]> git.proxmox.com Git - mirror_qemu.git/blob - memory.c
memory: abort if a memory region is destroyed during a transaction
[mirror_qemu.git] / memory.c
1 /*
2 * Physical memory management
3 *
4 * Copyright 2011 Red Hat, Inc. and/or its affiliates
5 *
6 * Authors:
7 * Avi Kivity <avi@redhat.com>
8 *
9 * This work is licensed under the terms of the GNU GPL, version 2. See
10 * the COPYING file in the top-level directory.
11 *
12 * Contributions after 2012-01-13 are licensed under the terms of the
13 * GNU GPL, version 2 or (at your option) any later version.
14 */
15
16 #include "memory.h"
17 #include "exec-memory.h"
18 #include "ioport.h"
19 #include "bitops.h"
20 #include "kvm.h"
21 #include <assert.h>
22
23 #define WANT_EXEC_OBSOLETE
24 #include "exec-obsolete.h"
25
26 unsigned memory_region_transaction_depth = 0;
27 static bool global_dirty_log = false;
28
29 static QTAILQ_HEAD(memory_listeners, MemoryListener) memory_listeners
30 = QTAILQ_HEAD_INITIALIZER(memory_listeners);
31
32 typedef struct AddrRange AddrRange;
33
34 /*
35 * Note using signed integers limits us to physical addresses at most
36 * 63 bits wide. They are needed for negative offsetting in aliases
37 * (large MemoryRegion::alias_offset).
38 */
39 struct AddrRange {
40 Int128 start;
41 Int128 size;
42 };
43
44 static AddrRange addrrange_make(Int128 start, Int128 size)
45 {
46 return (AddrRange) { start, size };
47 }
48
49 static bool addrrange_equal(AddrRange r1, AddrRange r2)
50 {
51 return int128_eq(r1.start, r2.start) && int128_eq(r1.size, r2.size);
52 }
53
54 static Int128 addrrange_end(AddrRange r)
55 {
56 return int128_add(r.start, r.size);
57 }
58
59 static AddrRange addrrange_shift(AddrRange range, Int128 delta)
60 {
61 int128_addto(&range.start, delta);
62 return range;
63 }
64
65 static bool addrrange_contains(AddrRange range, Int128 addr)
66 {
67 return int128_ge(addr, range.start)
68 && int128_lt(addr, addrrange_end(range));
69 }
70
71 static bool addrrange_intersects(AddrRange r1, AddrRange r2)
72 {
73 return addrrange_contains(r1, r2.start)
74 || addrrange_contains(r2, r1.start);
75 }
76
77 static AddrRange addrrange_intersection(AddrRange r1, AddrRange r2)
78 {
79 Int128 start = int128_max(r1.start, r2.start);
80 Int128 end = int128_min(addrrange_end(r1), addrrange_end(r2));
81 return addrrange_make(start, int128_sub(end, start));
82 }
83
84 enum ListenerDirection { Forward, Reverse };
85
86 static bool memory_listener_match(MemoryListener *listener,
87 MemoryRegionSection *section)
88 {
89 return !listener->address_space_filter
90 || listener->address_space_filter == section->address_space;
91 }
92
93 #define MEMORY_LISTENER_CALL_GLOBAL(_callback, _direction, _args...) \
94 do { \
95 MemoryListener *_listener; \
96 \
97 switch (_direction) { \
98 case Forward: \
99 QTAILQ_FOREACH(_listener, &memory_listeners, link) { \
100 _listener->_callback(_listener, ##_args); \
101 } \
102 break; \
103 case Reverse: \
104 QTAILQ_FOREACH_REVERSE(_listener, &memory_listeners, \
105 memory_listeners, link) { \
106 _listener->_callback(_listener, ##_args); \
107 } \
108 break; \
109 default: \
110 abort(); \
111 } \
112 } while (0)
113
114 #define MEMORY_LISTENER_CALL(_callback, _direction, _section, _args...) \
115 do { \
116 MemoryListener *_listener; \
117 \
118 switch (_direction) { \
119 case Forward: \
120 QTAILQ_FOREACH(_listener, &memory_listeners, link) { \
121 if (memory_listener_match(_listener, _section)) { \
122 _listener->_callback(_listener, _section, ##_args); \
123 } \
124 } \
125 break; \
126 case Reverse: \
127 QTAILQ_FOREACH_REVERSE(_listener, &memory_listeners, \
128 memory_listeners, link) { \
129 if (memory_listener_match(_listener, _section)) { \
130 _listener->_callback(_listener, _section, ##_args); \
131 } \
132 } \
133 break; \
134 default: \
135 abort(); \
136 } \
137 } while (0)
138
139 #define MEMORY_LISTENER_UPDATE_REGION(fr, as, dir, callback) \
140 MEMORY_LISTENER_CALL(callback, dir, (&(MemoryRegionSection) { \
141 .mr = (fr)->mr, \
142 .address_space = (as)->root, \
143 .offset_within_region = (fr)->offset_in_region, \
144 .size = int128_get64((fr)->addr.size), \
145 .offset_within_address_space = int128_get64((fr)->addr.start), \
146 .readonly = (fr)->readonly, \
147 }))
148
149 struct CoalescedMemoryRange {
150 AddrRange addr;
151 QTAILQ_ENTRY(CoalescedMemoryRange) link;
152 };
153
154 struct MemoryRegionIoeventfd {
155 AddrRange addr;
156 bool match_data;
157 uint64_t data;
158 EventNotifier *e;
159 };
160
161 static bool memory_region_ioeventfd_before(MemoryRegionIoeventfd a,
162 MemoryRegionIoeventfd b)
163 {
164 if (int128_lt(a.addr.start, b.addr.start)) {
165 return true;
166 } else if (int128_gt(a.addr.start, b.addr.start)) {
167 return false;
168 } else if (int128_lt(a.addr.size, b.addr.size)) {
169 return true;
170 } else if (int128_gt(a.addr.size, b.addr.size)) {
171 return false;
172 } else if (a.match_data < b.match_data) {
173 return true;
174 } else if (a.match_data > b.match_data) {
175 return false;
176 } else if (a.match_data) {
177 if (a.data < b.data) {
178 return true;
179 } else if (a.data > b.data) {
180 return false;
181 }
182 }
183 if (a.e < b.e) {
184 return true;
185 } else if (a.e > b.e) {
186 return false;
187 }
188 return false;
189 }
190
191 static bool memory_region_ioeventfd_equal(MemoryRegionIoeventfd a,
192 MemoryRegionIoeventfd b)
193 {
194 return !memory_region_ioeventfd_before(a, b)
195 && !memory_region_ioeventfd_before(b, a);
196 }
197
198 typedef struct FlatRange FlatRange;
199 typedef struct FlatView FlatView;
200
201 /* Range of memory in the global map. Addresses are absolute. */
202 struct FlatRange {
203 MemoryRegion *mr;
204 target_phys_addr_t offset_in_region;
205 AddrRange addr;
206 uint8_t dirty_log_mask;
207 bool readable;
208 bool readonly;
209 };
210
211 /* Flattened global view of current active memory hierarchy. Kept in sorted
212 * order.
213 */
214 struct FlatView {
215 FlatRange *ranges;
216 unsigned nr;
217 unsigned nr_allocated;
218 };
219
220 typedef struct AddressSpace AddressSpace;
221 typedef struct AddressSpaceOps AddressSpaceOps;
222
223 /* A system address space - I/O, memory, etc. */
224 struct AddressSpace {
225 MemoryRegion *root;
226 FlatView current_map;
227 int ioeventfd_nb;
228 MemoryRegionIoeventfd *ioeventfds;
229 };
230
231 #define FOR_EACH_FLAT_RANGE(var, view) \
232 for (var = (view)->ranges; var < (view)->ranges + (view)->nr; ++var)
233
234 static bool flatrange_equal(FlatRange *a, FlatRange *b)
235 {
236 return a->mr == b->mr
237 && addrrange_equal(a->addr, b->addr)
238 && a->offset_in_region == b->offset_in_region
239 && a->readable == b->readable
240 && a->readonly == b->readonly;
241 }
242
243 static void flatview_init(FlatView *view)
244 {
245 view->ranges = NULL;
246 view->nr = 0;
247 view->nr_allocated = 0;
248 }
249
250 /* Insert a range into a given position. Caller is responsible for maintaining
251 * sorting order.
252 */
253 static void flatview_insert(FlatView *view, unsigned pos, FlatRange *range)
254 {
255 if (view->nr == view->nr_allocated) {
256 view->nr_allocated = MAX(2 * view->nr, 10);
257 view->ranges = g_realloc(view->ranges,
258 view->nr_allocated * sizeof(*view->ranges));
259 }
260 memmove(view->ranges + pos + 1, view->ranges + pos,
261 (view->nr - pos) * sizeof(FlatRange));
262 view->ranges[pos] = *range;
263 ++view->nr;
264 }
265
266 static void flatview_destroy(FlatView *view)
267 {
268 g_free(view->ranges);
269 }
270
271 static bool can_merge(FlatRange *r1, FlatRange *r2)
272 {
273 return int128_eq(addrrange_end(r1->addr), r2->addr.start)
274 && r1->mr == r2->mr
275 && int128_eq(int128_add(int128_make64(r1->offset_in_region),
276 r1->addr.size),
277 int128_make64(r2->offset_in_region))
278 && r1->dirty_log_mask == r2->dirty_log_mask
279 && r1->readable == r2->readable
280 && r1->readonly == r2->readonly;
281 }
282
283 /* Attempt to simplify a view by merging ajacent ranges */
284 static void flatview_simplify(FlatView *view)
285 {
286 unsigned i, j;
287
288 i = 0;
289 while (i < view->nr) {
290 j = i + 1;
291 while (j < view->nr
292 && can_merge(&view->ranges[j-1], &view->ranges[j])) {
293 int128_addto(&view->ranges[i].addr.size, view->ranges[j].addr.size);
294 ++j;
295 }
296 ++i;
297 memmove(&view->ranges[i], &view->ranges[j],
298 (view->nr - j) * sizeof(view->ranges[j]));
299 view->nr -= j - i;
300 }
301 }
302
303 static void memory_region_read_accessor(void *opaque,
304 target_phys_addr_t addr,
305 uint64_t *value,
306 unsigned size,
307 unsigned shift,
308 uint64_t mask)
309 {
310 MemoryRegion *mr = opaque;
311 uint64_t tmp;
312
313 if (mr->flush_coalesced_mmio) {
314 qemu_flush_coalesced_mmio_buffer();
315 }
316 tmp = mr->ops->read(mr->opaque, addr, size);
317 *value |= (tmp & mask) << shift;
318 }
319
320 static void memory_region_write_accessor(void *opaque,
321 target_phys_addr_t addr,
322 uint64_t *value,
323 unsigned size,
324 unsigned shift,
325 uint64_t mask)
326 {
327 MemoryRegion *mr = opaque;
328 uint64_t tmp;
329
330 if (mr->flush_coalesced_mmio) {
331 qemu_flush_coalesced_mmio_buffer();
332 }
333 tmp = (*value >> shift) & mask;
334 mr->ops->write(mr->opaque, addr, tmp, size);
335 }
336
337 static void access_with_adjusted_size(target_phys_addr_t addr,
338 uint64_t *value,
339 unsigned size,
340 unsigned access_size_min,
341 unsigned access_size_max,
342 void (*access)(void *opaque,
343 target_phys_addr_t addr,
344 uint64_t *value,
345 unsigned size,
346 unsigned shift,
347 uint64_t mask),
348 void *opaque)
349 {
350 uint64_t access_mask;
351 unsigned access_size;
352 unsigned i;
353
354 if (!access_size_min) {
355 access_size_min = 1;
356 }
357 if (!access_size_max) {
358 access_size_max = 4;
359 }
360 access_size = MAX(MIN(size, access_size_max), access_size_min);
361 access_mask = -1ULL >> (64 - access_size * 8);
362 for (i = 0; i < size; i += access_size) {
363 /* FIXME: big-endian support */
364 access(opaque, addr + i, value, access_size, i * 8, access_mask);
365 }
366 }
367
368 static AddressSpace address_space_memory;
369
370 static const MemoryRegionPortio *find_portio(MemoryRegion *mr, uint64_t offset,
371 unsigned width, bool write)
372 {
373 const MemoryRegionPortio *mrp;
374
375 for (mrp = mr->ops->old_portio; mrp->size; ++mrp) {
376 if (offset >= mrp->offset && offset < mrp->offset + mrp->len
377 && width == mrp->size
378 && (write ? (bool)mrp->write : (bool)mrp->read)) {
379 return mrp;
380 }
381 }
382 return NULL;
383 }
384
385 static void memory_region_iorange_read(IORange *iorange,
386 uint64_t offset,
387 unsigned width,
388 uint64_t *data)
389 {
390 MemoryRegionIORange *mrio
391 = container_of(iorange, MemoryRegionIORange, iorange);
392 MemoryRegion *mr = mrio->mr;
393
394 offset += mrio->offset;
395 if (mr->ops->old_portio) {
396 const MemoryRegionPortio *mrp = find_portio(mr, offset - mrio->offset,
397 width, false);
398
399 *data = ((uint64_t)1 << (width * 8)) - 1;
400 if (mrp) {
401 *data = mrp->read(mr->opaque, offset);
402 } else if (width == 2) {
403 mrp = find_portio(mr, offset - mrio->offset, 1, false);
404 assert(mrp);
405 *data = mrp->read(mr->opaque, offset) |
406 (mrp->read(mr->opaque, offset + 1) << 8);
407 }
408 return;
409 }
410 *data = 0;
411 access_with_adjusted_size(offset, data, width,
412 mr->ops->impl.min_access_size,
413 mr->ops->impl.max_access_size,
414 memory_region_read_accessor, mr);
415 }
416
417 static void memory_region_iorange_write(IORange *iorange,
418 uint64_t offset,
419 unsigned width,
420 uint64_t data)
421 {
422 MemoryRegionIORange *mrio
423 = container_of(iorange, MemoryRegionIORange, iorange);
424 MemoryRegion *mr = mrio->mr;
425
426 offset += mrio->offset;
427 if (mr->ops->old_portio) {
428 const MemoryRegionPortio *mrp = find_portio(mr, offset - mrio->offset,
429 width, true);
430
431 if (mrp) {
432 mrp->write(mr->opaque, offset, data);
433 } else if (width == 2) {
434 mrp = find_portio(mr, offset - mrio->offset, 1, true);
435 assert(mrp);
436 mrp->write(mr->opaque, offset, data & 0xff);
437 mrp->write(mr->opaque, offset + 1, data >> 8);
438 }
439 return;
440 }
441 access_with_adjusted_size(offset, &data, width,
442 mr->ops->impl.min_access_size,
443 mr->ops->impl.max_access_size,
444 memory_region_write_accessor, mr);
445 }
446
447 static void memory_region_iorange_destructor(IORange *iorange)
448 {
449 g_free(container_of(iorange, MemoryRegionIORange, iorange));
450 }
451
452 const IORangeOps memory_region_iorange_ops = {
453 .read = memory_region_iorange_read,
454 .write = memory_region_iorange_write,
455 .destructor = memory_region_iorange_destructor,
456 };
457
458 static AddressSpace address_space_io;
459
460 static AddressSpace *memory_region_to_address_space(MemoryRegion *mr)
461 {
462 while (mr->parent) {
463 mr = mr->parent;
464 }
465 if (mr == address_space_memory.root) {
466 return &address_space_memory;
467 }
468 if (mr == address_space_io.root) {
469 return &address_space_io;
470 }
471 abort();
472 }
473
474 /* Render a memory region into the global view. Ranges in @view obscure
475 * ranges in @mr.
476 */
477 static void render_memory_region(FlatView *view,
478 MemoryRegion *mr,
479 Int128 base,
480 AddrRange clip,
481 bool readonly)
482 {
483 MemoryRegion *subregion;
484 unsigned i;
485 target_phys_addr_t offset_in_region;
486 Int128 remain;
487 Int128 now;
488 FlatRange fr;
489 AddrRange tmp;
490
491 if (!mr->enabled) {
492 return;
493 }
494
495 int128_addto(&base, int128_make64(mr->addr));
496 readonly |= mr->readonly;
497
498 tmp = addrrange_make(base, mr->size);
499
500 if (!addrrange_intersects(tmp, clip)) {
501 return;
502 }
503
504 clip = addrrange_intersection(tmp, clip);
505
506 if (mr->alias) {
507 int128_subfrom(&base, int128_make64(mr->alias->addr));
508 int128_subfrom(&base, int128_make64(mr->alias_offset));
509 render_memory_region(view, mr->alias, base, clip, readonly);
510 return;
511 }
512
513 /* Render subregions in priority order. */
514 QTAILQ_FOREACH(subregion, &mr->subregions, subregions_link) {
515 render_memory_region(view, subregion, base, clip, readonly);
516 }
517
518 if (!mr->terminates) {
519 return;
520 }
521
522 offset_in_region = int128_get64(int128_sub(clip.start, base));
523 base = clip.start;
524 remain = clip.size;
525
526 /* Render the region itself into any gaps left by the current view. */
527 for (i = 0; i < view->nr && int128_nz(remain); ++i) {
528 if (int128_ge(base, addrrange_end(view->ranges[i].addr))) {
529 continue;
530 }
531 if (int128_lt(base, view->ranges[i].addr.start)) {
532 now = int128_min(remain,
533 int128_sub(view->ranges[i].addr.start, base));
534 fr.mr = mr;
535 fr.offset_in_region = offset_in_region;
536 fr.addr = addrrange_make(base, now);
537 fr.dirty_log_mask = mr->dirty_log_mask;
538 fr.readable = mr->readable;
539 fr.readonly = readonly;
540 flatview_insert(view, i, &fr);
541 ++i;
542 int128_addto(&base, now);
543 offset_in_region += int128_get64(now);
544 int128_subfrom(&remain, now);
545 }
546 if (int128_eq(base, view->ranges[i].addr.start)) {
547 now = int128_min(remain, view->ranges[i].addr.size);
548 int128_addto(&base, now);
549 offset_in_region += int128_get64(now);
550 int128_subfrom(&remain, now);
551 }
552 }
553 if (int128_nz(remain)) {
554 fr.mr = mr;
555 fr.offset_in_region = offset_in_region;
556 fr.addr = addrrange_make(base, remain);
557 fr.dirty_log_mask = mr->dirty_log_mask;
558 fr.readable = mr->readable;
559 fr.readonly = readonly;
560 flatview_insert(view, i, &fr);
561 }
562 }
563
564 /* Render a memory topology into a list of disjoint absolute ranges. */
565 static FlatView generate_memory_topology(MemoryRegion *mr)
566 {
567 FlatView view;
568
569 flatview_init(&view);
570
571 render_memory_region(&view, mr, int128_zero(),
572 addrrange_make(int128_zero(), int128_2_64()), false);
573 flatview_simplify(&view);
574
575 return view;
576 }
577
578 static void address_space_add_del_ioeventfds(AddressSpace *as,
579 MemoryRegionIoeventfd *fds_new,
580 unsigned fds_new_nb,
581 MemoryRegionIoeventfd *fds_old,
582 unsigned fds_old_nb)
583 {
584 unsigned iold, inew;
585 MemoryRegionIoeventfd *fd;
586 MemoryRegionSection section;
587
588 /* Generate a symmetric difference of the old and new fd sets, adding
589 * and deleting as necessary.
590 */
591
592 iold = inew = 0;
593 while (iold < fds_old_nb || inew < fds_new_nb) {
594 if (iold < fds_old_nb
595 && (inew == fds_new_nb
596 || memory_region_ioeventfd_before(fds_old[iold],
597 fds_new[inew]))) {
598 fd = &fds_old[iold];
599 section = (MemoryRegionSection) {
600 .address_space = as->root,
601 .offset_within_address_space = int128_get64(fd->addr.start),
602 .size = int128_get64(fd->addr.size),
603 };
604 MEMORY_LISTENER_CALL(eventfd_del, Forward, &section,
605 fd->match_data, fd->data, fd->e);
606 ++iold;
607 } else if (inew < fds_new_nb
608 && (iold == fds_old_nb
609 || memory_region_ioeventfd_before(fds_new[inew],
610 fds_old[iold]))) {
611 fd = &fds_new[inew];
612 section = (MemoryRegionSection) {
613 .address_space = as->root,
614 .offset_within_address_space = int128_get64(fd->addr.start),
615 .size = int128_get64(fd->addr.size),
616 };
617 MEMORY_LISTENER_CALL(eventfd_add, Reverse, &section,
618 fd->match_data, fd->data, fd->e);
619 ++inew;
620 } else {
621 ++iold;
622 ++inew;
623 }
624 }
625 }
626
627 static void address_space_update_ioeventfds(AddressSpace *as)
628 {
629 FlatRange *fr;
630 unsigned ioeventfd_nb = 0;
631 MemoryRegionIoeventfd *ioeventfds = NULL;
632 AddrRange tmp;
633 unsigned i;
634
635 FOR_EACH_FLAT_RANGE(fr, &as->current_map) {
636 for (i = 0; i < fr->mr->ioeventfd_nb; ++i) {
637 tmp = addrrange_shift(fr->mr->ioeventfds[i].addr,
638 int128_sub(fr->addr.start,
639 int128_make64(fr->offset_in_region)));
640 if (addrrange_intersects(fr->addr, tmp)) {
641 ++ioeventfd_nb;
642 ioeventfds = g_realloc(ioeventfds,
643 ioeventfd_nb * sizeof(*ioeventfds));
644 ioeventfds[ioeventfd_nb-1] = fr->mr->ioeventfds[i];
645 ioeventfds[ioeventfd_nb-1].addr = tmp;
646 }
647 }
648 }
649
650 address_space_add_del_ioeventfds(as, ioeventfds, ioeventfd_nb,
651 as->ioeventfds, as->ioeventfd_nb);
652
653 g_free(as->ioeventfds);
654 as->ioeventfds = ioeventfds;
655 as->ioeventfd_nb = ioeventfd_nb;
656 }
657
658 static void address_space_update_topology_pass(AddressSpace *as,
659 FlatView old_view,
660 FlatView new_view,
661 bool adding)
662 {
663 unsigned iold, inew;
664 FlatRange *frold, *frnew;
665
666 /* Generate a symmetric difference of the old and new memory maps.
667 * Kill ranges in the old map, and instantiate ranges in the new map.
668 */
669 iold = inew = 0;
670 while (iold < old_view.nr || inew < new_view.nr) {
671 if (iold < old_view.nr) {
672 frold = &old_view.ranges[iold];
673 } else {
674 frold = NULL;
675 }
676 if (inew < new_view.nr) {
677 frnew = &new_view.ranges[inew];
678 } else {
679 frnew = NULL;
680 }
681
682 if (frold
683 && (!frnew
684 || int128_lt(frold->addr.start, frnew->addr.start)
685 || (int128_eq(frold->addr.start, frnew->addr.start)
686 && !flatrange_equal(frold, frnew)))) {
687 /* In old, but (not in new, or in new but attributes changed). */
688
689 if (!adding) {
690 MEMORY_LISTENER_UPDATE_REGION(frold, as, Reverse, region_del);
691 }
692
693 ++iold;
694 } else if (frold && frnew && flatrange_equal(frold, frnew)) {
695 /* In both (logging may have changed) */
696
697 if (adding) {
698 MEMORY_LISTENER_UPDATE_REGION(frnew, as, Forward, region_nop);
699 if (frold->dirty_log_mask && !frnew->dirty_log_mask) {
700 MEMORY_LISTENER_UPDATE_REGION(frnew, as, Reverse, log_stop);
701 } else if (frnew->dirty_log_mask && !frold->dirty_log_mask) {
702 MEMORY_LISTENER_UPDATE_REGION(frnew, as, Forward, log_start);
703 }
704 }
705
706 ++iold;
707 ++inew;
708 } else {
709 /* In new */
710
711 if (adding) {
712 MEMORY_LISTENER_UPDATE_REGION(frnew, as, Forward, region_add);
713 }
714
715 ++inew;
716 }
717 }
718 }
719
720
721 static void address_space_update_topology(AddressSpace *as)
722 {
723 FlatView old_view = as->current_map;
724 FlatView new_view = generate_memory_topology(as->root);
725
726 address_space_update_topology_pass(as, old_view, new_view, false);
727 address_space_update_topology_pass(as, old_view, new_view, true);
728
729 as->current_map = new_view;
730 flatview_destroy(&old_view);
731 address_space_update_ioeventfds(as);
732 }
733
734 void memory_region_transaction_begin(void)
735 {
736 qemu_flush_coalesced_mmio_buffer();
737 ++memory_region_transaction_depth;
738 }
739
740 void memory_region_transaction_commit(void)
741 {
742 assert(memory_region_transaction_depth);
743 --memory_region_transaction_depth;
744 if (!memory_region_transaction_depth) {
745 MEMORY_LISTENER_CALL_GLOBAL(begin, Forward);
746
747 if (address_space_memory.root) {
748 address_space_update_topology(&address_space_memory);
749 }
750 if (address_space_io.root) {
751 address_space_update_topology(&address_space_io);
752 }
753
754 MEMORY_LISTENER_CALL_GLOBAL(commit, Forward);
755 }
756 }
757
758 static void memory_region_destructor_none(MemoryRegion *mr)
759 {
760 }
761
762 static void memory_region_destructor_ram(MemoryRegion *mr)
763 {
764 qemu_ram_free(mr->ram_addr);
765 }
766
767 static void memory_region_destructor_ram_from_ptr(MemoryRegion *mr)
768 {
769 qemu_ram_free_from_ptr(mr->ram_addr);
770 }
771
772 static void memory_region_destructor_iomem(MemoryRegion *mr)
773 {
774 }
775
776 static void memory_region_destructor_rom_device(MemoryRegion *mr)
777 {
778 qemu_ram_free(mr->ram_addr & TARGET_PAGE_MASK);
779 }
780
781 static bool memory_region_wrong_endianness(MemoryRegion *mr)
782 {
783 #ifdef TARGET_WORDS_BIGENDIAN
784 return mr->ops->endianness == DEVICE_LITTLE_ENDIAN;
785 #else
786 return mr->ops->endianness == DEVICE_BIG_ENDIAN;
787 #endif
788 }
789
790 void memory_region_init(MemoryRegion *mr,
791 const char *name,
792 uint64_t size)
793 {
794 mr->ops = NULL;
795 mr->parent = NULL;
796 mr->size = int128_make64(size);
797 if (size == UINT64_MAX) {
798 mr->size = int128_2_64();
799 }
800 mr->addr = 0;
801 mr->subpage = false;
802 mr->enabled = true;
803 mr->terminates = false;
804 mr->ram = false;
805 mr->readable = true;
806 mr->readonly = false;
807 mr->rom_device = false;
808 mr->destructor = memory_region_destructor_none;
809 mr->priority = 0;
810 mr->may_overlap = false;
811 mr->alias = NULL;
812 QTAILQ_INIT(&mr->subregions);
813 memset(&mr->subregions_link, 0, sizeof mr->subregions_link);
814 QTAILQ_INIT(&mr->coalesced);
815 mr->name = g_strdup(name);
816 mr->dirty_log_mask = 0;
817 mr->ioeventfd_nb = 0;
818 mr->ioeventfds = NULL;
819 mr->flush_coalesced_mmio = false;
820 }
821
822 static bool memory_region_access_valid(MemoryRegion *mr,
823 target_phys_addr_t addr,
824 unsigned size,
825 bool is_write)
826 {
827 if (mr->ops->valid.accepts
828 && !mr->ops->valid.accepts(mr->opaque, addr, size, is_write)) {
829 return false;
830 }
831
832 if (!mr->ops->valid.unaligned && (addr & (size - 1))) {
833 return false;
834 }
835
836 /* Treat zero as compatibility all valid */
837 if (!mr->ops->valid.max_access_size) {
838 return true;
839 }
840
841 if (size > mr->ops->valid.max_access_size
842 || size < mr->ops->valid.min_access_size) {
843 return false;
844 }
845 return true;
846 }
847
848 static uint64_t memory_region_dispatch_read1(MemoryRegion *mr,
849 target_phys_addr_t addr,
850 unsigned size)
851 {
852 uint64_t data = 0;
853
854 if (!memory_region_access_valid(mr, addr, size, false)) {
855 return -1U; /* FIXME: better signalling */
856 }
857
858 if (!mr->ops->read) {
859 return mr->ops->old_mmio.read[bitops_ffsl(size)](mr->opaque, addr);
860 }
861
862 /* FIXME: support unaligned access */
863 access_with_adjusted_size(addr, &data, size,
864 mr->ops->impl.min_access_size,
865 mr->ops->impl.max_access_size,
866 memory_region_read_accessor, mr);
867
868 return data;
869 }
870
871 static void adjust_endianness(MemoryRegion *mr, uint64_t *data, unsigned size)
872 {
873 if (memory_region_wrong_endianness(mr)) {
874 switch (size) {
875 case 1:
876 break;
877 case 2:
878 *data = bswap16(*data);
879 break;
880 case 4:
881 *data = bswap32(*data);
882 break;
883 default:
884 abort();
885 }
886 }
887 }
888
889 static uint64_t memory_region_dispatch_read(MemoryRegion *mr,
890 target_phys_addr_t addr,
891 unsigned size)
892 {
893 uint64_t ret;
894
895 ret = memory_region_dispatch_read1(mr, addr, size);
896 adjust_endianness(mr, &ret, size);
897 return ret;
898 }
899
900 static void memory_region_dispatch_write(MemoryRegion *mr,
901 target_phys_addr_t addr,
902 uint64_t data,
903 unsigned size)
904 {
905 if (!memory_region_access_valid(mr, addr, size, true)) {
906 return; /* FIXME: better signalling */
907 }
908
909 adjust_endianness(mr, &data, size);
910
911 if (!mr->ops->write) {
912 mr->ops->old_mmio.write[bitops_ffsl(size)](mr->opaque, addr, data);
913 return;
914 }
915
916 /* FIXME: support unaligned access */
917 access_with_adjusted_size(addr, &data, size,
918 mr->ops->impl.min_access_size,
919 mr->ops->impl.max_access_size,
920 memory_region_write_accessor, mr);
921 }
922
923 void memory_region_init_io(MemoryRegion *mr,
924 const MemoryRegionOps *ops,
925 void *opaque,
926 const char *name,
927 uint64_t size)
928 {
929 memory_region_init(mr, name, size);
930 mr->ops = ops;
931 mr->opaque = opaque;
932 mr->terminates = true;
933 mr->destructor = memory_region_destructor_iomem;
934 mr->ram_addr = ~(ram_addr_t)0;
935 }
936
937 void memory_region_init_ram(MemoryRegion *mr,
938 const char *name,
939 uint64_t size)
940 {
941 memory_region_init(mr, name, size);
942 mr->ram = true;
943 mr->terminates = true;
944 mr->destructor = memory_region_destructor_ram;
945 mr->ram_addr = qemu_ram_alloc(size, mr);
946 }
947
948 void memory_region_init_ram_ptr(MemoryRegion *mr,
949 const char *name,
950 uint64_t size,
951 void *ptr)
952 {
953 memory_region_init(mr, name, size);
954 mr->ram = true;
955 mr->terminates = true;
956 mr->destructor = memory_region_destructor_ram_from_ptr;
957 mr->ram_addr = qemu_ram_alloc_from_ptr(size, ptr, mr);
958 }
959
960 void memory_region_init_alias(MemoryRegion *mr,
961 const char *name,
962 MemoryRegion *orig,
963 target_phys_addr_t offset,
964 uint64_t size)
965 {
966 memory_region_init(mr, name, size);
967 mr->alias = orig;
968 mr->alias_offset = offset;
969 }
970
971 void memory_region_init_rom_device(MemoryRegion *mr,
972 const MemoryRegionOps *ops,
973 void *opaque,
974 const char *name,
975 uint64_t size)
976 {
977 memory_region_init(mr, name, size);
978 mr->ops = ops;
979 mr->opaque = opaque;
980 mr->terminates = true;
981 mr->rom_device = true;
982 mr->destructor = memory_region_destructor_rom_device;
983 mr->ram_addr = qemu_ram_alloc(size, mr);
984 }
985
986 static uint64_t invalid_read(void *opaque, target_phys_addr_t addr,
987 unsigned size)
988 {
989 MemoryRegion *mr = opaque;
990
991 if (!mr->warning_printed) {
992 fprintf(stderr, "Invalid read from memory region %s\n", mr->name);
993 mr->warning_printed = true;
994 }
995 return -1U;
996 }
997
998 static void invalid_write(void *opaque, target_phys_addr_t addr, uint64_t data,
999 unsigned size)
1000 {
1001 MemoryRegion *mr = opaque;
1002
1003 if (!mr->warning_printed) {
1004 fprintf(stderr, "Invalid write to memory region %s\n", mr->name);
1005 mr->warning_printed = true;
1006 }
1007 }
1008
1009 static const MemoryRegionOps reservation_ops = {
1010 .read = invalid_read,
1011 .write = invalid_write,
1012 .endianness = DEVICE_NATIVE_ENDIAN,
1013 };
1014
1015 void memory_region_init_reservation(MemoryRegion *mr,
1016 const char *name,
1017 uint64_t size)
1018 {
1019 memory_region_init_io(mr, &reservation_ops, mr, name, size);
1020 }
1021
1022 void memory_region_destroy(MemoryRegion *mr)
1023 {
1024 assert(QTAILQ_EMPTY(&mr->subregions));
1025 assert(memory_region_transaction_depth == 0);
1026 mr->destructor(mr);
1027 memory_region_clear_coalescing(mr);
1028 g_free((char *)mr->name);
1029 g_free(mr->ioeventfds);
1030 }
1031
1032 uint64_t memory_region_size(MemoryRegion *mr)
1033 {
1034 if (int128_eq(mr->size, int128_2_64())) {
1035 return UINT64_MAX;
1036 }
1037 return int128_get64(mr->size);
1038 }
1039
1040 const char *memory_region_name(MemoryRegion *mr)
1041 {
1042 return mr->name;
1043 }
1044
1045 bool memory_region_is_ram(MemoryRegion *mr)
1046 {
1047 return mr->ram;
1048 }
1049
1050 bool memory_region_is_logging(MemoryRegion *mr)
1051 {
1052 return mr->dirty_log_mask;
1053 }
1054
1055 bool memory_region_is_rom(MemoryRegion *mr)
1056 {
1057 return mr->ram && mr->readonly;
1058 }
1059
1060 void memory_region_set_log(MemoryRegion *mr, bool log, unsigned client)
1061 {
1062 uint8_t mask = 1 << client;
1063
1064 memory_region_transaction_begin();
1065 mr->dirty_log_mask = (mr->dirty_log_mask & ~mask) | (log * mask);
1066 memory_region_transaction_commit();
1067 }
1068
1069 bool memory_region_get_dirty(MemoryRegion *mr, target_phys_addr_t addr,
1070 target_phys_addr_t size, unsigned client)
1071 {
1072 assert(mr->terminates);
1073 return cpu_physical_memory_get_dirty(mr->ram_addr + addr, size,
1074 1 << client);
1075 }
1076
1077 void memory_region_set_dirty(MemoryRegion *mr, target_phys_addr_t addr,
1078 target_phys_addr_t size)
1079 {
1080 assert(mr->terminates);
1081 return cpu_physical_memory_set_dirty_range(mr->ram_addr + addr, size, -1);
1082 }
1083
1084 void memory_region_sync_dirty_bitmap(MemoryRegion *mr)
1085 {
1086 FlatRange *fr;
1087
1088 FOR_EACH_FLAT_RANGE(fr, &address_space_memory.current_map) {
1089 if (fr->mr == mr) {
1090 MEMORY_LISTENER_UPDATE_REGION(fr, &address_space_memory,
1091 Forward, log_sync);
1092 }
1093 }
1094 }
1095
1096 void memory_region_set_readonly(MemoryRegion *mr, bool readonly)
1097 {
1098 if (mr->readonly != readonly) {
1099 memory_region_transaction_begin();
1100 mr->readonly = readonly;
1101 memory_region_transaction_commit();
1102 }
1103 }
1104
1105 void memory_region_rom_device_set_readable(MemoryRegion *mr, bool readable)
1106 {
1107 if (mr->readable != readable) {
1108 memory_region_transaction_begin();
1109 mr->readable = readable;
1110 memory_region_transaction_commit();
1111 }
1112 }
1113
1114 void memory_region_reset_dirty(MemoryRegion *mr, target_phys_addr_t addr,
1115 target_phys_addr_t size, unsigned client)
1116 {
1117 assert(mr->terminates);
1118 cpu_physical_memory_reset_dirty(mr->ram_addr + addr,
1119 mr->ram_addr + addr + size,
1120 1 << client);
1121 }
1122
1123 void *memory_region_get_ram_ptr(MemoryRegion *mr)
1124 {
1125 if (mr->alias) {
1126 return memory_region_get_ram_ptr(mr->alias) + mr->alias_offset;
1127 }
1128
1129 assert(mr->terminates);
1130
1131 return qemu_get_ram_ptr(mr->ram_addr & TARGET_PAGE_MASK);
1132 }
1133
1134 static void memory_region_update_coalesced_range(MemoryRegion *mr)
1135 {
1136 FlatRange *fr;
1137 CoalescedMemoryRange *cmr;
1138 AddrRange tmp;
1139
1140 FOR_EACH_FLAT_RANGE(fr, &address_space_memory.current_map) {
1141 if (fr->mr == mr) {
1142 qemu_unregister_coalesced_mmio(int128_get64(fr->addr.start),
1143 int128_get64(fr->addr.size));
1144 QTAILQ_FOREACH(cmr, &mr->coalesced, link) {
1145 tmp = addrrange_shift(cmr->addr,
1146 int128_sub(fr->addr.start,
1147 int128_make64(fr->offset_in_region)));
1148 if (!addrrange_intersects(tmp, fr->addr)) {
1149 continue;
1150 }
1151 tmp = addrrange_intersection(tmp, fr->addr);
1152 qemu_register_coalesced_mmio(int128_get64(tmp.start),
1153 int128_get64(tmp.size));
1154 }
1155 }
1156 }
1157 }
1158
1159 void memory_region_set_coalescing(MemoryRegion *mr)
1160 {
1161 memory_region_clear_coalescing(mr);
1162 memory_region_add_coalescing(mr, 0, int128_get64(mr->size));
1163 }
1164
1165 void memory_region_add_coalescing(MemoryRegion *mr,
1166 target_phys_addr_t offset,
1167 uint64_t size)
1168 {
1169 CoalescedMemoryRange *cmr = g_malloc(sizeof(*cmr));
1170
1171 cmr->addr = addrrange_make(int128_make64(offset), int128_make64(size));
1172 QTAILQ_INSERT_TAIL(&mr->coalesced, cmr, link);
1173 memory_region_update_coalesced_range(mr);
1174 memory_region_set_flush_coalesced(mr);
1175 }
1176
1177 void memory_region_clear_coalescing(MemoryRegion *mr)
1178 {
1179 CoalescedMemoryRange *cmr;
1180
1181 qemu_flush_coalesced_mmio_buffer();
1182 mr->flush_coalesced_mmio = false;
1183
1184 while (!QTAILQ_EMPTY(&mr->coalesced)) {
1185 cmr = QTAILQ_FIRST(&mr->coalesced);
1186 QTAILQ_REMOVE(&mr->coalesced, cmr, link);
1187 g_free(cmr);
1188 }
1189 memory_region_update_coalesced_range(mr);
1190 }
1191
1192 void memory_region_set_flush_coalesced(MemoryRegion *mr)
1193 {
1194 mr->flush_coalesced_mmio = true;
1195 }
1196
1197 void memory_region_clear_flush_coalesced(MemoryRegion *mr)
1198 {
1199 qemu_flush_coalesced_mmio_buffer();
1200 if (QTAILQ_EMPTY(&mr->coalesced)) {
1201 mr->flush_coalesced_mmio = false;
1202 }
1203 }
1204
1205 void memory_region_add_eventfd(MemoryRegion *mr,
1206 target_phys_addr_t addr,
1207 unsigned size,
1208 bool match_data,
1209 uint64_t data,
1210 EventNotifier *e)
1211 {
1212 MemoryRegionIoeventfd mrfd = {
1213 .addr.start = int128_make64(addr),
1214 .addr.size = int128_make64(size),
1215 .match_data = match_data,
1216 .data = data,
1217 .e = e,
1218 };
1219 unsigned i;
1220
1221 adjust_endianness(mr, &mrfd.data, size);
1222 memory_region_transaction_begin();
1223 for (i = 0; i < mr->ioeventfd_nb; ++i) {
1224 if (memory_region_ioeventfd_before(mrfd, mr->ioeventfds[i])) {
1225 break;
1226 }
1227 }
1228 ++mr->ioeventfd_nb;
1229 mr->ioeventfds = g_realloc(mr->ioeventfds,
1230 sizeof(*mr->ioeventfds) * mr->ioeventfd_nb);
1231 memmove(&mr->ioeventfds[i+1], &mr->ioeventfds[i],
1232 sizeof(*mr->ioeventfds) * (mr->ioeventfd_nb-1 - i));
1233 mr->ioeventfds[i] = mrfd;
1234 memory_region_transaction_commit();
1235 }
1236
1237 void memory_region_del_eventfd(MemoryRegion *mr,
1238 target_phys_addr_t addr,
1239 unsigned size,
1240 bool match_data,
1241 uint64_t data,
1242 EventNotifier *e)
1243 {
1244 MemoryRegionIoeventfd mrfd = {
1245 .addr.start = int128_make64(addr),
1246 .addr.size = int128_make64(size),
1247 .match_data = match_data,
1248 .data = data,
1249 .e = e,
1250 };
1251 unsigned i;
1252
1253 adjust_endianness(mr, &mrfd.data, size);
1254 memory_region_transaction_begin();
1255 for (i = 0; i < mr->ioeventfd_nb; ++i) {
1256 if (memory_region_ioeventfd_equal(mrfd, mr->ioeventfds[i])) {
1257 break;
1258 }
1259 }
1260 assert(i != mr->ioeventfd_nb);
1261 memmove(&mr->ioeventfds[i], &mr->ioeventfds[i+1],
1262 sizeof(*mr->ioeventfds) * (mr->ioeventfd_nb - (i+1)));
1263 --mr->ioeventfd_nb;
1264 mr->ioeventfds = g_realloc(mr->ioeventfds,
1265 sizeof(*mr->ioeventfds)*mr->ioeventfd_nb + 1);
1266 memory_region_transaction_commit();
1267 }
1268
1269 static void memory_region_add_subregion_common(MemoryRegion *mr,
1270 target_phys_addr_t offset,
1271 MemoryRegion *subregion)
1272 {
1273 MemoryRegion *other;
1274
1275 memory_region_transaction_begin();
1276
1277 assert(!subregion->parent);
1278 subregion->parent = mr;
1279 subregion->addr = offset;
1280 QTAILQ_FOREACH(other, &mr->subregions, subregions_link) {
1281 if (subregion->may_overlap || other->may_overlap) {
1282 continue;
1283 }
1284 if (int128_gt(int128_make64(offset),
1285 int128_add(int128_make64(other->addr), other->size))
1286 || int128_le(int128_add(int128_make64(offset), subregion->size),
1287 int128_make64(other->addr))) {
1288 continue;
1289 }
1290 #if 0
1291 printf("warning: subregion collision %llx/%llx (%s) "
1292 "vs %llx/%llx (%s)\n",
1293 (unsigned long long)offset,
1294 (unsigned long long)int128_get64(subregion->size),
1295 subregion->name,
1296 (unsigned long long)other->addr,
1297 (unsigned long long)int128_get64(other->size),
1298 other->name);
1299 #endif
1300 }
1301 QTAILQ_FOREACH(other, &mr->subregions, subregions_link) {
1302 if (subregion->priority >= other->priority) {
1303 QTAILQ_INSERT_BEFORE(other, subregion, subregions_link);
1304 goto done;
1305 }
1306 }
1307 QTAILQ_INSERT_TAIL(&mr->subregions, subregion, subregions_link);
1308 done:
1309 memory_region_transaction_commit();
1310 }
1311
1312
1313 void memory_region_add_subregion(MemoryRegion *mr,
1314 target_phys_addr_t offset,
1315 MemoryRegion *subregion)
1316 {
1317 subregion->may_overlap = false;
1318 subregion->priority = 0;
1319 memory_region_add_subregion_common(mr, offset, subregion);
1320 }
1321
1322 void memory_region_add_subregion_overlap(MemoryRegion *mr,
1323 target_phys_addr_t offset,
1324 MemoryRegion *subregion,
1325 unsigned priority)
1326 {
1327 subregion->may_overlap = true;
1328 subregion->priority = priority;
1329 memory_region_add_subregion_common(mr, offset, subregion);
1330 }
1331
1332 void memory_region_del_subregion(MemoryRegion *mr,
1333 MemoryRegion *subregion)
1334 {
1335 memory_region_transaction_begin();
1336 assert(subregion->parent == mr);
1337 subregion->parent = NULL;
1338 QTAILQ_REMOVE(&mr->subregions, subregion, subregions_link);
1339 memory_region_transaction_commit();
1340 }
1341
1342 void memory_region_set_enabled(MemoryRegion *mr, bool enabled)
1343 {
1344 if (enabled == mr->enabled) {
1345 return;
1346 }
1347 memory_region_transaction_begin();
1348 mr->enabled = enabled;
1349 memory_region_transaction_commit();
1350 }
1351
1352 void memory_region_set_address(MemoryRegion *mr, target_phys_addr_t addr)
1353 {
1354 MemoryRegion *parent = mr->parent;
1355 unsigned priority = mr->priority;
1356 bool may_overlap = mr->may_overlap;
1357
1358 if (addr == mr->addr || !parent) {
1359 mr->addr = addr;
1360 return;
1361 }
1362
1363 memory_region_transaction_begin();
1364 memory_region_del_subregion(parent, mr);
1365 if (may_overlap) {
1366 memory_region_add_subregion_overlap(parent, addr, mr, priority);
1367 } else {
1368 memory_region_add_subregion(parent, addr, mr);
1369 }
1370 memory_region_transaction_commit();
1371 }
1372
1373 void memory_region_set_alias_offset(MemoryRegion *mr, target_phys_addr_t offset)
1374 {
1375 assert(mr->alias);
1376
1377 if (offset == mr->alias_offset) {
1378 return;
1379 }
1380
1381 memory_region_transaction_begin();
1382 mr->alias_offset = offset;
1383 memory_region_transaction_commit();
1384 }
1385
1386 ram_addr_t memory_region_get_ram_addr(MemoryRegion *mr)
1387 {
1388 return mr->ram_addr;
1389 }
1390
1391 static int cmp_flatrange_addr(const void *addr_, const void *fr_)
1392 {
1393 const AddrRange *addr = addr_;
1394 const FlatRange *fr = fr_;
1395
1396 if (int128_le(addrrange_end(*addr), fr->addr.start)) {
1397 return -1;
1398 } else if (int128_ge(addr->start, addrrange_end(fr->addr))) {
1399 return 1;
1400 }
1401 return 0;
1402 }
1403
1404 static FlatRange *address_space_lookup(AddressSpace *as, AddrRange addr)
1405 {
1406 return bsearch(&addr, as->current_map.ranges, as->current_map.nr,
1407 sizeof(FlatRange), cmp_flatrange_addr);
1408 }
1409
1410 MemoryRegionSection memory_region_find(MemoryRegion *address_space,
1411 target_phys_addr_t addr, uint64_t size)
1412 {
1413 AddressSpace *as = memory_region_to_address_space(address_space);
1414 AddrRange range = addrrange_make(int128_make64(addr),
1415 int128_make64(size));
1416 FlatRange *fr = address_space_lookup(as, range);
1417 MemoryRegionSection ret = { .mr = NULL, .size = 0 };
1418
1419 if (!fr) {
1420 return ret;
1421 }
1422
1423 while (fr > as->current_map.ranges
1424 && addrrange_intersects(fr[-1].addr, range)) {
1425 --fr;
1426 }
1427
1428 ret.mr = fr->mr;
1429 range = addrrange_intersection(range, fr->addr);
1430 ret.offset_within_region = fr->offset_in_region;
1431 ret.offset_within_region += int128_get64(int128_sub(range.start,
1432 fr->addr.start));
1433 ret.size = int128_get64(range.size);
1434 ret.offset_within_address_space = int128_get64(range.start);
1435 ret.readonly = fr->readonly;
1436 return ret;
1437 }
1438
1439 void memory_global_sync_dirty_bitmap(MemoryRegion *address_space)
1440 {
1441 AddressSpace *as = memory_region_to_address_space(address_space);
1442 FlatRange *fr;
1443
1444 FOR_EACH_FLAT_RANGE(fr, &as->current_map) {
1445 MEMORY_LISTENER_UPDATE_REGION(fr, as, Forward, log_sync);
1446 }
1447 }
1448
1449 void memory_global_dirty_log_start(void)
1450 {
1451 global_dirty_log = true;
1452 MEMORY_LISTENER_CALL_GLOBAL(log_global_start, Forward);
1453 }
1454
1455 void memory_global_dirty_log_stop(void)
1456 {
1457 global_dirty_log = false;
1458 MEMORY_LISTENER_CALL_GLOBAL(log_global_stop, Reverse);
1459 }
1460
1461 static void listener_add_address_space(MemoryListener *listener,
1462 AddressSpace *as)
1463 {
1464 FlatRange *fr;
1465
1466 if (listener->address_space_filter
1467 && listener->address_space_filter != as->root) {
1468 return;
1469 }
1470
1471 if (global_dirty_log) {
1472 listener->log_global_start(listener);
1473 }
1474 FOR_EACH_FLAT_RANGE(fr, &as->current_map) {
1475 MemoryRegionSection section = {
1476 .mr = fr->mr,
1477 .address_space = as->root,
1478 .offset_within_region = fr->offset_in_region,
1479 .size = int128_get64(fr->addr.size),
1480 .offset_within_address_space = int128_get64(fr->addr.start),
1481 .readonly = fr->readonly,
1482 };
1483 listener->region_add(listener, &section);
1484 }
1485 }
1486
1487 void memory_listener_register(MemoryListener *listener, MemoryRegion *filter)
1488 {
1489 MemoryListener *other = NULL;
1490
1491 listener->address_space_filter = filter;
1492 if (QTAILQ_EMPTY(&memory_listeners)
1493 || listener->priority >= QTAILQ_LAST(&memory_listeners,
1494 memory_listeners)->priority) {
1495 QTAILQ_INSERT_TAIL(&memory_listeners, listener, link);
1496 } else {
1497 QTAILQ_FOREACH(other, &memory_listeners, link) {
1498 if (listener->priority < other->priority) {
1499 break;
1500 }
1501 }
1502 QTAILQ_INSERT_BEFORE(other, listener, link);
1503 }
1504 listener_add_address_space(listener, &address_space_memory);
1505 listener_add_address_space(listener, &address_space_io);
1506 }
1507
1508 void memory_listener_unregister(MemoryListener *listener)
1509 {
1510 QTAILQ_REMOVE(&memory_listeners, listener, link);
1511 }
1512
1513 void set_system_memory_map(MemoryRegion *mr)
1514 {
1515 memory_region_transaction_begin();
1516 address_space_memory.root = mr;
1517 memory_region_transaction_commit();
1518 }
1519
1520 void set_system_io_map(MemoryRegion *mr)
1521 {
1522 memory_region_transaction_begin();
1523 address_space_io.root = mr;
1524 memory_region_transaction_commit();
1525 }
1526
1527 uint64_t io_mem_read(MemoryRegion *mr, target_phys_addr_t addr, unsigned size)
1528 {
1529 return memory_region_dispatch_read(mr, addr, size);
1530 }
1531
1532 void io_mem_write(MemoryRegion *mr, target_phys_addr_t addr,
1533 uint64_t val, unsigned size)
1534 {
1535 memory_region_dispatch_write(mr, addr, val, size);
1536 }
1537
1538 typedef struct MemoryRegionList MemoryRegionList;
1539
1540 struct MemoryRegionList {
1541 const MemoryRegion *mr;
1542 bool printed;
1543 QTAILQ_ENTRY(MemoryRegionList) queue;
1544 };
1545
1546 typedef QTAILQ_HEAD(queue, MemoryRegionList) MemoryRegionListHead;
1547
1548 static void mtree_print_mr(fprintf_function mon_printf, void *f,
1549 const MemoryRegion *mr, unsigned int level,
1550 target_phys_addr_t base,
1551 MemoryRegionListHead *alias_print_queue)
1552 {
1553 MemoryRegionList *new_ml, *ml, *next_ml;
1554 MemoryRegionListHead submr_print_queue;
1555 const MemoryRegion *submr;
1556 unsigned int i;
1557
1558 if (!mr) {
1559 return;
1560 }
1561
1562 for (i = 0; i < level; i++) {
1563 mon_printf(f, " ");
1564 }
1565
1566 if (mr->alias) {
1567 MemoryRegionList *ml;
1568 bool found = false;
1569
1570 /* check if the alias is already in the queue */
1571 QTAILQ_FOREACH(ml, alias_print_queue, queue) {
1572 if (ml->mr == mr->alias && !ml->printed) {
1573 found = true;
1574 }
1575 }
1576
1577 if (!found) {
1578 ml = g_new(MemoryRegionList, 1);
1579 ml->mr = mr->alias;
1580 ml->printed = false;
1581 QTAILQ_INSERT_TAIL(alias_print_queue, ml, queue);
1582 }
1583 mon_printf(f, TARGET_FMT_plx "-" TARGET_FMT_plx
1584 " (prio %d, %c%c): alias %s @%s " TARGET_FMT_plx
1585 "-" TARGET_FMT_plx "\n",
1586 base + mr->addr,
1587 base + mr->addr
1588 + (target_phys_addr_t)int128_get64(mr->size) - 1,
1589 mr->priority,
1590 mr->readable ? 'R' : '-',
1591 !mr->readonly && !(mr->rom_device && mr->readable) ? 'W'
1592 : '-',
1593 mr->name,
1594 mr->alias->name,
1595 mr->alias_offset,
1596 mr->alias_offset
1597 + (target_phys_addr_t)int128_get64(mr->size) - 1);
1598 } else {
1599 mon_printf(f,
1600 TARGET_FMT_plx "-" TARGET_FMT_plx " (prio %d, %c%c): %s\n",
1601 base + mr->addr,
1602 base + mr->addr
1603 + (target_phys_addr_t)int128_get64(mr->size) - 1,
1604 mr->priority,
1605 mr->readable ? 'R' : '-',
1606 !mr->readonly && !(mr->rom_device && mr->readable) ? 'W'
1607 : '-',
1608 mr->name);
1609 }
1610
1611 QTAILQ_INIT(&submr_print_queue);
1612
1613 QTAILQ_FOREACH(submr, &mr->subregions, subregions_link) {
1614 new_ml = g_new(MemoryRegionList, 1);
1615 new_ml->mr = submr;
1616 QTAILQ_FOREACH(ml, &submr_print_queue, queue) {
1617 if (new_ml->mr->addr < ml->mr->addr ||
1618 (new_ml->mr->addr == ml->mr->addr &&
1619 new_ml->mr->priority > ml->mr->priority)) {
1620 QTAILQ_INSERT_BEFORE(ml, new_ml, queue);
1621 new_ml = NULL;
1622 break;
1623 }
1624 }
1625 if (new_ml) {
1626 QTAILQ_INSERT_TAIL(&submr_print_queue, new_ml, queue);
1627 }
1628 }
1629
1630 QTAILQ_FOREACH(ml, &submr_print_queue, queue) {
1631 mtree_print_mr(mon_printf, f, ml->mr, level + 1, base + mr->addr,
1632 alias_print_queue);
1633 }
1634
1635 QTAILQ_FOREACH_SAFE(ml, &submr_print_queue, queue, next_ml) {
1636 g_free(ml);
1637 }
1638 }
1639
1640 void mtree_info(fprintf_function mon_printf, void *f)
1641 {
1642 MemoryRegionListHead ml_head;
1643 MemoryRegionList *ml, *ml2;
1644
1645 QTAILQ_INIT(&ml_head);
1646
1647 mon_printf(f, "memory\n");
1648 mtree_print_mr(mon_printf, f, address_space_memory.root, 0, 0, &ml_head);
1649
1650 if (address_space_io.root &&
1651 !QTAILQ_EMPTY(&address_space_io.root->subregions)) {
1652 mon_printf(f, "I/O\n");
1653 mtree_print_mr(mon_printf, f, address_space_io.root, 0, 0, &ml_head);
1654 }
1655
1656 mon_printf(f, "aliases\n");
1657 /* print aliased regions */
1658 QTAILQ_FOREACH(ml, &ml_head, queue) {
1659 if (!ml->printed) {
1660 mon_printf(f, "%s\n", ml->mr->name);
1661 mtree_print_mr(mon_printf, f, ml->mr, 0, 0, &ml_head);
1662 }
1663 }
1664
1665 QTAILQ_FOREACH_SAFE(ml, &ml_head, queue, ml2) {
1666 g_free(ml);
1667 }
1668 }