PROT_WRITE,
1664 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
1665 if (error == -1) {
1666 perror("mmap stack");
1667 exit(-1);
1668 }
1669
1670 /* We reserve one extra page at the top of the stack as guard. */
1671 if (STACK_GROWS_DOWN) {
1672 target_mprotect(error, guard, PROT_NONE);
1673 info->stack_limit = error + guard;
1674 return info->stack_limit + size - sizeof(void *);
1675 } else {
1676 target_mprotect(error + size, guard, PROT_NONE);
1677 info->stack_limit = error + size;
1678 return error;
1679 }
1680 }
1681
1682 /* Map and zero the bss. We need to explicitly zero any fractional pages
1683 after the data section (i.e. bss). */
1684 static void zero_bss(abi_ulong elf_bss, abi_ulong last_bss, int prot)
1685 {
1686 uintptr_t host_start, host_map_start, host_end;
1687
1688 last_bss = TARGET_PAGE_ALIGN(last_bss);
1689
1690 /* ??? There is confusion between qemu_real_host_page_size and
1691 qemu_host_page_size here and elsewhere in target_mmap, which
1692 may lead to the end of the data section mapping from the file
1693 not being mapped. At least there was an explicit test and
1694 comment for that here, suggesting that "the file size must
1695 be known". The comment probably pre-dates the introduction
1696 of the fstat system call in target_mmap which does in fact
1697 find out the size. What isn't clear is if the workaround
1698 here is still actually needed. For now, continue with it,
1699 but merge it with the "normal" mmap that would allocate the bss. */
1700
1701 host_start = (uintptr_t) g2h(elf_bss);
1702 host_end = (uintptr_t) g2h(last_bss);
1703 host_map_start = REAL_HOST_PAGE_ALIGN(host_start);
1704
1705 if (host_map_start < host_end) {
1706 void *p = mmap((void *)host_map_start, host_end - host_map_start,
1707 prot, MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
1708 if (p == MAP_FAILED) {
1709 perror("cannot mmap brk");
1710 exit(-1);
1711 }
1712 }
1713
1714 /* Ensure that the bss page(s) are valid */
1715 if ((page_get_flags(last_bss-1) & prot) != prot) {
1716 page_set_flags(elf_bss & TARGET_PAGE_MASK, last_bss, prot | PAGE_VALID);
1717 }
1718
1719 if (host_start < host_map_start) {
1720 memset((void *)host_start, 0, host_map_start - host_start);
1721 }
1722 }
1723
1724 #ifdef TARGET_ARM
1725 static int elf_is_fdpic(struct elfhdr *exec)
1726 {
1727 return exec->e_ident[EI_OSABI] == ELFOSABI_ARM_FDPIC;
1728 }
1729 #else
1730 /* Default implementation, always false. */
1731 static int elf_is_fdpic(struct elfhdr *exec)
1732 {
1733 return 0;
1734 }
1735 #endif
1736
1737 static abi_ulong loader_build_fdpic_loadmap(struct image_info *info, abi_ulong sp)
1738 {
1739 uint16_t n;
1740 struct elf32_fdpic_loadseg *loadsegs = info->loadsegs;
1741
1742 /* elf32_fdpic_loadseg */
1743 n = info->nsegs;
1744 while (n--) {
1745 sp -= 12;
1746 put_user_u32(loadsegs[n].addr, sp+0);
1747 put_user_u32(loadsegs[n].p_vaddr, sp+4);
1748 put_user_u32(loadsegs[n].p_memsz, sp+8);
1749 }
1750
1751 /* elf32_fdpic_loadmap */
1752 sp -= 4;
1753 put_user_u16(0, sp+0); /* version */
1754 put_user_u16(info->nsegs, sp+2); /* nsegs */
1755
1756 info->personality = PER_LINUX_FDPIC;
1757 info->loadmap_addr = sp;
1758
1759 return sp;
1760 }
1761
1762 static abi_ulong create_elf_tables(abi_ulong p, int argc, int envc,
1763 struct elfhdr *exec,
1764 struct image_info *info,
1765 struct image_info *interp_info)
1766 {
1767 abi_ulong sp;
1768 abi_ulong u_argc, u_argv, u_envp, u_auxv;
1769 int size;
1770 int i;
1771 abi_ulong u_rand_bytes;
1772 uint8_t k_rand_bytes[16];
1773 abi_ulong u_platform;
1774 const char *k_platform;
1775 const int n = sizeof(elf_addr_t);
1776
1777 sp = p;
1778
1779 /* Needs to be before we load the env/argc/... */
1780 if (elf_is_fdpic(exec)) {
1781 /* Need 4 byte alignment for these structs */
1782 sp &= ~3;
1783 sp = loader_build_fdpic_loadmap(info, sp);
1784 info->other_info = interp_info;
1785 if (interp_info) {
1786 interp_info->other_info = info;
1787 sp = loader_build_fdpic_loadmap(interp_info, sp);
1788 info->interpreter_loadmap_addr = interp_info->loadmap_addr;
1789 info->interpreter_pt_dynamic_addr = interp_info->pt_dynamic_addr;
1790 } else {
1791 info->interpreter_loadmap_addr = 0;
1792 info->interpreter_pt_dynamic_addr = 0;
1793 }
1794 }
1795
1796 u_platform = 0;
1797 k_platform = ELF_PLATFORM;
1798 if (k_platform) {
1799 size_t len = strlen(k_platform) + 1;
1800 if (STACK_GROWS_DOWN) {
1801 sp -= (len + n - 1) & ~(n - 1);
1802 u_platform = sp;
1803 /* FIXME - check return value of memcpy_to_target() for failure */
1804 memcpy_to_target(sp, k_platform, len);
1805 } else {
1806 memcpy_to_target(sp, k_platform, len);
1807 u_platform = sp;
1808 sp += len + 1;
1809 }
1810 }
1811
1812 /* Provide 16 byte alignment for the PRNG, and basic alignment for
1813 * the argv and envp pointers.
1814 */
1815 if (STACK_GROWS_DOWN) {
1816 sp = QEMU_ALIGN_DOWN(sp, 16);
1817 } else {
1818 sp = QEMU_ALIGN_UP(sp, 16);
1819 }
1820
1821 /*
1822 * Generate 16 random bytes for userspace PRNG seeding (not
1823 * cryptically secure but it's not the aim of QEMU).
1824 */
1825 for (i = 0; i < 16; i++) {
1826 k_rand_bytes[i] = rand();
1827 }
1828 if (STACK_GROWS_DOWN) {
1829 sp -= 16;
1830 u_rand_bytes = sp;
1831 /* FIXME - check return value of memcpy_to_target() for failure */
1832 memcpy_to_target(sp, k_rand_bytes, 16);
1833 } else {
1834 memcpy_to_target(sp, k_rand_bytes, 16);
1835 u_rand_bytes = sp;
1836 sp += 16;
1837 }
1838
1839 size = (DLINFO_ITEMS + 1) * 2;
1840 if (k_platform)
1841 size += 2;
1842 #ifdef DLINFO_ARCH_ITEMS
1843 size += DLINFO_ARCH_ITEMS * 2;
1844 #endif
1845 #ifdef ELF_HWCAP2
1846 size += 2;
1847 #endif
1848 info->auxv_len = size * n;
1849
1850 size += envc + argc + 2;
1851 size += 1; /* argc itself */
1852 size *= n;
1853
1854 /* Allocate space and finalize stack alignment for entry now. */
1855 if (STACK_GROWS_DOWN) {
1856 u_argc = QEMU_ALIGN_DOWN(sp - size, STACK_ALIGNMENT);
1857 sp = u_argc;
1858 } else {
1859 u_argc = sp;
1860 sp = QEMU_ALIGN_UP(sp + size, STACK_ALIGNMENT);
1861 }
1862
1863 u_argv = u_argc + n;
1864 u_envp = u_argv + (argc + 1) * n;
1865 u_auxv = u_envp + (envc + 1) * n;
1866 info->saved_auxv = u_auxv;
1867 info->arg_start = u_argv;
1868 info->arg_end = u_argv + argc * n;
1869
1870 /* This is correct because Linux defines
1871 * elf_addr_t as Elf32_Off / Elf64_Off
1872 */
1873 #define NEW_AUX_ENT(id, val) do { \
1874 put_user_ual(id, u_auxv); u_auxv += n; \
1875 put_user_ual(val, u_auxv); u_auxv += n; \
1876 } while(0)
1877
1878 #ifdef ARCH_DLINFO
1879 /*
1880 * ARCH_DLINFO must come first so platform specific code can enforce
1881 * special alignment requirements on the AUXV if necessary (eg. PPC).
1882 */
1883 ARCH_DLINFO;
1884 #endif
1885 /* There must be exactly DLINFO_ITEMS entries here, or the assert
1886 * on info->auxv_len will trigger.
1887 */
1888 NEW_AUX_ENT(AT_PHDR, (abi_ulong)(info->load_addr + exec->e_phoff));
1889 NEW_AUX_ENT(AT_PHENT, (abi_ulong)(sizeof (struct elf_phdr)));
1890 NEW_AUX_ENT(AT_PHNUM, (abi_ulong)(exec->e_phnum));
1891 if ((info->alignment & ~qemu_host_page_mask) != 0) {
1892 /* Target doesn't support host page size alignment */
1893 NEW_AUX_ENT(AT_PAGESZ, (abi_ulong)(TARGET_PAGE_SIZE));
1894 } else {
1895 NEW_AUX_ENT(AT_PAGESZ, (abi_ulong)(MAX(TARGET_PAGE_SIZE,
1896 qemu_host_page_size)));
1897 }
1898 NEW_AUX_ENT(AT_BASE, (abi_ulong)(interp_info ? interp_info->load_addr : 0));
1899 NEW_AUX_ENT(AT_FLAGS, (abi_ulong)0);
1900 NEW_AUX_ENT(AT_ENTRY, info->entry);
1901 NEW_AUX_ENT(AT_UID, (abi_ulong) getuid());
1902 NEW_AUX_ENT(AT_EUID, (abi_ulong) geteuid());
1903 NEW_AUX_ENT(AT_GID, (abi_ulong) getgid());
1904 NEW_AUX_ENT(AT_EGID, (abi_ulong) getegid());
1905 NEW_AUX_ENT(AT_HWCAP, (abi_ulong) ELF_HWCAP);
1906 NEW_AUX_ENT(AT_CLKTCK, (abi_ulong) sysconf(_SC_CLK_TCK));
1907 NEW_AUX_ENT(AT_RANDOM, (abi_ulong) u_rand_bytes);
1908 NEW_AUX_ENT(AT_SECURE, (abi_ulong) qemu_getauxval(AT_SECURE));
1909
1910 #ifdef ELF_HWCAP2
1911 NEW_AUX_ENT(AT_HWCAP2, (abi_ulong) ELF_HWCAP2);
1912 #endif
1913
1914 if (u_platform) {
1915 NEW_AUX_ENT(AT_PLATFORM, u_platform);
1916 }
1917 NEW_AUX_ENT (AT_NULL, 0);
1918 #undef NEW_AUX_ENT
1919
1920 /* Check that our initial calculation of the auxv length matches how much
1921 * we actually put into it.
1922 */
1923 assert(info->auxv_len == u_auxv - info->saved_auxv);
1924
1925 put_user_ual(argc, u_argc);
1926
1927 p = info->arg_strings;
1928 for (i = 0; i < argc; ++i) {
1929 put_user_ual(p, u_argv);
1930 u_argv += n;
1931 p += target_strlen(p) + 1;
1932 }
1933 put_user_ual(0, u_argv);
1934
1935 p = info->env_strings;
1936 for (i = 0; i < envc; ++i) {
1937 put_user_ual(p, u_envp);
1938 u_envp += n;
1939 p += target_strlen(p) + 1;
1940 }
1941 put_user_ual(0, u_envp);
1942
1943 return sp;
1944 }
1945
1946 unsigned long init_guest_space(unsigned long host_start,
1947 unsigned long host_size,
1948 unsigned long guest_start,
1949 bool fixed)
1950 {
1951 unsigned long current_start, aligned_start;
1952 int flags;
1953
1954 assert(host_start || host_size);
1955
1956 /* If just a starting address is given, then just verify that
1957 * address. */
1958 if (host_start && !host_size) {
1959 #if defined(TARGET_ARM) && !defined(TARGET_AARCH64)
1960 if (init_guest_commpage(host_start, host_size) != 1) {
1961 return (unsigned long)-1;
1962 }
1963 #endif
1964 return host_start;
1965 }
1966
1967 /* Setup the initial flags and start address. */
1968 current_start = host_start & qemu_host_page_mask;
1969 flags = MAP_ANONYMOUS | MAP_PRIVATE | MAP_NORESERVE;
1970 if (fixed) {
1971 flags |= MAP_FIXED;
1972 }
1973
1974 /* Otherwise, a non-zero size region of memory needs to be mapped
1975 * and validated. */
1976
1977 #if defined(TARGET_ARM) && !defined(TARGET_AARCH64)
1978 /* On 32-bit ARM, we need to map not just the usable memory, but
1979 * also the commpage. Try to find a suitable place by allocating
1980 * a big chunk for all of it. If host_start, then the naive
1981 * strategy probably does good enough.
1982 */
1983 if (!host_start) {
1984 unsigned long guest_full_size, host_full_size, real_start;
1985
1986 guest_full_size =
1987 (0xffff0f00 & qemu_host_page_mask) + qemu_host_page_size;
1988 host_full_size = guest_full_size - guest_start;
1989 real_start = (unsigned long)
1990 mmap(NULL, host_full_size, PROT_NONE, flags, -1, 0);
1991 if (real_start == (unsigned long)-1) {
1992 if (host_size < host_full_size - qemu_host_page_size) {
1993 /* We failed to map a continous segment, but we're
1994 * allowed to have a gap between the usable memory and
1995 * the commpage where other things can be mapped.
1996 * This sparseness gives us more flexibility to find
1997 * an address range.
1998 */
1999 goto naive;
2000 }
2001 return (unsigned long)-1;
2002 }
2003 munmap((void *)real_start, host_full_size);
2004 if (real_start & ~qemu_host_page_mask) {
2005 /* The same thing again, but with an extra qemu_host_page_size
2006 * so that we can shift around alignment.
2007 */
2008 unsigned long real_size = host_full_size + qemu_host_page_size;
2009 real_start = (unsigned long)
2010 mmap(NULL, real_size, PROT_NONE, flags, -1, 0);
2011 if (real_start == (unsigned long)-1) {
2012 if (host_size < host_full_size - qemu_host_page_size) {
2013 goto naive;
2014 }
2015 return (unsigned long)-1;
2016 }
2017 munmap((void *)real_start, real_size);
2018 real_start = HOST_PAGE_ALIGN(real_start);
2019 }
2020 current_start = real_start;
2021 }
2022 naive:
2023 #endif
2024
2025 while (1) {
2026 unsigned long real_start, real_size, aligned_size;
2027 aligned_size = real_size = host_size;
2028
2029 /* Do not use mmap_find_vma here because that is limited to the
2030 * guest address space. We are going to make the
2031 * guest address space fit whatever we're given.
2032 */
2033 real_start = (unsigned long)
2034 mmap((void *)current_start, host_size, PROT_NONE, flags, -1, 0);
2035 if (real_start == (unsigned long)-1) {
2036 return (unsigned long)-1;
2037 }
2038
2039 /* Check to see if the address is valid. */
2040 if (host_start && real_start != current_start) {
2041 goto try_again;
2042 }
2043
2044 /* Ensure the address is properly aligned. */
2045 if (real_start & ~qemu_host_page_mask) {
2046 /* Ideally, we adjust like
2047 *
2048 * pages: [ ][ ][ ][ ][ ]
2049 * old: [ real ]
2050 * [ aligned ]
2051 * new: [ real ]
2052 * [ aligned ]
2053 *
2054 * But if there is something else mapped right after it,
2055 * then obviously it won't have room to grow, and the
2056 * kernel will put the new larger real someplace else with
2057 * unknown alignment (if we made it to here, then
2058 * fixed=false). Which is why we grow real by a full page
2059 * size, instead of by part of one; so that even if we get
2060 * moved, we can still guarantee alignment. But this does
2061 * mean that there is a padding of < 1 page both before
2062 * and after the aligned range; the "after" could could
2063 * cause problems for ARM emulation where it could butt in
2064 * to where we need to put the commpage.
2065 */
2066 munmap((void *)real_start, host_size);
2067 real_size = aligned_size + qemu_host_page_size;
2068 real_start = (unsigned long)
2069 mmap((void *)real_start, real_size, PROT_NONE, flags, -1, 0);
2070 if (real_start == (unsigned long)-1) {
2071 return (unsigned long)-1;
2072 }
2073 aligned_start = HOST_PAGE_ALIGN(real_start);
2074 } else {
2075 aligned_start = real_start;
2076 }
2077
2078 #if defined(TARGET_ARM) && !defined(TARGET_AARCH64)
2079 /* On 32-bit ARM, we need to also be able to map the commpage. */
2080 int valid = init_guest_commpage(aligned_start - guest_start,
2081 aligned_size + guest_start);
2082 if (valid == -1) {
2083 munmap((void *)real_start, real_size);
2084 return (unsigned long)-1;
2085 } else if (valid == 0) {
2086 goto try_again;
2087 }
2088 #endif
2089
2090 /* If nothing has said `return -1` or `goto try_again` yet,
2091 * then the address we have is good.
2092 */
2093 break;
2094
2095 try_again:
2096 /* That address didn't work. Unmap and try a different one.
2097 * The address the host picked because is typically right at
2098 * the top of the host address space and leaves the guest with
2099 * no usable address space. Resort to a linear search. We
2100 * already compensated for mmap_min_addr, so this should not
2101 * happen often. Probably means we got unlucky and host
2102 * address space randomization put a shared library somewhere
2103 * inconvenient.
2104 *
2105 * This is probably a good strategy if host_start, but is
2106 * probably a bad strategy if not, which means we got here
2107 * because of trouble with ARM commpage setup.
2108 */
2109 munmap((void *)real_start, real_size);
2110 current_start += qemu_host_page_size;
2111 if (host_start == current_start) {
2112 /* Theoretically possible if host doesn't have any suitably
2113 * aligned areas. Normally the first mmap will fail.
2114 */
2115 return (unsigned long)-1;
2116 }
2117 }
2118
2119 qemu_log_mask(CPU_LOG_PAGE, "Reserved 0x%lx bytes of guest address space\n", host_size);
2120
2121 return aligned_start;
2122 }
2123
2124 static void probe_guest_base(const char *image_name,
2125 abi_ulong loaddr, abi_ulong hiaddr)
2126 {
2127 /* Probe for a suitable guest base address, if the user has not set
2128 * it explicitly, and set guest_base appropriately.
2129 * In case of error we will print a suitable message and exit.
2130 */
2131 const char *errmsg;
2132 if (!have_guest_base && !reserved_va) {
2133 unsigned long host_start, real_start, host_size;
2134
2135 /* Round addresses to page boundaries. */
2136 loaddr &= qemu_host_page_mask;
2137 hiaddr = HOST_PAGE_ALIGN(hiaddr);
2138
2139 if (loaddr < mmap_min_addr) {
2140 host_start = HOST_PAGE_ALIGN(mmap_min_addr);
2141 } else {
2142 host_start = loaddr;
2143 if (host_start != loaddr) {
2144 errmsg = "Address overflow loading ELF binary";
2145 goto exit_errmsg;
2146 }
2147 }
2148 host_size = hiaddr - loaddr;
2149
2150 /* Setup the initial guest memory space with ranges gleaned from
2151 * the ELF image that is being loaded.
2152 */
2153 real_start = init_guest_space(host_start, host_size, loaddr, false);
2154 if (real_start == (unsigned long)-1) {
2155 errmsg = "Unable to find space for application";
2156 goto exit_errmsg;
2157 }
2158 guest_base = real_start - loaddr;
2159
2160 qemu_log_mask(CPU_LOG_PAGE, "Relocating guest address space from 0x"
2161 TARGET_ABI_FMT_lx " to 0x%lx\n",
2162 loaddr, real_start);
2163 }
2164 return;
2165
2166 exit_errmsg:
2167 fprintf(stderr, "%s: %s\n", image_name, errmsg);
2168 exit(-1);
2169 }
2170
2171
2172 /* Load an ELF image into the address space.
2173
2174 IMAGE_NAME is the filename of the image, to use in error messages.
2175 IMAGE_FD is the open file descriptor for the image.
2176
2177 BPRM_BUF is a copy of the beginning of the file; this of course
2178 contains the elf file header at offset 0. It is assumed that this
2179 buffer is sufficiently aligned to present no problems to the host
2180 in accessing data at aligned offsets within the buffer.
2181
2182 On return: INFO values will be filled in, as necessary or available. */
2183
2184 static void load_elf_image(const char *image_name, int image_fd,
2185 struct image_info *info, char **pinterp_name,
2186 char bprm_buf[BPRM_BUF_SIZE])
2187 {
2188 struct elfhdr *ehdr = (struct elfhdr *)bprm_buf;
2189 struct elf_phdr *phdr;
2190 abi_ulong load_addr, load_bias, loaddr, hiaddr, error;
2191 int i, retval;
2192 const char *errmsg;
2193
2194 /* First of all, some simple consistency checks */
2195 errmsg = "Invalid ELF image for this architecture";
2196 if (!elf_check_ident(ehdr)) {
2197 goto exit_errmsg;
2198 }
2199 bswap_ehdr(ehdr);
2200 if (!elf_check_ehdr(ehdr)) {
2201 goto exit_errmsg;
2202 }
2203
2204 i = ehdr->e_phnum * sizeof(struct elf_phdr);
2205 if (ehdr->e_phoff + i <= BPRM_BUF_SIZE) {
2206 phdr = (struct elf_phdr *)(bprm_buf + ehdr->e_phoff);
2207 } else {
2208 phdr = (struct elf_phdr *) alloca(i);
2209 retval = pread(image_fd, phdr, i, ehdr->e_phoff);
2210 if (retval != i) {
2211 goto exit_read;
2212 }
2213 }
2214 bswap_phdr(phdr, ehdr->e_phnum);
2215
2216 info->nsegs = 0;
2217 info->pt_dynamic_addr = 0;
2218
2219 mmap_lock();
2220
2221 /* Find the maximum size of the image and allocate an appropriate
2222 amount of memory to handle that. */
2223 loaddr = -1, hiaddr = 0;
2224 info->alignment = 0;
2225 for (i = 0; i < ehdr->e_phnum; ++i) {
2226 if (phdr[i].p_type == PT_LOAD) {
2227 abi_ulong a = phdr[i].p_vaddr - phdr[i].p_offset;
2228 if (a < loaddr) {
2229 loaddr = a;
2230 }
2231 a = phdr[i].p_vaddr + phdr[i].p_memsz;
2232 if (a > hiaddr) {
2233 hiaddr = a;
2234 }
2235 ++info->nsegs;
2236 info->alignment |= phdr[i].p_align;
2237 }
2238 }
2239
2240 load_addr = loaddr;
2241 if (ehdr->e_type == ET_DYN) {
2242 /* The image indicates that it can be loaded anywhere. Find a
2243 location that can hold the memory space required. If the
2244 image is pre-linked, LOADDR will be non-zero. Since we do
2245 not supply MAP_FIXED here we'll use that address if and
2246 only if it remains available. */
2247 load_addr = target_mmap(loaddr, hiaddr - loaddr, PROT_NONE,
2248 MAP_PRIVATE | MAP_ANON | MAP_NORESERVE,
2249 -1, 0);
2250 if (load_addr == -1) {
2251 goto exit_perror;
2252 }
2253 } else if (pinterp_name != NULL) {
2254 /* This is the main executable. Make sure that the low
2255 address does not conflict with MMAP_MIN_ADDR or the
2256 QEMU application itself. */
2257 probe_guest_base(image_name, loaddr, hiaddr);
2258 }
2259 load_bias = load_addr - loaddr;
2260
2261 if (elf_is_fdpic(ehdr)) {
2262 struct elf32_fdpic_loadseg *loadsegs = info->loadsegs =
2263 g_malloc(sizeof(*loadsegs) * info->nsegs);
2264
2265 for (i = 0; i < ehdr->e_phnum; ++i) {
2266 switch (phdr[i].p_type) {
2267 case PT_DYNAMIC:
2268 info->pt_dynamic_addr = phdr[i].p_vaddr + load_bias;
2269 break;
2270 case PT_LOAD:
2271 loadsegs->addr = phdr[i].p_vaddr + load_bias;
2272 loadsegs->p_vaddr = phdr[i].p_vaddr;
2273 loadsegs->p_memsz = phdr[i].p_memsz;
2274 ++loadsegs;
2275 break;
2276 }
2277 }
2278 }
2279
2280 info->load_bias = load_bias;
2281 info->load_addr = load_addr;
2282 info->entry = ehdr->e_entry + load_bias;
2283 info->start_code = -1;
2284 info->end_code = 0;
2285 info->start_data = -1;
2286 info->end_data = 0;
2287 info->brk = 0;
2288 info->elf_flags = ehdr->e_flags;
2289
2290 for (i = 0; i < ehdr->e_phnum; i++) {
2291 struct elf_phdr *eppnt = phdr + i;
2292 if (eppnt->p_type == PT_LOAD) {
2293 abi_ulong vaddr, vaddr_po, vaddr_ps, vaddr_ef, vaddr_em, vaddr_len;
2294 int elf_prot = 0;
2295
2296 if (eppnt->p_flags & PF_R) elf_prot = PROT_READ;
2297 if (eppnt->p_flags & PF_W) elf_prot |= PROT_WRITE;
2298 if (eppnt->p_flags & PF_X) elf_prot |= PROT_EXEC;
2299
2300 vaddr = load_bias + eppnt->p_vaddr;
2301 vaddr_po = TARGET_ELF_PAGEOFFSET(vaddr);
2302 vaddr_ps = TARGET_ELF_PAGESTART(vaddr);
2303 vaddr_len = TARGET_ELF_PAGELENGTH(eppnt->p_filesz + vaddr_po);
2304
2305 error = target_mmap(vaddr_ps, vaddr_len,
2306 elf_prot, MAP_PRIVATE | MAP_FIXED,
2307 image_fd, eppnt->p_offset - vaddr_po);
2308 if (error == -1) {
2309 goto exit_perror;
2310 }
2311
2312 vaddr_ef = vaddr + eppnt->p_filesz;
2313 vaddr_em = vaddr + eppnt->p_memsz;
2314
2315 /* If the load segment requests extra zeros (e.g. bss), map it. */
2316 if (vaddr_ef < vaddr_em) {
2317 zero_bss(vaddr_ef, vaddr_em, elf_prot);
2318 }
2319
2320 /* Find the full program boundaries. */
2321 if (elf_prot & PROT_EXEC) {
2322 if (vaddr < info->start_code) {
2323 info->start_code = vaddr;
2324 }
2325 if (vaddr_ef > info->end_code) {
2326 info->end_code = vaddr_ef;
2327 }
2328 }
2329 if (elf_prot & PROT_WRITE) {
2330 if (vaddr < info->start_data) {
2331 info->start_data = vaddr;
2332 }
2333 if (vaddr_ef > info->end_data) {
2334 info->end_data = vaddr_ef;
2335 }
2336 if (vaddr_em > info->brk) {
2337 info->brk = vaddr_em;
2338 }
2339 }
2340 } else if (eppnt->p_type == PT_INTERP && pinterp_name) {
2341 char *interp_name;
2342
2343 if (*pinterp_name) {
2344 errmsg = "Multiple PT_INTERP entries";
2345 goto exit_errmsg;
2346 }
2347 interp_name = malloc(eppnt->p_filesz);
2348 if (!interp_name) {
2349 goto exit_perror;
2350 }
2351
2352 if (eppnt->p_offset + eppnt->p_filesz <= BPRM_BUF_SIZE) {
2353 memcpy(interp_name, bprm_buf + eppnt->p_offset,
2354 eppnt->p_filesz);
2355 } else {
2356 retval = pread(image_fd, interp_name, eppnt->p_filesz,
2357 eppnt->p_offset);
2358 if (retval != eppnt->p_filesz) {
2359 goto exit_perror;
2360 }
2361 }
2362 if (interp_name[eppnt->p_filesz - 1] != 0) {
2363 errmsg = "Invalid PT_INTERP entry";
2364 goto exit_errmsg;
2365 }
2366 *pinterp_name = interp_name;
2367 }
2368 }
2369
2370 if (info->end_data == 0) {
2371 info->start_data = info->end_code;
2372 info->end_data = info->end_code;
2373 info->brk = info->end_code;
2374 }
2375
2376 if (qemu_log_enabled()) {
2377 load_symbols(ehdr, image_fd, load_bias);
2378 }
2379
2380 mmap_unlock();
2381
2382 close(image_fd);
2383 return;
2384
2385 exit_read:
2386 if (retval >= 0) {
2387 errmsg = "Incomplete read of file header";
2388 goto exit_errmsg;
2389 }
2390 exit_perror:
2391 errmsg = strerror(errno);
2392 exit_errmsg:
2393 fprintf(stderr, "%s: %s\n", image_name, errmsg);
2394 exit(-1);
2395 }
2396
2397 static void load_elf_interp(const char *filename, struct image_info *info,
2398 char bprm_buf[BPRM_BUF_SIZE])
2399 {
2400 int fd, retval;
2401
2402 fd = open(path(filename), O_RDONLY);
2403 if (fd < 0) {
2404 goto exit_perror;
2405 }
2406
2407 retval = read(fd, bprm_buf, BPRM_BUF_SIZE);
2408 if (retval < 0) {
2409 goto exit_perror;
2410 }
2411 if (retval < BPRM_BUF_SIZE) {
2412 memset(bprm_buf + retval, 0, BPRM_BUF_SIZE - retval);
2413 }
2414
2415 load_elf_image(filename, fd, info, NULL, bprm_buf);
2416 return;
2417
2418 exit_perror:
2419 fprintf(stderr, "%s: %s\n", filename, strerror(errno));
2420 exit(-1);
2421 }
2422
2423 static int symfind(const void *s0, const void *s1)
2424 {
2425 target_ulong addr = *(target_ulong *)s0;
2426 struct elf_sym *sym = (struct elf_sym *)s1;
2427 int result = 0;
2428 if (addr < sym->st_value) {
2429 result = -1;
2430 } else if (addr >= sym->st_value + sym->st_size) {
2431 result = 1;
2432 }
2433 return result;
2434 }
2435
2436 static const char *lookup_symbolxx(struct syminfo *s, target_ulong orig_addr)
2437 {
2438 #if ELF_CLASS == ELFCLASS32
2439 struct elf_sym *syms = s->disas_symtab.elf32;
2440 #else
2441 struct elf_sym *syms = s->disas_symtab.elf64;
2442 #endif
2443
2444 // binary search
2445 struct elf_sym *sym;
2446
2447 sym = bsearch(&orig_addr, syms, s->disas_num_syms, sizeof(*syms), symfind);
2448 if (sym != NULL) {
2449 return s->disas_strtab + sym->st_name;
2450 }
2451
2452 return "";
2453 }
2454
2455 /* FIXME: This should use elf_ops.h */
2456 static int symcmp(const void *s0, const void *s1)
2457 {
2458 struct elf_sym *sym0 = (struct elf_sym *)s0;
2459 struct elf_sym *sym1 = (struct elf_sym *)s1;
2460 return (sym0->st_value < sym1->st_value)
2461 ? -1
2462 : ((sym0->st_value > sym1->st_value) ? 1 : 0);
2463 }
2464
2465 /* Best attempt to load symbols from this ELF object. */
2466 static void load_symbols(struct elfhdr *hdr, int fd, abi_ulong load_bias)
2467 {
2468 int i, shnum, nsyms, sym_idx = 0, str_idx = 0;
2469 uint64_t segsz;
2470 struct elf_shdr *shdr;
2471 char *strings = NULL;
2472 struct syminfo *s = NULL;
2473 struct elf_sym *new_syms, *syms = NULL;
2474
2475 shnum = hdr->e_shnum;
2476 i = shnum * sizeof(struct elf_shdr);
2477 shdr = (struct elf_shdr *)alloca(i);
2478 if (pread(fd, shdr, i, hdr->e_shoff) != i) {
2479 return;
2480 }
2481
2482 bswap_shdr(shdr, shnum);
2483 for (i = 0; i < shnum; ++i) {
2484 if (shdr[i].sh_type == SHT_SYMTAB) {
2485 sym_idx = i;
2486 str_idx = shdr[i].sh_link;
2487 goto found;
2488 }
2489 }
2490
2491 /* There will be no symbol table if the file was stripped. */
2492 return;
2493
2494 found:
2495 /* Now know where the strtab and symtab are. Snarf them. */
2496 s = g_try_new(struct syminfo, 1);
2497 if (!s) {
2498 goto give_up;
2499 }
2500
2501 segsz = shdr[str_idx].sh_size;
2502 s->disas_strtab = strings = g_try_malloc(segsz);
2503 if (!strings ||
2504 pread(fd, strings, segsz, shdr[str_idx].sh_offset) != segsz) {
2505 goto give_up;
2506 }
2507
2508 segsz = shdr[sym_idx].sh_size;
2509 syms = g_try_malloc(segsz);
2510 if (!syms || pread(fd, syms, segsz, shdr[sym_idx].sh_offset) != segsz) {
2511 goto give_up;
2512 }
2513
2514 if (segsz / sizeof(struct elf_sym) > INT_MAX) {
2515 /* Implausibly large symbol table: give up rather than ploughing
2516 * on with the number of symbols calculation overflowing
2517 */
2518 goto give_up;
2519 }
2520 nsyms = segsz / sizeof(struct elf_sym);
2521 for (i = 0; i < nsyms; ) {
2522 bswap_sym(syms + i);
2523 /* Throw away entries which we do not need. */
2524 if (syms[i].st_shndx == SHN_UNDEF
2525 || syms[i].st_shndx >= SHN_LORESERVE
2526 || ELF_ST_TYPE(syms[i].st_info) != STT_FUNC) {
2527 if (i < --nsyms) {
2528 syms[i] = syms[nsyms];
2529 }
2530 } else {
2531 #if defined(TARGET_ARM) || defined (TARGET_MIPS)
2532 /* The bottom address bit marks a Thumb or MIPS16 symbol. */
2533 syms[i].st_value &= ~(target_ulong)1;
2534 #endif
2535 syms[i].st_value += load_bias;
2536 i++;
2537 }
2538 }
2539
2540 /* No "useful" symbol. */
2541 if (nsyms == 0) {
2542 goto give_up;
2543 }
2544
2545 /* Attempt to free the storage associated with the local symbols
2546 that we threw away. Whether or not this has any effect on the
2547 memory allocation depends on the malloc implementation and how
2548 many symbols we managed to discard. */
2549 new_syms = g_try_renew(struct elf_sym, syms, nsyms);
2550 if (new_syms == NULL) {
2551 goto give_up;
2552 }
2553 syms = new_syms;
2554
2555 qsort(syms, nsyms, sizeof(*syms), symcmp);
2556
2557 s->disas_num_syms = nsyms;
2558 #if ELF_CLASS == ELFCLASS32
2559 s->disas_symtab.elf32 = syms;
2560 #else
2561 s->disas_symtab.elf64 = syms;
2562 #endif
2563 s->lookup_symbol = lookup_symbolxx;
2564 s->next = syminfos;
2565 syminfos = s;
2566
2567 return;
2568
2569 give_up:
2570 g_free(s);
2571 g_free(strings);
2572 g_free(syms);
2573 }
2574
2575 uint32_t get_elf_eflags(int fd)
2576 {
2577 struct elfhdr ehdr;
2578 off_t offset;
2579 int ret;
2580
2581 /* Read ELF header */
2582 offset = lseek(fd, 0, SEEK_SET);
2583 if (offset == (off_t) -1) {
2584 return 0;
2585 }
2586 ret = read(fd, &ehdr, sizeof(ehdr));
2587 if (ret < sizeof(ehdr)) {
2588 return 0;
2589 }
2590 offset = lseek(fd, offset, SEEK_SET);
2591 if (offset == (off_t) -1) {
2592 return 0;
2593 }
2594
2595 /* Check ELF signature */
2596 if (!elf_check_ident(&ehdr)) {
2597 return 0;
2598 }
2599
2600 /* check header */
2601 bswap_ehdr(&ehdr);
2602 if (!elf_check_ehdr(&ehdr)) {
2603 return 0;
2604 }
2605
2606 /* return architecture id */
2607 return ehdr.e_flags;
2608 }
2609
2610 int load_elf_binary(struct linux_binprm *bprm, struct image_info *info)
2611 {
2612 struct image_info interp_info;
2613 struct elfhdr elf_ex;
2614 char *elf_interpreter = NULL;
2615 char *scratch;
2616
2617 info->start_mmap = (abi_ulong)ELF_START_MMAP;
2618
2619 load_elf_image(bprm->filename, bprm->fd, info,
2620 &elf_interpreter, bprm->buf);
2621
2622 /* ??? We need a copy of the elf header for passing to create_elf_tables.
2623 If we do nothing, we'll have overwritten this when we re-use bprm->buf
2624 when we load the interpreter. */
2625 elf_ex = *(struct elfhdr *)bprm->buf;
2626
2627 /* Do this so that we can load the interpreter, if need be. We will
2628 change some of these later */
2629 bprm->p = setup_arg_pages(bprm, info);
2630
2631 scratch = g_new0(char, TARGET_PAGE_SIZE);
2632 if (STACK_GROWS_DOWN) {
2633 bprm->p = copy_elf_strings(1, &bprm->filename, scratch,
2634 bprm->p, info->stack_limit);
2635 info->file_string = bprm->p;
2636 bprm->p = copy_elf_strings(bprm->envc, bprm->envp, scratch,
2637 bprm->p, info->stack_limit);
2638 info->env_strings = bprm->p;
2639 bprm->p = copy_elf_strings(bprm->argc, bprm->argv, scratch,
2640 bprm->p, info->stack_limit);
2641 info->arg_strings = bprm->p;
2642 } else {
2643 info->arg_strings = bprm->p;
2644 bprm->p = copy_elf_strings(bprm->argc, bprm->argv, scratch,
2645 bprm->p, info->stack_limit);
2646 info->env_strings = bprm->p;
2647 bprm->p = copy_elf_strings(bprm->envc, bprm->envp, scratch,
2648 bprm->p, info->stack_limit);
2649 info->file_string = bprm->p;
2650 bprm->p = copy_elf_strings(1, &bprm->filename, scratch,
2651 bprm->p, info->stack_limit);
2652 }
2653
2654 g_free(scratch);
2655
2656 if (!bprm->p) {
2657 fprintf(stderr, "%s: %s\n", bprm->filename, strerror(E2BIG));
2658 exit(-1);
2659 }
2660
2661 if (elf_interpreter) {
2662 load_elf_interp(elf_interpreter, &interp_info, bprm->buf);
2663
2664 /* If the program interpreter is one of these two, then assume
2665 an iBCS2 image. Otherwise assume a native linux image. */
2666
2667 if (strcmp(elf_interpreter, "/usr/lib/libc.so.1") == 0
2668 || strcmp(elf_interpreter, "/usr/lib/ld.so.1") == 0) {
2669 info->personality = PER_SVR4;
2670
2671 /* Why this, you ask??? Well SVr4 maps page 0 as read-only,
2672 and some applications "depend" upon this behavior. Since
2673 we do not have the power to recompile these, we emulate
2674 the SVr4 behavior. Sigh. */
2675 target_mmap(0, qemu_host_page_size, PROT_READ | PROT_EXEC,
2676 MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
2677 }
2678 }
2679
2680 bprm->p = create_elf_tables(bprm->p, bprm->argc, bprm->envc, &elf_ex,
2681 info, (elf_interpreter ? &interp_info : NULL));
2682 info->start_stack = bprm->p;
2683
2684 /* If we have an interpreter, set that as the program's entry point.
2685 Copy the load_bias as well, to help PPC64 interpret the entry
2686 point as a function descriptor. Do this after creating elf tables
2687 so that we copy the original program entry point into the AUXV. */
2688 if (elf_interpreter) {
2689 info->load_bias = interp_info.load_bias;
2690 info->entry = interp_info.entry;
2691 free(elf_interpreter);
2692 }
2693
2694 #ifdef USE_ELF_CORE_DUMP
2695 bprm->core_dump = &elf_core_dump;
2696 #endif
2697
2698 return 0;
2699 }
2700
2701 #ifdef USE_ELF_CORE_DUMP
2702 /*
2703 * Definitions to generate Intel SVR4-like core files.
2704 * These mostly have the same names as the SVR4 types with "target_elf_"
2705 * tacked on the front to prevent clashes with linux definitions,
2706 * and the typedef forms have been avoided. This is mostly like
2707 * the SVR4 structure, but more Linuxy, with things that Linux does
2708 * not support and which gdb doesn't really use excluded.
2709 *
2710 * Fields we don't dump (their contents is zero) in linux-user qemu
2711 * are marked with XXX.
2712 *
2713 * Core dump code is copied from linux kernel (fs/binfmt_elf.c).
2714 *
2715 * Porting ELF coredump for target is (quite) simple process. First you
2716 * define USE_ELF_CORE_DUMP in target ELF code (where init_thread() for
2717 * the target resides):
2718 *
2719 * #define USE_ELF_CORE_DUMP
2720 *
2721 * Next you define type of register set used for dumping. ELF specification
2722 * says that it needs to be array of elf_greg_t that has size of ELF_NREG.
2723 *
2724 * typedef <target_regtype> target_elf_greg_t;
2725 * #define ELF_NREG <number of registers>
2726 * typedef taret_elf_greg_t target_elf_gregset_t[ELF_NREG];
2727 *
2728 * Last step is to implement target specific function that copies registers
2729 * from given cpu into just specified register set. Prototype is:
2730 *
2731 * static void elf_core_copy_regs(taret_elf_gregset_t *regs,
2732 * const CPUArchState *env);
2733 *
2734 * Parameters:
2735 * regs - copy register values into here (allocated and zeroed by caller)
2736 * env - copy registers from here
2737 *
2738 * Example for ARM target is provided in this file.
2739 */
2740
2741 /* An ELF note in memory */
2742 struct memelfnote {
2743 const char *name;
2744 size_t namesz;
2745 size_t namesz_rounded;
2746 int type;
2747 size_t datasz;
2748 size_t datasz_rounded;
2749 void *data;
2750 size_t notesz;
2751 };
2752
2753 struct target_elf_siginfo {
2754 abi_int si_signo; /* signal number */
2755 abi_int si_code; /* extra code */
2756 abi_int si_errno; /* errno */
2757 };
2758
2759 struct target_elf_prstatus {
2760 struct target_elf_siginfo pr_info; /* Info associated with signal */
2761 abi_short pr_cursig; /* Current signal */
2762 abi_ulong pr_sigpend; /* XXX */
2763 abi_ulong pr_sighold; /* XXX */
2764 target_pid_t pr_pid;
2765 target_pid_t pr_ppid;
2766 target_pid_t pr_pgrp;
2767 target_pid_t pr_sid;
2768 struct target_timeval pr_utime; /* XXX User time */
2769 struct target_timeval pr_stime; /* XXX System time */
2770 struct target_timeval pr_cutime; /* XXX Cumulative user time */
2771 struct target_timeval pr_cstime; /* XXX Cumulative system time */
2772 target_elf_gregset_t pr_reg; /* GP registers */
2773 abi_int pr_fpvalid; /* XXX */
2774 };
2775
2776 #define ELF_PRARGSZ (80) /* Number of chars for args */
2777
2778 struct target_elf_prpsinfo {
2779 char pr_state; /* numeric process state */
2780 char pr_sname; /* char for pr_state */
2781 char pr_zomb; /* zombie */
2782 char pr_nice; /* nice val */
2783 abi_ulong pr_flag; /* flags */
2784 target_uid_t pr_uid;
2785 target_gid_t pr_gid;
2786 target_pid_t pr_pid, pr_ppid, pr_pgrp, pr_sid;
2787 /* Lots missing */
2788 char pr_fname[16]; /* filename of executable */
2789 char pr_psargs[ELF_PRARGSZ]; /* initial part of arg list */
2790 };
2791
2792 /* Here is the structure in which status of each thread is captured. */
2793 struct elf_thread_status {
2794 QTAILQ_ENTRY(elf_thread_status) ets_link;
2795 struct target_elf_prstatus prstatus; /* NT_PRSTATUS */
2796 #if 0
2797 elf_fpregset_t fpu; /* NT_PRFPREG */
2798 struct task_struct *thread;
2799 elf_fpxregset_t xfpu; /* ELF_CORE_XFPREG_TYPE */
2800 #endif
2801 struct memelfnote notes[1];
2802 int num_notes;
2803 };
2804
2805 struct elf_note_info {
2806 struct memelfnote *notes;
2807 struct target_elf_prstatus *prstatus; /* NT_PRSTATUS */
2808 struct target_elf_prpsinfo *psinfo; /* NT_PRPSINFO */
2809
2810 QTAILQ_HEAD(thread_list_head, elf_thread_status) thread_list;
2811 #if 0
2812 /*
2813 * Current version of ELF coredump doesn't support
2814 * dumping fp regs etc.
2815 */
2816 elf_fpregset_t *fpu;
2817 elf_fpxregset_t *xfpu;
2818 int thread_status_size;
2819 #endif
2820 int notes_size;
2821 int numnote;
2822 };
2823
2824 struct vm_area_struct {
2825 target_ulong vma_start; /* start vaddr of memory region */
2826 target_ulong vma_end; /* end vaddr of memory region */
2827 abi_ulong vma_flags; /* protection etc. flags for the region */
2828 QTAILQ_ENTRY(vm_area_struct) vma_link;
2829 };
2830
2831 struct mm_struct {
2832 QTAILQ_HEAD(, vm_area_struct) mm_mmap;
2833 int mm_count; /* number of mappings */
2834 };
2835
2836 static struct mm_struct *vma_init(void);
2837 static void vma_delete(struct mm_struct *);
2838 static int vma_add_mapping(struct mm_struct *, target_ulong,
2839 target_ulong, abi_ulong);
2840 static int vma_get_mapping_count(const struct mm_struct *);
2841 static struct vm_area_struct *vma_first(const struct mm_struct *);
2842 static struct vm_area_struct *vma_next(struct vm_area_struct *);
2843 static abi_ulong vma_dump_size(const struct vm_area_struct *);
2844 static int vma_walker(void *priv, target_ulong start, target_ulong end,
2845 unsigned long flags);
2846
2847 static void fill_elf_header(struct elfhdr *, int, uint16_t, uint32_t);
2848 static void fill_note(struct memelfnote *, const char *, int,
2849 unsigned int, void *);
2850 static void fill_prstatus(struct target_elf_prstatus *, const TaskState *, int);
2851 static int fill_psinfo(struct target_elf_prpsinfo *, const TaskState *);
2852 static void fill_auxv_note(struct memelfnote *, const TaskState *);
2853 static void fill_elf_note_phdr(struct elf_phdr *, int, off_t);
2854 static size_t note_size(const struct memelfnote *);
2855 static void free_note_info(struct elf_note_info *);
2856 static int fill_note_info(struct elf_note_info *, long, const CPUArchState *);
2857 static void fill_thread_info(struct elf_note_info *, const CPUArchState *);
2858 static int core_dump_filename(const TaskState *, char *, size_t);
2859
2860 static int dump_write(int, const void *, size_t);
2861 static int write_note(struct memelfnote *, int);
2862 static int write_note_info(struct elf_note_info *, int);
2863
2864 #ifdef BSWAP_NEEDED
2865 static void bswap_prstatus(struct target_elf_prstatus *prstatus)
2866 {
2867 prstatus->pr_info.si_signo = tswap32(prstatus->pr_info.si_signo);
2868 prstatus->pr_info.si_code = tswap32(prstatus->pr_info.si_code);
2869 prstatus->pr_info.si_errno = tswap32(prstatus->pr_info.si_errno);
2870 prstatus->pr_cursig = tswap16(prstatus->pr_cursig);
2871 prstatus->pr_sigpend = tswapal(prstatus->pr_sigpend);
2872 prstatus->pr_sighold = tswapal(prstatus->pr_sighold);
2873 prstatus->pr_pid = tswap32(prstatus->pr_pid);
2874 prstatus->pr_ppid = tswap32(prstatus->pr_ppid);
2875 prstatus->pr_pgrp = tswap32(prstatus->pr_pgrp);
2876 prstatus->pr_sid = tswap32(prstatus->pr_sid);
2877 /* cpu times are not filled, so we skip them */
2878 /* regs should be in correct format already */
2879 prstatus->pr_fpvalid = tswap32(prstatus->pr_fpvalid);
2880 }
2881
2882 static void bswap_psinfo(struct target_elf_prpsinfo *psinfo)
2883 {
2884 psinfo->pr_flag = tswapal(psinfo->pr_flag);
2885 psinfo->pr_uid = tswap16(psinfo->pr_uid);
2886 psinfo->pr_gid = tswap16(psinfo->pr_gid);
2887 psinfo->pr_pid = tswap32(psinfo->pr_pid);
2888 psinfo->pr_ppid = tswap32(psinfo->pr_ppid);
2889 psinfo->pr_pgrp = tswap32(psinfo->pr_pgrp);
2890 psinfo->pr_sid = tswap32(psinfo->pr_sid);
2891 }
2892
2893 static void bswap_note(struct elf_note *en)
2894 {
2895 bswap32s(&en->n_namesz);
2896 bswap32s(&en->n_descsz);
2897 bswap32s(&en->n_type);
2898 }
2899 #else
2900 static inline void bswap_prstatus(struct target_elf_prstatus *p) { }
2901 static inline void bswap_psinfo(struct target_elf_prpsinfo *p) {}
2902 static inline void bswap_note(struct elf_note *en) { }
2903 #endif /* BSWAP_NEEDED */
2904
2905 /*
2906 * Minimal support for linux memory regions. These are needed
2907 * when we are finding out what memory exactly belongs to
2908 * emulated process. No locks needed here, as long as
2909 * thread that received the signal is stopped.
2910 */
2911
2912 static struct mm_struct *vma_init(void)
2913 {
2914 struct mm_struct *mm;
2915
2916 if ((mm = g_malloc(sizeof (*mm))) == NULL)
2917 return (NULL);
2918
2919 mm->mm_count = 0;
2920 QTAILQ_INIT(&mm->mm_mmap);
2921
2922 return (mm);
2923 }
2924
2925 static void vma_delete(struct mm_struct *mm)
2926 {
2927 struct vm_area_struct *vma;
2928
2929 while ((vma = vma_first(mm)) != NULL) {
2930 QTAILQ_REMOVE(&mm->mm_mmap, vma, vma_link);
2931 g_free(vma);
2932 }
2933 g_free(mm);
2934 }
2935
2936 static int vma_add_mapping(struct mm_struct *mm, target_ulong start,
2937 target_ulong end, abi_ulong flags)
2938 {
2939 struct vm_area_struct *vma;
2940
2941 if ((vma = g_malloc0(sizeof (*vma))) == NULL)
2942 return (-1);
2943
2944 vma->vma_start = start;
2945 vma->vma_end = end;
2946 vma->vma_flags = flags;
2947
2948 QTAILQ_INSERT_TAIL(&mm->mm_mmap, vma, vma_link);
2949 mm->mm_count++;
2950
2951 return (0);
2952 }
2953
2954 static struct vm_area_struct *vma_first(const struct mm_struct *mm)
2955 {
2956 return (QTAILQ_FIRST(&mm->mm_mmap));
2957 }
2958
2959 static struct vm_area_struct *vma_next(struct vm_area_struct *vma)
2960 {
2961 return (QTAILQ_NEXT(vma, vma_link));
2962 }
2963
2964 static int vma_get_mapping_count(const struct mm_struct *mm)
2965 {
2966 return (mm->mm_count);
2967 }
2968
2969 /*
2970 * Calculate file (dump) size of given memory region.
2971 */
2972 static abi_ulong vma_dump_size(const struct vm_area_struct *vma)
2973 {
2974 /* if we cannot even read the first page, skip it */
2975 if (!access_ok(VERIFY_READ, vma->vma_start, TARGET_PAGE_SIZE))
2976 return (0);
2977
2978 /*
2979 * Usually we don't dump executable pages as they contain
2980 * non-writable code that debugger can read directly from
2981 * target library etc. However, thread stacks are marked
2982 * also executable so we read in first page of given region
2983 * and check whether it contains elf header. If there is
2984 * no elf header, we dump it.
2985 */
2986 if (vma->vma_flags & PROT_EXEC) {
2987 char page[TARGET_PAGE_SIZE];
2988
2989 copy_from_user(page, vma->vma_start, sizeof (page));
2990 if ((page[EI_MAG0] == ELFMAG0) &&
2991 (page[EI_MAG1] == ELFMAG1) &&
2992 (page[EI_MAG2] == ELFMAG2) &&
2993 (page[EI_MAG3] == ELFMAG3)) {
2994 /*
2995 * Mappings are possibly from ELF binary. Don't dump
2996 * them.
2997 */
2998 return (0);
2999 }
3000 }
3001
3002 return (vma->vma_end - vma->vma_start);
3003 }
3004
3005 static int vma_walker(void *priv, target_ulong start, target_ulong end,
3006 unsigned long flags)
3007 {
3008 struct mm_struct *mm = (struct mm_struct *)priv;
3009
3010 vma_add_mapping(mm, start, end, flags);
3011 return (0);
3012 }
3013
3014 static void fill_note(struct memelfnote *note, const char *name, int type,
3015 unsigned int sz, void *data)
3016 {
3017 unsigned int namesz;
3018
3019 namesz = strlen(name) + 1;
3020 note->name = name;
3021 note->namesz = namesz;
3022 note->namesz_rounded = roundup(namesz, sizeof (int32_t));
3023 note->type = type;
3024 note->datasz = sz;
3025 note->datasz_rounded = roundup(sz, sizeof (int32_t));
3026
3027 note->data = data;
3028
3029 /*
3030 * We calculate rounded up note size here as specified by
3031 * ELF document.
3032 */
3033 note->notesz = sizeof (struct elf_note) +
3034 note->namesz_rounded + note->datasz_rounded;
3035 }
3036
3037 static void fill_elf_header(struct elfhdr *elf, int segs, uint16_t machine,
3038 uint32_t flags)
3039 {
3040 (void) memset(elf, 0, sizeof(*elf));
3041
3042 (void) memcpy(elf->e_ident, ELFMAG, SELFMAG);
3043 elf->e_ident[EI_CLASS] = ELF_CLASS;
3044 elf->e_ident[EI_DATA] = ELF_DATA;
3045 elf->e_ident[EI_VERSION] = EV_CURRENT;
3046 elf->e_ident[EI_OSABI] = ELF_OSABI;
3047
3048 elf->e_type = ET_CORE;
3049 elf->e_machine = machine;
3050 elf->e_version = EV_CURRENT;
3051 elf->e_phoff = sizeof(struct elfhdr);
3052 elf->e_flags = flags;
3053 elf->e_ehsize = sizeof(struct elfhdr);
3054 elf->e_phentsize = sizeof(struct elf_phdr);
3055 elf->e_phnum = segs;
3056
3057 bswap_ehdr(elf);
3058 }
3059
3060 static void fill_elf_note_phdr(struct elf_phdr *phdr, int sz, off_t offset)
3061 {
3062 phdr->p_type = PT_NOTE;
3063 phdr->p_offset = offset;
3064 phdr->p_vaddr = 0;
3065 phdr->p_paddr = 0;
3066 phdr->p_filesz = sz;
3067 phdr->p_memsz = 0;
3068 phdr->p_flags = 0;
3069 phdr->p_align = 0;
3070
3071 bswap_phdr(phdr, 1);
3072 }
3073
3074 static size_t note_size(const struct memelfnote *note)
3075 {
3076 return (note->notesz);
3077 }
3078
3079 static void fill_prstatus(struct target_elf_prstatus *prstatus,
3080 const TaskState *ts, int signr)
3081 {
3082 (void) memset(prstatus, 0, sizeof (*prstatus));
3083 prstatus->pr_info.si_signo = prstatus->pr_cursig = signr;
3084 prstatus->pr_pid = ts->ts_tid;
3085 prstatus->pr_ppid = getppid();
3086 prstatus->pr_pgrp = getpgrp();
3087 prstatus->pr_sid = getsid(0);
3088
3089 bswap_prstatus(prstatus);
3090 }
3091
3092 static int fill_psinfo(struct target_elf_prpsinfo *psinfo, const TaskState *ts)
3093 {
3094 char *base_filename;
3095 unsigned int i, len;
3096
3097 (void) memset(psinfo, 0, sizeof (*psinfo));
3098
3099 len = ts->info->arg_end - ts->info->arg_start;
3100 if (len >= ELF_PRARGSZ)
3101 len = ELF_PRARGSZ - 1;
3102 if (copy_from_user(&psinfo->pr_psargs, ts->info->arg_start, len))
3103 return -EFAULT;
3104 for (i = 0; i < len; i++)
3105 if (psinfo->pr_psargs[i] == 0)
3106 psinfo->pr_psargs[i] = ' ';
3107 psinfo->pr_psargs[len] = 0;
3108
3109 psinfo->pr_pid = getpid();
3110 psinfo->pr_ppid = getppid();
3111 psinfo->pr_pgrp = getpgrp();
3112 psinfo->pr_sid = getsid(0);
3113 psinfo->pr_uid = getuid();
3114 psinfo->pr_gid = getgid();
3115
3116 base_filename = g_path_get_basename(ts->bprm->filename);
3117 /*
3118 * Using strncpy here is fine: at max-length,
3119 * this field is not NUL-terminated.
3120 */
3121 (void) strncpy(psinfo->pr_fname, base_filename,
3122 sizeof(psinfo->pr_fname));
3123
3124 g_free(base_filename);
3125 bswap_psinfo(psinfo);
3126 return (0);
3127 }
3128
3129 static void fill_auxv_note(struct memelfnote *note, const TaskState *ts)
3130 {
3131 elf_addr_t auxv = (elf_addr_t)ts->info->saved_auxv;
3132 elf_addr_t orig_auxv = auxv;
3133 void *ptr;
3134 int len = ts->info->auxv_len;
3135
3136 /*
3137 * Auxiliary vector is stored in target process stack. It contains
3138 * {type, value} pairs that we need to dump into note. This is not
3139 * strictly necessary but we do it here for sake of completeness.
3140 */
3141
3142 /* read in whole auxv vector and copy it to memelfnote */
3143 ptr = lock_user(VERIFY_READ, orig_auxv, len, 0);
3144 if (ptr != NULL) {
3145 fill_note(note, "CORE", NT_AUXV, len, ptr);
3146 unlock_user(ptr, auxv, len);
3147 }
3148 }
3149
3150 /*
3151 * Constructs name of coredump file. We have following convention
3152 * for the name:
3153 * qemu_<basename-of-target-binary>_<date>-<time>_<pid>.core
3154 *
3155 * Returns 0 in case of success, -1 otherwise (errno is set).
3156 */
3157 static int core_dump_filename(const TaskState *ts, char *buf,
3158 size_t bufsize)
3159 {
3160 char timestamp[64];
3161 char *base_filename = NULL;
3162 struct timeval tv;
3163 struct tm tm;
3164
3165 assert(bufsize >= PATH_MAX);
3166
3167 if (gettimeofday(&tv, NULL) < 0) {
3168 (void) fprintf(stderr, "unable to get current timestamp: %s",
3169 strerror(errno));
3170 return (-1);
3171 }
3172
3173 base_filename = g_path_get_basename(ts->bprm->filename);
3174 (void) strftime(timestamp, sizeof (timestamp), "%Y%m%d-%H%M%S",
3175 localtime_r(&tv.tv_sec, &tm));
3176 (void) snprintf(buf, bufsize, "qemu_%s_%s_%d.core",
3177 base_filename, timestamp, (int)getpid());
3178 g_free(base_filename);
3179
3180 return (0);
3181 }
3182
3183 static int dump_write(int fd, const void *ptr, size_t size)
3184 {
3185 const char *bufp = (const char *)ptr;
3186 ssize_t bytes_written, bytes_left;
3187 struct rlimit dumpsize;
3188 off_t pos;
3189
3190 bytes_written = 0;
3191 getrlimit(RLIMIT_CORE, &dumpsize);
3192 if ((pos = lseek(fd, 0, SEEK_CUR))==-1) {
3193 if (errno == ESPIPE) { /* not a seekable stream */
3194 bytes_left = size;
3195 } else {
3196 return pos;
3197 }
3198 } else {
3199 if (dumpsize.rlim_cur <= pos) {
3200 return -1;
3201 } else if (dumpsize.rlim_cur == RLIM_INFINITY) {
3202 bytes_left = size;
3203 } else {
3204 size_t limit_left=dumpsize.rlim_cur - pos;
3205 bytes_left = limit_left >= size ? size : limit_left ;
3206 }
3207 }
3208
3209 /*
3210 * In normal conditions, single write(2) should do but
3211 * in case of socket etc. this mechanism is more portable.
3212 */
3213 do {
3214 bytes_written = write(fd, bufp, bytes_left);
3215 if (bytes_written < 0) {
3216 if (errno == EINTR)
3217 continue;
3218 return (-1);
3219 } else if (bytes_written == 0) { /* eof */
3220 return (-1);
3221 }
3222 bufp += bytes_written;
3223 bytes_left -= bytes_written;
3224 } while (bytes_left > 0);
3225
3226 return (0);
3227 }
3228
3229 static int write_note(struct memelfnote *men, int fd)
3230 {
3231 struct elf_note en;
3232
3233 en.n_namesz = men->namesz;
3234 en.n_type = men->type;
3235 en.n_descsz = men->datasz;
3236
3237 bswap_note(&en);
3238
3239 if (dump_write(fd, &en, sizeof(en)) != 0)
3240 return (-1);
3241 if (dump_write(fd, men->name, men->namesz_rounded) != 0)
3242 return (-1);
3243 if (dump_write(fd, men->data, men->datasz_rounded) != 0)
3244 return (-1);
3245
3246 return (0);
3247 }
3248
3249 static void fill_thread_info(struct elf_note_info *info, const CPUArchState *env)
3250 {
3251 CPUState *cpu = ENV_GET_CPU((CPUArchState *)env);
3252 TaskState *ts = (TaskState *)cpu->opaque;
3253 struct elf_thread_status *ets;
3254
3255 ets = g_malloc0(sizeof (*ets));
3256 ets->num_notes = 1; /* only prstatus is dumped */
3257 fill_prstatus(&ets->prstatus, ts, 0);
3258 elf_core_copy_regs(&ets->prstatus.pr_reg, env);
3259 fill_note(&ets->notes[0], "CORE", NT_PRSTATUS, sizeof (ets->prstatus),
3260 &ets->prstatus);
3261
3262 QTAILQ_INSERT_TAIL(&info->thread_list, ets, ets_link);
3263
3264 info->notes_size += note_size(&ets->notes[0]);
3265 }
3266
3267 static void init_note_info(struct elf_note_info *info)
3268 {
3269 /* Initialize the elf_note_info structure so that it is at
3270 * least safe to call free_note_info() on it. Must be
3271 * called before calling fill_note_info().
3272 */
3273 memset(info, 0, sizeof (*info));
3274 QTAILQ_INIT(&info->thread_list);
3275 }
3276
3277 static int fill_note_info(struct elf_note_info *info,
3278 long signr, const CPUArchState *env)
3279 {
3280 #define NUMNOTES 3
3281 CPUState *cpu = ENV_GET_CPU((CPUArchState *)env);
3282 TaskState *ts = (TaskState *)cpu->opaque;
3283 int i;
3284
3285 info->notes = g_new0(struct memelfnote, NUMNOTES);
3286 if (info->notes == NULL)
3287 return (-ENOMEM);
3288 info->prstatus = g_malloc0(sizeof (*info->prstatus));
3289 if (info->prstatus == NULL)
3290 return (-ENOMEM);
3291 info->psinfo = g_malloc0(sizeof (*info->psinfo));
3292 if (info->prstatus == NULL)
3293 return (-ENOMEM);
3294
3295 /*
3296 * First fill in status (and registers) of current thread
3297 * including process info & aux vector.
3298 */
3299 fill_prstatus(info->prstatus, ts, signr);
3300 elf_core_copy_regs(&info->prstatus->pr_reg, env);
3301 fill_note(&info->notes[0], "CORE", NT_PRSTATUS,
3302 sizeof (*info->prstatus), info->prstatus);
3303 fill_psinfo(info->psinfo, ts);
3304 fill_note(&info->notes[1], "CORE", NT_PRPSINFO,
3305 sizeof (*info->psinfo), info->psinfo);
3306 fill_auxv_note(&info->notes[2], ts);
3307 info->numnote = 3;
3308
3309 info->notes_size = 0;
3310 for (i = 0; i < info->numnote; i++)
3311 info->notes_size += note_size(&info->notes[i]);
3312
3313 /* read and fill status of all threads */
3314 cpu_list_lock();
3315 CPU_FOREACH(cpu) {
3316 if (cpu == thread_cpu) {
3317 continue;
3318 }
3319 fill_thread_info(info, (CPUArchState *)cpu->env_ptr);
3320 }
3321 cpu_list_unlock();
3322
3323 return (0);
3324 }
3325
3326 static void free_note_info(struct elf_note_info *info)
3327 {
3328 struct elf_thread_status *ets;
3329
3330 while (!QTAILQ_EMPTY(&info->thread_list)) {
3331 ets = QTAILQ_FIRST(&info->thread_list);
3332 QTAILQ_REMOVE(&info->thread_list, ets, ets_link);
3333 g_free(ets);
3334 }
3335
3336 g_free(info->prstatus);
3337 g_free(info->psinfo);
3338 g_free(info->notes);
3339 }
3340
3341 static int write_note_info(struct elf_note_info *info, int fd)
3342 {
3343 struct elf_thread_status *ets;
3344 int i, error = 0;
3345
3346 /* write prstatus, psinfo and auxv for current thread */
3347 for (i = 0; i < info->numnote; i++)
3348 if ((error = write_note(&info->notes[i], fd)) != 0)
3349 return (error);
3350
3351 /* write prstatus for each thread */
3352 QTAILQ_FOREACH(ets, &info->thread_list, ets_link) {
3353 if ((error = write_note(&ets->notes[0], fd)) != 0)
3354 return (error);
3355 }
3356
3357 return (0);
3358 }
3359
3360 /*
3361 * Write out ELF coredump.
3362 *
3363 * See documentation of ELF object file format in:
3364 * http://www.caldera.com/developers/devspecs/gabi41.pdf
3365 *
3366 * Coredump format in linux is following:
3367 *
3368 * 0 +----------------------+ \
3369 * | ELF header | ET_CORE |
3370 * +----------------------+ |
3371 * | ELF program headers | |--- headers
3372 * | - NOTE section | |
3373 * | - PT_LOAD sections | |
3374 * +----------------------+ /
3375 * | NOTEs: |
3376 * | - NT_PRSTATUS |
3377 * | - NT_PRSINFO |
3378 * | - NT_AUXV |
3379 * +----------------------+ <-- aligned to target page
3380 * | Process memory dump |
3381 * : :
3382 * . .
3383 * : :
3384 * | |
3385 * +----------------------+
3386 *
3387 * NT_PRSTATUS -> struct elf_prstatus (per thread)
3388 * NT_PRSINFO -> struct elf_prpsinfo
3389 * NT_AUXV is array of { type, value } pairs (see fill_auxv_note()).
3390 *
3391 * Format follows System V format as close as possible. Current
3392 * version limitations are as follows:
3393 * - no floating point registers are dumped
3394 *
3395 * Function returns 0 in case of success, negative errno otherwise.
3396 *
3397 * TODO: make this work also during runtime: it should be
3398 * possible to force coredump from running process and then
3399 * continue processing. For example qemu could set up SIGUSR2
3400 * handler (provided that target process haven't registered
3401 * handler for that) that does the dump when signal is received.
3402 */
3403 static int elf_core_dump(int signr, const CPUArchState *env)
3404 {
3405 const CPUState *cpu = ENV_GET_CPU((CPUArchState *)env);
3406 const TaskState *ts = (const TaskState *)cpu->opaque;
3407 struct vm_area_struct *vma = NULL;
3408 char corefile[PATH_MAX];
3409 struct elf_note_info info;
3410 struct elfhdr elf;
3411 struct elf_phdr phdr;
3412 struct rlimit dumpsize;
3413 struct mm_struct *mm = NULL;
3414 off_t offset = 0, data_offset = 0;
3415 int segs = 0;
3416 int fd = -1;
3417
3418 init_note_info(&info);
3419
3420 errno = 0;
3421 getrlimit(RLIMIT_CORE, &dumpsize);
3422 if (dumpsize.rlim_cur == 0)
3423 return 0;
3424
3425 if (core_dump_filename(ts, corefile, sizeof (corefile)) < 0)
3426 return (-errno);
3427
3428 if ((fd = open(corefile, O_WRONLY | O_CREAT,
3429 S_IRUSR|S_IWUSR|S_IRGRP|S_IROTH)) < 0)
3430 return (-errno);
3431
3432 /*
3433 * Walk through target process memory mappings and
3434 * set up structure containing this information. After
3435 * this point vma_xxx functions can be used.
3436 */
3437 if ((mm = vma_init()) == NULL)
3438 goto out;
3439
3440 walk_memory_regions(mm, vma_walker);
3441 segs = vma_get_mapping_count(mm);
3442
3443 /*
3444 * Construct valid coredump ELF header. We also
3445 * add one more segment for notes.
3446 */
3447 fill_elf_header(&elf, segs + 1, ELF_MACHINE, 0);
3448 if (dump_write(fd, &elf, sizeof (elf)) != 0)
3449 goto out;
3450
3451 /* fill in the in-memory version of notes */
3452 if (fill_note_info(&info, signr, env) < 0)
3453 goto out;
3454
3455 offset += sizeof (elf); /* elf header */
3456 offset += (segs + 1) * sizeof (struct elf_phdr); /* program headers */
3457
3458 /* write out notes program header */
3459 fill_elf_note_phdr(&phdr, info.notes_size, offset);
3460
3461 offset += info.notes_size;
3462 if (dump_write(fd, &phdr, sizeof (phdr)) != 0)
3463 goto out;
3464
3465 /*
3466 * ELF specification wants data to start at page boundary so
3467 * we align it here.
3468 */
3469 data_offset = offset = roundup(offset, ELF_EXEC_PAGESIZE);
3470
3471 /*
3472 * Write program headers for memory regions mapped in
3473 * the target process.
3474 */
3475 for (vma = vma_first(mm); vma != NULL; vma = vma_next(vma)) {
3476 (void) memset(&phdr, 0, sizeof (phdr));
3477
3478 phdr.p_type = PT_LOAD;
3479 phdr.p_offset = offset;
3480 phdr.p_vaddr = vma->vma_start;
3481 phdr.p_paddr = 0;
3482 phdr.p_filesz = vma_dump_size(vma);
3483 offset += phdr.p_filesz;
3484 phdr.p_memsz = vma->vma_end - vma->vma_start;
3485 phdr.p_flags = vma->vma_flags & PROT_READ ? PF_R : 0;
3486 if (vma->vma_flags & PROT_WRITE)
3487 phdr.p_flags |= PF_W;
3488 if (vma->vma_flags & PROT_EXEC)
3489 phdr.p_flags |= PF_X;
3490 phdr.p_align = ELF_EXEC_PAGESIZE;
3491
3492 bswap_phdr(&phdr, 1);
3493 if (dump_write(fd, &phdr, sizeof(phdr)) != 0) {
3494 goto out;
3495 }
3496 }
3497
3498 /*
3499 * Next we write notes just after program headers. No
3500 * alignment needed here.
3501 */
3502 if (write_note_info(&info, fd) < 0)
3503 goto out;
3504
3505 /* align data to page boundary */
3506 if (lseek(fd, data_offset, SEEK_SET) != data_offset)
3507 goto out;
3508
3509 /*
3510 * Finally we can dump process memory into corefile as well.
3511 */
3512 for (vma = vma_first(mm); vma != NULL; vma = vma_next(vma)) {
3513 abi_ulong addr;
3514 abi_ulong end;
3515
3516 end = vma->vma_start + vma_dump_size(vma);
3517
3518 for (addr = vma->vma_start; addr < end;
3519 addr += TARGET_PAGE_SIZE) {
3520 char page[TARGET_PAGE_SIZE];
3521 int error;
3522
3523 /*
3524 * Read in page from target process memory and
3525 * write it to coredump file.
3526 */
3527 error = copy_from_user(page, addr, sizeof (page));
3528 if (error != 0) {
3529 (void) fprintf(stderr, "unable to dump " TARGET_ABI_FMT_lx "\n",
3530 addr);
3531 errno = -error;
3532 goto out;
3533 }
3534 if (dump_write(fd, page, TARGET_PAGE_SIZE) < 0)
3535 goto out;
3536 }
3537 }
3538
3539 out:
3540 free_note_info(&info);
3541 if (mm != NULL)
3542 vma_delete(mm);
3543 (void) close(fd);
3544
3545 if (errno != 0)
3546 return (-errno);
3547 return (0);
3548 }
3549 #endif /* USE_ELF_CORE_DUMP */
3550
3551 void do_init_thread(struct target_pt_regs *regs, struct image_info *infop)
3552 {
3553 init_thread(regs, infop);
3554 }