]> git.proxmox.com Git - mirror_qemu.git/blob - migration/rdma.c
migration: Don't abuse qemu_file transferred for RDMA
[mirror_qemu.git] / migration / rdma.c
1 /*
2 * RDMA protocol and interfaces
3 *
4 * Copyright IBM, Corp. 2010-2013
5 * Copyright Red Hat, Inc. 2015-2016
6 *
7 * Authors:
8 * Michael R. Hines <mrhines@us.ibm.com>
9 * Jiuxing Liu <jl@us.ibm.com>
10 * Daniel P. Berrange <berrange@redhat.com>
11 *
12 * This work is licensed under the terms of the GNU GPL, version 2 or
13 * later. See the COPYING file in the top-level directory.
14 *
15 */
16
17 #include "qemu/osdep.h"
18 #include "qapi/error.h"
19 #include "qemu/cutils.h"
20 #include "exec/target_page.h"
21 #include "rdma.h"
22 #include "migration.h"
23 #include "migration-stats.h"
24 #include "qemu-file.h"
25 #include "ram.h"
26 #include "qemu/error-report.h"
27 #include "qemu/main-loop.h"
28 #include "qemu/module.h"
29 #include "qemu/rcu.h"
30 #include "qemu/sockets.h"
31 #include "qemu/bitmap.h"
32 #include "qemu/coroutine.h"
33 #include "exec/memory.h"
34 #include <sys/socket.h>
35 #include <netdb.h>
36 #include <arpa/inet.h>
37 #include <rdma/rdma_cma.h>
38 #include "trace.h"
39 #include "qom/object.h"
40 #include "options.h"
41 #include <poll.h>
42
43 /*
44 * Print and error on both the Monitor and the Log file.
45 */
46 #define ERROR(errp, fmt, ...) \
47 do { \
48 fprintf(stderr, "RDMA ERROR: " fmt "\n", ## __VA_ARGS__); \
49 if (errp && (*(errp) == NULL)) { \
50 error_setg(errp, "RDMA ERROR: " fmt, ## __VA_ARGS__); \
51 } \
52 } while (0)
53
54 #define RDMA_RESOLVE_TIMEOUT_MS 10000
55
56 /* Do not merge data if larger than this. */
57 #define RDMA_MERGE_MAX (2 * 1024 * 1024)
58 #define RDMA_SIGNALED_SEND_MAX (RDMA_MERGE_MAX / 4096)
59
60 #define RDMA_REG_CHUNK_SHIFT 20 /* 1 MB */
61
62 /*
63 * This is only for non-live state being migrated.
64 * Instead of RDMA_WRITE messages, we use RDMA_SEND
65 * messages for that state, which requires a different
66 * delivery design than main memory.
67 */
68 #define RDMA_SEND_INCREMENT 32768
69
70 /*
71 * Maximum size infiniband SEND message
72 */
73 #define RDMA_CONTROL_MAX_BUFFER (512 * 1024)
74 #define RDMA_CONTROL_MAX_COMMANDS_PER_MESSAGE 4096
75
76 #define RDMA_CONTROL_VERSION_CURRENT 1
77 /*
78 * Capabilities for negotiation.
79 */
80 #define RDMA_CAPABILITY_PIN_ALL 0x01
81
82 /*
83 * Add the other flags above to this list of known capabilities
84 * as they are introduced.
85 */
86 static uint32_t known_capabilities = RDMA_CAPABILITY_PIN_ALL;
87
88 #define CHECK_ERROR_STATE() \
89 do { \
90 if (rdma->error_state) { \
91 if (!rdma->error_reported) { \
92 error_report("RDMA is in an error state waiting migration" \
93 " to abort!"); \
94 rdma->error_reported = 1; \
95 } \
96 return rdma->error_state; \
97 } \
98 } while (0)
99
100 /*
101 * A work request ID is 64-bits and we split up these bits
102 * into 3 parts:
103 *
104 * bits 0-15 : type of control message, 2^16
105 * bits 16-29: ram block index, 2^14
106 * bits 30-63: ram block chunk number, 2^34
107 *
108 * The last two bit ranges are only used for RDMA writes,
109 * in order to track their completion and potentially
110 * also track unregistration status of the message.
111 */
112 #define RDMA_WRID_TYPE_SHIFT 0UL
113 #define RDMA_WRID_BLOCK_SHIFT 16UL
114 #define RDMA_WRID_CHUNK_SHIFT 30UL
115
116 #define RDMA_WRID_TYPE_MASK \
117 ((1UL << RDMA_WRID_BLOCK_SHIFT) - 1UL)
118
119 #define RDMA_WRID_BLOCK_MASK \
120 (~RDMA_WRID_TYPE_MASK & ((1UL << RDMA_WRID_CHUNK_SHIFT) - 1UL))
121
122 #define RDMA_WRID_CHUNK_MASK (~RDMA_WRID_BLOCK_MASK & ~RDMA_WRID_TYPE_MASK)
123
124 /*
125 * RDMA migration protocol:
126 * 1. RDMA Writes (data messages, i.e. RAM)
127 * 2. IB Send/Recv (control channel messages)
128 */
129 enum {
130 RDMA_WRID_NONE = 0,
131 RDMA_WRID_RDMA_WRITE = 1,
132 RDMA_WRID_SEND_CONTROL = 2000,
133 RDMA_WRID_RECV_CONTROL = 4000,
134 };
135
136 static const char *wrid_desc[] = {
137 [RDMA_WRID_NONE] = "NONE",
138 [RDMA_WRID_RDMA_WRITE] = "WRITE RDMA",
139 [RDMA_WRID_SEND_CONTROL] = "CONTROL SEND",
140 [RDMA_WRID_RECV_CONTROL] = "CONTROL RECV",
141 };
142
143 /*
144 * Work request IDs for IB SEND messages only (not RDMA writes).
145 * This is used by the migration protocol to transmit
146 * control messages (such as device state and registration commands)
147 *
148 * We could use more WRs, but we have enough for now.
149 */
150 enum {
151 RDMA_WRID_READY = 0,
152 RDMA_WRID_DATA,
153 RDMA_WRID_CONTROL,
154 RDMA_WRID_MAX,
155 };
156
157 /*
158 * SEND/RECV IB Control Messages.
159 */
160 enum {
161 RDMA_CONTROL_NONE = 0,
162 RDMA_CONTROL_ERROR,
163 RDMA_CONTROL_READY, /* ready to receive */
164 RDMA_CONTROL_QEMU_FILE, /* QEMUFile-transmitted bytes */
165 RDMA_CONTROL_RAM_BLOCKS_REQUEST, /* RAMBlock synchronization */
166 RDMA_CONTROL_RAM_BLOCKS_RESULT, /* RAMBlock synchronization */
167 RDMA_CONTROL_COMPRESS, /* page contains repeat values */
168 RDMA_CONTROL_REGISTER_REQUEST, /* dynamic page registration */
169 RDMA_CONTROL_REGISTER_RESULT, /* key to use after registration */
170 RDMA_CONTROL_REGISTER_FINISHED, /* current iteration finished */
171 RDMA_CONTROL_UNREGISTER_REQUEST, /* dynamic UN-registration */
172 RDMA_CONTROL_UNREGISTER_FINISHED, /* unpinning finished */
173 };
174
175
176 /*
177 * Memory and MR structures used to represent an IB Send/Recv work request.
178 * This is *not* used for RDMA writes, only IB Send/Recv.
179 */
180 typedef struct {
181 uint8_t control[RDMA_CONTROL_MAX_BUFFER]; /* actual buffer to register */
182 struct ibv_mr *control_mr; /* registration metadata */
183 size_t control_len; /* length of the message */
184 uint8_t *control_curr; /* start of unconsumed bytes */
185 } RDMAWorkRequestData;
186
187 /*
188 * Negotiate RDMA capabilities during connection-setup time.
189 */
190 typedef struct {
191 uint32_t version;
192 uint32_t flags;
193 } RDMACapabilities;
194
195 static void caps_to_network(RDMACapabilities *cap)
196 {
197 cap->version = htonl(cap->version);
198 cap->flags = htonl(cap->flags);
199 }
200
201 static void network_to_caps(RDMACapabilities *cap)
202 {
203 cap->version = ntohl(cap->version);
204 cap->flags = ntohl(cap->flags);
205 }
206
207 /*
208 * Representation of a RAMBlock from an RDMA perspective.
209 * This is not transmitted, only local.
210 * This and subsequent structures cannot be linked lists
211 * because we're using a single IB message to transmit
212 * the information. It's small anyway, so a list is overkill.
213 */
214 typedef struct RDMALocalBlock {
215 char *block_name;
216 uint8_t *local_host_addr; /* local virtual address */
217 uint64_t remote_host_addr; /* remote virtual address */
218 uint64_t offset;
219 uint64_t length;
220 struct ibv_mr **pmr; /* MRs for chunk-level registration */
221 struct ibv_mr *mr; /* MR for non-chunk-level registration */
222 uint32_t *remote_keys; /* rkeys for chunk-level registration */
223 uint32_t remote_rkey; /* rkeys for non-chunk-level registration */
224 int index; /* which block are we */
225 unsigned int src_index; /* (Only used on dest) */
226 bool is_ram_block;
227 int nb_chunks;
228 unsigned long *transit_bitmap;
229 unsigned long *unregister_bitmap;
230 } RDMALocalBlock;
231
232 /*
233 * Also represents a RAMblock, but only on the dest.
234 * This gets transmitted by the dest during connection-time
235 * to the source VM and then is used to populate the
236 * corresponding RDMALocalBlock with
237 * the information needed to perform the actual RDMA.
238 */
239 typedef struct QEMU_PACKED RDMADestBlock {
240 uint64_t remote_host_addr;
241 uint64_t offset;
242 uint64_t length;
243 uint32_t remote_rkey;
244 uint32_t padding;
245 } RDMADestBlock;
246
247 static const char *control_desc(unsigned int rdma_control)
248 {
249 static const char *strs[] = {
250 [RDMA_CONTROL_NONE] = "NONE",
251 [RDMA_CONTROL_ERROR] = "ERROR",
252 [RDMA_CONTROL_READY] = "READY",
253 [RDMA_CONTROL_QEMU_FILE] = "QEMU FILE",
254 [RDMA_CONTROL_RAM_BLOCKS_REQUEST] = "RAM BLOCKS REQUEST",
255 [RDMA_CONTROL_RAM_BLOCKS_RESULT] = "RAM BLOCKS RESULT",
256 [RDMA_CONTROL_COMPRESS] = "COMPRESS",
257 [RDMA_CONTROL_REGISTER_REQUEST] = "REGISTER REQUEST",
258 [RDMA_CONTROL_REGISTER_RESULT] = "REGISTER RESULT",
259 [RDMA_CONTROL_REGISTER_FINISHED] = "REGISTER FINISHED",
260 [RDMA_CONTROL_UNREGISTER_REQUEST] = "UNREGISTER REQUEST",
261 [RDMA_CONTROL_UNREGISTER_FINISHED] = "UNREGISTER FINISHED",
262 };
263
264 if (rdma_control > RDMA_CONTROL_UNREGISTER_FINISHED) {
265 return "??BAD CONTROL VALUE??";
266 }
267
268 return strs[rdma_control];
269 }
270
271 static uint64_t htonll(uint64_t v)
272 {
273 union { uint32_t lv[2]; uint64_t llv; } u;
274 u.lv[0] = htonl(v >> 32);
275 u.lv[1] = htonl(v & 0xFFFFFFFFULL);
276 return u.llv;
277 }
278
279 static uint64_t ntohll(uint64_t v)
280 {
281 union { uint32_t lv[2]; uint64_t llv; } u;
282 u.llv = v;
283 return ((uint64_t)ntohl(u.lv[0]) << 32) | (uint64_t) ntohl(u.lv[1]);
284 }
285
286 static void dest_block_to_network(RDMADestBlock *db)
287 {
288 db->remote_host_addr = htonll(db->remote_host_addr);
289 db->offset = htonll(db->offset);
290 db->length = htonll(db->length);
291 db->remote_rkey = htonl(db->remote_rkey);
292 }
293
294 static void network_to_dest_block(RDMADestBlock *db)
295 {
296 db->remote_host_addr = ntohll(db->remote_host_addr);
297 db->offset = ntohll(db->offset);
298 db->length = ntohll(db->length);
299 db->remote_rkey = ntohl(db->remote_rkey);
300 }
301
302 /*
303 * Virtual address of the above structures used for transmitting
304 * the RAMBlock descriptions at connection-time.
305 * This structure is *not* transmitted.
306 */
307 typedef struct RDMALocalBlocks {
308 int nb_blocks;
309 bool init; /* main memory init complete */
310 RDMALocalBlock *block;
311 } RDMALocalBlocks;
312
313 /*
314 * Main data structure for RDMA state.
315 * While there is only one copy of this structure being allocated right now,
316 * this is the place where one would start if you wanted to consider
317 * having more than one RDMA connection open at the same time.
318 */
319 typedef struct RDMAContext {
320 char *host;
321 int port;
322 char *host_port;
323
324 RDMAWorkRequestData wr_data[RDMA_WRID_MAX];
325
326 /*
327 * This is used by *_exchange_send() to figure out whether or not
328 * the initial "READY" message has already been received or not.
329 * This is because other functions may potentially poll() and detect
330 * the READY message before send() does, in which case we need to
331 * know if it completed.
332 */
333 int control_ready_expected;
334
335 /* number of outstanding writes */
336 int nb_sent;
337
338 /* store info about current buffer so that we can
339 merge it with future sends */
340 uint64_t current_addr;
341 uint64_t current_length;
342 /* index of ram block the current buffer belongs to */
343 int current_index;
344 /* index of the chunk in the current ram block */
345 int current_chunk;
346
347 bool pin_all;
348
349 /*
350 * infiniband-specific variables for opening the device
351 * and maintaining connection state and so forth.
352 *
353 * cm_id also has ibv_context, rdma_event_channel, and ibv_qp in
354 * cm_id->verbs, cm_id->channel, and cm_id->qp.
355 */
356 struct rdma_cm_id *cm_id; /* connection manager ID */
357 struct rdma_cm_id *listen_id;
358 bool connected;
359
360 struct ibv_context *verbs;
361 struct rdma_event_channel *channel;
362 struct ibv_qp *qp; /* queue pair */
363 struct ibv_comp_channel *recv_comp_channel; /* recv completion channel */
364 struct ibv_comp_channel *send_comp_channel; /* send completion channel */
365 struct ibv_pd *pd; /* protection domain */
366 struct ibv_cq *recv_cq; /* recvieve completion queue */
367 struct ibv_cq *send_cq; /* send completion queue */
368
369 /*
370 * If a previous write failed (perhaps because of a failed
371 * memory registration, then do not attempt any future work
372 * and remember the error state.
373 */
374 int error_state;
375 int error_reported;
376 int received_error;
377
378 /*
379 * Description of ram blocks used throughout the code.
380 */
381 RDMALocalBlocks local_ram_blocks;
382 RDMADestBlock *dest_blocks;
383
384 /* Index of the next RAMBlock received during block registration */
385 unsigned int next_src_index;
386
387 /*
388 * Migration on *destination* started.
389 * Then use coroutine yield function.
390 * Source runs in a thread, so we don't care.
391 */
392 int migration_started_on_destination;
393
394 int total_registrations;
395 int total_writes;
396
397 int unregister_current, unregister_next;
398 uint64_t unregistrations[RDMA_SIGNALED_SEND_MAX];
399
400 GHashTable *blockmap;
401
402 /* the RDMAContext for return path */
403 struct RDMAContext *return_path;
404 bool is_return_path;
405 } RDMAContext;
406
407 #define TYPE_QIO_CHANNEL_RDMA "qio-channel-rdma"
408 OBJECT_DECLARE_SIMPLE_TYPE(QIOChannelRDMA, QIO_CHANNEL_RDMA)
409
410
411
412 struct QIOChannelRDMA {
413 QIOChannel parent;
414 RDMAContext *rdmain;
415 RDMAContext *rdmaout;
416 QEMUFile *file;
417 bool blocking; /* XXX we don't actually honour this yet */
418 };
419
420 /*
421 * Main structure for IB Send/Recv control messages.
422 * This gets prepended at the beginning of every Send/Recv.
423 */
424 typedef struct QEMU_PACKED {
425 uint32_t len; /* Total length of data portion */
426 uint32_t type; /* which control command to perform */
427 uint32_t repeat; /* number of commands in data portion of same type */
428 uint32_t padding;
429 } RDMAControlHeader;
430
431 static void control_to_network(RDMAControlHeader *control)
432 {
433 control->type = htonl(control->type);
434 control->len = htonl(control->len);
435 control->repeat = htonl(control->repeat);
436 }
437
438 static void network_to_control(RDMAControlHeader *control)
439 {
440 control->type = ntohl(control->type);
441 control->len = ntohl(control->len);
442 control->repeat = ntohl(control->repeat);
443 }
444
445 /*
446 * Register a single Chunk.
447 * Information sent by the source VM to inform the dest
448 * to register an single chunk of memory before we can perform
449 * the actual RDMA operation.
450 */
451 typedef struct QEMU_PACKED {
452 union QEMU_PACKED {
453 uint64_t current_addr; /* offset into the ram_addr_t space */
454 uint64_t chunk; /* chunk to lookup if unregistering */
455 } key;
456 uint32_t current_index; /* which ramblock the chunk belongs to */
457 uint32_t padding;
458 uint64_t chunks; /* how many sequential chunks to register */
459 } RDMARegister;
460
461 static void register_to_network(RDMAContext *rdma, RDMARegister *reg)
462 {
463 RDMALocalBlock *local_block;
464 local_block = &rdma->local_ram_blocks.block[reg->current_index];
465
466 if (local_block->is_ram_block) {
467 /*
468 * current_addr as passed in is an address in the local ram_addr_t
469 * space, we need to translate this for the destination
470 */
471 reg->key.current_addr -= local_block->offset;
472 reg->key.current_addr += rdma->dest_blocks[reg->current_index].offset;
473 }
474 reg->key.current_addr = htonll(reg->key.current_addr);
475 reg->current_index = htonl(reg->current_index);
476 reg->chunks = htonll(reg->chunks);
477 }
478
479 static void network_to_register(RDMARegister *reg)
480 {
481 reg->key.current_addr = ntohll(reg->key.current_addr);
482 reg->current_index = ntohl(reg->current_index);
483 reg->chunks = ntohll(reg->chunks);
484 }
485
486 typedef struct QEMU_PACKED {
487 uint32_t value; /* if zero, we will madvise() */
488 uint32_t block_idx; /* which ram block index */
489 uint64_t offset; /* Address in remote ram_addr_t space */
490 uint64_t length; /* length of the chunk */
491 } RDMACompress;
492
493 static void compress_to_network(RDMAContext *rdma, RDMACompress *comp)
494 {
495 comp->value = htonl(comp->value);
496 /*
497 * comp->offset as passed in is an address in the local ram_addr_t
498 * space, we need to translate this for the destination
499 */
500 comp->offset -= rdma->local_ram_blocks.block[comp->block_idx].offset;
501 comp->offset += rdma->dest_blocks[comp->block_idx].offset;
502 comp->block_idx = htonl(comp->block_idx);
503 comp->offset = htonll(comp->offset);
504 comp->length = htonll(comp->length);
505 }
506
507 static void network_to_compress(RDMACompress *comp)
508 {
509 comp->value = ntohl(comp->value);
510 comp->block_idx = ntohl(comp->block_idx);
511 comp->offset = ntohll(comp->offset);
512 comp->length = ntohll(comp->length);
513 }
514
515 /*
516 * The result of the dest's memory registration produces an "rkey"
517 * which the source VM must reference in order to perform
518 * the RDMA operation.
519 */
520 typedef struct QEMU_PACKED {
521 uint32_t rkey;
522 uint32_t padding;
523 uint64_t host_addr;
524 } RDMARegisterResult;
525
526 static void result_to_network(RDMARegisterResult *result)
527 {
528 result->rkey = htonl(result->rkey);
529 result->host_addr = htonll(result->host_addr);
530 };
531
532 static void network_to_result(RDMARegisterResult *result)
533 {
534 result->rkey = ntohl(result->rkey);
535 result->host_addr = ntohll(result->host_addr);
536 };
537
538 const char *print_wrid(int wrid);
539 static int qemu_rdma_exchange_send(RDMAContext *rdma, RDMAControlHeader *head,
540 uint8_t *data, RDMAControlHeader *resp,
541 int *resp_idx,
542 int (*callback)(RDMAContext *rdma));
543
544 static inline uint64_t ram_chunk_index(const uint8_t *start,
545 const uint8_t *host)
546 {
547 return ((uintptr_t) host - (uintptr_t) start) >> RDMA_REG_CHUNK_SHIFT;
548 }
549
550 static inline uint8_t *ram_chunk_start(const RDMALocalBlock *rdma_ram_block,
551 uint64_t i)
552 {
553 return (uint8_t *)(uintptr_t)(rdma_ram_block->local_host_addr +
554 (i << RDMA_REG_CHUNK_SHIFT));
555 }
556
557 static inline uint8_t *ram_chunk_end(const RDMALocalBlock *rdma_ram_block,
558 uint64_t i)
559 {
560 uint8_t *result = ram_chunk_start(rdma_ram_block, i) +
561 (1UL << RDMA_REG_CHUNK_SHIFT);
562
563 if (result > (rdma_ram_block->local_host_addr + rdma_ram_block->length)) {
564 result = rdma_ram_block->local_host_addr + rdma_ram_block->length;
565 }
566
567 return result;
568 }
569
570 static int rdma_add_block(RDMAContext *rdma, const char *block_name,
571 void *host_addr,
572 ram_addr_t block_offset, uint64_t length)
573 {
574 RDMALocalBlocks *local = &rdma->local_ram_blocks;
575 RDMALocalBlock *block;
576 RDMALocalBlock *old = local->block;
577
578 local->block = g_new0(RDMALocalBlock, local->nb_blocks + 1);
579
580 if (local->nb_blocks) {
581 int x;
582
583 if (rdma->blockmap) {
584 for (x = 0; x < local->nb_blocks; x++) {
585 g_hash_table_remove(rdma->blockmap,
586 (void *)(uintptr_t)old[x].offset);
587 g_hash_table_insert(rdma->blockmap,
588 (void *)(uintptr_t)old[x].offset,
589 &local->block[x]);
590 }
591 }
592 memcpy(local->block, old, sizeof(RDMALocalBlock) * local->nb_blocks);
593 g_free(old);
594 }
595
596 block = &local->block[local->nb_blocks];
597
598 block->block_name = g_strdup(block_name);
599 block->local_host_addr = host_addr;
600 block->offset = block_offset;
601 block->length = length;
602 block->index = local->nb_blocks;
603 block->src_index = ~0U; /* Filled in by the receipt of the block list */
604 block->nb_chunks = ram_chunk_index(host_addr, host_addr + length) + 1UL;
605 block->transit_bitmap = bitmap_new(block->nb_chunks);
606 bitmap_clear(block->transit_bitmap, 0, block->nb_chunks);
607 block->unregister_bitmap = bitmap_new(block->nb_chunks);
608 bitmap_clear(block->unregister_bitmap, 0, block->nb_chunks);
609 block->remote_keys = g_new0(uint32_t, block->nb_chunks);
610
611 block->is_ram_block = local->init ? false : true;
612
613 if (rdma->blockmap) {
614 g_hash_table_insert(rdma->blockmap, (void *)(uintptr_t)block_offset, block);
615 }
616
617 trace_rdma_add_block(block_name, local->nb_blocks,
618 (uintptr_t) block->local_host_addr,
619 block->offset, block->length,
620 (uintptr_t) (block->local_host_addr + block->length),
621 BITS_TO_LONGS(block->nb_chunks) *
622 sizeof(unsigned long) * 8,
623 block->nb_chunks);
624
625 local->nb_blocks++;
626
627 return 0;
628 }
629
630 /*
631 * Memory regions need to be registered with the device and queue pairs setup
632 * in advanced before the migration starts. This tells us where the RAM blocks
633 * are so that we can register them individually.
634 */
635 static int qemu_rdma_init_one_block(RAMBlock *rb, void *opaque)
636 {
637 const char *block_name = qemu_ram_get_idstr(rb);
638 void *host_addr = qemu_ram_get_host_addr(rb);
639 ram_addr_t block_offset = qemu_ram_get_offset(rb);
640 ram_addr_t length = qemu_ram_get_used_length(rb);
641 return rdma_add_block(opaque, block_name, host_addr, block_offset, length);
642 }
643
644 /*
645 * Identify the RAMBlocks and their quantity. They will be references to
646 * identify chunk boundaries inside each RAMBlock and also be referenced
647 * during dynamic page registration.
648 */
649 static int qemu_rdma_init_ram_blocks(RDMAContext *rdma)
650 {
651 RDMALocalBlocks *local = &rdma->local_ram_blocks;
652 int ret;
653
654 assert(rdma->blockmap == NULL);
655 memset(local, 0, sizeof *local);
656 ret = foreach_not_ignored_block(qemu_rdma_init_one_block, rdma);
657 if (ret) {
658 return ret;
659 }
660 trace_qemu_rdma_init_ram_blocks(local->nb_blocks);
661 rdma->dest_blocks = g_new0(RDMADestBlock,
662 rdma->local_ram_blocks.nb_blocks);
663 local->init = true;
664 return 0;
665 }
666
667 /*
668 * Note: If used outside of cleanup, the caller must ensure that the destination
669 * block structures are also updated
670 */
671 static int rdma_delete_block(RDMAContext *rdma, RDMALocalBlock *block)
672 {
673 RDMALocalBlocks *local = &rdma->local_ram_blocks;
674 RDMALocalBlock *old = local->block;
675 int x;
676
677 if (rdma->blockmap) {
678 g_hash_table_remove(rdma->blockmap, (void *)(uintptr_t)block->offset);
679 }
680 if (block->pmr) {
681 int j;
682
683 for (j = 0; j < block->nb_chunks; j++) {
684 if (!block->pmr[j]) {
685 continue;
686 }
687 ibv_dereg_mr(block->pmr[j]);
688 rdma->total_registrations--;
689 }
690 g_free(block->pmr);
691 block->pmr = NULL;
692 }
693
694 if (block->mr) {
695 ibv_dereg_mr(block->mr);
696 rdma->total_registrations--;
697 block->mr = NULL;
698 }
699
700 g_free(block->transit_bitmap);
701 block->transit_bitmap = NULL;
702
703 g_free(block->unregister_bitmap);
704 block->unregister_bitmap = NULL;
705
706 g_free(block->remote_keys);
707 block->remote_keys = NULL;
708
709 g_free(block->block_name);
710 block->block_name = NULL;
711
712 if (rdma->blockmap) {
713 for (x = 0; x < local->nb_blocks; x++) {
714 g_hash_table_remove(rdma->blockmap,
715 (void *)(uintptr_t)old[x].offset);
716 }
717 }
718
719 if (local->nb_blocks > 1) {
720
721 local->block = g_new0(RDMALocalBlock, local->nb_blocks - 1);
722
723 if (block->index) {
724 memcpy(local->block, old, sizeof(RDMALocalBlock) * block->index);
725 }
726
727 if (block->index < (local->nb_blocks - 1)) {
728 memcpy(local->block + block->index, old + (block->index + 1),
729 sizeof(RDMALocalBlock) *
730 (local->nb_blocks - (block->index + 1)));
731 for (x = block->index; x < local->nb_blocks - 1; x++) {
732 local->block[x].index--;
733 }
734 }
735 } else {
736 assert(block == local->block);
737 local->block = NULL;
738 }
739
740 trace_rdma_delete_block(block, (uintptr_t)block->local_host_addr,
741 block->offset, block->length,
742 (uintptr_t)(block->local_host_addr + block->length),
743 BITS_TO_LONGS(block->nb_chunks) *
744 sizeof(unsigned long) * 8, block->nb_chunks);
745
746 g_free(old);
747
748 local->nb_blocks--;
749
750 if (local->nb_blocks && rdma->blockmap) {
751 for (x = 0; x < local->nb_blocks; x++) {
752 g_hash_table_insert(rdma->blockmap,
753 (void *)(uintptr_t)local->block[x].offset,
754 &local->block[x]);
755 }
756 }
757
758 return 0;
759 }
760
761 /*
762 * Put in the log file which RDMA device was opened and the details
763 * associated with that device.
764 */
765 static void qemu_rdma_dump_id(const char *who, struct ibv_context *verbs)
766 {
767 struct ibv_port_attr port;
768
769 if (ibv_query_port(verbs, 1, &port)) {
770 error_report("Failed to query port information");
771 return;
772 }
773
774 printf("%s RDMA Device opened: kernel name %s "
775 "uverbs device name %s, "
776 "infiniband_verbs class device path %s, "
777 "infiniband class device path %s, "
778 "transport: (%d) %s\n",
779 who,
780 verbs->device->name,
781 verbs->device->dev_name,
782 verbs->device->dev_path,
783 verbs->device->ibdev_path,
784 port.link_layer,
785 (port.link_layer == IBV_LINK_LAYER_INFINIBAND) ? "Infiniband" :
786 ((port.link_layer == IBV_LINK_LAYER_ETHERNET)
787 ? "Ethernet" : "Unknown"));
788 }
789
790 /*
791 * Put in the log file the RDMA gid addressing information,
792 * useful for folks who have trouble understanding the
793 * RDMA device hierarchy in the kernel.
794 */
795 static void qemu_rdma_dump_gid(const char *who, struct rdma_cm_id *id)
796 {
797 char sgid[33];
798 char dgid[33];
799 inet_ntop(AF_INET6, &id->route.addr.addr.ibaddr.sgid, sgid, sizeof sgid);
800 inet_ntop(AF_INET6, &id->route.addr.addr.ibaddr.dgid, dgid, sizeof dgid);
801 trace_qemu_rdma_dump_gid(who, sgid, dgid);
802 }
803
804 /*
805 * As of now, IPv6 over RoCE / iWARP is not supported by linux.
806 * We will try the next addrinfo struct, and fail if there are
807 * no other valid addresses to bind against.
808 *
809 * If user is listening on '[::]', then we will not have a opened a device
810 * yet and have no way of verifying if the device is RoCE or not.
811 *
812 * In this case, the source VM will throw an error for ALL types of
813 * connections (both IPv4 and IPv6) if the destination machine does not have
814 * a regular infiniband network available for use.
815 *
816 * The only way to guarantee that an error is thrown for broken kernels is
817 * for the management software to choose a *specific* interface at bind time
818 * and validate what time of hardware it is.
819 *
820 * Unfortunately, this puts the user in a fix:
821 *
822 * If the source VM connects with an IPv4 address without knowing that the
823 * destination has bound to '[::]' the migration will unconditionally fail
824 * unless the management software is explicitly listening on the IPv4
825 * address while using a RoCE-based device.
826 *
827 * If the source VM connects with an IPv6 address, then we're OK because we can
828 * throw an error on the source (and similarly on the destination).
829 *
830 * But in mixed environments, this will be broken for a while until it is fixed
831 * inside linux.
832 *
833 * We do provide a *tiny* bit of help in this function: We can list all of the
834 * devices in the system and check to see if all the devices are RoCE or
835 * Infiniband.
836 *
837 * If we detect that we have a *pure* RoCE environment, then we can safely
838 * thrown an error even if the management software has specified '[::]' as the
839 * bind address.
840 *
841 * However, if there is are multiple hetergeneous devices, then we cannot make
842 * this assumption and the user just has to be sure they know what they are
843 * doing.
844 *
845 * Patches are being reviewed on linux-rdma.
846 */
847 static int qemu_rdma_broken_ipv6_kernel(struct ibv_context *verbs, Error **errp)
848 {
849 /* This bug only exists in linux, to our knowledge. */
850 #ifdef CONFIG_LINUX
851 struct ibv_port_attr port_attr;
852
853 /*
854 * Verbs are only NULL if management has bound to '[::]'.
855 *
856 * Let's iterate through all the devices and see if there any pure IB
857 * devices (non-ethernet).
858 *
859 * If not, then we can safely proceed with the migration.
860 * Otherwise, there are no guarantees until the bug is fixed in linux.
861 */
862 if (!verbs) {
863 int num_devices, x;
864 struct ibv_device **dev_list = ibv_get_device_list(&num_devices);
865 bool roce_found = false;
866 bool ib_found = false;
867
868 for (x = 0; x < num_devices; x++) {
869 verbs = ibv_open_device(dev_list[x]);
870 if (!verbs) {
871 if (errno == EPERM) {
872 continue;
873 } else {
874 return -EINVAL;
875 }
876 }
877
878 if (ibv_query_port(verbs, 1, &port_attr)) {
879 ibv_close_device(verbs);
880 ERROR(errp, "Could not query initial IB port");
881 return -EINVAL;
882 }
883
884 if (port_attr.link_layer == IBV_LINK_LAYER_INFINIBAND) {
885 ib_found = true;
886 } else if (port_attr.link_layer == IBV_LINK_LAYER_ETHERNET) {
887 roce_found = true;
888 }
889
890 ibv_close_device(verbs);
891
892 }
893
894 if (roce_found) {
895 if (ib_found) {
896 fprintf(stderr, "WARN: migrations may fail:"
897 " IPv6 over RoCE / iWARP in linux"
898 " is broken. But since you appear to have a"
899 " mixed RoCE / IB environment, be sure to only"
900 " migrate over the IB fabric until the kernel "
901 " fixes the bug.\n");
902 } else {
903 ERROR(errp, "You only have RoCE / iWARP devices in your systems"
904 " and your management software has specified '[::]'"
905 ", but IPv6 over RoCE / iWARP is not supported in Linux.");
906 return -ENONET;
907 }
908 }
909
910 return 0;
911 }
912
913 /*
914 * If we have a verbs context, that means that some other than '[::]' was
915 * used by the management software for binding. In which case we can
916 * actually warn the user about a potentially broken kernel.
917 */
918
919 /* IB ports start with 1, not 0 */
920 if (ibv_query_port(verbs, 1, &port_attr)) {
921 ERROR(errp, "Could not query initial IB port");
922 return -EINVAL;
923 }
924
925 if (port_attr.link_layer == IBV_LINK_LAYER_ETHERNET) {
926 ERROR(errp, "Linux kernel's RoCE / iWARP does not support IPv6 "
927 "(but patches on linux-rdma in progress)");
928 return -ENONET;
929 }
930
931 #endif
932
933 return 0;
934 }
935
936 /*
937 * Figure out which RDMA device corresponds to the requested IP hostname
938 * Also create the initial connection manager identifiers for opening
939 * the connection.
940 */
941 static int qemu_rdma_resolve_host(RDMAContext *rdma, Error **errp)
942 {
943 int ret;
944 struct rdma_addrinfo *res;
945 char port_str[16];
946 struct rdma_cm_event *cm_event;
947 char ip[40] = "unknown";
948 struct rdma_addrinfo *e;
949
950 if (rdma->host == NULL || !strcmp(rdma->host, "")) {
951 ERROR(errp, "RDMA hostname has not been set");
952 return -EINVAL;
953 }
954
955 /* create CM channel */
956 rdma->channel = rdma_create_event_channel();
957 if (!rdma->channel) {
958 ERROR(errp, "could not create CM channel");
959 return -EINVAL;
960 }
961
962 /* create CM id */
963 ret = rdma_create_id(rdma->channel, &rdma->cm_id, NULL, RDMA_PS_TCP);
964 if (ret) {
965 ERROR(errp, "could not create channel id");
966 goto err_resolve_create_id;
967 }
968
969 snprintf(port_str, 16, "%d", rdma->port);
970 port_str[15] = '\0';
971
972 ret = rdma_getaddrinfo(rdma->host, port_str, NULL, &res);
973 if (ret < 0) {
974 ERROR(errp, "could not rdma_getaddrinfo address %s", rdma->host);
975 goto err_resolve_get_addr;
976 }
977
978 for (e = res; e != NULL; e = e->ai_next) {
979 inet_ntop(e->ai_family,
980 &((struct sockaddr_in *) e->ai_dst_addr)->sin_addr, ip, sizeof ip);
981 trace_qemu_rdma_resolve_host_trying(rdma->host, ip);
982
983 ret = rdma_resolve_addr(rdma->cm_id, NULL, e->ai_dst_addr,
984 RDMA_RESOLVE_TIMEOUT_MS);
985 if (!ret) {
986 if (e->ai_family == AF_INET6) {
987 ret = qemu_rdma_broken_ipv6_kernel(rdma->cm_id->verbs, errp);
988 if (ret) {
989 continue;
990 }
991 }
992 goto route;
993 }
994 }
995
996 rdma_freeaddrinfo(res);
997 ERROR(errp, "could not resolve address %s", rdma->host);
998 goto err_resolve_get_addr;
999
1000 route:
1001 rdma_freeaddrinfo(res);
1002 qemu_rdma_dump_gid("source_resolve_addr", rdma->cm_id);
1003
1004 ret = rdma_get_cm_event(rdma->channel, &cm_event);
1005 if (ret) {
1006 ERROR(errp, "could not perform event_addr_resolved");
1007 goto err_resolve_get_addr;
1008 }
1009
1010 if (cm_event->event != RDMA_CM_EVENT_ADDR_RESOLVED) {
1011 ERROR(errp, "result not equal to event_addr_resolved %s",
1012 rdma_event_str(cm_event->event));
1013 error_report("rdma_resolve_addr");
1014 rdma_ack_cm_event(cm_event);
1015 ret = -EINVAL;
1016 goto err_resolve_get_addr;
1017 }
1018 rdma_ack_cm_event(cm_event);
1019
1020 /* resolve route */
1021 ret = rdma_resolve_route(rdma->cm_id, RDMA_RESOLVE_TIMEOUT_MS);
1022 if (ret) {
1023 ERROR(errp, "could not resolve rdma route");
1024 goto err_resolve_get_addr;
1025 }
1026
1027 ret = rdma_get_cm_event(rdma->channel, &cm_event);
1028 if (ret) {
1029 ERROR(errp, "could not perform event_route_resolved");
1030 goto err_resolve_get_addr;
1031 }
1032 if (cm_event->event != RDMA_CM_EVENT_ROUTE_RESOLVED) {
1033 ERROR(errp, "result not equal to event_route_resolved: %s",
1034 rdma_event_str(cm_event->event));
1035 rdma_ack_cm_event(cm_event);
1036 ret = -EINVAL;
1037 goto err_resolve_get_addr;
1038 }
1039 rdma_ack_cm_event(cm_event);
1040 rdma->verbs = rdma->cm_id->verbs;
1041 qemu_rdma_dump_id("source_resolve_host", rdma->cm_id->verbs);
1042 qemu_rdma_dump_gid("source_resolve_host", rdma->cm_id);
1043 return 0;
1044
1045 err_resolve_get_addr:
1046 rdma_destroy_id(rdma->cm_id);
1047 rdma->cm_id = NULL;
1048 err_resolve_create_id:
1049 rdma_destroy_event_channel(rdma->channel);
1050 rdma->channel = NULL;
1051 return ret;
1052 }
1053
1054 /*
1055 * Create protection domain and completion queues
1056 */
1057 static int qemu_rdma_alloc_pd_cq(RDMAContext *rdma)
1058 {
1059 /* allocate pd */
1060 rdma->pd = ibv_alloc_pd(rdma->verbs);
1061 if (!rdma->pd) {
1062 error_report("failed to allocate protection domain");
1063 return -1;
1064 }
1065
1066 /* create receive completion channel */
1067 rdma->recv_comp_channel = ibv_create_comp_channel(rdma->verbs);
1068 if (!rdma->recv_comp_channel) {
1069 error_report("failed to allocate receive completion channel");
1070 goto err_alloc_pd_cq;
1071 }
1072
1073 /*
1074 * Completion queue can be filled by read work requests.
1075 */
1076 rdma->recv_cq = ibv_create_cq(rdma->verbs, (RDMA_SIGNALED_SEND_MAX * 3),
1077 NULL, rdma->recv_comp_channel, 0);
1078 if (!rdma->recv_cq) {
1079 error_report("failed to allocate receive completion queue");
1080 goto err_alloc_pd_cq;
1081 }
1082
1083 /* create send completion channel */
1084 rdma->send_comp_channel = ibv_create_comp_channel(rdma->verbs);
1085 if (!rdma->send_comp_channel) {
1086 error_report("failed to allocate send completion channel");
1087 goto err_alloc_pd_cq;
1088 }
1089
1090 rdma->send_cq = ibv_create_cq(rdma->verbs, (RDMA_SIGNALED_SEND_MAX * 3),
1091 NULL, rdma->send_comp_channel, 0);
1092 if (!rdma->send_cq) {
1093 error_report("failed to allocate send completion queue");
1094 goto err_alloc_pd_cq;
1095 }
1096
1097 return 0;
1098
1099 err_alloc_pd_cq:
1100 if (rdma->pd) {
1101 ibv_dealloc_pd(rdma->pd);
1102 }
1103 if (rdma->recv_comp_channel) {
1104 ibv_destroy_comp_channel(rdma->recv_comp_channel);
1105 }
1106 if (rdma->send_comp_channel) {
1107 ibv_destroy_comp_channel(rdma->send_comp_channel);
1108 }
1109 if (rdma->recv_cq) {
1110 ibv_destroy_cq(rdma->recv_cq);
1111 rdma->recv_cq = NULL;
1112 }
1113 rdma->pd = NULL;
1114 rdma->recv_comp_channel = NULL;
1115 rdma->send_comp_channel = NULL;
1116 return -1;
1117
1118 }
1119
1120 /*
1121 * Create queue pairs.
1122 */
1123 static int qemu_rdma_alloc_qp(RDMAContext *rdma)
1124 {
1125 struct ibv_qp_init_attr attr = { 0 };
1126 int ret;
1127
1128 attr.cap.max_send_wr = RDMA_SIGNALED_SEND_MAX;
1129 attr.cap.max_recv_wr = 3;
1130 attr.cap.max_send_sge = 1;
1131 attr.cap.max_recv_sge = 1;
1132 attr.send_cq = rdma->send_cq;
1133 attr.recv_cq = rdma->recv_cq;
1134 attr.qp_type = IBV_QPT_RC;
1135
1136 ret = rdma_create_qp(rdma->cm_id, rdma->pd, &attr);
1137 if (ret) {
1138 return -1;
1139 }
1140
1141 rdma->qp = rdma->cm_id->qp;
1142 return 0;
1143 }
1144
1145 /* Check whether On-Demand Paging is supported by RDAM device */
1146 static bool rdma_support_odp(struct ibv_context *dev)
1147 {
1148 struct ibv_device_attr_ex attr = {0};
1149 int ret = ibv_query_device_ex(dev, NULL, &attr);
1150 if (ret) {
1151 return false;
1152 }
1153
1154 if (attr.odp_caps.general_caps & IBV_ODP_SUPPORT) {
1155 return true;
1156 }
1157
1158 return false;
1159 }
1160
1161 /*
1162 * ibv_advise_mr to avoid RNR NAK error as far as possible.
1163 * The responder mr registering with ODP will sent RNR NAK back to
1164 * the requester in the face of the page fault.
1165 */
1166 static void qemu_rdma_advise_prefetch_mr(struct ibv_pd *pd, uint64_t addr,
1167 uint32_t len, uint32_t lkey,
1168 const char *name, bool wr)
1169 {
1170 #ifdef HAVE_IBV_ADVISE_MR
1171 int ret;
1172 int advice = wr ? IBV_ADVISE_MR_ADVICE_PREFETCH_WRITE :
1173 IBV_ADVISE_MR_ADVICE_PREFETCH;
1174 struct ibv_sge sg_list = {.lkey = lkey, .addr = addr, .length = len};
1175
1176 ret = ibv_advise_mr(pd, advice,
1177 IBV_ADVISE_MR_FLAG_FLUSH, &sg_list, 1);
1178 /* ignore the error */
1179 if (ret) {
1180 trace_qemu_rdma_advise_mr(name, len, addr, strerror(errno));
1181 } else {
1182 trace_qemu_rdma_advise_mr(name, len, addr, "successed");
1183 }
1184 #endif
1185 }
1186
1187 static int qemu_rdma_reg_whole_ram_blocks(RDMAContext *rdma)
1188 {
1189 int i;
1190 RDMALocalBlocks *local = &rdma->local_ram_blocks;
1191
1192 for (i = 0; i < local->nb_blocks; i++) {
1193 int access = IBV_ACCESS_LOCAL_WRITE | IBV_ACCESS_REMOTE_WRITE;
1194
1195 local->block[i].mr =
1196 ibv_reg_mr(rdma->pd,
1197 local->block[i].local_host_addr,
1198 local->block[i].length, access
1199 );
1200
1201 if (!local->block[i].mr &&
1202 errno == ENOTSUP && rdma_support_odp(rdma->verbs)) {
1203 access |= IBV_ACCESS_ON_DEMAND;
1204 /* register ODP mr */
1205 local->block[i].mr =
1206 ibv_reg_mr(rdma->pd,
1207 local->block[i].local_host_addr,
1208 local->block[i].length, access);
1209 trace_qemu_rdma_register_odp_mr(local->block[i].block_name);
1210
1211 if (local->block[i].mr) {
1212 qemu_rdma_advise_prefetch_mr(rdma->pd,
1213 (uintptr_t)local->block[i].local_host_addr,
1214 local->block[i].length,
1215 local->block[i].mr->lkey,
1216 local->block[i].block_name,
1217 true);
1218 }
1219 }
1220
1221 if (!local->block[i].mr) {
1222 perror("Failed to register local dest ram block!");
1223 break;
1224 }
1225 rdma->total_registrations++;
1226 }
1227
1228 if (i >= local->nb_blocks) {
1229 return 0;
1230 }
1231
1232 for (i--; i >= 0; i--) {
1233 ibv_dereg_mr(local->block[i].mr);
1234 local->block[i].mr = NULL;
1235 rdma->total_registrations--;
1236 }
1237
1238 return -1;
1239
1240 }
1241
1242 /*
1243 * Find the ram block that corresponds to the page requested to be
1244 * transmitted by QEMU.
1245 *
1246 * Once the block is found, also identify which 'chunk' within that
1247 * block that the page belongs to.
1248 *
1249 * This search cannot fail or the migration will fail.
1250 */
1251 static int qemu_rdma_search_ram_block(RDMAContext *rdma,
1252 uintptr_t block_offset,
1253 uint64_t offset,
1254 uint64_t length,
1255 uint64_t *block_index,
1256 uint64_t *chunk_index)
1257 {
1258 uint64_t current_addr = block_offset + offset;
1259 RDMALocalBlock *block = g_hash_table_lookup(rdma->blockmap,
1260 (void *) block_offset);
1261 assert(block);
1262 assert(current_addr >= block->offset);
1263 assert((current_addr + length) <= (block->offset + block->length));
1264
1265 *block_index = block->index;
1266 *chunk_index = ram_chunk_index(block->local_host_addr,
1267 block->local_host_addr + (current_addr - block->offset));
1268
1269 return 0;
1270 }
1271
1272 /*
1273 * Register a chunk with IB. If the chunk was already registered
1274 * previously, then skip.
1275 *
1276 * Also return the keys associated with the registration needed
1277 * to perform the actual RDMA operation.
1278 */
1279 static int qemu_rdma_register_and_get_keys(RDMAContext *rdma,
1280 RDMALocalBlock *block, uintptr_t host_addr,
1281 uint32_t *lkey, uint32_t *rkey, int chunk,
1282 uint8_t *chunk_start, uint8_t *chunk_end)
1283 {
1284 if (block->mr) {
1285 if (lkey) {
1286 *lkey = block->mr->lkey;
1287 }
1288 if (rkey) {
1289 *rkey = block->mr->rkey;
1290 }
1291 return 0;
1292 }
1293
1294 /* allocate memory to store chunk MRs */
1295 if (!block->pmr) {
1296 block->pmr = g_new0(struct ibv_mr *, block->nb_chunks);
1297 }
1298
1299 /*
1300 * If 'rkey', then we're the destination, so grant access to the source.
1301 *
1302 * If 'lkey', then we're the source VM, so grant access only to ourselves.
1303 */
1304 if (!block->pmr[chunk]) {
1305 uint64_t len = chunk_end - chunk_start;
1306 int access = rkey ? IBV_ACCESS_LOCAL_WRITE | IBV_ACCESS_REMOTE_WRITE :
1307 0;
1308
1309 trace_qemu_rdma_register_and_get_keys(len, chunk_start);
1310
1311 block->pmr[chunk] = ibv_reg_mr(rdma->pd, chunk_start, len, access);
1312 if (!block->pmr[chunk] &&
1313 errno == ENOTSUP && rdma_support_odp(rdma->verbs)) {
1314 access |= IBV_ACCESS_ON_DEMAND;
1315 /* register ODP mr */
1316 block->pmr[chunk] = ibv_reg_mr(rdma->pd, chunk_start, len, access);
1317 trace_qemu_rdma_register_odp_mr(block->block_name);
1318
1319 if (block->pmr[chunk]) {
1320 qemu_rdma_advise_prefetch_mr(rdma->pd, (uintptr_t)chunk_start,
1321 len, block->pmr[chunk]->lkey,
1322 block->block_name, rkey);
1323
1324 }
1325 }
1326 }
1327 if (!block->pmr[chunk]) {
1328 perror("Failed to register chunk!");
1329 fprintf(stderr, "Chunk details: block: %d chunk index %d"
1330 " start %" PRIuPTR " end %" PRIuPTR
1331 " host %" PRIuPTR
1332 " local %" PRIuPTR " registrations: %d\n",
1333 block->index, chunk, (uintptr_t)chunk_start,
1334 (uintptr_t)chunk_end, host_addr,
1335 (uintptr_t)block->local_host_addr,
1336 rdma->total_registrations);
1337 return -1;
1338 }
1339 rdma->total_registrations++;
1340
1341 if (lkey) {
1342 *lkey = block->pmr[chunk]->lkey;
1343 }
1344 if (rkey) {
1345 *rkey = block->pmr[chunk]->rkey;
1346 }
1347 return 0;
1348 }
1349
1350 /*
1351 * Register (at connection time) the memory used for control
1352 * channel messages.
1353 */
1354 static int qemu_rdma_reg_control(RDMAContext *rdma, int idx)
1355 {
1356 rdma->wr_data[idx].control_mr = ibv_reg_mr(rdma->pd,
1357 rdma->wr_data[idx].control, RDMA_CONTROL_MAX_BUFFER,
1358 IBV_ACCESS_LOCAL_WRITE | IBV_ACCESS_REMOTE_WRITE);
1359 if (rdma->wr_data[idx].control_mr) {
1360 rdma->total_registrations++;
1361 return 0;
1362 }
1363 error_report("qemu_rdma_reg_control failed");
1364 return -1;
1365 }
1366
1367 const char *print_wrid(int wrid)
1368 {
1369 if (wrid >= RDMA_WRID_RECV_CONTROL) {
1370 return wrid_desc[RDMA_WRID_RECV_CONTROL];
1371 }
1372 return wrid_desc[wrid];
1373 }
1374
1375 /*
1376 * Perform a non-optimized memory unregistration after every transfer
1377 * for demonstration purposes, only if pin-all is not requested.
1378 *
1379 * Potential optimizations:
1380 * 1. Start a new thread to run this function continuously
1381 - for bit clearing
1382 - and for receipt of unregister messages
1383 * 2. Use an LRU.
1384 * 3. Use workload hints.
1385 */
1386 static int qemu_rdma_unregister_waiting(RDMAContext *rdma)
1387 {
1388 while (rdma->unregistrations[rdma->unregister_current]) {
1389 int ret;
1390 uint64_t wr_id = rdma->unregistrations[rdma->unregister_current];
1391 uint64_t chunk =
1392 (wr_id & RDMA_WRID_CHUNK_MASK) >> RDMA_WRID_CHUNK_SHIFT;
1393 uint64_t index =
1394 (wr_id & RDMA_WRID_BLOCK_MASK) >> RDMA_WRID_BLOCK_SHIFT;
1395 RDMALocalBlock *block =
1396 &(rdma->local_ram_blocks.block[index]);
1397 RDMARegister reg = { .current_index = index };
1398 RDMAControlHeader resp = { .type = RDMA_CONTROL_UNREGISTER_FINISHED,
1399 };
1400 RDMAControlHeader head = { .len = sizeof(RDMARegister),
1401 .type = RDMA_CONTROL_UNREGISTER_REQUEST,
1402 .repeat = 1,
1403 };
1404
1405 trace_qemu_rdma_unregister_waiting_proc(chunk,
1406 rdma->unregister_current);
1407
1408 rdma->unregistrations[rdma->unregister_current] = 0;
1409 rdma->unregister_current++;
1410
1411 if (rdma->unregister_current == RDMA_SIGNALED_SEND_MAX) {
1412 rdma->unregister_current = 0;
1413 }
1414
1415
1416 /*
1417 * Unregistration is speculative (because migration is single-threaded
1418 * and we cannot break the protocol's inifinband message ordering).
1419 * Thus, if the memory is currently being used for transmission,
1420 * then abort the attempt to unregister and try again
1421 * later the next time a completion is received for this memory.
1422 */
1423 clear_bit(chunk, block->unregister_bitmap);
1424
1425 if (test_bit(chunk, block->transit_bitmap)) {
1426 trace_qemu_rdma_unregister_waiting_inflight(chunk);
1427 continue;
1428 }
1429
1430 trace_qemu_rdma_unregister_waiting_send(chunk);
1431
1432 ret = ibv_dereg_mr(block->pmr[chunk]);
1433 block->pmr[chunk] = NULL;
1434 block->remote_keys[chunk] = 0;
1435
1436 if (ret != 0) {
1437 perror("unregistration chunk failed");
1438 return -ret;
1439 }
1440 rdma->total_registrations--;
1441
1442 reg.key.chunk = chunk;
1443 register_to_network(rdma, &reg);
1444 ret = qemu_rdma_exchange_send(rdma, &head, (uint8_t *) &reg,
1445 &resp, NULL, NULL);
1446 if (ret < 0) {
1447 return ret;
1448 }
1449
1450 trace_qemu_rdma_unregister_waiting_complete(chunk);
1451 }
1452
1453 return 0;
1454 }
1455
1456 static uint64_t qemu_rdma_make_wrid(uint64_t wr_id, uint64_t index,
1457 uint64_t chunk)
1458 {
1459 uint64_t result = wr_id & RDMA_WRID_TYPE_MASK;
1460
1461 result |= (index << RDMA_WRID_BLOCK_SHIFT);
1462 result |= (chunk << RDMA_WRID_CHUNK_SHIFT);
1463
1464 return result;
1465 }
1466
1467 /*
1468 * Consult the connection manager to see a work request
1469 * (of any kind) has completed.
1470 * Return the work request ID that completed.
1471 */
1472 static uint64_t qemu_rdma_poll(RDMAContext *rdma, struct ibv_cq *cq,
1473 uint64_t *wr_id_out, uint32_t *byte_len)
1474 {
1475 int ret;
1476 struct ibv_wc wc;
1477 uint64_t wr_id;
1478
1479 ret = ibv_poll_cq(cq, 1, &wc);
1480
1481 if (!ret) {
1482 *wr_id_out = RDMA_WRID_NONE;
1483 return 0;
1484 }
1485
1486 if (ret < 0) {
1487 error_report("ibv_poll_cq return %d", ret);
1488 return ret;
1489 }
1490
1491 wr_id = wc.wr_id & RDMA_WRID_TYPE_MASK;
1492
1493 if (wc.status != IBV_WC_SUCCESS) {
1494 fprintf(stderr, "ibv_poll_cq wc.status=%d %s!\n",
1495 wc.status, ibv_wc_status_str(wc.status));
1496 fprintf(stderr, "ibv_poll_cq wrid=%s!\n", wrid_desc[wr_id]);
1497
1498 return -1;
1499 }
1500
1501 if (rdma->control_ready_expected &&
1502 (wr_id >= RDMA_WRID_RECV_CONTROL)) {
1503 trace_qemu_rdma_poll_recv(wrid_desc[RDMA_WRID_RECV_CONTROL],
1504 wr_id - RDMA_WRID_RECV_CONTROL, wr_id, rdma->nb_sent);
1505 rdma->control_ready_expected = 0;
1506 }
1507
1508 if (wr_id == RDMA_WRID_RDMA_WRITE) {
1509 uint64_t chunk =
1510 (wc.wr_id & RDMA_WRID_CHUNK_MASK) >> RDMA_WRID_CHUNK_SHIFT;
1511 uint64_t index =
1512 (wc.wr_id & RDMA_WRID_BLOCK_MASK) >> RDMA_WRID_BLOCK_SHIFT;
1513 RDMALocalBlock *block = &(rdma->local_ram_blocks.block[index]);
1514
1515 trace_qemu_rdma_poll_write(print_wrid(wr_id), wr_id, rdma->nb_sent,
1516 index, chunk, block->local_host_addr,
1517 (void *)(uintptr_t)block->remote_host_addr);
1518
1519 clear_bit(chunk, block->transit_bitmap);
1520
1521 if (rdma->nb_sent > 0) {
1522 rdma->nb_sent--;
1523 }
1524 } else {
1525 trace_qemu_rdma_poll_other(print_wrid(wr_id), wr_id, rdma->nb_sent);
1526 }
1527
1528 *wr_id_out = wc.wr_id;
1529 if (byte_len) {
1530 *byte_len = wc.byte_len;
1531 }
1532
1533 return 0;
1534 }
1535
1536 /* Wait for activity on the completion channel.
1537 * Returns 0 on success, none-0 on error.
1538 */
1539 static int qemu_rdma_wait_comp_channel(RDMAContext *rdma,
1540 struct ibv_comp_channel *comp_channel)
1541 {
1542 struct rdma_cm_event *cm_event;
1543 int ret = -1;
1544
1545 /*
1546 * Coroutine doesn't start until migration_fd_process_incoming()
1547 * so don't yield unless we know we're running inside of a coroutine.
1548 */
1549 if (rdma->migration_started_on_destination &&
1550 migration_incoming_get_current()->state == MIGRATION_STATUS_ACTIVE) {
1551 yield_until_fd_readable(comp_channel->fd);
1552 } else {
1553 /* This is the source side, we're in a separate thread
1554 * or destination prior to migration_fd_process_incoming()
1555 * after postcopy, the destination also in a separate thread.
1556 * we can't yield; so we have to poll the fd.
1557 * But we need to be able to handle 'cancel' or an error
1558 * without hanging forever.
1559 */
1560 while (!rdma->error_state && !rdma->received_error) {
1561 GPollFD pfds[2];
1562 pfds[0].fd = comp_channel->fd;
1563 pfds[0].events = G_IO_IN | G_IO_HUP | G_IO_ERR;
1564 pfds[0].revents = 0;
1565
1566 pfds[1].fd = rdma->channel->fd;
1567 pfds[1].events = G_IO_IN | G_IO_HUP | G_IO_ERR;
1568 pfds[1].revents = 0;
1569
1570 /* 0.1s timeout, should be fine for a 'cancel' */
1571 switch (qemu_poll_ns(pfds, 2, 100 * 1000 * 1000)) {
1572 case 2:
1573 case 1: /* fd active */
1574 if (pfds[0].revents) {
1575 return 0;
1576 }
1577
1578 if (pfds[1].revents) {
1579 ret = rdma_get_cm_event(rdma->channel, &cm_event);
1580 if (ret) {
1581 error_report("failed to get cm event while wait "
1582 "completion channel");
1583 return -EPIPE;
1584 }
1585
1586 error_report("receive cm event while wait comp channel,"
1587 "cm event is %d", cm_event->event);
1588 if (cm_event->event == RDMA_CM_EVENT_DISCONNECTED ||
1589 cm_event->event == RDMA_CM_EVENT_DEVICE_REMOVAL) {
1590 rdma_ack_cm_event(cm_event);
1591 return -EPIPE;
1592 }
1593 rdma_ack_cm_event(cm_event);
1594 }
1595 break;
1596
1597 case 0: /* Timeout, go around again */
1598 break;
1599
1600 default: /* Error of some type -
1601 * I don't trust errno from qemu_poll_ns
1602 */
1603 error_report("%s: poll failed", __func__);
1604 return -EPIPE;
1605 }
1606
1607 if (migrate_get_current()->state == MIGRATION_STATUS_CANCELLING) {
1608 /* Bail out and let the cancellation happen */
1609 return -EPIPE;
1610 }
1611 }
1612 }
1613
1614 if (rdma->received_error) {
1615 return -EPIPE;
1616 }
1617 return rdma->error_state;
1618 }
1619
1620 static struct ibv_comp_channel *to_channel(RDMAContext *rdma, int wrid)
1621 {
1622 return wrid < RDMA_WRID_RECV_CONTROL ? rdma->send_comp_channel :
1623 rdma->recv_comp_channel;
1624 }
1625
1626 static struct ibv_cq *to_cq(RDMAContext *rdma, int wrid)
1627 {
1628 return wrid < RDMA_WRID_RECV_CONTROL ? rdma->send_cq : rdma->recv_cq;
1629 }
1630
1631 /*
1632 * Block until the next work request has completed.
1633 *
1634 * First poll to see if a work request has already completed,
1635 * otherwise block.
1636 *
1637 * If we encounter completed work requests for IDs other than
1638 * the one we're interested in, then that's generally an error.
1639 *
1640 * The only exception is actual RDMA Write completions. These
1641 * completions only need to be recorded, but do not actually
1642 * need further processing.
1643 */
1644 static int qemu_rdma_block_for_wrid(RDMAContext *rdma, int wrid_requested,
1645 uint32_t *byte_len)
1646 {
1647 int num_cq_events = 0, ret = 0;
1648 struct ibv_cq *cq;
1649 void *cq_ctx;
1650 uint64_t wr_id = RDMA_WRID_NONE, wr_id_in;
1651 struct ibv_comp_channel *ch = to_channel(rdma, wrid_requested);
1652 struct ibv_cq *poll_cq = to_cq(rdma, wrid_requested);
1653
1654 if (ibv_req_notify_cq(poll_cq, 0)) {
1655 return -1;
1656 }
1657 /* poll cq first */
1658 while (wr_id != wrid_requested) {
1659 ret = qemu_rdma_poll(rdma, poll_cq, &wr_id_in, byte_len);
1660 if (ret < 0) {
1661 return ret;
1662 }
1663
1664 wr_id = wr_id_in & RDMA_WRID_TYPE_MASK;
1665
1666 if (wr_id == RDMA_WRID_NONE) {
1667 break;
1668 }
1669 if (wr_id != wrid_requested) {
1670 trace_qemu_rdma_block_for_wrid_miss(print_wrid(wrid_requested),
1671 wrid_requested, print_wrid(wr_id), wr_id);
1672 }
1673 }
1674
1675 if (wr_id == wrid_requested) {
1676 return 0;
1677 }
1678
1679 while (1) {
1680 ret = qemu_rdma_wait_comp_channel(rdma, ch);
1681 if (ret) {
1682 goto err_block_for_wrid;
1683 }
1684
1685 ret = ibv_get_cq_event(ch, &cq, &cq_ctx);
1686 if (ret) {
1687 perror("ibv_get_cq_event");
1688 goto err_block_for_wrid;
1689 }
1690
1691 num_cq_events++;
1692
1693 ret = -ibv_req_notify_cq(cq, 0);
1694 if (ret) {
1695 goto err_block_for_wrid;
1696 }
1697
1698 while (wr_id != wrid_requested) {
1699 ret = qemu_rdma_poll(rdma, poll_cq, &wr_id_in, byte_len);
1700 if (ret < 0) {
1701 goto err_block_for_wrid;
1702 }
1703
1704 wr_id = wr_id_in & RDMA_WRID_TYPE_MASK;
1705
1706 if (wr_id == RDMA_WRID_NONE) {
1707 break;
1708 }
1709 if (wr_id != wrid_requested) {
1710 trace_qemu_rdma_block_for_wrid_miss(print_wrid(wrid_requested),
1711 wrid_requested, print_wrid(wr_id), wr_id);
1712 }
1713 }
1714
1715 if (wr_id == wrid_requested) {
1716 goto success_block_for_wrid;
1717 }
1718 }
1719
1720 success_block_for_wrid:
1721 if (num_cq_events) {
1722 ibv_ack_cq_events(cq, num_cq_events);
1723 }
1724 return 0;
1725
1726 err_block_for_wrid:
1727 if (num_cq_events) {
1728 ibv_ack_cq_events(cq, num_cq_events);
1729 }
1730
1731 rdma->error_state = ret;
1732 return ret;
1733 }
1734
1735 /*
1736 * Post a SEND message work request for the control channel
1737 * containing some data and block until the post completes.
1738 */
1739 static int qemu_rdma_post_send_control(RDMAContext *rdma, uint8_t *buf,
1740 RDMAControlHeader *head)
1741 {
1742 int ret = 0;
1743 RDMAWorkRequestData *wr = &rdma->wr_data[RDMA_WRID_CONTROL];
1744 struct ibv_send_wr *bad_wr;
1745 struct ibv_sge sge = {
1746 .addr = (uintptr_t)(wr->control),
1747 .length = head->len + sizeof(RDMAControlHeader),
1748 .lkey = wr->control_mr->lkey,
1749 };
1750 struct ibv_send_wr send_wr = {
1751 .wr_id = RDMA_WRID_SEND_CONTROL,
1752 .opcode = IBV_WR_SEND,
1753 .send_flags = IBV_SEND_SIGNALED,
1754 .sg_list = &sge,
1755 .num_sge = 1,
1756 };
1757
1758 trace_qemu_rdma_post_send_control(control_desc(head->type));
1759
1760 /*
1761 * We don't actually need to do a memcpy() in here if we used
1762 * the "sge" properly, but since we're only sending control messages
1763 * (not RAM in a performance-critical path), then its OK for now.
1764 *
1765 * The copy makes the RDMAControlHeader simpler to manipulate
1766 * for the time being.
1767 */
1768 assert(head->len <= RDMA_CONTROL_MAX_BUFFER - sizeof(*head));
1769 memcpy(wr->control, head, sizeof(RDMAControlHeader));
1770 control_to_network((void *) wr->control);
1771
1772 if (buf) {
1773 memcpy(wr->control + sizeof(RDMAControlHeader), buf, head->len);
1774 }
1775
1776
1777 ret = ibv_post_send(rdma->qp, &send_wr, &bad_wr);
1778
1779 if (ret > 0) {
1780 error_report("Failed to use post IB SEND for control");
1781 return -ret;
1782 }
1783
1784 ret = qemu_rdma_block_for_wrid(rdma, RDMA_WRID_SEND_CONTROL, NULL);
1785 if (ret < 0) {
1786 error_report("rdma migration: send polling control error");
1787 }
1788
1789 return ret;
1790 }
1791
1792 /*
1793 * Post a RECV work request in anticipation of some future receipt
1794 * of data on the control channel.
1795 */
1796 static int qemu_rdma_post_recv_control(RDMAContext *rdma, int idx)
1797 {
1798 struct ibv_recv_wr *bad_wr;
1799 struct ibv_sge sge = {
1800 .addr = (uintptr_t)(rdma->wr_data[idx].control),
1801 .length = RDMA_CONTROL_MAX_BUFFER,
1802 .lkey = rdma->wr_data[idx].control_mr->lkey,
1803 };
1804
1805 struct ibv_recv_wr recv_wr = {
1806 .wr_id = RDMA_WRID_RECV_CONTROL + idx,
1807 .sg_list = &sge,
1808 .num_sge = 1,
1809 };
1810
1811
1812 if (ibv_post_recv(rdma->qp, &recv_wr, &bad_wr)) {
1813 return -1;
1814 }
1815
1816 return 0;
1817 }
1818
1819 /*
1820 * Block and wait for a RECV control channel message to arrive.
1821 */
1822 static int qemu_rdma_exchange_get_response(RDMAContext *rdma,
1823 RDMAControlHeader *head, int expecting, int idx)
1824 {
1825 uint32_t byte_len;
1826 int ret = qemu_rdma_block_for_wrid(rdma, RDMA_WRID_RECV_CONTROL + idx,
1827 &byte_len);
1828
1829 if (ret < 0) {
1830 error_report("rdma migration: recv polling control error!");
1831 return ret;
1832 }
1833
1834 network_to_control((void *) rdma->wr_data[idx].control);
1835 memcpy(head, rdma->wr_data[idx].control, sizeof(RDMAControlHeader));
1836
1837 trace_qemu_rdma_exchange_get_response_start(control_desc(expecting));
1838
1839 if (expecting == RDMA_CONTROL_NONE) {
1840 trace_qemu_rdma_exchange_get_response_none(control_desc(head->type),
1841 head->type);
1842 } else if (head->type != expecting || head->type == RDMA_CONTROL_ERROR) {
1843 error_report("Was expecting a %s (%d) control message"
1844 ", but got: %s (%d), length: %d",
1845 control_desc(expecting), expecting,
1846 control_desc(head->type), head->type, head->len);
1847 if (head->type == RDMA_CONTROL_ERROR) {
1848 rdma->received_error = true;
1849 }
1850 return -EIO;
1851 }
1852 if (head->len > RDMA_CONTROL_MAX_BUFFER - sizeof(*head)) {
1853 error_report("too long length: %d", head->len);
1854 return -EINVAL;
1855 }
1856 if (sizeof(*head) + head->len != byte_len) {
1857 error_report("Malformed length: %d byte_len %d", head->len, byte_len);
1858 return -EINVAL;
1859 }
1860
1861 return 0;
1862 }
1863
1864 /*
1865 * When a RECV work request has completed, the work request's
1866 * buffer is pointed at the header.
1867 *
1868 * This will advance the pointer to the data portion
1869 * of the control message of the work request's buffer that
1870 * was populated after the work request finished.
1871 */
1872 static void qemu_rdma_move_header(RDMAContext *rdma, int idx,
1873 RDMAControlHeader *head)
1874 {
1875 rdma->wr_data[idx].control_len = head->len;
1876 rdma->wr_data[idx].control_curr =
1877 rdma->wr_data[idx].control + sizeof(RDMAControlHeader);
1878 }
1879
1880 /*
1881 * This is an 'atomic' high-level operation to deliver a single, unified
1882 * control-channel message.
1883 *
1884 * Additionally, if the user is expecting some kind of reply to this message,
1885 * they can request a 'resp' response message be filled in by posting an
1886 * additional work request on behalf of the user and waiting for an additional
1887 * completion.
1888 *
1889 * The extra (optional) response is used during registration to us from having
1890 * to perform an *additional* exchange of message just to provide a response by
1891 * instead piggy-backing on the acknowledgement.
1892 */
1893 static int qemu_rdma_exchange_send(RDMAContext *rdma, RDMAControlHeader *head,
1894 uint8_t *data, RDMAControlHeader *resp,
1895 int *resp_idx,
1896 int (*callback)(RDMAContext *rdma))
1897 {
1898 int ret = 0;
1899
1900 /*
1901 * Wait until the dest is ready before attempting to deliver the message
1902 * by waiting for a READY message.
1903 */
1904 if (rdma->control_ready_expected) {
1905 RDMAControlHeader resp;
1906 ret = qemu_rdma_exchange_get_response(rdma,
1907 &resp, RDMA_CONTROL_READY, RDMA_WRID_READY);
1908 if (ret < 0) {
1909 return ret;
1910 }
1911 }
1912
1913 /*
1914 * If the user is expecting a response, post a WR in anticipation of it.
1915 */
1916 if (resp) {
1917 ret = qemu_rdma_post_recv_control(rdma, RDMA_WRID_DATA);
1918 if (ret) {
1919 error_report("rdma migration: error posting"
1920 " extra control recv for anticipated result!");
1921 return ret;
1922 }
1923 }
1924
1925 /*
1926 * Post a WR to replace the one we just consumed for the READY message.
1927 */
1928 ret = qemu_rdma_post_recv_control(rdma, RDMA_WRID_READY);
1929 if (ret) {
1930 error_report("rdma migration: error posting first control recv!");
1931 return ret;
1932 }
1933
1934 /*
1935 * Deliver the control message that was requested.
1936 */
1937 ret = qemu_rdma_post_send_control(rdma, data, head);
1938
1939 if (ret < 0) {
1940 error_report("Failed to send control buffer!");
1941 return ret;
1942 }
1943
1944 /*
1945 * If we're expecting a response, block and wait for it.
1946 */
1947 if (resp) {
1948 if (callback) {
1949 trace_qemu_rdma_exchange_send_issue_callback();
1950 ret = callback(rdma);
1951 if (ret < 0) {
1952 return ret;
1953 }
1954 }
1955
1956 trace_qemu_rdma_exchange_send_waiting(control_desc(resp->type));
1957 ret = qemu_rdma_exchange_get_response(rdma, resp,
1958 resp->type, RDMA_WRID_DATA);
1959
1960 if (ret < 0) {
1961 return ret;
1962 }
1963
1964 qemu_rdma_move_header(rdma, RDMA_WRID_DATA, resp);
1965 if (resp_idx) {
1966 *resp_idx = RDMA_WRID_DATA;
1967 }
1968 trace_qemu_rdma_exchange_send_received(control_desc(resp->type));
1969 }
1970
1971 rdma->control_ready_expected = 1;
1972
1973 return 0;
1974 }
1975
1976 /*
1977 * This is an 'atomic' high-level operation to receive a single, unified
1978 * control-channel message.
1979 */
1980 static int qemu_rdma_exchange_recv(RDMAContext *rdma, RDMAControlHeader *head,
1981 int expecting)
1982 {
1983 RDMAControlHeader ready = {
1984 .len = 0,
1985 .type = RDMA_CONTROL_READY,
1986 .repeat = 1,
1987 };
1988 int ret;
1989
1990 /*
1991 * Inform the source that we're ready to receive a message.
1992 */
1993 ret = qemu_rdma_post_send_control(rdma, NULL, &ready);
1994
1995 if (ret < 0) {
1996 error_report("Failed to send control buffer!");
1997 return ret;
1998 }
1999
2000 /*
2001 * Block and wait for the message.
2002 */
2003 ret = qemu_rdma_exchange_get_response(rdma, head,
2004 expecting, RDMA_WRID_READY);
2005
2006 if (ret < 0) {
2007 return ret;
2008 }
2009
2010 qemu_rdma_move_header(rdma, RDMA_WRID_READY, head);
2011
2012 /*
2013 * Post a new RECV work request to replace the one we just consumed.
2014 */
2015 ret = qemu_rdma_post_recv_control(rdma, RDMA_WRID_READY);
2016 if (ret) {
2017 error_report("rdma migration: error posting second control recv!");
2018 return ret;
2019 }
2020
2021 return 0;
2022 }
2023
2024 /*
2025 * Write an actual chunk of memory using RDMA.
2026 *
2027 * If we're using dynamic registration on the dest-side, we have to
2028 * send a registration command first.
2029 */
2030 static int qemu_rdma_write_one(QEMUFile *f, RDMAContext *rdma,
2031 int current_index, uint64_t current_addr,
2032 uint64_t length)
2033 {
2034 struct ibv_sge sge;
2035 struct ibv_send_wr send_wr = { 0 };
2036 struct ibv_send_wr *bad_wr;
2037 int reg_result_idx, ret, count = 0;
2038 uint64_t chunk, chunks;
2039 uint8_t *chunk_start, *chunk_end;
2040 RDMALocalBlock *block = &(rdma->local_ram_blocks.block[current_index]);
2041 RDMARegister reg;
2042 RDMARegisterResult *reg_result;
2043 RDMAControlHeader resp = { .type = RDMA_CONTROL_REGISTER_RESULT };
2044 RDMAControlHeader head = { .len = sizeof(RDMARegister),
2045 .type = RDMA_CONTROL_REGISTER_REQUEST,
2046 .repeat = 1,
2047 };
2048
2049 retry:
2050 sge.addr = (uintptr_t)(block->local_host_addr +
2051 (current_addr - block->offset));
2052 sge.length = length;
2053
2054 chunk = ram_chunk_index(block->local_host_addr,
2055 (uint8_t *)(uintptr_t)sge.addr);
2056 chunk_start = ram_chunk_start(block, chunk);
2057
2058 if (block->is_ram_block) {
2059 chunks = length / (1UL << RDMA_REG_CHUNK_SHIFT);
2060
2061 if (chunks && ((length % (1UL << RDMA_REG_CHUNK_SHIFT)) == 0)) {
2062 chunks--;
2063 }
2064 } else {
2065 chunks = block->length / (1UL << RDMA_REG_CHUNK_SHIFT);
2066
2067 if (chunks && ((block->length % (1UL << RDMA_REG_CHUNK_SHIFT)) == 0)) {
2068 chunks--;
2069 }
2070 }
2071
2072 trace_qemu_rdma_write_one_top(chunks + 1,
2073 (chunks + 1) *
2074 (1UL << RDMA_REG_CHUNK_SHIFT) / 1024 / 1024);
2075
2076 chunk_end = ram_chunk_end(block, chunk + chunks);
2077
2078
2079 while (test_bit(chunk, block->transit_bitmap)) {
2080 (void)count;
2081 trace_qemu_rdma_write_one_block(count++, current_index, chunk,
2082 sge.addr, length, rdma->nb_sent, block->nb_chunks);
2083
2084 ret = qemu_rdma_block_for_wrid(rdma, RDMA_WRID_RDMA_WRITE, NULL);
2085
2086 if (ret < 0) {
2087 error_report("Failed to Wait for previous write to complete "
2088 "block %d chunk %" PRIu64
2089 " current %" PRIu64 " len %" PRIu64 " %d",
2090 current_index, chunk, sge.addr, length, rdma->nb_sent);
2091 return ret;
2092 }
2093 }
2094
2095 if (!rdma->pin_all || !block->is_ram_block) {
2096 if (!block->remote_keys[chunk]) {
2097 /*
2098 * This chunk has not yet been registered, so first check to see
2099 * if the entire chunk is zero. If so, tell the other size to
2100 * memset() + madvise() the entire chunk without RDMA.
2101 */
2102
2103 if (buffer_is_zero((void *)(uintptr_t)sge.addr, length)) {
2104 RDMACompress comp = {
2105 .offset = current_addr,
2106 .value = 0,
2107 .block_idx = current_index,
2108 .length = length,
2109 };
2110
2111 head.len = sizeof(comp);
2112 head.type = RDMA_CONTROL_COMPRESS;
2113
2114 trace_qemu_rdma_write_one_zero(chunk, sge.length,
2115 current_index, current_addr);
2116
2117 compress_to_network(rdma, &comp);
2118 ret = qemu_rdma_exchange_send(rdma, &head,
2119 (uint8_t *) &comp, NULL, NULL, NULL);
2120
2121 if (ret < 0) {
2122 return -EIO;
2123 }
2124
2125 /*
2126 * TODO: Here we are sending something, but we are not
2127 * accounting for anything transferred. The following is wrong:
2128 *
2129 * stat64_add(&mig_stats.rdma_bytes, sge.length);
2130 *
2131 * because we are using some kind of compression. I
2132 * would think that head.len would be the more similar
2133 * thing to a correct value.
2134 */
2135 stat64_add(&mig_stats.zero_pages,
2136 sge.length / qemu_target_page_size());
2137 return 1;
2138 }
2139
2140 /*
2141 * Otherwise, tell other side to register.
2142 */
2143 reg.current_index = current_index;
2144 if (block->is_ram_block) {
2145 reg.key.current_addr = current_addr;
2146 } else {
2147 reg.key.chunk = chunk;
2148 }
2149 reg.chunks = chunks;
2150
2151 trace_qemu_rdma_write_one_sendreg(chunk, sge.length, current_index,
2152 current_addr);
2153
2154 register_to_network(rdma, &reg);
2155 ret = qemu_rdma_exchange_send(rdma, &head, (uint8_t *) &reg,
2156 &resp, &reg_result_idx, NULL);
2157 if (ret < 0) {
2158 return ret;
2159 }
2160
2161 /* try to overlap this single registration with the one we sent. */
2162 if (qemu_rdma_register_and_get_keys(rdma, block, sge.addr,
2163 &sge.lkey, NULL, chunk,
2164 chunk_start, chunk_end)) {
2165 error_report("cannot get lkey");
2166 return -EINVAL;
2167 }
2168
2169 reg_result = (RDMARegisterResult *)
2170 rdma->wr_data[reg_result_idx].control_curr;
2171
2172 network_to_result(reg_result);
2173
2174 trace_qemu_rdma_write_one_recvregres(block->remote_keys[chunk],
2175 reg_result->rkey, chunk);
2176
2177 block->remote_keys[chunk] = reg_result->rkey;
2178 block->remote_host_addr = reg_result->host_addr;
2179 } else {
2180 /* already registered before */
2181 if (qemu_rdma_register_and_get_keys(rdma, block, sge.addr,
2182 &sge.lkey, NULL, chunk,
2183 chunk_start, chunk_end)) {
2184 error_report("cannot get lkey!");
2185 return -EINVAL;
2186 }
2187 }
2188
2189 send_wr.wr.rdma.rkey = block->remote_keys[chunk];
2190 } else {
2191 send_wr.wr.rdma.rkey = block->remote_rkey;
2192
2193 if (qemu_rdma_register_and_get_keys(rdma, block, sge.addr,
2194 &sge.lkey, NULL, chunk,
2195 chunk_start, chunk_end)) {
2196 error_report("cannot get lkey!");
2197 return -EINVAL;
2198 }
2199 }
2200
2201 /*
2202 * Encode the ram block index and chunk within this wrid.
2203 * We will use this information at the time of completion
2204 * to figure out which bitmap to check against and then which
2205 * chunk in the bitmap to look for.
2206 */
2207 send_wr.wr_id = qemu_rdma_make_wrid(RDMA_WRID_RDMA_WRITE,
2208 current_index, chunk);
2209
2210 send_wr.opcode = IBV_WR_RDMA_WRITE;
2211 send_wr.send_flags = IBV_SEND_SIGNALED;
2212 send_wr.sg_list = &sge;
2213 send_wr.num_sge = 1;
2214 send_wr.wr.rdma.remote_addr = block->remote_host_addr +
2215 (current_addr - block->offset);
2216
2217 trace_qemu_rdma_write_one_post(chunk, sge.addr, send_wr.wr.rdma.remote_addr,
2218 sge.length);
2219
2220 /*
2221 * ibv_post_send() does not return negative error numbers,
2222 * per the specification they are positive - no idea why.
2223 */
2224 ret = ibv_post_send(rdma->qp, &send_wr, &bad_wr);
2225
2226 if (ret == ENOMEM) {
2227 trace_qemu_rdma_write_one_queue_full();
2228 ret = qemu_rdma_block_for_wrid(rdma, RDMA_WRID_RDMA_WRITE, NULL);
2229 if (ret < 0) {
2230 error_report("rdma migration: failed to make "
2231 "room in full send queue! %d", ret);
2232 return ret;
2233 }
2234
2235 goto retry;
2236
2237 } else if (ret > 0) {
2238 perror("rdma migration: post rdma write failed");
2239 return -ret;
2240 }
2241
2242 set_bit(chunk, block->transit_bitmap);
2243 stat64_add(&mig_stats.normal_pages, sge.length / qemu_target_page_size());
2244 /*
2245 * We are adding to transferred the amount of data written, but no
2246 * overhead at all. I will asume that RDMA is magicaly and don't
2247 * need to transfer (at least) the addresses where it wants to
2248 * write the pages. Here it looks like it should be something
2249 * like:
2250 * sizeof(send_wr) + sge.length
2251 * but this being RDMA, who knows.
2252 */
2253 stat64_add(&mig_stats.rdma_bytes, sge.length);
2254 ram_transferred_add(sge.length);
2255 rdma->total_writes++;
2256
2257 return 0;
2258 }
2259
2260 /*
2261 * Push out any unwritten RDMA operations.
2262 *
2263 * We support sending out multiple chunks at the same time.
2264 * Not all of them need to get signaled in the completion queue.
2265 */
2266 static int qemu_rdma_write_flush(QEMUFile *f, RDMAContext *rdma)
2267 {
2268 int ret;
2269
2270 if (!rdma->current_length) {
2271 return 0;
2272 }
2273
2274 ret = qemu_rdma_write_one(f, rdma,
2275 rdma->current_index, rdma->current_addr, rdma->current_length);
2276
2277 if (ret < 0) {
2278 return ret;
2279 }
2280
2281 if (ret == 0) {
2282 rdma->nb_sent++;
2283 trace_qemu_rdma_write_flush(rdma->nb_sent);
2284 }
2285
2286 rdma->current_length = 0;
2287 rdma->current_addr = 0;
2288
2289 return 0;
2290 }
2291
2292 static inline int qemu_rdma_buffer_mergable(RDMAContext *rdma,
2293 uint64_t offset, uint64_t len)
2294 {
2295 RDMALocalBlock *block;
2296 uint8_t *host_addr;
2297 uint8_t *chunk_end;
2298
2299 if (rdma->current_index < 0) {
2300 return 0;
2301 }
2302
2303 if (rdma->current_chunk < 0) {
2304 return 0;
2305 }
2306
2307 block = &(rdma->local_ram_blocks.block[rdma->current_index]);
2308 host_addr = block->local_host_addr + (offset - block->offset);
2309 chunk_end = ram_chunk_end(block, rdma->current_chunk);
2310
2311 if (rdma->current_length == 0) {
2312 return 0;
2313 }
2314
2315 /*
2316 * Only merge into chunk sequentially.
2317 */
2318 if (offset != (rdma->current_addr + rdma->current_length)) {
2319 return 0;
2320 }
2321
2322 if (offset < block->offset) {
2323 return 0;
2324 }
2325
2326 if ((offset + len) > (block->offset + block->length)) {
2327 return 0;
2328 }
2329
2330 if ((host_addr + len) > chunk_end) {
2331 return 0;
2332 }
2333
2334 return 1;
2335 }
2336
2337 /*
2338 * We're not actually writing here, but doing three things:
2339 *
2340 * 1. Identify the chunk the buffer belongs to.
2341 * 2. If the chunk is full or the buffer doesn't belong to the current
2342 * chunk, then start a new chunk and flush() the old chunk.
2343 * 3. To keep the hardware busy, we also group chunks into batches
2344 * and only require that a batch gets acknowledged in the completion
2345 * queue instead of each individual chunk.
2346 */
2347 static int qemu_rdma_write(QEMUFile *f, RDMAContext *rdma,
2348 uint64_t block_offset, uint64_t offset,
2349 uint64_t len)
2350 {
2351 uint64_t current_addr = block_offset + offset;
2352 uint64_t index = rdma->current_index;
2353 uint64_t chunk = rdma->current_chunk;
2354 int ret;
2355
2356 /* If we cannot merge it, we flush the current buffer first. */
2357 if (!qemu_rdma_buffer_mergable(rdma, current_addr, len)) {
2358 ret = qemu_rdma_write_flush(f, rdma);
2359 if (ret) {
2360 return ret;
2361 }
2362 rdma->current_length = 0;
2363 rdma->current_addr = current_addr;
2364
2365 ret = qemu_rdma_search_ram_block(rdma, block_offset,
2366 offset, len, &index, &chunk);
2367 if (ret) {
2368 error_report("ram block search failed");
2369 return ret;
2370 }
2371 rdma->current_index = index;
2372 rdma->current_chunk = chunk;
2373 }
2374
2375 /* merge it */
2376 rdma->current_length += len;
2377
2378 /* flush it if buffer is too large */
2379 if (rdma->current_length >= RDMA_MERGE_MAX) {
2380 return qemu_rdma_write_flush(f, rdma);
2381 }
2382
2383 return 0;
2384 }
2385
2386 static void qemu_rdma_cleanup(RDMAContext *rdma)
2387 {
2388 int idx;
2389
2390 if (rdma->cm_id && rdma->connected) {
2391 if ((rdma->error_state ||
2392 migrate_get_current()->state == MIGRATION_STATUS_CANCELLING) &&
2393 !rdma->received_error) {
2394 RDMAControlHeader head = { .len = 0,
2395 .type = RDMA_CONTROL_ERROR,
2396 .repeat = 1,
2397 };
2398 error_report("Early error. Sending error.");
2399 qemu_rdma_post_send_control(rdma, NULL, &head);
2400 }
2401
2402 rdma_disconnect(rdma->cm_id);
2403 trace_qemu_rdma_cleanup_disconnect();
2404 rdma->connected = false;
2405 }
2406
2407 if (rdma->channel) {
2408 qemu_set_fd_handler(rdma->channel->fd, NULL, NULL, NULL);
2409 }
2410 g_free(rdma->dest_blocks);
2411 rdma->dest_blocks = NULL;
2412
2413 for (idx = 0; idx < RDMA_WRID_MAX; idx++) {
2414 if (rdma->wr_data[idx].control_mr) {
2415 rdma->total_registrations--;
2416 ibv_dereg_mr(rdma->wr_data[idx].control_mr);
2417 }
2418 rdma->wr_data[idx].control_mr = NULL;
2419 }
2420
2421 if (rdma->local_ram_blocks.block) {
2422 while (rdma->local_ram_blocks.nb_blocks) {
2423 rdma_delete_block(rdma, &rdma->local_ram_blocks.block[0]);
2424 }
2425 }
2426
2427 if (rdma->qp) {
2428 rdma_destroy_qp(rdma->cm_id);
2429 rdma->qp = NULL;
2430 }
2431 if (rdma->recv_cq) {
2432 ibv_destroy_cq(rdma->recv_cq);
2433 rdma->recv_cq = NULL;
2434 }
2435 if (rdma->send_cq) {
2436 ibv_destroy_cq(rdma->send_cq);
2437 rdma->send_cq = NULL;
2438 }
2439 if (rdma->recv_comp_channel) {
2440 ibv_destroy_comp_channel(rdma->recv_comp_channel);
2441 rdma->recv_comp_channel = NULL;
2442 }
2443 if (rdma->send_comp_channel) {
2444 ibv_destroy_comp_channel(rdma->send_comp_channel);
2445 rdma->send_comp_channel = NULL;
2446 }
2447 if (rdma->pd) {
2448 ibv_dealloc_pd(rdma->pd);
2449 rdma->pd = NULL;
2450 }
2451 if (rdma->cm_id) {
2452 rdma_destroy_id(rdma->cm_id);
2453 rdma->cm_id = NULL;
2454 }
2455
2456 /* the destination side, listen_id and channel is shared */
2457 if (rdma->listen_id) {
2458 if (!rdma->is_return_path) {
2459 rdma_destroy_id(rdma->listen_id);
2460 }
2461 rdma->listen_id = NULL;
2462
2463 if (rdma->channel) {
2464 if (!rdma->is_return_path) {
2465 rdma_destroy_event_channel(rdma->channel);
2466 }
2467 rdma->channel = NULL;
2468 }
2469 }
2470
2471 if (rdma->channel) {
2472 rdma_destroy_event_channel(rdma->channel);
2473 rdma->channel = NULL;
2474 }
2475 g_free(rdma->host);
2476 g_free(rdma->host_port);
2477 rdma->host = NULL;
2478 rdma->host_port = NULL;
2479 }
2480
2481
2482 static int qemu_rdma_source_init(RDMAContext *rdma, bool pin_all, Error **errp)
2483 {
2484 int ret, idx;
2485 Error *local_err = NULL, **temp = &local_err;
2486
2487 /*
2488 * Will be validated against destination's actual capabilities
2489 * after the connect() completes.
2490 */
2491 rdma->pin_all = pin_all;
2492
2493 ret = qemu_rdma_resolve_host(rdma, temp);
2494 if (ret) {
2495 goto err_rdma_source_init;
2496 }
2497
2498 ret = qemu_rdma_alloc_pd_cq(rdma);
2499 if (ret) {
2500 ERROR(temp, "rdma migration: error allocating pd and cq! Your mlock()"
2501 " limits may be too low. Please check $ ulimit -a # and "
2502 "search for 'ulimit -l' in the output");
2503 goto err_rdma_source_init;
2504 }
2505
2506 ret = qemu_rdma_alloc_qp(rdma);
2507 if (ret) {
2508 ERROR(temp, "rdma migration: error allocating qp!");
2509 goto err_rdma_source_init;
2510 }
2511
2512 ret = qemu_rdma_init_ram_blocks(rdma);
2513 if (ret) {
2514 ERROR(temp, "rdma migration: error initializing ram blocks!");
2515 goto err_rdma_source_init;
2516 }
2517
2518 /* Build the hash that maps from offset to RAMBlock */
2519 rdma->blockmap = g_hash_table_new(g_direct_hash, g_direct_equal);
2520 for (idx = 0; idx < rdma->local_ram_blocks.nb_blocks; idx++) {
2521 g_hash_table_insert(rdma->blockmap,
2522 (void *)(uintptr_t)rdma->local_ram_blocks.block[idx].offset,
2523 &rdma->local_ram_blocks.block[idx]);
2524 }
2525
2526 for (idx = 0; idx < RDMA_WRID_MAX; idx++) {
2527 ret = qemu_rdma_reg_control(rdma, idx);
2528 if (ret) {
2529 ERROR(temp, "rdma migration: error registering %d control!",
2530 idx);
2531 goto err_rdma_source_init;
2532 }
2533 }
2534
2535 return 0;
2536
2537 err_rdma_source_init:
2538 error_propagate(errp, local_err);
2539 qemu_rdma_cleanup(rdma);
2540 return -1;
2541 }
2542
2543 static int qemu_get_cm_event_timeout(RDMAContext *rdma,
2544 struct rdma_cm_event **cm_event,
2545 long msec, Error **errp)
2546 {
2547 int ret;
2548 struct pollfd poll_fd = {
2549 .fd = rdma->channel->fd,
2550 .events = POLLIN,
2551 .revents = 0
2552 };
2553
2554 do {
2555 ret = poll(&poll_fd, 1, msec);
2556 } while (ret < 0 && errno == EINTR);
2557
2558 if (ret == 0) {
2559 ERROR(errp, "poll cm event timeout");
2560 return -1;
2561 } else if (ret < 0) {
2562 ERROR(errp, "failed to poll cm event, errno=%i", errno);
2563 return -1;
2564 } else if (poll_fd.revents & POLLIN) {
2565 return rdma_get_cm_event(rdma->channel, cm_event);
2566 } else {
2567 ERROR(errp, "no POLLIN event, revent=%x", poll_fd.revents);
2568 return -1;
2569 }
2570 }
2571
2572 static int qemu_rdma_connect(RDMAContext *rdma, Error **errp, bool return_path)
2573 {
2574 RDMACapabilities cap = {
2575 .version = RDMA_CONTROL_VERSION_CURRENT,
2576 .flags = 0,
2577 };
2578 struct rdma_conn_param conn_param = { .initiator_depth = 2,
2579 .retry_count = 5,
2580 .private_data = &cap,
2581 .private_data_len = sizeof(cap),
2582 };
2583 struct rdma_cm_event *cm_event;
2584 int ret;
2585
2586 /*
2587 * Only negotiate the capability with destination if the user
2588 * on the source first requested the capability.
2589 */
2590 if (rdma->pin_all) {
2591 trace_qemu_rdma_connect_pin_all_requested();
2592 cap.flags |= RDMA_CAPABILITY_PIN_ALL;
2593 }
2594
2595 caps_to_network(&cap);
2596
2597 ret = qemu_rdma_post_recv_control(rdma, RDMA_WRID_READY);
2598 if (ret) {
2599 ERROR(errp, "posting second control recv");
2600 goto err_rdma_source_connect;
2601 }
2602
2603 ret = rdma_connect(rdma->cm_id, &conn_param);
2604 if (ret) {
2605 perror("rdma_connect");
2606 ERROR(errp, "connecting to destination!");
2607 goto err_rdma_source_connect;
2608 }
2609
2610 if (return_path) {
2611 ret = qemu_get_cm_event_timeout(rdma, &cm_event, 5000, errp);
2612 } else {
2613 ret = rdma_get_cm_event(rdma->channel, &cm_event);
2614 }
2615 if (ret) {
2616 perror("rdma_get_cm_event after rdma_connect");
2617 ERROR(errp, "connecting to destination!");
2618 goto err_rdma_source_connect;
2619 }
2620
2621 if (cm_event->event != RDMA_CM_EVENT_ESTABLISHED) {
2622 error_report("rdma_get_cm_event != EVENT_ESTABLISHED after rdma_connect");
2623 ERROR(errp, "connecting to destination!");
2624 rdma_ack_cm_event(cm_event);
2625 goto err_rdma_source_connect;
2626 }
2627 rdma->connected = true;
2628
2629 memcpy(&cap, cm_event->param.conn.private_data, sizeof(cap));
2630 network_to_caps(&cap);
2631
2632 /*
2633 * Verify that the *requested* capabilities are supported by the destination
2634 * and disable them otherwise.
2635 */
2636 if (rdma->pin_all && !(cap.flags & RDMA_CAPABILITY_PIN_ALL)) {
2637 ERROR(errp, "Server cannot support pinning all memory. "
2638 "Will register memory dynamically.");
2639 rdma->pin_all = false;
2640 }
2641
2642 trace_qemu_rdma_connect_pin_all_outcome(rdma->pin_all);
2643
2644 rdma_ack_cm_event(cm_event);
2645
2646 rdma->control_ready_expected = 1;
2647 rdma->nb_sent = 0;
2648 return 0;
2649
2650 err_rdma_source_connect:
2651 qemu_rdma_cleanup(rdma);
2652 return -1;
2653 }
2654
2655 static int qemu_rdma_dest_init(RDMAContext *rdma, Error **errp)
2656 {
2657 int ret, idx;
2658 struct rdma_cm_id *listen_id;
2659 char ip[40] = "unknown";
2660 struct rdma_addrinfo *res, *e;
2661 char port_str[16];
2662 int reuse = 1;
2663
2664 for (idx = 0; idx < RDMA_WRID_MAX; idx++) {
2665 rdma->wr_data[idx].control_len = 0;
2666 rdma->wr_data[idx].control_curr = NULL;
2667 }
2668
2669 if (!rdma->host || !rdma->host[0]) {
2670 ERROR(errp, "RDMA host is not set!");
2671 rdma->error_state = -EINVAL;
2672 return -1;
2673 }
2674 /* create CM channel */
2675 rdma->channel = rdma_create_event_channel();
2676 if (!rdma->channel) {
2677 ERROR(errp, "could not create rdma event channel");
2678 rdma->error_state = -EINVAL;
2679 return -1;
2680 }
2681
2682 /* create CM id */
2683 ret = rdma_create_id(rdma->channel, &listen_id, NULL, RDMA_PS_TCP);
2684 if (ret) {
2685 ERROR(errp, "could not create cm_id!");
2686 goto err_dest_init_create_listen_id;
2687 }
2688
2689 snprintf(port_str, 16, "%d", rdma->port);
2690 port_str[15] = '\0';
2691
2692 ret = rdma_getaddrinfo(rdma->host, port_str, NULL, &res);
2693 if (ret < 0) {
2694 ERROR(errp, "could not rdma_getaddrinfo address %s", rdma->host);
2695 goto err_dest_init_bind_addr;
2696 }
2697
2698 ret = rdma_set_option(listen_id, RDMA_OPTION_ID, RDMA_OPTION_ID_REUSEADDR,
2699 &reuse, sizeof reuse);
2700 if (ret) {
2701 ERROR(errp, "Error: could not set REUSEADDR option");
2702 goto err_dest_init_bind_addr;
2703 }
2704 for (e = res; e != NULL; e = e->ai_next) {
2705 inet_ntop(e->ai_family,
2706 &((struct sockaddr_in *) e->ai_dst_addr)->sin_addr, ip, sizeof ip);
2707 trace_qemu_rdma_dest_init_trying(rdma->host, ip);
2708 ret = rdma_bind_addr(listen_id, e->ai_dst_addr);
2709 if (ret) {
2710 continue;
2711 }
2712 if (e->ai_family == AF_INET6) {
2713 ret = qemu_rdma_broken_ipv6_kernel(listen_id->verbs, errp);
2714 if (ret) {
2715 continue;
2716 }
2717 }
2718 break;
2719 }
2720
2721 rdma_freeaddrinfo(res);
2722 if (!e) {
2723 ERROR(errp, "Error: could not rdma_bind_addr!");
2724 goto err_dest_init_bind_addr;
2725 }
2726
2727 rdma->listen_id = listen_id;
2728 qemu_rdma_dump_gid("dest_init", listen_id);
2729 return 0;
2730
2731 err_dest_init_bind_addr:
2732 rdma_destroy_id(listen_id);
2733 err_dest_init_create_listen_id:
2734 rdma_destroy_event_channel(rdma->channel);
2735 rdma->channel = NULL;
2736 rdma->error_state = ret;
2737 return ret;
2738
2739 }
2740
2741 static void qemu_rdma_return_path_dest_init(RDMAContext *rdma_return_path,
2742 RDMAContext *rdma)
2743 {
2744 int idx;
2745
2746 for (idx = 0; idx < RDMA_WRID_MAX; idx++) {
2747 rdma_return_path->wr_data[idx].control_len = 0;
2748 rdma_return_path->wr_data[idx].control_curr = NULL;
2749 }
2750
2751 /*the CM channel and CM id is shared*/
2752 rdma_return_path->channel = rdma->channel;
2753 rdma_return_path->listen_id = rdma->listen_id;
2754
2755 rdma->return_path = rdma_return_path;
2756 rdma_return_path->return_path = rdma;
2757 rdma_return_path->is_return_path = true;
2758 }
2759
2760 static void *qemu_rdma_data_init(const char *host_port, Error **errp)
2761 {
2762 RDMAContext *rdma = NULL;
2763 InetSocketAddress *addr;
2764
2765 if (host_port) {
2766 rdma = g_new0(RDMAContext, 1);
2767 rdma->current_index = -1;
2768 rdma->current_chunk = -1;
2769
2770 addr = g_new(InetSocketAddress, 1);
2771 if (!inet_parse(addr, host_port, NULL)) {
2772 rdma->port = atoi(addr->port);
2773 rdma->host = g_strdup(addr->host);
2774 rdma->host_port = g_strdup(host_port);
2775 } else {
2776 ERROR(errp, "bad RDMA migration address '%s'", host_port);
2777 g_free(rdma);
2778 rdma = NULL;
2779 }
2780
2781 qapi_free_InetSocketAddress(addr);
2782 }
2783
2784 return rdma;
2785 }
2786
2787 /*
2788 * QEMUFile interface to the control channel.
2789 * SEND messages for control only.
2790 * VM's ram is handled with regular RDMA messages.
2791 */
2792 static ssize_t qio_channel_rdma_writev(QIOChannel *ioc,
2793 const struct iovec *iov,
2794 size_t niov,
2795 int *fds,
2796 size_t nfds,
2797 int flags,
2798 Error **errp)
2799 {
2800 QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(ioc);
2801 QEMUFile *f = rioc->file;
2802 RDMAContext *rdma;
2803 int ret;
2804 ssize_t done = 0;
2805 size_t i;
2806 size_t len = 0;
2807
2808 RCU_READ_LOCK_GUARD();
2809 rdma = qatomic_rcu_read(&rioc->rdmaout);
2810
2811 if (!rdma) {
2812 error_setg(errp, "RDMA control channel output is not set");
2813 return -1;
2814 }
2815
2816 CHECK_ERROR_STATE();
2817
2818 /*
2819 * Push out any writes that
2820 * we're queued up for VM's ram.
2821 */
2822 ret = qemu_rdma_write_flush(f, rdma);
2823 if (ret < 0) {
2824 rdma->error_state = ret;
2825 error_setg(errp, "qemu_rdma_write_flush returned %d", ret);
2826 return -1;
2827 }
2828
2829 for (i = 0; i < niov; i++) {
2830 size_t remaining = iov[i].iov_len;
2831 uint8_t * data = (void *)iov[i].iov_base;
2832 while (remaining) {
2833 RDMAControlHeader head;
2834
2835 len = MIN(remaining, RDMA_SEND_INCREMENT);
2836 remaining -= len;
2837
2838 head.len = len;
2839 head.type = RDMA_CONTROL_QEMU_FILE;
2840
2841 ret = qemu_rdma_exchange_send(rdma, &head, data, NULL, NULL, NULL);
2842
2843 if (ret < 0) {
2844 rdma->error_state = ret;
2845 error_setg(errp, "qemu_rdma_exchange_send returned %d", ret);
2846 return -1;
2847 }
2848
2849 data += len;
2850 done += len;
2851 }
2852 }
2853
2854 return done;
2855 }
2856
2857 static size_t qemu_rdma_fill(RDMAContext *rdma, uint8_t *buf,
2858 size_t size, int idx)
2859 {
2860 size_t len = 0;
2861
2862 if (rdma->wr_data[idx].control_len) {
2863 trace_qemu_rdma_fill(rdma->wr_data[idx].control_len, size);
2864
2865 len = MIN(size, rdma->wr_data[idx].control_len);
2866 memcpy(buf, rdma->wr_data[idx].control_curr, len);
2867 rdma->wr_data[idx].control_curr += len;
2868 rdma->wr_data[idx].control_len -= len;
2869 }
2870
2871 return len;
2872 }
2873
2874 /*
2875 * QEMUFile interface to the control channel.
2876 * RDMA links don't use bytestreams, so we have to
2877 * return bytes to QEMUFile opportunistically.
2878 */
2879 static ssize_t qio_channel_rdma_readv(QIOChannel *ioc,
2880 const struct iovec *iov,
2881 size_t niov,
2882 int **fds,
2883 size_t *nfds,
2884 int flags,
2885 Error **errp)
2886 {
2887 QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(ioc);
2888 RDMAContext *rdma;
2889 RDMAControlHeader head;
2890 int ret = 0;
2891 ssize_t i;
2892 size_t done = 0;
2893
2894 RCU_READ_LOCK_GUARD();
2895 rdma = qatomic_rcu_read(&rioc->rdmain);
2896
2897 if (!rdma) {
2898 error_setg(errp, "RDMA control channel input is not set");
2899 return -1;
2900 }
2901
2902 CHECK_ERROR_STATE();
2903
2904 for (i = 0; i < niov; i++) {
2905 size_t want = iov[i].iov_len;
2906 uint8_t *data = (void *)iov[i].iov_base;
2907
2908 /*
2909 * First, we hold on to the last SEND message we
2910 * were given and dish out the bytes until we run
2911 * out of bytes.
2912 */
2913 ret = qemu_rdma_fill(rdma, data, want, 0);
2914 done += ret;
2915 want -= ret;
2916 /* Got what we needed, so go to next iovec */
2917 if (want == 0) {
2918 continue;
2919 }
2920
2921 /* If we got any data so far, then don't wait
2922 * for more, just return what we have */
2923 if (done > 0) {
2924 break;
2925 }
2926
2927
2928 /* We've got nothing at all, so lets wait for
2929 * more to arrive
2930 */
2931 ret = qemu_rdma_exchange_recv(rdma, &head, RDMA_CONTROL_QEMU_FILE);
2932
2933 if (ret < 0) {
2934 rdma->error_state = ret;
2935 error_setg(errp, "qemu_rdma_exchange_recv returned %d", ret);
2936 return -1;
2937 }
2938
2939 /*
2940 * SEND was received with new bytes, now try again.
2941 */
2942 ret = qemu_rdma_fill(rdma, data, want, 0);
2943 done += ret;
2944 want -= ret;
2945
2946 /* Still didn't get enough, so lets just return */
2947 if (want) {
2948 if (done == 0) {
2949 return QIO_CHANNEL_ERR_BLOCK;
2950 } else {
2951 break;
2952 }
2953 }
2954 }
2955 return done;
2956 }
2957
2958 /*
2959 * Block until all the outstanding chunks have been delivered by the hardware.
2960 */
2961 static int qemu_rdma_drain_cq(QEMUFile *f, RDMAContext *rdma)
2962 {
2963 int ret;
2964
2965 if (qemu_rdma_write_flush(f, rdma) < 0) {
2966 return -EIO;
2967 }
2968
2969 while (rdma->nb_sent) {
2970 ret = qemu_rdma_block_for_wrid(rdma, RDMA_WRID_RDMA_WRITE, NULL);
2971 if (ret < 0) {
2972 error_report("rdma migration: complete polling error!");
2973 return -EIO;
2974 }
2975 }
2976
2977 qemu_rdma_unregister_waiting(rdma);
2978
2979 return 0;
2980 }
2981
2982
2983 static int qio_channel_rdma_set_blocking(QIOChannel *ioc,
2984 bool blocking,
2985 Error **errp)
2986 {
2987 QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(ioc);
2988 /* XXX we should make readv/writev actually honour this :-) */
2989 rioc->blocking = blocking;
2990 return 0;
2991 }
2992
2993
2994 typedef struct QIOChannelRDMASource QIOChannelRDMASource;
2995 struct QIOChannelRDMASource {
2996 GSource parent;
2997 QIOChannelRDMA *rioc;
2998 GIOCondition condition;
2999 };
3000
3001 static gboolean
3002 qio_channel_rdma_source_prepare(GSource *source,
3003 gint *timeout)
3004 {
3005 QIOChannelRDMASource *rsource = (QIOChannelRDMASource *)source;
3006 RDMAContext *rdma;
3007 GIOCondition cond = 0;
3008 *timeout = -1;
3009
3010 RCU_READ_LOCK_GUARD();
3011 if (rsource->condition == G_IO_IN) {
3012 rdma = qatomic_rcu_read(&rsource->rioc->rdmain);
3013 } else {
3014 rdma = qatomic_rcu_read(&rsource->rioc->rdmaout);
3015 }
3016
3017 if (!rdma) {
3018 error_report("RDMAContext is NULL when prepare Gsource");
3019 return FALSE;
3020 }
3021
3022 if (rdma->wr_data[0].control_len) {
3023 cond |= G_IO_IN;
3024 }
3025 cond |= G_IO_OUT;
3026
3027 return cond & rsource->condition;
3028 }
3029
3030 static gboolean
3031 qio_channel_rdma_source_check(GSource *source)
3032 {
3033 QIOChannelRDMASource *rsource = (QIOChannelRDMASource *)source;
3034 RDMAContext *rdma;
3035 GIOCondition cond = 0;
3036
3037 RCU_READ_LOCK_GUARD();
3038 if (rsource->condition == G_IO_IN) {
3039 rdma = qatomic_rcu_read(&rsource->rioc->rdmain);
3040 } else {
3041 rdma = qatomic_rcu_read(&rsource->rioc->rdmaout);
3042 }
3043
3044 if (!rdma) {
3045 error_report("RDMAContext is NULL when check Gsource");
3046 return FALSE;
3047 }
3048
3049 if (rdma->wr_data[0].control_len) {
3050 cond |= G_IO_IN;
3051 }
3052 cond |= G_IO_OUT;
3053
3054 return cond & rsource->condition;
3055 }
3056
3057 static gboolean
3058 qio_channel_rdma_source_dispatch(GSource *source,
3059 GSourceFunc callback,
3060 gpointer user_data)
3061 {
3062 QIOChannelFunc func = (QIOChannelFunc)callback;
3063 QIOChannelRDMASource *rsource = (QIOChannelRDMASource *)source;
3064 RDMAContext *rdma;
3065 GIOCondition cond = 0;
3066
3067 RCU_READ_LOCK_GUARD();
3068 if (rsource->condition == G_IO_IN) {
3069 rdma = qatomic_rcu_read(&rsource->rioc->rdmain);
3070 } else {
3071 rdma = qatomic_rcu_read(&rsource->rioc->rdmaout);
3072 }
3073
3074 if (!rdma) {
3075 error_report("RDMAContext is NULL when dispatch Gsource");
3076 return FALSE;
3077 }
3078
3079 if (rdma->wr_data[0].control_len) {
3080 cond |= G_IO_IN;
3081 }
3082 cond |= G_IO_OUT;
3083
3084 return (*func)(QIO_CHANNEL(rsource->rioc),
3085 (cond & rsource->condition),
3086 user_data);
3087 }
3088
3089 static void
3090 qio_channel_rdma_source_finalize(GSource *source)
3091 {
3092 QIOChannelRDMASource *ssource = (QIOChannelRDMASource *)source;
3093
3094 object_unref(OBJECT(ssource->rioc));
3095 }
3096
3097 GSourceFuncs qio_channel_rdma_source_funcs = {
3098 qio_channel_rdma_source_prepare,
3099 qio_channel_rdma_source_check,
3100 qio_channel_rdma_source_dispatch,
3101 qio_channel_rdma_source_finalize
3102 };
3103
3104 static GSource *qio_channel_rdma_create_watch(QIOChannel *ioc,
3105 GIOCondition condition)
3106 {
3107 QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(ioc);
3108 QIOChannelRDMASource *ssource;
3109 GSource *source;
3110
3111 source = g_source_new(&qio_channel_rdma_source_funcs,
3112 sizeof(QIOChannelRDMASource));
3113 ssource = (QIOChannelRDMASource *)source;
3114
3115 ssource->rioc = rioc;
3116 object_ref(OBJECT(rioc));
3117
3118 ssource->condition = condition;
3119
3120 return source;
3121 }
3122
3123 static void qio_channel_rdma_set_aio_fd_handler(QIOChannel *ioc,
3124 AioContext *read_ctx,
3125 IOHandler *io_read,
3126 AioContext *write_ctx,
3127 IOHandler *io_write,
3128 void *opaque)
3129 {
3130 QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(ioc);
3131 if (io_read) {
3132 aio_set_fd_handler(read_ctx, rioc->rdmain->recv_comp_channel->fd,
3133 io_read, io_write, NULL, NULL, opaque);
3134 aio_set_fd_handler(read_ctx, rioc->rdmain->send_comp_channel->fd,
3135 io_read, io_write, NULL, NULL, opaque);
3136 } else {
3137 aio_set_fd_handler(write_ctx, rioc->rdmaout->recv_comp_channel->fd,
3138 io_read, io_write, NULL, NULL, opaque);
3139 aio_set_fd_handler(write_ctx, rioc->rdmaout->send_comp_channel->fd,
3140 io_read, io_write, NULL, NULL, opaque);
3141 }
3142 }
3143
3144 struct rdma_close_rcu {
3145 struct rcu_head rcu;
3146 RDMAContext *rdmain;
3147 RDMAContext *rdmaout;
3148 };
3149
3150 /* callback from qio_channel_rdma_close via call_rcu */
3151 static void qio_channel_rdma_close_rcu(struct rdma_close_rcu *rcu)
3152 {
3153 if (rcu->rdmain) {
3154 qemu_rdma_cleanup(rcu->rdmain);
3155 }
3156
3157 if (rcu->rdmaout) {
3158 qemu_rdma_cleanup(rcu->rdmaout);
3159 }
3160
3161 g_free(rcu->rdmain);
3162 g_free(rcu->rdmaout);
3163 g_free(rcu);
3164 }
3165
3166 static int qio_channel_rdma_close(QIOChannel *ioc,
3167 Error **errp)
3168 {
3169 QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(ioc);
3170 RDMAContext *rdmain, *rdmaout;
3171 struct rdma_close_rcu *rcu = g_new(struct rdma_close_rcu, 1);
3172
3173 trace_qemu_rdma_close();
3174
3175 rdmain = rioc->rdmain;
3176 if (rdmain) {
3177 qatomic_rcu_set(&rioc->rdmain, NULL);
3178 }
3179
3180 rdmaout = rioc->rdmaout;
3181 if (rdmaout) {
3182 qatomic_rcu_set(&rioc->rdmaout, NULL);
3183 }
3184
3185 rcu->rdmain = rdmain;
3186 rcu->rdmaout = rdmaout;
3187 call_rcu(rcu, qio_channel_rdma_close_rcu, rcu);
3188
3189 return 0;
3190 }
3191
3192 static int
3193 qio_channel_rdma_shutdown(QIOChannel *ioc,
3194 QIOChannelShutdown how,
3195 Error **errp)
3196 {
3197 QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(ioc);
3198 RDMAContext *rdmain, *rdmaout;
3199
3200 RCU_READ_LOCK_GUARD();
3201
3202 rdmain = qatomic_rcu_read(&rioc->rdmain);
3203 rdmaout = qatomic_rcu_read(&rioc->rdmain);
3204
3205 switch (how) {
3206 case QIO_CHANNEL_SHUTDOWN_READ:
3207 if (rdmain) {
3208 rdmain->error_state = -1;
3209 }
3210 break;
3211 case QIO_CHANNEL_SHUTDOWN_WRITE:
3212 if (rdmaout) {
3213 rdmaout->error_state = -1;
3214 }
3215 break;
3216 case QIO_CHANNEL_SHUTDOWN_BOTH:
3217 default:
3218 if (rdmain) {
3219 rdmain->error_state = -1;
3220 }
3221 if (rdmaout) {
3222 rdmaout->error_state = -1;
3223 }
3224 break;
3225 }
3226
3227 return 0;
3228 }
3229
3230 /*
3231 * Parameters:
3232 * @offset == 0 :
3233 * This means that 'block_offset' is a full virtual address that does not
3234 * belong to a RAMBlock of the virtual machine and instead
3235 * represents a private malloc'd memory area that the caller wishes to
3236 * transfer.
3237 *
3238 * @offset != 0 :
3239 * Offset is an offset to be added to block_offset and used
3240 * to also lookup the corresponding RAMBlock.
3241 *
3242 * @size : Number of bytes to transfer
3243 *
3244 * @bytes_sent : User-specificed pointer to indicate how many bytes were
3245 * sent. Usually, this will not be more than a few bytes of
3246 * the protocol because most transfers are sent asynchronously.
3247 */
3248 static size_t qemu_rdma_save_page(QEMUFile *f,
3249 ram_addr_t block_offset, ram_addr_t offset,
3250 size_t size, uint64_t *bytes_sent)
3251 {
3252 QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(qemu_file_get_ioc(f));
3253 RDMAContext *rdma;
3254 int ret;
3255
3256 if (migration_in_postcopy()) {
3257 return RAM_SAVE_CONTROL_NOT_SUPP;
3258 }
3259
3260 RCU_READ_LOCK_GUARD();
3261 rdma = qatomic_rcu_read(&rioc->rdmaout);
3262
3263 if (!rdma) {
3264 return -EIO;
3265 }
3266
3267 CHECK_ERROR_STATE();
3268
3269 qemu_fflush(f);
3270
3271 /*
3272 * Add this page to the current 'chunk'. If the chunk
3273 * is full, or the page doesn't belong to the current chunk,
3274 * an actual RDMA write will occur and a new chunk will be formed.
3275 */
3276 ret = qemu_rdma_write(f, rdma, block_offset, offset, size);
3277 if (ret < 0) {
3278 error_report("rdma migration: write error! %d", ret);
3279 goto err;
3280 }
3281
3282 /*
3283 * We always return 1 bytes because the RDMA
3284 * protocol is completely asynchronous. We do not yet know
3285 * whether an identified chunk is zero or not because we're
3286 * waiting for other pages to potentially be merged with
3287 * the current chunk. So, we have to call qemu_update_position()
3288 * later on when the actual write occurs.
3289 */
3290 if (bytes_sent) {
3291 *bytes_sent = 1;
3292 }
3293
3294 /*
3295 * Drain the Completion Queue if possible, but do not block,
3296 * just poll.
3297 *
3298 * If nothing to poll, the end of the iteration will do this
3299 * again to make sure we don't overflow the request queue.
3300 */
3301 while (1) {
3302 uint64_t wr_id, wr_id_in;
3303 int ret = qemu_rdma_poll(rdma, rdma->recv_cq, &wr_id_in, NULL);
3304 if (ret < 0) {
3305 error_report("rdma migration: polling error! %d", ret);
3306 goto err;
3307 }
3308
3309 wr_id = wr_id_in & RDMA_WRID_TYPE_MASK;
3310
3311 if (wr_id == RDMA_WRID_NONE) {
3312 break;
3313 }
3314 }
3315
3316 while (1) {
3317 uint64_t wr_id, wr_id_in;
3318 int ret = qemu_rdma_poll(rdma, rdma->send_cq, &wr_id_in, NULL);
3319 if (ret < 0) {
3320 error_report("rdma migration: polling error! %d", ret);
3321 goto err;
3322 }
3323
3324 wr_id = wr_id_in & RDMA_WRID_TYPE_MASK;
3325
3326 if (wr_id == RDMA_WRID_NONE) {
3327 break;
3328 }
3329 }
3330
3331 return RAM_SAVE_CONTROL_DELAYED;
3332 err:
3333 rdma->error_state = ret;
3334 return ret;
3335 }
3336
3337 static void rdma_accept_incoming_migration(void *opaque);
3338
3339 static void rdma_cm_poll_handler(void *opaque)
3340 {
3341 RDMAContext *rdma = opaque;
3342 int ret;
3343 struct rdma_cm_event *cm_event;
3344 MigrationIncomingState *mis = migration_incoming_get_current();
3345
3346 ret = rdma_get_cm_event(rdma->channel, &cm_event);
3347 if (ret) {
3348 error_report("get_cm_event failed %d", errno);
3349 return;
3350 }
3351
3352 if (cm_event->event == RDMA_CM_EVENT_DISCONNECTED ||
3353 cm_event->event == RDMA_CM_EVENT_DEVICE_REMOVAL) {
3354 if (!rdma->error_state &&
3355 migration_incoming_get_current()->state !=
3356 MIGRATION_STATUS_COMPLETED) {
3357 error_report("receive cm event, cm event is %d", cm_event->event);
3358 rdma->error_state = -EPIPE;
3359 if (rdma->return_path) {
3360 rdma->return_path->error_state = -EPIPE;
3361 }
3362 }
3363 rdma_ack_cm_event(cm_event);
3364 if (mis->loadvm_co) {
3365 qemu_coroutine_enter(mis->loadvm_co);
3366 }
3367 return;
3368 }
3369 rdma_ack_cm_event(cm_event);
3370 }
3371
3372 static int qemu_rdma_accept(RDMAContext *rdma)
3373 {
3374 RDMACapabilities cap;
3375 struct rdma_conn_param conn_param = {
3376 .responder_resources = 2,
3377 .private_data = &cap,
3378 .private_data_len = sizeof(cap),
3379 };
3380 RDMAContext *rdma_return_path = NULL;
3381 struct rdma_cm_event *cm_event;
3382 struct ibv_context *verbs;
3383 int ret = -EINVAL;
3384 int idx;
3385
3386 ret = rdma_get_cm_event(rdma->channel, &cm_event);
3387 if (ret) {
3388 goto err_rdma_dest_wait;
3389 }
3390
3391 if (cm_event->event != RDMA_CM_EVENT_CONNECT_REQUEST) {
3392 rdma_ack_cm_event(cm_event);
3393 goto err_rdma_dest_wait;
3394 }
3395
3396 /*
3397 * initialize the RDMAContext for return path for postcopy after first
3398 * connection request reached.
3399 */
3400 if ((migrate_postcopy() || migrate_return_path())
3401 && !rdma->is_return_path) {
3402 rdma_return_path = qemu_rdma_data_init(rdma->host_port, NULL);
3403 if (rdma_return_path == NULL) {
3404 rdma_ack_cm_event(cm_event);
3405 goto err_rdma_dest_wait;
3406 }
3407
3408 qemu_rdma_return_path_dest_init(rdma_return_path, rdma);
3409 }
3410
3411 memcpy(&cap, cm_event->param.conn.private_data, sizeof(cap));
3412
3413 network_to_caps(&cap);
3414
3415 if (cap.version < 1 || cap.version > RDMA_CONTROL_VERSION_CURRENT) {
3416 error_report("Unknown source RDMA version: %d, bailing...",
3417 cap.version);
3418 rdma_ack_cm_event(cm_event);
3419 goto err_rdma_dest_wait;
3420 }
3421
3422 /*
3423 * Respond with only the capabilities this version of QEMU knows about.
3424 */
3425 cap.flags &= known_capabilities;
3426
3427 /*
3428 * Enable the ones that we do know about.
3429 * Add other checks here as new ones are introduced.
3430 */
3431 if (cap.flags & RDMA_CAPABILITY_PIN_ALL) {
3432 rdma->pin_all = true;
3433 }
3434
3435 rdma->cm_id = cm_event->id;
3436 verbs = cm_event->id->verbs;
3437
3438 rdma_ack_cm_event(cm_event);
3439
3440 trace_qemu_rdma_accept_pin_state(rdma->pin_all);
3441
3442 caps_to_network(&cap);
3443
3444 trace_qemu_rdma_accept_pin_verbsc(verbs);
3445
3446 if (!rdma->verbs) {
3447 rdma->verbs = verbs;
3448 } else if (rdma->verbs != verbs) {
3449 error_report("ibv context not matching %p, %p!", rdma->verbs,
3450 verbs);
3451 goto err_rdma_dest_wait;
3452 }
3453
3454 qemu_rdma_dump_id("dest_init", verbs);
3455
3456 ret = qemu_rdma_alloc_pd_cq(rdma);
3457 if (ret) {
3458 error_report("rdma migration: error allocating pd and cq!");
3459 goto err_rdma_dest_wait;
3460 }
3461
3462 ret = qemu_rdma_alloc_qp(rdma);
3463 if (ret) {
3464 error_report("rdma migration: error allocating qp!");
3465 goto err_rdma_dest_wait;
3466 }
3467
3468 ret = qemu_rdma_init_ram_blocks(rdma);
3469 if (ret) {
3470 error_report("rdma migration: error initializing ram blocks!");
3471 goto err_rdma_dest_wait;
3472 }
3473
3474 for (idx = 0; idx < RDMA_WRID_MAX; idx++) {
3475 ret = qemu_rdma_reg_control(rdma, idx);
3476 if (ret) {
3477 error_report("rdma: error registering %d control", idx);
3478 goto err_rdma_dest_wait;
3479 }
3480 }
3481
3482 /* Accept the second connection request for return path */
3483 if ((migrate_postcopy() || migrate_return_path())
3484 && !rdma->is_return_path) {
3485 qemu_set_fd_handler(rdma->channel->fd, rdma_accept_incoming_migration,
3486 NULL,
3487 (void *)(intptr_t)rdma->return_path);
3488 } else {
3489 qemu_set_fd_handler(rdma->channel->fd, rdma_cm_poll_handler,
3490 NULL, rdma);
3491 }
3492
3493 ret = rdma_accept(rdma->cm_id, &conn_param);
3494 if (ret) {
3495 error_report("rdma_accept returns %d", ret);
3496 goto err_rdma_dest_wait;
3497 }
3498
3499 ret = rdma_get_cm_event(rdma->channel, &cm_event);
3500 if (ret) {
3501 error_report("rdma_accept get_cm_event failed %d", ret);
3502 goto err_rdma_dest_wait;
3503 }
3504
3505 if (cm_event->event != RDMA_CM_EVENT_ESTABLISHED) {
3506 error_report("rdma_accept not event established");
3507 rdma_ack_cm_event(cm_event);
3508 goto err_rdma_dest_wait;
3509 }
3510
3511 rdma_ack_cm_event(cm_event);
3512 rdma->connected = true;
3513
3514 ret = qemu_rdma_post_recv_control(rdma, RDMA_WRID_READY);
3515 if (ret) {
3516 error_report("rdma migration: error posting second control recv");
3517 goto err_rdma_dest_wait;
3518 }
3519
3520 qemu_rdma_dump_gid("dest_connect", rdma->cm_id);
3521
3522 return 0;
3523
3524 err_rdma_dest_wait:
3525 rdma->error_state = ret;
3526 qemu_rdma_cleanup(rdma);
3527 g_free(rdma_return_path);
3528 return ret;
3529 }
3530
3531 static int dest_ram_sort_func(const void *a, const void *b)
3532 {
3533 unsigned int a_index = ((const RDMALocalBlock *)a)->src_index;
3534 unsigned int b_index = ((const RDMALocalBlock *)b)->src_index;
3535
3536 return (a_index < b_index) ? -1 : (a_index != b_index);
3537 }
3538
3539 /*
3540 * During each iteration of the migration, we listen for instructions
3541 * by the source VM to perform dynamic page registrations before they
3542 * can perform RDMA operations.
3543 *
3544 * We respond with the 'rkey'.
3545 *
3546 * Keep doing this until the source tells us to stop.
3547 */
3548 static int qemu_rdma_registration_handle(QEMUFile *f)
3549 {
3550 RDMAControlHeader reg_resp = { .len = sizeof(RDMARegisterResult),
3551 .type = RDMA_CONTROL_REGISTER_RESULT,
3552 .repeat = 0,
3553 };
3554 RDMAControlHeader unreg_resp = { .len = 0,
3555 .type = RDMA_CONTROL_UNREGISTER_FINISHED,
3556 .repeat = 0,
3557 };
3558 RDMAControlHeader blocks = { .type = RDMA_CONTROL_RAM_BLOCKS_RESULT,
3559 .repeat = 1 };
3560 QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(qemu_file_get_ioc(f));
3561 RDMAContext *rdma;
3562 RDMALocalBlocks *local;
3563 RDMAControlHeader head;
3564 RDMARegister *reg, *registers;
3565 RDMACompress *comp;
3566 RDMARegisterResult *reg_result;
3567 static RDMARegisterResult results[RDMA_CONTROL_MAX_COMMANDS_PER_MESSAGE];
3568 RDMALocalBlock *block;
3569 void *host_addr;
3570 int ret = 0;
3571 int idx = 0;
3572 int count = 0;
3573 int i = 0;
3574
3575 RCU_READ_LOCK_GUARD();
3576 rdma = qatomic_rcu_read(&rioc->rdmain);
3577
3578 if (!rdma) {
3579 return -EIO;
3580 }
3581
3582 CHECK_ERROR_STATE();
3583
3584 local = &rdma->local_ram_blocks;
3585 do {
3586 trace_qemu_rdma_registration_handle_wait();
3587
3588 ret = qemu_rdma_exchange_recv(rdma, &head, RDMA_CONTROL_NONE);
3589
3590 if (ret < 0) {
3591 break;
3592 }
3593
3594 if (head.repeat > RDMA_CONTROL_MAX_COMMANDS_PER_MESSAGE) {
3595 error_report("rdma: Too many requests in this message (%d)."
3596 "Bailing.", head.repeat);
3597 ret = -EIO;
3598 break;
3599 }
3600
3601 switch (head.type) {
3602 case RDMA_CONTROL_COMPRESS:
3603 comp = (RDMACompress *) rdma->wr_data[idx].control_curr;
3604 network_to_compress(comp);
3605
3606 trace_qemu_rdma_registration_handle_compress(comp->length,
3607 comp->block_idx,
3608 comp->offset);
3609 if (comp->block_idx >= rdma->local_ram_blocks.nb_blocks) {
3610 error_report("rdma: 'compress' bad block index %u (vs %d)",
3611 (unsigned int)comp->block_idx,
3612 rdma->local_ram_blocks.nb_blocks);
3613 ret = -EIO;
3614 goto out;
3615 }
3616 block = &(rdma->local_ram_blocks.block[comp->block_idx]);
3617
3618 host_addr = block->local_host_addr +
3619 (comp->offset - block->offset);
3620
3621 ram_handle_compressed(host_addr, comp->value, comp->length);
3622 break;
3623
3624 case RDMA_CONTROL_REGISTER_FINISHED:
3625 trace_qemu_rdma_registration_handle_finished();
3626 goto out;
3627
3628 case RDMA_CONTROL_RAM_BLOCKS_REQUEST:
3629 trace_qemu_rdma_registration_handle_ram_blocks();
3630
3631 /* Sort our local RAM Block list so it's the same as the source,
3632 * we can do this since we've filled in a src_index in the list
3633 * as we received the RAMBlock list earlier.
3634 */
3635 qsort(rdma->local_ram_blocks.block,
3636 rdma->local_ram_blocks.nb_blocks,
3637 sizeof(RDMALocalBlock), dest_ram_sort_func);
3638 for (i = 0; i < local->nb_blocks; i++) {
3639 local->block[i].index = i;
3640 }
3641
3642 if (rdma->pin_all) {
3643 ret = qemu_rdma_reg_whole_ram_blocks(rdma);
3644 if (ret) {
3645 error_report("rdma migration: error dest "
3646 "registering ram blocks");
3647 goto out;
3648 }
3649 }
3650
3651 /*
3652 * Dest uses this to prepare to transmit the RAMBlock descriptions
3653 * to the source VM after connection setup.
3654 * Both sides use the "remote" structure to communicate and update
3655 * their "local" descriptions with what was sent.
3656 */
3657 for (i = 0; i < local->nb_blocks; i++) {
3658 rdma->dest_blocks[i].remote_host_addr =
3659 (uintptr_t)(local->block[i].local_host_addr);
3660
3661 if (rdma->pin_all) {
3662 rdma->dest_blocks[i].remote_rkey = local->block[i].mr->rkey;
3663 }
3664
3665 rdma->dest_blocks[i].offset = local->block[i].offset;
3666 rdma->dest_blocks[i].length = local->block[i].length;
3667
3668 dest_block_to_network(&rdma->dest_blocks[i]);
3669 trace_qemu_rdma_registration_handle_ram_blocks_loop(
3670 local->block[i].block_name,
3671 local->block[i].offset,
3672 local->block[i].length,
3673 local->block[i].local_host_addr,
3674 local->block[i].src_index);
3675 }
3676
3677 blocks.len = rdma->local_ram_blocks.nb_blocks
3678 * sizeof(RDMADestBlock);
3679
3680
3681 ret = qemu_rdma_post_send_control(rdma,
3682 (uint8_t *) rdma->dest_blocks, &blocks);
3683
3684 if (ret < 0) {
3685 error_report("rdma migration: error sending remote info");
3686 goto out;
3687 }
3688
3689 break;
3690 case RDMA_CONTROL_REGISTER_REQUEST:
3691 trace_qemu_rdma_registration_handle_register(head.repeat);
3692
3693 reg_resp.repeat = head.repeat;
3694 registers = (RDMARegister *) rdma->wr_data[idx].control_curr;
3695
3696 for (count = 0; count < head.repeat; count++) {
3697 uint64_t chunk;
3698 uint8_t *chunk_start, *chunk_end;
3699
3700 reg = &registers[count];
3701 network_to_register(reg);
3702
3703 reg_result = &results[count];
3704
3705 trace_qemu_rdma_registration_handle_register_loop(count,
3706 reg->current_index, reg->key.current_addr, reg->chunks);
3707
3708 if (reg->current_index >= rdma->local_ram_blocks.nb_blocks) {
3709 error_report("rdma: 'register' bad block index %u (vs %d)",
3710 (unsigned int)reg->current_index,
3711 rdma->local_ram_blocks.nb_blocks);
3712 ret = -ENOENT;
3713 goto out;
3714 }
3715 block = &(rdma->local_ram_blocks.block[reg->current_index]);
3716 if (block->is_ram_block) {
3717 if (block->offset > reg->key.current_addr) {
3718 error_report("rdma: bad register address for block %s"
3719 " offset: %" PRIx64 " current_addr: %" PRIx64,
3720 block->block_name, block->offset,
3721 reg->key.current_addr);
3722 ret = -ERANGE;
3723 goto out;
3724 }
3725 host_addr = (block->local_host_addr +
3726 (reg->key.current_addr - block->offset));
3727 chunk = ram_chunk_index(block->local_host_addr,
3728 (uint8_t *) host_addr);
3729 } else {
3730 chunk = reg->key.chunk;
3731 host_addr = block->local_host_addr +
3732 (reg->key.chunk * (1UL << RDMA_REG_CHUNK_SHIFT));
3733 /* Check for particularly bad chunk value */
3734 if (host_addr < (void *)block->local_host_addr) {
3735 error_report("rdma: bad chunk for block %s"
3736 " chunk: %" PRIx64,
3737 block->block_name, reg->key.chunk);
3738 ret = -ERANGE;
3739 goto out;
3740 }
3741 }
3742 chunk_start = ram_chunk_start(block, chunk);
3743 chunk_end = ram_chunk_end(block, chunk + reg->chunks);
3744 /* avoid "-Waddress-of-packed-member" warning */
3745 uint32_t tmp_rkey = 0;
3746 if (qemu_rdma_register_and_get_keys(rdma, block,
3747 (uintptr_t)host_addr, NULL, &tmp_rkey,
3748 chunk, chunk_start, chunk_end)) {
3749 error_report("cannot get rkey");
3750 ret = -EINVAL;
3751 goto out;
3752 }
3753 reg_result->rkey = tmp_rkey;
3754
3755 reg_result->host_addr = (uintptr_t)block->local_host_addr;
3756
3757 trace_qemu_rdma_registration_handle_register_rkey(
3758 reg_result->rkey);
3759
3760 result_to_network(reg_result);
3761 }
3762
3763 ret = qemu_rdma_post_send_control(rdma,
3764 (uint8_t *) results, &reg_resp);
3765
3766 if (ret < 0) {
3767 error_report("Failed to send control buffer");
3768 goto out;
3769 }
3770 break;
3771 case RDMA_CONTROL_UNREGISTER_REQUEST:
3772 trace_qemu_rdma_registration_handle_unregister(head.repeat);
3773 unreg_resp.repeat = head.repeat;
3774 registers = (RDMARegister *) rdma->wr_data[idx].control_curr;
3775
3776 for (count = 0; count < head.repeat; count++) {
3777 reg = &registers[count];
3778 network_to_register(reg);
3779
3780 trace_qemu_rdma_registration_handle_unregister_loop(count,
3781 reg->current_index, reg->key.chunk);
3782
3783 block = &(rdma->local_ram_blocks.block[reg->current_index]);
3784
3785 ret = ibv_dereg_mr(block->pmr[reg->key.chunk]);
3786 block->pmr[reg->key.chunk] = NULL;
3787
3788 if (ret != 0) {
3789 perror("rdma unregistration chunk failed");
3790 ret = -ret;
3791 goto out;
3792 }
3793
3794 rdma->total_registrations--;
3795
3796 trace_qemu_rdma_registration_handle_unregister_success(
3797 reg->key.chunk);
3798 }
3799
3800 ret = qemu_rdma_post_send_control(rdma, NULL, &unreg_resp);
3801
3802 if (ret < 0) {
3803 error_report("Failed to send control buffer");
3804 goto out;
3805 }
3806 break;
3807 case RDMA_CONTROL_REGISTER_RESULT:
3808 error_report("Invalid RESULT message at dest.");
3809 ret = -EIO;
3810 goto out;
3811 default:
3812 error_report("Unknown control message %s", control_desc(head.type));
3813 ret = -EIO;
3814 goto out;
3815 }
3816 } while (1);
3817 out:
3818 if (ret < 0) {
3819 rdma->error_state = ret;
3820 }
3821 return ret;
3822 }
3823
3824 /* Destination:
3825 * Called via a ram_control_load_hook during the initial RAM load section which
3826 * lists the RAMBlocks by name. This lets us know the order of the RAMBlocks
3827 * on the source.
3828 * We've already built our local RAMBlock list, but not yet sent the list to
3829 * the source.
3830 */
3831 static int
3832 rdma_block_notification_handle(QEMUFile *f, const char *name)
3833 {
3834 RDMAContext *rdma;
3835 QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(qemu_file_get_ioc(f));
3836 int curr;
3837 int found = -1;
3838
3839 RCU_READ_LOCK_GUARD();
3840 rdma = qatomic_rcu_read(&rioc->rdmain);
3841
3842 if (!rdma) {
3843 return -EIO;
3844 }
3845
3846 /* Find the matching RAMBlock in our local list */
3847 for (curr = 0; curr < rdma->local_ram_blocks.nb_blocks; curr++) {
3848 if (!strcmp(rdma->local_ram_blocks.block[curr].block_name, name)) {
3849 found = curr;
3850 break;
3851 }
3852 }
3853
3854 if (found == -1) {
3855 error_report("RAMBlock '%s' not found on destination", name);
3856 return -ENOENT;
3857 }
3858
3859 rdma->local_ram_blocks.block[curr].src_index = rdma->next_src_index;
3860 trace_rdma_block_notification_handle(name, rdma->next_src_index);
3861 rdma->next_src_index++;
3862
3863 return 0;
3864 }
3865
3866 static int rdma_load_hook(QEMUFile *f, uint64_t flags, void *data)
3867 {
3868 switch (flags) {
3869 case RAM_CONTROL_BLOCK_REG:
3870 return rdma_block_notification_handle(f, data);
3871
3872 case RAM_CONTROL_HOOK:
3873 return qemu_rdma_registration_handle(f);
3874
3875 default:
3876 /* Shouldn't be called with any other values */
3877 abort();
3878 }
3879 }
3880
3881 static int qemu_rdma_registration_start(QEMUFile *f,
3882 uint64_t flags, void *data)
3883 {
3884 QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(qemu_file_get_ioc(f));
3885 RDMAContext *rdma;
3886
3887 if (migration_in_postcopy()) {
3888 return 0;
3889 }
3890
3891 RCU_READ_LOCK_GUARD();
3892 rdma = qatomic_rcu_read(&rioc->rdmaout);
3893 if (!rdma) {
3894 return -EIO;
3895 }
3896
3897 CHECK_ERROR_STATE();
3898
3899 trace_qemu_rdma_registration_start(flags);
3900 qemu_put_be64(f, RAM_SAVE_FLAG_HOOK);
3901 qemu_fflush(f);
3902
3903 return 0;
3904 }
3905
3906 /*
3907 * Inform dest that dynamic registrations are done for now.
3908 * First, flush writes, if any.
3909 */
3910 static int qemu_rdma_registration_stop(QEMUFile *f,
3911 uint64_t flags, void *data)
3912 {
3913 QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(qemu_file_get_ioc(f));
3914 RDMAContext *rdma;
3915 RDMAControlHeader head = { .len = 0, .repeat = 1 };
3916 int ret = 0;
3917
3918 if (migration_in_postcopy()) {
3919 return 0;
3920 }
3921
3922 RCU_READ_LOCK_GUARD();
3923 rdma = qatomic_rcu_read(&rioc->rdmaout);
3924 if (!rdma) {
3925 return -EIO;
3926 }
3927
3928 CHECK_ERROR_STATE();
3929
3930 qemu_fflush(f);
3931 ret = qemu_rdma_drain_cq(f, rdma);
3932
3933 if (ret < 0) {
3934 goto err;
3935 }
3936
3937 if (flags == RAM_CONTROL_SETUP) {
3938 RDMAControlHeader resp = {.type = RDMA_CONTROL_RAM_BLOCKS_RESULT };
3939 RDMALocalBlocks *local = &rdma->local_ram_blocks;
3940 int reg_result_idx, i, nb_dest_blocks;
3941
3942 head.type = RDMA_CONTROL_RAM_BLOCKS_REQUEST;
3943 trace_qemu_rdma_registration_stop_ram();
3944
3945 /*
3946 * Make sure that we parallelize the pinning on both sides.
3947 * For very large guests, doing this serially takes a really
3948 * long time, so we have to 'interleave' the pinning locally
3949 * with the control messages by performing the pinning on this
3950 * side before we receive the control response from the other
3951 * side that the pinning has completed.
3952 */
3953 ret = qemu_rdma_exchange_send(rdma, &head, NULL, &resp,
3954 &reg_result_idx, rdma->pin_all ?
3955 qemu_rdma_reg_whole_ram_blocks : NULL);
3956 if (ret < 0) {
3957 fprintf(stderr, "receiving remote info!");
3958 return ret;
3959 }
3960
3961 nb_dest_blocks = resp.len / sizeof(RDMADestBlock);
3962
3963 /*
3964 * The protocol uses two different sets of rkeys (mutually exclusive):
3965 * 1. One key to represent the virtual address of the entire ram block.
3966 * (dynamic chunk registration disabled - pin everything with one rkey.)
3967 * 2. One to represent individual chunks within a ram block.
3968 * (dynamic chunk registration enabled - pin individual chunks.)
3969 *
3970 * Once the capability is successfully negotiated, the destination transmits
3971 * the keys to use (or sends them later) including the virtual addresses
3972 * and then propagates the remote ram block descriptions to his local copy.
3973 */
3974
3975 if (local->nb_blocks != nb_dest_blocks) {
3976 fprintf(stderr, "ram blocks mismatch (Number of blocks %d vs %d) "
3977 "Your QEMU command line parameters are probably "
3978 "not identical on both the source and destination.",
3979 local->nb_blocks, nb_dest_blocks);
3980 rdma->error_state = -EINVAL;
3981 return -EINVAL;
3982 }
3983
3984 qemu_rdma_move_header(rdma, reg_result_idx, &resp);
3985 memcpy(rdma->dest_blocks,
3986 rdma->wr_data[reg_result_idx].control_curr, resp.len);
3987 for (i = 0; i < nb_dest_blocks; i++) {
3988 network_to_dest_block(&rdma->dest_blocks[i]);
3989
3990 /* We require that the blocks are in the same order */
3991 if (rdma->dest_blocks[i].length != local->block[i].length) {
3992 fprintf(stderr, "Block %s/%d has a different length %" PRIu64
3993 "vs %" PRIu64, local->block[i].block_name, i,
3994 local->block[i].length,
3995 rdma->dest_blocks[i].length);
3996 rdma->error_state = -EINVAL;
3997 return -EINVAL;
3998 }
3999 local->block[i].remote_host_addr =
4000 rdma->dest_blocks[i].remote_host_addr;
4001 local->block[i].remote_rkey = rdma->dest_blocks[i].remote_rkey;
4002 }
4003 }
4004
4005 trace_qemu_rdma_registration_stop(flags);
4006
4007 head.type = RDMA_CONTROL_REGISTER_FINISHED;
4008 ret = qemu_rdma_exchange_send(rdma, &head, NULL, NULL, NULL, NULL);
4009
4010 if (ret < 0) {
4011 goto err;
4012 }
4013
4014 return 0;
4015 err:
4016 rdma->error_state = ret;
4017 return ret;
4018 }
4019
4020 static const QEMUFileHooks rdma_read_hooks = {
4021 .hook_ram_load = rdma_load_hook,
4022 };
4023
4024 static const QEMUFileHooks rdma_write_hooks = {
4025 .before_ram_iterate = qemu_rdma_registration_start,
4026 .after_ram_iterate = qemu_rdma_registration_stop,
4027 .save_page = qemu_rdma_save_page,
4028 };
4029
4030
4031 static void qio_channel_rdma_finalize(Object *obj)
4032 {
4033 QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(obj);
4034 if (rioc->rdmain) {
4035 qemu_rdma_cleanup(rioc->rdmain);
4036 g_free(rioc->rdmain);
4037 rioc->rdmain = NULL;
4038 }
4039 if (rioc->rdmaout) {
4040 qemu_rdma_cleanup(rioc->rdmaout);
4041 g_free(rioc->rdmaout);
4042 rioc->rdmaout = NULL;
4043 }
4044 }
4045
4046 static void qio_channel_rdma_class_init(ObjectClass *klass,
4047 void *class_data G_GNUC_UNUSED)
4048 {
4049 QIOChannelClass *ioc_klass = QIO_CHANNEL_CLASS(klass);
4050
4051 ioc_klass->io_writev = qio_channel_rdma_writev;
4052 ioc_klass->io_readv = qio_channel_rdma_readv;
4053 ioc_klass->io_set_blocking = qio_channel_rdma_set_blocking;
4054 ioc_klass->io_close = qio_channel_rdma_close;
4055 ioc_klass->io_create_watch = qio_channel_rdma_create_watch;
4056 ioc_klass->io_set_aio_fd_handler = qio_channel_rdma_set_aio_fd_handler;
4057 ioc_klass->io_shutdown = qio_channel_rdma_shutdown;
4058 }
4059
4060 static const TypeInfo qio_channel_rdma_info = {
4061 .parent = TYPE_QIO_CHANNEL,
4062 .name = TYPE_QIO_CHANNEL_RDMA,
4063 .instance_size = sizeof(QIOChannelRDMA),
4064 .instance_finalize = qio_channel_rdma_finalize,
4065 .class_init = qio_channel_rdma_class_init,
4066 };
4067
4068 static void qio_channel_rdma_register_types(void)
4069 {
4070 type_register_static(&qio_channel_rdma_info);
4071 }
4072
4073 type_init(qio_channel_rdma_register_types);
4074
4075 static QEMUFile *rdma_new_input(RDMAContext *rdma)
4076 {
4077 QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(object_new(TYPE_QIO_CHANNEL_RDMA));
4078
4079 rioc->file = qemu_file_new_input(QIO_CHANNEL(rioc));
4080 rioc->rdmain = rdma;
4081 rioc->rdmaout = rdma->return_path;
4082 qemu_file_set_hooks(rioc->file, &rdma_read_hooks);
4083
4084 return rioc->file;
4085 }
4086
4087 static QEMUFile *rdma_new_output(RDMAContext *rdma)
4088 {
4089 QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(object_new(TYPE_QIO_CHANNEL_RDMA));
4090
4091 rioc->file = qemu_file_new_output(QIO_CHANNEL(rioc));
4092 rioc->rdmaout = rdma;
4093 rioc->rdmain = rdma->return_path;
4094 qemu_file_set_hooks(rioc->file, &rdma_write_hooks);
4095
4096 return rioc->file;
4097 }
4098
4099 static void rdma_accept_incoming_migration(void *opaque)
4100 {
4101 RDMAContext *rdma = opaque;
4102 int ret;
4103 QEMUFile *f;
4104 Error *local_err = NULL;
4105
4106 trace_qemu_rdma_accept_incoming_migration();
4107 ret = qemu_rdma_accept(rdma);
4108
4109 if (ret) {
4110 fprintf(stderr, "RDMA ERROR: Migration initialization failed\n");
4111 return;
4112 }
4113
4114 trace_qemu_rdma_accept_incoming_migration_accepted();
4115
4116 if (rdma->is_return_path) {
4117 return;
4118 }
4119
4120 f = rdma_new_input(rdma);
4121 if (f == NULL) {
4122 fprintf(stderr, "RDMA ERROR: could not open RDMA for input\n");
4123 qemu_rdma_cleanup(rdma);
4124 return;
4125 }
4126
4127 rdma->migration_started_on_destination = 1;
4128 migration_fd_process_incoming(f, &local_err);
4129 if (local_err) {
4130 error_reportf_err(local_err, "RDMA ERROR:");
4131 }
4132 }
4133
4134 void rdma_start_incoming_migration(const char *host_port, Error **errp)
4135 {
4136 int ret;
4137 RDMAContext *rdma;
4138 Error *local_err = NULL;
4139
4140 trace_rdma_start_incoming_migration();
4141
4142 /* Avoid ram_block_discard_disable(), cannot change during migration. */
4143 if (ram_block_discard_is_required()) {
4144 error_setg(errp, "RDMA: cannot disable RAM discard");
4145 return;
4146 }
4147
4148 rdma = qemu_rdma_data_init(host_port, &local_err);
4149 if (rdma == NULL) {
4150 goto err;
4151 }
4152
4153 ret = qemu_rdma_dest_init(rdma, &local_err);
4154
4155 if (ret) {
4156 goto err;
4157 }
4158
4159 trace_rdma_start_incoming_migration_after_dest_init();
4160
4161 ret = rdma_listen(rdma->listen_id, 5);
4162
4163 if (ret) {
4164 ERROR(errp, "listening on socket!");
4165 goto cleanup_rdma;
4166 }
4167
4168 trace_rdma_start_incoming_migration_after_rdma_listen();
4169
4170 qemu_set_fd_handler(rdma->channel->fd, rdma_accept_incoming_migration,
4171 NULL, (void *)(intptr_t)rdma);
4172 return;
4173
4174 cleanup_rdma:
4175 qemu_rdma_cleanup(rdma);
4176 err:
4177 error_propagate(errp, local_err);
4178 if (rdma) {
4179 g_free(rdma->host);
4180 g_free(rdma->host_port);
4181 }
4182 g_free(rdma);
4183 }
4184
4185 void rdma_start_outgoing_migration(void *opaque,
4186 const char *host_port, Error **errp)
4187 {
4188 MigrationState *s = opaque;
4189 RDMAContext *rdma_return_path = NULL;
4190 RDMAContext *rdma;
4191 int ret = 0;
4192
4193 /* Avoid ram_block_discard_disable(), cannot change during migration. */
4194 if (ram_block_discard_is_required()) {
4195 error_setg(errp, "RDMA: cannot disable RAM discard");
4196 return;
4197 }
4198
4199 rdma = qemu_rdma_data_init(host_port, errp);
4200 if (rdma == NULL) {
4201 goto err;
4202 }
4203
4204 ret = qemu_rdma_source_init(rdma, migrate_rdma_pin_all(), errp);
4205
4206 if (ret) {
4207 goto err;
4208 }
4209
4210 trace_rdma_start_outgoing_migration_after_rdma_source_init();
4211 ret = qemu_rdma_connect(rdma, errp, false);
4212
4213 if (ret) {
4214 goto err;
4215 }
4216
4217 /* RDMA postcopy need a separate queue pair for return path */
4218 if (migrate_postcopy() || migrate_return_path()) {
4219 rdma_return_path = qemu_rdma_data_init(host_port, errp);
4220
4221 if (rdma_return_path == NULL) {
4222 goto return_path_err;
4223 }
4224
4225 ret = qemu_rdma_source_init(rdma_return_path,
4226 migrate_rdma_pin_all(), errp);
4227
4228 if (ret) {
4229 goto return_path_err;
4230 }
4231
4232 ret = qemu_rdma_connect(rdma_return_path, errp, true);
4233
4234 if (ret) {
4235 goto return_path_err;
4236 }
4237
4238 rdma->return_path = rdma_return_path;
4239 rdma_return_path->return_path = rdma;
4240 rdma_return_path->is_return_path = true;
4241 }
4242
4243 trace_rdma_start_outgoing_migration_after_rdma_connect();
4244
4245 s->to_dst_file = rdma_new_output(rdma);
4246 migrate_fd_connect(s, NULL);
4247 return;
4248 return_path_err:
4249 qemu_rdma_cleanup(rdma);
4250 err:
4251 g_free(rdma);
4252 g_free(rdma_return_path);
4253 }