]> git.proxmox.com Git - mirror_qemu.git/blob - linux-user/syscall.c
Merge tag 'pull-ppc-20230906' of https://github.com/legoater/qemu into staging
[mirror_qemu.git] / linux-user / syscall.c
1 /*
2 * Linux syscalls
3 *
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, see <http://www.gnu.org/licenses/>.
18 */
19 #define _ATFILE_SOURCE
20 #include "qemu/osdep.h"
21 #include "qemu/cutils.h"
22 #include "qemu/path.h"
23 #include "qemu/memfd.h"
24 #include "qemu/queue.h"
25 #include "qemu/plugin.h"
26 #include "target_mman.h"
27 #include <elf.h>
28 #include <endian.h>
29 #include <grp.h>
30 #include <sys/ipc.h>
31 #include <sys/msg.h>
32 #include <sys/wait.h>
33 #include <sys/mount.h>
34 #include <sys/file.h>
35 #include <sys/fsuid.h>
36 #include <sys/personality.h>
37 #include <sys/prctl.h>
38 #include <sys/resource.h>
39 #include <sys/swap.h>
40 #include <linux/capability.h>
41 #include <sched.h>
42 #include <sys/timex.h>
43 #include <sys/socket.h>
44 #include <linux/sockios.h>
45 #include <sys/un.h>
46 #include <sys/uio.h>
47 #include <poll.h>
48 #include <sys/times.h>
49 #include <sys/shm.h>
50 #include <sys/sem.h>
51 #include <sys/statfs.h>
52 #include <utime.h>
53 #include <sys/sysinfo.h>
54 #include <sys/signalfd.h>
55 //#include <sys/user.h>
56 #include <netinet/in.h>
57 #include <netinet/ip.h>
58 #include <netinet/tcp.h>
59 #include <netinet/udp.h>
60 #include <linux/wireless.h>
61 #include <linux/icmp.h>
62 #include <linux/icmpv6.h>
63 #include <linux/if_tun.h>
64 #include <linux/in6.h>
65 #include <linux/errqueue.h>
66 #include <linux/random.h>
67 #ifdef CONFIG_TIMERFD
68 #include <sys/timerfd.h>
69 #endif
70 #ifdef CONFIG_EVENTFD
71 #include <sys/eventfd.h>
72 #endif
73 #ifdef CONFIG_EPOLL
74 #include <sys/epoll.h>
75 #endif
76 #ifdef CONFIG_ATTR
77 #include "qemu/xattr.h"
78 #endif
79 #ifdef CONFIG_SENDFILE
80 #include <sys/sendfile.h>
81 #endif
82 #ifdef HAVE_SYS_KCOV_H
83 #include <sys/kcov.h>
84 #endif
85
86 #define termios host_termios
87 #define winsize host_winsize
88 #define termio host_termio
89 #define sgttyb host_sgttyb /* same as target */
90 #define tchars host_tchars /* same as target */
91 #define ltchars host_ltchars /* same as target */
92
93 #include <linux/termios.h>
94 #include <linux/unistd.h>
95 #include <linux/cdrom.h>
96 #include <linux/hdreg.h>
97 #include <linux/soundcard.h>
98 #include <linux/kd.h>
99 #include <linux/mtio.h>
100 #include <linux/fs.h>
101 #include <linux/fd.h>
102 #if defined(CONFIG_FIEMAP)
103 #include <linux/fiemap.h>
104 #endif
105 #include <linux/fb.h>
106 #if defined(CONFIG_USBFS)
107 #include <linux/usbdevice_fs.h>
108 #include <linux/usb/ch9.h>
109 #endif
110 #include <linux/vt.h>
111 #include <linux/dm-ioctl.h>
112 #include <linux/reboot.h>
113 #include <linux/route.h>
114 #include <linux/filter.h>
115 #include <linux/blkpg.h>
116 #include <netpacket/packet.h>
117 #include <linux/netlink.h>
118 #include <linux/if_alg.h>
119 #include <linux/rtc.h>
120 #include <sound/asound.h>
121 #ifdef HAVE_BTRFS_H
122 #include <linux/btrfs.h>
123 #endif
124 #ifdef HAVE_DRM_H
125 #include <libdrm/drm.h>
126 #include <libdrm/i915_drm.h>
127 #endif
128 #include "linux_loop.h"
129 #include "uname.h"
130
131 #include "qemu.h"
132 #include "user-internals.h"
133 #include "strace.h"
134 #include "signal-common.h"
135 #include "loader.h"
136 #include "user-mmap.h"
137 #include "user/safe-syscall.h"
138 #include "qemu/guest-random.h"
139 #include "qemu/selfmap.h"
140 #include "user/syscall-trace.h"
141 #include "special-errno.h"
142 #include "qapi/error.h"
143 #include "fd-trans.h"
144 #include "tcg/tcg.h"
145 #include "cpu_loop-common.h"
146
147 #ifndef CLONE_IO
148 #define CLONE_IO 0x80000000 /* Clone io context */
149 #endif
150
151 /* We can't directly call the host clone syscall, because this will
152 * badly confuse libc (breaking mutexes, for example). So we must
153 * divide clone flags into:
154 * * flag combinations that look like pthread_create()
155 * * flag combinations that look like fork()
156 * * flags we can implement within QEMU itself
157 * * flags we can't support and will return an error for
158 */
159 /* For thread creation, all these flags must be present; for
160 * fork, none must be present.
161 */
162 #define CLONE_THREAD_FLAGS \
163 (CLONE_VM | CLONE_FS | CLONE_FILES | \
164 CLONE_SIGHAND | CLONE_THREAD | CLONE_SYSVSEM)
165
166 /* These flags are ignored:
167 * CLONE_DETACHED is now ignored by the kernel;
168 * CLONE_IO is just an optimisation hint to the I/O scheduler
169 */
170 #define CLONE_IGNORED_FLAGS \
171 (CLONE_DETACHED | CLONE_IO)
172
173 #ifndef CLONE_PIDFD
174 # define CLONE_PIDFD 0x00001000
175 #endif
176
177 /* Flags for fork which we can implement within QEMU itself */
178 #define CLONE_OPTIONAL_FORK_FLAGS \
179 (CLONE_SETTLS | CLONE_PARENT_SETTID | CLONE_PIDFD | \
180 CLONE_CHILD_CLEARTID | CLONE_CHILD_SETTID)
181
182 /* Flags for thread creation which we can implement within QEMU itself */
183 #define CLONE_OPTIONAL_THREAD_FLAGS \
184 (CLONE_SETTLS | CLONE_PARENT_SETTID | \
185 CLONE_CHILD_CLEARTID | CLONE_CHILD_SETTID | CLONE_PARENT)
186
187 #define CLONE_INVALID_FORK_FLAGS \
188 (~(CSIGNAL | CLONE_OPTIONAL_FORK_FLAGS | CLONE_IGNORED_FLAGS))
189
190 #define CLONE_INVALID_THREAD_FLAGS \
191 (~(CSIGNAL | CLONE_THREAD_FLAGS | CLONE_OPTIONAL_THREAD_FLAGS | \
192 CLONE_IGNORED_FLAGS))
193
194 /* CLONE_VFORK is special cased early in do_fork(). The other flag bits
195 * have almost all been allocated. We cannot support any of
196 * CLONE_NEWNS, CLONE_NEWCGROUP, CLONE_NEWUTS, CLONE_NEWIPC,
197 * CLONE_NEWUSER, CLONE_NEWPID, CLONE_NEWNET, CLONE_PTRACE, CLONE_UNTRACED.
198 * The checks against the invalid thread masks above will catch these.
199 * (The one remaining unallocated bit is 0x1000 which used to be CLONE_PID.)
200 */
201
202 /* Define DEBUG_ERESTARTSYS to force every syscall to be restarted
203 * once. This exercises the codepaths for restart.
204 */
205 //#define DEBUG_ERESTARTSYS
206
207 //#include <linux/msdos_fs.h>
208 #define VFAT_IOCTL_READDIR_BOTH \
209 _IOC(_IOC_READ, 'r', 1, (sizeof(struct linux_dirent) + 256) * 2)
210 #define VFAT_IOCTL_READDIR_SHORT \
211 _IOC(_IOC_READ, 'r', 2, (sizeof(struct linux_dirent) + 256) * 2)
212
213 #undef _syscall0
214 #undef _syscall1
215 #undef _syscall2
216 #undef _syscall3
217 #undef _syscall4
218 #undef _syscall5
219 #undef _syscall6
220
221 #define _syscall0(type,name) \
222 static type name (void) \
223 { \
224 return syscall(__NR_##name); \
225 }
226
227 #define _syscall1(type,name,type1,arg1) \
228 static type name (type1 arg1) \
229 { \
230 return syscall(__NR_##name, arg1); \
231 }
232
233 #define _syscall2(type,name,type1,arg1,type2,arg2) \
234 static type name (type1 arg1,type2 arg2) \
235 { \
236 return syscall(__NR_##name, arg1, arg2); \
237 }
238
239 #define _syscall3(type,name,type1,arg1,type2,arg2,type3,arg3) \
240 static type name (type1 arg1,type2 arg2,type3 arg3) \
241 { \
242 return syscall(__NR_##name, arg1, arg2, arg3); \
243 }
244
245 #define _syscall4(type,name,type1,arg1,type2,arg2,type3,arg3,type4,arg4) \
246 static type name (type1 arg1,type2 arg2,type3 arg3,type4 arg4) \
247 { \
248 return syscall(__NR_##name, arg1, arg2, arg3, arg4); \
249 }
250
251 #define _syscall5(type,name,type1,arg1,type2,arg2,type3,arg3,type4,arg4, \
252 type5,arg5) \
253 static type name (type1 arg1,type2 arg2,type3 arg3,type4 arg4,type5 arg5) \
254 { \
255 return syscall(__NR_##name, arg1, arg2, arg3, arg4, arg5); \
256 }
257
258
259 #define _syscall6(type,name,type1,arg1,type2,arg2,type3,arg3,type4,arg4, \
260 type5,arg5,type6,arg6) \
261 static type name (type1 arg1,type2 arg2,type3 arg3,type4 arg4,type5 arg5, \
262 type6 arg6) \
263 { \
264 return syscall(__NR_##name, arg1, arg2, arg3, arg4, arg5, arg6); \
265 }
266
267
268 #define __NR_sys_uname __NR_uname
269 #define __NR_sys_getcwd1 __NR_getcwd
270 #define __NR_sys_getdents __NR_getdents
271 #define __NR_sys_getdents64 __NR_getdents64
272 #define __NR_sys_getpriority __NR_getpriority
273 #define __NR_sys_rt_sigqueueinfo __NR_rt_sigqueueinfo
274 #define __NR_sys_rt_tgsigqueueinfo __NR_rt_tgsigqueueinfo
275 #define __NR_sys_syslog __NR_syslog
276 #if defined(__NR_futex)
277 # define __NR_sys_futex __NR_futex
278 #endif
279 #if defined(__NR_futex_time64)
280 # define __NR_sys_futex_time64 __NR_futex_time64
281 #endif
282 #define __NR_sys_statx __NR_statx
283
284 #if defined(__alpha__) || defined(__x86_64__) || defined(__s390x__)
285 #define __NR__llseek __NR_lseek
286 #endif
287
288 /* Newer kernel ports have llseek() instead of _llseek() */
289 #if defined(TARGET_NR_llseek) && !defined(TARGET_NR__llseek)
290 #define TARGET_NR__llseek TARGET_NR_llseek
291 #endif
292
293 /* some platforms need to mask more bits than just TARGET_O_NONBLOCK */
294 #ifndef TARGET_O_NONBLOCK_MASK
295 #define TARGET_O_NONBLOCK_MASK TARGET_O_NONBLOCK
296 #endif
297
298 #define __NR_sys_gettid __NR_gettid
299 _syscall0(int, sys_gettid)
300
301 /* For the 64-bit guest on 32-bit host case we must emulate
302 * getdents using getdents64, because otherwise the host
303 * might hand us back more dirent records than we can fit
304 * into the guest buffer after structure format conversion.
305 * Otherwise we emulate getdents with getdents if the host has it.
306 */
307 #if defined(__NR_getdents) && HOST_LONG_BITS >= TARGET_ABI_BITS
308 #define EMULATE_GETDENTS_WITH_GETDENTS
309 #endif
310
311 #if defined(TARGET_NR_getdents) && defined(EMULATE_GETDENTS_WITH_GETDENTS)
312 _syscall3(int, sys_getdents, unsigned int, fd, struct linux_dirent *, dirp, unsigned int, count);
313 #endif
314 #if (defined(TARGET_NR_getdents) && \
315 !defined(EMULATE_GETDENTS_WITH_GETDENTS)) || \
316 (defined(TARGET_NR_getdents64) && defined(__NR_getdents64))
317 _syscall3(int, sys_getdents64, unsigned int, fd, struct linux_dirent64 *, dirp, unsigned int, count);
318 #endif
319 #if defined(TARGET_NR__llseek) && defined(__NR_llseek)
320 _syscall5(int, _llseek, unsigned int, fd, unsigned long, hi, unsigned long, lo,
321 loff_t *, res, unsigned int, wh);
322 #endif
323 _syscall3(int, sys_rt_sigqueueinfo, pid_t, pid, int, sig, siginfo_t *, uinfo)
324 _syscall4(int, sys_rt_tgsigqueueinfo, pid_t, pid, pid_t, tid, int, sig,
325 siginfo_t *, uinfo)
326 _syscall3(int,sys_syslog,int,type,char*,bufp,int,len)
327 #ifdef __NR_exit_group
328 _syscall1(int,exit_group,int,error_code)
329 #endif
330 #if defined(__NR_close_range) && defined(TARGET_NR_close_range)
331 #define __NR_sys_close_range __NR_close_range
332 _syscall3(int,sys_close_range,int,first,int,last,int,flags)
333 #ifndef CLOSE_RANGE_CLOEXEC
334 #define CLOSE_RANGE_CLOEXEC (1U << 2)
335 #endif
336 #endif
337 #if defined(__NR_futex)
338 _syscall6(int,sys_futex,int *,uaddr,int,op,int,val,
339 const struct timespec *,timeout,int *,uaddr2,int,val3)
340 #endif
341 #if defined(__NR_futex_time64)
342 _syscall6(int,sys_futex_time64,int *,uaddr,int,op,int,val,
343 const struct timespec *,timeout,int *,uaddr2,int,val3)
344 #endif
345 #if defined(__NR_pidfd_open) && defined(TARGET_NR_pidfd_open)
346 _syscall2(int, pidfd_open, pid_t, pid, unsigned int, flags);
347 #endif
348 #if defined(__NR_pidfd_send_signal) && defined(TARGET_NR_pidfd_send_signal)
349 _syscall4(int, pidfd_send_signal, int, pidfd, int, sig, siginfo_t *, info,
350 unsigned int, flags);
351 #endif
352 #if defined(__NR_pidfd_getfd) && defined(TARGET_NR_pidfd_getfd)
353 _syscall3(int, pidfd_getfd, int, pidfd, int, targetfd, unsigned int, flags);
354 #endif
355 #define __NR_sys_sched_getaffinity __NR_sched_getaffinity
356 _syscall3(int, sys_sched_getaffinity, pid_t, pid, unsigned int, len,
357 unsigned long *, user_mask_ptr);
358 #define __NR_sys_sched_setaffinity __NR_sched_setaffinity
359 _syscall3(int, sys_sched_setaffinity, pid_t, pid, unsigned int, len,
360 unsigned long *, user_mask_ptr);
361 /* sched_attr is not defined in glibc */
362 struct sched_attr {
363 uint32_t size;
364 uint32_t sched_policy;
365 uint64_t sched_flags;
366 int32_t sched_nice;
367 uint32_t sched_priority;
368 uint64_t sched_runtime;
369 uint64_t sched_deadline;
370 uint64_t sched_period;
371 uint32_t sched_util_min;
372 uint32_t sched_util_max;
373 };
374 #define __NR_sys_sched_getattr __NR_sched_getattr
375 _syscall4(int, sys_sched_getattr, pid_t, pid, struct sched_attr *, attr,
376 unsigned int, size, unsigned int, flags);
377 #define __NR_sys_sched_setattr __NR_sched_setattr
378 _syscall3(int, sys_sched_setattr, pid_t, pid, struct sched_attr *, attr,
379 unsigned int, flags);
380 #define __NR_sys_sched_getscheduler __NR_sched_getscheduler
381 _syscall1(int, sys_sched_getscheduler, pid_t, pid);
382 #define __NR_sys_sched_setscheduler __NR_sched_setscheduler
383 _syscall3(int, sys_sched_setscheduler, pid_t, pid, int, policy,
384 const struct sched_param *, param);
385 #define __NR_sys_sched_getparam __NR_sched_getparam
386 _syscall2(int, sys_sched_getparam, pid_t, pid,
387 struct sched_param *, param);
388 #define __NR_sys_sched_setparam __NR_sched_setparam
389 _syscall2(int, sys_sched_setparam, pid_t, pid,
390 const struct sched_param *, param);
391 #define __NR_sys_getcpu __NR_getcpu
392 _syscall3(int, sys_getcpu, unsigned *, cpu, unsigned *, node, void *, tcache);
393 _syscall4(int, reboot, int, magic1, int, magic2, unsigned int, cmd,
394 void *, arg);
395 _syscall2(int, capget, struct __user_cap_header_struct *, header,
396 struct __user_cap_data_struct *, data);
397 _syscall2(int, capset, struct __user_cap_header_struct *, header,
398 struct __user_cap_data_struct *, data);
399 #if defined(TARGET_NR_ioprio_get) && defined(__NR_ioprio_get)
400 _syscall2(int, ioprio_get, int, which, int, who)
401 #endif
402 #if defined(TARGET_NR_ioprio_set) && defined(__NR_ioprio_set)
403 _syscall3(int, ioprio_set, int, which, int, who, int, ioprio)
404 #endif
405 #if defined(TARGET_NR_getrandom) && defined(__NR_getrandom)
406 _syscall3(int, getrandom, void *, buf, size_t, buflen, unsigned int, flags)
407 #endif
408
409 #if defined(TARGET_NR_kcmp) && defined(__NR_kcmp)
410 _syscall5(int, kcmp, pid_t, pid1, pid_t, pid2, int, type,
411 unsigned long, idx1, unsigned long, idx2)
412 #endif
413
414 /*
415 * It is assumed that struct statx is architecture independent.
416 */
417 #if defined(TARGET_NR_statx) && defined(__NR_statx)
418 _syscall5(int, sys_statx, int, dirfd, const char *, pathname, int, flags,
419 unsigned int, mask, struct target_statx *, statxbuf)
420 #endif
421 #if defined(TARGET_NR_membarrier) && defined(__NR_membarrier)
422 _syscall2(int, membarrier, int, cmd, int, flags)
423 #endif
424
425 static const bitmask_transtbl fcntl_flags_tbl[] = {
426 { TARGET_O_ACCMODE, TARGET_O_WRONLY, O_ACCMODE, O_WRONLY, },
427 { TARGET_O_ACCMODE, TARGET_O_RDWR, O_ACCMODE, O_RDWR, },
428 { TARGET_O_CREAT, TARGET_O_CREAT, O_CREAT, O_CREAT, },
429 { TARGET_O_EXCL, TARGET_O_EXCL, O_EXCL, O_EXCL, },
430 { TARGET_O_NOCTTY, TARGET_O_NOCTTY, O_NOCTTY, O_NOCTTY, },
431 { TARGET_O_TRUNC, TARGET_O_TRUNC, O_TRUNC, O_TRUNC, },
432 { TARGET_O_APPEND, TARGET_O_APPEND, O_APPEND, O_APPEND, },
433 { TARGET_O_NONBLOCK, TARGET_O_NONBLOCK, O_NONBLOCK, O_NONBLOCK, },
434 { TARGET_O_SYNC, TARGET_O_DSYNC, O_SYNC, O_DSYNC, },
435 { TARGET_O_SYNC, TARGET_O_SYNC, O_SYNC, O_SYNC, },
436 { TARGET_FASYNC, TARGET_FASYNC, FASYNC, FASYNC, },
437 { TARGET_O_DIRECTORY, TARGET_O_DIRECTORY, O_DIRECTORY, O_DIRECTORY, },
438 { TARGET_O_NOFOLLOW, TARGET_O_NOFOLLOW, O_NOFOLLOW, O_NOFOLLOW, },
439 #if defined(O_DIRECT)
440 { TARGET_O_DIRECT, TARGET_O_DIRECT, O_DIRECT, O_DIRECT, },
441 #endif
442 #if defined(O_NOATIME)
443 { TARGET_O_NOATIME, TARGET_O_NOATIME, O_NOATIME, O_NOATIME },
444 #endif
445 #if defined(O_CLOEXEC)
446 { TARGET_O_CLOEXEC, TARGET_O_CLOEXEC, O_CLOEXEC, O_CLOEXEC },
447 #endif
448 #if defined(O_PATH)
449 { TARGET_O_PATH, TARGET_O_PATH, O_PATH, O_PATH },
450 #endif
451 #if defined(O_TMPFILE)
452 { TARGET_O_TMPFILE, TARGET_O_TMPFILE, O_TMPFILE, O_TMPFILE },
453 #endif
454 /* Don't terminate the list prematurely on 64-bit host+guest. */
455 #if TARGET_O_LARGEFILE != 0 || O_LARGEFILE != 0
456 { TARGET_O_LARGEFILE, TARGET_O_LARGEFILE, O_LARGEFILE, O_LARGEFILE, },
457 #endif
458 };
459
460 _syscall2(int, sys_getcwd1, char *, buf, size_t, size)
461
462 #if defined(TARGET_NR_utimensat) || defined(TARGET_NR_utimensat_time64)
463 #if defined(__NR_utimensat)
464 #define __NR_sys_utimensat __NR_utimensat
465 _syscall4(int,sys_utimensat,int,dirfd,const char *,pathname,
466 const struct timespec *,tsp,int,flags)
467 #else
468 static int sys_utimensat(int dirfd, const char *pathname,
469 const struct timespec times[2], int flags)
470 {
471 errno = ENOSYS;
472 return -1;
473 }
474 #endif
475 #endif /* TARGET_NR_utimensat */
476
477 #ifdef TARGET_NR_renameat2
478 #if defined(__NR_renameat2)
479 #define __NR_sys_renameat2 __NR_renameat2
480 _syscall5(int, sys_renameat2, int, oldfd, const char *, old, int, newfd,
481 const char *, new, unsigned int, flags)
482 #else
483 static int sys_renameat2(int oldfd, const char *old,
484 int newfd, const char *new, int flags)
485 {
486 if (flags == 0) {
487 return renameat(oldfd, old, newfd, new);
488 }
489 errno = ENOSYS;
490 return -1;
491 }
492 #endif
493 #endif /* TARGET_NR_renameat2 */
494
495 #ifdef CONFIG_INOTIFY
496 #include <sys/inotify.h>
497 #else
498 /* Userspace can usually survive runtime without inotify */
499 #undef TARGET_NR_inotify_init
500 #undef TARGET_NR_inotify_init1
501 #undef TARGET_NR_inotify_add_watch
502 #undef TARGET_NR_inotify_rm_watch
503 #endif /* CONFIG_INOTIFY */
504
505 #if defined(TARGET_NR_prlimit64)
506 #ifndef __NR_prlimit64
507 # define __NR_prlimit64 -1
508 #endif
509 #define __NR_sys_prlimit64 __NR_prlimit64
510 /* The glibc rlimit structure may not be that used by the underlying syscall */
511 struct host_rlimit64 {
512 uint64_t rlim_cur;
513 uint64_t rlim_max;
514 };
515 _syscall4(int, sys_prlimit64, pid_t, pid, int, resource,
516 const struct host_rlimit64 *, new_limit,
517 struct host_rlimit64 *, old_limit)
518 #endif
519
520
521 #if defined(TARGET_NR_timer_create)
522 /* Maximum of 32 active POSIX timers allowed at any one time. */
523 #define GUEST_TIMER_MAX 32
524 static timer_t g_posix_timers[GUEST_TIMER_MAX];
525 static int g_posix_timer_allocated[GUEST_TIMER_MAX];
526
527 static inline int next_free_host_timer(void)
528 {
529 int k;
530 for (k = 0; k < ARRAY_SIZE(g_posix_timer_allocated); k++) {
531 if (qatomic_xchg(g_posix_timer_allocated + k, 1) == 0) {
532 return k;
533 }
534 }
535 return -1;
536 }
537
538 static inline void free_host_timer_slot(int id)
539 {
540 qatomic_store_release(g_posix_timer_allocated + id, 0);
541 }
542 #endif
543
544 static inline int host_to_target_errno(int host_errno)
545 {
546 switch (host_errno) {
547 #define E(X) case X: return TARGET_##X;
548 #include "errnos.c.inc"
549 #undef E
550 default:
551 return host_errno;
552 }
553 }
554
555 static inline int target_to_host_errno(int target_errno)
556 {
557 switch (target_errno) {
558 #define E(X) case TARGET_##X: return X;
559 #include "errnos.c.inc"
560 #undef E
561 default:
562 return target_errno;
563 }
564 }
565
566 abi_long get_errno(abi_long ret)
567 {
568 if (ret == -1)
569 return -host_to_target_errno(errno);
570 else
571 return ret;
572 }
573
574 const char *target_strerror(int err)
575 {
576 if (err == QEMU_ERESTARTSYS) {
577 return "To be restarted";
578 }
579 if (err == QEMU_ESIGRETURN) {
580 return "Successful exit from sigreturn";
581 }
582
583 return strerror(target_to_host_errno(err));
584 }
585
586 static int check_zeroed_user(abi_long addr, size_t ksize, size_t usize)
587 {
588 int i;
589 uint8_t b;
590 if (usize <= ksize) {
591 return 1;
592 }
593 for (i = ksize; i < usize; i++) {
594 if (get_user_u8(b, addr + i)) {
595 return -TARGET_EFAULT;
596 }
597 if (b != 0) {
598 return 0;
599 }
600 }
601 return 1;
602 }
603
604 #define safe_syscall0(type, name) \
605 static type safe_##name(void) \
606 { \
607 return safe_syscall(__NR_##name); \
608 }
609
610 #define safe_syscall1(type, name, type1, arg1) \
611 static type safe_##name(type1 arg1) \
612 { \
613 return safe_syscall(__NR_##name, arg1); \
614 }
615
616 #define safe_syscall2(type, name, type1, arg1, type2, arg2) \
617 static type safe_##name(type1 arg1, type2 arg2) \
618 { \
619 return safe_syscall(__NR_##name, arg1, arg2); \
620 }
621
622 #define safe_syscall3(type, name, type1, arg1, type2, arg2, type3, arg3) \
623 static type safe_##name(type1 arg1, type2 arg2, type3 arg3) \
624 { \
625 return safe_syscall(__NR_##name, arg1, arg2, arg3); \
626 }
627
628 #define safe_syscall4(type, name, type1, arg1, type2, arg2, type3, arg3, \
629 type4, arg4) \
630 static type safe_##name(type1 arg1, type2 arg2, type3 arg3, type4 arg4) \
631 { \
632 return safe_syscall(__NR_##name, arg1, arg2, arg3, arg4); \
633 }
634
635 #define safe_syscall5(type, name, type1, arg1, type2, arg2, type3, arg3, \
636 type4, arg4, type5, arg5) \
637 static type safe_##name(type1 arg1, type2 arg2, type3 arg3, type4 arg4, \
638 type5 arg5) \
639 { \
640 return safe_syscall(__NR_##name, arg1, arg2, arg3, arg4, arg5); \
641 }
642
643 #define safe_syscall6(type, name, type1, arg1, type2, arg2, type3, arg3, \
644 type4, arg4, type5, arg5, type6, arg6) \
645 static type safe_##name(type1 arg1, type2 arg2, type3 arg3, type4 arg4, \
646 type5 arg5, type6 arg6) \
647 { \
648 return safe_syscall(__NR_##name, arg1, arg2, arg3, arg4, arg5, arg6); \
649 }
650
651 safe_syscall3(ssize_t, read, int, fd, void *, buff, size_t, count)
652 safe_syscall3(ssize_t, write, int, fd, const void *, buff, size_t, count)
653 safe_syscall4(int, openat, int, dirfd, const char *, pathname, \
654 int, flags, mode_t, mode)
655 #if defined(TARGET_NR_wait4) || defined(TARGET_NR_waitpid)
656 safe_syscall4(pid_t, wait4, pid_t, pid, int *, status, int, options, \
657 struct rusage *, rusage)
658 #endif
659 safe_syscall5(int, waitid, idtype_t, idtype, id_t, id, siginfo_t *, infop, \
660 int, options, struct rusage *, rusage)
661 safe_syscall3(int, execve, const char *, filename, char **, argv, char **, envp)
662 safe_syscall5(int, execveat, int, dirfd, const char *, filename,
663 char **, argv, char **, envp, int, flags)
664 #if defined(TARGET_NR_select) || defined(TARGET_NR__newselect) || \
665 defined(TARGET_NR_pselect6) || defined(TARGET_NR_pselect6_time64)
666 safe_syscall6(int, pselect6, int, nfds, fd_set *, readfds, fd_set *, writefds, \
667 fd_set *, exceptfds, struct timespec *, timeout, void *, sig)
668 #endif
669 #if defined(TARGET_NR_ppoll) || defined(TARGET_NR_ppoll_time64)
670 safe_syscall5(int, ppoll, struct pollfd *, ufds, unsigned int, nfds,
671 struct timespec *, tsp, const sigset_t *, sigmask,
672 size_t, sigsetsize)
673 #endif
674 safe_syscall6(int, epoll_pwait, int, epfd, struct epoll_event *, events,
675 int, maxevents, int, timeout, const sigset_t *, sigmask,
676 size_t, sigsetsize)
677 #if defined(__NR_futex)
678 safe_syscall6(int,futex,int *,uaddr,int,op,int,val, \
679 const struct timespec *,timeout,int *,uaddr2,int,val3)
680 #endif
681 #if defined(__NR_futex_time64)
682 safe_syscall6(int,futex_time64,int *,uaddr,int,op,int,val, \
683 const struct timespec *,timeout,int *,uaddr2,int,val3)
684 #endif
685 safe_syscall2(int, rt_sigsuspend, sigset_t *, newset, size_t, sigsetsize)
686 safe_syscall2(int, kill, pid_t, pid, int, sig)
687 safe_syscall2(int, tkill, int, tid, int, sig)
688 safe_syscall3(int, tgkill, int, tgid, int, pid, int, sig)
689 safe_syscall3(ssize_t, readv, int, fd, const struct iovec *, iov, int, iovcnt)
690 safe_syscall3(ssize_t, writev, int, fd, const struct iovec *, iov, int, iovcnt)
691 safe_syscall5(ssize_t, preadv, int, fd, const struct iovec *, iov, int, iovcnt,
692 unsigned long, pos_l, unsigned long, pos_h)
693 safe_syscall5(ssize_t, pwritev, int, fd, const struct iovec *, iov, int, iovcnt,
694 unsigned long, pos_l, unsigned long, pos_h)
695 safe_syscall3(int, connect, int, fd, const struct sockaddr *, addr,
696 socklen_t, addrlen)
697 safe_syscall6(ssize_t, sendto, int, fd, const void *, buf, size_t, len,
698 int, flags, const struct sockaddr *, addr, socklen_t, addrlen)
699 safe_syscall6(ssize_t, recvfrom, int, fd, void *, buf, size_t, len,
700 int, flags, struct sockaddr *, addr, socklen_t *, addrlen)
701 safe_syscall3(ssize_t, sendmsg, int, fd, const struct msghdr *, msg, int, flags)
702 safe_syscall3(ssize_t, recvmsg, int, fd, struct msghdr *, msg, int, flags)
703 safe_syscall2(int, flock, int, fd, int, operation)
704 #if defined(TARGET_NR_rt_sigtimedwait) || defined(TARGET_NR_rt_sigtimedwait_time64)
705 safe_syscall4(int, rt_sigtimedwait, const sigset_t *, these, siginfo_t *, uinfo,
706 const struct timespec *, uts, size_t, sigsetsize)
707 #endif
708 safe_syscall4(int, accept4, int, fd, struct sockaddr *, addr, socklen_t *, len,
709 int, flags)
710 #if defined(TARGET_NR_nanosleep)
711 safe_syscall2(int, nanosleep, const struct timespec *, req,
712 struct timespec *, rem)
713 #endif
714 #if defined(TARGET_NR_clock_nanosleep) || \
715 defined(TARGET_NR_clock_nanosleep_time64)
716 safe_syscall4(int, clock_nanosleep, const clockid_t, clock, int, flags,
717 const struct timespec *, req, struct timespec *, rem)
718 #endif
719 #ifdef __NR_ipc
720 #ifdef __s390x__
721 safe_syscall5(int, ipc, int, call, long, first, long, second, long, third,
722 void *, ptr)
723 #else
724 safe_syscall6(int, ipc, int, call, long, first, long, second, long, third,
725 void *, ptr, long, fifth)
726 #endif
727 #endif
728 #ifdef __NR_msgsnd
729 safe_syscall4(int, msgsnd, int, msgid, const void *, msgp, size_t, sz,
730 int, flags)
731 #endif
732 #ifdef __NR_msgrcv
733 safe_syscall5(int, msgrcv, int, msgid, void *, msgp, size_t, sz,
734 long, msgtype, int, flags)
735 #endif
736 #ifdef __NR_semtimedop
737 safe_syscall4(int, semtimedop, int, semid, struct sembuf *, tsops,
738 unsigned, nsops, const struct timespec *, timeout)
739 #endif
740 #if defined(TARGET_NR_mq_timedsend) || \
741 defined(TARGET_NR_mq_timedsend_time64)
742 safe_syscall5(int, mq_timedsend, int, mqdes, const char *, msg_ptr,
743 size_t, len, unsigned, prio, const struct timespec *, timeout)
744 #endif
745 #if defined(TARGET_NR_mq_timedreceive) || \
746 defined(TARGET_NR_mq_timedreceive_time64)
747 safe_syscall5(int, mq_timedreceive, int, mqdes, char *, msg_ptr,
748 size_t, len, unsigned *, prio, const struct timespec *, timeout)
749 #endif
750 #if defined(TARGET_NR_copy_file_range) && defined(__NR_copy_file_range)
751 safe_syscall6(ssize_t, copy_file_range, int, infd, loff_t *, pinoff,
752 int, outfd, loff_t *, poutoff, size_t, length,
753 unsigned int, flags)
754 #endif
755
756 /* We do ioctl like this rather than via safe_syscall3 to preserve the
757 * "third argument might be integer or pointer or not present" behaviour of
758 * the libc function.
759 */
760 #define safe_ioctl(...) safe_syscall(__NR_ioctl, __VA_ARGS__)
761 /* Similarly for fcntl. Note that callers must always:
762 * pass the F_GETLK64 etc constants rather than the unsuffixed F_GETLK
763 * use the flock64 struct rather than unsuffixed flock
764 * This will then work and use a 64-bit offset for both 32-bit and 64-bit hosts.
765 */
766 #ifdef __NR_fcntl64
767 #define safe_fcntl(...) safe_syscall(__NR_fcntl64, __VA_ARGS__)
768 #else
769 #define safe_fcntl(...) safe_syscall(__NR_fcntl, __VA_ARGS__)
770 #endif
771
772 static inline int host_to_target_sock_type(int host_type)
773 {
774 int target_type;
775
776 switch (host_type & 0xf /* SOCK_TYPE_MASK */) {
777 case SOCK_DGRAM:
778 target_type = TARGET_SOCK_DGRAM;
779 break;
780 case SOCK_STREAM:
781 target_type = TARGET_SOCK_STREAM;
782 break;
783 default:
784 target_type = host_type & 0xf /* SOCK_TYPE_MASK */;
785 break;
786 }
787
788 #if defined(SOCK_CLOEXEC)
789 if (host_type & SOCK_CLOEXEC) {
790 target_type |= TARGET_SOCK_CLOEXEC;
791 }
792 #endif
793
794 #if defined(SOCK_NONBLOCK)
795 if (host_type & SOCK_NONBLOCK) {
796 target_type |= TARGET_SOCK_NONBLOCK;
797 }
798 #endif
799
800 return target_type;
801 }
802
803 static abi_ulong target_brk, initial_target_brk;
804
805 void target_set_brk(abi_ulong new_brk)
806 {
807 target_brk = TARGET_PAGE_ALIGN(new_brk);
808 initial_target_brk = target_brk;
809 }
810
811 /* do_brk() must return target values and target errnos. */
812 abi_long do_brk(abi_ulong brk_val)
813 {
814 abi_long mapped_addr;
815 abi_ulong new_brk;
816 abi_ulong old_brk;
817
818 /* brk pointers are always untagged */
819
820 /* do not allow to shrink below initial brk value */
821 if (brk_val < initial_target_brk) {
822 return target_brk;
823 }
824
825 new_brk = TARGET_PAGE_ALIGN(brk_val);
826 old_brk = TARGET_PAGE_ALIGN(target_brk);
827
828 /* new and old target_brk might be on the same page */
829 if (new_brk == old_brk) {
830 target_brk = brk_val;
831 return target_brk;
832 }
833
834 /* Release heap if necesary */
835 if (new_brk < old_brk) {
836 target_munmap(new_brk, old_brk - new_brk);
837
838 target_brk = brk_val;
839 return target_brk;
840 }
841
842 mapped_addr = target_mmap(old_brk, new_brk - old_brk,
843 PROT_READ | PROT_WRITE,
844 MAP_FIXED_NOREPLACE | MAP_ANON | MAP_PRIVATE,
845 -1, 0);
846
847 if (mapped_addr == old_brk) {
848 target_brk = brk_val;
849 return target_brk;
850 }
851
852 #if defined(TARGET_ALPHA)
853 /* We (partially) emulate OSF/1 on Alpha, which requires we
854 return a proper errno, not an unchanged brk value. */
855 return -TARGET_ENOMEM;
856 #endif
857 /* For everything else, return the previous break. */
858 return target_brk;
859 }
860
861 #if defined(TARGET_NR_select) || defined(TARGET_NR__newselect) || \
862 defined(TARGET_NR_pselect6) || defined(TARGET_NR_pselect6_time64)
863 static inline abi_long copy_from_user_fdset(fd_set *fds,
864 abi_ulong target_fds_addr,
865 int n)
866 {
867 int i, nw, j, k;
868 abi_ulong b, *target_fds;
869
870 nw = DIV_ROUND_UP(n, TARGET_ABI_BITS);
871 if (!(target_fds = lock_user(VERIFY_READ,
872 target_fds_addr,
873 sizeof(abi_ulong) * nw,
874 1)))
875 return -TARGET_EFAULT;
876
877 FD_ZERO(fds);
878 k = 0;
879 for (i = 0; i < nw; i++) {
880 /* grab the abi_ulong */
881 __get_user(b, &target_fds[i]);
882 for (j = 0; j < TARGET_ABI_BITS; j++) {
883 /* check the bit inside the abi_ulong */
884 if ((b >> j) & 1)
885 FD_SET(k, fds);
886 k++;
887 }
888 }
889
890 unlock_user(target_fds, target_fds_addr, 0);
891
892 return 0;
893 }
894
895 static inline abi_ulong copy_from_user_fdset_ptr(fd_set *fds, fd_set **fds_ptr,
896 abi_ulong target_fds_addr,
897 int n)
898 {
899 if (target_fds_addr) {
900 if (copy_from_user_fdset(fds, target_fds_addr, n))
901 return -TARGET_EFAULT;
902 *fds_ptr = fds;
903 } else {
904 *fds_ptr = NULL;
905 }
906 return 0;
907 }
908
909 static inline abi_long copy_to_user_fdset(abi_ulong target_fds_addr,
910 const fd_set *fds,
911 int n)
912 {
913 int i, nw, j, k;
914 abi_long v;
915 abi_ulong *target_fds;
916
917 nw = DIV_ROUND_UP(n, TARGET_ABI_BITS);
918 if (!(target_fds = lock_user(VERIFY_WRITE,
919 target_fds_addr,
920 sizeof(abi_ulong) * nw,
921 0)))
922 return -TARGET_EFAULT;
923
924 k = 0;
925 for (i = 0; i < nw; i++) {
926 v = 0;
927 for (j = 0; j < TARGET_ABI_BITS; j++) {
928 v |= ((abi_ulong)(FD_ISSET(k, fds) != 0) << j);
929 k++;
930 }
931 __put_user(v, &target_fds[i]);
932 }
933
934 unlock_user(target_fds, target_fds_addr, sizeof(abi_ulong) * nw);
935
936 return 0;
937 }
938 #endif
939
940 #if defined(__alpha__)
941 #define HOST_HZ 1024
942 #else
943 #define HOST_HZ 100
944 #endif
945
946 static inline abi_long host_to_target_clock_t(long ticks)
947 {
948 #if HOST_HZ == TARGET_HZ
949 return ticks;
950 #else
951 return ((int64_t)ticks * TARGET_HZ) / HOST_HZ;
952 #endif
953 }
954
955 static inline abi_long host_to_target_rusage(abi_ulong target_addr,
956 const struct rusage *rusage)
957 {
958 struct target_rusage *target_rusage;
959
960 if (!lock_user_struct(VERIFY_WRITE, target_rusage, target_addr, 0))
961 return -TARGET_EFAULT;
962 target_rusage->ru_utime.tv_sec = tswapal(rusage->ru_utime.tv_sec);
963 target_rusage->ru_utime.tv_usec = tswapal(rusage->ru_utime.tv_usec);
964 target_rusage->ru_stime.tv_sec = tswapal(rusage->ru_stime.tv_sec);
965 target_rusage->ru_stime.tv_usec = tswapal(rusage->ru_stime.tv_usec);
966 target_rusage->ru_maxrss = tswapal(rusage->ru_maxrss);
967 target_rusage->ru_ixrss = tswapal(rusage->ru_ixrss);
968 target_rusage->ru_idrss = tswapal(rusage->ru_idrss);
969 target_rusage->ru_isrss = tswapal(rusage->ru_isrss);
970 target_rusage->ru_minflt = tswapal(rusage->ru_minflt);
971 target_rusage->ru_majflt = tswapal(rusage->ru_majflt);
972 target_rusage->ru_nswap = tswapal(rusage->ru_nswap);
973 target_rusage->ru_inblock = tswapal(rusage->ru_inblock);
974 target_rusage->ru_oublock = tswapal(rusage->ru_oublock);
975 target_rusage->ru_msgsnd = tswapal(rusage->ru_msgsnd);
976 target_rusage->ru_msgrcv = tswapal(rusage->ru_msgrcv);
977 target_rusage->ru_nsignals = tswapal(rusage->ru_nsignals);
978 target_rusage->ru_nvcsw = tswapal(rusage->ru_nvcsw);
979 target_rusage->ru_nivcsw = tswapal(rusage->ru_nivcsw);
980 unlock_user_struct(target_rusage, target_addr, 1);
981
982 return 0;
983 }
984
985 #ifdef TARGET_NR_setrlimit
986 static inline rlim_t target_to_host_rlim(abi_ulong target_rlim)
987 {
988 abi_ulong target_rlim_swap;
989 rlim_t result;
990
991 target_rlim_swap = tswapal(target_rlim);
992 if (target_rlim_swap == TARGET_RLIM_INFINITY)
993 return RLIM_INFINITY;
994
995 result = target_rlim_swap;
996 if (target_rlim_swap != (rlim_t)result)
997 return RLIM_INFINITY;
998
999 return result;
1000 }
1001 #endif
1002
1003 #if defined(TARGET_NR_getrlimit) || defined(TARGET_NR_ugetrlimit)
1004 static inline abi_ulong host_to_target_rlim(rlim_t rlim)
1005 {
1006 abi_ulong target_rlim_swap;
1007 abi_ulong result;
1008
1009 if (rlim == RLIM_INFINITY || rlim != (abi_long)rlim)
1010 target_rlim_swap = TARGET_RLIM_INFINITY;
1011 else
1012 target_rlim_swap = rlim;
1013 result = tswapal(target_rlim_swap);
1014
1015 return result;
1016 }
1017 #endif
1018
1019 static inline int target_to_host_resource(int code)
1020 {
1021 switch (code) {
1022 case TARGET_RLIMIT_AS:
1023 return RLIMIT_AS;
1024 case TARGET_RLIMIT_CORE:
1025 return RLIMIT_CORE;
1026 case TARGET_RLIMIT_CPU:
1027 return RLIMIT_CPU;
1028 case TARGET_RLIMIT_DATA:
1029 return RLIMIT_DATA;
1030 case TARGET_RLIMIT_FSIZE:
1031 return RLIMIT_FSIZE;
1032 case TARGET_RLIMIT_LOCKS:
1033 return RLIMIT_LOCKS;
1034 case TARGET_RLIMIT_MEMLOCK:
1035 return RLIMIT_MEMLOCK;
1036 case TARGET_RLIMIT_MSGQUEUE:
1037 return RLIMIT_MSGQUEUE;
1038 case TARGET_RLIMIT_NICE:
1039 return RLIMIT_NICE;
1040 case TARGET_RLIMIT_NOFILE:
1041 return RLIMIT_NOFILE;
1042 case TARGET_RLIMIT_NPROC:
1043 return RLIMIT_NPROC;
1044 case TARGET_RLIMIT_RSS:
1045 return RLIMIT_RSS;
1046 case TARGET_RLIMIT_RTPRIO:
1047 return RLIMIT_RTPRIO;
1048 #ifdef RLIMIT_RTTIME
1049 case TARGET_RLIMIT_RTTIME:
1050 return RLIMIT_RTTIME;
1051 #endif
1052 case TARGET_RLIMIT_SIGPENDING:
1053 return RLIMIT_SIGPENDING;
1054 case TARGET_RLIMIT_STACK:
1055 return RLIMIT_STACK;
1056 default:
1057 return code;
1058 }
1059 }
1060
1061 static inline abi_long copy_from_user_timeval(struct timeval *tv,
1062 abi_ulong target_tv_addr)
1063 {
1064 struct target_timeval *target_tv;
1065
1066 if (!lock_user_struct(VERIFY_READ, target_tv, target_tv_addr, 1)) {
1067 return -TARGET_EFAULT;
1068 }
1069
1070 __get_user(tv->tv_sec, &target_tv->tv_sec);
1071 __get_user(tv->tv_usec, &target_tv->tv_usec);
1072
1073 unlock_user_struct(target_tv, target_tv_addr, 0);
1074
1075 return 0;
1076 }
1077
1078 static inline abi_long copy_to_user_timeval(abi_ulong target_tv_addr,
1079 const struct timeval *tv)
1080 {
1081 struct target_timeval *target_tv;
1082
1083 if (!lock_user_struct(VERIFY_WRITE, target_tv, target_tv_addr, 0)) {
1084 return -TARGET_EFAULT;
1085 }
1086
1087 __put_user(tv->tv_sec, &target_tv->tv_sec);
1088 __put_user(tv->tv_usec, &target_tv->tv_usec);
1089
1090 unlock_user_struct(target_tv, target_tv_addr, 1);
1091
1092 return 0;
1093 }
1094
1095 #if defined(TARGET_NR_clock_adjtime64) && defined(CONFIG_CLOCK_ADJTIME)
1096 static inline abi_long copy_from_user_timeval64(struct timeval *tv,
1097 abi_ulong target_tv_addr)
1098 {
1099 struct target__kernel_sock_timeval *target_tv;
1100
1101 if (!lock_user_struct(VERIFY_READ, target_tv, target_tv_addr, 1)) {
1102 return -TARGET_EFAULT;
1103 }
1104
1105 __get_user(tv->tv_sec, &target_tv->tv_sec);
1106 __get_user(tv->tv_usec, &target_tv->tv_usec);
1107
1108 unlock_user_struct(target_tv, target_tv_addr, 0);
1109
1110 return 0;
1111 }
1112 #endif
1113
1114 static inline abi_long copy_to_user_timeval64(abi_ulong target_tv_addr,
1115 const struct timeval *tv)
1116 {
1117 struct target__kernel_sock_timeval *target_tv;
1118
1119 if (!lock_user_struct(VERIFY_WRITE, target_tv, target_tv_addr, 0)) {
1120 return -TARGET_EFAULT;
1121 }
1122
1123 __put_user(tv->tv_sec, &target_tv->tv_sec);
1124 __put_user(tv->tv_usec, &target_tv->tv_usec);
1125
1126 unlock_user_struct(target_tv, target_tv_addr, 1);
1127
1128 return 0;
1129 }
1130
1131 #if defined(TARGET_NR_futex) || \
1132 defined(TARGET_NR_rt_sigtimedwait) || \
1133 defined(TARGET_NR_pselect6) || defined(TARGET_NR_pselect6) || \
1134 defined(TARGET_NR_nanosleep) || defined(TARGET_NR_clock_settime) || \
1135 defined(TARGET_NR_utimensat) || defined(TARGET_NR_mq_timedsend) || \
1136 defined(TARGET_NR_mq_timedreceive) || defined(TARGET_NR_ipc) || \
1137 defined(TARGET_NR_semop) || defined(TARGET_NR_semtimedop) || \
1138 defined(TARGET_NR_timer_settime) || \
1139 (defined(TARGET_NR_timerfd_settime) && defined(CONFIG_TIMERFD))
1140 static inline abi_long target_to_host_timespec(struct timespec *host_ts,
1141 abi_ulong target_addr)
1142 {
1143 struct target_timespec *target_ts;
1144
1145 if (!lock_user_struct(VERIFY_READ, target_ts, target_addr, 1)) {
1146 return -TARGET_EFAULT;
1147 }
1148 __get_user(host_ts->tv_sec, &target_ts->tv_sec);
1149 __get_user(host_ts->tv_nsec, &target_ts->tv_nsec);
1150 unlock_user_struct(target_ts, target_addr, 0);
1151 return 0;
1152 }
1153 #endif
1154
1155 #if defined(TARGET_NR_clock_settime64) || defined(TARGET_NR_futex_time64) || \
1156 defined(TARGET_NR_timer_settime64) || \
1157 defined(TARGET_NR_mq_timedsend_time64) || \
1158 defined(TARGET_NR_mq_timedreceive_time64) || \
1159 (defined(TARGET_NR_timerfd_settime64) && defined(CONFIG_TIMERFD)) || \
1160 defined(TARGET_NR_clock_nanosleep_time64) || \
1161 defined(TARGET_NR_rt_sigtimedwait_time64) || \
1162 defined(TARGET_NR_utimensat) || \
1163 defined(TARGET_NR_utimensat_time64) || \
1164 defined(TARGET_NR_semtimedop_time64) || \
1165 defined(TARGET_NR_pselect6_time64) || defined(TARGET_NR_ppoll_time64)
1166 static inline abi_long target_to_host_timespec64(struct timespec *host_ts,
1167 abi_ulong target_addr)
1168 {
1169 struct target__kernel_timespec *target_ts;
1170
1171 if (!lock_user_struct(VERIFY_READ, target_ts, target_addr, 1)) {
1172 return -TARGET_EFAULT;
1173 }
1174 __get_user(host_ts->tv_sec, &target_ts->tv_sec);
1175 __get_user(host_ts->tv_nsec, &target_ts->tv_nsec);
1176 /* in 32bit mode, this drops the padding */
1177 host_ts->tv_nsec = (long)(abi_long)host_ts->tv_nsec;
1178 unlock_user_struct(target_ts, target_addr, 0);
1179 return 0;
1180 }
1181 #endif
1182
1183 static inline abi_long host_to_target_timespec(abi_ulong target_addr,
1184 struct timespec *host_ts)
1185 {
1186 struct target_timespec *target_ts;
1187
1188 if (!lock_user_struct(VERIFY_WRITE, target_ts, target_addr, 0)) {
1189 return -TARGET_EFAULT;
1190 }
1191 __put_user(host_ts->tv_sec, &target_ts->tv_sec);
1192 __put_user(host_ts->tv_nsec, &target_ts->tv_nsec);
1193 unlock_user_struct(target_ts, target_addr, 1);
1194 return 0;
1195 }
1196
1197 static inline abi_long host_to_target_timespec64(abi_ulong target_addr,
1198 struct timespec *host_ts)
1199 {
1200 struct target__kernel_timespec *target_ts;
1201
1202 if (!lock_user_struct(VERIFY_WRITE, target_ts, target_addr, 0)) {
1203 return -TARGET_EFAULT;
1204 }
1205 __put_user(host_ts->tv_sec, &target_ts->tv_sec);
1206 __put_user(host_ts->tv_nsec, &target_ts->tv_nsec);
1207 unlock_user_struct(target_ts, target_addr, 1);
1208 return 0;
1209 }
1210
1211 #if defined(TARGET_NR_gettimeofday)
1212 static inline abi_long copy_to_user_timezone(abi_ulong target_tz_addr,
1213 struct timezone *tz)
1214 {
1215 struct target_timezone *target_tz;
1216
1217 if (!lock_user_struct(VERIFY_WRITE, target_tz, target_tz_addr, 1)) {
1218 return -TARGET_EFAULT;
1219 }
1220
1221 __put_user(tz->tz_minuteswest, &target_tz->tz_minuteswest);
1222 __put_user(tz->tz_dsttime, &target_tz->tz_dsttime);
1223
1224 unlock_user_struct(target_tz, target_tz_addr, 1);
1225
1226 return 0;
1227 }
1228 #endif
1229
1230 #if defined(TARGET_NR_settimeofday)
1231 static inline abi_long copy_from_user_timezone(struct timezone *tz,
1232 abi_ulong target_tz_addr)
1233 {
1234 struct target_timezone *target_tz;
1235
1236 if (!lock_user_struct(VERIFY_READ, target_tz, target_tz_addr, 1)) {
1237 return -TARGET_EFAULT;
1238 }
1239
1240 __get_user(tz->tz_minuteswest, &target_tz->tz_minuteswest);
1241 __get_user(tz->tz_dsttime, &target_tz->tz_dsttime);
1242
1243 unlock_user_struct(target_tz, target_tz_addr, 0);
1244
1245 return 0;
1246 }
1247 #endif
1248
1249 #if defined(TARGET_NR_mq_open) && defined(__NR_mq_open)
1250 #include <mqueue.h>
1251
1252 static inline abi_long copy_from_user_mq_attr(struct mq_attr *attr,
1253 abi_ulong target_mq_attr_addr)
1254 {
1255 struct target_mq_attr *target_mq_attr;
1256
1257 if (!lock_user_struct(VERIFY_READ, target_mq_attr,
1258 target_mq_attr_addr, 1))
1259 return -TARGET_EFAULT;
1260
1261 __get_user(attr->mq_flags, &target_mq_attr->mq_flags);
1262 __get_user(attr->mq_maxmsg, &target_mq_attr->mq_maxmsg);
1263 __get_user(attr->mq_msgsize, &target_mq_attr->mq_msgsize);
1264 __get_user(attr->mq_curmsgs, &target_mq_attr->mq_curmsgs);
1265
1266 unlock_user_struct(target_mq_attr, target_mq_attr_addr, 0);
1267
1268 return 0;
1269 }
1270
1271 static inline abi_long copy_to_user_mq_attr(abi_ulong target_mq_attr_addr,
1272 const struct mq_attr *attr)
1273 {
1274 struct target_mq_attr *target_mq_attr;
1275
1276 if (!lock_user_struct(VERIFY_WRITE, target_mq_attr,
1277 target_mq_attr_addr, 0))
1278 return -TARGET_EFAULT;
1279
1280 __put_user(attr->mq_flags, &target_mq_attr->mq_flags);
1281 __put_user(attr->mq_maxmsg, &target_mq_attr->mq_maxmsg);
1282 __put_user(attr->mq_msgsize, &target_mq_attr->mq_msgsize);
1283 __put_user(attr->mq_curmsgs, &target_mq_attr->mq_curmsgs);
1284
1285 unlock_user_struct(target_mq_attr, target_mq_attr_addr, 1);
1286
1287 return 0;
1288 }
1289 #endif
1290
1291 #if defined(TARGET_NR_select) || defined(TARGET_NR__newselect)
1292 /* do_select() must return target values and target errnos. */
1293 static abi_long do_select(int n,
1294 abi_ulong rfd_addr, abi_ulong wfd_addr,
1295 abi_ulong efd_addr, abi_ulong target_tv_addr)
1296 {
1297 fd_set rfds, wfds, efds;
1298 fd_set *rfds_ptr, *wfds_ptr, *efds_ptr;
1299 struct timeval tv;
1300 struct timespec ts, *ts_ptr;
1301 abi_long ret;
1302
1303 ret = copy_from_user_fdset_ptr(&rfds, &rfds_ptr, rfd_addr, n);
1304 if (ret) {
1305 return ret;
1306 }
1307 ret = copy_from_user_fdset_ptr(&wfds, &wfds_ptr, wfd_addr, n);
1308 if (ret) {
1309 return ret;
1310 }
1311 ret = copy_from_user_fdset_ptr(&efds, &efds_ptr, efd_addr, n);
1312 if (ret) {
1313 return ret;
1314 }
1315
1316 if (target_tv_addr) {
1317 if (copy_from_user_timeval(&tv, target_tv_addr))
1318 return -TARGET_EFAULT;
1319 ts.tv_sec = tv.tv_sec;
1320 ts.tv_nsec = tv.tv_usec * 1000;
1321 ts_ptr = &ts;
1322 } else {
1323 ts_ptr = NULL;
1324 }
1325
1326 ret = get_errno(safe_pselect6(n, rfds_ptr, wfds_ptr, efds_ptr,
1327 ts_ptr, NULL));
1328
1329 if (!is_error(ret)) {
1330 if (rfd_addr && copy_to_user_fdset(rfd_addr, &rfds, n))
1331 return -TARGET_EFAULT;
1332 if (wfd_addr && copy_to_user_fdset(wfd_addr, &wfds, n))
1333 return -TARGET_EFAULT;
1334 if (efd_addr && copy_to_user_fdset(efd_addr, &efds, n))
1335 return -TARGET_EFAULT;
1336
1337 if (target_tv_addr) {
1338 tv.tv_sec = ts.tv_sec;
1339 tv.tv_usec = ts.tv_nsec / 1000;
1340 if (copy_to_user_timeval(target_tv_addr, &tv)) {
1341 return -TARGET_EFAULT;
1342 }
1343 }
1344 }
1345
1346 return ret;
1347 }
1348
1349 #if defined(TARGET_WANT_OLD_SYS_SELECT)
1350 static abi_long do_old_select(abi_ulong arg1)
1351 {
1352 struct target_sel_arg_struct *sel;
1353 abi_ulong inp, outp, exp, tvp;
1354 long nsel;
1355
1356 if (!lock_user_struct(VERIFY_READ, sel, arg1, 1)) {
1357 return -TARGET_EFAULT;
1358 }
1359
1360 nsel = tswapal(sel->n);
1361 inp = tswapal(sel->inp);
1362 outp = tswapal(sel->outp);
1363 exp = tswapal(sel->exp);
1364 tvp = tswapal(sel->tvp);
1365
1366 unlock_user_struct(sel, arg1, 0);
1367
1368 return do_select(nsel, inp, outp, exp, tvp);
1369 }
1370 #endif
1371 #endif
1372
1373 #if defined(TARGET_NR_pselect6) || defined(TARGET_NR_pselect6_time64)
1374 static abi_long do_pselect6(abi_long arg1, abi_long arg2, abi_long arg3,
1375 abi_long arg4, abi_long arg5, abi_long arg6,
1376 bool time64)
1377 {
1378 abi_long rfd_addr, wfd_addr, efd_addr, n, ts_addr;
1379 fd_set rfds, wfds, efds;
1380 fd_set *rfds_ptr, *wfds_ptr, *efds_ptr;
1381 struct timespec ts, *ts_ptr;
1382 abi_long ret;
1383
1384 /*
1385 * The 6th arg is actually two args smashed together,
1386 * so we cannot use the C library.
1387 */
1388 struct {
1389 sigset_t *set;
1390 size_t size;
1391 } sig, *sig_ptr;
1392
1393 abi_ulong arg_sigset, arg_sigsize, *arg7;
1394
1395 n = arg1;
1396 rfd_addr = arg2;
1397 wfd_addr = arg3;
1398 efd_addr = arg4;
1399 ts_addr = arg5;
1400
1401 ret = copy_from_user_fdset_ptr(&rfds, &rfds_ptr, rfd_addr, n);
1402 if (ret) {
1403 return ret;
1404 }
1405 ret = copy_from_user_fdset_ptr(&wfds, &wfds_ptr, wfd_addr, n);
1406 if (ret) {
1407 return ret;
1408 }
1409 ret = copy_from_user_fdset_ptr(&efds, &efds_ptr, efd_addr, n);
1410 if (ret) {
1411 return ret;
1412 }
1413
1414 /*
1415 * This takes a timespec, and not a timeval, so we cannot
1416 * use the do_select() helper ...
1417 */
1418 if (ts_addr) {
1419 if (time64) {
1420 if (target_to_host_timespec64(&ts, ts_addr)) {
1421 return -TARGET_EFAULT;
1422 }
1423 } else {
1424 if (target_to_host_timespec(&ts, ts_addr)) {
1425 return -TARGET_EFAULT;
1426 }
1427 }
1428 ts_ptr = &ts;
1429 } else {
1430 ts_ptr = NULL;
1431 }
1432
1433 /* Extract the two packed args for the sigset */
1434 sig_ptr = NULL;
1435 if (arg6) {
1436 arg7 = lock_user(VERIFY_READ, arg6, sizeof(*arg7) * 2, 1);
1437 if (!arg7) {
1438 return -TARGET_EFAULT;
1439 }
1440 arg_sigset = tswapal(arg7[0]);
1441 arg_sigsize = tswapal(arg7[1]);
1442 unlock_user(arg7, arg6, 0);
1443
1444 if (arg_sigset) {
1445 ret = process_sigsuspend_mask(&sig.set, arg_sigset, arg_sigsize);
1446 if (ret != 0) {
1447 return ret;
1448 }
1449 sig_ptr = &sig;
1450 sig.size = SIGSET_T_SIZE;
1451 }
1452 }
1453
1454 ret = get_errno(safe_pselect6(n, rfds_ptr, wfds_ptr, efds_ptr,
1455 ts_ptr, sig_ptr));
1456
1457 if (sig_ptr) {
1458 finish_sigsuspend_mask(ret);
1459 }
1460
1461 if (!is_error(ret)) {
1462 if (rfd_addr && copy_to_user_fdset(rfd_addr, &rfds, n)) {
1463 return -TARGET_EFAULT;
1464 }
1465 if (wfd_addr && copy_to_user_fdset(wfd_addr, &wfds, n)) {
1466 return -TARGET_EFAULT;
1467 }
1468 if (efd_addr && copy_to_user_fdset(efd_addr, &efds, n)) {
1469 return -TARGET_EFAULT;
1470 }
1471 if (time64) {
1472 if (ts_addr && host_to_target_timespec64(ts_addr, &ts)) {
1473 return -TARGET_EFAULT;
1474 }
1475 } else {
1476 if (ts_addr && host_to_target_timespec(ts_addr, &ts)) {
1477 return -TARGET_EFAULT;
1478 }
1479 }
1480 }
1481 return ret;
1482 }
1483 #endif
1484
1485 #if defined(TARGET_NR_poll) || defined(TARGET_NR_ppoll) || \
1486 defined(TARGET_NR_ppoll_time64)
1487 static abi_long do_ppoll(abi_long arg1, abi_long arg2, abi_long arg3,
1488 abi_long arg4, abi_long arg5, bool ppoll, bool time64)
1489 {
1490 struct target_pollfd *target_pfd;
1491 unsigned int nfds = arg2;
1492 struct pollfd *pfd;
1493 unsigned int i;
1494 abi_long ret;
1495
1496 pfd = NULL;
1497 target_pfd = NULL;
1498 if (nfds) {
1499 if (nfds > (INT_MAX / sizeof(struct target_pollfd))) {
1500 return -TARGET_EINVAL;
1501 }
1502 target_pfd = lock_user(VERIFY_WRITE, arg1,
1503 sizeof(struct target_pollfd) * nfds, 1);
1504 if (!target_pfd) {
1505 return -TARGET_EFAULT;
1506 }
1507
1508 pfd = alloca(sizeof(struct pollfd) * nfds);
1509 for (i = 0; i < nfds; i++) {
1510 pfd[i].fd = tswap32(target_pfd[i].fd);
1511 pfd[i].events = tswap16(target_pfd[i].events);
1512 }
1513 }
1514 if (ppoll) {
1515 struct timespec _timeout_ts, *timeout_ts = &_timeout_ts;
1516 sigset_t *set = NULL;
1517
1518 if (arg3) {
1519 if (time64) {
1520 if (target_to_host_timespec64(timeout_ts, arg3)) {
1521 unlock_user(target_pfd, arg1, 0);
1522 return -TARGET_EFAULT;
1523 }
1524 } else {
1525 if (target_to_host_timespec(timeout_ts, arg3)) {
1526 unlock_user(target_pfd, arg1, 0);
1527 return -TARGET_EFAULT;
1528 }
1529 }
1530 } else {
1531 timeout_ts = NULL;
1532 }
1533
1534 if (arg4) {
1535 ret = process_sigsuspend_mask(&set, arg4, arg5);
1536 if (ret != 0) {
1537 unlock_user(target_pfd, arg1, 0);
1538 return ret;
1539 }
1540 }
1541
1542 ret = get_errno(safe_ppoll(pfd, nfds, timeout_ts,
1543 set, SIGSET_T_SIZE));
1544
1545 if (set) {
1546 finish_sigsuspend_mask(ret);
1547 }
1548 if (!is_error(ret) && arg3) {
1549 if (time64) {
1550 if (host_to_target_timespec64(arg3, timeout_ts)) {
1551 return -TARGET_EFAULT;
1552 }
1553 } else {
1554 if (host_to_target_timespec(arg3, timeout_ts)) {
1555 return -TARGET_EFAULT;
1556 }
1557 }
1558 }
1559 } else {
1560 struct timespec ts, *pts;
1561
1562 if (arg3 >= 0) {
1563 /* Convert ms to secs, ns */
1564 ts.tv_sec = arg3 / 1000;
1565 ts.tv_nsec = (arg3 % 1000) * 1000000LL;
1566 pts = &ts;
1567 } else {
1568 /* -ve poll() timeout means "infinite" */
1569 pts = NULL;
1570 }
1571 ret = get_errno(safe_ppoll(pfd, nfds, pts, NULL, 0));
1572 }
1573
1574 if (!is_error(ret)) {
1575 for (i = 0; i < nfds; i++) {
1576 target_pfd[i].revents = tswap16(pfd[i].revents);
1577 }
1578 }
1579 unlock_user(target_pfd, arg1, sizeof(struct target_pollfd) * nfds);
1580 return ret;
1581 }
1582 #endif
1583
1584 static abi_long do_pipe(CPUArchState *cpu_env, abi_ulong pipedes,
1585 int flags, int is_pipe2)
1586 {
1587 int host_pipe[2];
1588 abi_long ret;
1589 ret = pipe2(host_pipe, flags);
1590
1591 if (is_error(ret))
1592 return get_errno(ret);
1593
1594 /* Several targets have special calling conventions for the original
1595 pipe syscall, but didn't replicate this into the pipe2 syscall. */
1596 if (!is_pipe2) {
1597 #if defined(TARGET_ALPHA)
1598 cpu_env->ir[IR_A4] = host_pipe[1];
1599 return host_pipe[0];
1600 #elif defined(TARGET_MIPS)
1601 cpu_env->active_tc.gpr[3] = host_pipe[1];
1602 return host_pipe[0];
1603 #elif defined(TARGET_SH4)
1604 cpu_env->gregs[1] = host_pipe[1];
1605 return host_pipe[0];
1606 #elif defined(TARGET_SPARC)
1607 cpu_env->regwptr[1] = host_pipe[1];
1608 return host_pipe[0];
1609 #endif
1610 }
1611
1612 if (put_user_s32(host_pipe[0], pipedes)
1613 || put_user_s32(host_pipe[1], pipedes + sizeof(abi_int)))
1614 return -TARGET_EFAULT;
1615 return get_errno(ret);
1616 }
1617
1618 static inline abi_long target_to_host_ip_mreq(struct ip_mreqn *mreqn,
1619 abi_ulong target_addr,
1620 socklen_t len)
1621 {
1622 struct target_ip_mreqn *target_smreqn;
1623
1624 target_smreqn = lock_user(VERIFY_READ, target_addr, len, 1);
1625 if (!target_smreqn)
1626 return -TARGET_EFAULT;
1627 mreqn->imr_multiaddr.s_addr = target_smreqn->imr_multiaddr.s_addr;
1628 mreqn->imr_address.s_addr = target_smreqn->imr_address.s_addr;
1629 if (len == sizeof(struct target_ip_mreqn))
1630 mreqn->imr_ifindex = tswapal(target_smreqn->imr_ifindex);
1631 unlock_user(target_smreqn, target_addr, 0);
1632
1633 return 0;
1634 }
1635
1636 static inline abi_long target_to_host_sockaddr(int fd, struct sockaddr *addr,
1637 abi_ulong target_addr,
1638 socklen_t len)
1639 {
1640 const socklen_t unix_maxlen = sizeof (struct sockaddr_un);
1641 sa_family_t sa_family;
1642 struct target_sockaddr *target_saddr;
1643
1644 if (fd_trans_target_to_host_addr(fd)) {
1645 return fd_trans_target_to_host_addr(fd)(addr, target_addr, len);
1646 }
1647
1648 target_saddr = lock_user(VERIFY_READ, target_addr, len, 1);
1649 if (!target_saddr)
1650 return -TARGET_EFAULT;
1651
1652 sa_family = tswap16(target_saddr->sa_family);
1653
1654 /* Oops. The caller might send a incomplete sun_path; sun_path
1655 * must be terminated by \0 (see the manual page), but
1656 * unfortunately it is quite common to specify sockaddr_un
1657 * length as "strlen(x->sun_path)" while it should be
1658 * "strlen(...) + 1". We'll fix that here if needed.
1659 * Linux kernel has a similar feature.
1660 */
1661
1662 if (sa_family == AF_UNIX) {
1663 if (len < unix_maxlen && len > 0) {
1664 char *cp = (char*)target_saddr;
1665
1666 if ( cp[len-1] && !cp[len] )
1667 len++;
1668 }
1669 if (len > unix_maxlen)
1670 len = unix_maxlen;
1671 }
1672
1673 memcpy(addr, target_saddr, len);
1674 addr->sa_family = sa_family;
1675 if (sa_family == AF_NETLINK) {
1676 struct sockaddr_nl *nladdr;
1677
1678 nladdr = (struct sockaddr_nl *)addr;
1679 nladdr->nl_pid = tswap32(nladdr->nl_pid);
1680 nladdr->nl_groups = tswap32(nladdr->nl_groups);
1681 } else if (sa_family == AF_PACKET) {
1682 struct target_sockaddr_ll *lladdr;
1683
1684 lladdr = (struct target_sockaddr_ll *)addr;
1685 lladdr->sll_ifindex = tswap32(lladdr->sll_ifindex);
1686 lladdr->sll_hatype = tswap16(lladdr->sll_hatype);
1687 } else if (sa_family == AF_INET6) {
1688 struct sockaddr_in6 *in6addr;
1689
1690 in6addr = (struct sockaddr_in6 *)addr;
1691 in6addr->sin6_scope_id = tswap32(in6addr->sin6_scope_id);
1692 }
1693 unlock_user(target_saddr, target_addr, 0);
1694
1695 return 0;
1696 }
1697
1698 static inline abi_long host_to_target_sockaddr(abi_ulong target_addr,
1699 struct sockaddr *addr,
1700 socklen_t len)
1701 {
1702 struct target_sockaddr *target_saddr;
1703
1704 if (len == 0) {
1705 return 0;
1706 }
1707 assert(addr);
1708
1709 target_saddr = lock_user(VERIFY_WRITE, target_addr, len, 0);
1710 if (!target_saddr)
1711 return -TARGET_EFAULT;
1712 memcpy(target_saddr, addr, len);
1713 if (len >= offsetof(struct target_sockaddr, sa_family) +
1714 sizeof(target_saddr->sa_family)) {
1715 target_saddr->sa_family = tswap16(addr->sa_family);
1716 }
1717 if (addr->sa_family == AF_NETLINK &&
1718 len >= sizeof(struct target_sockaddr_nl)) {
1719 struct target_sockaddr_nl *target_nl =
1720 (struct target_sockaddr_nl *)target_saddr;
1721 target_nl->nl_pid = tswap32(target_nl->nl_pid);
1722 target_nl->nl_groups = tswap32(target_nl->nl_groups);
1723 } else if (addr->sa_family == AF_PACKET) {
1724 struct sockaddr_ll *target_ll = (struct sockaddr_ll *)target_saddr;
1725 target_ll->sll_ifindex = tswap32(target_ll->sll_ifindex);
1726 target_ll->sll_hatype = tswap16(target_ll->sll_hatype);
1727 } else if (addr->sa_family == AF_INET6 &&
1728 len >= sizeof(struct target_sockaddr_in6)) {
1729 struct target_sockaddr_in6 *target_in6 =
1730 (struct target_sockaddr_in6 *)target_saddr;
1731 target_in6->sin6_scope_id = tswap16(target_in6->sin6_scope_id);
1732 }
1733 unlock_user(target_saddr, target_addr, len);
1734
1735 return 0;
1736 }
1737
1738 static inline abi_long target_to_host_cmsg(struct msghdr *msgh,
1739 struct target_msghdr *target_msgh)
1740 {
1741 struct cmsghdr *cmsg = CMSG_FIRSTHDR(msgh);
1742 abi_long msg_controllen;
1743 abi_ulong target_cmsg_addr;
1744 struct target_cmsghdr *target_cmsg, *target_cmsg_start;
1745 socklen_t space = 0;
1746
1747 msg_controllen = tswapal(target_msgh->msg_controllen);
1748 if (msg_controllen < sizeof (struct target_cmsghdr))
1749 goto the_end;
1750 target_cmsg_addr = tswapal(target_msgh->msg_control);
1751 target_cmsg = lock_user(VERIFY_READ, target_cmsg_addr, msg_controllen, 1);
1752 target_cmsg_start = target_cmsg;
1753 if (!target_cmsg)
1754 return -TARGET_EFAULT;
1755
1756 while (cmsg && target_cmsg) {
1757 void *data = CMSG_DATA(cmsg);
1758 void *target_data = TARGET_CMSG_DATA(target_cmsg);
1759
1760 int len = tswapal(target_cmsg->cmsg_len)
1761 - sizeof(struct target_cmsghdr);
1762
1763 space += CMSG_SPACE(len);
1764 if (space > msgh->msg_controllen) {
1765 space -= CMSG_SPACE(len);
1766 /* This is a QEMU bug, since we allocated the payload
1767 * area ourselves (unlike overflow in host-to-target
1768 * conversion, which is just the guest giving us a buffer
1769 * that's too small). It can't happen for the payload types
1770 * we currently support; if it becomes an issue in future
1771 * we would need to improve our allocation strategy to
1772 * something more intelligent than "twice the size of the
1773 * target buffer we're reading from".
1774 */
1775 qemu_log_mask(LOG_UNIMP,
1776 ("Unsupported ancillary data %d/%d: "
1777 "unhandled msg size\n"),
1778 tswap32(target_cmsg->cmsg_level),
1779 tswap32(target_cmsg->cmsg_type));
1780 break;
1781 }
1782
1783 if (tswap32(target_cmsg->cmsg_level) == TARGET_SOL_SOCKET) {
1784 cmsg->cmsg_level = SOL_SOCKET;
1785 } else {
1786 cmsg->cmsg_level = tswap32(target_cmsg->cmsg_level);
1787 }
1788 cmsg->cmsg_type = tswap32(target_cmsg->cmsg_type);
1789 cmsg->cmsg_len = CMSG_LEN(len);
1790
1791 if (cmsg->cmsg_level == SOL_SOCKET && cmsg->cmsg_type == SCM_RIGHTS) {
1792 int *fd = (int *)data;
1793 int *target_fd = (int *)target_data;
1794 int i, numfds = len / sizeof(int);
1795
1796 for (i = 0; i < numfds; i++) {
1797 __get_user(fd[i], target_fd + i);
1798 }
1799 } else if (cmsg->cmsg_level == SOL_SOCKET
1800 && cmsg->cmsg_type == SCM_CREDENTIALS) {
1801 struct ucred *cred = (struct ucred *)data;
1802 struct target_ucred *target_cred =
1803 (struct target_ucred *)target_data;
1804
1805 __get_user(cred->pid, &target_cred->pid);
1806 __get_user(cred->uid, &target_cred->uid);
1807 __get_user(cred->gid, &target_cred->gid);
1808 } else if (cmsg->cmsg_level == SOL_ALG) {
1809 uint32_t *dst = (uint32_t *)data;
1810
1811 memcpy(dst, target_data, len);
1812 /* fix endianness of first 32-bit word */
1813 if (len >= sizeof(uint32_t)) {
1814 *dst = tswap32(*dst);
1815 }
1816 } else {
1817 qemu_log_mask(LOG_UNIMP, "Unsupported ancillary data: %d/%d\n",
1818 cmsg->cmsg_level, cmsg->cmsg_type);
1819 memcpy(data, target_data, len);
1820 }
1821
1822 cmsg = CMSG_NXTHDR(msgh, cmsg);
1823 target_cmsg = TARGET_CMSG_NXTHDR(target_msgh, target_cmsg,
1824 target_cmsg_start);
1825 }
1826 unlock_user(target_cmsg, target_cmsg_addr, 0);
1827 the_end:
1828 msgh->msg_controllen = space;
1829 return 0;
1830 }
1831
1832 static inline abi_long host_to_target_cmsg(struct target_msghdr *target_msgh,
1833 struct msghdr *msgh)
1834 {
1835 struct cmsghdr *cmsg = CMSG_FIRSTHDR(msgh);
1836 abi_long msg_controllen;
1837 abi_ulong target_cmsg_addr;
1838 struct target_cmsghdr *target_cmsg, *target_cmsg_start;
1839 socklen_t space = 0;
1840
1841 msg_controllen = tswapal(target_msgh->msg_controllen);
1842 if (msg_controllen < sizeof (struct target_cmsghdr))
1843 goto the_end;
1844 target_cmsg_addr = tswapal(target_msgh->msg_control);
1845 target_cmsg = lock_user(VERIFY_WRITE, target_cmsg_addr, msg_controllen, 0);
1846 target_cmsg_start = target_cmsg;
1847 if (!target_cmsg)
1848 return -TARGET_EFAULT;
1849
1850 while (cmsg && target_cmsg) {
1851 void *data = CMSG_DATA(cmsg);
1852 void *target_data = TARGET_CMSG_DATA(target_cmsg);
1853
1854 int len = cmsg->cmsg_len - sizeof(struct cmsghdr);
1855 int tgt_len, tgt_space;
1856
1857 /* We never copy a half-header but may copy half-data;
1858 * this is Linux's behaviour in put_cmsg(). Note that
1859 * truncation here is a guest problem (which we report
1860 * to the guest via the CTRUNC bit), unlike truncation
1861 * in target_to_host_cmsg, which is a QEMU bug.
1862 */
1863 if (msg_controllen < sizeof(struct target_cmsghdr)) {
1864 target_msgh->msg_flags |= tswap32(MSG_CTRUNC);
1865 break;
1866 }
1867
1868 if (cmsg->cmsg_level == SOL_SOCKET) {
1869 target_cmsg->cmsg_level = tswap32(TARGET_SOL_SOCKET);
1870 } else {
1871 target_cmsg->cmsg_level = tswap32(cmsg->cmsg_level);
1872 }
1873 target_cmsg->cmsg_type = tswap32(cmsg->cmsg_type);
1874
1875 /* Payload types which need a different size of payload on
1876 * the target must adjust tgt_len here.
1877 */
1878 tgt_len = len;
1879 switch (cmsg->cmsg_level) {
1880 case SOL_SOCKET:
1881 switch (cmsg->cmsg_type) {
1882 case SO_TIMESTAMP:
1883 tgt_len = sizeof(struct target_timeval);
1884 break;
1885 default:
1886 break;
1887 }
1888 break;
1889 default:
1890 break;
1891 }
1892
1893 if (msg_controllen < TARGET_CMSG_LEN(tgt_len)) {
1894 target_msgh->msg_flags |= tswap32(MSG_CTRUNC);
1895 tgt_len = msg_controllen - sizeof(struct target_cmsghdr);
1896 }
1897
1898 /* We must now copy-and-convert len bytes of payload
1899 * into tgt_len bytes of destination space. Bear in mind
1900 * that in both source and destination we may be dealing
1901 * with a truncated value!
1902 */
1903 switch (cmsg->cmsg_level) {
1904 case SOL_SOCKET:
1905 switch (cmsg->cmsg_type) {
1906 case SCM_RIGHTS:
1907 {
1908 int *fd = (int *)data;
1909 int *target_fd = (int *)target_data;
1910 int i, numfds = tgt_len / sizeof(int);
1911
1912 for (i = 0; i < numfds; i++) {
1913 __put_user(fd[i], target_fd + i);
1914 }
1915 break;
1916 }
1917 case SO_TIMESTAMP:
1918 {
1919 struct timeval *tv = (struct timeval *)data;
1920 struct target_timeval *target_tv =
1921 (struct target_timeval *)target_data;
1922
1923 if (len != sizeof(struct timeval) ||
1924 tgt_len != sizeof(struct target_timeval)) {
1925 goto unimplemented;
1926 }
1927
1928 /* copy struct timeval to target */
1929 __put_user(tv->tv_sec, &target_tv->tv_sec);
1930 __put_user(tv->tv_usec, &target_tv->tv_usec);
1931 break;
1932 }
1933 case SCM_CREDENTIALS:
1934 {
1935 struct ucred *cred = (struct ucred *)data;
1936 struct target_ucred *target_cred =
1937 (struct target_ucred *)target_data;
1938
1939 __put_user(cred->pid, &target_cred->pid);
1940 __put_user(cred->uid, &target_cred->uid);
1941 __put_user(cred->gid, &target_cred->gid);
1942 break;
1943 }
1944 default:
1945 goto unimplemented;
1946 }
1947 break;
1948
1949 case SOL_IP:
1950 switch (cmsg->cmsg_type) {
1951 case IP_TTL:
1952 {
1953 uint32_t *v = (uint32_t *)data;
1954 uint32_t *t_int = (uint32_t *)target_data;
1955
1956 if (len != sizeof(uint32_t) ||
1957 tgt_len != sizeof(uint32_t)) {
1958 goto unimplemented;
1959 }
1960 __put_user(*v, t_int);
1961 break;
1962 }
1963 case IP_RECVERR:
1964 {
1965 struct errhdr_t {
1966 struct sock_extended_err ee;
1967 struct sockaddr_in offender;
1968 };
1969 struct errhdr_t *errh = (struct errhdr_t *)data;
1970 struct errhdr_t *target_errh =
1971 (struct errhdr_t *)target_data;
1972
1973 if (len != sizeof(struct errhdr_t) ||
1974 tgt_len != sizeof(struct errhdr_t)) {
1975 goto unimplemented;
1976 }
1977 __put_user(errh->ee.ee_errno, &target_errh->ee.ee_errno);
1978 __put_user(errh->ee.ee_origin, &target_errh->ee.ee_origin);
1979 __put_user(errh->ee.ee_type, &target_errh->ee.ee_type);
1980 __put_user(errh->ee.ee_code, &target_errh->ee.ee_code);
1981 __put_user(errh->ee.ee_pad, &target_errh->ee.ee_pad);
1982 __put_user(errh->ee.ee_info, &target_errh->ee.ee_info);
1983 __put_user(errh->ee.ee_data, &target_errh->ee.ee_data);
1984 host_to_target_sockaddr((unsigned long) &target_errh->offender,
1985 (void *) &errh->offender, sizeof(errh->offender));
1986 break;
1987 }
1988 default:
1989 goto unimplemented;
1990 }
1991 break;
1992
1993 case SOL_IPV6:
1994 switch (cmsg->cmsg_type) {
1995 case IPV6_HOPLIMIT:
1996 {
1997 uint32_t *v = (uint32_t *)data;
1998 uint32_t *t_int = (uint32_t *)target_data;
1999
2000 if (len != sizeof(uint32_t) ||
2001 tgt_len != sizeof(uint32_t)) {
2002 goto unimplemented;
2003 }
2004 __put_user(*v, t_int);
2005 break;
2006 }
2007 case IPV6_RECVERR:
2008 {
2009 struct errhdr6_t {
2010 struct sock_extended_err ee;
2011 struct sockaddr_in6 offender;
2012 };
2013 struct errhdr6_t *errh = (struct errhdr6_t *)data;
2014 struct errhdr6_t *target_errh =
2015 (struct errhdr6_t *)target_data;
2016
2017 if (len != sizeof(struct errhdr6_t) ||
2018 tgt_len != sizeof(struct errhdr6_t)) {
2019 goto unimplemented;
2020 }
2021 __put_user(errh->ee.ee_errno, &target_errh->ee.ee_errno);
2022 __put_user(errh->ee.ee_origin, &target_errh->ee.ee_origin);
2023 __put_user(errh->ee.ee_type, &target_errh->ee.ee_type);
2024 __put_user(errh->ee.ee_code, &target_errh->ee.ee_code);
2025 __put_user(errh->ee.ee_pad, &target_errh->ee.ee_pad);
2026 __put_user(errh->ee.ee_info, &target_errh->ee.ee_info);
2027 __put_user(errh->ee.ee_data, &target_errh->ee.ee_data);
2028 host_to_target_sockaddr((unsigned long) &target_errh->offender,
2029 (void *) &errh->offender, sizeof(errh->offender));
2030 break;
2031 }
2032 default:
2033 goto unimplemented;
2034 }
2035 break;
2036
2037 default:
2038 unimplemented:
2039 qemu_log_mask(LOG_UNIMP, "Unsupported ancillary data: %d/%d\n",
2040 cmsg->cmsg_level, cmsg->cmsg_type);
2041 memcpy(target_data, data, MIN(len, tgt_len));
2042 if (tgt_len > len) {
2043 memset(target_data + len, 0, tgt_len - len);
2044 }
2045 }
2046
2047 target_cmsg->cmsg_len = tswapal(TARGET_CMSG_LEN(tgt_len));
2048 tgt_space = TARGET_CMSG_SPACE(tgt_len);
2049 if (msg_controllen < tgt_space) {
2050 tgt_space = msg_controllen;
2051 }
2052 msg_controllen -= tgt_space;
2053 space += tgt_space;
2054 cmsg = CMSG_NXTHDR(msgh, cmsg);
2055 target_cmsg = TARGET_CMSG_NXTHDR(target_msgh, target_cmsg,
2056 target_cmsg_start);
2057 }
2058 unlock_user(target_cmsg, target_cmsg_addr, space);
2059 the_end:
2060 target_msgh->msg_controllen = tswapal(space);
2061 return 0;
2062 }
2063
2064 /* do_setsockopt() Must return target values and target errnos. */
2065 static abi_long do_setsockopt(int sockfd, int level, int optname,
2066 abi_ulong optval_addr, socklen_t optlen)
2067 {
2068 abi_long ret;
2069 int val;
2070 struct ip_mreqn *ip_mreq;
2071 struct ip_mreq_source *ip_mreq_source;
2072
2073 switch(level) {
2074 case SOL_TCP:
2075 case SOL_UDP:
2076 /* TCP and UDP options all take an 'int' value. */
2077 if (optlen < sizeof(uint32_t))
2078 return -TARGET_EINVAL;
2079
2080 if (get_user_u32(val, optval_addr))
2081 return -TARGET_EFAULT;
2082 ret = get_errno(setsockopt(sockfd, level, optname, &val, sizeof(val)));
2083 break;
2084 case SOL_IP:
2085 switch(optname) {
2086 case IP_TOS:
2087 case IP_TTL:
2088 case IP_HDRINCL:
2089 case IP_ROUTER_ALERT:
2090 case IP_RECVOPTS:
2091 case IP_RETOPTS:
2092 case IP_PKTINFO:
2093 case IP_MTU_DISCOVER:
2094 case IP_RECVERR:
2095 case IP_RECVTTL:
2096 case IP_RECVTOS:
2097 #ifdef IP_FREEBIND
2098 case IP_FREEBIND:
2099 #endif
2100 case IP_MULTICAST_TTL:
2101 case IP_MULTICAST_LOOP:
2102 val = 0;
2103 if (optlen >= sizeof(uint32_t)) {
2104 if (get_user_u32(val, optval_addr))
2105 return -TARGET_EFAULT;
2106 } else if (optlen >= 1) {
2107 if (get_user_u8(val, optval_addr))
2108 return -TARGET_EFAULT;
2109 }
2110 ret = get_errno(setsockopt(sockfd, level, optname, &val, sizeof(val)));
2111 break;
2112 case IP_ADD_MEMBERSHIP:
2113 case IP_DROP_MEMBERSHIP:
2114 if (optlen < sizeof (struct target_ip_mreq) ||
2115 optlen > sizeof (struct target_ip_mreqn))
2116 return -TARGET_EINVAL;
2117
2118 ip_mreq = (struct ip_mreqn *) alloca(optlen);
2119 target_to_host_ip_mreq(ip_mreq, optval_addr, optlen);
2120 ret = get_errno(setsockopt(sockfd, level, optname, ip_mreq, optlen));
2121 break;
2122
2123 case IP_BLOCK_SOURCE:
2124 case IP_UNBLOCK_SOURCE:
2125 case IP_ADD_SOURCE_MEMBERSHIP:
2126 case IP_DROP_SOURCE_MEMBERSHIP:
2127 if (optlen != sizeof (struct target_ip_mreq_source))
2128 return -TARGET_EINVAL;
2129
2130 ip_mreq_source = lock_user(VERIFY_READ, optval_addr, optlen, 1);
2131 if (!ip_mreq_source) {
2132 return -TARGET_EFAULT;
2133 }
2134 ret = get_errno(setsockopt(sockfd, level, optname, ip_mreq_source, optlen));
2135 unlock_user (ip_mreq_source, optval_addr, 0);
2136 break;
2137
2138 default:
2139 goto unimplemented;
2140 }
2141 break;
2142 case SOL_IPV6:
2143 switch (optname) {
2144 case IPV6_MTU_DISCOVER:
2145 case IPV6_MTU:
2146 case IPV6_V6ONLY:
2147 case IPV6_RECVPKTINFO:
2148 case IPV6_UNICAST_HOPS:
2149 case IPV6_MULTICAST_HOPS:
2150 case IPV6_MULTICAST_LOOP:
2151 case IPV6_RECVERR:
2152 case IPV6_RECVHOPLIMIT:
2153 case IPV6_2292HOPLIMIT:
2154 case IPV6_CHECKSUM:
2155 case IPV6_ADDRFORM:
2156 case IPV6_2292PKTINFO:
2157 case IPV6_RECVTCLASS:
2158 case IPV6_RECVRTHDR:
2159 case IPV6_2292RTHDR:
2160 case IPV6_RECVHOPOPTS:
2161 case IPV6_2292HOPOPTS:
2162 case IPV6_RECVDSTOPTS:
2163 case IPV6_2292DSTOPTS:
2164 case IPV6_TCLASS:
2165 case IPV6_ADDR_PREFERENCES:
2166 #ifdef IPV6_RECVPATHMTU
2167 case IPV6_RECVPATHMTU:
2168 #endif
2169 #ifdef IPV6_TRANSPARENT
2170 case IPV6_TRANSPARENT:
2171 #endif
2172 #ifdef IPV6_FREEBIND
2173 case IPV6_FREEBIND:
2174 #endif
2175 #ifdef IPV6_RECVORIGDSTADDR
2176 case IPV6_RECVORIGDSTADDR:
2177 #endif
2178 val = 0;
2179 if (optlen < sizeof(uint32_t)) {
2180 return -TARGET_EINVAL;
2181 }
2182 if (get_user_u32(val, optval_addr)) {
2183 return -TARGET_EFAULT;
2184 }
2185 ret = get_errno(setsockopt(sockfd, level, optname,
2186 &val, sizeof(val)));
2187 break;
2188 case IPV6_PKTINFO:
2189 {
2190 struct in6_pktinfo pki;
2191
2192 if (optlen < sizeof(pki)) {
2193 return -TARGET_EINVAL;
2194 }
2195
2196 if (copy_from_user(&pki, optval_addr, sizeof(pki))) {
2197 return -TARGET_EFAULT;
2198 }
2199
2200 pki.ipi6_ifindex = tswap32(pki.ipi6_ifindex);
2201
2202 ret = get_errno(setsockopt(sockfd, level, optname,
2203 &pki, sizeof(pki)));
2204 break;
2205 }
2206 case IPV6_ADD_MEMBERSHIP:
2207 case IPV6_DROP_MEMBERSHIP:
2208 {
2209 struct ipv6_mreq ipv6mreq;
2210
2211 if (optlen < sizeof(ipv6mreq)) {
2212 return -TARGET_EINVAL;
2213 }
2214
2215 if (copy_from_user(&ipv6mreq, optval_addr, sizeof(ipv6mreq))) {
2216 return -TARGET_EFAULT;
2217 }
2218
2219 ipv6mreq.ipv6mr_interface = tswap32(ipv6mreq.ipv6mr_interface);
2220
2221 ret = get_errno(setsockopt(sockfd, level, optname,
2222 &ipv6mreq, sizeof(ipv6mreq)));
2223 break;
2224 }
2225 default:
2226 goto unimplemented;
2227 }
2228 break;
2229 case SOL_ICMPV6:
2230 switch (optname) {
2231 case ICMPV6_FILTER:
2232 {
2233 struct icmp6_filter icmp6f;
2234
2235 if (optlen > sizeof(icmp6f)) {
2236 optlen = sizeof(icmp6f);
2237 }
2238
2239 if (copy_from_user(&icmp6f, optval_addr, optlen)) {
2240 return -TARGET_EFAULT;
2241 }
2242
2243 for (val = 0; val < 8; val++) {
2244 icmp6f.data[val] = tswap32(icmp6f.data[val]);
2245 }
2246
2247 ret = get_errno(setsockopt(sockfd, level, optname,
2248 &icmp6f, optlen));
2249 break;
2250 }
2251 default:
2252 goto unimplemented;
2253 }
2254 break;
2255 case SOL_RAW:
2256 switch (optname) {
2257 case ICMP_FILTER:
2258 case IPV6_CHECKSUM:
2259 /* those take an u32 value */
2260 if (optlen < sizeof(uint32_t)) {
2261 return -TARGET_EINVAL;
2262 }
2263
2264 if (get_user_u32(val, optval_addr)) {
2265 return -TARGET_EFAULT;
2266 }
2267 ret = get_errno(setsockopt(sockfd, level, optname,
2268 &val, sizeof(val)));
2269 break;
2270
2271 default:
2272 goto unimplemented;
2273 }
2274 break;
2275 #if defined(SOL_ALG) && defined(ALG_SET_KEY) && defined(ALG_SET_AEAD_AUTHSIZE)
2276 case SOL_ALG:
2277 switch (optname) {
2278 case ALG_SET_KEY:
2279 {
2280 char *alg_key = g_malloc(optlen);
2281
2282 if (!alg_key) {
2283 return -TARGET_ENOMEM;
2284 }
2285 if (copy_from_user(alg_key, optval_addr, optlen)) {
2286 g_free(alg_key);
2287 return -TARGET_EFAULT;
2288 }
2289 ret = get_errno(setsockopt(sockfd, level, optname,
2290 alg_key, optlen));
2291 g_free(alg_key);
2292 break;
2293 }
2294 case ALG_SET_AEAD_AUTHSIZE:
2295 {
2296 ret = get_errno(setsockopt(sockfd, level, optname,
2297 NULL, optlen));
2298 break;
2299 }
2300 default:
2301 goto unimplemented;
2302 }
2303 break;
2304 #endif
2305 case TARGET_SOL_SOCKET:
2306 switch (optname) {
2307 case TARGET_SO_RCVTIMEO:
2308 {
2309 struct timeval tv;
2310
2311 optname = SO_RCVTIMEO;
2312
2313 set_timeout:
2314 if (optlen != sizeof(struct target_timeval)) {
2315 return -TARGET_EINVAL;
2316 }
2317
2318 if (copy_from_user_timeval(&tv, optval_addr)) {
2319 return -TARGET_EFAULT;
2320 }
2321
2322 ret = get_errno(setsockopt(sockfd, SOL_SOCKET, optname,
2323 &tv, sizeof(tv)));
2324 return ret;
2325 }
2326 case TARGET_SO_SNDTIMEO:
2327 optname = SO_SNDTIMEO;
2328 goto set_timeout;
2329 case TARGET_SO_ATTACH_FILTER:
2330 {
2331 struct target_sock_fprog *tfprog;
2332 struct target_sock_filter *tfilter;
2333 struct sock_fprog fprog;
2334 struct sock_filter *filter;
2335 int i;
2336
2337 if (optlen != sizeof(*tfprog)) {
2338 return -TARGET_EINVAL;
2339 }
2340 if (!lock_user_struct(VERIFY_READ, tfprog, optval_addr, 0)) {
2341 return -TARGET_EFAULT;
2342 }
2343 if (!lock_user_struct(VERIFY_READ, tfilter,
2344 tswapal(tfprog->filter), 0)) {
2345 unlock_user_struct(tfprog, optval_addr, 1);
2346 return -TARGET_EFAULT;
2347 }
2348
2349 fprog.len = tswap16(tfprog->len);
2350 filter = g_try_new(struct sock_filter, fprog.len);
2351 if (filter == NULL) {
2352 unlock_user_struct(tfilter, tfprog->filter, 1);
2353 unlock_user_struct(tfprog, optval_addr, 1);
2354 return -TARGET_ENOMEM;
2355 }
2356 for (i = 0; i < fprog.len; i++) {
2357 filter[i].code = tswap16(tfilter[i].code);
2358 filter[i].jt = tfilter[i].jt;
2359 filter[i].jf = tfilter[i].jf;
2360 filter[i].k = tswap32(tfilter[i].k);
2361 }
2362 fprog.filter = filter;
2363
2364 ret = get_errno(setsockopt(sockfd, SOL_SOCKET,
2365 SO_ATTACH_FILTER, &fprog, sizeof(fprog)));
2366 g_free(filter);
2367
2368 unlock_user_struct(tfilter, tfprog->filter, 1);
2369 unlock_user_struct(tfprog, optval_addr, 1);
2370 return ret;
2371 }
2372 case TARGET_SO_BINDTODEVICE:
2373 {
2374 char *dev_ifname, *addr_ifname;
2375
2376 if (optlen > IFNAMSIZ - 1) {
2377 optlen = IFNAMSIZ - 1;
2378 }
2379 dev_ifname = lock_user(VERIFY_READ, optval_addr, optlen, 1);
2380 if (!dev_ifname) {
2381 return -TARGET_EFAULT;
2382 }
2383 optname = SO_BINDTODEVICE;
2384 addr_ifname = alloca(IFNAMSIZ);
2385 memcpy(addr_ifname, dev_ifname, optlen);
2386 addr_ifname[optlen] = 0;
2387 ret = get_errno(setsockopt(sockfd, SOL_SOCKET, optname,
2388 addr_ifname, optlen));
2389 unlock_user (dev_ifname, optval_addr, 0);
2390 return ret;
2391 }
2392 case TARGET_SO_LINGER:
2393 {
2394 struct linger lg;
2395 struct target_linger *tlg;
2396
2397 if (optlen != sizeof(struct target_linger)) {
2398 return -TARGET_EINVAL;
2399 }
2400 if (!lock_user_struct(VERIFY_READ, tlg, optval_addr, 1)) {
2401 return -TARGET_EFAULT;
2402 }
2403 __get_user(lg.l_onoff, &tlg->l_onoff);
2404 __get_user(lg.l_linger, &tlg->l_linger);
2405 ret = get_errno(setsockopt(sockfd, SOL_SOCKET, SO_LINGER,
2406 &lg, sizeof(lg)));
2407 unlock_user_struct(tlg, optval_addr, 0);
2408 return ret;
2409 }
2410 /* Options with 'int' argument. */
2411 case TARGET_SO_DEBUG:
2412 optname = SO_DEBUG;
2413 break;
2414 case TARGET_SO_REUSEADDR:
2415 optname = SO_REUSEADDR;
2416 break;
2417 #ifdef SO_REUSEPORT
2418 case TARGET_SO_REUSEPORT:
2419 optname = SO_REUSEPORT;
2420 break;
2421 #endif
2422 case TARGET_SO_TYPE:
2423 optname = SO_TYPE;
2424 break;
2425 case TARGET_SO_ERROR:
2426 optname = SO_ERROR;
2427 break;
2428 case TARGET_SO_DONTROUTE:
2429 optname = SO_DONTROUTE;
2430 break;
2431 case TARGET_SO_BROADCAST:
2432 optname = SO_BROADCAST;
2433 break;
2434 case TARGET_SO_SNDBUF:
2435 optname = SO_SNDBUF;
2436 break;
2437 case TARGET_SO_SNDBUFFORCE:
2438 optname = SO_SNDBUFFORCE;
2439 break;
2440 case TARGET_SO_RCVBUF:
2441 optname = SO_RCVBUF;
2442 break;
2443 case TARGET_SO_RCVBUFFORCE:
2444 optname = SO_RCVBUFFORCE;
2445 break;
2446 case TARGET_SO_KEEPALIVE:
2447 optname = SO_KEEPALIVE;
2448 break;
2449 case TARGET_SO_OOBINLINE:
2450 optname = SO_OOBINLINE;
2451 break;
2452 case TARGET_SO_NO_CHECK:
2453 optname = SO_NO_CHECK;
2454 break;
2455 case TARGET_SO_PRIORITY:
2456 optname = SO_PRIORITY;
2457 break;
2458 #ifdef SO_BSDCOMPAT
2459 case TARGET_SO_BSDCOMPAT:
2460 optname = SO_BSDCOMPAT;
2461 break;
2462 #endif
2463 case TARGET_SO_PASSCRED:
2464 optname = SO_PASSCRED;
2465 break;
2466 case TARGET_SO_PASSSEC:
2467 optname = SO_PASSSEC;
2468 break;
2469 case TARGET_SO_TIMESTAMP:
2470 optname = SO_TIMESTAMP;
2471 break;
2472 case TARGET_SO_RCVLOWAT:
2473 optname = SO_RCVLOWAT;
2474 break;
2475 default:
2476 goto unimplemented;
2477 }
2478 if (optlen < sizeof(uint32_t))
2479 return -TARGET_EINVAL;
2480
2481 if (get_user_u32(val, optval_addr))
2482 return -TARGET_EFAULT;
2483 ret = get_errno(setsockopt(sockfd, SOL_SOCKET, optname, &val, sizeof(val)));
2484 break;
2485 #ifdef SOL_NETLINK
2486 case SOL_NETLINK:
2487 switch (optname) {
2488 case NETLINK_PKTINFO:
2489 case NETLINK_ADD_MEMBERSHIP:
2490 case NETLINK_DROP_MEMBERSHIP:
2491 case NETLINK_BROADCAST_ERROR:
2492 case NETLINK_NO_ENOBUFS:
2493 #if LINUX_VERSION_CODE >= KERNEL_VERSION(4, 2, 0)
2494 case NETLINK_LISTEN_ALL_NSID:
2495 case NETLINK_CAP_ACK:
2496 #endif /* LINUX_VERSION_CODE >= KERNEL_VERSION(4, 2, 0) */
2497 #if LINUX_VERSION_CODE >= KERNEL_VERSION(4, 12, 0)
2498 case NETLINK_EXT_ACK:
2499 #endif /* LINUX_VERSION_CODE >= KERNEL_VERSION(4, 12, 0) */
2500 #if LINUX_VERSION_CODE >= KERNEL_VERSION(4, 20, 0)
2501 case NETLINK_GET_STRICT_CHK:
2502 #endif /* LINUX_VERSION_CODE >= KERNEL_VERSION(4, 12, 0) */
2503 break;
2504 default:
2505 goto unimplemented;
2506 }
2507 val = 0;
2508 if (optlen < sizeof(uint32_t)) {
2509 return -TARGET_EINVAL;
2510 }
2511 if (get_user_u32(val, optval_addr)) {
2512 return -TARGET_EFAULT;
2513 }
2514 ret = get_errno(setsockopt(sockfd, SOL_NETLINK, optname, &val,
2515 sizeof(val)));
2516 break;
2517 #endif /* SOL_NETLINK */
2518 default:
2519 unimplemented:
2520 qemu_log_mask(LOG_UNIMP, "Unsupported setsockopt level=%d optname=%d\n",
2521 level, optname);
2522 ret = -TARGET_ENOPROTOOPT;
2523 }
2524 return ret;
2525 }
2526
2527 /* do_getsockopt() Must return target values and target errnos. */
2528 static abi_long do_getsockopt(int sockfd, int level, int optname,
2529 abi_ulong optval_addr, abi_ulong optlen)
2530 {
2531 abi_long ret;
2532 int len, val;
2533 socklen_t lv;
2534
2535 switch(level) {
2536 case TARGET_SOL_SOCKET:
2537 level = SOL_SOCKET;
2538 switch (optname) {
2539 /* These don't just return a single integer */
2540 case TARGET_SO_PEERNAME:
2541 goto unimplemented;
2542 case TARGET_SO_RCVTIMEO: {
2543 struct timeval tv;
2544 socklen_t tvlen;
2545
2546 optname = SO_RCVTIMEO;
2547
2548 get_timeout:
2549 if (get_user_u32(len, optlen)) {
2550 return -TARGET_EFAULT;
2551 }
2552 if (len < 0) {
2553 return -TARGET_EINVAL;
2554 }
2555
2556 tvlen = sizeof(tv);
2557 ret = get_errno(getsockopt(sockfd, level, optname,
2558 &tv, &tvlen));
2559 if (ret < 0) {
2560 return ret;
2561 }
2562 if (len > sizeof(struct target_timeval)) {
2563 len = sizeof(struct target_timeval);
2564 }
2565 if (copy_to_user_timeval(optval_addr, &tv)) {
2566 return -TARGET_EFAULT;
2567 }
2568 if (put_user_u32(len, optlen)) {
2569 return -TARGET_EFAULT;
2570 }
2571 break;
2572 }
2573 case TARGET_SO_SNDTIMEO:
2574 optname = SO_SNDTIMEO;
2575 goto get_timeout;
2576 case TARGET_SO_PEERCRED: {
2577 struct ucred cr;
2578 socklen_t crlen;
2579 struct target_ucred *tcr;
2580
2581 if (get_user_u32(len, optlen)) {
2582 return -TARGET_EFAULT;
2583 }
2584 if (len < 0) {
2585 return -TARGET_EINVAL;
2586 }
2587
2588 crlen = sizeof(cr);
2589 ret = get_errno(getsockopt(sockfd, level, SO_PEERCRED,
2590 &cr, &crlen));
2591 if (ret < 0) {
2592 return ret;
2593 }
2594 if (len > crlen) {
2595 len = crlen;
2596 }
2597 if (!lock_user_struct(VERIFY_WRITE, tcr, optval_addr, 0)) {
2598 return -TARGET_EFAULT;
2599 }
2600 __put_user(cr.pid, &tcr->pid);
2601 __put_user(cr.uid, &tcr->uid);
2602 __put_user(cr.gid, &tcr->gid);
2603 unlock_user_struct(tcr, optval_addr, 1);
2604 if (put_user_u32(len, optlen)) {
2605 return -TARGET_EFAULT;
2606 }
2607 break;
2608 }
2609 case TARGET_SO_PEERSEC: {
2610 char *name;
2611
2612 if (get_user_u32(len, optlen)) {
2613 return -TARGET_EFAULT;
2614 }
2615 if (len < 0) {
2616 return -TARGET_EINVAL;
2617 }
2618 name = lock_user(VERIFY_WRITE, optval_addr, len, 0);
2619 if (!name) {
2620 return -TARGET_EFAULT;
2621 }
2622 lv = len;
2623 ret = get_errno(getsockopt(sockfd, level, SO_PEERSEC,
2624 name, &lv));
2625 if (put_user_u32(lv, optlen)) {
2626 ret = -TARGET_EFAULT;
2627 }
2628 unlock_user(name, optval_addr, lv);
2629 break;
2630 }
2631 case TARGET_SO_LINGER:
2632 {
2633 struct linger lg;
2634 socklen_t lglen;
2635 struct target_linger *tlg;
2636
2637 if (get_user_u32(len, optlen)) {
2638 return -TARGET_EFAULT;
2639 }
2640 if (len < 0) {
2641 return -TARGET_EINVAL;
2642 }
2643
2644 lglen = sizeof(lg);
2645 ret = get_errno(getsockopt(sockfd, level, SO_LINGER,
2646 &lg, &lglen));
2647 if (ret < 0) {
2648 return ret;
2649 }
2650 if (len > lglen) {
2651 len = lglen;
2652 }
2653 if (!lock_user_struct(VERIFY_WRITE, tlg, optval_addr, 0)) {
2654 return -TARGET_EFAULT;
2655 }
2656 __put_user(lg.l_onoff, &tlg->l_onoff);
2657 __put_user(lg.l_linger, &tlg->l_linger);
2658 unlock_user_struct(tlg, optval_addr, 1);
2659 if (put_user_u32(len, optlen)) {
2660 return -TARGET_EFAULT;
2661 }
2662 break;
2663 }
2664 /* Options with 'int' argument. */
2665 case TARGET_SO_DEBUG:
2666 optname = SO_DEBUG;
2667 goto int_case;
2668 case TARGET_SO_REUSEADDR:
2669 optname = SO_REUSEADDR;
2670 goto int_case;
2671 #ifdef SO_REUSEPORT
2672 case TARGET_SO_REUSEPORT:
2673 optname = SO_REUSEPORT;
2674 goto int_case;
2675 #endif
2676 case TARGET_SO_TYPE:
2677 optname = SO_TYPE;
2678 goto int_case;
2679 case TARGET_SO_ERROR:
2680 optname = SO_ERROR;
2681 goto int_case;
2682 case TARGET_SO_DONTROUTE:
2683 optname = SO_DONTROUTE;
2684 goto int_case;
2685 case TARGET_SO_BROADCAST:
2686 optname = SO_BROADCAST;
2687 goto int_case;
2688 case TARGET_SO_SNDBUF:
2689 optname = SO_SNDBUF;
2690 goto int_case;
2691 case TARGET_SO_RCVBUF:
2692 optname = SO_RCVBUF;
2693 goto int_case;
2694 case TARGET_SO_KEEPALIVE:
2695 optname = SO_KEEPALIVE;
2696 goto int_case;
2697 case TARGET_SO_OOBINLINE:
2698 optname = SO_OOBINLINE;
2699 goto int_case;
2700 case TARGET_SO_NO_CHECK:
2701 optname = SO_NO_CHECK;
2702 goto int_case;
2703 case TARGET_SO_PRIORITY:
2704 optname = SO_PRIORITY;
2705 goto int_case;
2706 #ifdef SO_BSDCOMPAT
2707 case TARGET_SO_BSDCOMPAT:
2708 optname = SO_BSDCOMPAT;
2709 goto int_case;
2710 #endif
2711 case TARGET_SO_PASSCRED:
2712 optname = SO_PASSCRED;
2713 goto int_case;
2714 case TARGET_SO_TIMESTAMP:
2715 optname = SO_TIMESTAMP;
2716 goto int_case;
2717 case TARGET_SO_RCVLOWAT:
2718 optname = SO_RCVLOWAT;
2719 goto int_case;
2720 case TARGET_SO_ACCEPTCONN:
2721 optname = SO_ACCEPTCONN;
2722 goto int_case;
2723 case TARGET_SO_PROTOCOL:
2724 optname = SO_PROTOCOL;
2725 goto int_case;
2726 case TARGET_SO_DOMAIN:
2727 optname = SO_DOMAIN;
2728 goto int_case;
2729 default:
2730 goto int_case;
2731 }
2732 break;
2733 case SOL_TCP:
2734 case SOL_UDP:
2735 /* TCP and UDP options all take an 'int' value. */
2736 int_case:
2737 if (get_user_u32(len, optlen))
2738 return -TARGET_EFAULT;
2739 if (len < 0)
2740 return -TARGET_EINVAL;
2741 lv = sizeof(lv);
2742 ret = get_errno(getsockopt(sockfd, level, optname, &val, &lv));
2743 if (ret < 0)
2744 return ret;
2745 switch (optname) {
2746 case SO_TYPE:
2747 val = host_to_target_sock_type(val);
2748 break;
2749 case SO_ERROR:
2750 val = host_to_target_errno(val);
2751 break;
2752 }
2753 if (len > lv)
2754 len = lv;
2755 if (len == 4) {
2756 if (put_user_u32(val, optval_addr))
2757 return -TARGET_EFAULT;
2758 } else {
2759 if (put_user_u8(val, optval_addr))
2760 return -TARGET_EFAULT;
2761 }
2762 if (put_user_u32(len, optlen))
2763 return -TARGET_EFAULT;
2764 break;
2765 case SOL_IP:
2766 switch(optname) {
2767 case IP_TOS:
2768 case IP_TTL:
2769 case IP_HDRINCL:
2770 case IP_ROUTER_ALERT:
2771 case IP_RECVOPTS:
2772 case IP_RETOPTS:
2773 case IP_PKTINFO:
2774 case IP_MTU_DISCOVER:
2775 case IP_RECVERR:
2776 case IP_RECVTOS:
2777 #ifdef IP_FREEBIND
2778 case IP_FREEBIND:
2779 #endif
2780 case IP_MULTICAST_TTL:
2781 case IP_MULTICAST_LOOP:
2782 if (get_user_u32(len, optlen))
2783 return -TARGET_EFAULT;
2784 if (len < 0)
2785 return -TARGET_EINVAL;
2786 lv = sizeof(lv);
2787 ret = get_errno(getsockopt(sockfd, level, optname, &val, &lv));
2788 if (ret < 0)
2789 return ret;
2790 if (len < sizeof(int) && len > 0 && val >= 0 && val < 255) {
2791 len = 1;
2792 if (put_user_u32(len, optlen)
2793 || put_user_u8(val, optval_addr))
2794 return -TARGET_EFAULT;
2795 } else {
2796 if (len > sizeof(int))
2797 len = sizeof(int);
2798 if (put_user_u32(len, optlen)
2799 || put_user_u32(val, optval_addr))
2800 return -TARGET_EFAULT;
2801 }
2802 break;
2803 default:
2804 ret = -TARGET_ENOPROTOOPT;
2805 break;
2806 }
2807 break;
2808 case SOL_IPV6:
2809 switch (optname) {
2810 case IPV6_MTU_DISCOVER:
2811 case IPV6_MTU:
2812 case IPV6_V6ONLY:
2813 case IPV6_RECVPKTINFO:
2814 case IPV6_UNICAST_HOPS:
2815 case IPV6_MULTICAST_HOPS:
2816 case IPV6_MULTICAST_LOOP:
2817 case IPV6_RECVERR:
2818 case IPV6_RECVHOPLIMIT:
2819 case IPV6_2292HOPLIMIT:
2820 case IPV6_CHECKSUM:
2821 case IPV6_ADDRFORM:
2822 case IPV6_2292PKTINFO:
2823 case IPV6_RECVTCLASS:
2824 case IPV6_RECVRTHDR:
2825 case IPV6_2292RTHDR:
2826 case IPV6_RECVHOPOPTS:
2827 case IPV6_2292HOPOPTS:
2828 case IPV6_RECVDSTOPTS:
2829 case IPV6_2292DSTOPTS:
2830 case IPV6_TCLASS:
2831 case IPV6_ADDR_PREFERENCES:
2832 #ifdef IPV6_RECVPATHMTU
2833 case IPV6_RECVPATHMTU:
2834 #endif
2835 #ifdef IPV6_TRANSPARENT
2836 case IPV6_TRANSPARENT:
2837 #endif
2838 #ifdef IPV6_FREEBIND
2839 case IPV6_FREEBIND:
2840 #endif
2841 #ifdef IPV6_RECVORIGDSTADDR
2842 case IPV6_RECVORIGDSTADDR:
2843 #endif
2844 if (get_user_u32(len, optlen))
2845 return -TARGET_EFAULT;
2846 if (len < 0)
2847 return -TARGET_EINVAL;
2848 lv = sizeof(lv);
2849 ret = get_errno(getsockopt(sockfd, level, optname, &val, &lv));
2850 if (ret < 0)
2851 return ret;
2852 if (len < sizeof(int) && len > 0 && val >= 0 && val < 255) {
2853 len = 1;
2854 if (put_user_u32(len, optlen)
2855 || put_user_u8(val, optval_addr))
2856 return -TARGET_EFAULT;
2857 } else {
2858 if (len > sizeof(int))
2859 len = sizeof(int);
2860 if (put_user_u32(len, optlen)
2861 || put_user_u32(val, optval_addr))
2862 return -TARGET_EFAULT;
2863 }
2864 break;
2865 default:
2866 ret = -TARGET_ENOPROTOOPT;
2867 break;
2868 }
2869 break;
2870 #ifdef SOL_NETLINK
2871 case SOL_NETLINK:
2872 switch (optname) {
2873 case NETLINK_PKTINFO:
2874 case NETLINK_BROADCAST_ERROR:
2875 case NETLINK_NO_ENOBUFS:
2876 #if LINUX_VERSION_CODE >= KERNEL_VERSION(4, 2, 0)
2877 case NETLINK_LISTEN_ALL_NSID:
2878 case NETLINK_CAP_ACK:
2879 #endif /* LINUX_VERSION_CODE >= KERNEL_VERSION(4, 2, 0) */
2880 #if LINUX_VERSION_CODE >= KERNEL_VERSION(4, 12, 0)
2881 case NETLINK_EXT_ACK:
2882 #endif /* LINUX_VERSION_CODE >= KERNEL_VERSION(4, 12, 0) */
2883 #if LINUX_VERSION_CODE >= KERNEL_VERSION(4, 20, 0)
2884 case NETLINK_GET_STRICT_CHK:
2885 #endif /* LINUX_VERSION_CODE >= KERNEL_VERSION(4, 12, 0) */
2886 if (get_user_u32(len, optlen)) {
2887 return -TARGET_EFAULT;
2888 }
2889 if (len != sizeof(val)) {
2890 return -TARGET_EINVAL;
2891 }
2892 lv = len;
2893 ret = get_errno(getsockopt(sockfd, level, optname, &val, &lv));
2894 if (ret < 0) {
2895 return ret;
2896 }
2897 if (put_user_u32(lv, optlen)
2898 || put_user_u32(val, optval_addr)) {
2899 return -TARGET_EFAULT;
2900 }
2901 break;
2902 #if LINUX_VERSION_CODE >= KERNEL_VERSION(4, 2, 0)
2903 case NETLINK_LIST_MEMBERSHIPS:
2904 {
2905 uint32_t *results;
2906 int i;
2907 if (get_user_u32(len, optlen)) {
2908 return -TARGET_EFAULT;
2909 }
2910 if (len < 0) {
2911 return -TARGET_EINVAL;
2912 }
2913 results = lock_user(VERIFY_WRITE, optval_addr, len, 1);
2914 if (!results && len > 0) {
2915 return -TARGET_EFAULT;
2916 }
2917 lv = len;
2918 ret = get_errno(getsockopt(sockfd, level, optname, results, &lv));
2919 if (ret < 0) {
2920 unlock_user(results, optval_addr, 0);
2921 return ret;
2922 }
2923 /* swap host endianness to target endianness. */
2924 for (i = 0; i < (len / sizeof(uint32_t)); i++) {
2925 results[i] = tswap32(results[i]);
2926 }
2927 if (put_user_u32(lv, optlen)) {
2928 return -TARGET_EFAULT;
2929 }
2930 unlock_user(results, optval_addr, 0);
2931 break;
2932 }
2933 #endif /* LINUX_VERSION_CODE >= KERNEL_VERSION(4, 2, 0) */
2934 default:
2935 goto unimplemented;
2936 }
2937 break;
2938 #endif /* SOL_NETLINK */
2939 default:
2940 unimplemented:
2941 qemu_log_mask(LOG_UNIMP,
2942 "getsockopt level=%d optname=%d not yet supported\n",
2943 level, optname);
2944 ret = -TARGET_EOPNOTSUPP;
2945 break;
2946 }
2947 return ret;
2948 }
2949
2950 /* Convert target low/high pair representing file offset into the host
2951 * low/high pair. This function doesn't handle offsets bigger than 64 bits
2952 * as the kernel doesn't handle them either.
2953 */
2954 static void target_to_host_low_high(abi_ulong tlow,
2955 abi_ulong thigh,
2956 unsigned long *hlow,
2957 unsigned long *hhigh)
2958 {
2959 uint64_t off = tlow |
2960 ((unsigned long long)thigh << TARGET_LONG_BITS / 2) <<
2961 TARGET_LONG_BITS / 2;
2962
2963 *hlow = off;
2964 *hhigh = (off >> HOST_LONG_BITS / 2) >> HOST_LONG_BITS / 2;
2965 }
2966
2967 static struct iovec *lock_iovec(int type, abi_ulong target_addr,
2968 abi_ulong count, int copy)
2969 {
2970 struct target_iovec *target_vec;
2971 struct iovec *vec;
2972 abi_ulong total_len, max_len;
2973 int i;
2974 int err = 0;
2975 bool bad_address = false;
2976
2977 if (count == 0) {
2978 errno = 0;
2979 return NULL;
2980 }
2981 if (count > IOV_MAX) {
2982 errno = EINVAL;
2983 return NULL;
2984 }
2985
2986 vec = g_try_new0(struct iovec, count);
2987 if (vec == NULL) {
2988 errno = ENOMEM;
2989 return NULL;
2990 }
2991
2992 target_vec = lock_user(VERIFY_READ, target_addr,
2993 count * sizeof(struct target_iovec), 1);
2994 if (target_vec == NULL) {
2995 err = EFAULT;
2996 goto fail2;
2997 }
2998
2999 /* ??? If host page size > target page size, this will result in a
3000 value larger than what we can actually support. */
3001 max_len = 0x7fffffff & TARGET_PAGE_MASK;
3002 total_len = 0;
3003
3004 for (i = 0; i < count; i++) {
3005 abi_ulong base = tswapal(target_vec[i].iov_base);
3006 abi_long len = tswapal(target_vec[i].iov_len);
3007
3008 if (len < 0) {
3009 err = EINVAL;
3010 goto fail;
3011 } else if (len == 0) {
3012 /* Zero length pointer is ignored. */
3013 vec[i].iov_base = 0;
3014 } else {
3015 vec[i].iov_base = lock_user(type, base, len, copy);
3016 /* If the first buffer pointer is bad, this is a fault. But
3017 * subsequent bad buffers will result in a partial write; this
3018 * is realized by filling the vector with null pointers and
3019 * zero lengths. */
3020 if (!vec[i].iov_base) {
3021 if (i == 0) {
3022 err = EFAULT;
3023 goto fail;
3024 } else {
3025 bad_address = true;
3026 }
3027 }
3028 if (bad_address) {
3029 len = 0;
3030 }
3031 if (len > max_len - total_len) {
3032 len = max_len - total_len;
3033 }
3034 }
3035 vec[i].iov_len = len;
3036 total_len += len;
3037 }
3038
3039 unlock_user(target_vec, target_addr, 0);
3040 return vec;
3041
3042 fail:
3043 while (--i >= 0) {
3044 if (tswapal(target_vec[i].iov_len) > 0) {
3045 unlock_user(vec[i].iov_base, tswapal(target_vec[i].iov_base), 0);
3046 }
3047 }
3048 unlock_user(target_vec, target_addr, 0);
3049 fail2:
3050 g_free(vec);
3051 errno = err;
3052 return NULL;
3053 }
3054
3055 static void unlock_iovec(struct iovec *vec, abi_ulong target_addr,
3056 abi_ulong count, int copy)
3057 {
3058 struct target_iovec *target_vec;
3059 int i;
3060
3061 target_vec = lock_user(VERIFY_READ, target_addr,
3062 count * sizeof(struct target_iovec), 1);
3063 if (target_vec) {
3064 for (i = 0; i < count; i++) {
3065 abi_ulong base = tswapal(target_vec[i].iov_base);
3066 abi_long len = tswapal(target_vec[i].iov_len);
3067 if (len < 0) {
3068 break;
3069 }
3070 unlock_user(vec[i].iov_base, base, copy ? vec[i].iov_len : 0);
3071 }
3072 unlock_user(target_vec, target_addr, 0);
3073 }
3074
3075 g_free(vec);
3076 }
3077
3078 static inline int target_to_host_sock_type(int *type)
3079 {
3080 int host_type = 0;
3081 int target_type = *type;
3082
3083 switch (target_type & TARGET_SOCK_TYPE_MASK) {
3084 case TARGET_SOCK_DGRAM:
3085 host_type = SOCK_DGRAM;
3086 break;
3087 case TARGET_SOCK_STREAM:
3088 host_type = SOCK_STREAM;
3089 break;
3090 default:
3091 host_type = target_type & TARGET_SOCK_TYPE_MASK;
3092 break;
3093 }
3094 if (target_type & TARGET_SOCK_CLOEXEC) {
3095 #if defined(SOCK_CLOEXEC)
3096 host_type |= SOCK_CLOEXEC;
3097 #else
3098 return -TARGET_EINVAL;
3099 #endif
3100 }
3101 if (target_type & TARGET_SOCK_NONBLOCK) {
3102 #if defined(SOCK_NONBLOCK)
3103 host_type |= SOCK_NONBLOCK;
3104 #elif !defined(O_NONBLOCK)
3105 return -TARGET_EINVAL;
3106 #endif
3107 }
3108 *type = host_type;
3109 return 0;
3110 }
3111
3112 /* Try to emulate socket type flags after socket creation. */
3113 static int sock_flags_fixup(int fd, int target_type)
3114 {
3115 #if !defined(SOCK_NONBLOCK) && defined(O_NONBLOCK)
3116 if (target_type & TARGET_SOCK_NONBLOCK) {
3117 int flags = fcntl(fd, F_GETFL);
3118 if (fcntl(fd, F_SETFL, O_NONBLOCK | flags) == -1) {
3119 close(fd);
3120 return -TARGET_EINVAL;
3121 }
3122 }
3123 #endif
3124 return fd;
3125 }
3126
3127 /* do_socket() Must return target values and target errnos. */
3128 static abi_long do_socket(int domain, int type, int protocol)
3129 {
3130 int target_type = type;
3131 int ret;
3132
3133 ret = target_to_host_sock_type(&type);
3134 if (ret) {
3135 return ret;
3136 }
3137
3138 if (domain == PF_NETLINK && !(
3139 #ifdef CONFIG_RTNETLINK
3140 protocol == NETLINK_ROUTE ||
3141 #endif
3142 protocol == NETLINK_KOBJECT_UEVENT ||
3143 protocol == NETLINK_AUDIT)) {
3144 return -TARGET_EPROTONOSUPPORT;
3145 }
3146
3147 if (domain == AF_PACKET ||
3148 (domain == AF_INET && type == SOCK_PACKET)) {
3149 protocol = tswap16(protocol);
3150 }
3151
3152 ret = get_errno(socket(domain, type, protocol));
3153 if (ret >= 0) {
3154 ret = sock_flags_fixup(ret, target_type);
3155 if (type == SOCK_PACKET) {
3156 /* Manage an obsolete case :
3157 * if socket type is SOCK_PACKET, bind by name
3158 */
3159 fd_trans_register(ret, &target_packet_trans);
3160 } else if (domain == PF_NETLINK) {
3161 switch (protocol) {
3162 #ifdef CONFIG_RTNETLINK
3163 case NETLINK_ROUTE:
3164 fd_trans_register(ret, &target_netlink_route_trans);
3165 break;
3166 #endif
3167 case NETLINK_KOBJECT_UEVENT:
3168 /* nothing to do: messages are strings */
3169 break;
3170 case NETLINK_AUDIT:
3171 fd_trans_register(ret, &target_netlink_audit_trans);
3172 break;
3173 default:
3174 g_assert_not_reached();
3175 }
3176 }
3177 }
3178 return ret;
3179 }
3180
3181 /* do_bind() Must return target values and target errnos. */
3182 static abi_long do_bind(int sockfd, abi_ulong target_addr,
3183 socklen_t addrlen)
3184 {
3185 void *addr;
3186 abi_long ret;
3187
3188 if ((int)addrlen < 0) {
3189 return -TARGET_EINVAL;
3190 }
3191
3192 addr = alloca(addrlen+1);
3193
3194 ret = target_to_host_sockaddr(sockfd, addr, target_addr, addrlen);
3195 if (ret)
3196 return ret;
3197
3198 return get_errno(bind(sockfd, addr, addrlen));
3199 }
3200
3201 /* do_connect() Must return target values and target errnos. */
3202 static abi_long do_connect(int sockfd, abi_ulong target_addr,
3203 socklen_t addrlen)
3204 {
3205 void *addr;
3206 abi_long ret;
3207
3208 if ((int)addrlen < 0) {
3209 return -TARGET_EINVAL;
3210 }
3211
3212 addr = alloca(addrlen+1);
3213
3214 ret = target_to_host_sockaddr(sockfd, addr, target_addr, addrlen);
3215 if (ret)
3216 return ret;
3217
3218 return get_errno(safe_connect(sockfd, addr, addrlen));
3219 }
3220
3221 /* do_sendrecvmsg_locked() Must return target values and target errnos. */
3222 static abi_long do_sendrecvmsg_locked(int fd, struct target_msghdr *msgp,
3223 int flags, int send)
3224 {
3225 abi_long ret, len;
3226 struct msghdr msg;
3227 abi_ulong count;
3228 struct iovec *vec;
3229 abi_ulong target_vec;
3230
3231 if (msgp->msg_name) {
3232 msg.msg_namelen = tswap32(msgp->msg_namelen);
3233 msg.msg_name = alloca(msg.msg_namelen+1);
3234 ret = target_to_host_sockaddr(fd, msg.msg_name,
3235 tswapal(msgp->msg_name),
3236 msg.msg_namelen);
3237 if (ret == -TARGET_EFAULT) {
3238 /* For connected sockets msg_name and msg_namelen must
3239 * be ignored, so returning EFAULT immediately is wrong.
3240 * Instead, pass a bad msg_name to the host kernel, and
3241 * let it decide whether to return EFAULT or not.
3242 */
3243 msg.msg_name = (void *)-1;
3244 } else if (ret) {
3245 goto out2;
3246 }
3247 } else {
3248 msg.msg_name = NULL;
3249 msg.msg_namelen = 0;
3250 }
3251 msg.msg_controllen = 2 * tswapal(msgp->msg_controllen);
3252 msg.msg_control = alloca(msg.msg_controllen);
3253 memset(msg.msg_control, 0, msg.msg_controllen);
3254
3255 msg.msg_flags = tswap32(msgp->msg_flags);
3256
3257 count = tswapal(msgp->msg_iovlen);
3258 target_vec = tswapal(msgp->msg_iov);
3259
3260 if (count > IOV_MAX) {
3261 /* sendrcvmsg returns a different errno for this condition than
3262 * readv/writev, so we must catch it here before lock_iovec() does.
3263 */
3264 ret = -TARGET_EMSGSIZE;
3265 goto out2;
3266 }
3267
3268 vec = lock_iovec(send ? VERIFY_READ : VERIFY_WRITE,
3269 target_vec, count, send);
3270 if (vec == NULL) {
3271 ret = -host_to_target_errno(errno);
3272 /* allow sending packet without any iov, e.g. with MSG_MORE flag */
3273 if (!send || ret) {
3274 goto out2;
3275 }
3276 }
3277 msg.msg_iovlen = count;
3278 msg.msg_iov = vec;
3279
3280 if (send) {
3281 if (fd_trans_target_to_host_data(fd)) {
3282 void *host_msg;
3283
3284 host_msg = g_malloc(msg.msg_iov->iov_len);
3285 memcpy(host_msg, msg.msg_iov->iov_base, msg.msg_iov->iov_len);
3286 ret = fd_trans_target_to_host_data(fd)(host_msg,
3287 msg.msg_iov->iov_len);
3288 if (ret >= 0) {
3289 msg.msg_iov->iov_base = host_msg;
3290 ret = get_errno(safe_sendmsg(fd, &msg, flags));
3291 }
3292 g_free(host_msg);
3293 } else {
3294 ret = target_to_host_cmsg(&msg, msgp);
3295 if (ret == 0) {
3296 ret = get_errno(safe_sendmsg(fd, &msg, flags));
3297 }
3298 }
3299 } else {
3300 ret = get_errno(safe_recvmsg(fd, &msg, flags));
3301 if (!is_error(ret)) {
3302 len = ret;
3303 if (fd_trans_host_to_target_data(fd)) {
3304 ret = fd_trans_host_to_target_data(fd)(msg.msg_iov->iov_base,
3305 MIN(msg.msg_iov->iov_len, len));
3306 }
3307 if (!is_error(ret)) {
3308 ret = host_to_target_cmsg(msgp, &msg);
3309 }
3310 if (!is_error(ret)) {
3311 msgp->msg_namelen = tswap32(msg.msg_namelen);
3312 msgp->msg_flags = tswap32(msg.msg_flags);
3313 if (msg.msg_name != NULL && msg.msg_name != (void *)-1) {
3314 ret = host_to_target_sockaddr(tswapal(msgp->msg_name),
3315 msg.msg_name, msg.msg_namelen);
3316 if (ret) {
3317 goto out;
3318 }
3319 }
3320
3321 ret = len;
3322 }
3323 }
3324 }
3325
3326 out:
3327 if (vec) {
3328 unlock_iovec(vec, target_vec, count, !send);
3329 }
3330 out2:
3331 return ret;
3332 }
3333
3334 static abi_long do_sendrecvmsg(int fd, abi_ulong target_msg,
3335 int flags, int send)
3336 {
3337 abi_long ret;
3338 struct target_msghdr *msgp;
3339
3340 if (!lock_user_struct(send ? VERIFY_READ : VERIFY_WRITE,
3341 msgp,
3342 target_msg,
3343 send ? 1 : 0)) {
3344 return -TARGET_EFAULT;
3345 }
3346 ret = do_sendrecvmsg_locked(fd, msgp, flags, send);
3347 unlock_user_struct(msgp, target_msg, send ? 0 : 1);
3348 return ret;
3349 }
3350
3351 /* We don't rely on the C library to have sendmmsg/recvmmsg support,
3352 * so it might not have this *mmsg-specific flag either.
3353 */
3354 #ifndef MSG_WAITFORONE
3355 #define MSG_WAITFORONE 0x10000
3356 #endif
3357
3358 static abi_long do_sendrecvmmsg(int fd, abi_ulong target_msgvec,
3359 unsigned int vlen, unsigned int flags,
3360 int send)
3361 {
3362 struct target_mmsghdr *mmsgp;
3363 abi_long ret = 0;
3364 int i;
3365
3366 if (vlen > UIO_MAXIOV) {
3367 vlen = UIO_MAXIOV;
3368 }
3369
3370 mmsgp = lock_user(VERIFY_WRITE, target_msgvec, sizeof(*mmsgp) * vlen, 1);
3371 if (!mmsgp) {
3372 return -TARGET_EFAULT;
3373 }
3374
3375 for (i = 0; i < vlen; i++) {
3376 ret = do_sendrecvmsg_locked(fd, &mmsgp[i].msg_hdr, flags, send);
3377 if (is_error(ret)) {
3378 break;
3379 }
3380 mmsgp[i].msg_len = tswap32(ret);
3381 /* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */
3382 if (flags & MSG_WAITFORONE) {
3383 flags |= MSG_DONTWAIT;
3384 }
3385 }
3386
3387 unlock_user(mmsgp, target_msgvec, sizeof(*mmsgp) * i);
3388
3389 /* Return number of datagrams sent if we sent any at all;
3390 * otherwise return the error.
3391 */
3392 if (i) {
3393 return i;
3394 }
3395 return ret;
3396 }
3397
3398 /* do_accept4() Must return target values and target errnos. */
3399 static abi_long do_accept4(int fd, abi_ulong target_addr,
3400 abi_ulong target_addrlen_addr, int flags)
3401 {
3402 socklen_t addrlen, ret_addrlen;
3403 void *addr;
3404 abi_long ret;
3405 int host_flags;
3406
3407 if (flags & ~(TARGET_SOCK_CLOEXEC | TARGET_SOCK_NONBLOCK)) {
3408 return -TARGET_EINVAL;
3409 }
3410
3411 host_flags = 0;
3412 if (flags & TARGET_SOCK_NONBLOCK) {
3413 host_flags |= SOCK_NONBLOCK;
3414 }
3415 if (flags & TARGET_SOCK_CLOEXEC) {
3416 host_flags |= SOCK_CLOEXEC;
3417 }
3418
3419 if (target_addr == 0) {
3420 return get_errno(safe_accept4(fd, NULL, NULL, host_flags));
3421 }
3422
3423 /* linux returns EFAULT if addrlen pointer is invalid */
3424 if (get_user_u32(addrlen, target_addrlen_addr))
3425 return -TARGET_EFAULT;
3426
3427 if ((int)addrlen < 0) {
3428 return -TARGET_EINVAL;
3429 }
3430
3431 if (!access_ok(thread_cpu, VERIFY_WRITE, target_addr, addrlen)) {
3432 return -TARGET_EFAULT;
3433 }
3434
3435 addr = alloca(addrlen);
3436
3437 ret_addrlen = addrlen;
3438 ret = get_errno(safe_accept4(fd, addr, &ret_addrlen, host_flags));
3439 if (!is_error(ret)) {
3440 host_to_target_sockaddr(target_addr, addr, MIN(addrlen, ret_addrlen));
3441 if (put_user_u32(ret_addrlen, target_addrlen_addr)) {
3442 ret = -TARGET_EFAULT;
3443 }
3444 }
3445 return ret;
3446 }
3447
3448 /* do_getpeername() Must return target values and target errnos. */
3449 static abi_long do_getpeername(int fd, abi_ulong target_addr,
3450 abi_ulong target_addrlen_addr)
3451 {
3452 socklen_t addrlen, ret_addrlen;
3453 void *addr;
3454 abi_long ret;
3455
3456 if (get_user_u32(addrlen, target_addrlen_addr))
3457 return -TARGET_EFAULT;
3458
3459 if ((int)addrlen < 0) {
3460 return -TARGET_EINVAL;
3461 }
3462
3463 if (!access_ok(thread_cpu, VERIFY_WRITE, target_addr, addrlen)) {
3464 return -TARGET_EFAULT;
3465 }
3466
3467 addr = alloca(addrlen);
3468
3469 ret_addrlen = addrlen;
3470 ret = get_errno(getpeername(fd, addr, &ret_addrlen));
3471 if (!is_error(ret)) {
3472 host_to_target_sockaddr(target_addr, addr, MIN(addrlen, ret_addrlen));
3473 if (put_user_u32(ret_addrlen, target_addrlen_addr)) {
3474 ret = -TARGET_EFAULT;
3475 }
3476 }
3477 return ret;
3478 }
3479
3480 /* do_getsockname() Must return target values and target errnos. */
3481 static abi_long do_getsockname(int fd, abi_ulong target_addr,
3482 abi_ulong target_addrlen_addr)
3483 {
3484 socklen_t addrlen, ret_addrlen;
3485 void *addr;
3486 abi_long ret;
3487
3488 if (get_user_u32(addrlen, target_addrlen_addr))
3489 return -TARGET_EFAULT;
3490
3491 if ((int)addrlen < 0) {
3492 return -TARGET_EINVAL;
3493 }
3494
3495 if (!access_ok(thread_cpu, VERIFY_WRITE, target_addr, addrlen)) {
3496 return -TARGET_EFAULT;
3497 }
3498
3499 addr = alloca(addrlen);
3500
3501 ret_addrlen = addrlen;
3502 ret = get_errno(getsockname(fd, addr, &ret_addrlen));
3503 if (!is_error(ret)) {
3504 host_to_target_sockaddr(target_addr, addr, MIN(addrlen, ret_addrlen));
3505 if (put_user_u32(ret_addrlen, target_addrlen_addr)) {
3506 ret = -TARGET_EFAULT;
3507 }
3508 }
3509 return ret;
3510 }
3511
3512 /* do_socketpair() Must return target values and target errnos. */
3513 static abi_long do_socketpair(int domain, int type, int protocol,
3514 abi_ulong target_tab_addr)
3515 {
3516 int tab[2];
3517 abi_long ret;
3518
3519 target_to_host_sock_type(&type);
3520
3521 ret = get_errno(socketpair(domain, type, protocol, tab));
3522 if (!is_error(ret)) {
3523 if (put_user_s32(tab[0], target_tab_addr)
3524 || put_user_s32(tab[1], target_tab_addr + sizeof(tab[0])))
3525 ret = -TARGET_EFAULT;
3526 }
3527 return ret;
3528 }
3529
3530 /* do_sendto() Must return target values and target errnos. */
3531 static abi_long do_sendto(int fd, abi_ulong msg, size_t len, int flags,
3532 abi_ulong target_addr, socklen_t addrlen)
3533 {
3534 void *addr;
3535 void *host_msg;
3536 void *copy_msg = NULL;
3537 abi_long ret;
3538
3539 if ((int)addrlen < 0) {
3540 return -TARGET_EINVAL;
3541 }
3542
3543 host_msg = lock_user(VERIFY_READ, msg, len, 1);
3544 if (!host_msg)
3545 return -TARGET_EFAULT;
3546 if (fd_trans_target_to_host_data(fd)) {
3547 copy_msg = host_msg;
3548 host_msg = g_malloc(len);
3549 memcpy(host_msg, copy_msg, len);
3550 ret = fd_trans_target_to_host_data(fd)(host_msg, len);
3551 if (ret < 0) {
3552 goto fail;
3553 }
3554 }
3555 if (target_addr) {
3556 addr = alloca(addrlen+1);
3557 ret = target_to_host_sockaddr(fd, addr, target_addr, addrlen);
3558 if (ret) {
3559 goto fail;
3560 }
3561 ret = get_errno(safe_sendto(fd, host_msg, len, flags, addr, addrlen));
3562 } else {
3563 ret = get_errno(safe_sendto(fd, host_msg, len, flags, NULL, 0));
3564 }
3565 fail:
3566 if (copy_msg) {
3567 g_free(host_msg);
3568 host_msg = copy_msg;
3569 }
3570 unlock_user(host_msg, msg, 0);
3571 return ret;
3572 }
3573
3574 /* do_recvfrom() Must return target values and target errnos. */
3575 static abi_long do_recvfrom(int fd, abi_ulong msg, size_t len, int flags,
3576 abi_ulong target_addr,
3577 abi_ulong target_addrlen)
3578 {
3579 socklen_t addrlen, ret_addrlen;
3580 void *addr;
3581 void *host_msg;
3582 abi_long ret;
3583
3584 if (!msg) {
3585 host_msg = NULL;
3586 } else {
3587 host_msg = lock_user(VERIFY_WRITE, msg, len, 0);
3588 if (!host_msg) {
3589 return -TARGET_EFAULT;
3590 }
3591 }
3592 if (target_addr) {
3593 if (get_user_u32(addrlen, target_addrlen)) {
3594 ret = -TARGET_EFAULT;
3595 goto fail;
3596 }
3597 if ((int)addrlen < 0) {
3598 ret = -TARGET_EINVAL;
3599 goto fail;
3600 }
3601 addr = alloca(addrlen);
3602 ret_addrlen = addrlen;
3603 ret = get_errno(safe_recvfrom(fd, host_msg, len, flags,
3604 addr, &ret_addrlen));
3605 } else {
3606 addr = NULL; /* To keep compiler quiet. */
3607 addrlen = 0; /* To keep compiler quiet. */
3608 ret = get_errno(safe_recvfrom(fd, host_msg, len, flags, NULL, 0));
3609 }
3610 if (!is_error(ret)) {
3611 if (fd_trans_host_to_target_data(fd)) {
3612 abi_long trans;
3613 trans = fd_trans_host_to_target_data(fd)(host_msg, MIN(ret, len));
3614 if (is_error(trans)) {
3615 ret = trans;
3616 goto fail;
3617 }
3618 }
3619 if (target_addr) {
3620 host_to_target_sockaddr(target_addr, addr,
3621 MIN(addrlen, ret_addrlen));
3622 if (put_user_u32(ret_addrlen, target_addrlen)) {
3623 ret = -TARGET_EFAULT;
3624 goto fail;
3625 }
3626 }
3627 unlock_user(host_msg, msg, len);
3628 } else {
3629 fail:
3630 unlock_user(host_msg, msg, 0);
3631 }
3632 return ret;
3633 }
3634
3635 #ifdef TARGET_NR_socketcall
3636 /* do_socketcall() must return target values and target errnos. */
3637 static abi_long do_socketcall(int num, abi_ulong vptr)
3638 {
3639 static const unsigned nargs[] = { /* number of arguments per operation */
3640 [TARGET_SYS_SOCKET] = 3, /* domain, type, protocol */
3641 [TARGET_SYS_BIND] = 3, /* fd, addr, addrlen */
3642 [TARGET_SYS_CONNECT] = 3, /* fd, addr, addrlen */
3643 [TARGET_SYS_LISTEN] = 2, /* fd, backlog */
3644 [TARGET_SYS_ACCEPT] = 3, /* fd, addr, addrlen */
3645 [TARGET_SYS_GETSOCKNAME] = 3, /* fd, addr, addrlen */
3646 [TARGET_SYS_GETPEERNAME] = 3, /* fd, addr, addrlen */
3647 [TARGET_SYS_SOCKETPAIR] = 4, /* domain, type, protocol, tab */
3648 [TARGET_SYS_SEND] = 4, /* fd, msg, len, flags */
3649 [TARGET_SYS_RECV] = 4, /* fd, msg, len, flags */
3650 [TARGET_SYS_SENDTO] = 6, /* fd, msg, len, flags, addr, addrlen */
3651 [TARGET_SYS_RECVFROM] = 6, /* fd, msg, len, flags, addr, addrlen */
3652 [TARGET_SYS_SHUTDOWN] = 2, /* fd, how */
3653 [TARGET_SYS_SETSOCKOPT] = 5, /* fd, level, optname, optval, optlen */
3654 [TARGET_SYS_GETSOCKOPT] = 5, /* fd, level, optname, optval, optlen */
3655 [TARGET_SYS_SENDMSG] = 3, /* fd, msg, flags */
3656 [TARGET_SYS_RECVMSG] = 3, /* fd, msg, flags */
3657 [TARGET_SYS_ACCEPT4] = 4, /* fd, addr, addrlen, flags */
3658 [TARGET_SYS_RECVMMSG] = 4, /* fd, msgvec, vlen, flags */
3659 [TARGET_SYS_SENDMMSG] = 4, /* fd, msgvec, vlen, flags */
3660 };
3661 abi_long a[6]; /* max 6 args */
3662 unsigned i;
3663
3664 /* check the range of the first argument num */
3665 /* (TARGET_SYS_SENDMMSG is the highest among TARGET_SYS_xxx) */
3666 if (num < 1 || num > TARGET_SYS_SENDMMSG) {
3667 return -TARGET_EINVAL;
3668 }
3669 /* ensure we have space for args */
3670 if (nargs[num] > ARRAY_SIZE(a)) {
3671 return -TARGET_EINVAL;
3672 }
3673 /* collect the arguments in a[] according to nargs[] */
3674 for (i = 0; i < nargs[num]; ++i) {
3675 if (get_user_ual(a[i], vptr + i * sizeof(abi_long)) != 0) {
3676 return -TARGET_EFAULT;
3677 }
3678 }
3679 /* now when we have the args, invoke the appropriate underlying function */
3680 switch (num) {
3681 case TARGET_SYS_SOCKET: /* domain, type, protocol */
3682 return do_socket(a[0], a[1], a[2]);
3683 case TARGET_SYS_BIND: /* sockfd, addr, addrlen */
3684 return do_bind(a[0], a[1], a[2]);
3685 case TARGET_SYS_CONNECT: /* sockfd, addr, addrlen */
3686 return do_connect(a[0], a[1], a[2]);
3687 case TARGET_SYS_LISTEN: /* sockfd, backlog */
3688 return get_errno(listen(a[0], a[1]));
3689 case TARGET_SYS_ACCEPT: /* sockfd, addr, addrlen */
3690 return do_accept4(a[0], a[1], a[2], 0);
3691 case TARGET_SYS_GETSOCKNAME: /* sockfd, addr, addrlen */
3692 return do_getsockname(a[0], a[1], a[2]);
3693 case TARGET_SYS_GETPEERNAME: /* sockfd, addr, addrlen */
3694 return do_getpeername(a[0], a[1], a[2]);
3695 case TARGET_SYS_SOCKETPAIR: /* domain, type, protocol, tab */
3696 return do_socketpair(a[0], a[1], a[2], a[3]);
3697 case TARGET_SYS_SEND: /* sockfd, msg, len, flags */
3698 return do_sendto(a[0], a[1], a[2], a[3], 0, 0);
3699 case TARGET_SYS_RECV: /* sockfd, msg, len, flags */
3700 return do_recvfrom(a[0], a[1], a[2], a[3], 0, 0);
3701 case TARGET_SYS_SENDTO: /* sockfd, msg, len, flags, addr, addrlen */
3702 return do_sendto(a[0], a[1], a[2], a[3], a[4], a[5]);
3703 case TARGET_SYS_RECVFROM: /* sockfd, msg, len, flags, addr, addrlen */
3704 return do_recvfrom(a[0], a[1], a[2], a[3], a[4], a[5]);
3705 case TARGET_SYS_SHUTDOWN: /* sockfd, how */
3706 return get_errno(shutdown(a[0], a[1]));
3707 case TARGET_SYS_SETSOCKOPT: /* sockfd, level, optname, optval, optlen */
3708 return do_setsockopt(a[0], a[1], a[2], a[3], a[4]);
3709 case TARGET_SYS_GETSOCKOPT: /* sockfd, level, optname, optval, optlen */
3710 return do_getsockopt(a[0], a[1], a[2], a[3], a[4]);
3711 case TARGET_SYS_SENDMSG: /* sockfd, msg, flags */
3712 return do_sendrecvmsg(a[0], a[1], a[2], 1);
3713 case TARGET_SYS_RECVMSG: /* sockfd, msg, flags */
3714 return do_sendrecvmsg(a[0], a[1], a[2], 0);
3715 case TARGET_SYS_ACCEPT4: /* sockfd, addr, addrlen, flags */
3716 return do_accept4(a[0], a[1], a[2], a[3]);
3717 case TARGET_SYS_RECVMMSG: /* sockfd, msgvec, vlen, flags */
3718 return do_sendrecvmmsg(a[0], a[1], a[2], a[3], 0);
3719 case TARGET_SYS_SENDMMSG: /* sockfd, msgvec, vlen, flags */
3720 return do_sendrecvmmsg(a[0], a[1], a[2], a[3], 1);
3721 default:
3722 qemu_log_mask(LOG_UNIMP, "Unsupported socketcall: %d\n", num);
3723 return -TARGET_EINVAL;
3724 }
3725 }
3726 #endif
3727
3728 #ifndef TARGET_SEMID64_DS
3729 /* asm-generic version of this struct */
3730 struct target_semid64_ds
3731 {
3732 struct target_ipc_perm sem_perm;
3733 abi_ulong sem_otime;
3734 #if TARGET_ABI_BITS == 32
3735 abi_ulong __unused1;
3736 #endif
3737 abi_ulong sem_ctime;
3738 #if TARGET_ABI_BITS == 32
3739 abi_ulong __unused2;
3740 #endif
3741 abi_ulong sem_nsems;
3742 abi_ulong __unused3;
3743 abi_ulong __unused4;
3744 };
3745 #endif
3746
3747 static inline abi_long target_to_host_ipc_perm(struct ipc_perm *host_ip,
3748 abi_ulong target_addr)
3749 {
3750 struct target_ipc_perm *target_ip;
3751 struct target_semid64_ds *target_sd;
3752
3753 if (!lock_user_struct(VERIFY_READ, target_sd, target_addr, 1))
3754 return -TARGET_EFAULT;
3755 target_ip = &(target_sd->sem_perm);
3756 host_ip->__key = tswap32(target_ip->__key);
3757 host_ip->uid = tswap32(target_ip->uid);
3758 host_ip->gid = tswap32(target_ip->gid);
3759 host_ip->cuid = tswap32(target_ip->cuid);
3760 host_ip->cgid = tswap32(target_ip->cgid);
3761 #if defined(TARGET_ALPHA) || defined(TARGET_MIPS) || defined(TARGET_PPC)
3762 host_ip->mode = tswap32(target_ip->mode);
3763 #else
3764 host_ip->mode = tswap16(target_ip->mode);
3765 #endif
3766 #if defined(TARGET_PPC)
3767 host_ip->__seq = tswap32(target_ip->__seq);
3768 #else
3769 host_ip->__seq = tswap16(target_ip->__seq);
3770 #endif
3771 unlock_user_struct(target_sd, target_addr, 0);
3772 return 0;
3773 }
3774
3775 static inline abi_long host_to_target_ipc_perm(abi_ulong target_addr,
3776 struct ipc_perm *host_ip)
3777 {
3778 struct target_ipc_perm *target_ip;
3779 struct target_semid64_ds *target_sd;
3780
3781 if (!lock_user_struct(VERIFY_WRITE, target_sd, target_addr, 0))
3782 return -TARGET_EFAULT;
3783 target_ip = &(target_sd->sem_perm);
3784 target_ip->__key = tswap32(host_ip->__key);
3785 target_ip->uid = tswap32(host_ip->uid);
3786 target_ip->gid = tswap32(host_ip->gid);
3787 target_ip->cuid = tswap32(host_ip->cuid);
3788 target_ip->cgid = tswap32(host_ip->cgid);
3789 #if defined(TARGET_ALPHA) || defined(TARGET_MIPS) || defined(TARGET_PPC)
3790 target_ip->mode = tswap32(host_ip->mode);
3791 #else
3792 target_ip->mode = tswap16(host_ip->mode);
3793 #endif
3794 #if defined(TARGET_PPC)
3795 target_ip->__seq = tswap32(host_ip->__seq);
3796 #else
3797 target_ip->__seq = tswap16(host_ip->__seq);
3798 #endif
3799 unlock_user_struct(target_sd, target_addr, 1);
3800 return 0;
3801 }
3802
3803 static inline abi_long target_to_host_semid_ds(struct semid_ds *host_sd,
3804 abi_ulong target_addr)
3805 {
3806 struct target_semid64_ds *target_sd;
3807
3808 if (!lock_user_struct(VERIFY_READ, target_sd, target_addr, 1))
3809 return -TARGET_EFAULT;
3810 if (target_to_host_ipc_perm(&(host_sd->sem_perm),target_addr))
3811 return -TARGET_EFAULT;
3812 host_sd->sem_nsems = tswapal(target_sd->sem_nsems);
3813 host_sd->sem_otime = tswapal(target_sd->sem_otime);
3814 host_sd->sem_ctime = tswapal(target_sd->sem_ctime);
3815 unlock_user_struct(target_sd, target_addr, 0);
3816 return 0;
3817 }
3818
3819 static inline abi_long host_to_target_semid_ds(abi_ulong target_addr,
3820 struct semid_ds *host_sd)
3821 {
3822 struct target_semid64_ds *target_sd;
3823
3824 if (!lock_user_struct(VERIFY_WRITE, target_sd, target_addr, 0))
3825 return -TARGET_EFAULT;
3826 if (host_to_target_ipc_perm(target_addr,&(host_sd->sem_perm)))
3827 return -TARGET_EFAULT;
3828 target_sd->sem_nsems = tswapal(host_sd->sem_nsems);
3829 target_sd->sem_otime = tswapal(host_sd->sem_otime);
3830 target_sd->sem_ctime = tswapal(host_sd->sem_ctime);
3831 unlock_user_struct(target_sd, target_addr, 1);
3832 return 0;
3833 }
3834
3835 struct target_seminfo {
3836 int semmap;
3837 int semmni;
3838 int semmns;
3839 int semmnu;
3840 int semmsl;
3841 int semopm;
3842 int semume;
3843 int semusz;
3844 int semvmx;
3845 int semaem;
3846 };
3847
3848 static inline abi_long host_to_target_seminfo(abi_ulong target_addr,
3849 struct seminfo *host_seminfo)
3850 {
3851 struct target_seminfo *target_seminfo;
3852 if (!lock_user_struct(VERIFY_WRITE, target_seminfo, target_addr, 0))
3853 return -TARGET_EFAULT;
3854 __put_user(host_seminfo->semmap, &target_seminfo->semmap);
3855 __put_user(host_seminfo->semmni, &target_seminfo->semmni);
3856 __put_user(host_seminfo->semmns, &target_seminfo->semmns);
3857 __put_user(host_seminfo->semmnu, &target_seminfo->semmnu);
3858 __put_user(host_seminfo->semmsl, &target_seminfo->semmsl);
3859 __put_user(host_seminfo->semopm, &target_seminfo->semopm);
3860 __put_user(host_seminfo->semume, &target_seminfo->semume);
3861 __put_user(host_seminfo->semusz, &target_seminfo->semusz);
3862 __put_user(host_seminfo->semvmx, &target_seminfo->semvmx);
3863 __put_user(host_seminfo->semaem, &target_seminfo->semaem);
3864 unlock_user_struct(target_seminfo, target_addr, 1);
3865 return 0;
3866 }
3867
3868 union semun {
3869 int val;
3870 struct semid_ds *buf;
3871 unsigned short *array;
3872 struct seminfo *__buf;
3873 };
3874
3875 union target_semun {
3876 int val;
3877 abi_ulong buf;
3878 abi_ulong array;
3879 abi_ulong __buf;
3880 };
3881
3882 static inline abi_long target_to_host_semarray(int semid, unsigned short **host_array,
3883 abi_ulong target_addr)
3884 {
3885 int nsems;
3886 unsigned short *array;
3887 union semun semun;
3888 struct semid_ds semid_ds;
3889 int i, ret;
3890
3891 semun.buf = &semid_ds;
3892
3893 ret = semctl(semid, 0, IPC_STAT, semun);
3894 if (ret == -1)
3895 return get_errno(ret);
3896
3897 nsems = semid_ds.sem_nsems;
3898
3899 *host_array = g_try_new(unsigned short, nsems);
3900 if (!*host_array) {
3901 return -TARGET_ENOMEM;
3902 }
3903 array = lock_user(VERIFY_READ, target_addr,
3904 nsems*sizeof(unsigned short), 1);
3905 if (!array) {
3906 g_free(*host_array);
3907 return -TARGET_EFAULT;
3908 }
3909
3910 for(i=0; i<nsems; i++) {
3911 __get_user((*host_array)[i], &array[i]);
3912 }
3913 unlock_user(array, target_addr, 0);
3914
3915 return 0;
3916 }
3917
3918 static inline abi_long host_to_target_semarray(int semid, abi_ulong target_addr,
3919 unsigned short **host_array)
3920 {
3921 int nsems;
3922 unsigned short *array;
3923 union semun semun;
3924 struct semid_ds semid_ds;
3925 int i, ret;
3926
3927 semun.buf = &semid_ds;
3928
3929 ret = semctl(semid, 0, IPC_STAT, semun);
3930 if (ret == -1)
3931 return get_errno(ret);
3932
3933 nsems = semid_ds.sem_nsems;
3934
3935 array = lock_user(VERIFY_WRITE, target_addr,
3936 nsems*sizeof(unsigned short), 0);
3937 if (!array)
3938 return -TARGET_EFAULT;
3939
3940 for(i=0; i<nsems; i++) {
3941 __put_user((*host_array)[i], &array[i]);
3942 }
3943 g_free(*host_array);
3944 unlock_user(array, target_addr, 1);
3945
3946 return 0;
3947 }
3948
3949 static inline abi_long do_semctl(int semid, int semnum, int cmd,
3950 abi_ulong target_arg)
3951 {
3952 union target_semun target_su = { .buf = target_arg };
3953 union semun arg;
3954 struct semid_ds dsarg;
3955 unsigned short *array = NULL;
3956 struct seminfo seminfo;
3957 abi_long ret = -TARGET_EINVAL;
3958 abi_long err;
3959 cmd &= 0xff;
3960
3961 switch( cmd ) {
3962 case GETVAL:
3963 case SETVAL:
3964 /* In 64 bit cross-endian situations, we will erroneously pick up
3965 * the wrong half of the union for the "val" element. To rectify
3966 * this, the entire 8-byte structure is byteswapped, followed by
3967 * a swap of the 4 byte val field. In other cases, the data is
3968 * already in proper host byte order. */
3969 if (sizeof(target_su.val) != (sizeof(target_su.buf))) {
3970 target_su.buf = tswapal(target_su.buf);
3971 arg.val = tswap32(target_su.val);
3972 } else {
3973 arg.val = target_su.val;
3974 }
3975 ret = get_errno(semctl(semid, semnum, cmd, arg));
3976 break;
3977 case GETALL:
3978 case SETALL:
3979 err = target_to_host_semarray(semid, &array, target_su.array);
3980 if (err)
3981 return err;
3982 arg.array = array;
3983 ret = get_errno(semctl(semid, semnum, cmd, arg));
3984 err = host_to_target_semarray(semid, target_su.array, &array);
3985 if (err)
3986 return err;
3987 break;
3988 case IPC_STAT:
3989 case IPC_SET:
3990 case SEM_STAT:
3991 err = target_to_host_semid_ds(&dsarg, target_su.buf);
3992 if (err)
3993 return err;
3994 arg.buf = &dsarg;
3995 ret = get_errno(semctl(semid, semnum, cmd, arg));
3996 err = host_to_target_semid_ds(target_su.buf, &dsarg);
3997 if (err)
3998 return err;
3999 break;
4000 case IPC_INFO:
4001 case SEM_INFO:
4002 arg.__buf = &seminfo;
4003 ret = get_errno(semctl(semid, semnum, cmd, arg));
4004 err = host_to_target_seminfo(target_su.__buf, &seminfo);
4005 if (err)
4006 return err;
4007 break;
4008 case IPC_RMID:
4009 case GETPID:
4010 case GETNCNT:
4011 case GETZCNT:
4012 ret = get_errno(semctl(semid, semnum, cmd, NULL));
4013 break;
4014 }
4015
4016 return ret;
4017 }
4018
4019 struct target_sembuf {
4020 unsigned short sem_num;
4021 short sem_op;
4022 short sem_flg;
4023 };
4024
4025 static inline abi_long target_to_host_sembuf(struct sembuf *host_sembuf,
4026 abi_ulong target_addr,
4027 unsigned nsops)
4028 {
4029 struct target_sembuf *target_sembuf;
4030 int i;
4031
4032 target_sembuf = lock_user(VERIFY_READ, target_addr,
4033 nsops*sizeof(struct target_sembuf), 1);
4034 if (!target_sembuf)
4035 return -TARGET_EFAULT;
4036
4037 for(i=0; i<nsops; i++) {
4038 __get_user(host_sembuf[i].sem_num, &target_sembuf[i].sem_num);
4039 __get_user(host_sembuf[i].sem_op, &target_sembuf[i].sem_op);
4040 __get_user(host_sembuf[i].sem_flg, &target_sembuf[i].sem_flg);
4041 }
4042
4043 unlock_user(target_sembuf, target_addr, 0);
4044
4045 return 0;
4046 }
4047
4048 #if defined(TARGET_NR_ipc) || defined(TARGET_NR_semop) || \
4049 defined(TARGET_NR_semtimedop) || defined(TARGET_NR_semtimedop_time64)
4050
4051 /*
4052 * This macro is required to handle the s390 variants, which passes the
4053 * arguments in a different order than default.
4054 */
4055 #ifdef __s390x__
4056 #define SEMTIMEDOP_IPC_ARGS(__nsops, __sops, __timeout) \
4057 (__nsops), (__timeout), (__sops)
4058 #else
4059 #define SEMTIMEDOP_IPC_ARGS(__nsops, __sops, __timeout) \
4060 (__nsops), 0, (__sops), (__timeout)
4061 #endif
4062
4063 static inline abi_long do_semtimedop(int semid,
4064 abi_long ptr,
4065 unsigned nsops,
4066 abi_long timeout, bool time64)
4067 {
4068 struct sembuf *sops;
4069 struct timespec ts, *pts = NULL;
4070 abi_long ret;
4071
4072 if (timeout) {
4073 pts = &ts;
4074 if (time64) {
4075 if (target_to_host_timespec64(pts, timeout)) {
4076 return -TARGET_EFAULT;
4077 }
4078 } else {
4079 if (target_to_host_timespec(pts, timeout)) {
4080 return -TARGET_EFAULT;
4081 }
4082 }
4083 }
4084
4085 if (nsops > TARGET_SEMOPM) {
4086 return -TARGET_E2BIG;
4087 }
4088
4089 sops = g_new(struct sembuf, nsops);
4090
4091 if (target_to_host_sembuf(sops, ptr, nsops)) {
4092 g_free(sops);
4093 return -TARGET_EFAULT;
4094 }
4095
4096 ret = -TARGET_ENOSYS;
4097 #ifdef __NR_semtimedop
4098 ret = get_errno(safe_semtimedop(semid, sops, nsops, pts));
4099 #endif
4100 #ifdef __NR_ipc
4101 if (ret == -TARGET_ENOSYS) {
4102 ret = get_errno(safe_ipc(IPCOP_semtimedop, semid,
4103 SEMTIMEDOP_IPC_ARGS(nsops, sops, (long)pts)));
4104 }
4105 #endif
4106 g_free(sops);
4107 return ret;
4108 }
4109 #endif
4110
4111 struct target_msqid_ds
4112 {
4113 struct target_ipc_perm msg_perm;
4114 abi_ulong msg_stime;
4115 #if TARGET_ABI_BITS == 32
4116 abi_ulong __unused1;
4117 #endif
4118 abi_ulong msg_rtime;
4119 #if TARGET_ABI_BITS == 32
4120 abi_ulong __unused2;
4121 #endif
4122 abi_ulong msg_ctime;
4123 #if TARGET_ABI_BITS == 32
4124 abi_ulong __unused3;
4125 #endif
4126 abi_ulong __msg_cbytes;
4127 abi_ulong msg_qnum;
4128 abi_ulong msg_qbytes;
4129 abi_ulong msg_lspid;
4130 abi_ulong msg_lrpid;
4131 abi_ulong __unused4;
4132 abi_ulong __unused5;
4133 };
4134
4135 static inline abi_long target_to_host_msqid_ds(struct msqid_ds *host_md,
4136 abi_ulong target_addr)
4137 {
4138 struct target_msqid_ds *target_md;
4139
4140 if (!lock_user_struct(VERIFY_READ, target_md, target_addr, 1))
4141 return -TARGET_EFAULT;
4142 if (target_to_host_ipc_perm(&(host_md->msg_perm),target_addr))
4143 return -TARGET_EFAULT;
4144 host_md->msg_stime = tswapal(target_md->msg_stime);
4145 host_md->msg_rtime = tswapal(target_md->msg_rtime);
4146 host_md->msg_ctime = tswapal(target_md->msg_ctime);
4147 host_md->__msg_cbytes = tswapal(target_md->__msg_cbytes);
4148 host_md->msg_qnum = tswapal(target_md->msg_qnum);
4149 host_md->msg_qbytes = tswapal(target_md->msg_qbytes);
4150 host_md->msg_lspid = tswapal(target_md->msg_lspid);
4151 host_md->msg_lrpid = tswapal(target_md->msg_lrpid);
4152 unlock_user_struct(target_md, target_addr, 0);
4153 return 0;
4154 }
4155
4156 static inline abi_long host_to_target_msqid_ds(abi_ulong target_addr,
4157 struct msqid_ds *host_md)
4158 {
4159 struct target_msqid_ds *target_md;
4160
4161 if (!lock_user_struct(VERIFY_WRITE, target_md, target_addr, 0))
4162 return -TARGET_EFAULT;
4163 if (host_to_target_ipc_perm(target_addr,&(host_md->msg_perm)))
4164 return -TARGET_EFAULT;
4165 target_md->msg_stime = tswapal(host_md->msg_stime);
4166 target_md->msg_rtime = tswapal(host_md->msg_rtime);
4167 target_md->msg_ctime = tswapal(host_md->msg_ctime);
4168 target_md->__msg_cbytes = tswapal(host_md->__msg_cbytes);
4169 target_md->msg_qnum = tswapal(host_md->msg_qnum);
4170 target_md->msg_qbytes = tswapal(host_md->msg_qbytes);
4171 target_md->msg_lspid = tswapal(host_md->msg_lspid);
4172 target_md->msg_lrpid = tswapal(host_md->msg_lrpid);
4173 unlock_user_struct(target_md, target_addr, 1);
4174 return 0;
4175 }
4176
4177 struct target_msginfo {
4178 int msgpool;
4179 int msgmap;
4180 int msgmax;
4181 int msgmnb;
4182 int msgmni;
4183 int msgssz;
4184 int msgtql;
4185 unsigned short int msgseg;
4186 };
4187
4188 static inline abi_long host_to_target_msginfo(abi_ulong target_addr,
4189 struct msginfo *host_msginfo)
4190 {
4191 struct target_msginfo *target_msginfo;
4192 if (!lock_user_struct(VERIFY_WRITE, target_msginfo, target_addr, 0))
4193 return -TARGET_EFAULT;
4194 __put_user(host_msginfo->msgpool, &target_msginfo->msgpool);
4195 __put_user(host_msginfo->msgmap, &target_msginfo->msgmap);
4196 __put_user(host_msginfo->msgmax, &target_msginfo->msgmax);
4197 __put_user(host_msginfo->msgmnb, &target_msginfo->msgmnb);
4198 __put_user(host_msginfo->msgmni, &target_msginfo->msgmni);
4199 __put_user(host_msginfo->msgssz, &target_msginfo->msgssz);
4200 __put_user(host_msginfo->msgtql, &target_msginfo->msgtql);
4201 __put_user(host_msginfo->msgseg, &target_msginfo->msgseg);
4202 unlock_user_struct(target_msginfo, target_addr, 1);
4203 return 0;
4204 }
4205
4206 static inline abi_long do_msgctl(int msgid, int cmd, abi_long ptr)
4207 {
4208 struct msqid_ds dsarg;
4209 struct msginfo msginfo;
4210 abi_long ret = -TARGET_EINVAL;
4211
4212 cmd &= 0xff;
4213
4214 switch (cmd) {
4215 case IPC_STAT:
4216 case IPC_SET:
4217 case MSG_STAT:
4218 if (target_to_host_msqid_ds(&dsarg,ptr))
4219 return -TARGET_EFAULT;
4220 ret = get_errno(msgctl(msgid, cmd, &dsarg));
4221 if (host_to_target_msqid_ds(ptr,&dsarg))
4222 return -TARGET_EFAULT;
4223 break;
4224 case IPC_RMID:
4225 ret = get_errno(msgctl(msgid, cmd, NULL));
4226 break;
4227 case IPC_INFO:
4228 case MSG_INFO:
4229 ret = get_errno(msgctl(msgid, cmd, (struct msqid_ds *)&msginfo));
4230 if (host_to_target_msginfo(ptr, &msginfo))
4231 return -TARGET_EFAULT;
4232 break;
4233 }
4234
4235 return ret;
4236 }
4237
4238 struct target_msgbuf {
4239 abi_long mtype;
4240 char mtext[1];
4241 };
4242
4243 static inline abi_long do_msgsnd(int msqid, abi_long msgp,
4244 ssize_t msgsz, int msgflg)
4245 {
4246 struct target_msgbuf *target_mb;
4247 struct msgbuf *host_mb;
4248 abi_long ret = 0;
4249
4250 if (msgsz < 0) {
4251 return -TARGET_EINVAL;
4252 }
4253
4254 if (!lock_user_struct(VERIFY_READ, target_mb, msgp, 0))
4255 return -TARGET_EFAULT;
4256 host_mb = g_try_malloc(msgsz + sizeof(long));
4257 if (!host_mb) {
4258 unlock_user_struct(target_mb, msgp, 0);
4259 return -TARGET_ENOMEM;
4260 }
4261 host_mb->mtype = (abi_long) tswapal(target_mb->mtype);
4262 memcpy(host_mb->mtext, target_mb->mtext, msgsz);
4263 ret = -TARGET_ENOSYS;
4264 #ifdef __NR_msgsnd
4265 ret = get_errno(safe_msgsnd(msqid, host_mb, msgsz, msgflg));
4266 #endif
4267 #ifdef __NR_ipc
4268 if (ret == -TARGET_ENOSYS) {
4269 #ifdef __s390x__
4270 ret = get_errno(safe_ipc(IPCOP_msgsnd, msqid, msgsz, msgflg,
4271 host_mb));
4272 #else
4273 ret = get_errno(safe_ipc(IPCOP_msgsnd, msqid, msgsz, msgflg,
4274 host_mb, 0));
4275 #endif
4276 }
4277 #endif
4278 g_free(host_mb);
4279 unlock_user_struct(target_mb, msgp, 0);
4280
4281 return ret;
4282 }
4283
4284 #ifdef __NR_ipc
4285 #if defined(__sparc__)
4286 /* SPARC for msgrcv it does not use the kludge on final 2 arguments. */
4287 #define MSGRCV_ARGS(__msgp, __msgtyp) __msgp, __msgtyp
4288 #elif defined(__s390x__)
4289 /* The s390 sys_ipc variant has only five parameters. */
4290 #define MSGRCV_ARGS(__msgp, __msgtyp) \
4291 ((long int[]){(long int)__msgp, __msgtyp})
4292 #else
4293 #define MSGRCV_ARGS(__msgp, __msgtyp) \
4294 ((long int[]){(long int)__msgp, __msgtyp}), 0
4295 #endif
4296 #endif
4297
4298 static inline abi_long do_msgrcv(int msqid, abi_long msgp,
4299 ssize_t msgsz, abi_long msgtyp,
4300 int msgflg)
4301 {
4302 struct target_msgbuf *target_mb;
4303 char *target_mtext;
4304 struct msgbuf *host_mb;
4305 abi_long ret = 0;
4306
4307 if (msgsz < 0) {
4308 return -TARGET_EINVAL;
4309 }
4310
4311 if (!lock_user_struct(VERIFY_WRITE, target_mb, msgp, 0))
4312 return -TARGET_EFAULT;
4313
4314 host_mb = g_try_malloc(msgsz + sizeof(long));
4315 if (!host_mb) {
4316 ret = -TARGET_ENOMEM;
4317 goto end;
4318 }
4319 ret = -TARGET_ENOSYS;
4320 #ifdef __NR_msgrcv
4321 ret = get_errno(safe_msgrcv(msqid, host_mb, msgsz, msgtyp, msgflg));
4322 #endif
4323 #ifdef __NR_ipc
4324 if (ret == -TARGET_ENOSYS) {
4325 ret = get_errno(safe_ipc(IPCOP_CALL(1, IPCOP_msgrcv), msqid, msgsz,
4326 msgflg, MSGRCV_ARGS(host_mb, msgtyp)));
4327 }
4328 #endif
4329
4330 if (ret > 0) {
4331 abi_ulong target_mtext_addr = msgp + sizeof(abi_ulong);
4332 target_mtext = lock_user(VERIFY_WRITE, target_mtext_addr, ret, 0);
4333 if (!target_mtext) {
4334 ret = -TARGET_EFAULT;
4335 goto end;
4336 }
4337 memcpy(target_mb->mtext, host_mb->mtext, ret);
4338 unlock_user(target_mtext, target_mtext_addr, ret);
4339 }
4340
4341 target_mb->mtype = tswapal(host_mb->mtype);
4342
4343 end:
4344 if (target_mb)
4345 unlock_user_struct(target_mb, msgp, 1);
4346 g_free(host_mb);
4347 return ret;
4348 }
4349
4350 static inline abi_long target_to_host_shmid_ds(struct shmid_ds *host_sd,
4351 abi_ulong target_addr)
4352 {
4353 struct target_shmid_ds *target_sd;
4354
4355 if (!lock_user_struct(VERIFY_READ, target_sd, target_addr, 1))
4356 return -TARGET_EFAULT;
4357 if (target_to_host_ipc_perm(&(host_sd->shm_perm), target_addr))
4358 return -TARGET_EFAULT;
4359 __get_user(host_sd->shm_segsz, &target_sd->shm_segsz);
4360 __get_user(host_sd->shm_atime, &target_sd->shm_atime);
4361 __get_user(host_sd->shm_dtime, &target_sd->shm_dtime);
4362 __get_user(host_sd->shm_ctime, &target_sd->shm_ctime);
4363 __get_user(host_sd->shm_cpid, &target_sd->shm_cpid);
4364 __get_user(host_sd->shm_lpid, &target_sd->shm_lpid);
4365 __get_user(host_sd->shm_nattch, &target_sd->shm_nattch);
4366 unlock_user_struct(target_sd, target_addr, 0);
4367 return 0;
4368 }
4369
4370 static inline abi_long host_to_target_shmid_ds(abi_ulong target_addr,
4371 struct shmid_ds *host_sd)
4372 {
4373 struct target_shmid_ds *target_sd;
4374
4375 if (!lock_user_struct(VERIFY_WRITE, target_sd, target_addr, 0))
4376 return -TARGET_EFAULT;
4377 if (host_to_target_ipc_perm(target_addr, &(host_sd->shm_perm)))
4378 return -TARGET_EFAULT;
4379 __put_user(host_sd->shm_segsz, &target_sd->shm_segsz);
4380 __put_user(host_sd->shm_atime, &target_sd->shm_atime);
4381 __put_user(host_sd->shm_dtime, &target_sd->shm_dtime);
4382 __put_user(host_sd->shm_ctime, &target_sd->shm_ctime);
4383 __put_user(host_sd->shm_cpid, &target_sd->shm_cpid);
4384 __put_user(host_sd->shm_lpid, &target_sd->shm_lpid);
4385 __put_user(host_sd->shm_nattch, &target_sd->shm_nattch);
4386 unlock_user_struct(target_sd, target_addr, 1);
4387 return 0;
4388 }
4389
4390 struct target_shminfo {
4391 abi_ulong shmmax;
4392 abi_ulong shmmin;
4393 abi_ulong shmmni;
4394 abi_ulong shmseg;
4395 abi_ulong shmall;
4396 };
4397
4398 static inline abi_long host_to_target_shminfo(abi_ulong target_addr,
4399 struct shminfo *host_shminfo)
4400 {
4401 struct target_shminfo *target_shminfo;
4402 if (!lock_user_struct(VERIFY_WRITE, target_shminfo, target_addr, 0))
4403 return -TARGET_EFAULT;
4404 __put_user(host_shminfo->shmmax, &target_shminfo->shmmax);
4405 __put_user(host_shminfo->shmmin, &target_shminfo->shmmin);
4406 __put_user(host_shminfo->shmmni, &target_shminfo->shmmni);
4407 __put_user(host_shminfo->shmseg, &target_shminfo->shmseg);
4408 __put_user(host_shminfo->shmall, &target_shminfo->shmall);
4409 unlock_user_struct(target_shminfo, target_addr, 1);
4410 return 0;
4411 }
4412
4413 struct target_shm_info {
4414 int used_ids;
4415 abi_ulong shm_tot;
4416 abi_ulong shm_rss;
4417 abi_ulong shm_swp;
4418 abi_ulong swap_attempts;
4419 abi_ulong swap_successes;
4420 };
4421
4422 static inline abi_long host_to_target_shm_info(abi_ulong target_addr,
4423 struct shm_info *host_shm_info)
4424 {
4425 struct target_shm_info *target_shm_info;
4426 if (!lock_user_struct(VERIFY_WRITE, target_shm_info, target_addr, 0))
4427 return -TARGET_EFAULT;
4428 __put_user(host_shm_info->used_ids, &target_shm_info->used_ids);
4429 __put_user(host_shm_info->shm_tot, &target_shm_info->shm_tot);
4430 __put_user(host_shm_info->shm_rss, &target_shm_info->shm_rss);
4431 __put_user(host_shm_info->shm_swp, &target_shm_info->shm_swp);
4432 __put_user(host_shm_info->swap_attempts, &target_shm_info->swap_attempts);
4433 __put_user(host_shm_info->swap_successes, &target_shm_info->swap_successes);
4434 unlock_user_struct(target_shm_info, target_addr, 1);
4435 return 0;
4436 }
4437
4438 static inline abi_long do_shmctl(int shmid, int cmd, abi_long buf)
4439 {
4440 struct shmid_ds dsarg;
4441 struct shminfo shminfo;
4442 struct shm_info shm_info;
4443 abi_long ret = -TARGET_EINVAL;
4444
4445 cmd &= 0xff;
4446
4447 switch(cmd) {
4448 case IPC_STAT:
4449 case IPC_SET:
4450 case SHM_STAT:
4451 if (target_to_host_shmid_ds(&dsarg, buf))
4452 return -TARGET_EFAULT;
4453 ret = get_errno(shmctl(shmid, cmd, &dsarg));
4454 if (host_to_target_shmid_ds(buf, &dsarg))
4455 return -TARGET_EFAULT;
4456 break;
4457 case IPC_INFO:
4458 ret = get_errno(shmctl(shmid, cmd, (struct shmid_ds *)&shminfo));
4459 if (host_to_target_shminfo(buf, &shminfo))
4460 return -TARGET_EFAULT;
4461 break;
4462 case SHM_INFO:
4463 ret = get_errno(shmctl(shmid, cmd, (struct shmid_ds *)&shm_info));
4464 if (host_to_target_shm_info(buf, &shm_info))
4465 return -TARGET_EFAULT;
4466 break;
4467 case IPC_RMID:
4468 case SHM_LOCK:
4469 case SHM_UNLOCK:
4470 ret = get_errno(shmctl(shmid, cmd, NULL));
4471 break;
4472 }
4473
4474 return ret;
4475 }
4476
4477 #ifdef TARGET_NR_ipc
4478 /* ??? This only works with linear mappings. */
4479 /* do_ipc() must return target values and target errnos. */
4480 static abi_long do_ipc(CPUArchState *cpu_env,
4481 unsigned int call, abi_long first,
4482 abi_long second, abi_long third,
4483 abi_long ptr, abi_long fifth)
4484 {
4485 int version;
4486 abi_long ret = 0;
4487
4488 version = call >> 16;
4489 call &= 0xffff;
4490
4491 switch (call) {
4492 case IPCOP_semop:
4493 ret = do_semtimedop(first, ptr, second, 0, false);
4494 break;
4495 case IPCOP_semtimedop:
4496 /*
4497 * The s390 sys_ipc variant has only five parameters instead of six
4498 * (as for default variant) and the only difference is the handling of
4499 * SEMTIMEDOP where on s390 the third parameter is used as a pointer
4500 * to a struct timespec where the generic variant uses fifth parameter.
4501 */
4502 #if defined(TARGET_S390X)
4503 ret = do_semtimedop(first, ptr, second, third, TARGET_ABI_BITS == 64);
4504 #else
4505 ret = do_semtimedop(first, ptr, second, fifth, TARGET_ABI_BITS == 64);
4506 #endif
4507 break;
4508
4509 case IPCOP_semget:
4510 ret = get_errno(semget(first, second, third));
4511 break;
4512
4513 case IPCOP_semctl: {
4514 /* The semun argument to semctl is passed by value, so dereference the
4515 * ptr argument. */
4516 abi_ulong atptr;
4517 get_user_ual(atptr, ptr);
4518 ret = do_semctl(first, second, third, atptr);
4519 break;
4520 }
4521
4522 case IPCOP_msgget:
4523 ret = get_errno(msgget(first, second));
4524 break;
4525
4526 case IPCOP_msgsnd:
4527 ret = do_msgsnd(first, ptr, second, third);
4528 break;
4529
4530 case IPCOP_msgctl:
4531 ret = do_msgctl(first, second, ptr);
4532 break;
4533
4534 case IPCOP_msgrcv:
4535 switch (version) {
4536 case 0:
4537 {
4538 struct target_ipc_kludge {
4539 abi_long msgp;
4540 abi_long msgtyp;
4541 } *tmp;
4542
4543 if (!lock_user_struct(VERIFY_READ, tmp, ptr, 1)) {
4544 ret = -TARGET_EFAULT;
4545 break;
4546 }
4547
4548 ret = do_msgrcv(first, tswapal(tmp->msgp), second, tswapal(tmp->msgtyp), third);
4549
4550 unlock_user_struct(tmp, ptr, 0);
4551 break;
4552 }
4553 default:
4554 ret = do_msgrcv(first, ptr, second, fifth, third);
4555 }
4556 break;
4557
4558 case IPCOP_shmat:
4559 switch (version) {
4560 default:
4561 {
4562 abi_ulong raddr;
4563 raddr = target_shmat(cpu_env, first, ptr, second);
4564 if (is_error(raddr))
4565 return get_errno(raddr);
4566 if (put_user_ual(raddr, third))
4567 return -TARGET_EFAULT;
4568 break;
4569 }
4570 case 1:
4571 ret = -TARGET_EINVAL;
4572 break;
4573 }
4574 break;
4575 case IPCOP_shmdt:
4576 ret = target_shmdt(ptr);
4577 break;
4578
4579 case IPCOP_shmget:
4580 /* IPC_* flag values are the same on all linux platforms */
4581 ret = get_errno(shmget(first, second, third));
4582 break;
4583
4584 /* IPC_* and SHM_* command values are the same on all linux platforms */
4585 case IPCOP_shmctl:
4586 ret = do_shmctl(first, second, ptr);
4587 break;
4588 default:
4589 qemu_log_mask(LOG_UNIMP, "Unsupported ipc call: %d (version %d)\n",
4590 call, version);
4591 ret = -TARGET_ENOSYS;
4592 break;
4593 }
4594 return ret;
4595 }
4596 #endif
4597
4598 /* kernel structure types definitions */
4599
4600 #define STRUCT(name, ...) STRUCT_ ## name,
4601 #define STRUCT_SPECIAL(name) STRUCT_ ## name,
4602 enum {
4603 #include "syscall_types.h"
4604 STRUCT_MAX
4605 };
4606 #undef STRUCT
4607 #undef STRUCT_SPECIAL
4608
4609 #define STRUCT(name, ...) static const argtype struct_ ## name ## _def[] = { __VA_ARGS__, TYPE_NULL };
4610 #define STRUCT_SPECIAL(name)
4611 #include "syscall_types.h"
4612 #undef STRUCT
4613 #undef STRUCT_SPECIAL
4614
4615 #define MAX_STRUCT_SIZE 4096
4616
4617 #ifdef CONFIG_FIEMAP
4618 /* So fiemap access checks don't overflow on 32 bit systems.
4619 * This is very slightly smaller than the limit imposed by
4620 * the underlying kernel.
4621 */
4622 #define FIEMAP_MAX_EXTENTS ((UINT_MAX - sizeof(struct fiemap)) \
4623 / sizeof(struct fiemap_extent))
4624
4625 static abi_long do_ioctl_fs_ioc_fiemap(const IOCTLEntry *ie, uint8_t *buf_temp,
4626 int fd, int cmd, abi_long arg)
4627 {
4628 /* The parameter for this ioctl is a struct fiemap followed
4629 * by an array of struct fiemap_extent whose size is set
4630 * in fiemap->fm_extent_count. The array is filled in by the
4631 * ioctl.
4632 */
4633 int target_size_in, target_size_out;
4634 struct fiemap *fm;
4635 const argtype *arg_type = ie->arg_type;
4636 const argtype extent_arg_type[] = { MK_STRUCT(STRUCT_fiemap_extent) };
4637 void *argptr, *p;
4638 abi_long ret;
4639 int i, extent_size = thunk_type_size(extent_arg_type, 0);
4640 uint32_t outbufsz;
4641 int free_fm = 0;
4642
4643 assert(arg_type[0] == TYPE_PTR);
4644 assert(ie->access == IOC_RW);
4645 arg_type++;
4646 target_size_in = thunk_type_size(arg_type, 0);
4647 argptr = lock_user(VERIFY_READ, arg, target_size_in, 1);
4648 if (!argptr) {
4649 return -TARGET_EFAULT;
4650 }
4651 thunk_convert(buf_temp, argptr, arg_type, THUNK_HOST);
4652 unlock_user(argptr, arg, 0);
4653 fm = (struct fiemap *)buf_temp;
4654 if (fm->fm_extent_count > FIEMAP_MAX_EXTENTS) {
4655 return -TARGET_EINVAL;
4656 }
4657
4658 outbufsz = sizeof (*fm) +
4659 (sizeof(struct fiemap_extent) * fm->fm_extent_count);
4660
4661 if (outbufsz > MAX_STRUCT_SIZE) {
4662 /* We can't fit all the extents into the fixed size buffer.
4663 * Allocate one that is large enough and use it instead.
4664 */
4665 fm = g_try_malloc(outbufsz);
4666 if (!fm) {
4667 return -TARGET_ENOMEM;
4668 }
4669 memcpy(fm, buf_temp, sizeof(struct fiemap));
4670 free_fm = 1;
4671 }
4672 ret = get_errno(safe_ioctl(fd, ie->host_cmd, fm));
4673 if (!is_error(ret)) {
4674 target_size_out = target_size_in;
4675 /* An extent_count of 0 means we were only counting the extents
4676 * so there are no structs to copy
4677 */
4678 if (fm->fm_extent_count != 0) {
4679 target_size_out += fm->fm_mapped_extents * extent_size;
4680 }
4681 argptr = lock_user(VERIFY_WRITE, arg, target_size_out, 0);
4682 if (!argptr) {
4683 ret = -TARGET_EFAULT;
4684 } else {
4685 /* Convert the struct fiemap */
4686 thunk_convert(argptr, fm, arg_type, THUNK_TARGET);
4687 if (fm->fm_extent_count != 0) {
4688 p = argptr + target_size_in;
4689 /* ...and then all the struct fiemap_extents */
4690 for (i = 0; i < fm->fm_mapped_extents; i++) {
4691 thunk_convert(p, &fm->fm_extents[i], extent_arg_type,
4692 THUNK_TARGET);
4693 p += extent_size;
4694 }
4695 }
4696 unlock_user(argptr, arg, target_size_out);
4697 }
4698 }
4699 if (free_fm) {
4700 g_free(fm);
4701 }
4702 return ret;
4703 }
4704 #endif
4705
4706 static abi_long do_ioctl_ifconf(const IOCTLEntry *ie, uint8_t *buf_temp,
4707 int fd, int cmd, abi_long arg)
4708 {
4709 const argtype *arg_type = ie->arg_type;
4710 int target_size;
4711 void *argptr;
4712 int ret;
4713 struct ifconf *host_ifconf;
4714 uint32_t outbufsz;
4715 const argtype ifreq_arg_type[] = { MK_STRUCT(STRUCT_sockaddr_ifreq) };
4716 const argtype ifreq_max_type[] = { MK_STRUCT(STRUCT_ifmap_ifreq) };
4717 int target_ifreq_size;
4718 int nb_ifreq;
4719 int free_buf = 0;
4720 int i;
4721 int target_ifc_len;
4722 abi_long target_ifc_buf;
4723 int host_ifc_len;
4724 char *host_ifc_buf;
4725
4726 assert(arg_type[0] == TYPE_PTR);
4727 assert(ie->access == IOC_RW);
4728
4729 arg_type++;
4730 target_size = thunk_type_size(arg_type, 0);
4731
4732 argptr = lock_user(VERIFY_READ, arg, target_size, 1);
4733 if (!argptr)
4734 return -TARGET_EFAULT;
4735 thunk_convert(buf_temp, argptr, arg_type, THUNK_HOST);
4736 unlock_user(argptr, arg, 0);
4737
4738 host_ifconf = (struct ifconf *)(unsigned long)buf_temp;
4739 target_ifc_buf = (abi_long)(unsigned long)host_ifconf->ifc_buf;
4740 target_ifreq_size = thunk_type_size(ifreq_max_type, 0);
4741
4742 if (target_ifc_buf != 0) {
4743 target_ifc_len = host_ifconf->ifc_len;
4744 nb_ifreq = target_ifc_len / target_ifreq_size;
4745 host_ifc_len = nb_ifreq * sizeof(struct ifreq);
4746
4747 outbufsz = sizeof(*host_ifconf) + host_ifc_len;
4748 if (outbufsz > MAX_STRUCT_SIZE) {
4749 /*
4750 * We can't fit all the extents into the fixed size buffer.
4751 * Allocate one that is large enough and use it instead.
4752 */
4753 host_ifconf = g_try_malloc(outbufsz);
4754 if (!host_ifconf) {
4755 return -TARGET_ENOMEM;
4756 }
4757 memcpy(host_ifconf, buf_temp, sizeof(*host_ifconf));
4758 free_buf = 1;
4759 }
4760 host_ifc_buf = (char *)host_ifconf + sizeof(*host_ifconf);
4761
4762 host_ifconf->ifc_len = host_ifc_len;
4763 } else {
4764 host_ifc_buf = NULL;
4765 }
4766 host_ifconf->ifc_buf = host_ifc_buf;
4767
4768 ret = get_errno(safe_ioctl(fd, ie->host_cmd, host_ifconf));
4769 if (!is_error(ret)) {
4770 /* convert host ifc_len to target ifc_len */
4771
4772 nb_ifreq = host_ifconf->ifc_len / sizeof(struct ifreq);
4773 target_ifc_len = nb_ifreq * target_ifreq_size;
4774 host_ifconf->ifc_len = target_ifc_len;
4775
4776 /* restore target ifc_buf */
4777
4778 host_ifconf->ifc_buf = (char *)(unsigned long)target_ifc_buf;
4779
4780 /* copy struct ifconf to target user */
4781
4782 argptr = lock_user(VERIFY_WRITE, arg, target_size, 0);
4783 if (!argptr)
4784 return -TARGET_EFAULT;
4785 thunk_convert(argptr, host_ifconf, arg_type, THUNK_TARGET);
4786 unlock_user(argptr, arg, target_size);
4787
4788 if (target_ifc_buf != 0) {
4789 /* copy ifreq[] to target user */
4790 argptr = lock_user(VERIFY_WRITE, target_ifc_buf, target_ifc_len, 0);
4791 for (i = 0; i < nb_ifreq ; i++) {
4792 thunk_convert(argptr + i * target_ifreq_size,
4793 host_ifc_buf + i * sizeof(struct ifreq),
4794 ifreq_arg_type, THUNK_TARGET);
4795 }
4796 unlock_user(argptr, target_ifc_buf, target_ifc_len);
4797 }
4798 }
4799
4800 if (free_buf) {
4801 g_free(host_ifconf);
4802 }
4803
4804 return ret;
4805 }
4806
4807 #if defined(CONFIG_USBFS)
4808 #if HOST_LONG_BITS > 64
4809 #error USBDEVFS thunks do not support >64 bit hosts yet.
4810 #endif
4811 struct live_urb {
4812 uint64_t target_urb_adr;
4813 uint64_t target_buf_adr;
4814 char *target_buf_ptr;
4815 struct usbdevfs_urb host_urb;
4816 };
4817
4818 static GHashTable *usbdevfs_urb_hashtable(void)
4819 {
4820 static GHashTable *urb_hashtable;
4821
4822 if (!urb_hashtable) {
4823 urb_hashtable = g_hash_table_new(g_int64_hash, g_int64_equal);
4824 }
4825 return urb_hashtable;
4826 }
4827
4828 static void urb_hashtable_insert(struct live_urb *urb)
4829 {
4830 GHashTable *urb_hashtable = usbdevfs_urb_hashtable();
4831 g_hash_table_insert(urb_hashtable, urb, urb);
4832 }
4833
4834 static struct live_urb *urb_hashtable_lookup(uint64_t target_urb_adr)
4835 {
4836 GHashTable *urb_hashtable = usbdevfs_urb_hashtable();
4837 return g_hash_table_lookup(urb_hashtable, &target_urb_adr);
4838 }
4839
4840 static void urb_hashtable_remove(struct live_urb *urb)
4841 {
4842 GHashTable *urb_hashtable = usbdevfs_urb_hashtable();
4843 g_hash_table_remove(urb_hashtable, urb);
4844 }
4845
4846 static abi_long
4847 do_ioctl_usbdevfs_reapurb(const IOCTLEntry *ie, uint8_t *buf_temp,
4848 int fd, int cmd, abi_long arg)
4849 {
4850 const argtype usbfsurb_arg_type[] = { MK_STRUCT(STRUCT_usbdevfs_urb) };
4851 const argtype ptrvoid_arg_type[] = { TYPE_PTRVOID, 0, 0 };
4852 struct live_urb *lurb;
4853 void *argptr;
4854 uint64_t hurb;
4855 int target_size;
4856 uintptr_t target_urb_adr;
4857 abi_long ret;
4858
4859 target_size = thunk_type_size(usbfsurb_arg_type, THUNK_TARGET);
4860
4861 memset(buf_temp, 0, sizeof(uint64_t));
4862 ret = get_errno(safe_ioctl(fd, ie->host_cmd, buf_temp));
4863 if (is_error(ret)) {
4864 return ret;
4865 }
4866
4867 memcpy(&hurb, buf_temp, sizeof(uint64_t));
4868 lurb = (void *)((uintptr_t)hurb - offsetof(struct live_urb, host_urb));
4869 if (!lurb->target_urb_adr) {
4870 return -TARGET_EFAULT;
4871 }
4872 urb_hashtable_remove(lurb);
4873 unlock_user(lurb->target_buf_ptr, lurb->target_buf_adr,
4874 lurb->host_urb.buffer_length);
4875 lurb->target_buf_ptr = NULL;
4876
4877 /* restore the guest buffer pointer */
4878 lurb->host_urb.buffer = (void *)(uintptr_t)lurb->target_buf_adr;
4879
4880 /* update the guest urb struct */
4881 argptr = lock_user(VERIFY_WRITE, lurb->target_urb_adr, target_size, 0);
4882 if (!argptr) {
4883 g_free(lurb);
4884 return -TARGET_EFAULT;
4885 }
4886 thunk_convert(argptr, &lurb->host_urb, usbfsurb_arg_type, THUNK_TARGET);
4887 unlock_user(argptr, lurb->target_urb_adr, target_size);
4888
4889 target_size = thunk_type_size(ptrvoid_arg_type, THUNK_TARGET);
4890 /* write back the urb handle */
4891 argptr = lock_user(VERIFY_WRITE, arg, target_size, 0);
4892 if (!argptr) {
4893 g_free(lurb);
4894 return -TARGET_EFAULT;
4895 }
4896
4897 /* GHashTable uses 64-bit keys but thunk_convert expects uintptr_t */
4898 target_urb_adr = lurb->target_urb_adr;
4899 thunk_convert(argptr, &target_urb_adr, ptrvoid_arg_type, THUNK_TARGET);
4900 unlock_user(argptr, arg, target_size);
4901
4902 g_free(lurb);
4903 return ret;
4904 }
4905
4906 static abi_long
4907 do_ioctl_usbdevfs_discardurb(const IOCTLEntry *ie,
4908 uint8_t *buf_temp __attribute__((unused)),
4909 int fd, int cmd, abi_long arg)
4910 {
4911 struct live_urb *lurb;
4912
4913 /* map target address back to host URB with metadata. */
4914 lurb = urb_hashtable_lookup(arg);
4915 if (!lurb) {
4916 return -TARGET_EFAULT;
4917 }
4918 return get_errno(safe_ioctl(fd, ie->host_cmd, &lurb->host_urb));
4919 }
4920
4921 static abi_long
4922 do_ioctl_usbdevfs_submiturb(const IOCTLEntry *ie, uint8_t *buf_temp,
4923 int fd, int cmd, abi_long arg)
4924 {
4925 const argtype *arg_type = ie->arg_type;
4926 int target_size;
4927 abi_long ret;
4928 void *argptr;
4929 int rw_dir;
4930 struct live_urb *lurb;
4931
4932 /*
4933 * each submitted URB needs to map to a unique ID for the
4934 * kernel, and that unique ID needs to be a pointer to
4935 * host memory. hence, we need to malloc for each URB.
4936 * isochronous transfers have a variable length struct.
4937 */
4938 arg_type++;
4939 target_size = thunk_type_size(arg_type, THUNK_TARGET);
4940
4941 /* construct host copy of urb and metadata */
4942 lurb = g_try_new0(struct live_urb, 1);
4943 if (!lurb) {
4944 return -TARGET_ENOMEM;
4945 }
4946
4947 argptr = lock_user(VERIFY_READ, arg, target_size, 1);
4948 if (!argptr) {
4949 g_free(lurb);
4950 return -TARGET_EFAULT;
4951 }
4952 thunk_convert(&lurb->host_urb, argptr, arg_type, THUNK_HOST);
4953 unlock_user(argptr, arg, 0);
4954
4955 lurb->target_urb_adr = arg;
4956 lurb->target_buf_adr = (uintptr_t)lurb->host_urb.buffer;
4957
4958 /* buffer space used depends on endpoint type so lock the entire buffer */
4959 /* control type urbs should check the buffer contents for true direction */
4960 rw_dir = lurb->host_urb.endpoint & USB_DIR_IN ? VERIFY_WRITE : VERIFY_READ;
4961 lurb->target_buf_ptr = lock_user(rw_dir, lurb->target_buf_adr,
4962 lurb->host_urb.buffer_length, 1);
4963 if (lurb->target_buf_ptr == NULL) {
4964 g_free(lurb);
4965 return -TARGET_EFAULT;
4966 }
4967
4968 /* update buffer pointer in host copy */
4969 lurb->host_urb.buffer = lurb->target_buf_ptr;
4970
4971 ret = get_errno(safe_ioctl(fd, ie->host_cmd, &lurb->host_urb));
4972 if (is_error(ret)) {
4973 unlock_user(lurb->target_buf_ptr, lurb->target_buf_adr, 0);
4974 g_free(lurb);
4975 } else {
4976 urb_hashtable_insert(lurb);
4977 }
4978
4979 return ret;
4980 }
4981 #endif /* CONFIG_USBFS */
4982
4983 static abi_long do_ioctl_dm(const IOCTLEntry *ie, uint8_t *buf_temp, int fd,
4984 int cmd, abi_long arg)
4985 {
4986 void *argptr;
4987 struct dm_ioctl *host_dm;
4988 abi_long guest_data;
4989 uint32_t guest_data_size;
4990 int target_size;
4991 const argtype *arg_type = ie->arg_type;
4992 abi_long ret;
4993 void *big_buf = NULL;
4994 char *host_data;
4995
4996 arg_type++;
4997 target_size = thunk_type_size(arg_type, 0);
4998 argptr = lock_user(VERIFY_READ, arg, target_size, 1);
4999 if (!argptr) {
5000 ret = -TARGET_EFAULT;
5001 goto out;
5002 }
5003 thunk_convert(buf_temp, argptr, arg_type, THUNK_HOST);
5004 unlock_user(argptr, arg, 0);
5005
5006 /* buf_temp is too small, so fetch things into a bigger buffer */
5007 big_buf = g_malloc0(((struct dm_ioctl*)buf_temp)->data_size * 2);
5008 memcpy(big_buf, buf_temp, target_size);
5009 buf_temp = big_buf;
5010 host_dm = big_buf;
5011
5012 guest_data = arg + host_dm->data_start;
5013 if ((guest_data - arg) < 0) {
5014 ret = -TARGET_EINVAL;
5015 goto out;
5016 }
5017 guest_data_size = host_dm->data_size - host_dm->data_start;
5018 host_data = (char*)host_dm + host_dm->data_start;
5019
5020 argptr = lock_user(VERIFY_READ, guest_data, guest_data_size, 1);
5021 if (!argptr) {
5022 ret = -TARGET_EFAULT;
5023 goto out;
5024 }
5025
5026 switch (ie->host_cmd) {
5027 case DM_REMOVE_ALL:
5028 case DM_LIST_DEVICES:
5029 case DM_DEV_CREATE:
5030 case DM_DEV_REMOVE:
5031 case DM_DEV_SUSPEND:
5032 case DM_DEV_STATUS:
5033 case DM_DEV_WAIT:
5034 case DM_TABLE_STATUS:
5035 case DM_TABLE_CLEAR:
5036 case DM_TABLE_DEPS:
5037 case DM_LIST_VERSIONS:
5038 /* no input data */
5039 break;
5040 case DM_DEV_RENAME:
5041 case DM_DEV_SET_GEOMETRY:
5042 /* data contains only strings */
5043 memcpy(host_data, argptr, guest_data_size);
5044 break;
5045 case DM_TARGET_MSG:
5046 memcpy(host_data, argptr, guest_data_size);
5047 *(uint64_t*)host_data = tswap64(*(uint64_t*)argptr);
5048 break;
5049 case DM_TABLE_LOAD:
5050 {
5051 void *gspec = argptr;
5052 void *cur_data = host_data;
5053 const argtype arg_type[] = { MK_STRUCT(STRUCT_dm_target_spec) };
5054 int spec_size = thunk_type_size(arg_type, 0);
5055 int i;
5056
5057 for (i = 0; i < host_dm->target_count; i++) {
5058 struct dm_target_spec *spec = cur_data;
5059 uint32_t next;
5060 int slen;
5061
5062 thunk_convert(spec, gspec, arg_type, THUNK_HOST);
5063 slen = strlen((char*)gspec + spec_size) + 1;
5064 next = spec->next;
5065 spec->next = sizeof(*spec) + slen;
5066 strcpy((char*)&spec[1], gspec + spec_size);
5067 gspec += next;
5068 cur_data += spec->next;
5069 }
5070 break;
5071 }
5072 default:
5073 ret = -TARGET_EINVAL;
5074 unlock_user(argptr, guest_data, 0);
5075 goto out;
5076 }
5077 unlock_user(argptr, guest_data, 0);
5078
5079 ret = get_errno(safe_ioctl(fd, ie->host_cmd, buf_temp));
5080 if (!is_error(ret)) {
5081 guest_data = arg + host_dm->data_start;
5082 guest_data_size = host_dm->data_size - host_dm->data_start;
5083 argptr = lock_user(VERIFY_WRITE, guest_data, guest_data_size, 0);
5084 switch (ie->host_cmd) {
5085 case DM_REMOVE_ALL:
5086 case DM_DEV_CREATE:
5087 case DM_DEV_REMOVE:
5088 case DM_DEV_RENAME:
5089 case DM_DEV_SUSPEND:
5090 case DM_DEV_STATUS:
5091 case DM_TABLE_LOAD:
5092 case DM_TABLE_CLEAR:
5093 case DM_TARGET_MSG:
5094 case DM_DEV_SET_GEOMETRY:
5095 /* no return data */
5096 break;
5097 case DM_LIST_DEVICES:
5098 {
5099 struct dm_name_list *nl = (void*)host_dm + host_dm->data_start;
5100 uint32_t remaining_data = guest_data_size;
5101 void *cur_data = argptr;
5102 const argtype arg_type[] = { MK_STRUCT(STRUCT_dm_name_list) };
5103 int nl_size = 12; /* can't use thunk_size due to alignment */
5104
5105 while (1) {
5106 uint32_t next = nl->next;
5107 if (next) {
5108 nl->next = nl_size + (strlen(nl->name) + 1);
5109 }
5110 if (remaining_data < nl->next) {
5111 host_dm->flags |= DM_BUFFER_FULL_FLAG;
5112 break;
5113 }
5114 thunk_convert(cur_data, nl, arg_type, THUNK_TARGET);
5115 strcpy(cur_data + nl_size, nl->name);
5116 cur_data += nl->next;
5117 remaining_data -= nl->next;
5118 if (!next) {
5119 break;
5120 }
5121 nl = (void*)nl + next;
5122 }
5123 break;
5124 }
5125 case DM_DEV_WAIT:
5126 case DM_TABLE_STATUS:
5127 {
5128 struct dm_target_spec *spec = (void*)host_dm + host_dm->data_start;
5129 void *cur_data = argptr;
5130 const argtype arg_type[] = { MK_STRUCT(STRUCT_dm_target_spec) };
5131 int spec_size = thunk_type_size(arg_type, 0);
5132 int i;
5133
5134 for (i = 0; i < host_dm->target_count; i++) {
5135 uint32_t next = spec->next;
5136 int slen = strlen((char*)&spec[1]) + 1;
5137 spec->next = (cur_data - argptr) + spec_size + slen;
5138 if (guest_data_size < spec->next) {
5139 host_dm->flags |= DM_BUFFER_FULL_FLAG;
5140 break;
5141 }
5142 thunk_convert(cur_data, spec, arg_type, THUNK_TARGET);
5143 strcpy(cur_data + spec_size, (char*)&spec[1]);
5144 cur_data = argptr + spec->next;
5145 spec = (void*)host_dm + host_dm->data_start + next;
5146 }
5147 break;
5148 }
5149 case DM_TABLE_DEPS:
5150 {
5151 void *hdata = (void*)host_dm + host_dm->data_start;
5152 int count = *(uint32_t*)hdata;
5153 uint64_t *hdev = hdata + 8;
5154 uint64_t *gdev = argptr + 8;
5155 int i;
5156
5157 *(uint32_t*)argptr = tswap32(count);
5158 for (i = 0; i < count; i++) {
5159 *gdev = tswap64(*hdev);
5160 gdev++;
5161 hdev++;
5162 }
5163 break;
5164 }
5165 case DM_LIST_VERSIONS:
5166 {
5167 struct dm_target_versions *vers = (void*)host_dm + host_dm->data_start;
5168 uint32_t remaining_data = guest_data_size;
5169 void *cur_data = argptr;
5170 const argtype arg_type[] = { MK_STRUCT(STRUCT_dm_target_versions) };
5171 int vers_size = thunk_type_size(arg_type, 0);
5172
5173 while (1) {
5174 uint32_t next = vers->next;
5175 if (next) {
5176 vers->next = vers_size + (strlen(vers->name) + 1);
5177 }
5178 if (remaining_data < vers->next) {
5179 host_dm->flags |= DM_BUFFER_FULL_FLAG;
5180 break;
5181 }
5182 thunk_convert(cur_data, vers, arg_type, THUNK_TARGET);
5183 strcpy(cur_data + vers_size, vers->name);
5184 cur_data += vers->next;
5185 remaining_data -= vers->next;
5186 if (!next) {
5187 break;
5188 }
5189 vers = (void*)vers + next;
5190 }
5191 break;
5192 }
5193 default:
5194 unlock_user(argptr, guest_data, 0);
5195 ret = -TARGET_EINVAL;
5196 goto out;
5197 }
5198 unlock_user(argptr, guest_data, guest_data_size);
5199
5200 argptr = lock_user(VERIFY_WRITE, arg, target_size, 0);
5201 if (!argptr) {
5202 ret = -TARGET_EFAULT;
5203 goto out;
5204 }
5205 thunk_convert(argptr, buf_temp, arg_type, THUNK_TARGET);
5206 unlock_user(argptr, arg, target_size);
5207 }
5208 out:
5209 g_free(big_buf);
5210 return ret;
5211 }
5212
5213 static abi_long do_ioctl_blkpg(const IOCTLEntry *ie, uint8_t *buf_temp, int fd,
5214 int cmd, abi_long arg)
5215 {
5216 void *argptr;
5217 int target_size;
5218 const argtype *arg_type = ie->arg_type;
5219 const argtype part_arg_type[] = { MK_STRUCT(STRUCT_blkpg_partition) };
5220 abi_long ret;
5221
5222 struct blkpg_ioctl_arg *host_blkpg = (void*)buf_temp;
5223 struct blkpg_partition host_part;
5224
5225 /* Read and convert blkpg */
5226 arg_type++;
5227 target_size = thunk_type_size(arg_type, 0);
5228 argptr = lock_user(VERIFY_READ, arg, target_size, 1);
5229 if (!argptr) {
5230 ret = -TARGET_EFAULT;
5231 goto out;
5232 }
5233 thunk_convert(buf_temp, argptr, arg_type, THUNK_HOST);
5234 unlock_user(argptr, arg, 0);
5235
5236 switch (host_blkpg->op) {
5237 case BLKPG_ADD_PARTITION:
5238 case BLKPG_DEL_PARTITION:
5239 /* payload is struct blkpg_partition */
5240 break;
5241 default:
5242 /* Unknown opcode */
5243 ret = -TARGET_EINVAL;
5244 goto out;
5245 }
5246
5247 /* Read and convert blkpg->data */
5248 arg = (abi_long)(uintptr_t)host_blkpg->data;
5249 target_size = thunk_type_size(part_arg_type, 0);
5250 argptr = lock_user(VERIFY_READ, arg, target_size, 1);
5251 if (!argptr) {
5252 ret = -TARGET_EFAULT;
5253 goto out;
5254 }
5255 thunk_convert(&host_part, argptr, part_arg_type, THUNK_HOST);
5256 unlock_user(argptr, arg, 0);
5257
5258 /* Swizzle the data pointer to our local copy and call! */
5259 host_blkpg->data = &host_part;
5260 ret = get_errno(safe_ioctl(fd, ie->host_cmd, host_blkpg));
5261
5262 out:
5263 return ret;
5264 }
5265
5266 static abi_long do_ioctl_rt(const IOCTLEntry *ie, uint8_t *buf_temp,
5267 int fd, int cmd, abi_long arg)
5268 {
5269 const argtype *arg_type = ie->arg_type;
5270 const StructEntry *se;
5271 const argtype *field_types;
5272 const int *dst_offsets, *src_offsets;
5273 int target_size;
5274 void *argptr;
5275 abi_ulong *target_rt_dev_ptr = NULL;
5276 unsigned long *host_rt_dev_ptr = NULL;
5277 abi_long ret;
5278 int i;
5279
5280 assert(ie->access == IOC_W);
5281 assert(*arg_type == TYPE_PTR);
5282 arg_type++;
5283 assert(*arg_type == TYPE_STRUCT);
5284 target_size = thunk_type_size(arg_type, 0);
5285 argptr = lock_user(VERIFY_READ, arg, target_size, 1);
5286 if (!argptr) {
5287 return -TARGET_EFAULT;
5288 }
5289 arg_type++;
5290 assert(*arg_type == (int)STRUCT_rtentry);
5291 se = struct_entries + *arg_type++;
5292 assert(se->convert[0] == NULL);
5293 /* convert struct here to be able to catch rt_dev string */
5294 field_types = se->field_types;
5295 dst_offsets = se->field_offsets[THUNK_HOST];
5296 src_offsets = se->field_offsets[THUNK_TARGET];
5297 for (i = 0; i < se->nb_fields; i++) {
5298 if (dst_offsets[i] == offsetof(struct rtentry, rt_dev)) {
5299 assert(*field_types == TYPE_PTRVOID);
5300 target_rt_dev_ptr = argptr + src_offsets[i];
5301 host_rt_dev_ptr = (unsigned long *)(buf_temp + dst_offsets[i]);
5302 if (*target_rt_dev_ptr != 0) {
5303 *host_rt_dev_ptr = (unsigned long)lock_user_string(
5304 tswapal(*target_rt_dev_ptr));
5305 if (!*host_rt_dev_ptr) {
5306 unlock_user(argptr, arg, 0);
5307 return -TARGET_EFAULT;
5308 }
5309 } else {
5310 *host_rt_dev_ptr = 0;
5311 }
5312 field_types++;
5313 continue;
5314 }
5315 field_types = thunk_convert(buf_temp + dst_offsets[i],
5316 argptr + src_offsets[i],
5317 field_types, THUNK_HOST);
5318 }
5319 unlock_user(argptr, arg, 0);
5320
5321 ret = get_errno(safe_ioctl(fd, ie->host_cmd, buf_temp));
5322
5323 assert(host_rt_dev_ptr != NULL);
5324 assert(target_rt_dev_ptr != NULL);
5325 if (*host_rt_dev_ptr != 0) {
5326 unlock_user((void *)*host_rt_dev_ptr,
5327 *target_rt_dev_ptr, 0);
5328 }
5329 return ret;
5330 }
5331
5332 static abi_long do_ioctl_kdsigaccept(const IOCTLEntry *ie, uint8_t *buf_temp,
5333 int fd, int cmd, abi_long arg)
5334 {
5335 int sig = target_to_host_signal(arg);
5336 return get_errno(safe_ioctl(fd, ie->host_cmd, sig));
5337 }
5338
5339 static abi_long do_ioctl_SIOCGSTAMP(const IOCTLEntry *ie, uint8_t *buf_temp,
5340 int fd, int cmd, abi_long arg)
5341 {
5342 struct timeval tv;
5343 abi_long ret;
5344
5345 ret = get_errno(safe_ioctl(fd, SIOCGSTAMP, &tv));
5346 if (is_error(ret)) {
5347 return ret;
5348 }
5349
5350 if (cmd == (int)TARGET_SIOCGSTAMP_OLD) {
5351 if (copy_to_user_timeval(arg, &tv)) {
5352 return -TARGET_EFAULT;
5353 }
5354 } else {
5355 if (copy_to_user_timeval64(arg, &tv)) {
5356 return -TARGET_EFAULT;
5357 }
5358 }
5359
5360 return ret;
5361 }
5362
5363 static abi_long do_ioctl_SIOCGSTAMPNS(const IOCTLEntry *ie, uint8_t *buf_temp,
5364 int fd, int cmd, abi_long arg)
5365 {
5366 struct timespec ts;
5367 abi_long ret;
5368
5369 ret = get_errno(safe_ioctl(fd, SIOCGSTAMPNS, &ts));
5370 if (is_error(ret)) {
5371 return ret;
5372 }
5373
5374 if (cmd == (int)TARGET_SIOCGSTAMPNS_OLD) {
5375 if (host_to_target_timespec(arg, &ts)) {
5376 return -TARGET_EFAULT;
5377 }
5378 } else{
5379 if (host_to_target_timespec64(arg, &ts)) {
5380 return -TARGET_EFAULT;
5381 }
5382 }
5383
5384 return ret;
5385 }
5386
5387 #ifdef TIOCGPTPEER
5388 static abi_long do_ioctl_tiocgptpeer(const IOCTLEntry *ie, uint8_t *buf_temp,
5389 int fd, int cmd, abi_long arg)
5390 {
5391 int flags = target_to_host_bitmask(arg, fcntl_flags_tbl);
5392 return get_errno(safe_ioctl(fd, ie->host_cmd, flags));
5393 }
5394 #endif
5395
5396 #ifdef HAVE_DRM_H
5397
5398 static void unlock_drm_version(struct drm_version *host_ver,
5399 struct target_drm_version *target_ver,
5400 bool copy)
5401 {
5402 unlock_user(host_ver->name, target_ver->name,
5403 copy ? host_ver->name_len : 0);
5404 unlock_user(host_ver->date, target_ver->date,
5405 copy ? host_ver->date_len : 0);
5406 unlock_user(host_ver->desc, target_ver->desc,
5407 copy ? host_ver->desc_len : 0);
5408 }
5409
5410 static inline abi_long target_to_host_drmversion(struct drm_version *host_ver,
5411 struct target_drm_version *target_ver)
5412 {
5413 memset(host_ver, 0, sizeof(*host_ver));
5414
5415 __get_user(host_ver->name_len, &target_ver->name_len);
5416 if (host_ver->name_len) {
5417 host_ver->name = lock_user(VERIFY_WRITE, target_ver->name,
5418 target_ver->name_len, 0);
5419 if (!host_ver->name) {
5420 return -EFAULT;
5421 }
5422 }
5423
5424 __get_user(host_ver->date_len, &target_ver->date_len);
5425 if (host_ver->date_len) {
5426 host_ver->date = lock_user(VERIFY_WRITE, target_ver->date,
5427 target_ver->date_len, 0);
5428 if (!host_ver->date) {
5429 goto err;
5430 }
5431 }
5432
5433 __get_user(host_ver->desc_len, &target_ver->desc_len);
5434 if (host_ver->desc_len) {
5435 host_ver->desc = lock_user(VERIFY_WRITE, target_ver->desc,
5436 target_ver->desc_len, 0);
5437 if (!host_ver->desc) {
5438 goto err;
5439 }
5440 }
5441
5442 return 0;
5443 err:
5444 unlock_drm_version(host_ver, target_ver, false);
5445 return -EFAULT;
5446 }
5447
5448 static inline void host_to_target_drmversion(
5449 struct target_drm_version *target_ver,
5450 struct drm_version *host_ver)
5451 {
5452 __put_user(host_ver->version_major, &target_ver->version_major);
5453 __put_user(host_ver->version_minor, &target_ver->version_minor);
5454 __put_user(host_ver->version_patchlevel, &target_ver->version_patchlevel);
5455 __put_user(host_ver->name_len, &target_ver->name_len);
5456 __put_user(host_ver->date_len, &target_ver->date_len);
5457 __put_user(host_ver->desc_len, &target_ver->desc_len);
5458 unlock_drm_version(host_ver, target_ver, true);
5459 }
5460
5461 static abi_long do_ioctl_drm(const IOCTLEntry *ie, uint8_t *buf_temp,
5462 int fd, int cmd, abi_long arg)
5463 {
5464 struct drm_version *ver;
5465 struct target_drm_version *target_ver;
5466 abi_long ret;
5467
5468 switch (ie->host_cmd) {
5469 case DRM_IOCTL_VERSION:
5470 if (!lock_user_struct(VERIFY_WRITE, target_ver, arg, 0)) {
5471 return -TARGET_EFAULT;
5472 }
5473 ver = (struct drm_version *)buf_temp;
5474 ret = target_to_host_drmversion(ver, target_ver);
5475 if (!is_error(ret)) {
5476 ret = get_errno(safe_ioctl(fd, ie->host_cmd, ver));
5477 if (is_error(ret)) {
5478 unlock_drm_version(ver, target_ver, false);
5479 } else {
5480 host_to_target_drmversion(target_ver, ver);
5481 }
5482 }
5483 unlock_user_struct(target_ver, arg, 0);
5484 return ret;
5485 }
5486 return -TARGET_ENOSYS;
5487 }
5488
5489 static abi_long do_ioctl_drm_i915_getparam(const IOCTLEntry *ie,
5490 struct drm_i915_getparam *gparam,
5491 int fd, abi_long arg)
5492 {
5493 abi_long ret;
5494 int value;
5495 struct target_drm_i915_getparam *target_gparam;
5496
5497 if (!lock_user_struct(VERIFY_READ, target_gparam, arg, 0)) {
5498 return -TARGET_EFAULT;
5499 }
5500
5501 __get_user(gparam->param, &target_gparam->param);
5502 gparam->value = &value;
5503 ret = get_errno(safe_ioctl(fd, ie->host_cmd, gparam));
5504 put_user_s32(value, target_gparam->value);
5505
5506 unlock_user_struct(target_gparam, arg, 0);
5507 return ret;
5508 }
5509
5510 static abi_long do_ioctl_drm_i915(const IOCTLEntry *ie, uint8_t *buf_temp,
5511 int fd, int cmd, abi_long arg)
5512 {
5513 switch (ie->host_cmd) {
5514 case DRM_IOCTL_I915_GETPARAM:
5515 return do_ioctl_drm_i915_getparam(ie,
5516 (struct drm_i915_getparam *)buf_temp,
5517 fd, arg);
5518 default:
5519 return -TARGET_ENOSYS;
5520 }
5521 }
5522
5523 #endif
5524
5525 static abi_long do_ioctl_TUNSETTXFILTER(const IOCTLEntry *ie, uint8_t *buf_temp,
5526 int fd, int cmd, abi_long arg)
5527 {
5528 struct tun_filter *filter = (struct tun_filter *)buf_temp;
5529 struct tun_filter *target_filter;
5530 char *target_addr;
5531
5532 assert(ie->access == IOC_W);
5533
5534 target_filter = lock_user(VERIFY_READ, arg, sizeof(*target_filter), 1);
5535 if (!target_filter) {
5536 return -TARGET_EFAULT;
5537 }
5538 filter->flags = tswap16(target_filter->flags);
5539 filter->count = tswap16(target_filter->count);
5540 unlock_user(target_filter, arg, 0);
5541
5542 if (filter->count) {
5543 if (offsetof(struct tun_filter, addr) + filter->count * ETH_ALEN >
5544 MAX_STRUCT_SIZE) {
5545 return -TARGET_EFAULT;
5546 }
5547
5548 target_addr = lock_user(VERIFY_READ,
5549 arg + offsetof(struct tun_filter, addr),
5550 filter->count * ETH_ALEN, 1);
5551 if (!target_addr) {
5552 return -TARGET_EFAULT;
5553 }
5554 memcpy(filter->addr, target_addr, filter->count * ETH_ALEN);
5555 unlock_user(target_addr, arg + offsetof(struct tun_filter, addr), 0);
5556 }
5557
5558 return get_errno(safe_ioctl(fd, ie->host_cmd, filter));
5559 }
5560
5561 IOCTLEntry ioctl_entries[] = {
5562 #define IOCTL(cmd, access, ...) \
5563 { TARGET_ ## cmd, cmd, #cmd, access, 0, { __VA_ARGS__ } },
5564 #define IOCTL_SPECIAL(cmd, access, dofn, ...) \
5565 { TARGET_ ## cmd, cmd, #cmd, access, dofn, { __VA_ARGS__ } },
5566 #define IOCTL_IGNORE(cmd) \
5567 { TARGET_ ## cmd, 0, #cmd },
5568 #include "ioctls.h"
5569 { 0, 0, },
5570 };
5571
5572 /* ??? Implement proper locking for ioctls. */
5573 /* do_ioctl() Must return target values and target errnos. */
5574 static abi_long do_ioctl(int fd, int cmd, abi_long arg)
5575 {
5576 const IOCTLEntry *ie;
5577 const argtype *arg_type;
5578 abi_long ret;
5579 uint8_t buf_temp[MAX_STRUCT_SIZE];
5580 int target_size;
5581 void *argptr;
5582
5583 ie = ioctl_entries;
5584 for(;;) {
5585 if (ie->target_cmd == 0) {
5586 qemu_log_mask(
5587 LOG_UNIMP, "Unsupported ioctl: cmd=0x%04lx\n", (long)cmd);
5588 return -TARGET_ENOTTY;
5589 }
5590 if (ie->target_cmd == cmd)
5591 break;
5592 ie++;
5593 }
5594 arg_type = ie->arg_type;
5595 if (ie->do_ioctl) {
5596 return ie->do_ioctl(ie, buf_temp, fd, cmd, arg);
5597 } else if (!ie->host_cmd) {
5598 /* Some architectures define BSD ioctls in their headers
5599 that are not implemented in Linux. */
5600 return -TARGET_ENOTTY;
5601 }
5602
5603 switch(arg_type[0]) {
5604 case TYPE_NULL:
5605 /* no argument */
5606 ret = get_errno(safe_ioctl(fd, ie->host_cmd));
5607 break;
5608 case TYPE_PTRVOID:
5609 case TYPE_INT:
5610 case TYPE_LONG:
5611 case TYPE_ULONG:
5612 ret = get_errno(safe_ioctl(fd, ie->host_cmd, arg));
5613 break;
5614 case TYPE_PTR:
5615 arg_type++;
5616 target_size = thunk_type_size(arg_type, 0);
5617 switch(ie->access) {
5618 case IOC_R:
5619 ret = get_errno(safe_ioctl(fd, ie->host_cmd, buf_temp));
5620 if (!is_error(ret)) {
5621 argptr = lock_user(VERIFY_WRITE, arg, target_size, 0);
5622 if (!argptr)
5623 return -TARGET_EFAULT;
5624 thunk_convert(argptr, buf_temp, arg_type, THUNK_TARGET);
5625 unlock_user(argptr, arg, target_size);
5626 }
5627 break;
5628 case IOC_W:
5629 argptr = lock_user(VERIFY_READ, arg, target_size, 1);
5630 if (!argptr)
5631 return -TARGET_EFAULT;
5632 thunk_convert(buf_temp, argptr, arg_type, THUNK_HOST);
5633 unlock_user(argptr, arg, 0);
5634 ret = get_errno(safe_ioctl(fd, ie->host_cmd, buf_temp));
5635 break;
5636 default:
5637 case IOC_RW:
5638 argptr = lock_user(VERIFY_READ, arg, target_size, 1);
5639 if (!argptr)
5640 return -TARGET_EFAULT;
5641 thunk_convert(buf_temp, argptr, arg_type, THUNK_HOST);
5642 unlock_user(argptr, arg, 0);
5643 ret = get_errno(safe_ioctl(fd, ie->host_cmd, buf_temp));
5644 if (!is_error(ret)) {
5645 argptr = lock_user(VERIFY_WRITE, arg, target_size, 0);
5646 if (!argptr)
5647 return -TARGET_EFAULT;
5648 thunk_convert(argptr, buf_temp, arg_type, THUNK_TARGET);
5649 unlock_user(argptr, arg, target_size);
5650 }
5651 break;
5652 }
5653 break;
5654 default:
5655 qemu_log_mask(LOG_UNIMP,
5656 "Unsupported ioctl type: cmd=0x%04lx type=%d\n",
5657 (long)cmd, arg_type[0]);
5658 ret = -TARGET_ENOTTY;
5659 break;
5660 }
5661 return ret;
5662 }
5663
5664 static const bitmask_transtbl iflag_tbl[] = {
5665 { TARGET_IGNBRK, TARGET_IGNBRK, IGNBRK, IGNBRK },
5666 { TARGET_BRKINT, TARGET_BRKINT, BRKINT, BRKINT },
5667 { TARGET_IGNPAR, TARGET_IGNPAR, IGNPAR, IGNPAR },
5668 { TARGET_PARMRK, TARGET_PARMRK, PARMRK, PARMRK },
5669 { TARGET_INPCK, TARGET_INPCK, INPCK, INPCK },
5670 { TARGET_ISTRIP, TARGET_ISTRIP, ISTRIP, ISTRIP },
5671 { TARGET_INLCR, TARGET_INLCR, INLCR, INLCR },
5672 { TARGET_IGNCR, TARGET_IGNCR, IGNCR, IGNCR },
5673 { TARGET_ICRNL, TARGET_ICRNL, ICRNL, ICRNL },
5674 { TARGET_IUCLC, TARGET_IUCLC, IUCLC, IUCLC },
5675 { TARGET_IXON, TARGET_IXON, IXON, IXON },
5676 { TARGET_IXANY, TARGET_IXANY, IXANY, IXANY },
5677 { TARGET_IXOFF, TARGET_IXOFF, IXOFF, IXOFF },
5678 { TARGET_IMAXBEL, TARGET_IMAXBEL, IMAXBEL, IMAXBEL },
5679 { TARGET_IUTF8, TARGET_IUTF8, IUTF8, IUTF8},
5680 };
5681
5682 static const bitmask_transtbl oflag_tbl[] = {
5683 { TARGET_OPOST, TARGET_OPOST, OPOST, OPOST },
5684 { TARGET_OLCUC, TARGET_OLCUC, OLCUC, OLCUC },
5685 { TARGET_ONLCR, TARGET_ONLCR, ONLCR, ONLCR },
5686 { TARGET_OCRNL, TARGET_OCRNL, OCRNL, OCRNL },
5687 { TARGET_ONOCR, TARGET_ONOCR, ONOCR, ONOCR },
5688 { TARGET_ONLRET, TARGET_ONLRET, ONLRET, ONLRET },
5689 { TARGET_OFILL, TARGET_OFILL, OFILL, OFILL },
5690 { TARGET_OFDEL, TARGET_OFDEL, OFDEL, OFDEL },
5691 { TARGET_NLDLY, TARGET_NL0, NLDLY, NL0 },
5692 { TARGET_NLDLY, TARGET_NL1, NLDLY, NL1 },
5693 { TARGET_CRDLY, TARGET_CR0, CRDLY, CR0 },
5694 { TARGET_CRDLY, TARGET_CR1, CRDLY, CR1 },
5695 { TARGET_CRDLY, TARGET_CR2, CRDLY, CR2 },
5696 { TARGET_CRDLY, TARGET_CR3, CRDLY, CR3 },
5697 { TARGET_TABDLY, TARGET_TAB0, TABDLY, TAB0 },
5698 { TARGET_TABDLY, TARGET_TAB1, TABDLY, TAB1 },
5699 { TARGET_TABDLY, TARGET_TAB2, TABDLY, TAB2 },
5700 { TARGET_TABDLY, TARGET_TAB3, TABDLY, TAB3 },
5701 { TARGET_BSDLY, TARGET_BS0, BSDLY, BS0 },
5702 { TARGET_BSDLY, TARGET_BS1, BSDLY, BS1 },
5703 { TARGET_VTDLY, TARGET_VT0, VTDLY, VT0 },
5704 { TARGET_VTDLY, TARGET_VT1, VTDLY, VT1 },
5705 { TARGET_FFDLY, TARGET_FF0, FFDLY, FF0 },
5706 { TARGET_FFDLY, TARGET_FF1, FFDLY, FF1 },
5707 };
5708
5709 static const bitmask_transtbl cflag_tbl[] = {
5710 { TARGET_CBAUD, TARGET_B0, CBAUD, B0 },
5711 { TARGET_CBAUD, TARGET_B50, CBAUD, B50 },
5712 { TARGET_CBAUD, TARGET_B75, CBAUD, B75 },
5713 { TARGET_CBAUD, TARGET_B110, CBAUD, B110 },
5714 { TARGET_CBAUD, TARGET_B134, CBAUD, B134 },
5715 { TARGET_CBAUD, TARGET_B150, CBAUD, B150 },
5716 { TARGET_CBAUD, TARGET_B200, CBAUD, B200 },
5717 { TARGET_CBAUD, TARGET_B300, CBAUD, B300 },
5718 { TARGET_CBAUD, TARGET_B600, CBAUD, B600 },
5719 { TARGET_CBAUD, TARGET_B1200, CBAUD, B1200 },
5720 { TARGET_CBAUD, TARGET_B1800, CBAUD, B1800 },
5721 { TARGET_CBAUD, TARGET_B2400, CBAUD, B2400 },
5722 { TARGET_CBAUD, TARGET_B4800, CBAUD, B4800 },
5723 { TARGET_CBAUD, TARGET_B9600, CBAUD, B9600 },
5724 { TARGET_CBAUD, TARGET_B19200, CBAUD, B19200 },
5725 { TARGET_CBAUD, TARGET_B38400, CBAUD, B38400 },
5726 { TARGET_CBAUD, TARGET_B57600, CBAUD, B57600 },
5727 { TARGET_CBAUD, TARGET_B115200, CBAUD, B115200 },
5728 { TARGET_CBAUD, TARGET_B230400, CBAUD, B230400 },
5729 { TARGET_CBAUD, TARGET_B460800, CBAUD, B460800 },
5730 { TARGET_CSIZE, TARGET_CS5, CSIZE, CS5 },
5731 { TARGET_CSIZE, TARGET_CS6, CSIZE, CS6 },
5732 { TARGET_CSIZE, TARGET_CS7, CSIZE, CS7 },
5733 { TARGET_CSIZE, TARGET_CS8, CSIZE, CS8 },
5734 { TARGET_CSTOPB, TARGET_CSTOPB, CSTOPB, CSTOPB },
5735 { TARGET_CREAD, TARGET_CREAD, CREAD, CREAD },
5736 { TARGET_PARENB, TARGET_PARENB, PARENB, PARENB },
5737 { TARGET_PARODD, TARGET_PARODD, PARODD, PARODD },
5738 { TARGET_HUPCL, TARGET_HUPCL, HUPCL, HUPCL },
5739 { TARGET_CLOCAL, TARGET_CLOCAL, CLOCAL, CLOCAL },
5740 { TARGET_CRTSCTS, TARGET_CRTSCTS, CRTSCTS, CRTSCTS },
5741 };
5742
5743 static const bitmask_transtbl lflag_tbl[] = {
5744 { TARGET_ISIG, TARGET_ISIG, ISIG, ISIG },
5745 { TARGET_ICANON, TARGET_ICANON, ICANON, ICANON },
5746 { TARGET_XCASE, TARGET_XCASE, XCASE, XCASE },
5747 { TARGET_ECHO, TARGET_ECHO, ECHO, ECHO },
5748 { TARGET_ECHOE, TARGET_ECHOE, ECHOE, ECHOE },
5749 { TARGET_ECHOK, TARGET_ECHOK, ECHOK, ECHOK },
5750 { TARGET_ECHONL, TARGET_ECHONL, ECHONL, ECHONL },
5751 { TARGET_NOFLSH, TARGET_NOFLSH, NOFLSH, NOFLSH },
5752 { TARGET_TOSTOP, TARGET_TOSTOP, TOSTOP, TOSTOP },
5753 { TARGET_ECHOCTL, TARGET_ECHOCTL, ECHOCTL, ECHOCTL },
5754 { TARGET_ECHOPRT, TARGET_ECHOPRT, ECHOPRT, ECHOPRT },
5755 { TARGET_ECHOKE, TARGET_ECHOKE, ECHOKE, ECHOKE },
5756 { TARGET_FLUSHO, TARGET_FLUSHO, FLUSHO, FLUSHO },
5757 { TARGET_PENDIN, TARGET_PENDIN, PENDIN, PENDIN },
5758 { TARGET_IEXTEN, TARGET_IEXTEN, IEXTEN, IEXTEN },
5759 { TARGET_EXTPROC, TARGET_EXTPROC, EXTPROC, EXTPROC},
5760 };
5761
5762 static void target_to_host_termios (void *dst, const void *src)
5763 {
5764 struct host_termios *host = dst;
5765 const struct target_termios *target = src;
5766
5767 host->c_iflag =
5768 target_to_host_bitmask(tswap32(target->c_iflag), iflag_tbl);
5769 host->c_oflag =
5770 target_to_host_bitmask(tswap32(target->c_oflag), oflag_tbl);
5771 host->c_cflag =
5772 target_to_host_bitmask(tswap32(target->c_cflag), cflag_tbl);
5773 host->c_lflag =
5774 target_to_host_bitmask(tswap32(target->c_lflag), lflag_tbl);
5775 host->c_line = target->c_line;
5776
5777 memset(host->c_cc, 0, sizeof(host->c_cc));
5778 host->c_cc[VINTR] = target->c_cc[TARGET_VINTR];
5779 host->c_cc[VQUIT] = target->c_cc[TARGET_VQUIT];
5780 host->c_cc[VERASE] = target->c_cc[TARGET_VERASE];
5781 host->c_cc[VKILL] = target->c_cc[TARGET_VKILL];
5782 host->c_cc[VEOF] = target->c_cc[TARGET_VEOF];
5783 host->c_cc[VTIME] = target->c_cc[TARGET_VTIME];
5784 host->c_cc[VMIN] = target->c_cc[TARGET_VMIN];
5785 host->c_cc[VSWTC] = target->c_cc[TARGET_VSWTC];
5786 host->c_cc[VSTART] = target->c_cc[TARGET_VSTART];
5787 host->c_cc[VSTOP] = target->c_cc[TARGET_VSTOP];
5788 host->c_cc[VSUSP] = target->c_cc[TARGET_VSUSP];
5789 host->c_cc[VEOL] = target->c_cc[TARGET_VEOL];
5790 host->c_cc[VREPRINT] = target->c_cc[TARGET_VREPRINT];
5791 host->c_cc[VDISCARD] = target->c_cc[TARGET_VDISCARD];
5792 host->c_cc[VWERASE] = target->c_cc[TARGET_VWERASE];
5793 host->c_cc[VLNEXT] = target->c_cc[TARGET_VLNEXT];
5794 host->c_cc[VEOL2] = target->c_cc[TARGET_VEOL2];
5795 }
5796
5797 static void host_to_target_termios (void *dst, const void *src)
5798 {
5799 struct target_termios *target = dst;
5800 const struct host_termios *host = src;
5801
5802 target->c_iflag =
5803 tswap32(host_to_target_bitmask(host->c_iflag, iflag_tbl));
5804 target->c_oflag =
5805 tswap32(host_to_target_bitmask(host->c_oflag, oflag_tbl));
5806 target->c_cflag =
5807 tswap32(host_to_target_bitmask(host->c_cflag, cflag_tbl));
5808 target->c_lflag =
5809 tswap32(host_to_target_bitmask(host->c_lflag, lflag_tbl));
5810 target->c_line = host->c_line;
5811
5812 memset(target->c_cc, 0, sizeof(target->c_cc));
5813 target->c_cc[TARGET_VINTR] = host->c_cc[VINTR];
5814 target->c_cc[TARGET_VQUIT] = host->c_cc[VQUIT];
5815 target->c_cc[TARGET_VERASE] = host->c_cc[VERASE];
5816 target->c_cc[TARGET_VKILL] = host->c_cc[VKILL];
5817 target->c_cc[TARGET_VEOF] = host->c_cc[VEOF];
5818 target->c_cc[TARGET_VTIME] = host->c_cc[VTIME];
5819 target->c_cc[TARGET_VMIN] = host->c_cc[VMIN];
5820 target->c_cc[TARGET_VSWTC] = host->c_cc[VSWTC];
5821 target->c_cc[TARGET_VSTART] = host->c_cc[VSTART];
5822 target->c_cc[TARGET_VSTOP] = host->c_cc[VSTOP];
5823 target->c_cc[TARGET_VSUSP] = host->c_cc[VSUSP];
5824 target->c_cc[TARGET_VEOL] = host->c_cc[VEOL];
5825 target->c_cc[TARGET_VREPRINT] = host->c_cc[VREPRINT];
5826 target->c_cc[TARGET_VDISCARD] = host->c_cc[VDISCARD];
5827 target->c_cc[TARGET_VWERASE] = host->c_cc[VWERASE];
5828 target->c_cc[TARGET_VLNEXT] = host->c_cc[VLNEXT];
5829 target->c_cc[TARGET_VEOL2] = host->c_cc[VEOL2];
5830 }
5831
5832 static const StructEntry struct_termios_def = {
5833 .convert = { host_to_target_termios, target_to_host_termios },
5834 .size = { sizeof(struct target_termios), sizeof(struct host_termios) },
5835 .align = { __alignof__(struct target_termios), __alignof__(struct host_termios) },
5836 .print = print_termios,
5837 };
5838
5839 /* If the host does not provide these bits, they may be safely discarded. */
5840 #ifndef MAP_SYNC
5841 #define MAP_SYNC 0
5842 #endif
5843 #ifndef MAP_UNINITIALIZED
5844 #define MAP_UNINITIALIZED 0
5845 #endif
5846
5847 static const bitmask_transtbl mmap_flags_tbl[] = {
5848 { TARGET_MAP_FIXED, TARGET_MAP_FIXED, MAP_FIXED, MAP_FIXED },
5849 { TARGET_MAP_ANONYMOUS, TARGET_MAP_ANONYMOUS,
5850 MAP_ANONYMOUS, MAP_ANONYMOUS },
5851 { TARGET_MAP_GROWSDOWN, TARGET_MAP_GROWSDOWN,
5852 MAP_GROWSDOWN, MAP_GROWSDOWN },
5853 { TARGET_MAP_DENYWRITE, TARGET_MAP_DENYWRITE,
5854 MAP_DENYWRITE, MAP_DENYWRITE },
5855 { TARGET_MAP_EXECUTABLE, TARGET_MAP_EXECUTABLE,
5856 MAP_EXECUTABLE, MAP_EXECUTABLE },
5857 { TARGET_MAP_LOCKED, TARGET_MAP_LOCKED, MAP_LOCKED, MAP_LOCKED },
5858 { TARGET_MAP_NORESERVE, TARGET_MAP_NORESERVE,
5859 MAP_NORESERVE, MAP_NORESERVE },
5860 { TARGET_MAP_HUGETLB, TARGET_MAP_HUGETLB, MAP_HUGETLB, MAP_HUGETLB },
5861 /* MAP_STACK had been ignored by the kernel for quite some time.
5862 Recognize it for the target insofar as we do not want to pass
5863 it through to the host. */
5864 { TARGET_MAP_STACK, TARGET_MAP_STACK, 0, 0 },
5865 { TARGET_MAP_NONBLOCK, TARGET_MAP_NONBLOCK, MAP_NONBLOCK, MAP_NONBLOCK },
5866 { TARGET_MAP_POPULATE, TARGET_MAP_POPULATE, MAP_POPULATE, MAP_POPULATE },
5867 { TARGET_MAP_FIXED_NOREPLACE, TARGET_MAP_FIXED_NOREPLACE,
5868 MAP_FIXED_NOREPLACE, MAP_FIXED_NOREPLACE },
5869 { TARGET_MAP_UNINITIALIZED, TARGET_MAP_UNINITIALIZED,
5870 MAP_UNINITIALIZED, MAP_UNINITIALIZED },
5871 };
5872
5873 /*
5874 * Arrange for legacy / undefined architecture specific flags to be
5875 * ignored by mmap handling code.
5876 */
5877 #ifndef TARGET_MAP_32BIT
5878 #define TARGET_MAP_32BIT 0
5879 #endif
5880 #ifndef TARGET_MAP_HUGE_2MB
5881 #define TARGET_MAP_HUGE_2MB 0
5882 #endif
5883 #ifndef TARGET_MAP_HUGE_1GB
5884 #define TARGET_MAP_HUGE_1GB 0
5885 #endif
5886
5887 static abi_long do_mmap(abi_ulong addr, abi_ulong len, int prot,
5888 int target_flags, int fd, off_t offset)
5889 {
5890 /*
5891 * The historical set of flags that all mmap types implicitly support.
5892 */
5893 enum {
5894 TARGET_LEGACY_MAP_MASK = TARGET_MAP_SHARED
5895 | TARGET_MAP_PRIVATE
5896 | TARGET_MAP_FIXED
5897 | TARGET_MAP_ANONYMOUS
5898 | TARGET_MAP_DENYWRITE
5899 | TARGET_MAP_EXECUTABLE
5900 | TARGET_MAP_UNINITIALIZED
5901 | TARGET_MAP_GROWSDOWN
5902 | TARGET_MAP_LOCKED
5903 | TARGET_MAP_NORESERVE
5904 | TARGET_MAP_POPULATE
5905 | TARGET_MAP_NONBLOCK
5906 | TARGET_MAP_STACK
5907 | TARGET_MAP_HUGETLB
5908 | TARGET_MAP_32BIT
5909 | TARGET_MAP_HUGE_2MB
5910 | TARGET_MAP_HUGE_1GB
5911 };
5912 int host_flags;
5913
5914 switch (target_flags & TARGET_MAP_TYPE) {
5915 case TARGET_MAP_PRIVATE:
5916 host_flags = MAP_PRIVATE;
5917 break;
5918 case TARGET_MAP_SHARED:
5919 host_flags = MAP_SHARED;
5920 break;
5921 case TARGET_MAP_SHARED_VALIDATE:
5922 /*
5923 * MAP_SYNC is only supported for MAP_SHARED_VALIDATE, and is
5924 * therefore omitted from mmap_flags_tbl and TARGET_LEGACY_MAP_MASK.
5925 */
5926 if (target_flags & ~(TARGET_LEGACY_MAP_MASK | TARGET_MAP_SYNC)) {
5927 return -TARGET_EOPNOTSUPP;
5928 }
5929 host_flags = MAP_SHARED_VALIDATE;
5930 if (target_flags & TARGET_MAP_SYNC) {
5931 host_flags |= MAP_SYNC;
5932 }
5933 break;
5934 default:
5935 return -TARGET_EINVAL;
5936 }
5937 host_flags |= target_to_host_bitmask(target_flags, mmap_flags_tbl);
5938
5939 return get_errno(target_mmap(addr, len, prot, host_flags, fd, offset));
5940 }
5941
5942 /*
5943 * NOTE: TARGET_ABI32 is defined for TARGET_I386 (but not for TARGET_X86_64)
5944 * TARGET_I386 is defined if TARGET_X86_64 is defined
5945 */
5946 #if defined(TARGET_I386)
5947
5948 /* NOTE: there is really one LDT for all the threads */
5949 static uint8_t *ldt_table;
5950
5951 static abi_long read_ldt(abi_ulong ptr, unsigned long bytecount)
5952 {
5953 int size;
5954 void *p;
5955
5956 if (!ldt_table)
5957 return 0;
5958 size = TARGET_LDT_ENTRIES * TARGET_LDT_ENTRY_SIZE;
5959 if (size > bytecount)
5960 size = bytecount;
5961 p = lock_user(VERIFY_WRITE, ptr, size, 0);
5962 if (!p)
5963 return -TARGET_EFAULT;
5964 /* ??? Should this by byteswapped? */
5965 memcpy(p, ldt_table, size);
5966 unlock_user(p, ptr, size);
5967 return size;
5968 }
5969
5970 /* XXX: add locking support */
5971 static abi_long write_ldt(CPUX86State *env,
5972 abi_ulong ptr, unsigned long bytecount, int oldmode)
5973 {
5974 struct target_modify_ldt_ldt_s ldt_info;
5975 struct target_modify_ldt_ldt_s *target_ldt_info;
5976 int seg_32bit, contents, read_exec_only, limit_in_pages;
5977 int seg_not_present, useable, lm;
5978 uint32_t *lp, entry_1, entry_2;
5979
5980 if (bytecount != sizeof(ldt_info))
5981 return -TARGET_EINVAL;
5982 if (!lock_user_struct(VERIFY_READ, target_ldt_info, ptr, 1))
5983 return -TARGET_EFAULT;
5984 ldt_info.entry_number = tswap32(target_ldt_info->entry_number);
5985 ldt_info.base_addr = tswapal(target_ldt_info->base_addr);
5986 ldt_info.limit = tswap32(target_ldt_info->limit);
5987 ldt_info.flags = tswap32(target_ldt_info->flags);
5988 unlock_user_struct(target_ldt_info, ptr, 0);
5989
5990 if (ldt_info.entry_number >= TARGET_LDT_ENTRIES)
5991 return -TARGET_EINVAL;
5992 seg_32bit = ldt_info.flags & 1;
5993 contents = (ldt_info.flags >> 1) & 3;
5994 read_exec_only = (ldt_info.flags >> 3) & 1;
5995 limit_in_pages = (ldt_info.flags >> 4) & 1;
5996 seg_not_present = (ldt_info.flags >> 5) & 1;
5997 useable = (ldt_info.flags >> 6) & 1;
5998 #ifdef TARGET_ABI32
5999 lm = 0;
6000 #else
6001 lm = (ldt_info.flags >> 7) & 1;
6002 #endif
6003 if (contents == 3) {
6004 if (oldmode)
6005 return -TARGET_EINVAL;
6006 if (seg_not_present == 0)
6007 return -TARGET_EINVAL;
6008 }
6009 /* allocate the LDT */
6010 if (!ldt_table) {
6011 env->ldt.base = target_mmap(0,
6012 TARGET_LDT_ENTRIES * TARGET_LDT_ENTRY_SIZE,
6013 PROT_READ|PROT_WRITE,
6014 MAP_ANONYMOUS|MAP_PRIVATE, -1, 0);
6015 if (env->ldt.base == -1)
6016 return -TARGET_ENOMEM;
6017 memset(g2h_untagged(env->ldt.base), 0,
6018 TARGET_LDT_ENTRIES * TARGET_LDT_ENTRY_SIZE);
6019 env->ldt.limit = 0xffff;
6020 ldt_table = g2h_untagged(env->ldt.base);
6021 }
6022
6023 /* NOTE: same code as Linux kernel */
6024 /* Allow LDTs to be cleared by the user. */
6025 if (ldt_info.base_addr == 0 && ldt_info.limit == 0) {
6026 if (oldmode ||
6027 (contents == 0 &&
6028 read_exec_only == 1 &&
6029 seg_32bit == 0 &&
6030 limit_in_pages == 0 &&
6031 seg_not_present == 1 &&
6032 useable == 0 )) {
6033 entry_1 = 0;
6034 entry_2 = 0;
6035 goto install;
6036 }
6037 }
6038
6039 entry_1 = ((ldt_info.base_addr & 0x0000ffff) << 16) |
6040 (ldt_info.limit & 0x0ffff);
6041 entry_2 = (ldt_info.base_addr & 0xff000000) |
6042 ((ldt_info.base_addr & 0x00ff0000) >> 16) |
6043 (ldt_info.limit & 0xf0000) |
6044 ((read_exec_only ^ 1) << 9) |
6045 (contents << 10) |
6046 ((seg_not_present ^ 1) << 15) |
6047 (seg_32bit << 22) |
6048 (limit_in_pages << 23) |
6049 (lm << 21) |
6050 0x7000;
6051 if (!oldmode)
6052 entry_2 |= (useable << 20);
6053
6054 /* Install the new entry ... */
6055 install:
6056 lp = (uint32_t *)(ldt_table + (ldt_info.entry_number << 3));
6057 lp[0] = tswap32(entry_1);
6058 lp[1] = tswap32(entry_2);
6059 return 0;
6060 }
6061
6062 /* specific and weird i386 syscalls */
6063 static abi_long do_modify_ldt(CPUX86State *env, int func, abi_ulong ptr,
6064 unsigned long bytecount)
6065 {
6066 abi_long ret;
6067
6068 switch (func) {
6069 case 0:
6070 ret = read_ldt(ptr, bytecount);
6071 break;
6072 case 1:
6073 ret = write_ldt(env, ptr, bytecount, 1);
6074 break;
6075 case 0x11:
6076 ret = write_ldt(env, ptr, bytecount, 0);
6077 break;
6078 default:
6079 ret = -TARGET_ENOSYS;
6080 break;
6081 }
6082 return ret;
6083 }
6084
6085 #if defined(TARGET_ABI32)
6086 abi_long do_set_thread_area(CPUX86State *env, abi_ulong ptr)
6087 {
6088 uint64_t *gdt_table = g2h_untagged(env->gdt.base);
6089 struct target_modify_ldt_ldt_s ldt_info;
6090 struct target_modify_ldt_ldt_s *target_ldt_info;
6091 int seg_32bit, contents, read_exec_only, limit_in_pages;
6092 int seg_not_present, useable, lm;
6093 uint32_t *lp, entry_1, entry_2;
6094 int i;
6095
6096 lock_user_struct(VERIFY_WRITE, target_ldt_info, ptr, 1);
6097 if (!target_ldt_info)
6098 return -TARGET_EFAULT;
6099 ldt_info.entry_number = tswap32(target_ldt_info->entry_number);
6100 ldt_info.base_addr = tswapal(target_ldt_info->base_addr);
6101 ldt_info.limit = tswap32(target_ldt_info->limit);
6102 ldt_info.flags = tswap32(target_ldt_info->flags);
6103 if (ldt_info.entry_number == -1) {
6104 for (i=TARGET_GDT_ENTRY_TLS_MIN; i<=TARGET_GDT_ENTRY_TLS_MAX; i++) {
6105 if (gdt_table[i] == 0) {
6106 ldt_info.entry_number = i;
6107 target_ldt_info->entry_number = tswap32(i);
6108 break;
6109 }
6110 }
6111 }
6112 unlock_user_struct(target_ldt_info, ptr, 1);
6113
6114 if (ldt_info.entry_number < TARGET_GDT_ENTRY_TLS_MIN ||
6115 ldt_info.entry_number > TARGET_GDT_ENTRY_TLS_MAX)
6116 return -TARGET_EINVAL;
6117 seg_32bit = ldt_info.flags & 1;
6118 contents = (ldt_info.flags >> 1) & 3;
6119 read_exec_only = (ldt_info.flags >> 3) & 1;
6120 limit_in_pages = (ldt_info.flags >> 4) & 1;
6121 seg_not_present = (ldt_info.flags >> 5) & 1;
6122 useable = (ldt_info.flags >> 6) & 1;
6123 #ifdef TARGET_ABI32
6124 lm = 0;
6125 #else
6126 lm = (ldt_info.flags >> 7) & 1;
6127 #endif
6128
6129 if (contents == 3) {
6130 if (seg_not_present == 0)
6131 return -TARGET_EINVAL;
6132 }
6133
6134 /* NOTE: same code as Linux kernel */
6135 /* Allow LDTs to be cleared by the user. */
6136 if (ldt_info.base_addr == 0 && ldt_info.limit == 0) {
6137 if ((contents == 0 &&
6138 read_exec_only == 1 &&
6139 seg_32bit == 0 &&
6140 limit_in_pages == 0 &&
6141 seg_not_present == 1 &&
6142 useable == 0 )) {
6143 entry_1 = 0;
6144 entry_2 = 0;
6145 goto install;
6146 }
6147 }
6148
6149 entry_1 = ((ldt_info.base_addr & 0x0000ffff) << 16) |
6150 (ldt_info.limit & 0x0ffff);
6151 entry_2 = (ldt_info.base_addr & 0xff000000) |
6152 ((ldt_info.base_addr & 0x00ff0000) >> 16) |
6153 (ldt_info.limit & 0xf0000) |
6154 ((read_exec_only ^ 1) << 9) |
6155 (contents << 10) |
6156 ((seg_not_present ^ 1) << 15) |
6157 (seg_32bit << 22) |
6158 (limit_in_pages << 23) |
6159 (useable << 20) |
6160 (lm << 21) |
6161 0x7000;
6162
6163 /* Install the new entry ... */
6164 install:
6165 lp = (uint32_t *)(gdt_table + ldt_info.entry_number);
6166 lp[0] = tswap32(entry_1);
6167 lp[1] = tswap32(entry_2);
6168 return 0;
6169 }
6170
6171 static abi_long do_get_thread_area(CPUX86State *env, abi_ulong ptr)
6172 {
6173 struct target_modify_ldt_ldt_s *target_ldt_info;
6174 uint64_t *gdt_table = g2h_untagged(env->gdt.base);
6175 uint32_t base_addr, limit, flags;
6176 int seg_32bit, contents, read_exec_only, limit_in_pages, idx;
6177 int seg_not_present, useable, lm;
6178 uint32_t *lp, entry_1, entry_2;
6179
6180 lock_user_struct(VERIFY_WRITE, target_ldt_info, ptr, 1);
6181 if (!target_ldt_info)
6182 return -TARGET_EFAULT;
6183 idx = tswap32(target_ldt_info->entry_number);
6184 if (idx < TARGET_GDT_ENTRY_TLS_MIN ||
6185 idx > TARGET_GDT_ENTRY_TLS_MAX) {
6186 unlock_user_struct(target_ldt_info, ptr, 1);
6187 return -TARGET_EINVAL;
6188 }
6189 lp = (uint32_t *)(gdt_table + idx);
6190 entry_1 = tswap32(lp[0]);
6191 entry_2 = tswap32(lp[1]);
6192
6193 read_exec_only = ((entry_2 >> 9) & 1) ^ 1;
6194 contents = (entry_2 >> 10) & 3;
6195 seg_not_present = ((entry_2 >> 15) & 1) ^ 1;
6196 seg_32bit = (entry_2 >> 22) & 1;
6197 limit_in_pages = (entry_2 >> 23) & 1;
6198 useable = (entry_2 >> 20) & 1;
6199 #ifdef TARGET_ABI32
6200 lm = 0;
6201 #else
6202 lm = (entry_2 >> 21) & 1;
6203 #endif
6204 flags = (seg_32bit << 0) | (contents << 1) |
6205 (read_exec_only << 3) | (limit_in_pages << 4) |
6206 (seg_not_present << 5) | (useable << 6) | (lm << 7);
6207 limit = (entry_1 & 0xffff) | (entry_2 & 0xf0000);
6208 base_addr = (entry_1 >> 16) |
6209 (entry_2 & 0xff000000) |
6210 ((entry_2 & 0xff) << 16);
6211 target_ldt_info->base_addr = tswapal(base_addr);
6212 target_ldt_info->limit = tswap32(limit);
6213 target_ldt_info->flags = tswap32(flags);
6214 unlock_user_struct(target_ldt_info, ptr, 1);
6215 return 0;
6216 }
6217
6218 abi_long do_arch_prctl(CPUX86State *env, int code, abi_ulong addr)
6219 {
6220 return -TARGET_ENOSYS;
6221 }
6222 #else
6223 abi_long do_arch_prctl(CPUX86State *env, int code, abi_ulong addr)
6224 {
6225 abi_long ret = 0;
6226 abi_ulong val;
6227 int idx;
6228
6229 switch(code) {
6230 case TARGET_ARCH_SET_GS:
6231 case TARGET_ARCH_SET_FS:
6232 if (code == TARGET_ARCH_SET_GS)
6233 idx = R_GS;
6234 else
6235 idx = R_FS;
6236 cpu_x86_load_seg(env, idx, 0);
6237 env->segs[idx].base = addr;
6238 break;
6239 case TARGET_ARCH_GET_GS:
6240 case TARGET_ARCH_GET_FS:
6241 if (code == TARGET_ARCH_GET_GS)
6242 idx = R_GS;
6243 else
6244 idx = R_FS;
6245 val = env->segs[idx].base;
6246 if (put_user(val, addr, abi_ulong))
6247 ret = -TARGET_EFAULT;
6248 break;
6249 default:
6250 ret = -TARGET_EINVAL;
6251 break;
6252 }
6253 return ret;
6254 }
6255 #endif /* defined(TARGET_ABI32 */
6256 #endif /* defined(TARGET_I386) */
6257
6258 /*
6259 * These constants are generic. Supply any that are missing from the host.
6260 */
6261 #ifndef PR_SET_NAME
6262 # define PR_SET_NAME 15
6263 # define PR_GET_NAME 16
6264 #endif
6265 #ifndef PR_SET_FP_MODE
6266 # define PR_SET_FP_MODE 45
6267 # define PR_GET_FP_MODE 46
6268 # define PR_FP_MODE_FR (1 << 0)
6269 # define PR_FP_MODE_FRE (1 << 1)
6270 #endif
6271 #ifndef PR_SVE_SET_VL
6272 # define PR_SVE_SET_VL 50
6273 # define PR_SVE_GET_VL 51
6274 # define PR_SVE_VL_LEN_MASK 0xffff
6275 # define PR_SVE_VL_INHERIT (1 << 17)
6276 #endif
6277 #ifndef PR_PAC_RESET_KEYS
6278 # define PR_PAC_RESET_KEYS 54
6279 # define PR_PAC_APIAKEY (1 << 0)
6280 # define PR_PAC_APIBKEY (1 << 1)
6281 # define PR_PAC_APDAKEY (1 << 2)
6282 # define PR_PAC_APDBKEY (1 << 3)
6283 # define PR_PAC_APGAKEY (1 << 4)
6284 #endif
6285 #ifndef PR_SET_TAGGED_ADDR_CTRL
6286 # define PR_SET_TAGGED_ADDR_CTRL 55
6287 # define PR_GET_TAGGED_ADDR_CTRL 56
6288 # define PR_TAGGED_ADDR_ENABLE (1UL << 0)
6289 #endif
6290 #ifndef PR_MTE_TCF_SHIFT
6291 # define PR_MTE_TCF_SHIFT 1
6292 # define PR_MTE_TCF_NONE (0UL << PR_MTE_TCF_SHIFT)
6293 # define PR_MTE_TCF_SYNC (1UL << PR_MTE_TCF_SHIFT)
6294 # define PR_MTE_TCF_ASYNC (2UL << PR_MTE_TCF_SHIFT)
6295 # define PR_MTE_TCF_MASK (3UL << PR_MTE_TCF_SHIFT)
6296 # define PR_MTE_TAG_SHIFT 3
6297 # define PR_MTE_TAG_MASK (0xffffUL << PR_MTE_TAG_SHIFT)
6298 #endif
6299 #ifndef PR_SET_IO_FLUSHER
6300 # define PR_SET_IO_FLUSHER 57
6301 # define PR_GET_IO_FLUSHER 58
6302 #endif
6303 #ifndef PR_SET_SYSCALL_USER_DISPATCH
6304 # define PR_SET_SYSCALL_USER_DISPATCH 59
6305 #endif
6306 #ifndef PR_SME_SET_VL
6307 # define PR_SME_SET_VL 63
6308 # define PR_SME_GET_VL 64
6309 # define PR_SME_VL_LEN_MASK 0xffff
6310 # define PR_SME_VL_INHERIT (1 << 17)
6311 #endif
6312
6313 #include "target_prctl.h"
6314
6315 static abi_long do_prctl_inval0(CPUArchState *env)
6316 {
6317 return -TARGET_EINVAL;
6318 }
6319
6320 static abi_long do_prctl_inval1(CPUArchState *env, abi_long arg2)
6321 {
6322 return -TARGET_EINVAL;
6323 }
6324
6325 #ifndef do_prctl_get_fp_mode
6326 #define do_prctl_get_fp_mode do_prctl_inval0
6327 #endif
6328 #ifndef do_prctl_set_fp_mode
6329 #define do_prctl_set_fp_mode do_prctl_inval1
6330 #endif
6331 #ifndef do_prctl_sve_get_vl
6332 #define do_prctl_sve_get_vl do_prctl_inval0
6333 #endif
6334 #ifndef do_prctl_sve_set_vl
6335 #define do_prctl_sve_set_vl do_prctl_inval1
6336 #endif
6337 #ifndef do_prctl_reset_keys
6338 #define do_prctl_reset_keys do_prctl_inval1
6339 #endif
6340 #ifndef do_prctl_set_tagged_addr_ctrl
6341 #define do_prctl_set_tagged_addr_ctrl do_prctl_inval1
6342 #endif
6343 #ifndef do_prctl_get_tagged_addr_ctrl
6344 #define do_prctl_get_tagged_addr_ctrl do_prctl_inval0
6345 #endif
6346 #ifndef do_prctl_get_unalign
6347 #define do_prctl_get_unalign do_prctl_inval1
6348 #endif
6349 #ifndef do_prctl_set_unalign
6350 #define do_prctl_set_unalign do_prctl_inval1
6351 #endif
6352 #ifndef do_prctl_sme_get_vl
6353 #define do_prctl_sme_get_vl do_prctl_inval0
6354 #endif
6355 #ifndef do_prctl_sme_set_vl
6356 #define do_prctl_sme_set_vl do_prctl_inval1
6357 #endif
6358
6359 static abi_long do_prctl(CPUArchState *env, abi_long option, abi_long arg2,
6360 abi_long arg3, abi_long arg4, abi_long arg5)
6361 {
6362 abi_long ret;
6363
6364 switch (option) {
6365 case PR_GET_PDEATHSIG:
6366 {
6367 int deathsig;
6368 ret = get_errno(prctl(PR_GET_PDEATHSIG, &deathsig,
6369 arg3, arg4, arg5));
6370 if (!is_error(ret) &&
6371 put_user_s32(host_to_target_signal(deathsig), arg2)) {
6372 return -TARGET_EFAULT;
6373 }
6374 return ret;
6375 }
6376 case PR_SET_PDEATHSIG:
6377 return get_errno(prctl(PR_SET_PDEATHSIG, target_to_host_signal(arg2),
6378 arg3, arg4, arg5));
6379 case PR_GET_NAME:
6380 {
6381 void *name = lock_user(VERIFY_WRITE, arg2, 16, 1);
6382 if (!name) {
6383 return -TARGET_EFAULT;
6384 }
6385 ret = get_errno(prctl(PR_GET_NAME, (uintptr_t)name,
6386 arg3, arg4, arg5));
6387 unlock_user(name, arg2, 16);
6388 return ret;
6389 }
6390 case PR_SET_NAME:
6391 {
6392 void *name = lock_user(VERIFY_READ, arg2, 16, 1);
6393 if (!name) {
6394 return -TARGET_EFAULT;
6395 }
6396 ret = get_errno(prctl(PR_SET_NAME, (uintptr_t)name,
6397 arg3, arg4, arg5));
6398 unlock_user(name, arg2, 0);
6399 return ret;
6400 }
6401 case PR_GET_FP_MODE:
6402 return do_prctl_get_fp_mode(env);
6403 case PR_SET_FP_MODE:
6404 return do_prctl_set_fp_mode(env, arg2);
6405 case PR_SVE_GET_VL:
6406 return do_prctl_sve_get_vl(env);
6407 case PR_SVE_SET_VL:
6408 return do_prctl_sve_set_vl(env, arg2);
6409 case PR_SME_GET_VL:
6410 return do_prctl_sme_get_vl(env);
6411 case PR_SME_SET_VL:
6412 return do_prctl_sme_set_vl(env, arg2);
6413 case PR_PAC_RESET_KEYS:
6414 if (arg3 || arg4 || arg5) {
6415 return -TARGET_EINVAL;
6416 }
6417 return do_prctl_reset_keys(env, arg2);
6418 case PR_SET_TAGGED_ADDR_CTRL:
6419 if (arg3 || arg4 || arg5) {
6420 return -TARGET_EINVAL;
6421 }
6422 return do_prctl_set_tagged_addr_ctrl(env, arg2);
6423 case PR_GET_TAGGED_ADDR_CTRL:
6424 if (arg2 || arg3 || arg4 || arg5) {
6425 return -TARGET_EINVAL;
6426 }
6427 return do_prctl_get_tagged_addr_ctrl(env);
6428
6429 case PR_GET_UNALIGN:
6430 return do_prctl_get_unalign(env, arg2);
6431 case PR_SET_UNALIGN:
6432 return do_prctl_set_unalign(env, arg2);
6433
6434 case PR_CAP_AMBIENT:
6435 case PR_CAPBSET_READ:
6436 case PR_CAPBSET_DROP:
6437 case PR_GET_DUMPABLE:
6438 case PR_SET_DUMPABLE:
6439 case PR_GET_KEEPCAPS:
6440 case PR_SET_KEEPCAPS:
6441 case PR_GET_SECUREBITS:
6442 case PR_SET_SECUREBITS:
6443 case PR_GET_TIMING:
6444 case PR_SET_TIMING:
6445 case PR_GET_TIMERSLACK:
6446 case PR_SET_TIMERSLACK:
6447 case PR_MCE_KILL:
6448 case PR_MCE_KILL_GET:
6449 case PR_GET_NO_NEW_PRIVS:
6450 case PR_SET_NO_NEW_PRIVS:
6451 case PR_GET_IO_FLUSHER:
6452 case PR_SET_IO_FLUSHER:
6453 /* Some prctl options have no pointer arguments and we can pass on. */
6454 return get_errno(prctl(option, arg2, arg3, arg4, arg5));
6455
6456 case PR_GET_CHILD_SUBREAPER:
6457 case PR_SET_CHILD_SUBREAPER:
6458 case PR_GET_SPECULATION_CTRL:
6459 case PR_SET_SPECULATION_CTRL:
6460 case PR_GET_TID_ADDRESS:
6461 /* TODO */
6462 return -TARGET_EINVAL;
6463
6464 case PR_GET_FPEXC:
6465 case PR_SET_FPEXC:
6466 /* Was used for SPE on PowerPC. */
6467 return -TARGET_EINVAL;
6468
6469 case PR_GET_ENDIAN:
6470 case PR_SET_ENDIAN:
6471 case PR_GET_FPEMU:
6472 case PR_SET_FPEMU:
6473 case PR_SET_MM:
6474 case PR_GET_SECCOMP:
6475 case PR_SET_SECCOMP:
6476 case PR_SET_SYSCALL_USER_DISPATCH:
6477 case PR_GET_THP_DISABLE:
6478 case PR_SET_THP_DISABLE:
6479 case PR_GET_TSC:
6480 case PR_SET_TSC:
6481 /* Disable to prevent the target disabling stuff we need. */
6482 return -TARGET_EINVAL;
6483
6484 default:
6485 qemu_log_mask(LOG_UNIMP, "Unsupported prctl: " TARGET_ABI_FMT_ld "\n",
6486 option);
6487 return -TARGET_EINVAL;
6488 }
6489 }
6490
6491 #define NEW_STACK_SIZE 0x40000
6492
6493
6494 static pthread_mutex_t clone_lock = PTHREAD_MUTEX_INITIALIZER;
6495 typedef struct {
6496 CPUArchState *env;
6497 pthread_mutex_t mutex;
6498 pthread_cond_t cond;
6499 pthread_t thread;
6500 uint32_t tid;
6501 abi_ulong child_tidptr;
6502 abi_ulong parent_tidptr;
6503 sigset_t sigmask;
6504 } new_thread_info;
6505
6506 static void *clone_func(void *arg)
6507 {
6508 new_thread_info *info = arg;
6509 CPUArchState *env;
6510 CPUState *cpu;
6511 TaskState *ts;
6512
6513 rcu_register_thread();
6514 tcg_register_thread();
6515 env = info->env;
6516 cpu = env_cpu(env);
6517 thread_cpu = cpu;
6518 ts = (TaskState *)cpu->opaque;
6519 info->tid = sys_gettid();
6520 task_settid(ts);
6521 if (info->child_tidptr)
6522 put_user_u32(info->tid, info->child_tidptr);
6523 if (info->parent_tidptr)
6524 put_user_u32(info->tid, info->parent_tidptr);
6525 qemu_guest_random_seed_thread_part2(cpu->random_seed);
6526 /* Enable signals. */
6527 sigprocmask(SIG_SETMASK, &info->sigmask, NULL);
6528 /* Signal to the parent that we're ready. */
6529 pthread_mutex_lock(&info->mutex);
6530 pthread_cond_broadcast(&info->cond);
6531 pthread_mutex_unlock(&info->mutex);
6532 /* Wait until the parent has finished initializing the tls state. */
6533 pthread_mutex_lock(&clone_lock);
6534 pthread_mutex_unlock(&clone_lock);
6535 cpu_loop(env);
6536 /* never exits */
6537 return NULL;
6538 }
6539
6540 /* do_fork() Must return host values and target errnos (unlike most
6541 do_*() functions). */
6542 static int do_fork(CPUArchState *env, unsigned int flags, abi_ulong newsp,
6543 abi_ulong parent_tidptr, target_ulong newtls,
6544 abi_ulong child_tidptr)
6545 {
6546 CPUState *cpu = env_cpu(env);
6547 int ret;
6548 TaskState *ts;
6549 CPUState *new_cpu;
6550 CPUArchState *new_env;
6551 sigset_t sigmask;
6552
6553 flags &= ~CLONE_IGNORED_FLAGS;
6554
6555 /* Emulate vfork() with fork() */
6556 if (flags & CLONE_VFORK)
6557 flags &= ~(CLONE_VFORK | CLONE_VM);
6558
6559 if (flags & CLONE_VM) {
6560 TaskState *parent_ts = (TaskState *)cpu->opaque;
6561 new_thread_info info;
6562 pthread_attr_t attr;
6563
6564 if (((flags & CLONE_THREAD_FLAGS) != CLONE_THREAD_FLAGS) ||
6565 (flags & CLONE_INVALID_THREAD_FLAGS)) {
6566 return -TARGET_EINVAL;
6567 }
6568
6569 ts = g_new0(TaskState, 1);
6570 init_task_state(ts);
6571
6572 /* Grab a mutex so that thread setup appears atomic. */
6573 pthread_mutex_lock(&clone_lock);
6574
6575 /*
6576 * If this is our first additional thread, we need to ensure we
6577 * generate code for parallel execution and flush old translations.
6578 * Do this now so that the copy gets CF_PARALLEL too.
6579 */
6580 if (!(cpu->tcg_cflags & CF_PARALLEL)) {
6581 cpu->tcg_cflags |= CF_PARALLEL;
6582 tb_flush(cpu);
6583 }
6584
6585 /* we create a new CPU instance. */
6586 new_env = cpu_copy(env);
6587 /* Init regs that differ from the parent. */
6588 cpu_clone_regs_child(new_env, newsp, flags);
6589 cpu_clone_regs_parent(env, flags);
6590 new_cpu = env_cpu(new_env);
6591 new_cpu->opaque = ts;
6592 ts->bprm = parent_ts->bprm;
6593 ts->info = parent_ts->info;
6594 ts->signal_mask = parent_ts->signal_mask;
6595
6596 if (flags & CLONE_CHILD_CLEARTID) {
6597 ts->child_tidptr = child_tidptr;
6598 }
6599
6600 if (flags & CLONE_SETTLS) {
6601 cpu_set_tls (new_env, newtls);
6602 }
6603
6604 memset(&info, 0, sizeof(info));
6605 pthread_mutex_init(&info.mutex, NULL);
6606 pthread_mutex_lock(&info.mutex);
6607 pthread_cond_init(&info.cond, NULL);
6608 info.env = new_env;
6609 if (flags & CLONE_CHILD_SETTID) {
6610 info.child_tidptr = child_tidptr;
6611 }
6612 if (flags & CLONE_PARENT_SETTID) {
6613 info.parent_tidptr = parent_tidptr;
6614 }
6615
6616 ret = pthread_attr_init(&attr);
6617 ret = pthread_attr_setstacksize(&attr, NEW_STACK_SIZE);
6618 ret = pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED);
6619 /* It is not safe to deliver signals until the child has finished
6620 initializing, so temporarily block all signals. */
6621 sigfillset(&sigmask);
6622 sigprocmask(SIG_BLOCK, &sigmask, &info.sigmask);
6623 cpu->random_seed = qemu_guest_random_seed_thread_part1();
6624
6625 ret = pthread_create(&info.thread, &attr, clone_func, &info);
6626 /* TODO: Free new CPU state if thread creation failed. */
6627
6628 sigprocmask(SIG_SETMASK, &info.sigmask, NULL);
6629 pthread_attr_destroy(&attr);
6630 if (ret == 0) {
6631 /* Wait for the child to initialize. */
6632 pthread_cond_wait(&info.cond, &info.mutex);
6633 ret = info.tid;
6634 } else {
6635 ret = -1;
6636 }
6637 pthread_mutex_unlock(&info.mutex);
6638 pthread_cond_destroy(&info.cond);
6639 pthread_mutex_destroy(&info.mutex);
6640 pthread_mutex_unlock(&clone_lock);
6641 } else {
6642 /* if no CLONE_VM, we consider it is a fork */
6643 if (flags & CLONE_INVALID_FORK_FLAGS) {
6644 return -TARGET_EINVAL;
6645 }
6646
6647 /* We can't support custom termination signals */
6648 if ((flags & CSIGNAL) != TARGET_SIGCHLD) {
6649 return -TARGET_EINVAL;
6650 }
6651
6652 #if !defined(__NR_pidfd_open) || !defined(TARGET_NR_pidfd_open)
6653 if (flags & CLONE_PIDFD) {
6654 return -TARGET_EINVAL;
6655 }
6656 #endif
6657
6658 /* Can not allow CLONE_PIDFD with CLONE_PARENT_SETTID */
6659 if ((flags & CLONE_PIDFD) && (flags & CLONE_PARENT_SETTID)) {
6660 return -TARGET_EINVAL;
6661 }
6662
6663 if (block_signals()) {
6664 return -QEMU_ERESTARTSYS;
6665 }
6666
6667 fork_start();
6668 ret = fork();
6669 if (ret == 0) {
6670 /* Child Process. */
6671 cpu_clone_regs_child(env, newsp, flags);
6672 fork_end(1);
6673 /* There is a race condition here. The parent process could
6674 theoretically read the TID in the child process before the child
6675 tid is set. This would require using either ptrace
6676 (not implemented) or having *_tidptr to point at a shared memory
6677 mapping. We can't repeat the spinlock hack used above because
6678 the child process gets its own copy of the lock. */
6679 if (flags & CLONE_CHILD_SETTID)
6680 put_user_u32(sys_gettid(), child_tidptr);
6681 if (flags & CLONE_PARENT_SETTID)
6682 put_user_u32(sys_gettid(), parent_tidptr);
6683 ts = (TaskState *)cpu->opaque;
6684 if (flags & CLONE_SETTLS)
6685 cpu_set_tls (env, newtls);
6686 if (flags & CLONE_CHILD_CLEARTID)
6687 ts->child_tidptr = child_tidptr;
6688 } else {
6689 cpu_clone_regs_parent(env, flags);
6690 if (flags & CLONE_PIDFD) {
6691 int pid_fd = 0;
6692 #if defined(__NR_pidfd_open) && defined(TARGET_NR_pidfd_open)
6693 int pid_child = ret;
6694 pid_fd = pidfd_open(pid_child, 0);
6695 if (pid_fd >= 0) {
6696 fcntl(pid_fd, F_SETFD, fcntl(pid_fd, F_GETFL)
6697 | FD_CLOEXEC);
6698 } else {
6699 pid_fd = 0;
6700 }
6701 #endif
6702 put_user_u32(pid_fd, parent_tidptr);
6703 }
6704 fork_end(0);
6705 }
6706 g_assert(!cpu_in_exclusive_context(cpu));
6707 }
6708 return ret;
6709 }
6710
6711 /* warning : doesn't handle linux specific flags... */
6712 static int target_to_host_fcntl_cmd(int cmd)
6713 {
6714 int ret;
6715
6716 switch(cmd) {
6717 case TARGET_F_DUPFD:
6718 case TARGET_F_GETFD:
6719 case TARGET_F_SETFD:
6720 case TARGET_F_GETFL:
6721 case TARGET_F_SETFL:
6722 case TARGET_F_OFD_GETLK:
6723 case TARGET_F_OFD_SETLK:
6724 case TARGET_F_OFD_SETLKW:
6725 ret = cmd;
6726 break;
6727 case TARGET_F_GETLK:
6728 ret = F_GETLK64;
6729 break;
6730 case TARGET_F_SETLK:
6731 ret = F_SETLK64;
6732 break;
6733 case TARGET_F_SETLKW:
6734 ret = F_SETLKW64;
6735 break;
6736 case TARGET_F_GETOWN:
6737 ret = F_GETOWN;
6738 break;
6739 case TARGET_F_SETOWN:
6740 ret = F_SETOWN;
6741 break;
6742 case TARGET_F_GETSIG:
6743 ret = F_GETSIG;
6744 break;
6745 case TARGET_F_SETSIG:
6746 ret = F_SETSIG;
6747 break;
6748 #if TARGET_ABI_BITS == 32
6749 case TARGET_F_GETLK64:
6750 ret = F_GETLK64;
6751 break;
6752 case TARGET_F_SETLK64:
6753 ret = F_SETLK64;
6754 break;
6755 case TARGET_F_SETLKW64:
6756 ret = F_SETLKW64;
6757 break;
6758 #endif
6759 case TARGET_F_SETLEASE:
6760 ret = F_SETLEASE;
6761 break;
6762 case TARGET_F_GETLEASE:
6763 ret = F_GETLEASE;
6764 break;
6765 #ifdef F_DUPFD_CLOEXEC
6766 case TARGET_F_DUPFD_CLOEXEC:
6767 ret = F_DUPFD_CLOEXEC;
6768 break;
6769 #endif
6770 case TARGET_F_NOTIFY:
6771 ret = F_NOTIFY;
6772 break;
6773 #ifdef F_GETOWN_EX
6774 case TARGET_F_GETOWN_EX:
6775 ret = F_GETOWN_EX;
6776 break;
6777 #endif
6778 #ifdef F_SETOWN_EX
6779 case TARGET_F_SETOWN_EX:
6780 ret = F_SETOWN_EX;
6781 break;
6782 #endif
6783 #ifdef F_SETPIPE_SZ
6784 case TARGET_F_SETPIPE_SZ:
6785 ret = F_SETPIPE_SZ;
6786 break;
6787 case TARGET_F_GETPIPE_SZ:
6788 ret = F_GETPIPE_SZ;
6789 break;
6790 #endif
6791 #ifdef F_ADD_SEALS
6792 case TARGET_F_ADD_SEALS:
6793 ret = F_ADD_SEALS;
6794 break;
6795 case TARGET_F_GET_SEALS:
6796 ret = F_GET_SEALS;
6797 break;
6798 #endif
6799 default:
6800 ret = -TARGET_EINVAL;
6801 break;
6802 }
6803
6804 #if defined(__powerpc64__)
6805 /* On PPC64, glibc headers has the F_*LK* defined to 12, 13 and 14 and
6806 * is not supported by kernel. The glibc fcntl call actually adjusts
6807 * them to 5, 6 and 7 before making the syscall(). Since we make the
6808 * syscall directly, adjust to what is supported by the kernel.
6809 */
6810 if (ret >= F_GETLK64 && ret <= F_SETLKW64) {
6811 ret -= F_GETLK64 - 5;
6812 }
6813 #endif
6814
6815 return ret;
6816 }
6817
6818 #define FLOCK_TRANSTBL \
6819 switch (type) { \
6820 TRANSTBL_CONVERT(F_RDLCK); \
6821 TRANSTBL_CONVERT(F_WRLCK); \
6822 TRANSTBL_CONVERT(F_UNLCK); \
6823 }
6824
6825 static int target_to_host_flock(int type)
6826 {
6827 #define TRANSTBL_CONVERT(a) case TARGET_##a: return a
6828 FLOCK_TRANSTBL
6829 #undef TRANSTBL_CONVERT
6830 return -TARGET_EINVAL;
6831 }
6832
6833 static int host_to_target_flock(int type)
6834 {
6835 #define TRANSTBL_CONVERT(a) case a: return TARGET_##a
6836 FLOCK_TRANSTBL
6837 #undef TRANSTBL_CONVERT
6838 /* if we don't know how to convert the value coming
6839 * from the host we copy to the target field as-is
6840 */
6841 return type;
6842 }
6843
6844 static inline abi_long copy_from_user_flock(struct flock64 *fl,
6845 abi_ulong target_flock_addr)
6846 {
6847 struct target_flock *target_fl;
6848 int l_type;
6849
6850 if (!lock_user_struct(VERIFY_READ, target_fl, target_flock_addr, 1)) {
6851 return -TARGET_EFAULT;
6852 }
6853
6854 __get_user(l_type, &target_fl->l_type);
6855 l_type = target_to_host_flock(l_type);
6856 if (l_type < 0) {
6857 return l_type;
6858 }
6859 fl->l_type = l_type;
6860 __get_user(fl->l_whence, &target_fl->l_whence);
6861 __get_user(fl->l_start, &target_fl->l_start);
6862 __get_user(fl->l_len, &target_fl->l_len);
6863 __get_user(fl->l_pid, &target_fl->l_pid);
6864 unlock_user_struct(target_fl, target_flock_addr, 0);
6865 return 0;
6866 }
6867
6868 static inline abi_long copy_to_user_flock(abi_ulong target_flock_addr,
6869 const struct flock64 *fl)
6870 {
6871 struct target_flock *target_fl;
6872 short l_type;
6873
6874 if (!lock_user_struct(VERIFY_WRITE, target_fl, target_flock_addr, 0)) {
6875 return -TARGET_EFAULT;
6876 }
6877
6878 l_type = host_to_target_flock(fl->l_type);
6879 __put_user(l_type, &target_fl->l_type);
6880 __put_user(fl->l_whence, &target_fl->l_whence);
6881 __put_user(fl->l_start, &target_fl->l_start);
6882 __put_user(fl->l_len, &target_fl->l_len);
6883 __put_user(fl->l_pid, &target_fl->l_pid);
6884 unlock_user_struct(target_fl, target_flock_addr, 1);
6885 return 0;
6886 }
6887
6888 typedef abi_long from_flock64_fn(struct flock64 *fl, abi_ulong target_addr);
6889 typedef abi_long to_flock64_fn(abi_ulong target_addr, const struct flock64 *fl);
6890
6891 #if defined(TARGET_ARM) && TARGET_ABI_BITS == 32
6892 struct target_oabi_flock64 {
6893 abi_short l_type;
6894 abi_short l_whence;
6895 abi_llong l_start;
6896 abi_llong l_len;
6897 abi_int l_pid;
6898 } QEMU_PACKED;
6899
6900 static inline abi_long copy_from_user_oabi_flock64(struct flock64 *fl,
6901 abi_ulong target_flock_addr)
6902 {
6903 struct target_oabi_flock64 *target_fl;
6904 int l_type;
6905
6906 if (!lock_user_struct(VERIFY_READ, target_fl, target_flock_addr, 1)) {
6907 return -TARGET_EFAULT;
6908 }
6909
6910 __get_user(l_type, &target_fl->l_type);
6911 l_type = target_to_host_flock(l_type);
6912 if (l_type < 0) {
6913 return l_type;
6914 }
6915 fl->l_type = l_type;
6916 __get_user(fl->l_whence, &target_fl->l_whence);
6917 __get_user(fl->l_start, &target_fl->l_start);
6918 __get_user(fl->l_len, &target_fl->l_len);
6919 __get_user(fl->l_pid, &target_fl->l_pid);
6920 unlock_user_struct(target_fl, target_flock_addr, 0);
6921 return 0;
6922 }
6923
6924 static inline abi_long copy_to_user_oabi_flock64(abi_ulong target_flock_addr,
6925 const struct flock64 *fl)
6926 {
6927 struct target_oabi_flock64 *target_fl;
6928 short l_type;
6929
6930 if (!lock_user_struct(VERIFY_WRITE, target_fl, target_flock_addr, 0)) {
6931 return -TARGET_EFAULT;
6932 }
6933
6934 l_type = host_to_target_flock(fl->l_type);
6935 __put_user(l_type, &target_fl->l_type);
6936 __put_user(fl->l_whence, &target_fl->l_whence);
6937 __put_user(fl->l_start, &target_fl->l_start);
6938 __put_user(fl->l_len, &target_fl->l_len);
6939 __put_user(fl->l_pid, &target_fl->l_pid);
6940 unlock_user_struct(target_fl, target_flock_addr, 1);
6941 return 0;
6942 }
6943 #endif
6944
6945 static inline abi_long copy_from_user_flock64(struct flock64 *fl,
6946 abi_ulong target_flock_addr)
6947 {
6948 struct target_flock64 *target_fl;
6949 int l_type;
6950
6951 if (!lock_user_struct(VERIFY_READ, target_fl, target_flock_addr, 1)) {
6952 return -TARGET_EFAULT;
6953 }
6954
6955 __get_user(l_type, &target_fl->l_type);
6956 l_type = target_to_host_flock(l_type);
6957 if (l_type < 0) {
6958 return l_type;
6959 }
6960 fl->l_type = l_type;
6961 __get_user(fl->l_whence, &target_fl->l_whence);
6962 __get_user(fl->l_start, &target_fl->l_start);
6963 __get_user(fl->l_len, &target_fl->l_len);
6964 __get_user(fl->l_pid, &target_fl->l_pid);
6965 unlock_user_struct(target_fl, target_flock_addr, 0);
6966 return 0;
6967 }
6968
6969 static inline abi_long copy_to_user_flock64(abi_ulong target_flock_addr,
6970 const struct flock64 *fl)
6971 {
6972 struct target_flock64 *target_fl;
6973 short l_type;
6974
6975 if (!lock_user_struct(VERIFY_WRITE, target_fl, target_flock_addr, 0)) {
6976 return -TARGET_EFAULT;
6977 }
6978
6979 l_type = host_to_target_flock(fl->l_type);
6980 __put_user(l_type, &target_fl->l_type);
6981 __put_user(fl->l_whence, &target_fl->l_whence);
6982 __put_user(fl->l_start, &target_fl->l_start);
6983 __put_user(fl->l_len, &target_fl->l_len);
6984 __put_user(fl->l_pid, &target_fl->l_pid);
6985 unlock_user_struct(target_fl, target_flock_addr, 1);
6986 return 0;
6987 }
6988
6989 static abi_long do_fcntl(int fd, int cmd, abi_ulong arg)
6990 {
6991 struct flock64 fl64;
6992 #ifdef F_GETOWN_EX
6993 struct f_owner_ex fox;
6994 struct target_f_owner_ex *target_fox;
6995 #endif
6996 abi_long ret;
6997 int host_cmd = target_to_host_fcntl_cmd(cmd);
6998
6999 if (host_cmd == -TARGET_EINVAL)
7000 return host_cmd;
7001
7002 switch(cmd) {
7003 case TARGET_F_GETLK:
7004 ret = copy_from_user_flock(&fl64, arg);
7005 if (ret) {
7006 return ret;
7007 }
7008 ret = get_errno(safe_fcntl(fd, host_cmd, &fl64));
7009 if (ret == 0) {
7010 ret = copy_to_user_flock(arg, &fl64);
7011 }
7012 break;
7013
7014 case TARGET_F_SETLK:
7015 case TARGET_F_SETLKW:
7016 ret = copy_from_user_flock(&fl64, arg);
7017 if (ret) {
7018 return ret;
7019 }
7020 ret = get_errno(safe_fcntl(fd, host_cmd, &fl64));
7021 break;
7022
7023 case TARGET_F_GETLK64:
7024 case TARGET_F_OFD_GETLK:
7025 ret = copy_from_user_flock64(&fl64, arg);
7026 if (ret) {
7027 return ret;
7028 }
7029 ret = get_errno(safe_fcntl(fd, host_cmd, &fl64));
7030 if (ret == 0) {
7031 ret = copy_to_user_flock64(arg, &fl64);
7032 }
7033 break;
7034 case TARGET_F_SETLK64:
7035 case TARGET_F_SETLKW64:
7036 case TARGET_F_OFD_SETLK:
7037 case TARGET_F_OFD_SETLKW:
7038 ret = copy_from_user_flock64(&fl64, arg);
7039 if (ret) {
7040 return ret;
7041 }
7042 ret = get_errno(safe_fcntl(fd, host_cmd, &fl64));
7043 break;
7044
7045 case TARGET_F_GETFL:
7046 ret = get_errno(safe_fcntl(fd, host_cmd, arg));
7047 if (ret >= 0) {
7048 ret = host_to_target_bitmask(ret, fcntl_flags_tbl);
7049 /* tell 32-bit guests it uses largefile on 64-bit hosts: */
7050 if (O_LARGEFILE == 0 && HOST_LONG_BITS == 64) {
7051 ret |= TARGET_O_LARGEFILE;
7052 }
7053 }
7054 break;
7055
7056 case TARGET_F_SETFL:
7057 ret = get_errno(safe_fcntl(fd, host_cmd,
7058 target_to_host_bitmask(arg,
7059 fcntl_flags_tbl)));
7060 break;
7061
7062 #ifdef F_GETOWN_EX
7063 case TARGET_F_GETOWN_EX:
7064 ret = get_errno(safe_fcntl(fd, host_cmd, &fox));
7065 if (ret >= 0) {
7066 if (!lock_user_struct(VERIFY_WRITE, target_fox, arg, 0))
7067 return -TARGET_EFAULT;
7068 target_fox->type = tswap32(fox.type);
7069 target_fox->pid = tswap32(fox.pid);
7070 unlock_user_struct(target_fox, arg, 1);
7071 }
7072 break;
7073 #endif
7074
7075 #ifdef F_SETOWN_EX
7076 case TARGET_F_SETOWN_EX:
7077 if (!lock_user_struct(VERIFY_READ, target_fox, arg, 1))
7078 return -TARGET_EFAULT;
7079 fox.type = tswap32(target_fox->type);
7080 fox.pid = tswap32(target_fox->pid);
7081 unlock_user_struct(target_fox, arg, 0);
7082 ret = get_errno(safe_fcntl(fd, host_cmd, &fox));
7083 break;
7084 #endif
7085
7086 case TARGET_F_SETSIG:
7087 ret = get_errno(safe_fcntl(fd, host_cmd, target_to_host_signal(arg)));
7088 break;
7089
7090 case TARGET_F_GETSIG:
7091 ret = host_to_target_signal(get_errno(safe_fcntl(fd, host_cmd, arg)));
7092 break;
7093
7094 case TARGET_F_SETOWN:
7095 case TARGET_F_GETOWN:
7096 case TARGET_F_SETLEASE:
7097 case TARGET_F_GETLEASE:
7098 case TARGET_F_SETPIPE_SZ:
7099 case TARGET_F_GETPIPE_SZ:
7100 case TARGET_F_ADD_SEALS:
7101 case TARGET_F_GET_SEALS:
7102 ret = get_errno(safe_fcntl(fd, host_cmd, arg));
7103 break;
7104
7105 default:
7106 ret = get_errno(safe_fcntl(fd, cmd, arg));
7107 break;
7108 }
7109 return ret;
7110 }
7111
7112 #ifdef USE_UID16
7113
7114 static inline int high2lowuid(int uid)
7115 {
7116 if (uid > 65535)
7117 return 65534;
7118 else
7119 return uid;
7120 }
7121
7122 static inline int high2lowgid(int gid)
7123 {
7124 if (gid > 65535)
7125 return 65534;
7126 else
7127 return gid;
7128 }
7129
7130 static inline int low2highuid(int uid)
7131 {
7132 if ((int16_t)uid == -1)
7133 return -1;
7134 else
7135 return uid;
7136 }
7137
7138 static inline int low2highgid(int gid)
7139 {
7140 if ((int16_t)gid == -1)
7141 return -1;
7142 else
7143 return gid;
7144 }
7145 static inline int tswapid(int id)
7146 {
7147 return tswap16(id);
7148 }
7149
7150 #define put_user_id(x, gaddr) put_user_u16(x, gaddr)
7151
7152 #else /* !USE_UID16 */
7153 static inline int high2lowuid(int uid)
7154 {
7155 return uid;
7156 }
7157 static inline int high2lowgid(int gid)
7158 {
7159 return gid;
7160 }
7161 static inline int low2highuid(int uid)
7162 {
7163 return uid;
7164 }
7165 static inline int low2highgid(int gid)
7166 {
7167 return gid;
7168 }
7169 static inline int tswapid(int id)
7170 {
7171 return tswap32(id);
7172 }
7173
7174 #define put_user_id(x, gaddr) put_user_u32(x, gaddr)
7175
7176 #endif /* USE_UID16 */
7177
7178 /* We must do direct syscalls for setting UID/GID, because we want to
7179 * implement the Linux system call semantics of "change only for this thread",
7180 * not the libc/POSIX semantics of "change for all threads in process".
7181 * (See http://ewontfix.com/17/ for more details.)
7182 * We use the 32-bit version of the syscalls if present; if it is not
7183 * then either the host architecture supports 32-bit UIDs natively with
7184 * the standard syscall, or the 16-bit UID is the best we can do.
7185 */
7186 #ifdef __NR_setuid32
7187 #define __NR_sys_setuid __NR_setuid32
7188 #else
7189 #define __NR_sys_setuid __NR_setuid
7190 #endif
7191 #ifdef __NR_setgid32
7192 #define __NR_sys_setgid __NR_setgid32
7193 #else
7194 #define __NR_sys_setgid __NR_setgid
7195 #endif
7196 #ifdef __NR_setresuid32
7197 #define __NR_sys_setresuid __NR_setresuid32
7198 #else
7199 #define __NR_sys_setresuid __NR_setresuid
7200 #endif
7201 #ifdef __NR_setresgid32
7202 #define __NR_sys_setresgid __NR_setresgid32
7203 #else
7204 #define __NR_sys_setresgid __NR_setresgid
7205 #endif
7206
7207 _syscall1(int, sys_setuid, uid_t, uid)
7208 _syscall1(int, sys_setgid, gid_t, gid)
7209 _syscall3(int, sys_setresuid, uid_t, ruid, uid_t, euid, uid_t, suid)
7210 _syscall3(int, sys_setresgid, gid_t, rgid, gid_t, egid, gid_t, sgid)
7211
7212 void syscall_init(void)
7213 {
7214 IOCTLEntry *ie;
7215 const argtype *arg_type;
7216 int size;
7217
7218 thunk_init(STRUCT_MAX);
7219
7220 #define STRUCT(name, ...) thunk_register_struct(STRUCT_ ## name, #name, struct_ ## name ## _def);
7221 #define STRUCT_SPECIAL(name) thunk_register_struct_direct(STRUCT_ ## name, #name, &struct_ ## name ## _def);
7222 #include "syscall_types.h"
7223 #undef STRUCT
7224 #undef STRUCT_SPECIAL
7225
7226 /* we patch the ioctl size if necessary. We rely on the fact that
7227 no ioctl has all the bits at '1' in the size field */
7228 ie = ioctl_entries;
7229 while (ie->target_cmd != 0) {
7230 if (((ie->target_cmd >> TARGET_IOC_SIZESHIFT) & TARGET_IOC_SIZEMASK) ==
7231 TARGET_IOC_SIZEMASK) {
7232 arg_type = ie->arg_type;
7233 if (arg_type[0] != TYPE_PTR) {
7234 fprintf(stderr, "cannot patch size for ioctl 0x%x\n",
7235 ie->target_cmd);
7236 exit(1);
7237 }
7238 arg_type++;
7239 size = thunk_type_size(arg_type, 0);
7240 ie->target_cmd = (ie->target_cmd &
7241 ~(TARGET_IOC_SIZEMASK << TARGET_IOC_SIZESHIFT)) |
7242 (size << TARGET_IOC_SIZESHIFT);
7243 }
7244
7245 /* automatic consistency check if same arch */
7246 #if (defined(__i386__) && defined(TARGET_I386) && defined(TARGET_ABI32)) || \
7247 (defined(__x86_64__) && defined(TARGET_X86_64))
7248 if (unlikely(ie->target_cmd != ie->host_cmd)) {
7249 fprintf(stderr, "ERROR: ioctl(%s): target=0x%x host=0x%x\n",
7250 ie->name, ie->target_cmd, ie->host_cmd);
7251 }
7252 #endif
7253 ie++;
7254 }
7255 }
7256
7257 #ifdef TARGET_NR_truncate64
7258 static inline abi_long target_truncate64(CPUArchState *cpu_env, const char *arg1,
7259 abi_long arg2,
7260 abi_long arg3,
7261 abi_long arg4)
7262 {
7263 if (regpairs_aligned(cpu_env, TARGET_NR_truncate64)) {
7264 arg2 = arg3;
7265 arg3 = arg4;
7266 }
7267 return get_errno(truncate64(arg1, target_offset64(arg2, arg3)));
7268 }
7269 #endif
7270
7271 #ifdef TARGET_NR_ftruncate64
7272 static inline abi_long target_ftruncate64(CPUArchState *cpu_env, abi_long arg1,
7273 abi_long arg2,
7274 abi_long arg3,
7275 abi_long arg4)
7276 {
7277 if (regpairs_aligned(cpu_env, TARGET_NR_ftruncate64)) {
7278 arg2 = arg3;
7279 arg3 = arg4;
7280 }
7281 return get_errno(ftruncate64(arg1, target_offset64(arg2, arg3)));
7282 }
7283 #endif
7284
7285 #if defined(TARGET_NR_timer_settime) || \
7286 (defined(TARGET_NR_timerfd_settime) && defined(CONFIG_TIMERFD))
7287 static inline abi_long target_to_host_itimerspec(struct itimerspec *host_its,
7288 abi_ulong target_addr)
7289 {
7290 if (target_to_host_timespec(&host_its->it_interval, target_addr +
7291 offsetof(struct target_itimerspec,
7292 it_interval)) ||
7293 target_to_host_timespec(&host_its->it_value, target_addr +
7294 offsetof(struct target_itimerspec,
7295 it_value))) {
7296 return -TARGET_EFAULT;
7297 }
7298
7299 return 0;
7300 }
7301 #endif
7302
7303 #if defined(TARGET_NR_timer_settime64) || \
7304 (defined(TARGET_NR_timerfd_settime64) && defined(CONFIG_TIMERFD))
7305 static inline abi_long target_to_host_itimerspec64(struct itimerspec *host_its,
7306 abi_ulong target_addr)
7307 {
7308 if (target_to_host_timespec64(&host_its->it_interval, target_addr +
7309 offsetof(struct target__kernel_itimerspec,
7310 it_interval)) ||
7311 target_to_host_timespec64(&host_its->it_value, target_addr +
7312 offsetof(struct target__kernel_itimerspec,
7313 it_value))) {
7314 return -TARGET_EFAULT;
7315 }
7316
7317 return 0;
7318 }
7319 #endif
7320
7321 #if ((defined(TARGET_NR_timerfd_gettime) || \
7322 defined(TARGET_NR_timerfd_settime)) && defined(CONFIG_TIMERFD)) || \
7323 defined(TARGET_NR_timer_gettime) || defined(TARGET_NR_timer_settime)
7324 static inline abi_long host_to_target_itimerspec(abi_ulong target_addr,
7325 struct itimerspec *host_its)
7326 {
7327 if (host_to_target_timespec(target_addr + offsetof(struct target_itimerspec,
7328 it_interval),
7329 &host_its->it_interval) ||
7330 host_to_target_timespec(target_addr + offsetof(struct target_itimerspec,
7331 it_value),
7332 &host_its->it_value)) {
7333 return -TARGET_EFAULT;
7334 }
7335 return 0;
7336 }
7337 #endif
7338
7339 #if ((defined(TARGET_NR_timerfd_gettime64) || \
7340 defined(TARGET_NR_timerfd_settime64)) && defined(CONFIG_TIMERFD)) || \
7341 defined(TARGET_NR_timer_gettime64) || defined(TARGET_NR_timer_settime64)
7342 static inline abi_long host_to_target_itimerspec64(abi_ulong target_addr,
7343 struct itimerspec *host_its)
7344 {
7345 if (host_to_target_timespec64(target_addr +
7346 offsetof(struct target__kernel_itimerspec,
7347 it_interval),
7348 &host_its->it_interval) ||
7349 host_to_target_timespec64(target_addr +
7350 offsetof(struct target__kernel_itimerspec,
7351 it_value),
7352 &host_its->it_value)) {
7353 return -TARGET_EFAULT;
7354 }
7355 return 0;
7356 }
7357 #endif
7358
7359 #if defined(TARGET_NR_adjtimex) || \
7360 (defined(TARGET_NR_clock_adjtime) && defined(CONFIG_CLOCK_ADJTIME))
7361 static inline abi_long target_to_host_timex(struct timex *host_tx,
7362 abi_long target_addr)
7363 {
7364 struct target_timex *target_tx;
7365
7366 if (!lock_user_struct(VERIFY_READ, target_tx, target_addr, 1)) {
7367 return -TARGET_EFAULT;
7368 }
7369
7370 __get_user(host_tx->modes, &target_tx->modes);
7371 __get_user(host_tx->offset, &target_tx->offset);
7372 __get_user(host_tx->freq, &target_tx->freq);
7373 __get_user(host_tx->maxerror, &target_tx->maxerror);
7374 __get_user(host_tx->esterror, &target_tx->esterror);
7375 __get_user(host_tx->status, &target_tx->status);
7376 __get_user(host_tx->constant, &target_tx->constant);
7377 __get_user(host_tx->precision, &target_tx->precision);
7378 __get_user(host_tx->tolerance, &target_tx->tolerance);
7379 __get_user(host_tx->time.tv_sec, &target_tx->time.tv_sec);
7380 __get_user(host_tx->time.tv_usec, &target_tx->time.tv_usec);
7381 __get_user(host_tx->tick, &target_tx->tick);
7382 __get_user(host_tx->ppsfreq, &target_tx->ppsfreq);
7383 __get_user(host_tx->jitter, &target_tx->jitter);
7384 __get_user(host_tx->shift, &target_tx->shift);
7385 __get_user(host_tx->stabil, &target_tx->stabil);
7386 __get_user(host_tx->jitcnt, &target_tx->jitcnt);
7387 __get_user(host_tx->calcnt, &target_tx->calcnt);
7388 __get_user(host_tx->errcnt, &target_tx->errcnt);
7389 __get_user(host_tx->stbcnt, &target_tx->stbcnt);
7390 __get_user(host_tx->tai, &target_tx->tai);
7391
7392 unlock_user_struct(target_tx, target_addr, 0);
7393 return 0;
7394 }
7395
7396 static inline abi_long host_to_target_timex(abi_long target_addr,
7397 struct timex *host_tx)
7398 {
7399 struct target_timex *target_tx;
7400
7401 if (!lock_user_struct(VERIFY_WRITE, target_tx, target_addr, 0)) {
7402 return -TARGET_EFAULT;
7403 }
7404
7405 __put_user(host_tx->modes, &target_tx->modes);
7406 __put_user(host_tx->offset, &target_tx->offset);
7407 __put_user(host_tx->freq, &target_tx->freq);
7408 __put_user(host_tx->maxerror, &target_tx->maxerror);
7409 __put_user(host_tx->esterror, &target_tx->esterror);
7410 __put_user(host_tx->status, &target_tx->status);
7411 __put_user(host_tx->constant, &target_tx->constant);
7412 __put_user(host_tx->precision, &target_tx->precision);
7413 __put_user(host_tx->tolerance, &target_tx->tolerance);
7414 __put_user(host_tx->time.tv_sec, &target_tx->time.tv_sec);
7415 __put_user(host_tx->time.tv_usec, &target_tx->time.tv_usec);
7416 __put_user(host_tx->tick, &target_tx->tick);
7417 __put_user(host_tx->ppsfreq, &target_tx->ppsfreq);
7418 __put_user(host_tx->jitter, &target_tx->jitter);
7419 __put_user(host_tx->shift, &target_tx->shift);
7420 __put_user(host_tx->stabil, &target_tx->stabil);
7421 __put_user(host_tx->jitcnt, &target_tx->jitcnt);
7422 __put_user(host_tx->calcnt, &target_tx->calcnt);
7423 __put_user(host_tx->errcnt, &target_tx->errcnt);
7424 __put_user(host_tx->stbcnt, &target_tx->stbcnt);
7425 __put_user(host_tx->tai, &target_tx->tai);
7426
7427 unlock_user_struct(target_tx, target_addr, 1);
7428 return 0;
7429 }
7430 #endif
7431
7432
7433 #if defined(TARGET_NR_clock_adjtime64) && defined(CONFIG_CLOCK_ADJTIME)
7434 static inline abi_long target_to_host_timex64(struct timex *host_tx,
7435 abi_long target_addr)
7436 {
7437 struct target__kernel_timex *target_tx;
7438
7439 if (copy_from_user_timeval64(&host_tx->time, target_addr +
7440 offsetof(struct target__kernel_timex,
7441 time))) {
7442 return -TARGET_EFAULT;
7443 }
7444
7445 if (!lock_user_struct(VERIFY_READ, target_tx, target_addr, 1)) {
7446 return -TARGET_EFAULT;
7447 }
7448
7449 __get_user(host_tx->modes, &target_tx->modes);
7450 __get_user(host_tx->offset, &target_tx->offset);
7451 __get_user(host_tx->freq, &target_tx->freq);
7452 __get_user(host_tx->maxerror, &target_tx->maxerror);
7453 __get_user(host_tx->esterror, &target_tx->esterror);
7454 __get_user(host_tx->status, &target_tx->status);
7455 __get_user(host_tx->constant, &target_tx->constant);
7456 __get_user(host_tx->precision, &target_tx->precision);
7457 __get_user(host_tx->tolerance, &target_tx->tolerance);
7458 __get_user(host_tx->tick, &target_tx->tick);
7459 __get_user(host_tx->ppsfreq, &target_tx->ppsfreq);
7460 __get_user(host_tx->jitter, &target_tx->jitter);
7461 __get_user(host_tx->shift, &target_tx->shift);
7462 __get_user(host_tx->stabil, &target_tx->stabil);
7463 __get_user(host_tx->jitcnt, &target_tx->jitcnt);
7464 __get_user(host_tx->calcnt, &target_tx->calcnt);
7465 __get_user(host_tx->errcnt, &target_tx->errcnt);
7466 __get_user(host_tx->stbcnt, &target_tx->stbcnt);
7467 __get_user(host_tx->tai, &target_tx->tai);
7468
7469 unlock_user_struct(target_tx, target_addr, 0);
7470 return 0;
7471 }
7472
7473 static inline abi_long host_to_target_timex64(abi_long target_addr,
7474 struct timex *host_tx)
7475 {
7476 struct target__kernel_timex *target_tx;
7477
7478 if (copy_to_user_timeval64(target_addr +
7479 offsetof(struct target__kernel_timex, time),
7480 &host_tx->time)) {
7481 return -TARGET_EFAULT;
7482 }
7483
7484 if (!lock_user_struct(VERIFY_WRITE, target_tx, target_addr, 0)) {
7485 return -TARGET_EFAULT;
7486 }
7487
7488 __put_user(host_tx->modes, &target_tx->modes);
7489 __put_user(host_tx->offset, &target_tx->offset);
7490 __put_user(host_tx->freq, &target_tx->freq);
7491 __put_user(host_tx->maxerror, &target_tx->maxerror);
7492 __put_user(host_tx->esterror, &target_tx->esterror);
7493 __put_user(host_tx->status, &target_tx->status);
7494 __put_user(host_tx->constant, &target_tx->constant);
7495 __put_user(host_tx->precision, &target_tx->precision);
7496 __put_user(host_tx->tolerance, &target_tx->tolerance);
7497 __put_user(host_tx->tick, &target_tx->tick);
7498 __put_user(host_tx->ppsfreq, &target_tx->ppsfreq);
7499 __put_user(host_tx->jitter, &target_tx->jitter);
7500 __put_user(host_tx->shift, &target_tx->shift);
7501 __put_user(host_tx->stabil, &target_tx->stabil);
7502 __put_user(host_tx->jitcnt, &target_tx->jitcnt);
7503 __put_user(host_tx->calcnt, &target_tx->calcnt);
7504 __put_user(host_tx->errcnt, &target_tx->errcnt);
7505 __put_user(host_tx->stbcnt, &target_tx->stbcnt);
7506 __put_user(host_tx->tai, &target_tx->tai);
7507
7508 unlock_user_struct(target_tx, target_addr, 1);
7509 return 0;
7510 }
7511 #endif
7512
7513 #ifndef HAVE_SIGEV_NOTIFY_THREAD_ID
7514 #define sigev_notify_thread_id _sigev_un._tid
7515 #endif
7516
7517 static inline abi_long target_to_host_sigevent(struct sigevent *host_sevp,
7518 abi_ulong target_addr)
7519 {
7520 struct target_sigevent *target_sevp;
7521
7522 if (!lock_user_struct(VERIFY_READ, target_sevp, target_addr, 1)) {
7523 return -TARGET_EFAULT;
7524 }
7525
7526 /* This union is awkward on 64 bit systems because it has a 32 bit
7527 * integer and a pointer in it; we follow the conversion approach
7528 * used for handling sigval types in signal.c so the guest should get
7529 * the correct value back even if we did a 64 bit byteswap and it's
7530 * using the 32 bit integer.
7531 */
7532 host_sevp->sigev_value.sival_ptr =
7533 (void *)(uintptr_t)tswapal(target_sevp->sigev_value.sival_ptr);
7534 host_sevp->sigev_signo =
7535 target_to_host_signal(tswap32(target_sevp->sigev_signo));
7536 host_sevp->sigev_notify = tswap32(target_sevp->sigev_notify);
7537 host_sevp->sigev_notify_thread_id = tswap32(target_sevp->_sigev_un._tid);
7538
7539 unlock_user_struct(target_sevp, target_addr, 1);
7540 return 0;
7541 }
7542
7543 #if defined(TARGET_NR_mlockall)
7544 static inline int target_to_host_mlockall_arg(int arg)
7545 {
7546 int result = 0;
7547
7548 if (arg & TARGET_MCL_CURRENT) {
7549 result |= MCL_CURRENT;
7550 }
7551 if (arg & TARGET_MCL_FUTURE) {
7552 result |= MCL_FUTURE;
7553 }
7554 #ifdef MCL_ONFAULT
7555 if (arg & TARGET_MCL_ONFAULT) {
7556 result |= MCL_ONFAULT;
7557 }
7558 #endif
7559
7560 return result;
7561 }
7562 #endif
7563
7564 static inline int target_to_host_msync_arg(abi_long arg)
7565 {
7566 return ((arg & TARGET_MS_ASYNC) ? MS_ASYNC : 0) |
7567 ((arg & TARGET_MS_INVALIDATE) ? MS_INVALIDATE : 0) |
7568 ((arg & TARGET_MS_SYNC) ? MS_SYNC : 0) |
7569 (arg & ~(TARGET_MS_ASYNC | TARGET_MS_INVALIDATE | TARGET_MS_SYNC));
7570 }
7571
7572 #if (defined(TARGET_NR_stat64) || defined(TARGET_NR_lstat64) || \
7573 defined(TARGET_NR_fstat64) || defined(TARGET_NR_fstatat64) || \
7574 defined(TARGET_NR_newfstatat))
7575 static inline abi_long host_to_target_stat64(CPUArchState *cpu_env,
7576 abi_ulong target_addr,
7577 struct stat *host_st)
7578 {
7579 #if defined(TARGET_ARM) && defined(TARGET_ABI32)
7580 if (cpu_env->eabi) {
7581 struct target_eabi_stat64 *target_st;
7582
7583 if (!lock_user_struct(VERIFY_WRITE, target_st, target_addr, 0))
7584 return -TARGET_EFAULT;
7585 memset(target_st, 0, sizeof(struct target_eabi_stat64));
7586 __put_user(host_st->st_dev, &target_st->st_dev);
7587 __put_user(host_st->st_ino, &target_st->st_ino);
7588 #ifdef TARGET_STAT64_HAS_BROKEN_ST_INO
7589 __put_user(host_st->st_ino, &target_st->__st_ino);
7590 #endif
7591 __put_user(host_st->st_mode, &target_st->st_mode);
7592 __put_user(host_st->st_nlink, &target_st->st_nlink);
7593 __put_user(host_st->st_uid, &target_st->st_uid);
7594 __put_user(host_st->st_gid, &target_st->st_gid);
7595 __put_user(host_st->st_rdev, &target_st->st_rdev);
7596 __put_user(host_st->st_size, &target_st->st_size);
7597 __put_user(host_st->st_blksize, &target_st->st_blksize);
7598 __put_user(host_st->st_blocks, &target_st->st_blocks);
7599 __put_user(host_st->st_atime, &target_st->target_st_atime);
7600 __put_user(host_st->st_mtime, &target_st->target_st_mtime);
7601 __put_user(host_st->st_ctime, &target_st->target_st_ctime);
7602 #ifdef HAVE_STRUCT_STAT_ST_ATIM
7603 __put_user(host_st->st_atim.tv_nsec, &target_st->target_st_atime_nsec);
7604 __put_user(host_st->st_mtim.tv_nsec, &target_st->target_st_mtime_nsec);
7605 __put_user(host_st->st_ctim.tv_nsec, &target_st->target_st_ctime_nsec);
7606 #endif
7607 unlock_user_struct(target_st, target_addr, 1);
7608 } else
7609 #endif
7610 {
7611 #if defined(TARGET_HAS_STRUCT_STAT64)
7612 struct target_stat64 *target_st;
7613 #else
7614 struct target_stat *target_st;
7615 #endif
7616
7617 if (!lock_user_struct(VERIFY_WRITE, target_st, target_addr, 0))
7618 return -TARGET_EFAULT;
7619 memset(target_st, 0, sizeof(*target_st));
7620 __put_user(host_st->st_dev, &target_st->st_dev);
7621 __put_user(host_st->st_ino, &target_st->st_ino);
7622 #ifdef TARGET_STAT64_HAS_BROKEN_ST_INO
7623 __put_user(host_st->st_ino, &target_st->__st_ino);
7624 #endif
7625 __put_user(host_st->st_mode, &target_st->st_mode);
7626 __put_user(host_st->st_nlink, &target_st->st_nlink);
7627 __put_user(host_st->st_uid, &target_st->st_uid);
7628 __put_user(host_st->st_gid, &target_st->st_gid);
7629 __put_user(host_st->st_rdev, &target_st->st_rdev);
7630 /* XXX: better use of kernel struct */
7631 __put_user(host_st->st_size, &target_st->st_size);
7632 __put_user(host_st->st_blksize, &target_st->st_blksize);
7633 __put_user(host_st->st_blocks, &target_st->st_blocks);
7634 __put_user(host_st->st_atime, &target_st->target_st_atime);
7635 __put_user(host_st->st_mtime, &target_st->target_st_mtime);
7636 __put_user(host_st->st_ctime, &target_st->target_st_ctime);
7637 #ifdef HAVE_STRUCT_STAT_ST_ATIM
7638 __put_user(host_st->st_atim.tv_nsec, &target_st->target_st_atime_nsec);
7639 __put_user(host_st->st_mtim.tv_nsec, &target_st->target_st_mtime_nsec);
7640 __put_user(host_st->st_ctim.tv_nsec, &target_st->target_st_ctime_nsec);
7641 #endif
7642 unlock_user_struct(target_st, target_addr, 1);
7643 }
7644
7645 return 0;
7646 }
7647 #endif
7648
7649 #if defined(TARGET_NR_statx) && defined(__NR_statx)
7650 static inline abi_long host_to_target_statx(struct target_statx *host_stx,
7651 abi_ulong target_addr)
7652 {
7653 struct target_statx *target_stx;
7654
7655 if (!lock_user_struct(VERIFY_WRITE, target_stx, target_addr, 0)) {
7656 return -TARGET_EFAULT;
7657 }
7658 memset(target_stx, 0, sizeof(*target_stx));
7659
7660 __put_user(host_stx->stx_mask, &target_stx->stx_mask);
7661 __put_user(host_stx->stx_blksize, &target_stx->stx_blksize);
7662 __put_user(host_stx->stx_attributes, &target_stx->stx_attributes);
7663 __put_user(host_stx->stx_nlink, &target_stx->stx_nlink);
7664 __put_user(host_stx->stx_uid, &target_stx->stx_uid);
7665 __put_user(host_stx->stx_gid, &target_stx->stx_gid);
7666 __put_user(host_stx->stx_mode, &target_stx->stx_mode);
7667 __put_user(host_stx->stx_ino, &target_stx->stx_ino);
7668 __put_user(host_stx->stx_size, &target_stx->stx_size);
7669 __put_user(host_stx->stx_blocks, &target_stx->stx_blocks);
7670 __put_user(host_stx->stx_attributes_mask, &target_stx->stx_attributes_mask);
7671 __put_user(host_stx->stx_atime.tv_sec, &target_stx->stx_atime.tv_sec);
7672 __put_user(host_stx->stx_atime.tv_nsec, &target_stx->stx_atime.tv_nsec);
7673 __put_user(host_stx->stx_btime.tv_sec, &target_stx->stx_btime.tv_sec);
7674 __put_user(host_stx->stx_btime.tv_nsec, &target_stx->stx_btime.tv_nsec);
7675 __put_user(host_stx->stx_ctime.tv_sec, &target_stx->stx_ctime.tv_sec);
7676 __put_user(host_stx->stx_ctime.tv_nsec, &target_stx->stx_ctime.tv_nsec);
7677 __put_user(host_stx->stx_mtime.tv_sec, &target_stx->stx_mtime.tv_sec);
7678 __put_user(host_stx->stx_mtime.tv_nsec, &target_stx->stx_mtime.tv_nsec);
7679 __put_user(host_stx->stx_rdev_major, &target_stx->stx_rdev_major);
7680 __put_user(host_stx->stx_rdev_minor, &target_stx->stx_rdev_minor);
7681 __put_user(host_stx->stx_dev_major, &target_stx->stx_dev_major);
7682 __put_user(host_stx->stx_dev_minor, &target_stx->stx_dev_minor);
7683
7684 unlock_user_struct(target_stx, target_addr, 1);
7685
7686 return 0;
7687 }
7688 #endif
7689
7690 static int do_sys_futex(int *uaddr, int op, int val,
7691 const struct timespec *timeout, int *uaddr2,
7692 int val3)
7693 {
7694 #if HOST_LONG_BITS == 64
7695 #if defined(__NR_futex)
7696 /* always a 64-bit time_t, it doesn't define _time64 version */
7697 return sys_futex(uaddr, op, val, timeout, uaddr2, val3);
7698
7699 #endif
7700 #else /* HOST_LONG_BITS == 64 */
7701 #if defined(__NR_futex_time64)
7702 if (sizeof(timeout->tv_sec) == 8) {
7703 /* _time64 function on 32bit arch */
7704 return sys_futex_time64(uaddr, op, val, timeout, uaddr2, val3);
7705 }
7706 #endif
7707 #if defined(__NR_futex)
7708 /* old function on 32bit arch */
7709 return sys_futex(uaddr, op, val, timeout, uaddr2, val3);
7710 #endif
7711 #endif /* HOST_LONG_BITS == 64 */
7712 g_assert_not_reached();
7713 }
7714
7715 static int do_safe_futex(int *uaddr, int op, int val,
7716 const struct timespec *timeout, int *uaddr2,
7717 int val3)
7718 {
7719 #if HOST_LONG_BITS == 64
7720 #if defined(__NR_futex)
7721 /* always a 64-bit time_t, it doesn't define _time64 version */
7722 return get_errno(safe_futex(uaddr, op, val, timeout, uaddr2, val3));
7723 #endif
7724 #else /* HOST_LONG_BITS == 64 */
7725 #if defined(__NR_futex_time64)
7726 if (sizeof(timeout->tv_sec) == 8) {
7727 /* _time64 function on 32bit arch */
7728 return get_errno(safe_futex_time64(uaddr, op, val, timeout, uaddr2,
7729 val3));
7730 }
7731 #endif
7732 #if defined(__NR_futex)
7733 /* old function on 32bit arch */
7734 return get_errno(safe_futex(uaddr, op, val, timeout, uaddr2, val3));
7735 #endif
7736 #endif /* HOST_LONG_BITS == 64 */
7737 return -TARGET_ENOSYS;
7738 }
7739
7740 /* ??? Using host futex calls even when target atomic operations
7741 are not really atomic probably breaks things. However implementing
7742 futexes locally would make futexes shared between multiple processes
7743 tricky. However they're probably useless because guest atomic
7744 operations won't work either. */
7745 #if defined(TARGET_NR_futex) || defined(TARGET_NR_futex_time64)
7746 static int do_futex(CPUState *cpu, bool time64, target_ulong uaddr,
7747 int op, int val, target_ulong timeout,
7748 target_ulong uaddr2, int val3)
7749 {
7750 struct timespec ts, *pts = NULL;
7751 void *haddr2 = NULL;
7752 int base_op;
7753
7754 /* We assume FUTEX_* constants are the same on both host and target. */
7755 #ifdef FUTEX_CMD_MASK
7756 base_op = op & FUTEX_CMD_MASK;
7757 #else
7758 base_op = op;
7759 #endif
7760 switch (base_op) {
7761 case FUTEX_WAIT:
7762 case FUTEX_WAIT_BITSET:
7763 val = tswap32(val);
7764 break;
7765 case FUTEX_WAIT_REQUEUE_PI:
7766 val = tswap32(val);
7767 haddr2 = g2h(cpu, uaddr2);
7768 break;
7769 case FUTEX_LOCK_PI:
7770 case FUTEX_LOCK_PI2:
7771 break;
7772 case FUTEX_WAKE:
7773 case FUTEX_WAKE_BITSET:
7774 case FUTEX_TRYLOCK_PI:
7775 case FUTEX_UNLOCK_PI:
7776 timeout = 0;
7777 break;
7778 case FUTEX_FD:
7779 val = target_to_host_signal(val);
7780 timeout = 0;
7781 break;
7782 case FUTEX_CMP_REQUEUE:
7783 case FUTEX_CMP_REQUEUE_PI:
7784 val3 = tswap32(val3);
7785 /* fall through */
7786 case FUTEX_REQUEUE:
7787 case FUTEX_WAKE_OP:
7788 /*
7789 * For these, the 4th argument is not TIMEOUT, but VAL2.
7790 * But the prototype of do_safe_futex takes a pointer, so
7791 * insert casts to satisfy the compiler. We do not need
7792 * to tswap VAL2 since it's not compared to guest memory.
7793 */
7794 pts = (struct timespec *)(uintptr_t)timeout;
7795 timeout = 0;
7796 haddr2 = g2h(cpu, uaddr2);
7797 break;
7798 default:
7799 return -TARGET_ENOSYS;
7800 }
7801 if (timeout) {
7802 pts = &ts;
7803 if (time64
7804 ? target_to_host_timespec64(pts, timeout)
7805 : target_to_host_timespec(pts, timeout)) {
7806 return -TARGET_EFAULT;
7807 }
7808 }
7809 return do_safe_futex(g2h(cpu, uaddr), op, val, pts, haddr2, val3);
7810 }
7811 #endif
7812
7813 #if defined(TARGET_NR_name_to_handle_at) && defined(CONFIG_OPEN_BY_HANDLE)
7814 static abi_long do_name_to_handle_at(abi_long dirfd, abi_long pathname,
7815 abi_long handle, abi_long mount_id,
7816 abi_long flags)
7817 {
7818 struct file_handle *target_fh;
7819 struct file_handle *fh;
7820 int mid = 0;
7821 abi_long ret;
7822 char *name;
7823 unsigned int size, total_size;
7824
7825 if (get_user_s32(size, handle)) {
7826 return -TARGET_EFAULT;
7827 }
7828
7829 name = lock_user_string(pathname);
7830 if (!name) {
7831 return -TARGET_EFAULT;
7832 }
7833
7834 total_size = sizeof(struct file_handle) + size;
7835 target_fh = lock_user(VERIFY_WRITE, handle, total_size, 0);
7836 if (!target_fh) {
7837 unlock_user(name, pathname, 0);
7838 return -TARGET_EFAULT;
7839 }
7840
7841 fh = g_malloc0(total_size);
7842 fh->handle_bytes = size;
7843
7844 ret = get_errno(name_to_handle_at(dirfd, path(name), fh, &mid, flags));
7845 unlock_user(name, pathname, 0);
7846
7847 /* man name_to_handle_at(2):
7848 * Other than the use of the handle_bytes field, the caller should treat
7849 * the file_handle structure as an opaque data type
7850 */
7851
7852 memcpy(target_fh, fh, total_size);
7853 target_fh->handle_bytes = tswap32(fh->handle_bytes);
7854 target_fh->handle_type = tswap32(fh->handle_type);
7855 g_free(fh);
7856 unlock_user(target_fh, handle, total_size);
7857
7858 if (put_user_s32(mid, mount_id)) {
7859 return -TARGET_EFAULT;
7860 }
7861
7862 return ret;
7863
7864 }
7865 #endif
7866
7867 #if defined(TARGET_NR_open_by_handle_at) && defined(CONFIG_OPEN_BY_HANDLE)
7868 static abi_long do_open_by_handle_at(abi_long mount_fd, abi_long handle,
7869 abi_long flags)
7870 {
7871 struct file_handle *target_fh;
7872 struct file_handle *fh;
7873 unsigned int size, total_size;
7874 abi_long ret;
7875
7876 if (get_user_s32(size, handle)) {
7877 return -TARGET_EFAULT;
7878 }
7879
7880 total_size = sizeof(struct file_handle) + size;
7881 target_fh = lock_user(VERIFY_READ, handle, total_size, 1);
7882 if (!target_fh) {
7883 return -TARGET_EFAULT;
7884 }
7885
7886 fh = g_memdup(target_fh, total_size);
7887 fh->handle_bytes = size;
7888 fh->handle_type = tswap32(target_fh->handle_type);
7889
7890 ret = get_errno(open_by_handle_at(mount_fd, fh,
7891 target_to_host_bitmask(flags, fcntl_flags_tbl)));
7892
7893 g_free(fh);
7894
7895 unlock_user(target_fh, handle, total_size);
7896
7897 return ret;
7898 }
7899 #endif
7900
7901 #if defined(TARGET_NR_signalfd) || defined(TARGET_NR_signalfd4)
7902
7903 static abi_long do_signalfd4(int fd, abi_long mask, int flags)
7904 {
7905 int host_flags;
7906 target_sigset_t *target_mask;
7907 sigset_t host_mask;
7908 abi_long ret;
7909
7910 if (flags & ~(TARGET_O_NONBLOCK_MASK | TARGET_O_CLOEXEC)) {
7911 return -TARGET_EINVAL;
7912 }
7913 if (!lock_user_struct(VERIFY_READ, target_mask, mask, 1)) {
7914 return -TARGET_EFAULT;
7915 }
7916
7917 target_to_host_sigset(&host_mask, target_mask);
7918
7919 host_flags = target_to_host_bitmask(flags, fcntl_flags_tbl);
7920
7921 ret = get_errno(signalfd(fd, &host_mask, host_flags));
7922 if (ret >= 0) {
7923 fd_trans_register(ret, &target_signalfd_trans);
7924 }
7925
7926 unlock_user_struct(target_mask, mask, 0);
7927
7928 return ret;
7929 }
7930 #endif
7931
7932 /* Map host to target signal numbers for the wait family of syscalls.
7933 Assume all other status bits are the same. */
7934 int host_to_target_waitstatus(int status)
7935 {
7936 if (WIFSIGNALED(status)) {
7937 return host_to_target_signal(WTERMSIG(status)) | (status & ~0x7f);
7938 }
7939 if (WIFSTOPPED(status)) {
7940 return (host_to_target_signal(WSTOPSIG(status)) << 8)
7941 | (status & 0xff);
7942 }
7943 return status;
7944 }
7945
7946 static int open_self_cmdline(CPUArchState *cpu_env, int fd)
7947 {
7948 CPUState *cpu = env_cpu(cpu_env);
7949 struct linux_binprm *bprm = ((TaskState *)cpu->opaque)->bprm;
7950 int i;
7951
7952 for (i = 0; i < bprm->argc; i++) {
7953 size_t len = strlen(bprm->argv[i]) + 1;
7954
7955 if (write(fd, bprm->argv[i], len) != len) {
7956 return -1;
7957 }
7958 }
7959
7960 return 0;
7961 }
7962
7963 struct open_self_maps_data {
7964 TaskState *ts;
7965 IntervalTreeRoot *host_maps;
7966 int fd;
7967 bool smaps;
7968 };
7969
7970 /*
7971 * Subroutine to output one line of /proc/self/maps,
7972 * or one region of /proc/self/smaps.
7973 */
7974
7975 #ifdef TARGET_HPPA
7976 # define test_stack(S, E, L) (E == L)
7977 #else
7978 # define test_stack(S, E, L) (S == L)
7979 #endif
7980
7981 static void open_self_maps_4(const struct open_self_maps_data *d,
7982 const MapInfo *mi, abi_ptr start,
7983 abi_ptr end, unsigned flags)
7984 {
7985 const struct image_info *info = d->ts->info;
7986 const char *path = mi->path;
7987 uint64_t offset;
7988 int fd = d->fd;
7989 int count;
7990
7991 if (test_stack(start, end, info->stack_limit)) {
7992 path = "[stack]";
7993 } else if (start == info->brk) {
7994 path = "[heap]";
7995 }
7996
7997 /* Except null device (MAP_ANON), adjust offset for this fragment. */
7998 offset = mi->offset;
7999 if (mi->dev) {
8000 uintptr_t hstart = (uintptr_t)g2h_untagged(start);
8001 offset += hstart - mi->itree.start;
8002 }
8003
8004 count = dprintf(fd, TARGET_ABI_FMT_ptr "-" TARGET_ABI_FMT_ptr
8005 " %c%c%c%c %08" PRIx64 " %02x:%02x %"PRId64,
8006 start, end,
8007 (flags & PAGE_READ) ? 'r' : '-',
8008 (flags & PAGE_WRITE_ORG) ? 'w' : '-',
8009 (flags & PAGE_EXEC) ? 'x' : '-',
8010 mi->is_priv ? 'p' : 's',
8011 offset, major(mi->dev), minor(mi->dev),
8012 (uint64_t)mi->inode);
8013 if (path) {
8014 dprintf(fd, "%*s%s\n", 73 - count, "", path);
8015 } else {
8016 dprintf(fd, "\n");
8017 }
8018
8019 if (d->smaps) {
8020 unsigned long size = end - start;
8021 unsigned long page_size_kb = TARGET_PAGE_SIZE >> 10;
8022 unsigned long size_kb = size >> 10;
8023
8024 dprintf(fd, "Size: %lu kB\n"
8025 "KernelPageSize: %lu kB\n"
8026 "MMUPageSize: %lu kB\n"
8027 "Rss: 0 kB\n"
8028 "Pss: 0 kB\n"
8029 "Pss_Dirty: 0 kB\n"
8030 "Shared_Clean: 0 kB\n"
8031 "Shared_Dirty: 0 kB\n"
8032 "Private_Clean: 0 kB\n"
8033 "Private_Dirty: 0 kB\n"
8034 "Referenced: 0 kB\n"
8035 "Anonymous: %lu kB\n"
8036 "LazyFree: 0 kB\n"
8037 "AnonHugePages: 0 kB\n"
8038 "ShmemPmdMapped: 0 kB\n"
8039 "FilePmdMapped: 0 kB\n"
8040 "Shared_Hugetlb: 0 kB\n"
8041 "Private_Hugetlb: 0 kB\n"
8042 "Swap: 0 kB\n"
8043 "SwapPss: 0 kB\n"
8044 "Locked: 0 kB\n"
8045 "THPeligible: 0\n"
8046 "VmFlags:%s%s%s%s%s%s%s%s\n",
8047 size_kb, page_size_kb, page_size_kb,
8048 (flags & PAGE_ANON ? size_kb : 0),
8049 (flags & PAGE_READ) ? " rd" : "",
8050 (flags & PAGE_WRITE_ORG) ? " wr" : "",
8051 (flags & PAGE_EXEC) ? " ex" : "",
8052 mi->is_priv ? "" : " sh",
8053 (flags & PAGE_READ) ? " mr" : "",
8054 (flags & PAGE_WRITE_ORG) ? " mw" : "",
8055 (flags & PAGE_EXEC) ? " me" : "",
8056 mi->is_priv ? "" : " ms");
8057 }
8058 }
8059
8060 /*
8061 * Callback for walk_memory_regions, when read_self_maps() fails.
8062 * Proceed without the benefit of host /proc/self/maps cross-check.
8063 */
8064 static int open_self_maps_3(void *opaque, target_ulong guest_start,
8065 target_ulong guest_end, unsigned long flags)
8066 {
8067 static const MapInfo mi = { .is_priv = true };
8068
8069 open_self_maps_4(opaque, &mi, guest_start, guest_end, flags);
8070 return 0;
8071 }
8072
8073 /*
8074 * Callback for walk_memory_regions, when read_self_maps() succeeds.
8075 */
8076 static int open_self_maps_2(void *opaque, target_ulong guest_start,
8077 target_ulong guest_end, unsigned long flags)
8078 {
8079 const struct open_self_maps_data *d = opaque;
8080 uintptr_t host_start = (uintptr_t)g2h_untagged(guest_start);
8081 uintptr_t host_last = (uintptr_t)g2h_untagged(guest_end - 1);
8082
8083 while (1) {
8084 IntervalTreeNode *n =
8085 interval_tree_iter_first(d->host_maps, host_start, host_start);
8086 MapInfo *mi = container_of(n, MapInfo, itree);
8087 uintptr_t this_hlast = MIN(host_last, n->last);
8088 target_ulong this_gend = h2g(this_hlast) + 1;
8089
8090 open_self_maps_4(d, mi, guest_start, this_gend, flags);
8091
8092 if (this_hlast == host_last) {
8093 return 0;
8094 }
8095 host_start = this_hlast + 1;
8096 guest_start = h2g(host_start);
8097 }
8098 }
8099
8100 static int open_self_maps_1(CPUArchState *env, int fd, bool smaps)
8101 {
8102 struct open_self_maps_data d = {
8103 .ts = env_cpu(env)->opaque,
8104 .host_maps = read_self_maps(),
8105 .fd = fd,
8106 .smaps = smaps
8107 };
8108
8109 if (d.host_maps) {
8110 walk_memory_regions(&d, open_self_maps_2);
8111 free_self_maps(d.host_maps);
8112 } else {
8113 walk_memory_regions(&d, open_self_maps_3);
8114 }
8115 return 0;
8116 }
8117
8118 static int open_self_maps(CPUArchState *cpu_env, int fd)
8119 {
8120 return open_self_maps_1(cpu_env, fd, false);
8121 }
8122
8123 static int open_self_smaps(CPUArchState *cpu_env, int fd)
8124 {
8125 return open_self_maps_1(cpu_env, fd, true);
8126 }
8127
8128 static int open_self_stat(CPUArchState *cpu_env, int fd)
8129 {
8130 CPUState *cpu = env_cpu(cpu_env);
8131 TaskState *ts = cpu->opaque;
8132 g_autoptr(GString) buf = g_string_new(NULL);
8133 int i;
8134
8135 for (i = 0; i < 44; i++) {
8136 if (i == 0) {
8137 /* pid */
8138 g_string_printf(buf, FMT_pid " ", getpid());
8139 } else if (i == 1) {
8140 /* app name */
8141 gchar *bin = g_strrstr(ts->bprm->argv[0], "/");
8142 bin = bin ? bin + 1 : ts->bprm->argv[0];
8143 g_string_printf(buf, "(%.15s) ", bin);
8144 } else if (i == 2) {
8145 /* task state */
8146 g_string_assign(buf, "R "); /* we are running right now */
8147 } else if (i == 3) {
8148 /* ppid */
8149 g_string_printf(buf, FMT_pid " ", getppid());
8150 } else if (i == 21) {
8151 /* starttime */
8152 g_string_printf(buf, "%" PRIu64 " ", ts->start_boottime);
8153 } else if (i == 27) {
8154 /* stack bottom */
8155 g_string_printf(buf, TARGET_ABI_FMT_ld " ", ts->info->start_stack);
8156 } else {
8157 /* for the rest, there is MasterCard */
8158 g_string_printf(buf, "0%c", i == 43 ? '\n' : ' ');
8159 }
8160
8161 if (write(fd, buf->str, buf->len) != buf->len) {
8162 return -1;
8163 }
8164 }
8165
8166 return 0;
8167 }
8168
8169 static int open_self_auxv(CPUArchState *cpu_env, int fd)
8170 {
8171 CPUState *cpu = env_cpu(cpu_env);
8172 TaskState *ts = cpu->opaque;
8173 abi_ulong auxv = ts->info->saved_auxv;
8174 abi_ulong len = ts->info->auxv_len;
8175 char *ptr;
8176
8177 /*
8178 * Auxiliary vector is stored in target process stack.
8179 * read in whole auxv vector and copy it to file
8180 */
8181 ptr = lock_user(VERIFY_READ, auxv, len, 0);
8182 if (ptr != NULL) {
8183 while (len > 0) {
8184 ssize_t r;
8185 r = write(fd, ptr, len);
8186 if (r <= 0) {
8187 break;
8188 }
8189 len -= r;
8190 ptr += r;
8191 }
8192 lseek(fd, 0, SEEK_SET);
8193 unlock_user(ptr, auxv, len);
8194 }
8195
8196 return 0;
8197 }
8198
8199 static int is_proc_myself(const char *filename, const char *entry)
8200 {
8201 if (!strncmp(filename, "/proc/", strlen("/proc/"))) {
8202 filename += strlen("/proc/");
8203 if (!strncmp(filename, "self/", strlen("self/"))) {
8204 filename += strlen("self/");
8205 } else if (*filename >= '1' && *filename <= '9') {
8206 char myself[80];
8207 snprintf(myself, sizeof(myself), "%d/", getpid());
8208 if (!strncmp(filename, myself, strlen(myself))) {
8209 filename += strlen(myself);
8210 } else {
8211 return 0;
8212 }
8213 } else {
8214 return 0;
8215 }
8216 if (!strcmp(filename, entry)) {
8217 return 1;
8218 }
8219 }
8220 return 0;
8221 }
8222
8223 static void excp_dump_file(FILE *logfile, CPUArchState *env,
8224 const char *fmt, int code)
8225 {
8226 if (logfile) {
8227 CPUState *cs = env_cpu(env);
8228
8229 fprintf(logfile, fmt, code);
8230 fprintf(logfile, "Failing executable: %s\n", exec_path);
8231 cpu_dump_state(cs, logfile, 0);
8232 open_self_maps(env, fileno(logfile));
8233 }
8234 }
8235
8236 void target_exception_dump(CPUArchState *env, const char *fmt, int code)
8237 {
8238 /* dump to console */
8239 excp_dump_file(stderr, env, fmt, code);
8240
8241 /* dump to log file */
8242 if (qemu_log_separate()) {
8243 FILE *logfile = qemu_log_trylock();
8244
8245 excp_dump_file(logfile, env, fmt, code);
8246 qemu_log_unlock(logfile);
8247 }
8248 }
8249
8250 #include "target_proc.h"
8251
8252 #if HOST_BIG_ENDIAN != TARGET_BIG_ENDIAN || \
8253 defined(HAVE_ARCH_PROC_CPUINFO) || \
8254 defined(HAVE_ARCH_PROC_HARDWARE)
8255 static int is_proc(const char *filename, const char *entry)
8256 {
8257 return strcmp(filename, entry) == 0;
8258 }
8259 #endif
8260
8261 #if HOST_BIG_ENDIAN != TARGET_BIG_ENDIAN
8262 static int open_net_route(CPUArchState *cpu_env, int fd)
8263 {
8264 FILE *fp;
8265 char *line = NULL;
8266 size_t len = 0;
8267 ssize_t read;
8268
8269 fp = fopen("/proc/net/route", "r");
8270 if (fp == NULL) {
8271 return -1;
8272 }
8273
8274 /* read header */
8275
8276 read = getline(&line, &len, fp);
8277 dprintf(fd, "%s", line);
8278
8279 /* read routes */
8280
8281 while ((read = getline(&line, &len, fp)) != -1) {
8282 char iface[16];
8283 uint32_t dest, gw, mask;
8284 unsigned int flags, refcnt, use, metric, mtu, window, irtt;
8285 int fields;
8286
8287 fields = sscanf(line,
8288 "%s\t%08x\t%08x\t%04x\t%d\t%d\t%d\t%08x\t%d\t%u\t%u\n",
8289 iface, &dest, &gw, &flags, &refcnt, &use, &metric,
8290 &mask, &mtu, &window, &irtt);
8291 if (fields != 11) {
8292 continue;
8293 }
8294 dprintf(fd, "%s\t%08x\t%08x\t%04x\t%d\t%d\t%d\t%08x\t%d\t%u\t%u\n",
8295 iface, tswap32(dest), tswap32(gw), flags, refcnt, use,
8296 metric, tswap32(mask), mtu, window, irtt);
8297 }
8298
8299 free(line);
8300 fclose(fp);
8301
8302 return 0;
8303 }
8304 #endif
8305
8306 int do_guest_openat(CPUArchState *cpu_env, int dirfd, const char *fname,
8307 int flags, mode_t mode, bool safe)
8308 {
8309 g_autofree char *proc_name = NULL;
8310 const char *pathname;
8311 struct fake_open {
8312 const char *filename;
8313 int (*fill)(CPUArchState *cpu_env, int fd);
8314 int (*cmp)(const char *s1, const char *s2);
8315 };
8316 const struct fake_open *fake_open;
8317 static const struct fake_open fakes[] = {
8318 { "maps", open_self_maps, is_proc_myself },
8319 { "smaps", open_self_smaps, is_proc_myself },
8320 { "stat", open_self_stat, is_proc_myself },
8321 { "auxv", open_self_auxv, is_proc_myself },
8322 { "cmdline", open_self_cmdline, is_proc_myself },
8323 #if HOST_BIG_ENDIAN != TARGET_BIG_ENDIAN
8324 { "/proc/net/route", open_net_route, is_proc },
8325 #endif
8326 #if defined(HAVE_ARCH_PROC_CPUINFO)
8327 { "/proc/cpuinfo", open_cpuinfo, is_proc },
8328 #endif
8329 #if defined(HAVE_ARCH_PROC_HARDWARE)
8330 { "/proc/hardware", open_hardware, is_proc },
8331 #endif
8332 { NULL, NULL, NULL }
8333 };
8334
8335 /* if this is a file from /proc/ filesystem, expand full name */
8336 proc_name = realpath(fname, NULL);
8337 if (proc_name && strncmp(proc_name, "/proc/", 6) == 0) {
8338 pathname = proc_name;
8339 } else {
8340 pathname = fname;
8341 }
8342
8343 if (is_proc_myself(pathname, "exe")) {
8344 if (safe) {
8345 return safe_openat(dirfd, exec_path, flags, mode);
8346 } else {
8347 return openat(dirfd, exec_path, flags, mode);
8348 }
8349 }
8350
8351 for (fake_open = fakes; fake_open->filename; fake_open++) {
8352 if (fake_open->cmp(pathname, fake_open->filename)) {
8353 break;
8354 }
8355 }
8356
8357 if (fake_open->filename) {
8358 const char *tmpdir;
8359 char filename[PATH_MAX];
8360 int fd, r;
8361
8362 fd = memfd_create("qemu-open", 0);
8363 if (fd < 0) {
8364 if (errno != ENOSYS) {
8365 return fd;
8366 }
8367 /* create temporary file to map stat to */
8368 tmpdir = getenv("TMPDIR");
8369 if (!tmpdir)
8370 tmpdir = "/tmp";
8371 snprintf(filename, sizeof(filename), "%s/qemu-open.XXXXXX", tmpdir);
8372 fd = mkstemp(filename);
8373 if (fd < 0) {
8374 return fd;
8375 }
8376 unlink(filename);
8377 }
8378
8379 if ((r = fake_open->fill(cpu_env, fd))) {
8380 int e = errno;
8381 close(fd);
8382 errno = e;
8383 return r;
8384 }
8385 lseek(fd, 0, SEEK_SET);
8386
8387 return fd;
8388 }
8389
8390 if (safe) {
8391 return safe_openat(dirfd, path(pathname), flags, mode);
8392 } else {
8393 return openat(dirfd, path(pathname), flags, mode);
8394 }
8395 }
8396
8397 ssize_t do_guest_readlink(const char *pathname, char *buf, size_t bufsiz)
8398 {
8399 ssize_t ret;
8400
8401 if (!pathname || !buf) {
8402 errno = EFAULT;
8403 return -1;
8404 }
8405
8406 if (!bufsiz) {
8407 /* Short circuit this for the magic exe check. */
8408 errno = EINVAL;
8409 return -1;
8410 }
8411
8412 if (is_proc_myself((const char *)pathname, "exe")) {
8413 /*
8414 * Don't worry about sign mismatch as earlier mapping
8415 * logic would have thrown a bad address error.
8416 */
8417 ret = MIN(strlen(exec_path), bufsiz);
8418 /* We cannot NUL terminate the string. */
8419 memcpy(buf, exec_path, ret);
8420 } else {
8421 ret = readlink(path(pathname), buf, bufsiz);
8422 }
8423
8424 return ret;
8425 }
8426
8427 static int do_execv(CPUArchState *cpu_env, int dirfd,
8428 abi_long pathname, abi_long guest_argp,
8429 abi_long guest_envp, int flags, bool is_execveat)
8430 {
8431 int ret;
8432 char **argp, **envp;
8433 int argc, envc;
8434 abi_ulong gp;
8435 abi_ulong addr;
8436 char **q;
8437 void *p;
8438
8439 argc = 0;
8440
8441 for (gp = guest_argp; gp; gp += sizeof(abi_ulong)) {
8442 if (get_user_ual(addr, gp)) {
8443 return -TARGET_EFAULT;
8444 }
8445 if (!addr) {
8446 break;
8447 }
8448 argc++;
8449 }
8450 envc = 0;
8451 for (gp = guest_envp; gp; gp += sizeof(abi_ulong)) {
8452 if (get_user_ual(addr, gp)) {
8453 return -TARGET_EFAULT;
8454 }
8455 if (!addr) {
8456 break;
8457 }
8458 envc++;
8459 }
8460
8461 argp = g_new0(char *, argc + 1);
8462 envp = g_new0(char *, envc + 1);
8463
8464 for (gp = guest_argp, q = argp; gp; gp += sizeof(abi_ulong), q++) {
8465 if (get_user_ual(addr, gp)) {
8466 goto execve_efault;
8467 }
8468 if (!addr) {
8469 break;
8470 }
8471 *q = lock_user_string(addr);
8472 if (!*q) {
8473 goto execve_efault;
8474 }
8475 }
8476 *q = NULL;
8477
8478 for (gp = guest_envp, q = envp; gp; gp += sizeof(abi_ulong), q++) {
8479 if (get_user_ual(addr, gp)) {
8480 goto execve_efault;
8481 }
8482 if (!addr) {
8483 break;
8484 }
8485 *q = lock_user_string(addr);
8486 if (!*q) {
8487 goto execve_efault;
8488 }
8489 }
8490 *q = NULL;
8491
8492 /*
8493 * Although execve() is not an interruptible syscall it is
8494 * a special case where we must use the safe_syscall wrapper:
8495 * if we allow a signal to happen before we make the host
8496 * syscall then we will 'lose' it, because at the point of
8497 * execve the process leaves QEMU's control. So we use the
8498 * safe syscall wrapper to ensure that we either take the
8499 * signal as a guest signal, or else it does not happen
8500 * before the execve completes and makes it the other
8501 * program's problem.
8502 */
8503 p = lock_user_string(pathname);
8504 if (!p) {
8505 goto execve_efault;
8506 }
8507
8508 const char *exe = p;
8509 if (is_proc_myself(p, "exe")) {
8510 exe = exec_path;
8511 }
8512 ret = is_execveat
8513 ? safe_execveat(dirfd, exe, argp, envp, flags)
8514 : safe_execve(exe, argp, envp);
8515 ret = get_errno(ret);
8516
8517 unlock_user(p, pathname, 0);
8518
8519 goto execve_end;
8520
8521 execve_efault:
8522 ret = -TARGET_EFAULT;
8523
8524 execve_end:
8525 for (gp = guest_argp, q = argp; *q; gp += sizeof(abi_ulong), q++) {
8526 if (get_user_ual(addr, gp) || !addr) {
8527 break;
8528 }
8529 unlock_user(*q, addr, 0);
8530 }
8531 for (gp = guest_envp, q = envp; *q; gp += sizeof(abi_ulong), q++) {
8532 if (get_user_ual(addr, gp) || !addr) {
8533 break;
8534 }
8535 unlock_user(*q, addr, 0);
8536 }
8537
8538 g_free(argp);
8539 g_free(envp);
8540 return ret;
8541 }
8542
8543 #define TIMER_MAGIC 0x0caf0000
8544 #define TIMER_MAGIC_MASK 0xffff0000
8545
8546 /* Convert QEMU provided timer ID back to internal 16bit index format */
8547 static target_timer_t get_timer_id(abi_long arg)
8548 {
8549 target_timer_t timerid = arg;
8550
8551 if ((timerid & TIMER_MAGIC_MASK) != TIMER_MAGIC) {
8552 return -TARGET_EINVAL;
8553 }
8554
8555 timerid &= 0xffff;
8556
8557 if (timerid >= ARRAY_SIZE(g_posix_timers)) {
8558 return -TARGET_EINVAL;
8559 }
8560
8561 return timerid;
8562 }
8563
8564 static int target_to_host_cpu_mask(unsigned long *host_mask,
8565 size_t host_size,
8566 abi_ulong target_addr,
8567 size_t target_size)
8568 {
8569 unsigned target_bits = sizeof(abi_ulong) * 8;
8570 unsigned host_bits = sizeof(*host_mask) * 8;
8571 abi_ulong *target_mask;
8572 unsigned i, j;
8573
8574 assert(host_size >= target_size);
8575
8576 target_mask = lock_user(VERIFY_READ, target_addr, target_size, 1);
8577 if (!target_mask) {
8578 return -TARGET_EFAULT;
8579 }
8580 memset(host_mask, 0, host_size);
8581
8582 for (i = 0 ; i < target_size / sizeof(abi_ulong); i++) {
8583 unsigned bit = i * target_bits;
8584 abi_ulong val;
8585
8586 __get_user(val, &target_mask[i]);
8587 for (j = 0; j < target_bits; j++, bit++) {
8588 if (val & (1UL << j)) {
8589 host_mask[bit / host_bits] |= 1UL << (bit % host_bits);
8590 }
8591 }
8592 }
8593
8594 unlock_user(target_mask, target_addr, 0);
8595 return 0;
8596 }
8597
8598 static int host_to_target_cpu_mask(const unsigned long *host_mask,
8599 size_t host_size,
8600 abi_ulong target_addr,
8601 size_t target_size)
8602 {
8603 unsigned target_bits = sizeof(abi_ulong) * 8;
8604 unsigned host_bits = sizeof(*host_mask) * 8;
8605 abi_ulong *target_mask;
8606 unsigned i, j;
8607
8608 assert(host_size >= target_size);
8609
8610 target_mask = lock_user(VERIFY_WRITE, target_addr, target_size, 0);
8611 if (!target_mask) {
8612 return -TARGET_EFAULT;
8613 }
8614
8615 for (i = 0 ; i < target_size / sizeof(abi_ulong); i++) {
8616 unsigned bit = i * target_bits;
8617 abi_ulong val = 0;
8618
8619 for (j = 0; j < target_bits; j++, bit++) {
8620 if (host_mask[bit / host_bits] & (1UL << (bit % host_bits))) {
8621 val |= 1UL << j;
8622 }
8623 }
8624 __put_user(val, &target_mask[i]);
8625 }
8626
8627 unlock_user(target_mask, target_addr, target_size);
8628 return 0;
8629 }
8630
8631 #ifdef TARGET_NR_getdents
8632 static int do_getdents(abi_long dirfd, abi_long arg2, abi_long count)
8633 {
8634 g_autofree void *hdirp = NULL;
8635 void *tdirp;
8636 int hlen, hoff, toff;
8637 int hreclen, treclen;
8638 off64_t prev_diroff = 0;
8639
8640 hdirp = g_try_malloc(count);
8641 if (!hdirp) {
8642 return -TARGET_ENOMEM;
8643 }
8644
8645 #ifdef EMULATE_GETDENTS_WITH_GETDENTS
8646 hlen = sys_getdents(dirfd, hdirp, count);
8647 #else
8648 hlen = sys_getdents64(dirfd, hdirp, count);
8649 #endif
8650
8651 hlen = get_errno(hlen);
8652 if (is_error(hlen)) {
8653 return hlen;
8654 }
8655
8656 tdirp = lock_user(VERIFY_WRITE, arg2, count, 0);
8657 if (!tdirp) {
8658 return -TARGET_EFAULT;
8659 }
8660
8661 for (hoff = toff = 0; hoff < hlen; hoff += hreclen, toff += treclen) {
8662 #ifdef EMULATE_GETDENTS_WITH_GETDENTS
8663 struct linux_dirent *hde = hdirp + hoff;
8664 #else
8665 struct linux_dirent64 *hde = hdirp + hoff;
8666 #endif
8667 struct target_dirent *tde = tdirp + toff;
8668 int namelen;
8669 uint8_t type;
8670
8671 namelen = strlen(hde->d_name);
8672 hreclen = hde->d_reclen;
8673 treclen = offsetof(struct target_dirent, d_name) + namelen + 2;
8674 treclen = QEMU_ALIGN_UP(treclen, __alignof(struct target_dirent));
8675
8676 if (toff + treclen > count) {
8677 /*
8678 * If the host struct is smaller than the target struct, or
8679 * requires less alignment and thus packs into less space,
8680 * then the host can return more entries than we can pass
8681 * on to the guest.
8682 */
8683 if (toff == 0) {
8684 toff = -TARGET_EINVAL; /* result buffer is too small */
8685 break;
8686 }
8687 /*
8688 * Return what we have, resetting the file pointer to the
8689 * location of the first record not returned.
8690 */
8691 lseek64(dirfd, prev_diroff, SEEK_SET);
8692 break;
8693 }
8694
8695 prev_diroff = hde->d_off;
8696 tde->d_ino = tswapal(hde->d_ino);
8697 tde->d_off = tswapal(hde->d_off);
8698 tde->d_reclen = tswap16(treclen);
8699 memcpy(tde->d_name, hde->d_name, namelen + 1);
8700
8701 /*
8702 * The getdents type is in what was formerly a padding byte at the
8703 * end of the structure.
8704 */
8705 #ifdef EMULATE_GETDENTS_WITH_GETDENTS
8706 type = *((uint8_t *)hde + hreclen - 1);
8707 #else
8708 type = hde->d_type;
8709 #endif
8710 *((uint8_t *)tde + treclen - 1) = type;
8711 }
8712
8713 unlock_user(tdirp, arg2, toff);
8714 return toff;
8715 }
8716 #endif /* TARGET_NR_getdents */
8717
8718 #if defined(TARGET_NR_getdents64) && defined(__NR_getdents64)
8719 static int do_getdents64(abi_long dirfd, abi_long arg2, abi_long count)
8720 {
8721 g_autofree void *hdirp = NULL;
8722 void *tdirp;
8723 int hlen, hoff, toff;
8724 int hreclen, treclen;
8725 off64_t prev_diroff = 0;
8726
8727 hdirp = g_try_malloc(count);
8728 if (!hdirp) {
8729 return -TARGET_ENOMEM;
8730 }
8731
8732 hlen = get_errno(sys_getdents64(dirfd, hdirp, count));
8733 if (is_error(hlen)) {
8734 return hlen;
8735 }
8736
8737 tdirp = lock_user(VERIFY_WRITE, arg2, count, 0);
8738 if (!tdirp) {
8739 return -TARGET_EFAULT;
8740 }
8741
8742 for (hoff = toff = 0; hoff < hlen; hoff += hreclen, toff += treclen) {
8743 struct linux_dirent64 *hde = hdirp + hoff;
8744 struct target_dirent64 *tde = tdirp + toff;
8745 int namelen;
8746
8747 namelen = strlen(hde->d_name) + 1;
8748 hreclen = hde->d_reclen;
8749 treclen = offsetof(struct target_dirent64, d_name) + namelen;
8750 treclen = QEMU_ALIGN_UP(treclen, __alignof(struct target_dirent64));
8751
8752 if (toff + treclen > count) {
8753 /*
8754 * If the host struct is smaller than the target struct, or
8755 * requires less alignment and thus packs into less space,
8756 * then the host can return more entries than we can pass
8757 * on to the guest.
8758 */
8759 if (toff == 0) {
8760 toff = -TARGET_EINVAL; /* result buffer is too small */
8761 break;
8762 }
8763 /*
8764 * Return what we have, resetting the file pointer to the
8765 * location of the first record not returned.
8766 */
8767 lseek64(dirfd, prev_diroff, SEEK_SET);
8768 break;
8769 }
8770
8771 prev_diroff = hde->d_off;
8772 tde->d_ino = tswap64(hde->d_ino);
8773 tde->d_off = tswap64(hde->d_off);
8774 tde->d_reclen = tswap16(treclen);
8775 tde->d_type = hde->d_type;
8776 memcpy(tde->d_name, hde->d_name, namelen);
8777 }
8778
8779 unlock_user(tdirp, arg2, toff);
8780 return toff;
8781 }
8782 #endif /* TARGET_NR_getdents64 */
8783
8784 #if defined(TARGET_NR_riscv_hwprobe)
8785
8786 #define RISCV_HWPROBE_KEY_MVENDORID 0
8787 #define RISCV_HWPROBE_KEY_MARCHID 1
8788 #define RISCV_HWPROBE_KEY_MIMPID 2
8789
8790 #define RISCV_HWPROBE_KEY_BASE_BEHAVIOR 3
8791 #define RISCV_HWPROBE_BASE_BEHAVIOR_IMA (1 << 0)
8792
8793 #define RISCV_HWPROBE_KEY_IMA_EXT_0 4
8794 #define RISCV_HWPROBE_IMA_FD (1 << 0)
8795 #define RISCV_HWPROBE_IMA_C (1 << 1)
8796
8797 #define RISCV_HWPROBE_KEY_CPUPERF_0 5
8798 #define RISCV_HWPROBE_MISALIGNED_UNKNOWN (0 << 0)
8799 #define RISCV_HWPROBE_MISALIGNED_EMULATED (1 << 0)
8800 #define RISCV_HWPROBE_MISALIGNED_SLOW (2 << 0)
8801 #define RISCV_HWPROBE_MISALIGNED_FAST (3 << 0)
8802 #define RISCV_HWPROBE_MISALIGNED_UNSUPPORTED (4 << 0)
8803 #define RISCV_HWPROBE_MISALIGNED_MASK (7 << 0)
8804
8805 struct riscv_hwprobe {
8806 abi_llong key;
8807 abi_ullong value;
8808 };
8809
8810 static void risc_hwprobe_fill_pairs(CPURISCVState *env,
8811 struct riscv_hwprobe *pair,
8812 size_t pair_count)
8813 {
8814 const RISCVCPUConfig *cfg = riscv_cpu_cfg(env);
8815
8816 for (; pair_count > 0; pair_count--, pair++) {
8817 abi_llong key;
8818 abi_ullong value;
8819 __put_user(0, &pair->value);
8820 __get_user(key, &pair->key);
8821 switch (key) {
8822 case RISCV_HWPROBE_KEY_MVENDORID:
8823 __put_user(cfg->mvendorid, &pair->value);
8824 break;
8825 case RISCV_HWPROBE_KEY_MARCHID:
8826 __put_user(cfg->marchid, &pair->value);
8827 break;
8828 case RISCV_HWPROBE_KEY_MIMPID:
8829 __put_user(cfg->mimpid, &pair->value);
8830 break;
8831 case RISCV_HWPROBE_KEY_BASE_BEHAVIOR:
8832 value = riscv_has_ext(env, RVI) &&
8833 riscv_has_ext(env, RVM) &&
8834 riscv_has_ext(env, RVA) ?
8835 RISCV_HWPROBE_BASE_BEHAVIOR_IMA : 0;
8836 __put_user(value, &pair->value);
8837 break;
8838 case RISCV_HWPROBE_KEY_IMA_EXT_0:
8839 value = riscv_has_ext(env, RVF) &&
8840 riscv_has_ext(env, RVD) ?
8841 RISCV_HWPROBE_IMA_FD : 0;
8842 value |= riscv_has_ext(env, RVC) ?
8843 RISCV_HWPROBE_IMA_C : pair->value;
8844 __put_user(value, &pair->value);
8845 break;
8846 case RISCV_HWPROBE_KEY_CPUPERF_0:
8847 __put_user(RISCV_HWPROBE_MISALIGNED_FAST, &pair->value);
8848 break;
8849 default:
8850 __put_user(-1, &pair->key);
8851 break;
8852 }
8853 }
8854 }
8855
8856 static int cpu_set_valid(abi_long arg3, abi_long arg4)
8857 {
8858 int ret, i, tmp;
8859 size_t host_mask_size, target_mask_size;
8860 unsigned long *host_mask;
8861
8862 /*
8863 * cpu_set_t represent CPU masks as bit masks of type unsigned long *.
8864 * arg3 contains the cpu count.
8865 */
8866 tmp = (8 * sizeof(abi_ulong));
8867 target_mask_size = ((arg3 + tmp - 1) / tmp) * sizeof(abi_ulong);
8868 host_mask_size = (target_mask_size + (sizeof(*host_mask) - 1)) &
8869 ~(sizeof(*host_mask) - 1);
8870
8871 host_mask = alloca(host_mask_size);
8872
8873 ret = target_to_host_cpu_mask(host_mask, host_mask_size,
8874 arg4, target_mask_size);
8875 if (ret != 0) {
8876 return ret;
8877 }
8878
8879 for (i = 0 ; i < host_mask_size / sizeof(*host_mask); i++) {
8880 if (host_mask[i] != 0) {
8881 return 0;
8882 }
8883 }
8884 return -TARGET_EINVAL;
8885 }
8886
8887 static abi_long do_riscv_hwprobe(CPUArchState *cpu_env, abi_long arg1,
8888 abi_long arg2, abi_long arg3,
8889 abi_long arg4, abi_long arg5)
8890 {
8891 int ret;
8892 struct riscv_hwprobe *host_pairs;
8893
8894 /* flags must be 0 */
8895 if (arg5 != 0) {
8896 return -TARGET_EINVAL;
8897 }
8898
8899 /* check cpu_set */
8900 if (arg3 != 0) {
8901 ret = cpu_set_valid(arg3, arg4);
8902 if (ret != 0) {
8903 return ret;
8904 }
8905 } else if (arg4 != 0) {
8906 return -TARGET_EINVAL;
8907 }
8908
8909 /* no pairs */
8910 if (arg2 == 0) {
8911 return 0;
8912 }
8913
8914 host_pairs = lock_user(VERIFY_WRITE, arg1,
8915 sizeof(*host_pairs) * (size_t)arg2, 0);
8916 if (host_pairs == NULL) {
8917 return -TARGET_EFAULT;
8918 }
8919 risc_hwprobe_fill_pairs(cpu_env, host_pairs, arg2);
8920 unlock_user(host_pairs, arg1, sizeof(*host_pairs) * (size_t)arg2);
8921 return 0;
8922 }
8923 #endif /* TARGET_NR_riscv_hwprobe */
8924
8925 #if defined(TARGET_NR_pivot_root) && defined(__NR_pivot_root)
8926 _syscall2(int, pivot_root, const char *, new_root, const char *, put_old)
8927 #endif
8928
8929 #if defined(TARGET_NR_open_tree) && defined(__NR_open_tree)
8930 #define __NR_sys_open_tree __NR_open_tree
8931 _syscall3(int, sys_open_tree, int, __dfd, const char *, __filename,
8932 unsigned int, __flags)
8933 #endif
8934
8935 #if defined(TARGET_NR_move_mount) && defined(__NR_move_mount)
8936 #define __NR_sys_move_mount __NR_move_mount
8937 _syscall5(int, sys_move_mount, int, __from_dfd, const char *, __from_pathname,
8938 int, __to_dfd, const char *, __to_pathname, unsigned int, flag)
8939 #endif
8940
8941 /* This is an internal helper for do_syscall so that it is easier
8942 * to have a single return point, so that actions, such as logging
8943 * of syscall results, can be performed.
8944 * All errnos that do_syscall() returns must be -TARGET_<errcode>.
8945 */
8946 static abi_long do_syscall1(CPUArchState *cpu_env, int num, abi_long arg1,
8947 abi_long arg2, abi_long arg3, abi_long arg4,
8948 abi_long arg5, abi_long arg6, abi_long arg7,
8949 abi_long arg8)
8950 {
8951 CPUState *cpu = env_cpu(cpu_env);
8952 abi_long ret;
8953 #if defined(TARGET_NR_stat) || defined(TARGET_NR_stat64) \
8954 || defined(TARGET_NR_lstat) || defined(TARGET_NR_lstat64) \
8955 || defined(TARGET_NR_fstat) || defined(TARGET_NR_fstat64) \
8956 || defined(TARGET_NR_statx)
8957 struct stat st;
8958 #endif
8959 #if defined(TARGET_NR_statfs) || defined(TARGET_NR_statfs64) \
8960 || defined(TARGET_NR_fstatfs)
8961 struct statfs stfs;
8962 #endif
8963 void *p;
8964
8965 switch(num) {
8966 case TARGET_NR_exit:
8967 /* In old applications this may be used to implement _exit(2).
8968 However in threaded applications it is used for thread termination,
8969 and _exit_group is used for application termination.
8970 Do thread termination if we have more then one thread. */
8971
8972 if (block_signals()) {
8973 return -QEMU_ERESTARTSYS;
8974 }
8975
8976 pthread_mutex_lock(&clone_lock);
8977
8978 if (CPU_NEXT(first_cpu)) {
8979 TaskState *ts = cpu->opaque;
8980
8981 if (ts->child_tidptr) {
8982 put_user_u32(0, ts->child_tidptr);
8983 do_sys_futex(g2h(cpu, ts->child_tidptr),
8984 FUTEX_WAKE, INT_MAX, NULL, NULL, 0);
8985 }
8986
8987 object_unparent(OBJECT(cpu));
8988 object_unref(OBJECT(cpu));
8989 /*
8990 * At this point the CPU should be unrealized and removed
8991 * from cpu lists. We can clean-up the rest of the thread
8992 * data without the lock held.
8993 */
8994
8995 pthread_mutex_unlock(&clone_lock);
8996
8997 thread_cpu = NULL;
8998 g_free(ts);
8999 rcu_unregister_thread();
9000 pthread_exit(NULL);
9001 }
9002
9003 pthread_mutex_unlock(&clone_lock);
9004 preexit_cleanup(cpu_env, arg1);
9005 _exit(arg1);
9006 return 0; /* avoid warning */
9007 case TARGET_NR_read:
9008 if (arg2 == 0 && arg3 == 0) {
9009 return get_errno(safe_read(arg1, 0, 0));
9010 } else {
9011 if (!(p = lock_user(VERIFY_WRITE, arg2, arg3, 0)))
9012 return -TARGET_EFAULT;
9013 ret = get_errno(safe_read(arg1, p, arg3));
9014 if (ret >= 0 &&
9015 fd_trans_host_to_target_data(arg1)) {
9016 ret = fd_trans_host_to_target_data(arg1)(p, ret);
9017 }
9018 unlock_user(p, arg2, ret);
9019 }
9020 return ret;
9021 case TARGET_NR_write:
9022 if (arg2 == 0 && arg3 == 0) {
9023 return get_errno(safe_write(arg1, 0, 0));
9024 }
9025 if (!(p = lock_user(VERIFY_READ, arg2, arg3, 1)))
9026 return -TARGET_EFAULT;
9027 if (fd_trans_target_to_host_data(arg1)) {
9028 void *copy = g_malloc(arg3);
9029 memcpy(copy, p, arg3);
9030 ret = fd_trans_target_to_host_data(arg1)(copy, arg3);
9031 if (ret >= 0) {
9032 ret = get_errno(safe_write(arg1, copy, ret));
9033 }
9034 g_free(copy);
9035 } else {
9036 ret = get_errno(safe_write(arg1, p, arg3));
9037 }
9038 unlock_user(p, arg2, 0);
9039 return ret;
9040
9041 #ifdef TARGET_NR_open
9042 case TARGET_NR_open:
9043 if (!(p = lock_user_string(arg1)))
9044 return -TARGET_EFAULT;
9045 ret = get_errno(do_guest_openat(cpu_env, AT_FDCWD, p,
9046 target_to_host_bitmask(arg2, fcntl_flags_tbl),
9047 arg3, true));
9048 fd_trans_unregister(ret);
9049 unlock_user(p, arg1, 0);
9050 return ret;
9051 #endif
9052 case TARGET_NR_openat:
9053 if (!(p = lock_user_string(arg2)))
9054 return -TARGET_EFAULT;
9055 ret = get_errno(do_guest_openat(cpu_env, arg1, p,
9056 target_to_host_bitmask(arg3, fcntl_flags_tbl),
9057 arg4, true));
9058 fd_trans_unregister(ret);
9059 unlock_user(p, arg2, 0);
9060 return ret;
9061 #if defined(TARGET_NR_name_to_handle_at) && defined(CONFIG_OPEN_BY_HANDLE)
9062 case TARGET_NR_name_to_handle_at:
9063 ret = do_name_to_handle_at(arg1, arg2, arg3, arg4, arg5);
9064 return ret;
9065 #endif
9066 #if defined(TARGET_NR_open_by_handle_at) && defined(CONFIG_OPEN_BY_HANDLE)
9067 case TARGET_NR_open_by_handle_at:
9068 ret = do_open_by_handle_at(arg1, arg2, arg3);
9069 fd_trans_unregister(ret);
9070 return ret;
9071 #endif
9072 #if defined(__NR_pidfd_open) && defined(TARGET_NR_pidfd_open)
9073 case TARGET_NR_pidfd_open:
9074 return get_errno(pidfd_open(arg1, arg2));
9075 #endif
9076 #if defined(__NR_pidfd_send_signal) && defined(TARGET_NR_pidfd_send_signal)
9077 case TARGET_NR_pidfd_send_signal:
9078 {
9079 siginfo_t uinfo, *puinfo;
9080
9081 if (arg3) {
9082 p = lock_user(VERIFY_READ, arg3, sizeof(target_siginfo_t), 1);
9083 if (!p) {
9084 return -TARGET_EFAULT;
9085 }
9086 target_to_host_siginfo(&uinfo, p);
9087 unlock_user(p, arg3, 0);
9088 puinfo = &uinfo;
9089 } else {
9090 puinfo = NULL;
9091 }
9092 ret = get_errno(pidfd_send_signal(arg1, target_to_host_signal(arg2),
9093 puinfo, arg4));
9094 }
9095 return ret;
9096 #endif
9097 #if defined(__NR_pidfd_getfd) && defined(TARGET_NR_pidfd_getfd)
9098 case TARGET_NR_pidfd_getfd:
9099 return get_errno(pidfd_getfd(arg1, arg2, arg3));
9100 #endif
9101 case TARGET_NR_close:
9102 fd_trans_unregister(arg1);
9103 return get_errno(close(arg1));
9104 #if defined(__NR_close_range) && defined(TARGET_NR_close_range)
9105 case TARGET_NR_close_range:
9106 ret = get_errno(sys_close_range(arg1, arg2, arg3));
9107 if (ret == 0 && !(arg3 & CLOSE_RANGE_CLOEXEC)) {
9108 abi_long fd, maxfd;
9109 maxfd = MIN(arg2, target_fd_max);
9110 for (fd = arg1; fd < maxfd; fd++) {
9111 fd_trans_unregister(fd);
9112 }
9113 }
9114 return ret;
9115 #endif
9116
9117 case TARGET_NR_brk:
9118 return do_brk(arg1);
9119 #ifdef TARGET_NR_fork
9120 case TARGET_NR_fork:
9121 return get_errno(do_fork(cpu_env, TARGET_SIGCHLD, 0, 0, 0, 0));
9122 #endif
9123 #ifdef TARGET_NR_waitpid
9124 case TARGET_NR_waitpid:
9125 {
9126 int status;
9127 ret = get_errno(safe_wait4(arg1, &status, arg3, 0));
9128 if (!is_error(ret) && arg2 && ret
9129 && put_user_s32(host_to_target_waitstatus(status), arg2))
9130 return -TARGET_EFAULT;
9131 }
9132 return ret;
9133 #endif
9134 #ifdef TARGET_NR_waitid
9135 case TARGET_NR_waitid:
9136 {
9137 siginfo_t info;
9138 info.si_pid = 0;
9139 ret = get_errno(safe_waitid(arg1, arg2, &info, arg4, NULL));
9140 if (!is_error(ret) && arg3 && info.si_pid != 0) {
9141 if (!(p = lock_user(VERIFY_WRITE, arg3, sizeof(target_siginfo_t), 0)))
9142 return -TARGET_EFAULT;
9143 host_to_target_siginfo(p, &info);
9144 unlock_user(p, arg3, sizeof(target_siginfo_t));
9145 }
9146 }
9147 return ret;
9148 #endif
9149 #ifdef TARGET_NR_creat /* not on alpha */
9150 case TARGET_NR_creat:
9151 if (!(p = lock_user_string(arg1)))
9152 return -TARGET_EFAULT;
9153 ret = get_errno(creat(p, arg2));
9154 fd_trans_unregister(ret);
9155 unlock_user(p, arg1, 0);
9156 return ret;
9157 #endif
9158 #ifdef TARGET_NR_link
9159 case TARGET_NR_link:
9160 {
9161 void * p2;
9162 p = lock_user_string(arg1);
9163 p2 = lock_user_string(arg2);
9164 if (!p || !p2)
9165 ret = -TARGET_EFAULT;
9166 else
9167 ret = get_errno(link(p, p2));
9168 unlock_user(p2, arg2, 0);
9169 unlock_user(p, arg1, 0);
9170 }
9171 return ret;
9172 #endif
9173 #if defined(TARGET_NR_linkat)
9174 case TARGET_NR_linkat:
9175 {
9176 void * p2 = NULL;
9177 if (!arg2 || !arg4)
9178 return -TARGET_EFAULT;
9179 p = lock_user_string(arg2);
9180 p2 = lock_user_string(arg4);
9181 if (!p || !p2)
9182 ret = -TARGET_EFAULT;
9183 else
9184 ret = get_errno(linkat(arg1, p, arg3, p2, arg5));
9185 unlock_user(p, arg2, 0);
9186 unlock_user(p2, arg4, 0);
9187 }
9188 return ret;
9189 #endif
9190 #ifdef TARGET_NR_unlink
9191 case TARGET_NR_unlink:
9192 if (!(p = lock_user_string(arg1)))
9193 return -TARGET_EFAULT;
9194 ret = get_errno(unlink(p));
9195 unlock_user(p, arg1, 0);
9196 return ret;
9197 #endif
9198 #if defined(TARGET_NR_unlinkat)
9199 case TARGET_NR_unlinkat:
9200 if (!(p = lock_user_string(arg2)))
9201 return -TARGET_EFAULT;
9202 ret = get_errno(unlinkat(arg1, p, arg3));
9203 unlock_user(p, arg2, 0);
9204 return ret;
9205 #endif
9206 case TARGET_NR_execveat:
9207 return do_execv(cpu_env, arg1, arg2, arg3, arg4, arg5, true);
9208 case TARGET_NR_execve:
9209 return do_execv(cpu_env, AT_FDCWD, arg1, arg2, arg3, 0, false);
9210 case TARGET_NR_chdir:
9211 if (!(p = lock_user_string(arg1)))
9212 return -TARGET_EFAULT;
9213 ret = get_errno(chdir(p));
9214 unlock_user(p, arg1, 0);
9215 return ret;
9216 #ifdef TARGET_NR_time
9217 case TARGET_NR_time:
9218 {
9219 time_t host_time;
9220 ret = get_errno(time(&host_time));
9221 if (!is_error(ret)
9222 && arg1
9223 && put_user_sal(host_time, arg1))
9224 return -TARGET_EFAULT;
9225 }
9226 return ret;
9227 #endif
9228 #ifdef TARGET_NR_mknod
9229 case TARGET_NR_mknod:
9230 if (!(p = lock_user_string(arg1)))
9231 return -TARGET_EFAULT;
9232 ret = get_errno(mknod(p, arg2, arg3));
9233 unlock_user(p, arg1, 0);
9234 return ret;
9235 #endif
9236 #if defined(TARGET_NR_mknodat)
9237 case TARGET_NR_mknodat:
9238 if (!(p = lock_user_string(arg2)))
9239 return -TARGET_EFAULT;
9240 ret = get_errno(mknodat(arg1, p, arg3, arg4));
9241 unlock_user(p, arg2, 0);
9242 return ret;
9243 #endif
9244 #ifdef TARGET_NR_chmod
9245 case TARGET_NR_chmod:
9246 if (!(p = lock_user_string(arg1)))
9247 return -TARGET_EFAULT;
9248 ret = get_errno(chmod(p, arg2));
9249 unlock_user(p, arg1, 0);
9250 return ret;
9251 #endif
9252 #ifdef TARGET_NR_lseek
9253 case TARGET_NR_lseek:
9254 return get_errno(lseek(arg1, arg2, arg3));
9255 #endif
9256 #if defined(TARGET_NR_getxpid) && defined(TARGET_ALPHA)
9257 /* Alpha specific */
9258 case TARGET_NR_getxpid:
9259 cpu_env->ir[IR_A4] = getppid();
9260 return get_errno(getpid());
9261 #endif
9262 #ifdef TARGET_NR_getpid
9263 case TARGET_NR_getpid:
9264 return get_errno(getpid());
9265 #endif
9266 case TARGET_NR_mount:
9267 {
9268 /* need to look at the data field */
9269 void *p2, *p3;
9270
9271 if (arg1) {
9272 p = lock_user_string(arg1);
9273 if (!p) {
9274 return -TARGET_EFAULT;
9275 }
9276 } else {
9277 p = NULL;
9278 }
9279
9280 p2 = lock_user_string(arg2);
9281 if (!p2) {
9282 if (arg1) {
9283 unlock_user(p, arg1, 0);
9284 }
9285 return -TARGET_EFAULT;
9286 }
9287
9288 if (arg3) {
9289 p3 = lock_user_string(arg3);
9290 if (!p3) {
9291 if (arg1) {
9292 unlock_user(p, arg1, 0);
9293 }
9294 unlock_user(p2, arg2, 0);
9295 return -TARGET_EFAULT;
9296 }
9297 } else {
9298 p3 = NULL;
9299 }
9300
9301 /* FIXME - arg5 should be locked, but it isn't clear how to
9302 * do that since it's not guaranteed to be a NULL-terminated
9303 * string.
9304 */
9305 if (!arg5) {
9306 ret = mount(p, p2, p3, (unsigned long)arg4, NULL);
9307 } else {
9308 ret = mount(p, p2, p3, (unsigned long)arg4, g2h(cpu, arg5));
9309 }
9310 ret = get_errno(ret);
9311
9312 if (arg1) {
9313 unlock_user(p, arg1, 0);
9314 }
9315 unlock_user(p2, arg2, 0);
9316 if (arg3) {
9317 unlock_user(p3, arg3, 0);
9318 }
9319 }
9320 return ret;
9321 #if defined(TARGET_NR_umount) || defined(TARGET_NR_oldumount)
9322 #if defined(TARGET_NR_umount)
9323 case TARGET_NR_umount:
9324 #endif
9325 #if defined(TARGET_NR_oldumount)
9326 case TARGET_NR_oldumount:
9327 #endif
9328 if (!(p = lock_user_string(arg1)))
9329 return -TARGET_EFAULT;
9330 ret = get_errno(umount(p));
9331 unlock_user(p, arg1, 0);
9332 return ret;
9333 #endif
9334 #if defined(TARGET_NR_move_mount) && defined(__NR_move_mount)
9335 case TARGET_NR_move_mount:
9336 {
9337 void *p2, *p4;
9338
9339 if (!arg2 || !arg4) {
9340 return -TARGET_EFAULT;
9341 }
9342
9343 p2 = lock_user_string(arg2);
9344 if (!p2) {
9345 return -TARGET_EFAULT;
9346 }
9347
9348 p4 = lock_user_string(arg4);
9349 if (!p4) {
9350 unlock_user(p2, arg2, 0);
9351 return -TARGET_EFAULT;
9352 }
9353 ret = get_errno(sys_move_mount(arg1, p2, arg3, p4, arg5));
9354
9355 unlock_user(p2, arg2, 0);
9356 unlock_user(p4, arg4, 0);
9357
9358 return ret;
9359 }
9360 #endif
9361 #if defined(TARGET_NR_open_tree) && defined(__NR_open_tree)
9362 case TARGET_NR_open_tree:
9363 {
9364 void *p2;
9365 int host_flags;
9366
9367 if (!arg2) {
9368 return -TARGET_EFAULT;
9369 }
9370
9371 p2 = lock_user_string(arg2);
9372 if (!p2) {
9373 return -TARGET_EFAULT;
9374 }
9375
9376 host_flags = arg3 & ~TARGET_O_CLOEXEC;
9377 if (arg3 & TARGET_O_CLOEXEC) {
9378 host_flags |= O_CLOEXEC;
9379 }
9380
9381 ret = get_errno(sys_open_tree(arg1, p2, host_flags));
9382
9383 unlock_user(p2, arg2, 0);
9384
9385 return ret;
9386 }
9387 #endif
9388 #ifdef TARGET_NR_stime /* not on alpha */
9389 case TARGET_NR_stime:
9390 {
9391 struct timespec ts;
9392 ts.tv_nsec = 0;
9393 if (get_user_sal(ts.tv_sec, arg1)) {
9394 return -TARGET_EFAULT;
9395 }
9396 return get_errno(clock_settime(CLOCK_REALTIME, &ts));
9397 }
9398 #endif
9399 #ifdef TARGET_NR_alarm /* not on alpha */
9400 case TARGET_NR_alarm:
9401 return alarm(arg1);
9402 #endif
9403 #ifdef TARGET_NR_pause /* not on alpha */
9404 case TARGET_NR_pause:
9405 if (!block_signals()) {
9406 sigsuspend(&((TaskState *)cpu->opaque)->signal_mask);
9407 }
9408 return -TARGET_EINTR;
9409 #endif
9410 #ifdef TARGET_NR_utime
9411 case TARGET_NR_utime:
9412 {
9413 struct utimbuf tbuf, *host_tbuf;
9414 struct target_utimbuf *target_tbuf;
9415 if (arg2) {
9416 if (!lock_user_struct(VERIFY_READ, target_tbuf, arg2, 1))
9417 return -TARGET_EFAULT;
9418 tbuf.actime = tswapal(target_tbuf->actime);
9419 tbuf.modtime = tswapal(target_tbuf->modtime);
9420 unlock_user_struct(target_tbuf, arg2, 0);
9421 host_tbuf = &tbuf;
9422 } else {
9423 host_tbuf = NULL;
9424 }
9425 if (!(p = lock_user_string(arg1)))
9426 return -TARGET_EFAULT;
9427 ret = get_errno(utime(p, host_tbuf));
9428 unlock_user(p, arg1, 0);
9429 }
9430 return ret;
9431 #endif
9432 #ifdef TARGET_NR_utimes
9433 case TARGET_NR_utimes:
9434 {
9435 struct timeval *tvp, tv[2];
9436 if (arg2) {
9437 if (copy_from_user_timeval(&tv[0], arg2)
9438 || copy_from_user_timeval(&tv[1],
9439 arg2 + sizeof(struct target_timeval)))
9440 return -TARGET_EFAULT;
9441 tvp = tv;
9442 } else {
9443 tvp = NULL;
9444 }
9445 if (!(p = lock_user_string(arg1)))
9446 return -TARGET_EFAULT;
9447 ret = get_errno(utimes(p, tvp));
9448 unlock_user(p, arg1, 0);
9449 }
9450 return ret;
9451 #endif
9452 #if defined(TARGET_NR_futimesat)
9453 case TARGET_NR_futimesat:
9454 {
9455 struct timeval *tvp, tv[2];
9456 if (arg3) {
9457 if (copy_from_user_timeval(&tv[0], arg3)
9458 || copy_from_user_timeval(&tv[1],
9459 arg3 + sizeof(struct target_timeval)))
9460 return -TARGET_EFAULT;
9461 tvp = tv;
9462 } else {
9463 tvp = NULL;
9464 }
9465 if (!(p = lock_user_string(arg2))) {
9466 return -TARGET_EFAULT;
9467 }
9468 ret = get_errno(futimesat(arg1, path(p), tvp));
9469 unlock_user(p, arg2, 0);
9470 }
9471 return ret;
9472 #endif
9473 #ifdef TARGET_NR_access
9474 case TARGET_NR_access:
9475 if (!(p = lock_user_string(arg1))) {
9476 return -TARGET_EFAULT;
9477 }
9478 ret = get_errno(access(path(p), arg2));
9479 unlock_user(p, arg1, 0);
9480 return ret;
9481 #endif
9482 #if defined(TARGET_NR_faccessat) && defined(__NR_faccessat)
9483 case TARGET_NR_faccessat:
9484 if (!(p = lock_user_string(arg2))) {
9485 return -TARGET_EFAULT;
9486 }
9487 ret = get_errno(faccessat(arg1, p, arg3, 0));
9488 unlock_user(p, arg2, 0);
9489 return ret;
9490 #endif
9491 #if defined(TARGET_NR_faccessat2)
9492 case TARGET_NR_faccessat2:
9493 if (!(p = lock_user_string(arg2))) {
9494 return -TARGET_EFAULT;
9495 }
9496 ret = get_errno(faccessat(arg1, p, arg3, arg4));
9497 unlock_user(p, arg2, 0);
9498 return ret;
9499 #endif
9500 #ifdef TARGET_NR_nice /* not on alpha */
9501 case TARGET_NR_nice:
9502 return get_errno(nice(arg1));
9503 #endif
9504 case TARGET_NR_sync:
9505 sync();
9506 return 0;
9507 #if defined(TARGET_NR_syncfs) && defined(CONFIG_SYNCFS)
9508 case TARGET_NR_syncfs:
9509 return get_errno(syncfs(arg1));
9510 #endif
9511 case TARGET_NR_kill:
9512 return get_errno(safe_kill(arg1, target_to_host_signal(arg2)));
9513 #ifdef TARGET_NR_rename
9514 case TARGET_NR_rename:
9515 {
9516 void *p2;
9517 p = lock_user_string(arg1);
9518 p2 = lock_user_string(arg2);
9519 if (!p || !p2)
9520 ret = -TARGET_EFAULT;
9521 else
9522 ret = get_errno(rename(p, p2));
9523 unlock_user(p2, arg2, 0);
9524 unlock_user(p, arg1, 0);
9525 }
9526 return ret;
9527 #endif
9528 #if defined(TARGET_NR_renameat)
9529 case TARGET_NR_renameat:
9530 {
9531 void *p2;
9532 p = lock_user_string(arg2);
9533 p2 = lock_user_string(arg4);
9534 if (!p || !p2)
9535 ret = -TARGET_EFAULT;
9536 else
9537 ret = get_errno(renameat(arg1, p, arg3, p2));
9538 unlock_user(p2, arg4, 0);
9539 unlock_user(p, arg2, 0);
9540 }
9541 return ret;
9542 #endif
9543 #if defined(TARGET_NR_renameat2)
9544 case TARGET_NR_renameat2:
9545 {
9546 void *p2;
9547 p = lock_user_string(arg2);
9548 p2 = lock_user_string(arg4);
9549 if (!p || !p2) {
9550 ret = -TARGET_EFAULT;
9551 } else {
9552 ret = get_errno(sys_renameat2(arg1, p, arg3, p2, arg5));
9553 }
9554 unlock_user(p2, arg4, 0);
9555 unlock_user(p, arg2, 0);
9556 }
9557 return ret;
9558 #endif
9559 #ifdef TARGET_NR_mkdir
9560 case TARGET_NR_mkdir:
9561 if (!(p = lock_user_string(arg1)))
9562 return -TARGET_EFAULT;
9563 ret = get_errno(mkdir(p, arg2));
9564 unlock_user(p, arg1, 0);
9565 return ret;
9566 #endif
9567 #if defined(TARGET_NR_mkdirat)
9568 case TARGET_NR_mkdirat:
9569 if (!(p = lock_user_string(arg2)))
9570 return -TARGET_EFAULT;
9571 ret = get_errno(mkdirat(arg1, p, arg3));
9572 unlock_user(p, arg2, 0);
9573 return ret;
9574 #endif
9575 #ifdef TARGET_NR_rmdir
9576 case TARGET_NR_rmdir:
9577 if (!(p = lock_user_string(arg1)))
9578 return -TARGET_EFAULT;
9579 ret = get_errno(rmdir(p));
9580 unlock_user(p, arg1, 0);
9581 return ret;
9582 #endif
9583 case TARGET_NR_dup:
9584 ret = get_errno(dup(arg1));
9585 if (ret >= 0) {
9586 fd_trans_dup(arg1, ret);
9587 }
9588 return ret;
9589 #ifdef TARGET_NR_pipe
9590 case TARGET_NR_pipe:
9591 return do_pipe(cpu_env, arg1, 0, 0);
9592 #endif
9593 #ifdef TARGET_NR_pipe2
9594 case TARGET_NR_pipe2:
9595 return do_pipe(cpu_env, arg1,
9596 target_to_host_bitmask(arg2, fcntl_flags_tbl), 1);
9597 #endif
9598 case TARGET_NR_times:
9599 {
9600 struct target_tms *tmsp;
9601 struct tms tms;
9602 ret = get_errno(times(&tms));
9603 if (arg1) {
9604 tmsp = lock_user(VERIFY_WRITE, arg1, sizeof(struct target_tms), 0);
9605 if (!tmsp)
9606 return -TARGET_EFAULT;
9607 tmsp->tms_utime = tswapal(host_to_target_clock_t(tms.tms_utime));
9608 tmsp->tms_stime = tswapal(host_to_target_clock_t(tms.tms_stime));
9609 tmsp->tms_cutime = tswapal(host_to_target_clock_t(tms.tms_cutime));
9610 tmsp->tms_cstime = tswapal(host_to_target_clock_t(tms.tms_cstime));
9611 }
9612 if (!is_error(ret))
9613 ret = host_to_target_clock_t(ret);
9614 }
9615 return ret;
9616 case TARGET_NR_acct:
9617 if (arg1 == 0) {
9618 ret = get_errno(acct(NULL));
9619 } else {
9620 if (!(p = lock_user_string(arg1))) {
9621 return -TARGET_EFAULT;
9622 }
9623 ret = get_errno(acct(path(p)));
9624 unlock_user(p, arg1, 0);
9625 }
9626 return ret;
9627 #ifdef TARGET_NR_umount2
9628 case TARGET_NR_umount2:
9629 if (!(p = lock_user_string(arg1)))
9630 return -TARGET_EFAULT;
9631 ret = get_errno(umount2(p, arg2));
9632 unlock_user(p, arg1, 0);
9633 return ret;
9634 #endif
9635 case TARGET_NR_ioctl:
9636 return do_ioctl(arg1, arg2, arg3);
9637 #ifdef TARGET_NR_fcntl
9638 case TARGET_NR_fcntl:
9639 return do_fcntl(arg1, arg2, arg3);
9640 #endif
9641 case TARGET_NR_setpgid:
9642 return get_errno(setpgid(arg1, arg2));
9643 case TARGET_NR_umask:
9644 return get_errno(umask(arg1));
9645 case TARGET_NR_chroot:
9646 if (!(p = lock_user_string(arg1)))
9647 return -TARGET_EFAULT;
9648 ret = get_errno(chroot(p));
9649 unlock_user(p, arg1, 0);
9650 return ret;
9651 #ifdef TARGET_NR_dup2
9652 case TARGET_NR_dup2:
9653 ret = get_errno(dup2(arg1, arg2));
9654 if (ret >= 0) {
9655 fd_trans_dup(arg1, arg2);
9656 }
9657 return ret;
9658 #endif
9659 #if defined(CONFIG_DUP3) && defined(TARGET_NR_dup3)
9660 case TARGET_NR_dup3:
9661 {
9662 int host_flags;
9663
9664 if ((arg3 & ~TARGET_O_CLOEXEC) != 0) {
9665 return -EINVAL;
9666 }
9667 host_flags = target_to_host_bitmask(arg3, fcntl_flags_tbl);
9668 ret = get_errno(dup3(arg1, arg2, host_flags));
9669 if (ret >= 0) {
9670 fd_trans_dup(arg1, arg2);
9671 }
9672 return ret;
9673 }
9674 #endif
9675 #ifdef TARGET_NR_getppid /* not on alpha */
9676 case TARGET_NR_getppid:
9677 return get_errno(getppid());
9678 #endif
9679 #ifdef TARGET_NR_getpgrp
9680 case TARGET_NR_getpgrp:
9681 return get_errno(getpgrp());
9682 #endif
9683 case TARGET_NR_setsid:
9684 return get_errno(setsid());
9685 #ifdef TARGET_NR_sigaction
9686 case TARGET_NR_sigaction:
9687 {
9688 #if defined(TARGET_MIPS)
9689 struct target_sigaction act, oact, *pact, *old_act;
9690
9691 if (arg2) {
9692 if (!lock_user_struct(VERIFY_READ, old_act, arg2, 1))
9693 return -TARGET_EFAULT;
9694 act._sa_handler = old_act->_sa_handler;
9695 target_siginitset(&act.sa_mask, old_act->sa_mask.sig[0]);
9696 act.sa_flags = old_act->sa_flags;
9697 unlock_user_struct(old_act, arg2, 0);
9698 pact = &act;
9699 } else {
9700 pact = NULL;
9701 }
9702
9703 ret = get_errno(do_sigaction(arg1, pact, &oact, 0));
9704
9705 if (!is_error(ret) && arg3) {
9706 if (!lock_user_struct(VERIFY_WRITE, old_act, arg3, 0))
9707 return -TARGET_EFAULT;
9708 old_act->_sa_handler = oact._sa_handler;
9709 old_act->sa_flags = oact.sa_flags;
9710 old_act->sa_mask.sig[0] = oact.sa_mask.sig[0];
9711 old_act->sa_mask.sig[1] = 0;
9712 old_act->sa_mask.sig[2] = 0;
9713 old_act->sa_mask.sig[3] = 0;
9714 unlock_user_struct(old_act, arg3, 1);
9715 }
9716 #else
9717 struct target_old_sigaction *old_act;
9718 struct target_sigaction act, oact, *pact;
9719 if (arg2) {
9720 if (!lock_user_struct(VERIFY_READ, old_act, arg2, 1))
9721 return -TARGET_EFAULT;
9722 act._sa_handler = old_act->_sa_handler;
9723 target_siginitset(&act.sa_mask, old_act->sa_mask);
9724 act.sa_flags = old_act->sa_flags;
9725 #ifdef TARGET_ARCH_HAS_SA_RESTORER
9726 act.sa_restorer = old_act->sa_restorer;
9727 #endif
9728 unlock_user_struct(old_act, arg2, 0);
9729 pact = &act;
9730 } else {
9731 pact = NULL;
9732 }
9733 ret = get_errno(do_sigaction(arg1, pact, &oact, 0));
9734 if (!is_error(ret) && arg3) {
9735 if (!lock_user_struct(VERIFY_WRITE, old_act, arg3, 0))
9736 return -TARGET_EFAULT;
9737 old_act->_sa_handler = oact._sa_handler;
9738 old_act->sa_mask = oact.sa_mask.sig[0];
9739 old_act->sa_flags = oact.sa_flags;
9740 #ifdef TARGET_ARCH_HAS_SA_RESTORER
9741 old_act->sa_restorer = oact.sa_restorer;
9742 #endif
9743 unlock_user_struct(old_act, arg3, 1);
9744 }
9745 #endif
9746 }
9747 return ret;
9748 #endif
9749 case TARGET_NR_rt_sigaction:
9750 {
9751 /*
9752 * For Alpha and SPARC this is a 5 argument syscall, with
9753 * a 'restorer' parameter which must be copied into the
9754 * sa_restorer field of the sigaction struct.
9755 * For Alpha that 'restorer' is arg5; for SPARC it is arg4,
9756 * and arg5 is the sigsetsize.
9757 */
9758 #if defined(TARGET_ALPHA)
9759 target_ulong sigsetsize = arg4;
9760 target_ulong restorer = arg5;
9761 #elif defined(TARGET_SPARC)
9762 target_ulong restorer = arg4;
9763 target_ulong sigsetsize = arg5;
9764 #else
9765 target_ulong sigsetsize = arg4;
9766 target_ulong restorer = 0;
9767 #endif
9768 struct target_sigaction *act = NULL;
9769 struct target_sigaction *oact = NULL;
9770
9771 if (sigsetsize != sizeof(target_sigset_t)) {
9772 return -TARGET_EINVAL;
9773 }
9774 if (arg2 && !lock_user_struct(VERIFY_READ, act, arg2, 1)) {
9775 return -TARGET_EFAULT;
9776 }
9777 if (arg3 && !lock_user_struct(VERIFY_WRITE, oact, arg3, 0)) {
9778 ret = -TARGET_EFAULT;
9779 } else {
9780 ret = get_errno(do_sigaction(arg1, act, oact, restorer));
9781 if (oact) {
9782 unlock_user_struct(oact, arg3, 1);
9783 }
9784 }
9785 if (act) {
9786 unlock_user_struct(act, arg2, 0);
9787 }
9788 }
9789 return ret;
9790 #ifdef TARGET_NR_sgetmask /* not on alpha */
9791 case TARGET_NR_sgetmask:
9792 {
9793 sigset_t cur_set;
9794 abi_ulong target_set;
9795 ret = do_sigprocmask(0, NULL, &cur_set);
9796 if (!ret) {
9797 host_to_target_old_sigset(&target_set, &cur_set);
9798 ret = target_set;
9799 }
9800 }
9801 return ret;
9802 #endif
9803 #ifdef TARGET_NR_ssetmask /* not on alpha */
9804 case TARGET_NR_ssetmask:
9805 {
9806 sigset_t set, oset;
9807 abi_ulong target_set = arg1;
9808 target_to_host_old_sigset(&set, &target_set);
9809 ret = do_sigprocmask(SIG_SETMASK, &set, &oset);
9810 if (!ret) {
9811 host_to_target_old_sigset(&target_set, &oset);
9812 ret = target_set;
9813 }
9814 }
9815 return ret;
9816 #endif
9817 #ifdef TARGET_NR_sigprocmask
9818 case TARGET_NR_sigprocmask:
9819 {
9820 #if defined(TARGET_ALPHA)
9821 sigset_t set, oldset;
9822 abi_ulong mask;
9823 int how;
9824
9825 switch (arg1) {
9826 case TARGET_SIG_BLOCK:
9827 how = SIG_BLOCK;
9828 break;
9829 case TARGET_SIG_UNBLOCK:
9830 how = SIG_UNBLOCK;
9831 break;
9832 case TARGET_SIG_SETMASK:
9833 how = SIG_SETMASK;
9834 break;
9835 default:
9836 return -TARGET_EINVAL;
9837 }
9838 mask = arg2;
9839 target_to_host_old_sigset(&set, &mask);
9840
9841 ret = do_sigprocmask(how, &set, &oldset);
9842 if (!is_error(ret)) {
9843 host_to_target_old_sigset(&mask, &oldset);
9844 ret = mask;
9845 cpu_env->ir[IR_V0] = 0; /* force no error */
9846 }
9847 #else
9848 sigset_t set, oldset, *set_ptr;
9849 int how;
9850
9851 if (arg2) {
9852 p = lock_user(VERIFY_READ, arg2, sizeof(target_sigset_t), 1);
9853 if (!p) {
9854 return -TARGET_EFAULT;
9855 }
9856 target_to_host_old_sigset(&set, p);
9857 unlock_user(p, arg2, 0);
9858 set_ptr = &set;
9859 switch (arg1) {
9860 case TARGET_SIG_BLOCK:
9861 how = SIG_BLOCK;
9862 break;
9863 case TARGET_SIG_UNBLOCK:
9864 how = SIG_UNBLOCK;
9865 break;
9866 case TARGET_SIG_SETMASK:
9867 how = SIG_SETMASK;
9868 break;
9869 default:
9870 return -TARGET_EINVAL;
9871 }
9872 } else {
9873 how = 0;
9874 set_ptr = NULL;
9875 }
9876 ret = do_sigprocmask(how, set_ptr, &oldset);
9877 if (!is_error(ret) && arg3) {
9878 if (!(p = lock_user(VERIFY_WRITE, arg3, sizeof(target_sigset_t), 0)))
9879 return -TARGET_EFAULT;
9880 host_to_target_old_sigset(p, &oldset);
9881 unlock_user(p, arg3, sizeof(target_sigset_t));
9882 }
9883 #endif
9884 }
9885 return ret;
9886 #endif
9887 case TARGET_NR_rt_sigprocmask:
9888 {
9889 int how = arg1;
9890 sigset_t set, oldset, *set_ptr;
9891
9892 if (arg4 != sizeof(target_sigset_t)) {
9893 return -TARGET_EINVAL;
9894 }
9895
9896 if (arg2) {
9897 p = lock_user(VERIFY_READ, arg2, sizeof(target_sigset_t), 1);
9898 if (!p) {
9899 return -TARGET_EFAULT;
9900 }
9901 target_to_host_sigset(&set, p);
9902 unlock_user(p, arg2, 0);
9903 set_ptr = &set;
9904 switch(how) {
9905 case TARGET_SIG_BLOCK:
9906 how = SIG_BLOCK;
9907 break;
9908 case TARGET_SIG_UNBLOCK:
9909 how = SIG_UNBLOCK;
9910 break;
9911 case TARGET_SIG_SETMASK:
9912 how = SIG_SETMASK;
9913 break;
9914 default:
9915 return -TARGET_EINVAL;
9916 }
9917 } else {
9918 how = 0;
9919 set_ptr = NULL;
9920 }
9921 ret = do_sigprocmask(how, set_ptr, &oldset);
9922 if (!is_error(ret) && arg3) {
9923 if (!(p = lock_user(VERIFY_WRITE, arg3, sizeof(target_sigset_t), 0)))
9924 return -TARGET_EFAULT;
9925 host_to_target_sigset(p, &oldset);
9926 unlock_user(p, arg3, sizeof(target_sigset_t));
9927 }
9928 }
9929 return ret;
9930 #ifdef TARGET_NR_sigpending
9931 case TARGET_NR_sigpending:
9932 {
9933 sigset_t set;
9934 ret = get_errno(sigpending(&set));
9935 if (!is_error(ret)) {
9936 if (!(p = lock_user(VERIFY_WRITE, arg1, sizeof(target_sigset_t), 0)))
9937 return -TARGET_EFAULT;
9938 host_to_target_old_sigset(p, &set);
9939 unlock_user(p, arg1, sizeof(target_sigset_t));
9940 }
9941 }
9942 return ret;
9943 #endif
9944 case TARGET_NR_rt_sigpending:
9945 {
9946 sigset_t set;
9947
9948 /* Yes, this check is >, not != like most. We follow the kernel's
9949 * logic and it does it like this because it implements
9950 * NR_sigpending through the same code path, and in that case
9951 * the old_sigset_t is smaller in size.
9952 */
9953 if (arg2 > sizeof(target_sigset_t)) {
9954 return -TARGET_EINVAL;
9955 }
9956
9957 ret = get_errno(sigpending(&set));
9958 if (!is_error(ret)) {
9959 if (!(p = lock_user(VERIFY_WRITE, arg1, sizeof(target_sigset_t), 0)))
9960 return -TARGET_EFAULT;
9961 host_to_target_sigset(p, &set);
9962 unlock_user(p, arg1, sizeof(target_sigset_t));
9963 }
9964 }
9965 return ret;
9966 #ifdef TARGET_NR_sigsuspend
9967 case TARGET_NR_sigsuspend:
9968 {
9969 sigset_t *set;
9970
9971 #if defined(TARGET_ALPHA)
9972 TaskState *ts = cpu->opaque;
9973 /* target_to_host_old_sigset will bswap back */
9974 abi_ulong mask = tswapal(arg1);
9975 set = &ts->sigsuspend_mask;
9976 target_to_host_old_sigset(set, &mask);
9977 #else
9978 ret = process_sigsuspend_mask(&set, arg1, sizeof(target_sigset_t));
9979 if (ret != 0) {
9980 return ret;
9981 }
9982 #endif
9983 ret = get_errno(safe_rt_sigsuspend(set, SIGSET_T_SIZE));
9984 finish_sigsuspend_mask(ret);
9985 }
9986 return ret;
9987 #endif
9988 case TARGET_NR_rt_sigsuspend:
9989 {
9990 sigset_t *set;
9991
9992 ret = process_sigsuspend_mask(&set, arg1, arg2);
9993 if (ret != 0) {
9994 return ret;
9995 }
9996 ret = get_errno(safe_rt_sigsuspend(set, SIGSET_T_SIZE));
9997 finish_sigsuspend_mask(ret);
9998 }
9999 return ret;
10000 #ifdef TARGET_NR_rt_sigtimedwait
10001 case TARGET_NR_rt_sigtimedwait:
10002 {
10003 sigset_t set;
10004 struct timespec uts, *puts;
10005 siginfo_t uinfo;
10006
10007 if (arg4 != sizeof(target_sigset_t)) {
10008 return -TARGET_EINVAL;
10009 }
10010
10011 if (!(p = lock_user(VERIFY_READ, arg1, sizeof(target_sigset_t), 1)))
10012 return -TARGET_EFAULT;
10013 target_to_host_sigset(&set, p);
10014 unlock_user(p, arg1, 0);
10015 if (arg3) {
10016 puts = &uts;
10017 if (target_to_host_timespec(puts, arg3)) {
10018 return -TARGET_EFAULT;
10019 }
10020 } else {
10021 puts = NULL;
10022 }
10023 ret = get_errno(safe_rt_sigtimedwait(&set, &uinfo, puts,
10024 SIGSET_T_SIZE));
10025 if (!is_error(ret)) {
10026 if (arg2) {
10027 p = lock_user(VERIFY_WRITE, arg2, sizeof(target_siginfo_t),
10028 0);
10029 if (!p) {
10030 return -TARGET_EFAULT;
10031 }
10032 host_to_target_siginfo(p, &uinfo);
10033 unlock_user(p, arg2, sizeof(target_siginfo_t));
10034 }
10035 ret = host_to_target_signal(ret);
10036 }
10037 }
10038 return ret;
10039 #endif
10040 #ifdef TARGET_NR_rt_sigtimedwait_time64
10041 case TARGET_NR_rt_sigtimedwait_time64:
10042 {
10043 sigset_t set;
10044 struct timespec uts, *puts;
10045 siginfo_t uinfo;
10046
10047 if (arg4 != sizeof(target_sigset_t)) {
10048 return -TARGET_EINVAL;
10049 }
10050
10051 p = lock_user(VERIFY_READ, arg1, sizeof(target_sigset_t), 1);
10052 if (!p) {
10053 return -TARGET_EFAULT;
10054 }
10055 target_to_host_sigset(&set, p);
10056 unlock_user(p, arg1, 0);
10057 if (arg3) {
10058 puts = &uts;
10059 if (target_to_host_timespec64(puts, arg3)) {
10060 return -TARGET_EFAULT;
10061 }
10062 } else {
10063 puts = NULL;
10064 }
10065 ret = get_errno(safe_rt_sigtimedwait(&set, &uinfo, puts,
10066 SIGSET_T_SIZE));
10067 if (!is_error(ret)) {
10068 if (arg2) {
10069 p = lock_user(VERIFY_WRITE, arg2,
10070 sizeof(target_siginfo_t), 0);
10071 if (!p) {
10072 return -TARGET_EFAULT;
10073 }
10074 host_to_target_siginfo(p, &uinfo);
10075 unlock_user(p, arg2, sizeof(target_siginfo_t));
10076 }
10077 ret = host_to_target_signal(ret);
10078 }
10079 }
10080 return ret;
10081 #endif
10082 case TARGET_NR_rt_sigqueueinfo:
10083 {
10084 siginfo_t uinfo;
10085
10086 p = lock_user(VERIFY_READ, arg3, sizeof(target_siginfo_t), 1);
10087 if (!p) {
10088 return -TARGET_EFAULT;
10089 }
10090 target_to_host_siginfo(&uinfo, p);
10091 unlock_user(p, arg3, 0);
10092 ret = get_errno(sys_rt_sigqueueinfo(arg1, target_to_host_signal(arg2), &uinfo));
10093 }
10094 return ret;
10095 case TARGET_NR_rt_tgsigqueueinfo:
10096 {
10097 siginfo_t uinfo;
10098
10099 p = lock_user(VERIFY_READ, arg4, sizeof(target_siginfo_t), 1);
10100 if (!p) {
10101 return -TARGET_EFAULT;
10102 }
10103 target_to_host_siginfo(&uinfo, p);
10104 unlock_user(p, arg4, 0);
10105 ret = get_errno(sys_rt_tgsigqueueinfo(arg1, arg2, target_to_host_signal(arg3), &uinfo));
10106 }
10107 return ret;
10108 #ifdef TARGET_NR_sigreturn
10109 case TARGET_NR_sigreturn:
10110 if (block_signals()) {
10111 return -QEMU_ERESTARTSYS;
10112 }
10113 return do_sigreturn(cpu_env);
10114 #endif
10115 case TARGET_NR_rt_sigreturn:
10116 if (block_signals()) {
10117 return -QEMU_ERESTARTSYS;
10118 }
10119 return do_rt_sigreturn(cpu_env);
10120 case TARGET_NR_sethostname:
10121 if (!(p = lock_user_string(arg1)))
10122 return -TARGET_EFAULT;
10123 ret = get_errno(sethostname(p, arg2));
10124 unlock_user(p, arg1, 0);
10125 return ret;
10126 #ifdef TARGET_NR_setrlimit
10127 case TARGET_NR_setrlimit:
10128 {
10129 int resource = target_to_host_resource(arg1);
10130 struct target_rlimit *target_rlim;
10131 struct rlimit rlim;
10132 if (!lock_user_struct(VERIFY_READ, target_rlim, arg2, 1))
10133 return -TARGET_EFAULT;
10134 rlim.rlim_cur = target_to_host_rlim(target_rlim->rlim_cur);
10135 rlim.rlim_max = target_to_host_rlim(target_rlim->rlim_max);
10136 unlock_user_struct(target_rlim, arg2, 0);
10137 /*
10138 * If we just passed through resource limit settings for memory then
10139 * they would also apply to QEMU's own allocations, and QEMU will
10140 * crash or hang or die if its allocations fail. Ideally we would
10141 * track the guest allocations in QEMU and apply the limits ourselves.
10142 * For now, just tell the guest the call succeeded but don't actually
10143 * limit anything.
10144 */
10145 if (resource != RLIMIT_AS &&
10146 resource != RLIMIT_DATA &&
10147 resource != RLIMIT_STACK) {
10148 return get_errno(setrlimit(resource, &rlim));
10149 } else {
10150 return 0;
10151 }
10152 }
10153 #endif
10154 #ifdef TARGET_NR_getrlimit
10155 case TARGET_NR_getrlimit:
10156 {
10157 int resource = target_to_host_resource(arg1);
10158 struct target_rlimit *target_rlim;
10159 struct rlimit rlim;
10160
10161 ret = get_errno(getrlimit(resource, &rlim));
10162 if (!is_error(ret)) {
10163 if (!lock_user_struct(VERIFY_WRITE, target_rlim, arg2, 0))
10164 return -TARGET_EFAULT;
10165 target_rlim->rlim_cur = host_to_target_rlim(rlim.rlim_cur);
10166 target_rlim->rlim_max = host_to_target_rlim(rlim.rlim_max);
10167 unlock_user_struct(target_rlim, arg2, 1);
10168 }
10169 }
10170 return ret;
10171 #endif
10172 case TARGET_NR_getrusage:
10173 {
10174 struct rusage rusage;
10175 ret = get_errno(getrusage(arg1, &rusage));
10176 if (!is_error(ret)) {
10177 ret = host_to_target_rusage(arg2, &rusage);
10178 }
10179 }
10180 return ret;
10181 #if defined(TARGET_NR_gettimeofday)
10182 case TARGET_NR_gettimeofday:
10183 {
10184 struct timeval tv;
10185 struct timezone tz;
10186
10187 ret = get_errno(gettimeofday(&tv, &tz));
10188 if (!is_error(ret)) {
10189 if (arg1 && copy_to_user_timeval(arg1, &tv)) {
10190 return -TARGET_EFAULT;
10191 }
10192 if (arg2 && copy_to_user_timezone(arg2, &tz)) {
10193 return -TARGET_EFAULT;
10194 }
10195 }
10196 }
10197 return ret;
10198 #endif
10199 #if defined(TARGET_NR_settimeofday)
10200 case TARGET_NR_settimeofday:
10201 {
10202 struct timeval tv, *ptv = NULL;
10203 struct timezone tz, *ptz = NULL;
10204
10205 if (arg1) {
10206 if (copy_from_user_timeval(&tv, arg1)) {
10207 return -TARGET_EFAULT;
10208 }
10209 ptv = &tv;
10210 }
10211
10212 if (arg2) {
10213 if (copy_from_user_timezone(&tz, arg2)) {
10214 return -TARGET_EFAULT;
10215 }
10216 ptz = &tz;
10217 }
10218
10219 return get_errno(settimeofday(ptv, ptz));
10220 }
10221 #endif
10222 #if defined(TARGET_NR_select)
10223 case TARGET_NR_select:
10224 #if defined(TARGET_WANT_NI_OLD_SELECT)
10225 /* some architectures used to have old_select here
10226 * but now ENOSYS it.
10227 */
10228 ret = -TARGET_ENOSYS;
10229 #elif defined(TARGET_WANT_OLD_SYS_SELECT)
10230 ret = do_old_select(arg1);
10231 #else
10232 ret = do_select(arg1, arg2, arg3, arg4, arg5);
10233 #endif
10234 return ret;
10235 #endif
10236 #ifdef TARGET_NR_pselect6
10237 case TARGET_NR_pselect6:
10238 return do_pselect6(arg1, arg2, arg3, arg4, arg5, arg6, false);
10239 #endif
10240 #ifdef TARGET_NR_pselect6_time64
10241 case TARGET_NR_pselect6_time64:
10242 return do_pselect6(arg1, arg2, arg3, arg4, arg5, arg6, true);
10243 #endif
10244 #ifdef TARGET_NR_symlink
10245 case TARGET_NR_symlink:
10246 {
10247 void *p2;
10248 p = lock_user_string(arg1);
10249 p2 = lock_user_string(arg2);
10250 if (!p || !p2)
10251 ret = -TARGET_EFAULT;
10252 else
10253 ret = get_errno(symlink(p, p2));
10254 unlock_user(p2, arg2, 0);
10255 unlock_user(p, arg1, 0);
10256 }
10257 return ret;
10258 #endif
10259 #if defined(TARGET_NR_symlinkat)
10260 case TARGET_NR_symlinkat:
10261 {
10262 void *p2;
10263 p = lock_user_string(arg1);
10264 p2 = lock_user_string(arg3);
10265 if (!p || !p2)
10266 ret = -TARGET_EFAULT;
10267 else
10268 ret = get_errno(symlinkat(p, arg2, p2));
10269 unlock_user(p2, arg3, 0);
10270 unlock_user(p, arg1, 0);
10271 }
10272 return ret;
10273 #endif
10274 #ifdef TARGET_NR_readlink
10275 case TARGET_NR_readlink:
10276 {
10277 void *p2;
10278 p = lock_user_string(arg1);
10279 p2 = lock_user(VERIFY_WRITE, arg2, arg3, 0);
10280 ret = get_errno(do_guest_readlink(p, p2, arg3));
10281 unlock_user(p2, arg2, ret);
10282 unlock_user(p, arg1, 0);
10283 }
10284 return ret;
10285 #endif
10286 #if defined(TARGET_NR_readlinkat)
10287 case TARGET_NR_readlinkat:
10288 {
10289 void *p2;
10290 p = lock_user_string(arg2);
10291 p2 = lock_user(VERIFY_WRITE, arg3, arg4, 0);
10292 if (!p || !p2) {
10293 ret = -TARGET_EFAULT;
10294 } else if (!arg4) {
10295 /* Short circuit this for the magic exe check. */
10296 ret = -TARGET_EINVAL;
10297 } else if (is_proc_myself((const char *)p, "exe")) {
10298 /*
10299 * Don't worry about sign mismatch as earlier mapping
10300 * logic would have thrown a bad address error.
10301 */
10302 ret = MIN(strlen(exec_path), arg4);
10303 /* We cannot NUL terminate the string. */
10304 memcpy(p2, exec_path, ret);
10305 } else {
10306 ret = get_errno(readlinkat(arg1, path(p), p2, arg4));
10307 }
10308 unlock_user(p2, arg3, ret);
10309 unlock_user(p, arg2, 0);
10310 }
10311 return ret;
10312 #endif
10313 #ifdef TARGET_NR_swapon
10314 case TARGET_NR_swapon:
10315 if (!(p = lock_user_string(arg1)))
10316 return -TARGET_EFAULT;
10317 ret = get_errno(swapon(p, arg2));
10318 unlock_user(p, arg1, 0);
10319 return ret;
10320 #endif
10321 case TARGET_NR_reboot:
10322 if (arg3 == LINUX_REBOOT_CMD_RESTART2) {
10323 /* arg4 must be ignored in all other cases */
10324 p = lock_user_string(arg4);
10325 if (!p) {
10326 return -TARGET_EFAULT;
10327 }
10328 ret = get_errno(reboot(arg1, arg2, arg3, p));
10329 unlock_user(p, arg4, 0);
10330 } else {
10331 ret = get_errno(reboot(arg1, arg2, arg3, NULL));
10332 }
10333 return ret;
10334 #ifdef TARGET_NR_mmap
10335 case TARGET_NR_mmap:
10336 #if (defined(TARGET_I386) && defined(TARGET_ABI32)) || \
10337 (defined(TARGET_ARM) && defined(TARGET_ABI32)) || \
10338 defined(TARGET_M68K) || defined(TARGET_CRIS) || defined(TARGET_MICROBLAZE) \
10339 || defined(TARGET_S390X)
10340 {
10341 abi_ulong *v;
10342 abi_ulong v1, v2, v3, v4, v5, v6;
10343 if (!(v = lock_user(VERIFY_READ, arg1, 6 * sizeof(abi_ulong), 1)))
10344 return -TARGET_EFAULT;
10345 v1 = tswapal(v[0]);
10346 v2 = tswapal(v[1]);
10347 v3 = tswapal(v[2]);
10348 v4 = tswapal(v[3]);
10349 v5 = tswapal(v[4]);
10350 v6 = tswapal(v[5]);
10351 unlock_user(v, arg1, 0);
10352 return do_mmap(v1, v2, v3, v4, v5, v6);
10353 }
10354 #else
10355 /* mmap pointers are always untagged */
10356 return do_mmap(arg1, arg2, arg3, arg4, arg5, arg6);
10357 #endif
10358 #endif
10359 #ifdef TARGET_NR_mmap2
10360 case TARGET_NR_mmap2:
10361 #ifndef MMAP_SHIFT
10362 #define MMAP_SHIFT 12
10363 #endif
10364 return do_mmap(arg1, arg2, arg3, arg4, arg5,
10365 (off_t)(abi_ulong)arg6 << MMAP_SHIFT);
10366 #endif
10367 case TARGET_NR_munmap:
10368 arg1 = cpu_untagged_addr(cpu, arg1);
10369 return get_errno(target_munmap(arg1, arg2));
10370 case TARGET_NR_mprotect:
10371 arg1 = cpu_untagged_addr(cpu, arg1);
10372 {
10373 TaskState *ts = cpu->opaque;
10374 /* Special hack to detect libc making the stack executable. */
10375 if ((arg3 & PROT_GROWSDOWN)
10376 && arg1 >= ts->info->stack_limit
10377 && arg1 <= ts->info->start_stack) {
10378 arg3 &= ~PROT_GROWSDOWN;
10379 arg2 = arg2 + arg1 - ts->info->stack_limit;
10380 arg1 = ts->info->stack_limit;
10381 }
10382 }
10383 return get_errno(target_mprotect(arg1, arg2, arg3));
10384 #ifdef TARGET_NR_mremap
10385 case TARGET_NR_mremap:
10386 arg1 = cpu_untagged_addr(cpu, arg1);
10387 /* mremap new_addr (arg5) is always untagged */
10388 return get_errno(target_mremap(arg1, arg2, arg3, arg4, arg5));
10389 #endif
10390 /* ??? msync/mlock/munlock are broken for softmmu. */
10391 #ifdef TARGET_NR_msync
10392 case TARGET_NR_msync:
10393 return get_errno(msync(g2h(cpu, arg1), arg2,
10394 target_to_host_msync_arg(arg3)));
10395 #endif
10396 #ifdef TARGET_NR_mlock
10397 case TARGET_NR_mlock:
10398 return get_errno(mlock(g2h(cpu, arg1), arg2));
10399 #endif
10400 #ifdef TARGET_NR_munlock
10401 case TARGET_NR_munlock:
10402 return get_errno(munlock(g2h(cpu, arg1), arg2));
10403 #endif
10404 #ifdef TARGET_NR_mlockall
10405 case TARGET_NR_mlockall:
10406 return get_errno(mlockall(target_to_host_mlockall_arg(arg1)));
10407 #endif
10408 #ifdef TARGET_NR_munlockall
10409 case TARGET_NR_munlockall:
10410 return get_errno(munlockall());
10411 #endif
10412 #ifdef TARGET_NR_truncate
10413 case TARGET_NR_truncate:
10414 if (!(p = lock_user_string(arg1)))
10415 return -TARGET_EFAULT;
10416 ret = get_errno(truncate(p, arg2));
10417 unlock_user(p, arg1, 0);
10418 return ret;
10419 #endif
10420 #ifdef TARGET_NR_ftruncate
10421 case TARGET_NR_ftruncate:
10422 return get_errno(ftruncate(arg1, arg2));
10423 #endif
10424 case TARGET_NR_fchmod:
10425 return get_errno(fchmod(arg1, arg2));
10426 #if defined(TARGET_NR_fchmodat)
10427 case TARGET_NR_fchmodat:
10428 if (!(p = lock_user_string(arg2)))
10429 return -TARGET_EFAULT;
10430 ret = get_errno(fchmodat(arg1, p, arg3, 0));
10431 unlock_user(p, arg2, 0);
10432 return ret;
10433 #endif
10434 case TARGET_NR_getpriority:
10435 /* Note that negative values are valid for getpriority, so we must
10436 differentiate based on errno settings. */
10437 errno = 0;
10438 ret = getpriority(arg1, arg2);
10439 if (ret == -1 && errno != 0) {
10440 return -host_to_target_errno(errno);
10441 }
10442 #ifdef TARGET_ALPHA
10443 /* Return value is the unbiased priority. Signal no error. */
10444 cpu_env->ir[IR_V0] = 0;
10445 #else
10446 /* Return value is a biased priority to avoid negative numbers. */
10447 ret = 20 - ret;
10448 #endif
10449 return ret;
10450 case TARGET_NR_setpriority:
10451 return get_errno(setpriority(arg1, arg2, arg3));
10452 #ifdef TARGET_NR_statfs
10453 case TARGET_NR_statfs:
10454 if (!(p = lock_user_string(arg1))) {
10455 return -TARGET_EFAULT;
10456 }
10457 ret = get_errno(statfs(path(p), &stfs));
10458 unlock_user(p, arg1, 0);
10459 convert_statfs:
10460 if (!is_error(ret)) {
10461 struct target_statfs *target_stfs;
10462
10463 if (!lock_user_struct(VERIFY_WRITE, target_stfs, arg2, 0))
10464 return -TARGET_EFAULT;
10465 __put_user(stfs.f_type, &target_stfs->f_type);
10466 __put_user(stfs.f_bsize, &target_stfs->f_bsize);
10467 __put_user(stfs.f_blocks, &target_stfs->f_blocks);
10468 __put_user(stfs.f_bfree, &target_stfs->f_bfree);
10469 __put_user(stfs.f_bavail, &target_stfs->f_bavail);
10470 __put_user(stfs.f_files, &target_stfs->f_files);
10471 __put_user(stfs.f_ffree, &target_stfs->f_ffree);
10472 __put_user(stfs.f_fsid.__val[0], &target_stfs->f_fsid.val[0]);
10473 __put_user(stfs.f_fsid.__val[1], &target_stfs->f_fsid.val[1]);
10474 __put_user(stfs.f_namelen, &target_stfs->f_namelen);
10475 __put_user(stfs.f_frsize, &target_stfs->f_frsize);
10476 #ifdef _STATFS_F_FLAGS
10477 __put_user(stfs.f_flags, &target_stfs->f_flags);
10478 #else
10479 __put_user(0, &target_stfs->f_flags);
10480 #endif
10481 memset(target_stfs->f_spare, 0, sizeof(target_stfs->f_spare));
10482 unlock_user_struct(target_stfs, arg2, 1);
10483 }
10484 return ret;
10485 #endif
10486 #ifdef TARGET_NR_fstatfs
10487 case TARGET_NR_fstatfs:
10488 ret = get_errno(fstatfs(arg1, &stfs));
10489 goto convert_statfs;
10490 #endif
10491 #ifdef TARGET_NR_statfs64
10492 case TARGET_NR_statfs64:
10493 if (!(p = lock_user_string(arg1))) {
10494 return -TARGET_EFAULT;
10495 }
10496 ret = get_errno(statfs(path(p), &stfs));
10497 unlock_user(p, arg1, 0);
10498 convert_statfs64:
10499 if (!is_error(ret)) {
10500 struct target_statfs64 *target_stfs;
10501
10502 if (!lock_user_struct(VERIFY_WRITE, target_stfs, arg3, 0))
10503 return -TARGET_EFAULT;
10504 __put_user(stfs.f_type, &target_stfs->f_type);
10505 __put_user(stfs.f_bsize, &target_stfs->f_bsize);
10506 __put_user(stfs.f_blocks, &target_stfs->f_blocks);
10507 __put_user(stfs.f_bfree, &target_stfs->f_bfree);
10508 __put_user(stfs.f_bavail, &target_stfs->f_bavail);
10509 __put_user(stfs.f_files, &target_stfs->f_files);
10510 __put_user(stfs.f_ffree, &target_stfs->f_ffree);
10511 __put_user(stfs.f_fsid.__val[0], &target_stfs->f_fsid.val[0]);
10512 __put_user(stfs.f_fsid.__val[1], &target_stfs->f_fsid.val[1]);
10513 __put_user(stfs.f_namelen, &target_stfs->f_namelen);
10514 __put_user(stfs.f_frsize, &target_stfs->f_frsize);
10515 #ifdef _STATFS_F_FLAGS
10516 __put_user(stfs.f_flags, &target_stfs->f_flags);
10517 #else
10518 __put_user(0, &target_stfs->f_flags);
10519 #endif
10520 memset(target_stfs->f_spare, 0, sizeof(target_stfs->f_spare));
10521 unlock_user_struct(target_stfs, arg3, 1);
10522 }
10523 return ret;
10524 case TARGET_NR_fstatfs64:
10525 ret = get_errno(fstatfs(arg1, &stfs));
10526 goto convert_statfs64;
10527 #endif
10528 #ifdef TARGET_NR_socketcall
10529 case TARGET_NR_socketcall:
10530 return do_socketcall(arg1, arg2);
10531 #endif
10532 #ifdef TARGET_NR_accept
10533 case TARGET_NR_accept:
10534 return do_accept4(arg1, arg2, arg3, 0);
10535 #endif
10536 #ifdef TARGET_NR_accept4
10537 case TARGET_NR_accept4:
10538 return do_accept4(arg1, arg2, arg3, arg4);
10539 #endif
10540 #ifdef TARGET_NR_bind
10541 case TARGET_NR_bind:
10542 return do_bind(arg1, arg2, arg3);
10543 #endif
10544 #ifdef TARGET_NR_connect
10545 case TARGET_NR_connect:
10546 return do_connect(arg1, arg2, arg3);
10547 #endif
10548 #ifdef TARGET_NR_getpeername
10549 case TARGET_NR_getpeername:
10550 return do_getpeername(arg1, arg2, arg3);
10551 #endif
10552 #ifdef TARGET_NR_getsockname
10553 case TARGET_NR_getsockname:
10554 return do_getsockname(arg1, arg2, arg3);
10555 #endif
10556 #ifdef TARGET_NR_getsockopt
10557 case TARGET_NR_getsockopt:
10558 return do_getsockopt(arg1, arg2, arg3, arg4, arg5);
10559 #endif
10560 #ifdef TARGET_NR_listen
10561 case TARGET_NR_listen:
10562 return get_errno(listen(arg1, arg2));
10563 #endif
10564 #ifdef TARGET_NR_recv
10565 case TARGET_NR_recv:
10566 return do_recvfrom(arg1, arg2, arg3, arg4, 0, 0);
10567 #endif
10568 #ifdef TARGET_NR_recvfrom
10569 case TARGET_NR_recvfrom:
10570 return do_recvfrom(arg1, arg2, arg3, arg4, arg5, arg6);
10571 #endif
10572 #ifdef TARGET_NR_recvmsg
10573 case TARGET_NR_recvmsg:
10574 return do_sendrecvmsg(arg1, arg2, arg3, 0);
10575 #endif
10576 #ifdef TARGET_NR_send
10577 case TARGET_NR_send:
10578 return do_sendto(arg1, arg2, arg3, arg4, 0, 0);
10579 #endif
10580 #ifdef TARGET_NR_sendmsg
10581 case TARGET_NR_sendmsg:
10582 return do_sendrecvmsg(arg1, arg2, arg3, 1);
10583 #endif
10584 #ifdef TARGET_NR_sendmmsg
10585 case TARGET_NR_sendmmsg:
10586 return do_sendrecvmmsg(arg1, arg2, arg3, arg4, 1);
10587 #endif
10588 #ifdef TARGET_NR_recvmmsg
10589 case TARGET_NR_recvmmsg:
10590 return do_sendrecvmmsg(arg1, arg2, arg3, arg4, 0);
10591 #endif
10592 #ifdef TARGET_NR_sendto
10593 case TARGET_NR_sendto:
10594 return do_sendto(arg1, arg2, arg3, arg4, arg5, arg6);
10595 #endif
10596 #ifdef TARGET_NR_shutdown
10597 case TARGET_NR_shutdown:
10598 return get_errno(shutdown(arg1, arg2));
10599 #endif
10600 #if defined(TARGET_NR_getrandom) && defined(__NR_getrandom)
10601 case TARGET_NR_getrandom:
10602 p = lock_user(VERIFY_WRITE, arg1, arg2, 0);
10603 if (!p) {
10604 return -TARGET_EFAULT;
10605 }
10606 ret = get_errno(getrandom(p, arg2, arg3));
10607 unlock_user(p, arg1, ret);
10608 return ret;
10609 #endif
10610 #ifdef TARGET_NR_socket
10611 case TARGET_NR_socket:
10612 return do_socket(arg1, arg2, arg3);
10613 #endif
10614 #ifdef TARGET_NR_socketpair
10615 case TARGET_NR_socketpair:
10616 return do_socketpair(arg1, arg2, arg3, arg4);
10617 #endif
10618 #ifdef TARGET_NR_setsockopt
10619 case TARGET_NR_setsockopt:
10620 return do_setsockopt(arg1, arg2, arg3, arg4, (socklen_t) arg5);
10621 #endif
10622 #if defined(TARGET_NR_syslog)
10623 case TARGET_NR_syslog:
10624 {
10625 int len = arg2;
10626
10627 switch (arg1) {
10628 case TARGET_SYSLOG_ACTION_CLOSE: /* Close log */
10629 case TARGET_SYSLOG_ACTION_OPEN: /* Open log */
10630 case TARGET_SYSLOG_ACTION_CLEAR: /* Clear ring buffer */
10631 case TARGET_SYSLOG_ACTION_CONSOLE_OFF: /* Disable logging */
10632 case TARGET_SYSLOG_ACTION_CONSOLE_ON: /* Enable logging */
10633 case TARGET_SYSLOG_ACTION_CONSOLE_LEVEL: /* Set messages level */
10634 case TARGET_SYSLOG_ACTION_SIZE_UNREAD: /* Number of chars */
10635 case TARGET_SYSLOG_ACTION_SIZE_BUFFER: /* Size of the buffer */
10636 return get_errno(sys_syslog((int)arg1, NULL, (int)arg3));
10637 case TARGET_SYSLOG_ACTION_READ: /* Read from log */
10638 case TARGET_SYSLOG_ACTION_READ_CLEAR: /* Read/clear msgs */
10639 case TARGET_SYSLOG_ACTION_READ_ALL: /* Read last messages */
10640 {
10641 if (len < 0) {
10642 return -TARGET_EINVAL;
10643 }
10644 if (len == 0) {
10645 return 0;
10646 }
10647 p = lock_user(VERIFY_WRITE, arg2, arg3, 0);
10648 if (!p) {
10649 return -TARGET_EFAULT;
10650 }
10651 ret = get_errno(sys_syslog((int)arg1, p, (int)arg3));
10652 unlock_user(p, arg2, arg3);
10653 }
10654 return ret;
10655 default:
10656 return -TARGET_EINVAL;
10657 }
10658 }
10659 break;
10660 #endif
10661 case TARGET_NR_setitimer:
10662 {
10663 struct itimerval value, ovalue, *pvalue;
10664
10665 if (arg2) {
10666 pvalue = &value;
10667 if (copy_from_user_timeval(&pvalue->it_interval, arg2)
10668 || copy_from_user_timeval(&pvalue->it_value,
10669 arg2 + sizeof(struct target_timeval)))
10670 return -TARGET_EFAULT;
10671 } else {
10672 pvalue = NULL;
10673 }
10674 ret = get_errno(setitimer(arg1, pvalue, &ovalue));
10675 if (!is_error(ret) && arg3) {
10676 if (copy_to_user_timeval(arg3,
10677 &ovalue.it_interval)
10678 || copy_to_user_timeval(arg3 + sizeof(struct target_timeval),
10679 &ovalue.it_value))
10680 return -TARGET_EFAULT;
10681 }
10682 }
10683 return ret;
10684 case TARGET_NR_getitimer:
10685 {
10686 struct itimerval value;
10687
10688 ret = get_errno(getitimer(arg1, &value));
10689 if (!is_error(ret) && arg2) {
10690 if (copy_to_user_timeval(arg2,
10691 &value.it_interval)
10692 || copy_to_user_timeval(arg2 + sizeof(struct target_timeval),
10693 &value.it_value))
10694 return -TARGET_EFAULT;
10695 }
10696 }
10697 return ret;
10698 #ifdef TARGET_NR_stat
10699 case TARGET_NR_stat:
10700 if (!(p = lock_user_string(arg1))) {
10701 return -TARGET_EFAULT;
10702 }
10703 ret = get_errno(stat(path(p), &st));
10704 unlock_user(p, arg1, 0);
10705 goto do_stat;
10706 #endif
10707 #ifdef TARGET_NR_lstat
10708 case TARGET_NR_lstat:
10709 if (!(p = lock_user_string(arg1))) {
10710 return -TARGET_EFAULT;
10711 }
10712 ret = get_errno(lstat(path(p), &st));
10713 unlock_user(p, arg1, 0);
10714 goto do_stat;
10715 #endif
10716 #ifdef TARGET_NR_fstat
10717 case TARGET_NR_fstat:
10718 {
10719 ret = get_errno(fstat(arg1, &st));
10720 #if defined(TARGET_NR_stat) || defined(TARGET_NR_lstat)
10721 do_stat:
10722 #endif
10723 if (!is_error(ret)) {
10724 struct target_stat *target_st;
10725
10726 if (!lock_user_struct(VERIFY_WRITE, target_st, arg2, 0))
10727 return -TARGET_EFAULT;
10728 memset(target_st, 0, sizeof(*target_st));
10729 __put_user(st.st_dev, &target_st->st_dev);
10730 __put_user(st.st_ino, &target_st->st_ino);
10731 __put_user(st.st_mode, &target_st->st_mode);
10732 __put_user(st.st_uid, &target_st->st_uid);
10733 __put_user(st.st_gid, &target_st->st_gid);
10734 __put_user(st.st_nlink, &target_st->st_nlink);
10735 __put_user(st.st_rdev, &target_st->st_rdev);
10736 __put_user(st.st_size, &target_st->st_size);
10737 __put_user(st.st_blksize, &target_st->st_blksize);
10738 __put_user(st.st_blocks, &target_st->st_blocks);
10739 __put_user(st.st_atime, &target_st->target_st_atime);
10740 __put_user(st.st_mtime, &target_st->target_st_mtime);
10741 __put_user(st.st_ctime, &target_st->target_st_ctime);
10742 #if defined(HAVE_STRUCT_STAT_ST_ATIM) && defined(TARGET_STAT_HAVE_NSEC)
10743 __put_user(st.st_atim.tv_nsec,
10744 &target_st->target_st_atime_nsec);
10745 __put_user(st.st_mtim.tv_nsec,
10746 &target_st->target_st_mtime_nsec);
10747 __put_user(st.st_ctim.tv_nsec,
10748 &target_st->target_st_ctime_nsec);
10749 #endif
10750 unlock_user_struct(target_st, arg2, 1);
10751 }
10752 }
10753 return ret;
10754 #endif
10755 case TARGET_NR_vhangup:
10756 return get_errno(vhangup());
10757 #ifdef TARGET_NR_syscall
10758 case TARGET_NR_syscall:
10759 return do_syscall(cpu_env, arg1 & 0xffff, arg2, arg3, arg4, arg5,
10760 arg6, arg7, arg8, 0);
10761 #endif
10762 #if defined(TARGET_NR_wait4)
10763 case TARGET_NR_wait4:
10764 {
10765 int status;
10766 abi_long status_ptr = arg2;
10767 struct rusage rusage, *rusage_ptr;
10768 abi_ulong target_rusage = arg4;
10769 abi_long rusage_err;
10770 if (target_rusage)
10771 rusage_ptr = &rusage;
10772 else
10773 rusage_ptr = NULL;
10774 ret = get_errno(safe_wait4(arg1, &status, arg3, rusage_ptr));
10775 if (!is_error(ret)) {
10776 if (status_ptr && ret) {
10777 status = host_to_target_waitstatus(status);
10778 if (put_user_s32(status, status_ptr))
10779 return -TARGET_EFAULT;
10780 }
10781 if (target_rusage) {
10782 rusage_err = host_to_target_rusage(target_rusage, &rusage);
10783 if (rusage_err) {
10784 ret = rusage_err;
10785 }
10786 }
10787 }
10788 }
10789 return ret;
10790 #endif
10791 #ifdef TARGET_NR_swapoff
10792 case TARGET_NR_swapoff:
10793 if (!(p = lock_user_string(arg1)))
10794 return -TARGET_EFAULT;
10795 ret = get_errno(swapoff(p));
10796 unlock_user(p, arg1, 0);
10797 return ret;
10798 #endif
10799 case TARGET_NR_sysinfo:
10800 {
10801 struct target_sysinfo *target_value;
10802 struct sysinfo value;
10803 ret = get_errno(sysinfo(&value));
10804 if (!is_error(ret) && arg1)
10805 {
10806 if (!lock_user_struct(VERIFY_WRITE, target_value, arg1, 0))
10807 return -TARGET_EFAULT;
10808 __put_user(value.uptime, &target_value->uptime);
10809 __put_user(value.loads[0], &target_value->loads[0]);
10810 __put_user(value.loads[1], &target_value->loads[1]);
10811 __put_user(value.loads[2], &target_value->loads[2]);
10812 __put_user(value.totalram, &target_value->totalram);
10813 __put_user(value.freeram, &target_value->freeram);
10814 __put_user(value.sharedram, &target_value->sharedram);
10815 __put_user(value.bufferram, &target_value->bufferram);
10816 __put_user(value.totalswap, &target_value->totalswap);
10817 __put_user(value.freeswap, &target_value->freeswap);
10818 __put_user(value.procs, &target_value->procs);
10819 __put_user(value.totalhigh, &target_value->totalhigh);
10820 __put_user(value.freehigh, &target_value->freehigh);
10821 __put_user(value.mem_unit, &target_value->mem_unit);
10822 unlock_user_struct(target_value, arg1, 1);
10823 }
10824 }
10825 return ret;
10826 #ifdef TARGET_NR_ipc
10827 case TARGET_NR_ipc:
10828 return do_ipc(cpu_env, arg1, arg2, arg3, arg4, arg5, arg6);
10829 #endif
10830 #ifdef TARGET_NR_semget
10831 case TARGET_NR_semget:
10832 return get_errno(semget(arg1, arg2, arg3));
10833 #endif
10834 #ifdef TARGET_NR_semop
10835 case TARGET_NR_semop:
10836 return do_semtimedop(arg1, arg2, arg3, 0, false);
10837 #endif
10838 #ifdef TARGET_NR_semtimedop
10839 case TARGET_NR_semtimedop:
10840 return do_semtimedop(arg1, arg2, arg3, arg4, false);
10841 #endif
10842 #ifdef TARGET_NR_semtimedop_time64
10843 case TARGET_NR_semtimedop_time64:
10844 return do_semtimedop(arg1, arg2, arg3, arg4, true);
10845 #endif
10846 #ifdef TARGET_NR_semctl
10847 case TARGET_NR_semctl:
10848 return do_semctl(arg1, arg2, arg3, arg4);
10849 #endif
10850 #ifdef TARGET_NR_msgctl
10851 case TARGET_NR_msgctl:
10852 return do_msgctl(arg1, arg2, arg3);
10853 #endif
10854 #ifdef TARGET_NR_msgget
10855 case TARGET_NR_msgget:
10856 return get_errno(msgget(arg1, arg2));
10857 #endif
10858 #ifdef TARGET_NR_msgrcv
10859 case TARGET_NR_msgrcv:
10860 return do_msgrcv(arg1, arg2, arg3, arg4, arg5);
10861 #endif
10862 #ifdef TARGET_NR_msgsnd
10863 case TARGET_NR_msgsnd:
10864 return do_msgsnd(arg1, arg2, arg3, arg4);
10865 #endif
10866 #ifdef TARGET_NR_shmget
10867 case TARGET_NR_shmget:
10868 return get_errno(shmget(arg1, arg2, arg3));
10869 #endif
10870 #ifdef TARGET_NR_shmctl
10871 case TARGET_NR_shmctl:
10872 return do_shmctl(arg1, arg2, arg3);
10873 #endif
10874 #ifdef TARGET_NR_shmat
10875 case TARGET_NR_shmat:
10876 return target_shmat(cpu_env, arg1, arg2, arg3);
10877 #endif
10878 #ifdef TARGET_NR_shmdt
10879 case TARGET_NR_shmdt:
10880 return target_shmdt(arg1);
10881 #endif
10882 case TARGET_NR_fsync:
10883 return get_errno(fsync(arg1));
10884 case TARGET_NR_clone:
10885 /* Linux manages to have three different orderings for its
10886 * arguments to clone(); the BACKWARDS and BACKWARDS2 defines
10887 * match the kernel's CONFIG_CLONE_* settings.
10888 * Microblaze is further special in that it uses a sixth
10889 * implicit argument to clone for the TLS pointer.
10890 */
10891 #if defined(TARGET_MICROBLAZE)
10892 ret = get_errno(do_fork(cpu_env, arg1, arg2, arg4, arg6, arg5));
10893 #elif defined(TARGET_CLONE_BACKWARDS)
10894 ret = get_errno(do_fork(cpu_env, arg1, arg2, arg3, arg4, arg5));
10895 #elif defined(TARGET_CLONE_BACKWARDS2)
10896 ret = get_errno(do_fork(cpu_env, arg2, arg1, arg3, arg5, arg4));
10897 #else
10898 ret = get_errno(do_fork(cpu_env, arg1, arg2, arg3, arg5, arg4));
10899 #endif
10900 return ret;
10901 #ifdef __NR_exit_group
10902 /* new thread calls */
10903 case TARGET_NR_exit_group:
10904 preexit_cleanup(cpu_env, arg1);
10905 return get_errno(exit_group(arg1));
10906 #endif
10907 case TARGET_NR_setdomainname:
10908 if (!(p = lock_user_string(arg1)))
10909 return -TARGET_EFAULT;
10910 ret = get_errno(setdomainname(p, arg2));
10911 unlock_user(p, arg1, 0);
10912 return ret;
10913 case TARGET_NR_uname:
10914 /* no need to transcode because we use the linux syscall */
10915 {
10916 struct new_utsname * buf;
10917
10918 if (!lock_user_struct(VERIFY_WRITE, buf, arg1, 0))
10919 return -TARGET_EFAULT;
10920 ret = get_errno(sys_uname(buf));
10921 if (!is_error(ret)) {
10922 /* Overwrite the native machine name with whatever is being
10923 emulated. */
10924 g_strlcpy(buf->machine, cpu_to_uname_machine(cpu_env),
10925 sizeof(buf->machine));
10926 /* Allow the user to override the reported release. */
10927 if (qemu_uname_release && *qemu_uname_release) {
10928 g_strlcpy(buf->release, qemu_uname_release,
10929 sizeof(buf->release));
10930 }
10931 }
10932 unlock_user_struct(buf, arg1, 1);
10933 }
10934 return ret;
10935 #ifdef TARGET_I386
10936 case TARGET_NR_modify_ldt:
10937 return do_modify_ldt(cpu_env, arg1, arg2, arg3);
10938 #if !defined(TARGET_X86_64)
10939 case TARGET_NR_vm86:
10940 return do_vm86(cpu_env, arg1, arg2);
10941 #endif
10942 #endif
10943 #if defined(TARGET_NR_adjtimex)
10944 case TARGET_NR_adjtimex:
10945 {
10946 struct timex host_buf;
10947
10948 if (target_to_host_timex(&host_buf, arg1) != 0) {
10949 return -TARGET_EFAULT;
10950 }
10951 ret = get_errno(adjtimex(&host_buf));
10952 if (!is_error(ret)) {
10953 if (host_to_target_timex(arg1, &host_buf) != 0) {
10954 return -TARGET_EFAULT;
10955 }
10956 }
10957 }
10958 return ret;
10959 #endif
10960 #if defined(TARGET_NR_clock_adjtime) && defined(CONFIG_CLOCK_ADJTIME)
10961 case TARGET_NR_clock_adjtime:
10962 {
10963 struct timex htx;
10964
10965 if (target_to_host_timex(&htx, arg2) != 0) {
10966 return -TARGET_EFAULT;
10967 }
10968 ret = get_errno(clock_adjtime(arg1, &htx));
10969 if (!is_error(ret) && host_to_target_timex(arg2, &htx)) {
10970 return -TARGET_EFAULT;
10971 }
10972 }
10973 return ret;
10974 #endif
10975 #if defined(TARGET_NR_clock_adjtime64) && defined(CONFIG_CLOCK_ADJTIME)
10976 case TARGET_NR_clock_adjtime64:
10977 {
10978 struct timex htx;
10979
10980 if (target_to_host_timex64(&htx, arg2) != 0) {
10981 return -TARGET_EFAULT;
10982 }
10983 ret = get_errno(clock_adjtime(arg1, &htx));
10984 if (!is_error(ret) && host_to_target_timex64(arg2, &htx)) {
10985 return -TARGET_EFAULT;
10986 }
10987 }
10988 return ret;
10989 #endif
10990 case TARGET_NR_getpgid:
10991 return get_errno(getpgid(arg1));
10992 case TARGET_NR_fchdir:
10993 return get_errno(fchdir(arg1));
10994 case TARGET_NR_personality:
10995 return get_errno(personality(arg1));
10996 #ifdef TARGET_NR__llseek /* Not on alpha */
10997 case TARGET_NR__llseek:
10998 {
10999 int64_t res;
11000 #if !defined(__NR_llseek)
11001 res = lseek(arg1, ((uint64_t)arg2 << 32) | (abi_ulong)arg3, arg5);
11002 if (res == -1) {
11003 ret = get_errno(res);
11004 } else {
11005 ret = 0;
11006 }
11007 #else
11008 ret = get_errno(_llseek(arg1, arg2, arg3, &res, arg5));
11009 #endif
11010 if ((ret == 0) && put_user_s64(res, arg4)) {
11011 return -TARGET_EFAULT;
11012 }
11013 }
11014 return ret;
11015 #endif
11016 #ifdef TARGET_NR_getdents
11017 case TARGET_NR_getdents:
11018 return do_getdents(arg1, arg2, arg3);
11019 #endif /* TARGET_NR_getdents */
11020 #if defined(TARGET_NR_getdents64) && defined(__NR_getdents64)
11021 case TARGET_NR_getdents64:
11022 return do_getdents64(arg1, arg2, arg3);
11023 #endif /* TARGET_NR_getdents64 */
11024 #if defined(TARGET_NR__newselect)
11025 case TARGET_NR__newselect:
11026 return do_select(arg1, arg2, arg3, arg4, arg5);
11027 #endif
11028 #ifdef TARGET_NR_poll
11029 case TARGET_NR_poll:
11030 return do_ppoll(arg1, arg2, arg3, arg4, arg5, false, false);
11031 #endif
11032 #ifdef TARGET_NR_ppoll
11033 case TARGET_NR_ppoll:
11034 return do_ppoll(arg1, arg2, arg3, arg4, arg5, true, false);
11035 #endif
11036 #ifdef TARGET_NR_ppoll_time64
11037 case TARGET_NR_ppoll_time64:
11038 return do_ppoll(arg1, arg2, arg3, arg4, arg5, true, true);
11039 #endif
11040 case TARGET_NR_flock:
11041 /* NOTE: the flock constant seems to be the same for every
11042 Linux platform */
11043 return get_errno(safe_flock(arg1, arg2));
11044 case TARGET_NR_readv:
11045 {
11046 struct iovec *vec = lock_iovec(VERIFY_WRITE, arg2, arg3, 0);
11047 if (vec != NULL) {
11048 ret = get_errno(safe_readv(arg1, vec, arg3));
11049 unlock_iovec(vec, arg2, arg3, 1);
11050 } else {
11051 ret = -host_to_target_errno(errno);
11052 }
11053 }
11054 return ret;
11055 case TARGET_NR_writev:
11056 {
11057 struct iovec *vec = lock_iovec(VERIFY_READ, arg2, arg3, 1);
11058 if (vec != NULL) {
11059 ret = get_errno(safe_writev(arg1, vec, arg3));
11060 unlock_iovec(vec, arg2, arg3, 0);
11061 } else {
11062 ret = -host_to_target_errno(errno);
11063 }
11064 }
11065 return ret;
11066 #if defined(TARGET_NR_preadv)
11067 case TARGET_NR_preadv:
11068 {
11069 struct iovec *vec = lock_iovec(VERIFY_WRITE, arg2, arg3, 0);
11070 if (vec != NULL) {
11071 unsigned long low, high;
11072
11073 target_to_host_low_high(arg4, arg5, &low, &high);
11074 ret = get_errno(safe_preadv(arg1, vec, arg3, low, high));
11075 unlock_iovec(vec, arg2, arg3, 1);
11076 } else {
11077 ret = -host_to_target_errno(errno);
11078 }
11079 }
11080 return ret;
11081 #endif
11082 #if defined(TARGET_NR_pwritev)
11083 case TARGET_NR_pwritev:
11084 {
11085 struct iovec *vec = lock_iovec(VERIFY_READ, arg2, arg3, 1);
11086 if (vec != NULL) {
11087 unsigned long low, high;
11088
11089 target_to_host_low_high(arg4, arg5, &low, &high);
11090 ret = get_errno(safe_pwritev(arg1, vec, arg3, low, high));
11091 unlock_iovec(vec, arg2, arg3, 0);
11092 } else {
11093 ret = -host_to_target_errno(errno);
11094 }
11095 }
11096 return ret;
11097 #endif
11098 case TARGET_NR_getsid:
11099 return get_errno(getsid(arg1));
11100 #if defined(TARGET_NR_fdatasync) /* Not on alpha (osf_datasync ?) */
11101 case TARGET_NR_fdatasync:
11102 return get_errno(fdatasync(arg1));
11103 #endif
11104 case TARGET_NR_sched_getaffinity:
11105 {
11106 unsigned int mask_size;
11107 unsigned long *mask;
11108
11109 /*
11110 * sched_getaffinity needs multiples of ulong, so need to take
11111 * care of mismatches between target ulong and host ulong sizes.
11112 */
11113 if (arg2 & (sizeof(abi_ulong) - 1)) {
11114 return -TARGET_EINVAL;
11115 }
11116 mask_size = (arg2 + (sizeof(*mask) - 1)) & ~(sizeof(*mask) - 1);
11117
11118 mask = alloca(mask_size);
11119 memset(mask, 0, mask_size);
11120 ret = get_errno(sys_sched_getaffinity(arg1, mask_size, mask));
11121
11122 if (!is_error(ret)) {
11123 if (ret > arg2) {
11124 /* More data returned than the caller's buffer will fit.
11125 * This only happens if sizeof(abi_long) < sizeof(long)
11126 * and the caller passed us a buffer holding an odd number
11127 * of abi_longs. If the host kernel is actually using the
11128 * extra 4 bytes then fail EINVAL; otherwise we can just
11129 * ignore them and only copy the interesting part.
11130 */
11131 int numcpus = sysconf(_SC_NPROCESSORS_CONF);
11132 if (numcpus > arg2 * 8) {
11133 return -TARGET_EINVAL;
11134 }
11135 ret = arg2;
11136 }
11137
11138 if (host_to_target_cpu_mask(mask, mask_size, arg3, ret)) {
11139 return -TARGET_EFAULT;
11140 }
11141 }
11142 }
11143 return ret;
11144 case TARGET_NR_sched_setaffinity:
11145 {
11146 unsigned int mask_size;
11147 unsigned long *mask;
11148
11149 /*
11150 * sched_setaffinity needs multiples of ulong, so need to take
11151 * care of mismatches between target ulong and host ulong sizes.
11152 */
11153 if (arg2 & (sizeof(abi_ulong) - 1)) {
11154 return -TARGET_EINVAL;
11155 }
11156 mask_size = (arg2 + (sizeof(*mask) - 1)) & ~(sizeof(*mask) - 1);
11157 mask = alloca(mask_size);
11158
11159 ret = target_to_host_cpu_mask(mask, mask_size, arg3, arg2);
11160 if (ret) {
11161 return ret;
11162 }
11163
11164 return get_errno(sys_sched_setaffinity(arg1, mask_size, mask));
11165 }
11166 case TARGET_NR_getcpu:
11167 {
11168 unsigned cpu, node;
11169 ret = get_errno(sys_getcpu(arg1 ? &cpu : NULL,
11170 arg2 ? &node : NULL,
11171 NULL));
11172 if (is_error(ret)) {
11173 return ret;
11174 }
11175 if (arg1 && put_user_u32(cpu, arg1)) {
11176 return -TARGET_EFAULT;
11177 }
11178 if (arg2 && put_user_u32(node, arg2)) {
11179 return -TARGET_EFAULT;
11180 }
11181 }
11182 return ret;
11183 case TARGET_NR_sched_setparam:
11184 {
11185 struct target_sched_param *target_schp;
11186 struct sched_param schp;
11187
11188 if (arg2 == 0) {
11189 return -TARGET_EINVAL;
11190 }
11191 if (!lock_user_struct(VERIFY_READ, target_schp, arg2, 1)) {
11192 return -TARGET_EFAULT;
11193 }
11194 schp.sched_priority = tswap32(target_schp->sched_priority);
11195 unlock_user_struct(target_schp, arg2, 0);
11196 return get_errno(sys_sched_setparam(arg1, &schp));
11197 }
11198 case TARGET_NR_sched_getparam:
11199 {
11200 struct target_sched_param *target_schp;
11201 struct sched_param schp;
11202
11203 if (arg2 == 0) {
11204 return -TARGET_EINVAL;
11205 }
11206 ret = get_errno(sys_sched_getparam(arg1, &schp));
11207 if (!is_error(ret)) {
11208 if (!lock_user_struct(VERIFY_WRITE, target_schp, arg2, 0)) {
11209 return -TARGET_EFAULT;
11210 }
11211 target_schp->sched_priority = tswap32(schp.sched_priority);
11212 unlock_user_struct(target_schp, arg2, 1);
11213 }
11214 }
11215 return ret;
11216 case TARGET_NR_sched_setscheduler:
11217 {
11218 struct target_sched_param *target_schp;
11219 struct sched_param schp;
11220 if (arg3 == 0) {
11221 return -TARGET_EINVAL;
11222 }
11223 if (!lock_user_struct(VERIFY_READ, target_schp, arg3, 1)) {
11224 return -TARGET_EFAULT;
11225 }
11226 schp.sched_priority = tswap32(target_schp->sched_priority);
11227 unlock_user_struct(target_schp, arg3, 0);
11228 return get_errno(sys_sched_setscheduler(arg1, arg2, &schp));
11229 }
11230 case TARGET_NR_sched_getscheduler:
11231 return get_errno(sys_sched_getscheduler(arg1));
11232 case TARGET_NR_sched_getattr:
11233 {
11234 struct target_sched_attr *target_scha;
11235 struct sched_attr scha;
11236 if (arg2 == 0) {
11237 return -TARGET_EINVAL;
11238 }
11239 if (arg3 > sizeof(scha)) {
11240 arg3 = sizeof(scha);
11241 }
11242 ret = get_errno(sys_sched_getattr(arg1, &scha, arg3, arg4));
11243 if (!is_error(ret)) {
11244 target_scha = lock_user(VERIFY_WRITE, arg2, arg3, 0);
11245 if (!target_scha) {
11246 return -TARGET_EFAULT;
11247 }
11248 target_scha->size = tswap32(scha.size);
11249 target_scha->sched_policy = tswap32(scha.sched_policy);
11250 target_scha->sched_flags = tswap64(scha.sched_flags);
11251 target_scha->sched_nice = tswap32(scha.sched_nice);
11252 target_scha->sched_priority = tswap32(scha.sched_priority);
11253 target_scha->sched_runtime = tswap64(scha.sched_runtime);
11254 target_scha->sched_deadline = tswap64(scha.sched_deadline);
11255 target_scha->sched_period = tswap64(scha.sched_period);
11256 if (scha.size > offsetof(struct sched_attr, sched_util_min)) {
11257 target_scha->sched_util_min = tswap32(scha.sched_util_min);
11258 target_scha->sched_util_max = tswap32(scha.sched_util_max);
11259 }
11260 unlock_user(target_scha, arg2, arg3);
11261 }
11262 return ret;
11263 }
11264 case TARGET_NR_sched_setattr:
11265 {
11266 struct target_sched_attr *target_scha;
11267 struct sched_attr scha;
11268 uint32_t size;
11269 int zeroed;
11270 if (arg2 == 0) {
11271 return -TARGET_EINVAL;
11272 }
11273 if (get_user_u32(size, arg2)) {
11274 return -TARGET_EFAULT;
11275 }
11276 if (!size) {
11277 size = offsetof(struct target_sched_attr, sched_util_min);
11278 }
11279 if (size < offsetof(struct target_sched_attr, sched_util_min)) {
11280 if (put_user_u32(sizeof(struct target_sched_attr), arg2)) {
11281 return -TARGET_EFAULT;
11282 }
11283 return -TARGET_E2BIG;
11284 }
11285
11286 zeroed = check_zeroed_user(arg2, sizeof(struct target_sched_attr), size);
11287 if (zeroed < 0) {
11288 return zeroed;
11289 } else if (zeroed == 0) {
11290 if (put_user_u32(sizeof(struct target_sched_attr), arg2)) {
11291 return -TARGET_EFAULT;
11292 }
11293 return -TARGET_E2BIG;
11294 }
11295 if (size > sizeof(struct target_sched_attr)) {
11296 size = sizeof(struct target_sched_attr);
11297 }
11298
11299 target_scha = lock_user(VERIFY_READ, arg2, size, 1);
11300 if (!target_scha) {
11301 return -TARGET_EFAULT;
11302 }
11303 scha.size = size;
11304 scha.sched_policy = tswap32(target_scha->sched_policy);
11305 scha.sched_flags = tswap64(target_scha->sched_flags);
11306 scha.sched_nice = tswap32(target_scha->sched_nice);
11307 scha.sched_priority = tswap32(target_scha->sched_priority);
11308 scha.sched_runtime = tswap64(target_scha->sched_runtime);
11309 scha.sched_deadline = tswap64(target_scha->sched_deadline);
11310 scha.sched_period = tswap64(target_scha->sched_period);
11311 if (size > offsetof(struct target_sched_attr, sched_util_min)) {
11312 scha.sched_util_min = tswap32(target_scha->sched_util_min);
11313 scha.sched_util_max = tswap32(target_scha->sched_util_max);
11314 }
11315 unlock_user(target_scha, arg2, 0);
11316 return get_errno(sys_sched_setattr(arg1, &scha, arg3));
11317 }
11318 case TARGET_NR_sched_yield:
11319 return get_errno(sched_yield());
11320 case TARGET_NR_sched_get_priority_max:
11321 return get_errno(sched_get_priority_max(arg1));
11322 case TARGET_NR_sched_get_priority_min:
11323 return get_errno(sched_get_priority_min(arg1));
11324 #ifdef TARGET_NR_sched_rr_get_interval
11325 case TARGET_NR_sched_rr_get_interval:
11326 {
11327 struct timespec ts;
11328 ret = get_errno(sched_rr_get_interval(arg1, &ts));
11329 if (!is_error(ret)) {
11330 ret = host_to_target_timespec(arg2, &ts);
11331 }
11332 }
11333 return ret;
11334 #endif
11335 #ifdef TARGET_NR_sched_rr_get_interval_time64
11336 case TARGET_NR_sched_rr_get_interval_time64:
11337 {
11338 struct timespec ts;
11339 ret = get_errno(sched_rr_get_interval(arg1, &ts));
11340 if (!is_error(ret)) {
11341 ret = host_to_target_timespec64(arg2, &ts);
11342 }
11343 }
11344 return ret;
11345 #endif
11346 #if defined(TARGET_NR_nanosleep)
11347 case TARGET_NR_nanosleep:
11348 {
11349 struct timespec req, rem;
11350 target_to_host_timespec(&req, arg1);
11351 ret = get_errno(safe_nanosleep(&req, &rem));
11352 if (is_error(ret) && arg2) {
11353 host_to_target_timespec(arg2, &rem);
11354 }
11355 }
11356 return ret;
11357 #endif
11358 case TARGET_NR_prctl:
11359 return do_prctl(cpu_env, arg1, arg2, arg3, arg4, arg5);
11360 break;
11361 #ifdef TARGET_NR_arch_prctl
11362 case TARGET_NR_arch_prctl:
11363 return do_arch_prctl(cpu_env, arg1, arg2);
11364 #endif
11365 #ifdef TARGET_NR_pread64
11366 case TARGET_NR_pread64:
11367 if (regpairs_aligned(cpu_env, num)) {
11368 arg4 = arg5;
11369 arg5 = arg6;
11370 }
11371 if (arg2 == 0 && arg3 == 0) {
11372 /* Special-case NULL buffer and zero length, which should succeed */
11373 p = 0;
11374 } else {
11375 p = lock_user(VERIFY_WRITE, arg2, arg3, 0);
11376 if (!p) {
11377 return -TARGET_EFAULT;
11378 }
11379 }
11380 ret = get_errno(pread64(arg1, p, arg3, target_offset64(arg4, arg5)));
11381 unlock_user(p, arg2, ret);
11382 return ret;
11383 case TARGET_NR_pwrite64:
11384 if (regpairs_aligned(cpu_env, num)) {
11385 arg4 = arg5;
11386 arg5 = arg6;
11387 }
11388 if (arg2 == 0 && arg3 == 0) {
11389 /* Special-case NULL buffer and zero length, which should succeed */
11390 p = 0;
11391 } else {
11392 p = lock_user(VERIFY_READ, arg2, arg3, 1);
11393 if (!p) {
11394 return -TARGET_EFAULT;
11395 }
11396 }
11397 ret = get_errno(pwrite64(arg1, p, arg3, target_offset64(arg4, arg5)));
11398 unlock_user(p, arg2, 0);
11399 return ret;
11400 #endif
11401 case TARGET_NR_getcwd:
11402 if (!(p = lock_user(VERIFY_WRITE, arg1, arg2, 0)))
11403 return -TARGET_EFAULT;
11404 ret = get_errno(sys_getcwd1(p, arg2));
11405 unlock_user(p, arg1, ret);
11406 return ret;
11407 case TARGET_NR_capget:
11408 case TARGET_NR_capset:
11409 {
11410 struct target_user_cap_header *target_header;
11411 struct target_user_cap_data *target_data = NULL;
11412 struct __user_cap_header_struct header;
11413 struct __user_cap_data_struct data[2];
11414 struct __user_cap_data_struct *dataptr = NULL;
11415 int i, target_datalen;
11416 int data_items = 1;
11417
11418 if (!lock_user_struct(VERIFY_WRITE, target_header, arg1, 1)) {
11419 return -TARGET_EFAULT;
11420 }
11421 header.version = tswap32(target_header->version);
11422 header.pid = tswap32(target_header->pid);
11423
11424 if (header.version != _LINUX_CAPABILITY_VERSION) {
11425 /* Version 2 and up takes pointer to two user_data structs */
11426 data_items = 2;
11427 }
11428
11429 target_datalen = sizeof(*target_data) * data_items;
11430
11431 if (arg2) {
11432 if (num == TARGET_NR_capget) {
11433 target_data = lock_user(VERIFY_WRITE, arg2, target_datalen, 0);
11434 } else {
11435 target_data = lock_user(VERIFY_READ, arg2, target_datalen, 1);
11436 }
11437 if (!target_data) {
11438 unlock_user_struct(target_header, arg1, 0);
11439 return -TARGET_EFAULT;
11440 }
11441
11442 if (num == TARGET_NR_capset) {
11443 for (i = 0; i < data_items; i++) {
11444 data[i].effective = tswap32(target_data[i].effective);
11445 data[i].permitted = tswap32(target_data[i].permitted);
11446 data[i].inheritable = tswap32(target_data[i].inheritable);
11447 }
11448 }
11449
11450 dataptr = data;
11451 }
11452
11453 if (num == TARGET_NR_capget) {
11454 ret = get_errno(capget(&header, dataptr));
11455 } else {
11456 ret = get_errno(capset(&header, dataptr));
11457 }
11458
11459 /* The kernel always updates version for both capget and capset */
11460 target_header->version = tswap32(header.version);
11461 unlock_user_struct(target_header, arg1, 1);
11462
11463 if (arg2) {
11464 if (num == TARGET_NR_capget) {
11465 for (i = 0; i < data_items; i++) {
11466 target_data[i].effective = tswap32(data[i].effective);
11467 target_data[i].permitted = tswap32(data[i].permitted);
11468 target_data[i].inheritable = tswap32(data[i].inheritable);
11469 }
11470 unlock_user(target_data, arg2, target_datalen);
11471 } else {
11472 unlock_user(target_data, arg2, 0);
11473 }
11474 }
11475 return ret;
11476 }
11477 case TARGET_NR_sigaltstack:
11478 return do_sigaltstack(arg1, arg2, cpu_env);
11479
11480 #ifdef CONFIG_SENDFILE
11481 #ifdef TARGET_NR_sendfile
11482 case TARGET_NR_sendfile:
11483 {
11484 off_t *offp = NULL;
11485 off_t off;
11486 if (arg3) {
11487 ret = get_user_sal(off, arg3);
11488 if (is_error(ret)) {
11489 return ret;
11490 }
11491 offp = &off;
11492 }
11493 ret = get_errno(sendfile(arg1, arg2, offp, arg4));
11494 if (!is_error(ret) && arg3) {
11495 abi_long ret2 = put_user_sal(off, arg3);
11496 if (is_error(ret2)) {
11497 ret = ret2;
11498 }
11499 }
11500 return ret;
11501 }
11502 #endif
11503 #ifdef TARGET_NR_sendfile64
11504 case TARGET_NR_sendfile64:
11505 {
11506 off_t *offp = NULL;
11507 off_t off;
11508 if (arg3) {
11509 ret = get_user_s64(off, arg3);
11510 if (is_error(ret)) {
11511 return ret;
11512 }
11513 offp = &off;
11514 }
11515 ret = get_errno(sendfile(arg1, arg2, offp, arg4));
11516 if (!is_error(ret) && arg3) {
11517 abi_long ret2 = put_user_s64(off, arg3);
11518 if (is_error(ret2)) {
11519 ret = ret2;
11520 }
11521 }
11522 return ret;
11523 }
11524 #endif
11525 #endif
11526 #ifdef TARGET_NR_vfork
11527 case TARGET_NR_vfork:
11528 return get_errno(do_fork(cpu_env,
11529 CLONE_VFORK | CLONE_VM | TARGET_SIGCHLD,
11530 0, 0, 0, 0));
11531 #endif
11532 #ifdef TARGET_NR_ugetrlimit
11533 case TARGET_NR_ugetrlimit:
11534 {
11535 struct rlimit rlim;
11536 int resource = target_to_host_resource(arg1);
11537 ret = get_errno(getrlimit(resource, &rlim));
11538 if (!is_error(ret)) {
11539 struct target_rlimit *target_rlim;
11540 if (!lock_user_struct(VERIFY_WRITE, target_rlim, arg2, 0))
11541 return -TARGET_EFAULT;
11542 target_rlim->rlim_cur = host_to_target_rlim(rlim.rlim_cur);
11543 target_rlim->rlim_max = host_to_target_rlim(rlim.rlim_max);
11544 unlock_user_struct(target_rlim, arg2, 1);
11545 }
11546 return ret;
11547 }
11548 #endif
11549 #ifdef TARGET_NR_truncate64
11550 case TARGET_NR_truncate64:
11551 if (!(p = lock_user_string(arg1)))
11552 return -TARGET_EFAULT;
11553 ret = target_truncate64(cpu_env, p, arg2, arg3, arg4);
11554 unlock_user(p, arg1, 0);
11555 return ret;
11556 #endif
11557 #ifdef TARGET_NR_ftruncate64
11558 case TARGET_NR_ftruncate64:
11559 return target_ftruncate64(cpu_env, arg1, arg2, arg3, arg4);
11560 #endif
11561 #ifdef TARGET_NR_stat64
11562 case TARGET_NR_stat64:
11563 if (!(p = lock_user_string(arg1))) {
11564 return -TARGET_EFAULT;
11565 }
11566 ret = get_errno(stat(path(p), &st));
11567 unlock_user(p, arg1, 0);
11568 if (!is_error(ret))
11569 ret = host_to_target_stat64(cpu_env, arg2, &st);
11570 return ret;
11571 #endif
11572 #ifdef TARGET_NR_lstat64
11573 case TARGET_NR_lstat64:
11574 if (!(p = lock_user_string(arg1))) {
11575 return -TARGET_EFAULT;
11576 }
11577 ret = get_errno(lstat(path(p), &st));
11578 unlock_user(p, arg1, 0);
11579 if (!is_error(ret))
11580 ret = host_to_target_stat64(cpu_env, arg2, &st);
11581 return ret;
11582 #endif
11583 #ifdef TARGET_NR_fstat64
11584 case TARGET_NR_fstat64:
11585 ret = get_errno(fstat(arg1, &st));
11586 if (!is_error(ret))
11587 ret = host_to_target_stat64(cpu_env, arg2, &st);
11588 return ret;
11589 #endif
11590 #if (defined(TARGET_NR_fstatat64) || defined(TARGET_NR_newfstatat))
11591 #ifdef TARGET_NR_fstatat64
11592 case TARGET_NR_fstatat64:
11593 #endif
11594 #ifdef TARGET_NR_newfstatat
11595 case TARGET_NR_newfstatat:
11596 #endif
11597 if (!(p = lock_user_string(arg2))) {
11598 return -TARGET_EFAULT;
11599 }
11600 ret = get_errno(fstatat(arg1, path(p), &st, arg4));
11601 unlock_user(p, arg2, 0);
11602 if (!is_error(ret))
11603 ret = host_to_target_stat64(cpu_env, arg3, &st);
11604 return ret;
11605 #endif
11606 #if defined(TARGET_NR_statx)
11607 case TARGET_NR_statx:
11608 {
11609 struct target_statx *target_stx;
11610 int dirfd = arg1;
11611 int flags = arg3;
11612
11613 p = lock_user_string(arg2);
11614 if (p == NULL) {
11615 return -TARGET_EFAULT;
11616 }
11617 #if defined(__NR_statx)
11618 {
11619 /*
11620 * It is assumed that struct statx is architecture independent.
11621 */
11622 struct target_statx host_stx;
11623 int mask = arg4;
11624
11625 ret = get_errno(sys_statx(dirfd, p, flags, mask, &host_stx));
11626 if (!is_error(ret)) {
11627 if (host_to_target_statx(&host_stx, arg5) != 0) {
11628 unlock_user(p, arg2, 0);
11629 return -TARGET_EFAULT;
11630 }
11631 }
11632
11633 if (ret != -TARGET_ENOSYS) {
11634 unlock_user(p, arg2, 0);
11635 return ret;
11636 }
11637 }
11638 #endif
11639 ret = get_errno(fstatat(dirfd, path(p), &st, flags));
11640 unlock_user(p, arg2, 0);
11641
11642 if (!is_error(ret)) {
11643 if (!lock_user_struct(VERIFY_WRITE, target_stx, arg5, 0)) {
11644 return -TARGET_EFAULT;
11645 }
11646 memset(target_stx, 0, sizeof(*target_stx));
11647 __put_user(major(st.st_dev), &target_stx->stx_dev_major);
11648 __put_user(minor(st.st_dev), &target_stx->stx_dev_minor);
11649 __put_user(st.st_ino, &target_stx->stx_ino);
11650 __put_user(st.st_mode, &target_stx->stx_mode);
11651 __put_user(st.st_uid, &target_stx->stx_uid);
11652 __put_user(st.st_gid, &target_stx->stx_gid);
11653 __put_user(st.st_nlink, &target_stx->stx_nlink);
11654 __put_user(major(st.st_rdev), &target_stx->stx_rdev_major);
11655 __put_user(minor(st.st_rdev), &target_stx->stx_rdev_minor);
11656 __put_user(st.st_size, &target_stx->stx_size);
11657 __put_user(st.st_blksize, &target_stx->stx_blksize);
11658 __put_user(st.st_blocks, &target_stx->stx_blocks);
11659 __put_user(st.st_atime, &target_stx->stx_atime.tv_sec);
11660 __put_user(st.st_mtime, &target_stx->stx_mtime.tv_sec);
11661 __put_user(st.st_ctime, &target_stx->stx_ctime.tv_sec);
11662 unlock_user_struct(target_stx, arg5, 1);
11663 }
11664 }
11665 return ret;
11666 #endif
11667 #ifdef TARGET_NR_lchown
11668 case TARGET_NR_lchown:
11669 if (!(p = lock_user_string(arg1)))
11670 return -TARGET_EFAULT;
11671 ret = get_errno(lchown(p, low2highuid(arg2), low2highgid(arg3)));
11672 unlock_user(p, arg1, 0);
11673 return ret;
11674 #endif
11675 #ifdef TARGET_NR_getuid
11676 case TARGET_NR_getuid:
11677 return get_errno(high2lowuid(getuid()));
11678 #endif
11679 #ifdef TARGET_NR_getgid
11680 case TARGET_NR_getgid:
11681 return get_errno(high2lowgid(getgid()));
11682 #endif
11683 #ifdef TARGET_NR_geteuid
11684 case TARGET_NR_geteuid:
11685 return get_errno(high2lowuid(geteuid()));
11686 #endif
11687 #ifdef TARGET_NR_getegid
11688 case TARGET_NR_getegid:
11689 return get_errno(high2lowgid(getegid()));
11690 #endif
11691 case TARGET_NR_setreuid:
11692 return get_errno(setreuid(low2highuid(arg1), low2highuid(arg2)));
11693 case TARGET_NR_setregid:
11694 return get_errno(setregid(low2highgid(arg1), low2highgid(arg2)));
11695 case TARGET_NR_getgroups:
11696 { /* the same code as for TARGET_NR_getgroups32 */
11697 int gidsetsize = arg1;
11698 target_id *target_grouplist;
11699 g_autofree gid_t *grouplist = NULL;
11700 int i;
11701
11702 if (gidsetsize > NGROUPS_MAX || gidsetsize < 0) {
11703 return -TARGET_EINVAL;
11704 }
11705 if (gidsetsize > 0) {
11706 grouplist = g_try_new(gid_t, gidsetsize);
11707 if (!grouplist) {
11708 return -TARGET_ENOMEM;
11709 }
11710 }
11711 ret = get_errno(getgroups(gidsetsize, grouplist));
11712 if (!is_error(ret) && gidsetsize > 0) {
11713 target_grouplist = lock_user(VERIFY_WRITE, arg2,
11714 gidsetsize * sizeof(target_id), 0);
11715 if (!target_grouplist) {
11716 return -TARGET_EFAULT;
11717 }
11718 for (i = 0; i < ret; i++) {
11719 target_grouplist[i] = tswapid(high2lowgid(grouplist[i]));
11720 }
11721 unlock_user(target_grouplist, arg2,
11722 gidsetsize * sizeof(target_id));
11723 }
11724 return ret;
11725 }
11726 case TARGET_NR_setgroups:
11727 { /* the same code as for TARGET_NR_setgroups32 */
11728 int gidsetsize = arg1;
11729 target_id *target_grouplist;
11730 g_autofree gid_t *grouplist = NULL;
11731 int i;
11732
11733 if (gidsetsize > NGROUPS_MAX || gidsetsize < 0) {
11734 return -TARGET_EINVAL;
11735 }
11736 if (gidsetsize > 0) {
11737 grouplist = g_try_new(gid_t, gidsetsize);
11738 if (!grouplist) {
11739 return -TARGET_ENOMEM;
11740 }
11741 target_grouplist = lock_user(VERIFY_READ, arg2,
11742 gidsetsize * sizeof(target_id), 1);
11743 if (!target_grouplist) {
11744 return -TARGET_EFAULT;
11745 }
11746 for (i = 0; i < gidsetsize; i++) {
11747 grouplist[i] = low2highgid(tswapid(target_grouplist[i]));
11748 }
11749 unlock_user(target_grouplist, arg2,
11750 gidsetsize * sizeof(target_id));
11751 }
11752 return get_errno(setgroups(gidsetsize, grouplist));
11753 }
11754 case TARGET_NR_fchown:
11755 return get_errno(fchown(arg1, low2highuid(arg2), low2highgid(arg3)));
11756 #if defined(TARGET_NR_fchownat)
11757 case TARGET_NR_fchownat:
11758 if (!(p = lock_user_string(arg2)))
11759 return -TARGET_EFAULT;
11760 ret = get_errno(fchownat(arg1, p, low2highuid(arg3),
11761 low2highgid(arg4), arg5));
11762 unlock_user(p, arg2, 0);
11763 return ret;
11764 #endif
11765 #ifdef TARGET_NR_setresuid
11766 case TARGET_NR_setresuid:
11767 return get_errno(sys_setresuid(low2highuid(arg1),
11768 low2highuid(arg2),
11769 low2highuid(arg3)));
11770 #endif
11771 #ifdef TARGET_NR_getresuid
11772 case TARGET_NR_getresuid:
11773 {
11774 uid_t ruid, euid, suid;
11775 ret = get_errno(getresuid(&ruid, &euid, &suid));
11776 if (!is_error(ret)) {
11777 if (put_user_id(high2lowuid(ruid), arg1)
11778 || put_user_id(high2lowuid(euid), arg2)
11779 || put_user_id(high2lowuid(suid), arg3))
11780 return -TARGET_EFAULT;
11781 }
11782 }
11783 return ret;
11784 #endif
11785 #ifdef TARGET_NR_getresgid
11786 case TARGET_NR_setresgid:
11787 return get_errno(sys_setresgid(low2highgid(arg1),
11788 low2highgid(arg2),
11789 low2highgid(arg3)));
11790 #endif
11791 #ifdef TARGET_NR_getresgid
11792 case TARGET_NR_getresgid:
11793 {
11794 gid_t rgid, egid, sgid;
11795 ret = get_errno(getresgid(&rgid, &egid, &sgid));
11796 if (!is_error(ret)) {
11797 if (put_user_id(high2lowgid(rgid), arg1)
11798 || put_user_id(high2lowgid(egid), arg2)
11799 || put_user_id(high2lowgid(sgid), arg3))
11800 return -TARGET_EFAULT;
11801 }
11802 }
11803 return ret;
11804 #endif
11805 #ifdef TARGET_NR_chown
11806 case TARGET_NR_chown:
11807 if (!(p = lock_user_string(arg1)))
11808 return -TARGET_EFAULT;
11809 ret = get_errno(chown(p, low2highuid(arg2), low2highgid(arg3)));
11810 unlock_user(p, arg1, 0);
11811 return ret;
11812 #endif
11813 case TARGET_NR_setuid:
11814 return get_errno(sys_setuid(low2highuid(arg1)));
11815 case TARGET_NR_setgid:
11816 return get_errno(sys_setgid(low2highgid(arg1)));
11817 case TARGET_NR_setfsuid:
11818 return get_errno(setfsuid(arg1));
11819 case TARGET_NR_setfsgid:
11820 return get_errno(setfsgid(arg1));
11821
11822 #ifdef TARGET_NR_lchown32
11823 case TARGET_NR_lchown32:
11824 if (!(p = lock_user_string(arg1)))
11825 return -TARGET_EFAULT;
11826 ret = get_errno(lchown(p, arg2, arg3));
11827 unlock_user(p, arg1, 0);
11828 return ret;
11829 #endif
11830 #ifdef TARGET_NR_getuid32
11831 case TARGET_NR_getuid32:
11832 return get_errno(getuid());
11833 #endif
11834
11835 #if defined(TARGET_NR_getxuid) && defined(TARGET_ALPHA)
11836 /* Alpha specific */
11837 case TARGET_NR_getxuid:
11838 {
11839 uid_t euid;
11840 euid=geteuid();
11841 cpu_env->ir[IR_A4]=euid;
11842 }
11843 return get_errno(getuid());
11844 #endif
11845 #if defined(TARGET_NR_getxgid) && defined(TARGET_ALPHA)
11846 /* Alpha specific */
11847 case TARGET_NR_getxgid:
11848 {
11849 uid_t egid;
11850 egid=getegid();
11851 cpu_env->ir[IR_A4]=egid;
11852 }
11853 return get_errno(getgid());
11854 #endif
11855 #if defined(TARGET_NR_osf_getsysinfo) && defined(TARGET_ALPHA)
11856 /* Alpha specific */
11857 case TARGET_NR_osf_getsysinfo:
11858 ret = -TARGET_EOPNOTSUPP;
11859 switch (arg1) {
11860 case TARGET_GSI_IEEE_FP_CONTROL:
11861 {
11862 uint64_t fpcr = cpu_alpha_load_fpcr(cpu_env);
11863 uint64_t swcr = cpu_env->swcr;
11864
11865 swcr &= ~SWCR_STATUS_MASK;
11866 swcr |= (fpcr >> 35) & SWCR_STATUS_MASK;
11867
11868 if (put_user_u64 (swcr, arg2))
11869 return -TARGET_EFAULT;
11870 ret = 0;
11871 }
11872 break;
11873
11874 /* case GSI_IEEE_STATE_AT_SIGNAL:
11875 -- Not implemented in linux kernel.
11876 case GSI_UACPROC:
11877 -- Retrieves current unaligned access state; not much used.
11878 case GSI_PROC_TYPE:
11879 -- Retrieves implver information; surely not used.
11880 case GSI_GET_HWRPB:
11881 -- Grabs a copy of the HWRPB; surely not used.
11882 */
11883 }
11884 return ret;
11885 #endif
11886 #if defined(TARGET_NR_osf_setsysinfo) && defined(TARGET_ALPHA)
11887 /* Alpha specific */
11888 case TARGET_NR_osf_setsysinfo:
11889 ret = -TARGET_EOPNOTSUPP;
11890 switch (arg1) {
11891 case TARGET_SSI_IEEE_FP_CONTROL:
11892 {
11893 uint64_t swcr, fpcr;
11894
11895 if (get_user_u64 (swcr, arg2)) {
11896 return -TARGET_EFAULT;
11897 }
11898
11899 /*
11900 * The kernel calls swcr_update_status to update the
11901 * status bits from the fpcr at every point that it
11902 * could be queried. Therefore, we store the status
11903 * bits only in FPCR.
11904 */
11905 cpu_env->swcr = swcr & (SWCR_TRAP_ENABLE_MASK | SWCR_MAP_MASK);
11906
11907 fpcr = cpu_alpha_load_fpcr(cpu_env);
11908 fpcr &= ((uint64_t)FPCR_DYN_MASK << 32);
11909 fpcr |= alpha_ieee_swcr_to_fpcr(swcr);
11910 cpu_alpha_store_fpcr(cpu_env, fpcr);
11911 ret = 0;
11912 }
11913 break;
11914
11915 case TARGET_SSI_IEEE_RAISE_EXCEPTION:
11916 {
11917 uint64_t exc, fpcr, fex;
11918
11919 if (get_user_u64(exc, arg2)) {
11920 return -TARGET_EFAULT;
11921 }
11922 exc &= SWCR_STATUS_MASK;
11923 fpcr = cpu_alpha_load_fpcr(cpu_env);
11924
11925 /* Old exceptions are not signaled. */
11926 fex = alpha_ieee_fpcr_to_swcr(fpcr);
11927 fex = exc & ~fex;
11928 fex >>= SWCR_STATUS_TO_EXCSUM_SHIFT;
11929 fex &= (cpu_env)->swcr;
11930
11931 /* Update the hardware fpcr. */
11932 fpcr |= alpha_ieee_swcr_to_fpcr(exc);
11933 cpu_alpha_store_fpcr(cpu_env, fpcr);
11934
11935 if (fex) {
11936 int si_code = TARGET_FPE_FLTUNK;
11937 target_siginfo_t info;
11938
11939 if (fex & SWCR_TRAP_ENABLE_DNO) {
11940 si_code = TARGET_FPE_FLTUND;
11941 }
11942 if (fex & SWCR_TRAP_ENABLE_INE) {
11943 si_code = TARGET_FPE_FLTRES;
11944 }
11945 if (fex & SWCR_TRAP_ENABLE_UNF) {
11946 si_code = TARGET_FPE_FLTUND;
11947 }
11948 if (fex & SWCR_TRAP_ENABLE_OVF) {
11949 si_code = TARGET_FPE_FLTOVF;
11950 }
11951 if (fex & SWCR_TRAP_ENABLE_DZE) {
11952 si_code = TARGET_FPE_FLTDIV;
11953 }
11954 if (fex & SWCR_TRAP_ENABLE_INV) {
11955 si_code = TARGET_FPE_FLTINV;
11956 }
11957
11958 info.si_signo = SIGFPE;
11959 info.si_errno = 0;
11960 info.si_code = si_code;
11961 info._sifields._sigfault._addr = (cpu_env)->pc;
11962 queue_signal(cpu_env, info.si_signo,
11963 QEMU_SI_FAULT, &info);
11964 }
11965 ret = 0;
11966 }
11967 break;
11968
11969 /* case SSI_NVPAIRS:
11970 -- Used with SSIN_UACPROC to enable unaligned accesses.
11971 case SSI_IEEE_STATE_AT_SIGNAL:
11972 case SSI_IEEE_IGNORE_STATE_AT_SIGNAL:
11973 -- Not implemented in linux kernel
11974 */
11975 }
11976 return ret;
11977 #endif
11978 #ifdef TARGET_NR_osf_sigprocmask
11979 /* Alpha specific. */
11980 case TARGET_NR_osf_sigprocmask:
11981 {
11982 abi_ulong mask;
11983 int how;
11984 sigset_t set, oldset;
11985
11986 switch(arg1) {
11987 case TARGET_SIG_BLOCK:
11988 how = SIG_BLOCK;
11989 break;
11990 case TARGET_SIG_UNBLOCK:
11991 how = SIG_UNBLOCK;
11992 break;
11993 case TARGET_SIG_SETMASK:
11994 how = SIG_SETMASK;
11995 break;
11996 default:
11997 return -TARGET_EINVAL;
11998 }
11999 mask = arg2;
12000 target_to_host_old_sigset(&set, &mask);
12001 ret = do_sigprocmask(how, &set, &oldset);
12002 if (!ret) {
12003 host_to_target_old_sigset(&mask, &oldset);
12004 ret = mask;
12005 }
12006 }
12007 return ret;
12008 #endif
12009
12010 #ifdef TARGET_NR_getgid32
12011 case TARGET_NR_getgid32:
12012 return get_errno(getgid());
12013 #endif
12014 #ifdef TARGET_NR_geteuid32
12015 case TARGET_NR_geteuid32:
12016 return get_errno(geteuid());
12017 #endif
12018 #ifdef TARGET_NR_getegid32
12019 case TARGET_NR_getegid32:
12020 return get_errno(getegid());
12021 #endif
12022 #ifdef TARGET_NR_setreuid32
12023 case TARGET_NR_setreuid32:
12024 return get_errno(setreuid(arg1, arg2));
12025 #endif
12026 #ifdef TARGET_NR_setregid32
12027 case TARGET_NR_setregid32:
12028 return get_errno(setregid(arg1, arg2));
12029 #endif
12030 #ifdef TARGET_NR_getgroups32
12031 case TARGET_NR_getgroups32:
12032 { /* the same code as for TARGET_NR_getgroups */
12033 int gidsetsize = arg1;
12034 uint32_t *target_grouplist;
12035 g_autofree gid_t *grouplist = NULL;
12036 int i;
12037
12038 if (gidsetsize > NGROUPS_MAX || gidsetsize < 0) {
12039 return -TARGET_EINVAL;
12040 }
12041 if (gidsetsize > 0) {
12042 grouplist = g_try_new(gid_t, gidsetsize);
12043 if (!grouplist) {
12044 return -TARGET_ENOMEM;
12045 }
12046 }
12047 ret = get_errno(getgroups(gidsetsize, grouplist));
12048 if (!is_error(ret) && gidsetsize > 0) {
12049 target_grouplist = lock_user(VERIFY_WRITE, arg2,
12050 gidsetsize * 4, 0);
12051 if (!target_grouplist) {
12052 return -TARGET_EFAULT;
12053 }
12054 for (i = 0; i < ret; i++) {
12055 target_grouplist[i] = tswap32(grouplist[i]);
12056 }
12057 unlock_user(target_grouplist, arg2, gidsetsize * 4);
12058 }
12059 return ret;
12060 }
12061 #endif
12062 #ifdef TARGET_NR_setgroups32
12063 case TARGET_NR_setgroups32:
12064 { /* the same code as for TARGET_NR_setgroups */
12065 int gidsetsize = arg1;
12066 uint32_t *target_grouplist;
12067 g_autofree gid_t *grouplist = NULL;
12068 int i;
12069
12070 if (gidsetsize > NGROUPS_MAX || gidsetsize < 0) {
12071 return -TARGET_EINVAL;
12072 }
12073 if (gidsetsize > 0) {
12074 grouplist = g_try_new(gid_t, gidsetsize);
12075 if (!grouplist) {
12076 return -TARGET_ENOMEM;
12077 }
12078 target_grouplist = lock_user(VERIFY_READ, arg2,
12079 gidsetsize * 4, 1);
12080 if (!target_grouplist) {
12081 return -TARGET_EFAULT;
12082 }
12083 for (i = 0; i < gidsetsize; i++) {
12084 grouplist[i] = tswap32(target_grouplist[i]);
12085 }
12086 unlock_user(target_grouplist, arg2, 0);
12087 }
12088 return get_errno(setgroups(gidsetsize, grouplist));
12089 }
12090 #endif
12091 #ifdef TARGET_NR_fchown32
12092 case TARGET_NR_fchown32:
12093 return get_errno(fchown(arg1, arg2, arg3));
12094 #endif
12095 #ifdef TARGET_NR_setresuid32
12096 case TARGET_NR_setresuid32:
12097 return get_errno(sys_setresuid(arg1, arg2, arg3));
12098 #endif
12099 #ifdef TARGET_NR_getresuid32
12100 case TARGET_NR_getresuid32:
12101 {
12102 uid_t ruid, euid, suid;
12103 ret = get_errno(getresuid(&ruid, &euid, &suid));
12104 if (!is_error(ret)) {
12105 if (put_user_u32(ruid, arg1)
12106 || put_user_u32(euid, arg2)
12107 || put_user_u32(suid, arg3))
12108 return -TARGET_EFAULT;
12109 }
12110 }
12111 return ret;
12112 #endif
12113 #ifdef TARGET_NR_setresgid32
12114 case TARGET_NR_setresgid32:
12115 return get_errno(sys_setresgid(arg1, arg2, arg3));
12116 #endif
12117 #ifdef TARGET_NR_getresgid32
12118 case TARGET_NR_getresgid32:
12119 {
12120 gid_t rgid, egid, sgid;
12121 ret = get_errno(getresgid(&rgid, &egid, &sgid));
12122 if (!is_error(ret)) {
12123 if (put_user_u32(rgid, arg1)
12124 || put_user_u32(egid, arg2)
12125 || put_user_u32(sgid, arg3))
12126 return -TARGET_EFAULT;
12127 }
12128 }
12129 return ret;
12130 #endif
12131 #ifdef TARGET_NR_chown32
12132 case TARGET_NR_chown32:
12133 if (!(p = lock_user_string(arg1)))
12134 return -TARGET_EFAULT;
12135 ret = get_errno(chown(p, arg2, arg3));
12136 unlock_user(p, arg1, 0);
12137 return ret;
12138 #endif
12139 #ifdef TARGET_NR_setuid32
12140 case TARGET_NR_setuid32:
12141 return get_errno(sys_setuid(arg1));
12142 #endif
12143 #ifdef TARGET_NR_setgid32
12144 case TARGET_NR_setgid32:
12145 return get_errno(sys_setgid(arg1));
12146 #endif
12147 #ifdef TARGET_NR_setfsuid32
12148 case TARGET_NR_setfsuid32:
12149 return get_errno(setfsuid(arg1));
12150 #endif
12151 #ifdef TARGET_NR_setfsgid32
12152 case TARGET_NR_setfsgid32:
12153 return get_errno(setfsgid(arg1));
12154 #endif
12155 #ifdef TARGET_NR_mincore
12156 case TARGET_NR_mincore:
12157 {
12158 void *a = lock_user(VERIFY_NONE, arg1, arg2, 0);
12159 if (!a) {
12160 return -TARGET_ENOMEM;
12161 }
12162 p = lock_user_string(arg3);
12163 if (!p) {
12164 ret = -TARGET_EFAULT;
12165 } else {
12166 ret = get_errno(mincore(a, arg2, p));
12167 unlock_user(p, arg3, ret);
12168 }
12169 unlock_user(a, arg1, 0);
12170 }
12171 return ret;
12172 #endif
12173 #ifdef TARGET_NR_arm_fadvise64_64
12174 case TARGET_NR_arm_fadvise64_64:
12175 /* arm_fadvise64_64 looks like fadvise64_64 but
12176 * with different argument order: fd, advice, offset, len
12177 * rather than the usual fd, offset, len, advice.
12178 * Note that offset and len are both 64-bit so appear as
12179 * pairs of 32-bit registers.
12180 */
12181 ret = posix_fadvise(arg1, target_offset64(arg3, arg4),
12182 target_offset64(arg5, arg6), arg2);
12183 return -host_to_target_errno(ret);
12184 #endif
12185
12186 #if TARGET_ABI_BITS == 32 && !defined(TARGET_ABI_MIPSN32)
12187
12188 #ifdef TARGET_NR_fadvise64_64
12189 case TARGET_NR_fadvise64_64:
12190 #if defined(TARGET_PPC) || defined(TARGET_XTENSA)
12191 /* 6 args: fd, advice, offset (high, low), len (high, low) */
12192 ret = arg2;
12193 arg2 = arg3;
12194 arg3 = arg4;
12195 arg4 = arg5;
12196 arg5 = arg6;
12197 arg6 = ret;
12198 #else
12199 /* 6 args: fd, offset (high, low), len (high, low), advice */
12200 if (regpairs_aligned(cpu_env, num)) {
12201 /* offset is in (3,4), len in (5,6) and advice in 7 */
12202 arg2 = arg3;
12203 arg3 = arg4;
12204 arg4 = arg5;
12205 arg5 = arg6;
12206 arg6 = arg7;
12207 }
12208 #endif
12209 ret = posix_fadvise(arg1, target_offset64(arg2, arg3),
12210 target_offset64(arg4, arg5), arg6);
12211 return -host_to_target_errno(ret);
12212 #endif
12213
12214 #ifdef TARGET_NR_fadvise64
12215 case TARGET_NR_fadvise64:
12216 /* 5 args: fd, offset (high, low), len, advice */
12217 if (regpairs_aligned(cpu_env, num)) {
12218 /* offset is in (3,4), len in 5 and advice in 6 */
12219 arg2 = arg3;
12220 arg3 = arg4;
12221 arg4 = arg5;
12222 arg5 = arg6;
12223 }
12224 ret = posix_fadvise(arg1, target_offset64(arg2, arg3), arg4, arg5);
12225 return -host_to_target_errno(ret);
12226 #endif
12227
12228 #else /* not a 32-bit ABI */
12229 #if defined(TARGET_NR_fadvise64_64) || defined(TARGET_NR_fadvise64)
12230 #ifdef TARGET_NR_fadvise64_64
12231 case TARGET_NR_fadvise64_64:
12232 #endif
12233 #ifdef TARGET_NR_fadvise64
12234 case TARGET_NR_fadvise64:
12235 #endif
12236 #ifdef TARGET_S390X
12237 switch (arg4) {
12238 case 4: arg4 = POSIX_FADV_NOREUSE + 1; break; /* make sure it's an invalid value */
12239 case 5: arg4 = POSIX_FADV_NOREUSE + 2; break; /* ditto */
12240 case 6: arg4 = POSIX_FADV_DONTNEED; break;
12241 case 7: arg4 = POSIX_FADV_NOREUSE; break;
12242 default: break;
12243 }
12244 #endif
12245 return -host_to_target_errno(posix_fadvise(arg1, arg2, arg3, arg4));
12246 #endif
12247 #endif /* end of 64-bit ABI fadvise handling */
12248
12249 #ifdef TARGET_NR_madvise
12250 case TARGET_NR_madvise:
12251 return target_madvise(arg1, arg2, arg3);
12252 #endif
12253 #ifdef TARGET_NR_fcntl64
12254 case TARGET_NR_fcntl64:
12255 {
12256 int cmd;
12257 struct flock64 fl;
12258 from_flock64_fn *copyfrom = copy_from_user_flock64;
12259 to_flock64_fn *copyto = copy_to_user_flock64;
12260
12261 #ifdef TARGET_ARM
12262 if (!cpu_env->eabi) {
12263 copyfrom = copy_from_user_oabi_flock64;
12264 copyto = copy_to_user_oabi_flock64;
12265 }
12266 #endif
12267
12268 cmd = target_to_host_fcntl_cmd(arg2);
12269 if (cmd == -TARGET_EINVAL) {
12270 return cmd;
12271 }
12272
12273 switch(arg2) {
12274 case TARGET_F_GETLK64:
12275 ret = copyfrom(&fl, arg3);
12276 if (ret) {
12277 break;
12278 }
12279 ret = get_errno(safe_fcntl(arg1, cmd, &fl));
12280 if (ret == 0) {
12281 ret = copyto(arg3, &fl);
12282 }
12283 break;
12284
12285 case TARGET_F_SETLK64:
12286 case TARGET_F_SETLKW64:
12287 ret = copyfrom(&fl, arg3);
12288 if (ret) {
12289 break;
12290 }
12291 ret = get_errno(safe_fcntl(arg1, cmd, &fl));
12292 break;
12293 default:
12294 ret = do_fcntl(arg1, arg2, arg3);
12295 break;
12296 }
12297 return ret;
12298 }
12299 #endif
12300 #ifdef TARGET_NR_cacheflush
12301 case TARGET_NR_cacheflush:
12302 /* self-modifying code is handled automatically, so nothing needed */
12303 return 0;
12304 #endif
12305 #ifdef TARGET_NR_getpagesize
12306 case TARGET_NR_getpagesize:
12307 return TARGET_PAGE_SIZE;
12308 #endif
12309 case TARGET_NR_gettid:
12310 return get_errno(sys_gettid());
12311 #ifdef TARGET_NR_readahead
12312 case TARGET_NR_readahead:
12313 #if TARGET_ABI_BITS == 32 && !defined(TARGET_ABI_MIPSN32)
12314 if (regpairs_aligned(cpu_env, num)) {
12315 arg2 = arg3;
12316 arg3 = arg4;
12317 arg4 = arg5;
12318 }
12319 ret = get_errno(readahead(arg1, target_offset64(arg2, arg3) , arg4));
12320 #else
12321 ret = get_errno(readahead(arg1, arg2, arg3));
12322 #endif
12323 return ret;
12324 #endif
12325 #ifdef CONFIG_ATTR
12326 #ifdef TARGET_NR_setxattr
12327 case TARGET_NR_listxattr:
12328 case TARGET_NR_llistxattr:
12329 {
12330 void *p, *b = 0;
12331 if (arg2) {
12332 b = lock_user(VERIFY_WRITE, arg2, arg3, 0);
12333 if (!b) {
12334 return -TARGET_EFAULT;
12335 }
12336 }
12337 p = lock_user_string(arg1);
12338 if (p) {
12339 if (num == TARGET_NR_listxattr) {
12340 ret = get_errno(listxattr(p, b, arg3));
12341 } else {
12342 ret = get_errno(llistxattr(p, b, arg3));
12343 }
12344 } else {
12345 ret = -TARGET_EFAULT;
12346 }
12347 unlock_user(p, arg1, 0);
12348 unlock_user(b, arg2, arg3);
12349 return ret;
12350 }
12351 case TARGET_NR_flistxattr:
12352 {
12353 void *b = 0;
12354 if (arg2) {
12355 b = lock_user(VERIFY_WRITE, arg2, arg3, 0);
12356 if (!b) {
12357 return -TARGET_EFAULT;
12358 }
12359 }
12360 ret = get_errno(flistxattr(arg1, b, arg3));
12361 unlock_user(b, arg2, arg3);
12362 return ret;
12363 }
12364 case TARGET_NR_setxattr:
12365 case TARGET_NR_lsetxattr:
12366 {
12367 void *p, *n, *v = 0;
12368 if (arg3) {
12369 v = lock_user(VERIFY_READ, arg3, arg4, 1);
12370 if (!v) {
12371 return -TARGET_EFAULT;
12372 }
12373 }
12374 p = lock_user_string(arg1);
12375 n = lock_user_string(arg2);
12376 if (p && n) {
12377 if (num == TARGET_NR_setxattr) {
12378 ret = get_errno(setxattr(p, n, v, arg4, arg5));
12379 } else {
12380 ret = get_errno(lsetxattr(p, n, v, arg4, arg5));
12381 }
12382 } else {
12383 ret = -TARGET_EFAULT;
12384 }
12385 unlock_user(p, arg1, 0);
12386 unlock_user(n, arg2, 0);
12387 unlock_user(v, arg3, 0);
12388 }
12389 return ret;
12390 case TARGET_NR_fsetxattr:
12391 {
12392 void *n, *v = 0;
12393 if (arg3) {
12394 v = lock_user(VERIFY_READ, arg3, arg4, 1);
12395 if (!v) {
12396 return -TARGET_EFAULT;
12397 }
12398 }
12399 n = lock_user_string(arg2);
12400 if (n) {
12401 ret = get_errno(fsetxattr(arg1, n, v, arg4, arg5));
12402 } else {
12403 ret = -TARGET_EFAULT;
12404 }
12405 unlock_user(n, arg2, 0);
12406 unlock_user(v, arg3, 0);
12407 }
12408 return ret;
12409 case TARGET_NR_getxattr:
12410 case TARGET_NR_lgetxattr:
12411 {
12412 void *p, *n, *v = 0;
12413 if (arg3) {
12414 v = lock_user(VERIFY_WRITE, arg3, arg4, 0);
12415 if (!v) {
12416 return -TARGET_EFAULT;
12417 }
12418 }
12419 p = lock_user_string(arg1);
12420 n = lock_user_string(arg2);
12421 if (p && n) {
12422 if (num == TARGET_NR_getxattr) {
12423 ret = get_errno(getxattr(p, n, v, arg4));
12424 } else {
12425 ret = get_errno(lgetxattr(p, n, v, arg4));
12426 }
12427 } else {
12428 ret = -TARGET_EFAULT;
12429 }
12430 unlock_user(p, arg1, 0);
12431 unlock_user(n, arg2, 0);
12432 unlock_user(v, arg3, arg4);
12433 }
12434 return ret;
12435 case TARGET_NR_fgetxattr:
12436 {
12437 void *n, *v = 0;
12438 if (arg3) {
12439 v = lock_user(VERIFY_WRITE, arg3, arg4, 0);
12440 if (!v) {
12441 return -TARGET_EFAULT;
12442 }
12443 }
12444 n = lock_user_string(arg2);
12445 if (n) {
12446 ret = get_errno(fgetxattr(arg1, n, v, arg4));
12447 } else {
12448 ret = -TARGET_EFAULT;
12449 }
12450 unlock_user(n, arg2, 0);
12451 unlock_user(v, arg3, arg4);
12452 }
12453 return ret;
12454 case TARGET_NR_removexattr:
12455 case TARGET_NR_lremovexattr:
12456 {
12457 void *p, *n;
12458 p = lock_user_string(arg1);
12459 n = lock_user_string(arg2);
12460 if (p && n) {
12461 if (num == TARGET_NR_removexattr) {
12462 ret = get_errno(removexattr(p, n));
12463 } else {
12464 ret = get_errno(lremovexattr(p, n));
12465 }
12466 } else {
12467 ret = -TARGET_EFAULT;
12468 }
12469 unlock_user(p, arg1, 0);
12470 unlock_user(n, arg2, 0);
12471 }
12472 return ret;
12473 case TARGET_NR_fremovexattr:
12474 {
12475 void *n;
12476 n = lock_user_string(arg2);
12477 if (n) {
12478 ret = get_errno(fremovexattr(arg1, n));
12479 } else {
12480 ret = -TARGET_EFAULT;
12481 }
12482 unlock_user(n, arg2, 0);
12483 }
12484 return ret;
12485 #endif
12486 #endif /* CONFIG_ATTR */
12487 #ifdef TARGET_NR_set_thread_area
12488 case TARGET_NR_set_thread_area:
12489 #if defined(TARGET_MIPS)
12490 cpu_env->active_tc.CP0_UserLocal = arg1;
12491 return 0;
12492 #elif defined(TARGET_CRIS)
12493 if (arg1 & 0xff)
12494 ret = -TARGET_EINVAL;
12495 else {
12496 cpu_env->pregs[PR_PID] = arg1;
12497 ret = 0;
12498 }
12499 return ret;
12500 #elif defined(TARGET_I386) && defined(TARGET_ABI32)
12501 return do_set_thread_area(cpu_env, arg1);
12502 #elif defined(TARGET_M68K)
12503 {
12504 TaskState *ts = cpu->opaque;
12505 ts->tp_value = arg1;
12506 return 0;
12507 }
12508 #else
12509 return -TARGET_ENOSYS;
12510 #endif
12511 #endif
12512 #ifdef TARGET_NR_get_thread_area
12513 case TARGET_NR_get_thread_area:
12514 #if defined(TARGET_I386) && defined(TARGET_ABI32)
12515 return do_get_thread_area(cpu_env, arg1);
12516 #elif defined(TARGET_M68K)
12517 {
12518 TaskState *ts = cpu->opaque;
12519 return ts->tp_value;
12520 }
12521 #else
12522 return -TARGET_ENOSYS;
12523 #endif
12524 #endif
12525 #ifdef TARGET_NR_getdomainname
12526 case TARGET_NR_getdomainname:
12527 return -TARGET_ENOSYS;
12528 #endif
12529
12530 #ifdef TARGET_NR_clock_settime
12531 case TARGET_NR_clock_settime:
12532 {
12533 struct timespec ts;
12534
12535 ret = target_to_host_timespec(&ts, arg2);
12536 if (!is_error(ret)) {
12537 ret = get_errno(clock_settime(arg1, &ts));
12538 }
12539 return ret;
12540 }
12541 #endif
12542 #ifdef TARGET_NR_clock_settime64
12543 case TARGET_NR_clock_settime64:
12544 {
12545 struct timespec ts;
12546
12547 ret = target_to_host_timespec64(&ts, arg2);
12548 if (!is_error(ret)) {
12549 ret = get_errno(clock_settime(arg1, &ts));
12550 }
12551 return ret;
12552 }
12553 #endif
12554 #ifdef TARGET_NR_clock_gettime
12555 case TARGET_NR_clock_gettime:
12556 {
12557 struct timespec ts;
12558 ret = get_errno(clock_gettime(arg1, &ts));
12559 if (!is_error(ret)) {
12560 ret = host_to_target_timespec(arg2, &ts);
12561 }
12562 return ret;
12563 }
12564 #endif
12565 #ifdef TARGET_NR_clock_gettime64
12566 case TARGET_NR_clock_gettime64:
12567 {
12568 struct timespec ts;
12569 ret = get_errno(clock_gettime(arg1, &ts));
12570 if (!is_error(ret)) {
12571 ret = host_to_target_timespec64(arg2, &ts);
12572 }
12573 return ret;
12574 }
12575 #endif
12576 #ifdef TARGET_NR_clock_getres
12577 case TARGET_NR_clock_getres:
12578 {
12579 struct timespec ts;
12580 ret = get_errno(clock_getres(arg1, &ts));
12581 if (!is_error(ret)) {
12582 host_to_target_timespec(arg2, &ts);
12583 }
12584 return ret;
12585 }
12586 #endif
12587 #ifdef TARGET_NR_clock_getres_time64
12588 case TARGET_NR_clock_getres_time64:
12589 {
12590 struct timespec ts;
12591 ret = get_errno(clock_getres(arg1, &ts));
12592 if (!is_error(ret)) {
12593 host_to_target_timespec64(arg2, &ts);
12594 }
12595 return ret;
12596 }
12597 #endif
12598 #ifdef TARGET_NR_clock_nanosleep
12599 case TARGET_NR_clock_nanosleep:
12600 {
12601 struct timespec ts;
12602 if (target_to_host_timespec(&ts, arg3)) {
12603 return -TARGET_EFAULT;
12604 }
12605 ret = get_errno(safe_clock_nanosleep(arg1, arg2,
12606 &ts, arg4 ? &ts : NULL));
12607 /*
12608 * if the call is interrupted by a signal handler, it fails
12609 * with error -TARGET_EINTR and if arg4 is not NULL and arg2 is not
12610 * TIMER_ABSTIME, it returns the remaining unslept time in arg4.
12611 */
12612 if (ret == -TARGET_EINTR && arg4 && arg2 != TIMER_ABSTIME &&
12613 host_to_target_timespec(arg4, &ts)) {
12614 return -TARGET_EFAULT;
12615 }
12616
12617 return ret;
12618 }
12619 #endif
12620 #ifdef TARGET_NR_clock_nanosleep_time64
12621 case TARGET_NR_clock_nanosleep_time64:
12622 {
12623 struct timespec ts;
12624
12625 if (target_to_host_timespec64(&ts, arg3)) {
12626 return -TARGET_EFAULT;
12627 }
12628
12629 ret = get_errno(safe_clock_nanosleep(arg1, arg2,
12630 &ts, arg4 ? &ts : NULL));
12631
12632 if (ret == -TARGET_EINTR && arg4 && arg2 != TIMER_ABSTIME &&
12633 host_to_target_timespec64(arg4, &ts)) {
12634 return -TARGET_EFAULT;
12635 }
12636 return ret;
12637 }
12638 #endif
12639
12640 #if defined(TARGET_NR_set_tid_address)
12641 case TARGET_NR_set_tid_address:
12642 {
12643 TaskState *ts = cpu->opaque;
12644 ts->child_tidptr = arg1;
12645 /* do not call host set_tid_address() syscall, instead return tid() */
12646 return get_errno(sys_gettid());
12647 }
12648 #endif
12649
12650 case TARGET_NR_tkill:
12651 return get_errno(safe_tkill((int)arg1, target_to_host_signal(arg2)));
12652
12653 case TARGET_NR_tgkill:
12654 return get_errno(safe_tgkill((int)arg1, (int)arg2,
12655 target_to_host_signal(arg3)));
12656
12657 #ifdef TARGET_NR_set_robust_list
12658 case TARGET_NR_set_robust_list:
12659 case TARGET_NR_get_robust_list:
12660 /* The ABI for supporting robust futexes has userspace pass
12661 * the kernel a pointer to a linked list which is updated by
12662 * userspace after the syscall; the list is walked by the kernel
12663 * when the thread exits. Since the linked list in QEMU guest
12664 * memory isn't a valid linked list for the host and we have
12665 * no way to reliably intercept the thread-death event, we can't
12666 * support these. Silently return ENOSYS so that guest userspace
12667 * falls back to a non-robust futex implementation (which should
12668 * be OK except in the corner case of the guest crashing while
12669 * holding a mutex that is shared with another process via
12670 * shared memory).
12671 */
12672 return -TARGET_ENOSYS;
12673 #endif
12674
12675 #if defined(TARGET_NR_utimensat)
12676 case TARGET_NR_utimensat:
12677 {
12678 struct timespec *tsp, ts[2];
12679 if (!arg3) {
12680 tsp = NULL;
12681 } else {
12682 if (target_to_host_timespec(ts, arg3)) {
12683 return -TARGET_EFAULT;
12684 }
12685 if (target_to_host_timespec(ts + 1, arg3 +
12686 sizeof(struct target_timespec))) {
12687 return -TARGET_EFAULT;
12688 }
12689 tsp = ts;
12690 }
12691 if (!arg2)
12692 ret = get_errno(sys_utimensat(arg1, NULL, tsp, arg4));
12693 else {
12694 if (!(p = lock_user_string(arg2))) {
12695 return -TARGET_EFAULT;
12696 }
12697 ret = get_errno(sys_utimensat(arg1, path(p), tsp, arg4));
12698 unlock_user(p, arg2, 0);
12699 }
12700 }
12701 return ret;
12702 #endif
12703 #ifdef TARGET_NR_utimensat_time64
12704 case TARGET_NR_utimensat_time64:
12705 {
12706 struct timespec *tsp, ts[2];
12707 if (!arg3) {
12708 tsp = NULL;
12709 } else {
12710 if (target_to_host_timespec64(ts, arg3)) {
12711 return -TARGET_EFAULT;
12712 }
12713 if (target_to_host_timespec64(ts + 1, arg3 +
12714 sizeof(struct target__kernel_timespec))) {
12715 return -TARGET_EFAULT;
12716 }
12717 tsp = ts;
12718 }
12719 if (!arg2)
12720 ret = get_errno(sys_utimensat(arg1, NULL, tsp, arg4));
12721 else {
12722 p = lock_user_string(arg2);
12723 if (!p) {
12724 return -TARGET_EFAULT;
12725 }
12726 ret = get_errno(sys_utimensat(arg1, path(p), tsp, arg4));
12727 unlock_user(p, arg2, 0);
12728 }
12729 }
12730 return ret;
12731 #endif
12732 #ifdef TARGET_NR_futex
12733 case TARGET_NR_futex:
12734 return do_futex(cpu, false, arg1, arg2, arg3, arg4, arg5, arg6);
12735 #endif
12736 #ifdef TARGET_NR_futex_time64
12737 case TARGET_NR_futex_time64:
12738 return do_futex(cpu, true, arg1, arg2, arg3, arg4, arg5, arg6);
12739 #endif
12740 #ifdef CONFIG_INOTIFY
12741 #if defined(TARGET_NR_inotify_init)
12742 case TARGET_NR_inotify_init:
12743 ret = get_errno(inotify_init());
12744 if (ret >= 0) {
12745 fd_trans_register(ret, &target_inotify_trans);
12746 }
12747 return ret;
12748 #endif
12749 #if defined(TARGET_NR_inotify_init1) && defined(CONFIG_INOTIFY1)
12750 case TARGET_NR_inotify_init1:
12751 ret = get_errno(inotify_init1(target_to_host_bitmask(arg1,
12752 fcntl_flags_tbl)));
12753 if (ret >= 0) {
12754 fd_trans_register(ret, &target_inotify_trans);
12755 }
12756 return ret;
12757 #endif
12758 #if defined(TARGET_NR_inotify_add_watch)
12759 case TARGET_NR_inotify_add_watch:
12760 p = lock_user_string(arg2);
12761 ret = get_errno(inotify_add_watch(arg1, path(p), arg3));
12762 unlock_user(p, arg2, 0);
12763 return ret;
12764 #endif
12765 #if defined(TARGET_NR_inotify_rm_watch)
12766 case TARGET_NR_inotify_rm_watch:
12767 return get_errno(inotify_rm_watch(arg1, arg2));
12768 #endif
12769 #endif
12770
12771 #if defined(TARGET_NR_mq_open) && defined(__NR_mq_open)
12772 case TARGET_NR_mq_open:
12773 {
12774 struct mq_attr posix_mq_attr;
12775 struct mq_attr *pposix_mq_attr;
12776 int host_flags;
12777
12778 host_flags = target_to_host_bitmask(arg2, fcntl_flags_tbl);
12779 pposix_mq_attr = NULL;
12780 if (arg4) {
12781 if (copy_from_user_mq_attr(&posix_mq_attr, arg4) != 0) {
12782 return -TARGET_EFAULT;
12783 }
12784 pposix_mq_attr = &posix_mq_attr;
12785 }
12786 p = lock_user_string(arg1 - 1);
12787 if (!p) {
12788 return -TARGET_EFAULT;
12789 }
12790 ret = get_errno(mq_open(p, host_flags, arg3, pposix_mq_attr));
12791 unlock_user (p, arg1, 0);
12792 }
12793 return ret;
12794
12795 case TARGET_NR_mq_unlink:
12796 p = lock_user_string(arg1 - 1);
12797 if (!p) {
12798 return -TARGET_EFAULT;
12799 }
12800 ret = get_errno(mq_unlink(p));
12801 unlock_user (p, arg1, 0);
12802 return ret;
12803
12804 #ifdef TARGET_NR_mq_timedsend
12805 case TARGET_NR_mq_timedsend:
12806 {
12807 struct timespec ts;
12808
12809 p = lock_user (VERIFY_READ, arg2, arg3, 1);
12810 if (arg5 != 0) {
12811 if (target_to_host_timespec(&ts, arg5)) {
12812 return -TARGET_EFAULT;
12813 }
12814 ret = get_errno(safe_mq_timedsend(arg1, p, arg3, arg4, &ts));
12815 if (!is_error(ret) && host_to_target_timespec(arg5, &ts)) {
12816 return -TARGET_EFAULT;
12817 }
12818 } else {
12819 ret = get_errno(safe_mq_timedsend(arg1, p, arg3, arg4, NULL));
12820 }
12821 unlock_user (p, arg2, arg3);
12822 }
12823 return ret;
12824 #endif
12825 #ifdef TARGET_NR_mq_timedsend_time64
12826 case TARGET_NR_mq_timedsend_time64:
12827 {
12828 struct timespec ts;
12829
12830 p = lock_user(VERIFY_READ, arg2, arg3, 1);
12831 if (arg5 != 0) {
12832 if (target_to_host_timespec64(&ts, arg5)) {
12833 return -TARGET_EFAULT;
12834 }
12835 ret = get_errno(safe_mq_timedsend(arg1, p, arg3, arg4, &ts));
12836 if (!is_error(ret) && host_to_target_timespec64(arg5, &ts)) {
12837 return -TARGET_EFAULT;
12838 }
12839 } else {
12840 ret = get_errno(safe_mq_timedsend(arg1, p, arg3, arg4, NULL));
12841 }
12842 unlock_user(p, arg2, arg3);
12843 }
12844 return ret;
12845 #endif
12846
12847 #ifdef TARGET_NR_mq_timedreceive
12848 case TARGET_NR_mq_timedreceive:
12849 {
12850 struct timespec ts;
12851 unsigned int prio;
12852
12853 p = lock_user (VERIFY_READ, arg2, arg3, 1);
12854 if (arg5 != 0) {
12855 if (target_to_host_timespec(&ts, arg5)) {
12856 return -TARGET_EFAULT;
12857 }
12858 ret = get_errno(safe_mq_timedreceive(arg1, p, arg3,
12859 &prio, &ts));
12860 if (!is_error(ret) && host_to_target_timespec(arg5, &ts)) {
12861 return -TARGET_EFAULT;
12862 }
12863 } else {
12864 ret = get_errno(safe_mq_timedreceive(arg1, p, arg3,
12865 &prio, NULL));
12866 }
12867 unlock_user (p, arg2, arg3);
12868 if (arg4 != 0)
12869 put_user_u32(prio, arg4);
12870 }
12871 return ret;
12872 #endif
12873 #ifdef TARGET_NR_mq_timedreceive_time64
12874 case TARGET_NR_mq_timedreceive_time64:
12875 {
12876 struct timespec ts;
12877 unsigned int prio;
12878
12879 p = lock_user(VERIFY_READ, arg2, arg3, 1);
12880 if (arg5 != 0) {
12881 if (target_to_host_timespec64(&ts, arg5)) {
12882 return -TARGET_EFAULT;
12883 }
12884 ret = get_errno(safe_mq_timedreceive(arg1, p, arg3,
12885 &prio, &ts));
12886 if (!is_error(ret) && host_to_target_timespec64(arg5, &ts)) {
12887 return -TARGET_EFAULT;
12888 }
12889 } else {
12890 ret = get_errno(safe_mq_timedreceive(arg1, p, arg3,
12891 &prio, NULL));
12892 }
12893 unlock_user(p, arg2, arg3);
12894 if (arg4 != 0) {
12895 put_user_u32(prio, arg4);
12896 }
12897 }
12898 return ret;
12899 #endif
12900
12901 /* Not implemented for now... */
12902 /* case TARGET_NR_mq_notify: */
12903 /* break; */
12904
12905 case TARGET_NR_mq_getsetattr:
12906 {
12907 struct mq_attr posix_mq_attr_in, posix_mq_attr_out;
12908 ret = 0;
12909 if (arg2 != 0) {
12910 copy_from_user_mq_attr(&posix_mq_attr_in, arg2);
12911 ret = get_errno(mq_setattr(arg1, &posix_mq_attr_in,
12912 &posix_mq_attr_out));
12913 } else if (arg3 != 0) {
12914 ret = get_errno(mq_getattr(arg1, &posix_mq_attr_out));
12915 }
12916 if (ret == 0 && arg3 != 0) {
12917 copy_to_user_mq_attr(arg3, &posix_mq_attr_out);
12918 }
12919 }
12920 return ret;
12921 #endif
12922
12923 #ifdef CONFIG_SPLICE
12924 #ifdef TARGET_NR_tee
12925 case TARGET_NR_tee:
12926 {
12927 ret = get_errno(tee(arg1,arg2,arg3,arg4));
12928 }
12929 return ret;
12930 #endif
12931 #ifdef TARGET_NR_splice
12932 case TARGET_NR_splice:
12933 {
12934 loff_t loff_in, loff_out;
12935 loff_t *ploff_in = NULL, *ploff_out = NULL;
12936 if (arg2) {
12937 if (get_user_u64(loff_in, arg2)) {
12938 return -TARGET_EFAULT;
12939 }
12940 ploff_in = &loff_in;
12941 }
12942 if (arg4) {
12943 if (get_user_u64(loff_out, arg4)) {
12944 return -TARGET_EFAULT;
12945 }
12946 ploff_out = &loff_out;
12947 }
12948 ret = get_errno(splice(arg1, ploff_in, arg3, ploff_out, arg5, arg6));
12949 if (arg2) {
12950 if (put_user_u64(loff_in, arg2)) {
12951 return -TARGET_EFAULT;
12952 }
12953 }
12954 if (arg4) {
12955 if (put_user_u64(loff_out, arg4)) {
12956 return -TARGET_EFAULT;
12957 }
12958 }
12959 }
12960 return ret;
12961 #endif
12962 #ifdef TARGET_NR_vmsplice
12963 case TARGET_NR_vmsplice:
12964 {
12965 struct iovec *vec = lock_iovec(VERIFY_READ, arg2, arg3, 1);
12966 if (vec != NULL) {
12967 ret = get_errno(vmsplice(arg1, vec, arg3, arg4));
12968 unlock_iovec(vec, arg2, arg3, 0);
12969 } else {
12970 ret = -host_to_target_errno(errno);
12971 }
12972 }
12973 return ret;
12974 #endif
12975 #endif /* CONFIG_SPLICE */
12976 #ifdef CONFIG_EVENTFD
12977 #if defined(TARGET_NR_eventfd)
12978 case TARGET_NR_eventfd:
12979 ret = get_errno(eventfd(arg1, 0));
12980 if (ret >= 0) {
12981 fd_trans_register(ret, &target_eventfd_trans);
12982 }
12983 return ret;
12984 #endif
12985 #if defined(TARGET_NR_eventfd2)
12986 case TARGET_NR_eventfd2:
12987 {
12988 int host_flags = arg2 & (~(TARGET_O_NONBLOCK_MASK | TARGET_O_CLOEXEC));
12989 if (arg2 & TARGET_O_NONBLOCK) {
12990 host_flags |= O_NONBLOCK;
12991 }
12992 if (arg2 & TARGET_O_CLOEXEC) {
12993 host_flags |= O_CLOEXEC;
12994 }
12995 ret = get_errno(eventfd(arg1, host_flags));
12996 if (ret >= 0) {
12997 fd_trans_register(ret, &target_eventfd_trans);
12998 }
12999 return ret;
13000 }
13001 #endif
13002 #endif /* CONFIG_EVENTFD */
13003 #if defined(CONFIG_FALLOCATE) && defined(TARGET_NR_fallocate)
13004 case TARGET_NR_fallocate:
13005 #if TARGET_ABI_BITS == 32 && !defined(TARGET_ABI_MIPSN32)
13006 ret = get_errno(fallocate(arg1, arg2, target_offset64(arg3, arg4),
13007 target_offset64(arg5, arg6)));
13008 #else
13009 ret = get_errno(fallocate(arg1, arg2, arg3, arg4));
13010 #endif
13011 return ret;
13012 #endif
13013 #if defined(CONFIG_SYNC_FILE_RANGE)
13014 #if defined(TARGET_NR_sync_file_range)
13015 case TARGET_NR_sync_file_range:
13016 #if TARGET_ABI_BITS == 32 && !defined(TARGET_ABI_MIPSN32)
13017 #if defined(TARGET_MIPS)
13018 ret = get_errno(sync_file_range(arg1, target_offset64(arg3, arg4),
13019 target_offset64(arg5, arg6), arg7));
13020 #else
13021 ret = get_errno(sync_file_range(arg1, target_offset64(arg2, arg3),
13022 target_offset64(arg4, arg5), arg6));
13023 #endif /* !TARGET_MIPS */
13024 #else
13025 ret = get_errno(sync_file_range(arg1, arg2, arg3, arg4));
13026 #endif
13027 return ret;
13028 #endif
13029 #if defined(TARGET_NR_sync_file_range2) || \
13030 defined(TARGET_NR_arm_sync_file_range)
13031 #if defined(TARGET_NR_sync_file_range2)
13032 case TARGET_NR_sync_file_range2:
13033 #endif
13034 #if defined(TARGET_NR_arm_sync_file_range)
13035 case TARGET_NR_arm_sync_file_range:
13036 #endif
13037 /* This is like sync_file_range but the arguments are reordered */
13038 #if TARGET_ABI_BITS == 32 && !defined(TARGET_ABI_MIPSN32)
13039 ret = get_errno(sync_file_range(arg1, target_offset64(arg3, arg4),
13040 target_offset64(arg5, arg6), arg2));
13041 #else
13042 ret = get_errno(sync_file_range(arg1, arg3, arg4, arg2));
13043 #endif
13044 return ret;
13045 #endif
13046 #endif
13047 #if defined(TARGET_NR_signalfd4)
13048 case TARGET_NR_signalfd4:
13049 return do_signalfd4(arg1, arg2, arg4);
13050 #endif
13051 #if defined(TARGET_NR_signalfd)
13052 case TARGET_NR_signalfd:
13053 return do_signalfd4(arg1, arg2, 0);
13054 #endif
13055 #if defined(CONFIG_EPOLL)
13056 #if defined(TARGET_NR_epoll_create)
13057 case TARGET_NR_epoll_create:
13058 return get_errno(epoll_create(arg1));
13059 #endif
13060 #if defined(TARGET_NR_epoll_create1) && defined(CONFIG_EPOLL_CREATE1)
13061 case TARGET_NR_epoll_create1:
13062 return get_errno(epoll_create1(target_to_host_bitmask(arg1, fcntl_flags_tbl)));
13063 #endif
13064 #if defined(TARGET_NR_epoll_ctl)
13065 case TARGET_NR_epoll_ctl:
13066 {
13067 struct epoll_event ep;
13068 struct epoll_event *epp = 0;
13069 if (arg4) {
13070 if (arg2 != EPOLL_CTL_DEL) {
13071 struct target_epoll_event *target_ep;
13072 if (!lock_user_struct(VERIFY_READ, target_ep, arg4, 1)) {
13073 return -TARGET_EFAULT;
13074 }
13075 ep.events = tswap32(target_ep->events);
13076 /*
13077 * The epoll_data_t union is just opaque data to the kernel,
13078 * so we transfer all 64 bits across and need not worry what
13079 * actual data type it is.
13080 */
13081 ep.data.u64 = tswap64(target_ep->data.u64);
13082 unlock_user_struct(target_ep, arg4, 0);
13083 }
13084 /*
13085 * before kernel 2.6.9, EPOLL_CTL_DEL operation required a
13086 * non-null pointer, even though this argument is ignored.
13087 *
13088 */
13089 epp = &ep;
13090 }
13091 return get_errno(epoll_ctl(arg1, arg2, arg3, epp));
13092 }
13093 #endif
13094
13095 #if defined(TARGET_NR_epoll_wait) || defined(TARGET_NR_epoll_pwait)
13096 #if defined(TARGET_NR_epoll_wait)
13097 case TARGET_NR_epoll_wait:
13098 #endif
13099 #if defined(TARGET_NR_epoll_pwait)
13100 case TARGET_NR_epoll_pwait:
13101 #endif
13102 {
13103 struct target_epoll_event *target_ep;
13104 struct epoll_event *ep;
13105 int epfd = arg1;
13106 int maxevents = arg3;
13107 int timeout = arg4;
13108
13109 if (maxevents <= 0 || maxevents > TARGET_EP_MAX_EVENTS) {
13110 return -TARGET_EINVAL;
13111 }
13112
13113 target_ep = lock_user(VERIFY_WRITE, arg2,
13114 maxevents * sizeof(struct target_epoll_event), 1);
13115 if (!target_ep) {
13116 return -TARGET_EFAULT;
13117 }
13118
13119 ep = g_try_new(struct epoll_event, maxevents);
13120 if (!ep) {
13121 unlock_user(target_ep, arg2, 0);
13122 return -TARGET_ENOMEM;
13123 }
13124
13125 switch (num) {
13126 #if defined(TARGET_NR_epoll_pwait)
13127 case TARGET_NR_epoll_pwait:
13128 {
13129 sigset_t *set = NULL;
13130
13131 if (arg5) {
13132 ret = process_sigsuspend_mask(&set, arg5, arg6);
13133 if (ret != 0) {
13134 break;
13135 }
13136 }
13137
13138 ret = get_errno(safe_epoll_pwait(epfd, ep, maxevents, timeout,
13139 set, SIGSET_T_SIZE));
13140
13141 if (set) {
13142 finish_sigsuspend_mask(ret);
13143 }
13144 break;
13145 }
13146 #endif
13147 #if defined(TARGET_NR_epoll_wait)
13148 case TARGET_NR_epoll_wait:
13149 ret = get_errno(safe_epoll_pwait(epfd, ep, maxevents, timeout,
13150 NULL, 0));
13151 break;
13152 #endif
13153 default:
13154 ret = -TARGET_ENOSYS;
13155 }
13156 if (!is_error(ret)) {
13157 int i;
13158 for (i = 0; i < ret; i++) {
13159 target_ep[i].events = tswap32(ep[i].events);
13160 target_ep[i].data.u64 = tswap64(ep[i].data.u64);
13161 }
13162 unlock_user(target_ep, arg2,
13163 ret * sizeof(struct target_epoll_event));
13164 } else {
13165 unlock_user(target_ep, arg2, 0);
13166 }
13167 g_free(ep);
13168 return ret;
13169 }
13170 #endif
13171 #endif
13172 #ifdef TARGET_NR_prlimit64
13173 case TARGET_NR_prlimit64:
13174 {
13175 /* args: pid, resource number, ptr to new rlimit, ptr to old rlimit */
13176 struct target_rlimit64 *target_rnew, *target_rold;
13177 struct host_rlimit64 rnew, rold, *rnewp = 0;
13178 int resource = target_to_host_resource(arg2);
13179
13180 if (arg3 && (resource != RLIMIT_AS &&
13181 resource != RLIMIT_DATA &&
13182 resource != RLIMIT_STACK)) {
13183 if (!lock_user_struct(VERIFY_READ, target_rnew, arg3, 1)) {
13184 return -TARGET_EFAULT;
13185 }
13186 __get_user(rnew.rlim_cur, &target_rnew->rlim_cur);
13187 __get_user(rnew.rlim_max, &target_rnew->rlim_max);
13188 unlock_user_struct(target_rnew, arg3, 0);
13189 rnewp = &rnew;
13190 }
13191
13192 ret = get_errno(sys_prlimit64(arg1, resource, rnewp, arg4 ? &rold : 0));
13193 if (!is_error(ret) && arg4) {
13194 if (!lock_user_struct(VERIFY_WRITE, target_rold, arg4, 1)) {
13195 return -TARGET_EFAULT;
13196 }
13197 __put_user(rold.rlim_cur, &target_rold->rlim_cur);
13198 __put_user(rold.rlim_max, &target_rold->rlim_max);
13199 unlock_user_struct(target_rold, arg4, 1);
13200 }
13201 return ret;
13202 }
13203 #endif
13204 #ifdef TARGET_NR_gethostname
13205 case TARGET_NR_gethostname:
13206 {
13207 char *name = lock_user(VERIFY_WRITE, arg1, arg2, 0);
13208 if (name) {
13209 ret = get_errno(gethostname(name, arg2));
13210 unlock_user(name, arg1, arg2);
13211 } else {
13212 ret = -TARGET_EFAULT;
13213 }
13214 return ret;
13215 }
13216 #endif
13217 #ifdef TARGET_NR_atomic_cmpxchg_32
13218 case TARGET_NR_atomic_cmpxchg_32:
13219 {
13220 /* should use start_exclusive from main.c */
13221 abi_ulong mem_value;
13222 if (get_user_u32(mem_value, arg6)) {
13223 target_siginfo_t info;
13224 info.si_signo = SIGSEGV;
13225 info.si_errno = 0;
13226 info.si_code = TARGET_SEGV_MAPERR;
13227 info._sifields._sigfault._addr = arg6;
13228 queue_signal(cpu_env, info.si_signo, QEMU_SI_FAULT, &info);
13229 ret = 0xdeadbeef;
13230
13231 }
13232 if (mem_value == arg2)
13233 put_user_u32(arg1, arg6);
13234 return mem_value;
13235 }
13236 #endif
13237 #ifdef TARGET_NR_atomic_barrier
13238 case TARGET_NR_atomic_barrier:
13239 /* Like the kernel implementation and the
13240 qemu arm barrier, no-op this? */
13241 return 0;
13242 #endif
13243
13244 #ifdef TARGET_NR_timer_create
13245 case TARGET_NR_timer_create:
13246 {
13247 /* args: clockid_t clockid, struct sigevent *sevp, timer_t *timerid */
13248
13249 struct sigevent host_sevp = { {0}, }, *phost_sevp = NULL;
13250
13251 int clkid = arg1;
13252 int timer_index = next_free_host_timer();
13253
13254 if (timer_index < 0) {
13255 ret = -TARGET_EAGAIN;
13256 } else {
13257 timer_t *phtimer = g_posix_timers + timer_index;
13258
13259 if (arg2) {
13260 phost_sevp = &host_sevp;
13261 ret = target_to_host_sigevent(phost_sevp, arg2);
13262 if (ret != 0) {
13263 free_host_timer_slot(timer_index);
13264 return ret;
13265 }
13266 }
13267
13268 ret = get_errno(timer_create(clkid, phost_sevp, phtimer));
13269 if (ret) {
13270 free_host_timer_slot(timer_index);
13271 } else {
13272 if (put_user(TIMER_MAGIC | timer_index, arg3, target_timer_t)) {
13273 timer_delete(*phtimer);
13274 free_host_timer_slot(timer_index);
13275 return -TARGET_EFAULT;
13276 }
13277 }
13278 }
13279 return ret;
13280 }
13281 #endif
13282
13283 #ifdef TARGET_NR_timer_settime
13284 case TARGET_NR_timer_settime:
13285 {
13286 /* args: timer_t timerid, int flags, const struct itimerspec *new_value,
13287 * struct itimerspec * old_value */
13288 target_timer_t timerid = get_timer_id(arg1);
13289
13290 if (timerid < 0) {
13291 ret = timerid;
13292 } else if (arg3 == 0) {
13293 ret = -TARGET_EINVAL;
13294 } else {
13295 timer_t htimer = g_posix_timers[timerid];
13296 struct itimerspec hspec_new = {{0},}, hspec_old = {{0},};
13297
13298 if (target_to_host_itimerspec(&hspec_new, arg3)) {
13299 return -TARGET_EFAULT;
13300 }
13301 ret = get_errno(
13302 timer_settime(htimer, arg2, &hspec_new, &hspec_old));
13303 if (arg4 && host_to_target_itimerspec(arg4, &hspec_old)) {
13304 return -TARGET_EFAULT;
13305 }
13306 }
13307 return ret;
13308 }
13309 #endif
13310
13311 #ifdef TARGET_NR_timer_settime64
13312 case TARGET_NR_timer_settime64:
13313 {
13314 target_timer_t timerid = get_timer_id(arg1);
13315
13316 if (timerid < 0) {
13317 ret = timerid;
13318 } else if (arg3 == 0) {
13319 ret = -TARGET_EINVAL;
13320 } else {
13321 timer_t htimer = g_posix_timers[timerid];
13322 struct itimerspec hspec_new = {{0},}, hspec_old = {{0},};
13323
13324 if (target_to_host_itimerspec64(&hspec_new, arg3)) {
13325 return -TARGET_EFAULT;
13326 }
13327 ret = get_errno(
13328 timer_settime(htimer, arg2, &hspec_new, &hspec_old));
13329 if (arg4 && host_to_target_itimerspec64(arg4, &hspec_old)) {
13330 return -TARGET_EFAULT;
13331 }
13332 }
13333 return ret;
13334 }
13335 #endif
13336
13337 #ifdef TARGET_NR_timer_gettime
13338 case TARGET_NR_timer_gettime:
13339 {
13340 /* args: timer_t timerid, struct itimerspec *curr_value */
13341 target_timer_t timerid = get_timer_id(arg1);
13342
13343 if (timerid < 0) {
13344 ret = timerid;
13345 } else if (!arg2) {
13346 ret = -TARGET_EFAULT;
13347 } else {
13348 timer_t htimer = g_posix_timers[timerid];
13349 struct itimerspec hspec;
13350 ret = get_errno(timer_gettime(htimer, &hspec));
13351
13352 if (host_to_target_itimerspec(arg2, &hspec)) {
13353 ret = -TARGET_EFAULT;
13354 }
13355 }
13356 return ret;
13357 }
13358 #endif
13359
13360 #ifdef TARGET_NR_timer_gettime64
13361 case TARGET_NR_timer_gettime64:
13362 {
13363 /* args: timer_t timerid, struct itimerspec64 *curr_value */
13364 target_timer_t timerid = get_timer_id(arg1);
13365
13366 if (timerid < 0) {
13367 ret = timerid;
13368 } else if (!arg2) {
13369 ret = -TARGET_EFAULT;
13370 } else {
13371 timer_t htimer = g_posix_timers[timerid];
13372 struct itimerspec hspec;
13373 ret = get_errno(timer_gettime(htimer, &hspec));
13374
13375 if (host_to_target_itimerspec64(arg2, &hspec)) {
13376 ret = -TARGET_EFAULT;
13377 }
13378 }
13379 return ret;
13380 }
13381 #endif
13382
13383 #ifdef TARGET_NR_timer_getoverrun
13384 case TARGET_NR_timer_getoverrun:
13385 {
13386 /* args: timer_t timerid */
13387 target_timer_t timerid = get_timer_id(arg1);
13388
13389 if (timerid < 0) {
13390 ret = timerid;
13391 } else {
13392 timer_t htimer = g_posix_timers[timerid];
13393 ret = get_errno(timer_getoverrun(htimer));
13394 }
13395 return ret;
13396 }
13397 #endif
13398
13399 #ifdef TARGET_NR_timer_delete
13400 case TARGET_NR_timer_delete:
13401 {
13402 /* args: timer_t timerid */
13403 target_timer_t timerid = get_timer_id(arg1);
13404
13405 if (timerid < 0) {
13406 ret = timerid;
13407 } else {
13408 timer_t htimer = g_posix_timers[timerid];
13409 ret = get_errno(timer_delete(htimer));
13410 free_host_timer_slot(timerid);
13411 }
13412 return ret;
13413 }
13414 #endif
13415
13416 #if defined(TARGET_NR_timerfd_create) && defined(CONFIG_TIMERFD)
13417 case TARGET_NR_timerfd_create:
13418 ret = get_errno(timerfd_create(arg1,
13419 target_to_host_bitmask(arg2, fcntl_flags_tbl)));
13420 if (ret >= 0) {
13421 fd_trans_register(ret, &target_timerfd_trans);
13422 }
13423 return ret;
13424 #endif
13425
13426 #if defined(TARGET_NR_timerfd_gettime) && defined(CONFIG_TIMERFD)
13427 case TARGET_NR_timerfd_gettime:
13428 {
13429 struct itimerspec its_curr;
13430
13431 ret = get_errno(timerfd_gettime(arg1, &its_curr));
13432
13433 if (arg2 && host_to_target_itimerspec(arg2, &its_curr)) {
13434 return -TARGET_EFAULT;
13435 }
13436 }
13437 return ret;
13438 #endif
13439
13440 #if defined(TARGET_NR_timerfd_gettime64) && defined(CONFIG_TIMERFD)
13441 case TARGET_NR_timerfd_gettime64:
13442 {
13443 struct itimerspec its_curr;
13444
13445 ret = get_errno(timerfd_gettime(arg1, &its_curr));
13446
13447 if (arg2 && host_to_target_itimerspec64(arg2, &its_curr)) {
13448 return -TARGET_EFAULT;
13449 }
13450 }
13451 return ret;
13452 #endif
13453
13454 #if defined(TARGET_NR_timerfd_settime) && defined(CONFIG_TIMERFD)
13455 case TARGET_NR_timerfd_settime:
13456 {
13457 struct itimerspec its_new, its_old, *p_new;
13458
13459 if (arg3) {
13460 if (target_to_host_itimerspec(&its_new, arg3)) {
13461 return -TARGET_EFAULT;
13462 }
13463 p_new = &its_new;
13464 } else {
13465 p_new = NULL;
13466 }
13467
13468 ret = get_errno(timerfd_settime(arg1, arg2, p_new, &its_old));
13469
13470 if (arg4 && host_to_target_itimerspec(arg4, &its_old)) {
13471 return -TARGET_EFAULT;
13472 }
13473 }
13474 return ret;
13475 #endif
13476
13477 #if defined(TARGET_NR_timerfd_settime64) && defined(CONFIG_TIMERFD)
13478 case TARGET_NR_timerfd_settime64:
13479 {
13480 struct itimerspec its_new, its_old, *p_new;
13481
13482 if (arg3) {
13483 if (target_to_host_itimerspec64(&its_new, arg3)) {
13484 return -TARGET_EFAULT;
13485 }
13486 p_new = &its_new;
13487 } else {
13488 p_new = NULL;
13489 }
13490
13491 ret = get_errno(timerfd_settime(arg1, arg2, p_new, &its_old));
13492
13493 if (arg4 && host_to_target_itimerspec64(arg4, &its_old)) {
13494 return -TARGET_EFAULT;
13495 }
13496 }
13497 return ret;
13498 #endif
13499
13500 #if defined(TARGET_NR_ioprio_get) && defined(__NR_ioprio_get)
13501 case TARGET_NR_ioprio_get:
13502 return get_errno(ioprio_get(arg1, arg2));
13503 #endif
13504
13505 #if defined(TARGET_NR_ioprio_set) && defined(__NR_ioprio_set)
13506 case TARGET_NR_ioprio_set:
13507 return get_errno(ioprio_set(arg1, arg2, arg3));
13508 #endif
13509
13510 #if defined(TARGET_NR_setns) && defined(CONFIG_SETNS)
13511 case TARGET_NR_setns:
13512 return get_errno(setns(arg1, arg2));
13513 #endif
13514 #if defined(TARGET_NR_unshare) && defined(CONFIG_SETNS)
13515 case TARGET_NR_unshare:
13516 return get_errno(unshare(arg1));
13517 #endif
13518 #if defined(TARGET_NR_kcmp) && defined(__NR_kcmp)
13519 case TARGET_NR_kcmp:
13520 return get_errno(kcmp(arg1, arg2, arg3, arg4, arg5));
13521 #endif
13522 #ifdef TARGET_NR_swapcontext
13523 case TARGET_NR_swapcontext:
13524 /* PowerPC specific. */
13525 return do_swapcontext(cpu_env, arg1, arg2, arg3);
13526 #endif
13527 #ifdef TARGET_NR_memfd_create
13528 case TARGET_NR_memfd_create:
13529 p = lock_user_string(arg1);
13530 if (!p) {
13531 return -TARGET_EFAULT;
13532 }
13533 ret = get_errno(memfd_create(p, arg2));
13534 fd_trans_unregister(ret);
13535 unlock_user(p, arg1, 0);
13536 return ret;
13537 #endif
13538 #if defined TARGET_NR_membarrier && defined __NR_membarrier
13539 case TARGET_NR_membarrier:
13540 return get_errno(membarrier(arg1, arg2));
13541 #endif
13542
13543 #if defined(TARGET_NR_copy_file_range) && defined(__NR_copy_file_range)
13544 case TARGET_NR_copy_file_range:
13545 {
13546 loff_t inoff, outoff;
13547 loff_t *pinoff = NULL, *poutoff = NULL;
13548
13549 if (arg2) {
13550 if (get_user_u64(inoff, arg2)) {
13551 return -TARGET_EFAULT;
13552 }
13553 pinoff = &inoff;
13554 }
13555 if (arg4) {
13556 if (get_user_u64(outoff, arg4)) {
13557 return -TARGET_EFAULT;
13558 }
13559 poutoff = &outoff;
13560 }
13561 /* Do not sign-extend the count parameter. */
13562 ret = get_errno(safe_copy_file_range(arg1, pinoff, arg3, poutoff,
13563 (abi_ulong)arg5, arg6));
13564 if (!is_error(ret) && ret > 0) {
13565 if (arg2) {
13566 if (put_user_u64(inoff, arg2)) {
13567 return -TARGET_EFAULT;
13568 }
13569 }
13570 if (arg4) {
13571 if (put_user_u64(outoff, arg4)) {
13572 return -TARGET_EFAULT;
13573 }
13574 }
13575 }
13576 }
13577 return ret;
13578 #endif
13579
13580 #if defined(TARGET_NR_pivot_root)
13581 case TARGET_NR_pivot_root:
13582 {
13583 void *p2;
13584 p = lock_user_string(arg1); /* new_root */
13585 p2 = lock_user_string(arg2); /* put_old */
13586 if (!p || !p2) {
13587 ret = -TARGET_EFAULT;
13588 } else {
13589 ret = get_errno(pivot_root(p, p2));
13590 }
13591 unlock_user(p2, arg2, 0);
13592 unlock_user(p, arg1, 0);
13593 }
13594 return ret;
13595 #endif
13596
13597 #if defined(TARGET_NR_riscv_hwprobe)
13598 case TARGET_NR_riscv_hwprobe:
13599 return do_riscv_hwprobe(cpu_env, arg1, arg2, arg3, arg4, arg5);
13600 #endif
13601
13602 default:
13603 qemu_log_mask(LOG_UNIMP, "Unsupported syscall: %d\n", num);
13604 return -TARGET_ENOSYS;
13605 }
13606 return ret;
13607 }
13608
13609 abi_long do_syscall(CPUArchState *cpu_env, int num, abi_long arg1,
13610 abi_long arg2, abi_long arg3, abi_long arg4,
13611 abi_long arg5, abi_long arg6, abi_long arg7,
13612 abi_long arg8)
13613 {
13614 CPUState *cpu = env_cpu(cpu_env);
13615 abi_long ret;
13616
13617 #ifdef DEBUG_ERESTARTSYS
13618 /* Debug-only code for exercising the syscall-restart code paths
13619 * in the per-architecture cpu main loops: restart every syscall
13620 * the guest makes once before letting it through.
13621 */
13622 {
13623 static bool flag;
13624 flag = !flag;
13625 if (flag) {
13626 return -QEMU_ERESTARTSYS;
13627 }
13628 }
13629 #endif
13630
13631 record_syscall_start(cpu, num, arg1,
13632 arg2, arg3, arg4, arg5, arg6, arg7, arg8);
13633
13634 if (unlikely(qemu_loglevel_mask(LOG_STRACE))) {
13635 print_syscall(cpu_env, num, arg1, arg2, arg3, arg4, arg5, arg6);
13636 }
13637
13638 ret = do_syscall1(cpu_env, num, arg1, arg2, arg3, arg4,
13639 arg5, arg6, arg7, arg8);
13640
13641 if (unlikely(qemu_loglevel_mask(LOG_STRACE))) {
13642 print_syscall_ret(cpu_env, num, ret, arg1, arg2,
13643 arg3, arg4, arg5, arg6);
13644 }
13645
13646 record_syscall_return(cpu, num, ret);
13647 return ret;
13648 }