]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - mm/huge_memory.c
drivers/hwspinlock: fix race between radix tree insertion and lookup
[mirror_ubuntu-artful-kernel.git] / mm / huge_memory.c
1 /*
2 * Copyright (C) 2009 Red Hat, Inc.
3 *
4 * This work is licensed under the terms of the GNU GPL, version 2. See
5 * the COPYING file in the top-level directory.
6 */
7
8 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
9
10 #include <linux/mm.h>
11 #include <linux/sched.h>
12 #include <linux/highmem.h>
13 #include <linux/hugetlb.h>
14 #include <linux/mmu_notifier.h>
15 #include <linux/rmap.h>
16 #include <linux/swap.h>
17 #include <linux/shrinker.h>
18 #include <linux/mm_inline.h>
19 #include <linux/swapops.h>
20 #include <linux/dax.h>
21 #include <linux/kthread.h>
22 #include <linux/khugepaged.h>
23 #include <linux/freezer.h>
24 #include <linux/pfn_t.h>
25 #include <linux/mman.h>
26 #include <linux/memremap.h>
27 #include <linux/pagemap.h>
28 #include <linux/debugfs.h>
29 #include <linux/migrate.h>
30 #include <linux/hashtable.h>
31 #include <linux/userfaultfd_k.h>
32 #include <linux/page_idle.h>
33
34 #include <asm/tlb.h>
35 #include <asm/pgalloc.h>
36 #include "internal.h"
37
38 enum scan_result {
39 SCAN_FAIL,
40 SCAN_SUCCEED,
41 SCAN_PMD_NULL,
42 SCAN_EXCEED_NONE_PTE,
43 SCAN_PTE_NON_PRESENT,
44 SCAN_PAGE_RO,
45 SCAN_NO_REFERENCED_PAGE,
46 SCAN_PAGE_NULL,
47 SCAN_SCAN_ABORT,
48 SCAN_PAGE_COUNT,
49 SCAN_PAGE_LRU,
50 SCAN_PAGE_LOCK,
51 SCAN_PAGE_ANON,
52 SCAN_PAGE_COMPOUND,
53 SCAN_ANY_PROCESS,
54 SCAN_VMA_NULL,
55 SCAN_VMA_CHECK,
56 SCAN_ADDRESS_RANGE,
57 SCAN_SWAP_CACHE_PAGE,
58 SCAN_DEL_PAGE_LRU,
59 SCAN_ALLOC_HUGE_PAGE_FAIL,
60 SCAN_CGROUP_CHARGE_FAIL
61 };
62
63 #define CREATE_TRACE_POINTS
64 #include <trace/events/huge_memory.h>
65
66 /*
67 * By default transparent hugepage support is disabled in order that avoid
68 * to risk increase the memory footprint of applications without a guaranteed
69 * benefit. When transparent hugepage support is enabled, is for all mappings,
70 * and khugepaged scans all mappings.
71 * Defrag is invoked by khugepaged hugepage allocations and by page faults
72 * for all hugepage allocations.
73 */
74 unsigned long transparent_hugepage_flags __read_mostly =
75 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
76 (1<<TRANSPARENT_HUGEPAGE_FLAG)|
77 #endif
78 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
79 (1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
80 #endif
81 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_FLAG)|
82 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)|
83 (1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
84
85 /* default scan 8*512 pte (or vmas) every 30 second */
86 static unsigned int khugepaged_pages_to_scan __read_mostly = HPAGE_PMD_NR*8;
87 static unsigned int khugepaged_pages_collapsed;
88 static unsigned int khugepaged_full_scans;
89 static unsigned int khugepaged_scan_sleep_millisecs __read_mostly = 10000;
90 /* during fragmentation poll the hugepage allocator once every minute */
91 static unsigned int khugepaged_alloc_sleep_millisecs __read_mostly = 60000;
92 static struct task_struct *khugepaged_thread __read_mostly;
93 static DEFINE_MUTEX(khugepaged_mutex);
94 static DEFINE_SPINLOCK(khugepaged_mm_lock);
95 static DECLARE_WAIT_QUEUE_HEAD(khugepaged_wait);
96 /*
97 * default collapse hugepages if there is at least one pte mapped like
98 * it would have happened if the vma was large enough during page
99 * fault.
100 */
101 static unsigned int khugepaged_max_ptes_none __read_mostly = HPAGE_PMD_NR-1;
102
103 static int khugepaged(void *none);
104 static int khugepaged_slab_init(void);
105 static void khugepaged_slab_exit(void);
106
107 #define MM_SLOTS_HASH_BITS 10
108 static __read_mostly DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS);
109
110 static struct kmem_cache *mm_slot_cache __read_mostly;
111
112 /**
113 * struct mm_slot - hash lookup from mm to mm_slot
114 * @hash: hash collision list
115 * @mm_node: khugepaged scan list headed in khugepaged_scan.mm_head
116 * @mm: the mm that this information is valid for
117 */
118 struct mm_slot {
119 struct hlist_node hash;
120 struct list_head mm_node;
121 struct mm_struct *mm;
122 };
123
124 /**
125 * struct khugepaged_scan - cursor for scanning
126 * @mm_head: the head of the mm list to scan
127 * @mm_slot: the current mm_slot we are scanning
128 * @address: the next address inside that to be scanned
129 *
130 * There is only the one khugepaged_scan instance of this cursor structure.
131 */
132 struct khugepaged_scan {
133 struct list_head mm_head;
134 struct mm_slot *mm_slot;
135 unsigned long address;
136 };
137 static struct khugepaged_scan khugepaged_scan = {
138 .mm_head = LIST_HEAD_INIT(khugepaged_scan.mm_head),
139 };
140
141 static struct shrinker deferred_split_shrinker;
142
143 static void set_recommended_min_free_kbytes(void)
144 {
145 struct zone *zone;
146 int nr_zones = 0;
147 unsigned long recommended_min;
148
149 for_each_populated_zone(zone)
150 nr_zones++;
151
152 /* Ensure 2 pageblocks are free to assist fragmentation avoidance */
153 recommended_min = pageblock_nr_pages * nr_zones * 2;
154
155 /*
156 * Make sure that on average at least two pageblocks are almost free
157 * of another type, one for a migratetype to fall back to and a
158 * second to avoid subsequent fallbacks of other types There are 3
159 * MIGRATE_TYPES we care about.
160 */
161 recommended_min += pageblock_nr_pages * nr_zones *
162 MIGRATE_PCPTYPES * MIGRATE_PCPTYPES;
163
164 /* don't ever allow to reserve more than 5% of the lowmem */
165 recommended_min = min(recommended_min,
166 (unsigned long) nr_free_buffer_pages() / 20);
167 recommended_min <<= (PAGE_SHIFT-10);
168
169 if (recommended_min > min_free_kbytes) {
170 if (user_min_free_kbytes >= 0)
171 pr_info("raising min_free_kbytes from %d to %lu "
172 "to help transparent hugepage allocations\n",
173 min_free_kbytes, recommended_min);
174
175 min_free_kbytes = recommended_min;
176 }
177 setup_per_zone_wmarks();
178 }
179
180 static int start_stop_khugepaged(void)
181 {
182 int err = 0;
183 if (khugepaged_enabled()) {
184 if (!khugepaged_thread)
185 khugepaged_thread = kthread_run(khugepaged, NULL,
186 "khugepaged");
187 if (IS_ERR(khugepaged_thread)) {
188 pr_err("khugepaged: kthread_run(khugepaged) failed\n");
189 err = PTR_ERR(khugepaged_thread);
190 khugepaged_thread = NULL;
191 goto fail;
192 }
193
194 if (!list_empty(&khugepaged_scan.mm_head))
195 wake_up_interruptible(&khugepaged_wait);
196
197 set_recommended_min_free_kbytes();
198 } else if (khugepaged_thread) {
199 kthread_stop(khugepaged_thread);
200 khugepaged_thread = NULL;
201 }
202 fail:
203 return err;
204 }
205
206 static atomic_t huge_zero_refcount;
207 struct page *huge_zero_page __read_mostly;
208
209 struct page *get_huge_zero_page(void)
210 {
211 struct page *zero_page;
212 retry:
213 if (likely(atomic_inc_not_zero(&huge_zero_refcount)))
214 return READ_ONCE(huge_zero_page);
215
216 zero_page = alloc_pages((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE,
217 HPAGE_PMD_ORDER);
218 if (!zero_page) {
219 count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED);
220 return NULL;
221 }
222 count_vm_event(THP_ZERO_PAGE_ALLOC);
223 preempt_disable();
224 if (cmpxchg(&huge_zero_page, NULL, zero_page)) {
225 preempt_enable();
226 __free_pages(zero_page, compound_order(zero_page));
227 goto retry;
228 }
229
230 /* We take additional reference here. It will be put back by shrinker */
231 atomic_set(&huge_zero_refcount, 2);
232 preempt_enable();
233 return READ_ONCE(huge_zero_page);
234 }
235
236 static void put_huge_zero_page(void)
237 {
238 /*
239 * Counter should never go to zero here. Only shrinker can put
240 * last reference.
241 */
242 BUG_ON(atomic_dec_and_test(&huge_zero_refcount));
243 }
244
245 static unsigned long shrink_huge_zero_page_count(struct shrinker *shrink,
246 struct shrink_control *sc)
247 {
248 /* we can free zero page only if last reference remains */
249 return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0;
250 }
251
252 static unsigned long shrink_huge_zero_page_scan(struct shrinker *shrink,
253 struct shrink_control *sc)
254 {
255 if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) {
256 struct page *zero_page = xchg(&huge_zero_page, NULL);
257 BUG_ON(zero_page == NULL);
258 __free_pages(zero_page, compound_order(zero_page));
259 return HPAGE_PMD_NR;
260 }
261
262 return 0;
263 }
264
265 static struct shrinker huge_zero_page_shrinker = {
266 .count_objects = shrink_huge_zero_page_count,
267 .scan_objects = shrink_huge_zero_page_scan,
268 .seeks = DEFAULT_SEEKS,
269 };
270
271 #ifdef CONFIG_SYSFS
272
273 static ssize_t double_flag_show(struct kobject *kobj,
274 struct kobj_attribute *attr, char *buf,
275 enum transparent_hugepage_flag enabled,
276 enum transparent_hugepage_flag req_madv)
277 {
278 if (test_bit(enabled, &transparent_hugepage_flags)) {
279 VM_BUG_ON(test_bit(req_madv, &transparent_hugepage_flags));
280 return sprintf(buf, "[always] madvise never\n");
281 } else if (test_bit(req_madv, &transparent_hugepage_flags))
282 return sprintf(buf, "always [madvise] never\n");
283 else
284 return sprintf(buf, "always madvise [never]\n");
285 }
286 static ssize_t double_flag_store(struct kobject *kobj,
287 struct kobj_attribute *attr,
288 const char *buf, size_t count,
289 enum transparent_hugepage_flag enabled,
290 enum transparent_hugepage_flag req_madv)
291 {
292 if (!memcmp("always", buf,
293 min(sizeof("always")-1, count))) {
294 set_bit(enabled, &transparent_hugepage_flags);
295 clear_bit(req_madv, &transparent_hugepage_flags);
296 } else if (!memcmp("madvise", buf,
297 min(sizeof("madvise")-1, count))) {
298 clear_bit(enabled, &transparent_hugepage_flags);
299 set_bit(req_madv, &transparent_hugepage_flags);
300 } else if (!memcmp("never", buf,
301 min(sizeof("never")-1, count))) {
302 clear_bit(enabled, &transparent_hugepage_flags);
303 clear_bit(req_madv, &transparent_hugepage_flags);
304 } else
305 return -EINVAL;
306
307 return count;
308 }
309
310 static ssize_t enabled_show(struct kobject *kobj,
311 struct kobj_attribute *attr, char *buf)
312 {
313 return double_flag_show(kobj, attr, buf,
314 TRANSPARENT_HUGEPAGE_FLAG,
315 TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);
316 }
317 static ssize_t enabled_store(struct kobject *kobj,
318 struct kobj_attribute *attr,
319 const char *buf, size_t count)
320 {
321 ssize_t ret;
322
323 ret = double_flag_store(kobj, attr, buf, count,
324 TRANSPARENT_HUGEPAGE_FLAG,
325 TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);
326
327 if (ret > 0) {
328 int err;
329
330 mutex_lock(&khugepaged_mutex);
331 err = start_stop_khugepaged();
332 mutex_unlock(&khugepaged_mutex);
333
334 if (err)
335 ret = err;
336 }
337
338 return ret;
339 }
340 static struct kobj_attribute enabled_attr =
341 __ATTR(enabled, 0644, enabled_show, enabled_store);
342
343 static ssize_t single_flag_show(struct kobject *kobj,
344 struct kobj_attribute *attr, char *buf,
345 enum transparent_hugepage_flag flag)
346 {
347 return sprintf(buf, "%d\n",
348 !!test_bit(flag, &transparent_hugepage_flags));
349 }
350
351 static ssize_t single_flag_store(struct kobject *kobj,
352 struct kobj_attribute *attr,
353 const char *buf, size_t count,
354 enum transparent_hugepage_flag flag)
355 {
356 unsigned long value;
357 int ret;
358
359 ret = kstrtoul(buf, 10, &value);
360 if (ret < 0)
361 return ret;
362 if (value > 1)
363 return -EINVAL;
364
365 if (value)
366 set_bit(flag, &transparent_hugepage_flags);
367 else
368 clear_bit(flag, &transparent_hugepage_flags);
369
370 return count;
371 }
372
373 /*
374 * Currently defrag only disables __GFP_NOWAIT for allocation. A blind
375 * __GFP_REPEAT is too aggressive, it's never worth swapping tons of
376 * memory just to allocate one more hugepage.
377 */
378 static ssize_t defrag_show(struct kobject *kobj,
379 struct kobj_attribute *attr, char *buf)
380 {
381 return double_flag_show(kobj, attr, buf,
382 TRANSPARENT_HUGEPAGE_DEFRAG_FLAG,
383 TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
384 }
385 static ssize_t defrag_store(struct kobject *kobj,
386 struct kobj_attribute *attr,
387 const char *buf, size_t count)
388 {
389 return double_flag_store(kobj, attr, buf, count,
390 TRANSPARENT_HUGEPAGE_DEFRAG_FLAG,
391 TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
392 }
393 static struct kobj_attribute defrag_attr =
394 __ATTR(defrag, 0644, defrag_show, defrag_store);
395
396 static ssize_t use_zero_page_show(struct kobject *kobj,
397 struct kobj_attribute *attr, char *buf)
398 {
399 return single_flag_show(kobj, attr, buf,
400 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
401 }
402 static ssize_t use_zero_page_store(struct kobject *kobj,
403 struct kobj_attribute *attr, const char *buf, size_t count)
404 {
405 return single_flag_store(kobj, attr, buf, count,
406 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
407 }
408 static struct kobj_attribute use_zero_page_attr =
409 __ATTR(use_zero_page, 0644, use_zero_page_show, use_zero_page_store);
410 #ifdef CONFIG_DEBUG_VM
411 static ssize_t debug_cow_show(struct kobject *kobj,
412 struct kobj_attribute *attr, char *buf)
413 {
414 return single_flag_show(kobj, attr, buf,
415 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
416 }
417 static ssize_t debug_cow_store(struct kobject *kobj,
418 struct kobj_attribute *attr,
419 const char *buf, size_t count)
420 {
421 return single_flag_store(kobj, attr, buf, count,
422 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
423 }
424 static struct kobj_attribute debug_cow_attr =
425 __ATTR(debug_cow, 0644, debug_cow_show, debug_cow_store);
426 #endif /* CONFIG_DEBUG_VM */
427
428 static struct attribute *hugepage_attr[] = {
429 &enabled_attr.attr,
430 &defrag_attr.attr,
431 &use_zero_page_attr.attr,
432 #ifdef CONFIG_DEBUG_VM
433 &debug_cow_attr.attr,
434 #endif
435 NULL,
436 };
437
438 static struct attribute_group hugepage_attr_group = {
439 .attrs = hugepage_attr,
440 };
441
442 static ssize_t scan_sleep_millisecs_show(struct kobject *kobj,
443 struct kobj_attribute *attr,
444 char *buf)
445 {
446 return sprintf(buf, "%u\n", khugepaged_scan_sleep_millisecs);
447 }
448
449 static ssize_t scan_sleep_millisecs_store(struct kobject *kobj,
450 struct kobj_attribute *attr,
451 const char *buf, size_t count)
452 {
453 unsigned long msecs;
454 int err;
455
456 err = kstrtoul(buf, 10, &msecs);
457 if (err || msecs > UINT_MAX)
458 return -EINVAL;
459
460 khugepaged_scan_sleep_millisecs = msecs;
461 wake_up_interruptible(&khugepaged_wait);
462
463 return count;
464 }
465 static struct kobj_attribute scan_sleep_millisecs_attr =
466 __ATTR(scan_sleep_millisecs, 0644, scan_sleep_millisecs_show,
467 scan_sleep_millisecs_store);
468
469 static ssize_t alloc_sleep_millisecs_show(struct kobject *kobj,
470 struct kobj_attribute *attr,
471 char *buf)
472 {
473 return sprintf(buf, "%u\n", khugepaged_alloc_sleep_millisecs);
474 }
475
476 static ssize_t alloc_sleep_millisecs_store(struct kobject *kobj,
477 struct kobj_attribute *attr,
478 const char *buf, size_t count)
479 {
480 unsigned long msecs;
481 int err;
482
483 err = kstrtoul(buf, 10, &msecs);
484 if (err || msecs > UINT_MAX)
485 return -EINVAL;
486
487 khugepaged_alloc_sleep_millisecs = msecs;
488 wake_up_interruptible(&khugepaged_wait);
489
490 return count;
491 }
492 static struct kobj_attribute alloc_sleep_millisecs_attr =
493 __ATTR(alloc_sleep_millisecs, 0644, alloc_sleep_millisecs_show,
494 alloc_sleep_millisecs_store);
495
496 static ssize_t pages_to_scan_show(struct kobject *kobj,
497 struct kobj_attribute *attr,
498 char *buf)
499 {
500 return sprintf(buf, "%u\n", khugepaged_pages_to_scan);
501 }
502 static ssize_t pages_to_scan_store(struct kobject *kobj,
503 struct kobj_attribute *attr,
504 const char *buf, size_t count)
505 {
506 int err;
507 unsigned long pages;
508
509 err = kstrtoul(buf, 10, &pages);
510 if (err || !pages || pages > UINT_MAX)
511 return -EINVAL;
512
513 khugepaged_pages_to_scan = pages;
514
515 return count;
516 }
517 static struct kobj_attribute pages_to_scan_attr =
518 __ATTR(pages_to_scan, 0644, pages_to_scan_show,
519 pages_to_scan_store);
520
521 static ssize_t pages_collapsed_show(struct kobject *kobj,
522 struct kobj_attribute *attr,
523 char *buf)
524 {
525 return sprintf(buf, "%u\n", khugepaged_pages_collapsed);
526 }
527 static struct kobj_attribute pages_collapsed_attr =
528 __ATTR_RO(pages_collapsed);
529
530 static ssize_t full_scans_show(struct kobject *kobj,
531 struct kobj_attribute *attr,
532 char *buf)
533 {
534 return sprintf(buf, "%u\n", khugepaged_full_scans);
535 }
536 static struct kobj_attribute full_scans_attr =
537 __ATTR_RO(full_scans);
538
539 static ssize_t khugepaged_defrag_show(struct kobject *kobj,
540 struct kobj_attribute *attr, char *buf)
541 {
542 return single_flag_show(kobj, attr, buf,
543 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
544 }
545 static ssize_t khugepaged_defrag_store(struct kobject *kobj,
546 struct kobj_attribute *attr,
547 const char *buf, size_t count)
548 {
549 return single_flag_store(kobj, attr, buf, count,
550 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
551 }
552 static struct kobj_attribute khugepaged_defrag_attr =
553 __ATTR(defrag, 0644, khugepaged_defrag_show,
554 khugepaged_defrag_store);
555
556 /*
557 * max_ptes_none controls if khugepaged should collapse hugepages over
558 * any unmapped ptes in turn potentially increasing the memory
559 * footprint of the vmas. When max_ptes_none is 0 khugepaged will not
560 * reduce the available free memory in the system as it
561 * runs. Increasing max_ptes_none will instead potentially reduce the
562 * free memory in the system during the khugepaged scan.
563 */
564 static ssize_t khugepaged_max_ptes_none_show(struct kobject *kobj,
565 struct kobj_attribute *attr,
566 char *buf)
567 {
568 return sprintf(buf, "%u\n", khugepaged_max_ptes_none);
569 }
570 static ssize_t khugepaged_max_ptes_none_store(struct kobject *kobj,
571 struct kobj_attribute *attr,
572 const char *buf, size_t count)
573 {
574 int err;
575 unsigned long max_ptes_none;
576
577 err = kstrtoul(buf, 10, &max_ptes_none);
578 if (err || max_ptes_none > HPAGE_PMD_NR-1)
579 return -EINVAL;
580
581 khugepaged_max_ptes_none = max_ptes_none;
582
583 return count;
584 }
585 static struct kobj_attribute khugepaged_max_ptes_none_attr =
586 __ATTR(max_ptes_none, 0644, khugepaged_max_ptes_none_show,
587 khugepaged_max_ptes_none_store);
588
589 static struct attribute *khugepaged_attr[] = {
590 &khugepaged_defrag_attr.attr,
591 &khugepaged_max_ptes_none_attr.attr,
592 &pages_to_scan_attr.attr,
593 &pages_collapsed_attr.attr,
594 &full_scans_attr.attr,
595 &scan_sleep_millisecs_attr.attr,
596 &alloc_sleep_millisecs_attr.attr,
597 NULL,
598 };
599
600 static struct attribute_group khugepaged_attr_group = {
601 .attrs = khugepaged_attr,
602 .name = "khugepaged",
603 };
604
605 static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
606 {
607 int err;
608
609 *hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
610 if (unlikely(!*hugepage_kobj)) {
611 pr_err("failed to create transparent hugepage kobject\n");
612 return -ENOMEM;
613 }
614
615 err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
616 if (err) {
617 pr_err("failed to register transparent hugepage group\n");
618 goto delete_obj;
619 }
620
621 err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
622 if (err) {
623 pr_err("failed to register transparent hugepage group\n");
624 goto remove_hp_group;
625 }
626
627 return 0;
628
629 remove_hp_group:
630 sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
631 delete_obj:
632 kobject_put(*hugepage_kobj);
633 return err;
634 }
635
636 static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
637 {
638 sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
639 sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
640 kobject_put(hugepage_kobj);
641 }
642 #else
643 static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
644 {
645 return 0;
646 }
647
648 static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
649 {
650 }
651 #endif /* CONFIG_SYSFS */
652
653 static int __init hugepage_init(void)
654 {
655 int err;
656 struct kobject *hugepage_kobj;
657
658 if (!has_transparent_hugepage()) {
659 transparent_hugepage_flags = 0;
660 return -EINVAL;
661 }
662
663 err = hugepage_init_sysfs(&hugepage_kobj);
664 if (err)
665 goto err_sysfs;
666
667 err = khugepaged_slab_init();
668 if (err)
669 goto err_slab;
670
671 err = register_shrinker(&huge_zero_page_shrinker);
672 if (err)
673 goto err_hzp_shrinker;
674 err = register_shrinker(&deferred_split_shrinker);
675 if (err)
676 goto err_split_shrinker;
677
678 /*
679 * By default disable transparent hugepages on smaller systems,
680 * where the extra memory used could hurt more than TLB overhead
681 * is likely to save. The admin can still enable it through /sys.
682 */
683 if (totalram_pages < (512 << (20 - PAGE_SHIFT))) {
684 transparent_hugepage_flags = 0;
685 return 0;
686 }
687
688 err = start_stop_khugepaged();
689 if (err)
690 goto err_khugepaged;
691
692 return 0;
693 err_khugepaged:
694 unregister_shrinker(&deferred_split_shrinker);
695 err_split_shrinker:
696 unregister_shrinker(&huge_zero_page_shrinker);
697 err_hzp_shrinker:
698 khugepaged_slab_exit();
699 err_slab:
700 hugepage_exit_sysfs(hugepage_kobj);
701 err_sysfs:
702 return err;
703 }
704 subsys_initcall(hugepage_init);
705
706 static int __init setup_transparent_hugepage(char *str)
707 {
708 int ret = 0;
709 if (!str)
710 goto out;
711 if (!strcmp(str, "always")) {
712 set_bit(TRANSPARENT_HUGEPAGE_FLAG,
713 &transparent_hugepage_flags);
714 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
715 &transparent_hugepage_flags);
716 ret = 1;
717 } else if (!strcmp(str, "madvise")) {
718 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
719 &transparent_hugepage_flags);
720 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
721 &transparent_hugepage_flags);
722 ret = 1;
723 } else if (!strcmp(str, "never")) {
724 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
725 &transparent_hugepage_flags);
726 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
727 &transparent_hugepage_flags);
728 ret = 1;
729 }
730 out:
731 if (!ret)
732 pr_warn("transparent_hugepage= cannot parse, ignored\n");
733 return ret;
734 }
735 __setup("transparent_hugepage=", setup_transparent_hugepage);
736
737 pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
738 {
739 if (likely(vma->vm_flags & VM_WRITE))
740 pmd = pmd_mkwrite(pmd);
741 return pmd;
742 }
743
744 static inline pmd_t mk_huge_pmd(struct page *page, pgprot_t prot)
745 {
746 pmd_t entry;
747 entry = mk_pmd(page, prot);
748 entry = pmd_mkhuge(entry);
749 return entry;
750 }
751
752 static inline struct list_head *page_deferred_list(struct page *page)
753 {
754 /*
755 * ->lru in the tail pages is occupied by compound_head.
756 * Let's use ->mapping + ->index in the second tail page as list_head.
757 */
758 return (struct list_head *)&page[2].mapping;
759 }
760
761 void prep_transhuge_page(struct page *page)
762 {
763 /*
764 * we use page->mapping and page->indexlru in second tail page
765 * as list_head: assuming THP order >= 2
766 */
767 BUILD_BUG_ON(HPAGE_PMD_ORDER < 2);
768
769 INIT_LIST_HEAD(page_deferred_list(page));
770 set_compound_page_dtor(page, TRANSHUGE_PAGE_DTOR);
771 }
772
773 static int __do_huge_pmd_anonymous_page(struct mm_struct *mm,
774 struct vm_area_struct *vma,
775 unsigned long address, pmd_t *pmd,
776 struct page *page, gfp_t gfp,
777 unsigned int flags)
778 {
779 struct mem_cgroup *memcg;
780 pgtable_t pgtable;
781 spinlock_t *ptl;
782 unsigned long haddr = address & HPAGE_PMD_MASK;
783
784 VM_BUG_ON_PAGE(!PageCompound(page), page);
785
786 if (mem_cgroup_try_charge(page, mm, gfp, &memcg, true)) {
787 put_page(page);
788 count_vm_event(THP_FAULT_FALLBACK);
789 return VM_FAULT_FALLBACK;
790 }
791
792 pgtable = pte_alloc_one(mm, haddr);
793 if (unlikely(!pgtable)) {
794 mem_cgroup_cancel_charge(page, memcg, true);
795 put_page(page);
796 return VM_FAULT_OOM;
797 }
798
799 clear_huge_page(page, haddr, HPAGE_PMD_NR);
800 /*
801 * The memory barrier inside __SetPageUptodate makes sure that
802 * clear_huge_page writes become visible before the set_pmd_at()
803 * write.
804 */
805 __SetPageUptodate(page);
806
807 ptl = pmd_lock(mm, pmd);
808 if (unlikely(!pmd_none(*pmd))) {
809 spin_unlock(ptl);
810 mem_cgroup_cancel_charge(page, memcg, true);
811 put_page(page);
812 pte_free(mm, pgtable);
813 } else {
814 pmd_t entry;
815
816 /* Deliver the page fault to userland */
817 if (userfaultfd_missing(vma)) {
818 int ret;
819
820 spin_unlock(ptl);
821 mem_cgroup_cancel_charge(page, memcg, true);
822 put_page(page);
823 pte_free(mm, pgtable);
824 ret = handle_userfault(vma, address, flags,
825 VM_UFFD_MISSING);
826 VM_BUG_ON(ret & VM_FAULT_FALLBACK);
827 return ret;
828 }
829
830 entry = mk_huge_pmd(page, vma->vm_page_prot);
831 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
832 page_add_new_anon_rmap(page, vma, haddr, true);
833 mem_cgroup_commit_charge(page, memcg, false, true);
834 lru_cache_add_active_or_unevictable(page, vma);
835 pgtable_trans_huge_deposit(mm, pmd, pgtable);
836 set_pmd_at(mm, haddr, pmd, entry);
837 add_mm_counter(mm, MM_ANONPAGES, HPAGE_PMD_NR);
838 atomic_long_inc(&mm->nr_ptes);
839 spin_unlock(ptl);
840 count_vm_event(THP_FAULT_ALLOC);
841 }
842
843 return 0;
844 }
845
846 static inline gfp_t alloc_hugepage_gfpmask(int defrag, gfp_t extra_gfp)
847 {
848 return (GFP_TRANSHUGE & ~(defrag ? 0 : __GFP_RECLAIM)) | extra_gfp;
849 }
850
851 /* Caller must hold page table lock. */
852 static bool set_huge_zero_page(pgtable_t pgtable, struct mm_struct *mm,
853 struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd,
854 struct page *zero_page)
855 {
856 pmd_t entry;
857 if (!pmd_none(*pmd))
858 return false;
859 entry = mk_pmd(zero_page, vma->vm_page_prot);
860 entry = pmd_mkhuge(entry);
861 pgtable_trans_huge_deposit(mm, pmd, pgtable);
862 set_pmd_at(mm, haddr, pmd, entry);
863 atomic_long_inc(&mm->nr_ptes);
864 return true;
865 }
866
867 int do_huge_pmd_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
868 unsigned long address, pmd_t *pmd,
869 unsigned int flags)
870 {
871 gfp_t gfp;
872 struct page *page;
873 unsigned long haddr = address & HPAGE_PMD_MASK;
874
875 if (haddr < vma->vm_start || haddr + HPAGE_PMD_SIZE > vma->vm_end)
876 return VM_FAULT_FALLBACK;
877 if (unlikely(anon_vma_prepare(vma)))
878 return VM_FAULT_OOM;
879 if (unlikely(khugepaged_enter(vma, vma->vm_flags)))
880 return VM_FAULT_OOM;
881 if (!(flags & FAULT_FLAG_WRITE) && !mm_forbids_zeropage(mm) &&
882 transparent_hugepage_use_zero_page()) {
883 spinlock_t *ptl;
884 pgtable_t pgtable;
885 struct page *zero_page;
886 bool set;
887 int ret;
888 pgtable = pte_alloc_one(mm, haddr);
889 if (unlikely(!pgtable))
890 return VM_FAULT_OOM;
891 zero_page = get_huge_zero_page();
892 if (unlikely(!zero_page)) {
893 pte_free(mm, pgtable);
894 count_vm_event(THP_FAULT_FALLBACK);
895 return VM_FAULT_FALLBACK;
896 }
897 ptl = pmd_lock(mm, pmd);
898 ret = 0;
899 set = false;
900 if (pmd_none(*pmd)) {
901 if (userfaultfd_missing(vma)) {
902 spin_unlock(ptl);
903 ret = handle_userfault(vma, address, flags,
904 VM_UFFD_MISSING);
905 VM_BUG_ON(ret & VM_FAULT_FALLBACK);
906 } else {
907 set_huge_zero_page(pgtable, mm, vma,
908 haddr, pmd,
909 zero_page);
910 spin_unlock(ptl);
911 set = true;
912 }
913 } else
914 spin_unlock(ptl);
915 if (!set) {
916 pte_free(mm, pgtable);
917 put_huge_zero_page();
918 }
919 return ret;
920 }
921 gfp = alloc_hugepage_gfpmask(transparent_hugepage_defrag(vma), 0);
922 page = alloc_hugepage_vma(gfp, vma, haddr, HPAGE_PMD_ORDER);
923 if (unlikely(!page)) {
924 count_vm_event(THP_FAULT_FALLBACK);
925 return VM_FAULT_FALLBACK;
926 }
927 prep_transhuge_page(page);
928 return __do_huge_pmd_anonymous_page(mm, vma, address, pmd, page, gfp,
929 flags);
930 }
931
932 static void insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
933 pmd_t *pmd, pfn_t pfn, pgprot_t prot, bool write)
934 {
935 struct mm_struct *mm = vma->vm_mm;
936 pmd_t entry;
937 spinlock_t *ptl;
938
939 ptl = pmd_lock(mm, pmd);
940 entry = pmd_mkhuge(pfn_t_pmd(pfn, prot));
941 if (pfn_t_devmap(pfn))
942 entry = pmd_mkdevmap(entry);
943 if (write) {
944 entry = pmd_mkyoung(pmd_mkdirty(entry));
945 entry = maybe_pmd_mkwrite(entry, vma);
946 }
947 set_pmd_at(mm, addr, pmd, entry);
948 update_mmu_cache_pmd(vma, addr, pmd);
949 spin_unlock(ptl);
950 }
951
952 int vmf_insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
953 pmd_t *pmd, pfn_t pfn, bool write)
954 {
955 pgprot_t pgprot = vma->vm_page_prot;
956 /*
957 * If we had pmd_special, we could avoid all these restrictions,
958 * but we need to be consistent with PTEs and architectures that
959 * can't support a 'special' bit.
960 */
961 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
962 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
963 (VM_PFNMAP|VM_MIXEDMAP));
964 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
965 BUG_ON(!pfn_t_devmap(pfn));
966
967 if (addr < vma->vm_start || addr >= vma->vm_end)
968 return VM_FAULT_SIGBUS;
969 if (track_pfn_insert(vma, &pgprot, pfn))
970 return VM_FAULT_SIGBUS;
971 insert_pfn_pmd(vma, addr, pmd, pfn, pgprot, write);
972 return VM_FAULT_NOPAGE;
973 }
974
975 static void touch_pmd(struct vm_area_struct *vma, unsigned long addr,
976 pmd_t *pmd)
977 {
978 pmd_t _pmd;
979
980 /*
981 * We should set the dirty bit only for FOLL_WRITE but for now
982 * the dirty bit in the pmd is meaningless. And if the dirty
983 * bit will become meaningful and we'll only set it with
984 * FOLL_WRITE, an atomic set_bit will be required on the pmd to
985 * set the young bit, instead of the current set_pmd_at.
986 */
987 _pmd = pmd_mkyoung(pmd_mkdirty(*pmd));
988 if (pmdp_set_access_flags(vma, addr & HPAGE_PMD_MASK,
989 pmd, _pmd, 1))
990 update_mmu_cache_pmd(vma, addr, pmd);
991 }
992
993 struct page *follow_devmap_pmd(struct vm_area_struct *vma, unsigned long addr,
994 pmd_t *pmd, int flags)
995 {
996 unsigned long pfn = pmd_pfn(*pmd);
997 struct mm_struct *mm = vma->vm_mm;
998 struct dev_pagemap *pgmap;
999 struct page *page;
1000
1001 assert_spin_locked(pmd_lockptr(mm, pmd));
1002
1003 if (flags & FOLL_WRITE && !pmd_write(*pmd))
1004 return NULL;
1005
1006 if (pmd_present(*pmd) && pmd_devmap(*pmd))
1007 /* pass */;
1008 else
1009 return NULL;
1010
1011 if (flags & FOLL_TOUCH)
1012 touch_pmd(vma, addr, pmd);
1013
1014 /*
1015 * device mapped pages can only be returned if the
1016 * caller will manage the page reference count.
1017 */
1018 if (!(flags & FOLL_GET))
1019 return ERR_PTR(-EEXIST);
1020
1021 pfn += (addr & ~PMD_MASK) >> PAGE_SHIFT;
1022 pgmap = get_dev_pagemap(pfn, NULL);
1023 if (!pgmap)
1024 return ERR_PTR(-EFAULT);
1025 page = pfn_to_page(pfn);
1026 get_page(page);
1027 put_dev_pagemap(pgmap);
1028
1029 return page;
1030 }
1031
1032 int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1033 pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
1034 struct vm_area_struct *vma)
1035 {
1036 spinlock_t *dst_ptl, *src_ptl;
1037 struct page *src_page;
1038 pmd_t pmd;
1039 pgtable_t pgtable;
1040 int ret;
1041
1042 ret = -ENOMEM;
1043 pgtable = pte_alloc_one(dst_mm, addr);
1044 if (unlikely(!pgtable))
1045 goto out;
1046
1047 dst_ptl = pmd_lock(dst_mm, dst_pmd);
1048 src_ptl = pmd_lockptr(src_mm, src_pmd);
1049 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1050
1051 ret = -EAGAIN;
1052 pmd = *src_pmd;
1053 if (unlikely(!pmd_trans_huge(pmd) && !pmd_devmap(pmd))) {
1054 pte_free(dst_mm, pgtable);
1055 goto out_unlock;
1056 }
1057 /*
1058 * When page table lock is held, the huge zero pmd should not be
1059 * under splitting since we don't split the page itself, only pmd to
1060 * a page table.
1061 */
1062 if (is_huge_zero_pmd(pmd)) {
1063 struct page *zero_page;
1064 /*
1065 * get_huge_zero_page() will never allocate a new page here,
1066 * since we already have a zero page to copy. It just takes a
1067 * reference.
1068 */
1069 zero_page = get_huge_zero_page();
1070 set_huge_zero_page(pgtable, dst_mm, vma, addr, dst_pmd,
1071 zero_page);
1072 ret = 0;
1073 goto out_unlock;
1074 }
1075
1076 if (pmd_trans_huge(pmd)) {
1077 /* thp accounting separate from pmd_devmap accounting */
1078 src_page = pmd_page(pmd);
1079 VM_BUG_ON_PAGE(!PageHead(src_page), src_page);
1080 get_page(src_page);
1081 page_dup_rmap(src_page, true);
1082 add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
1083 atomic_long_inc(&dst_mm->nr_ptes);
1084 pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
1085 }
1086
1087 pmdp_set_wrprotect(src_mm, addr, src_pmd);
1088 pmd = pmd_mkold(pmd_wrprotect(pmd));
1089 set_pmd_at(dst_mm, addr, dst_pmd, pmd);
1090
1091 ret = 0;
1092 out_unlock:
1093 spin_unlock(src_ptl);
1094 spin_unlock(dst_ptl);
1095 out:
1096 return ret;
1097 }
1098
1099 void huge_pmd_set_accessed(struct mm_struct *mm,
1100 struct vm_area_struct *vma,
1101 unsigned long address,
1102 pmd_t *pmd, pmd_t orig_pmd,
1103 int dirty)
1104 {
1105 spinlock_t *ptl;
1106 pmd_t entry;
1107 unsigned long haddr;
1108
1109 ptl = pmd_lock(mm, pmd);
1110 if (unlikely(!pmd_same(*pmd, orig_pmd)))
1111 goto unlock;
1112
1113 entry = pmd_mkyoung(orig_pmd);
1114 haddr = address & HPAGE_PMD_MASK;
1115 if (pmdp_set_access_flags(vma, haddr, pmd, entry, dirty))
1116 update_mmu_cache_pmd(vma, address, pmd);
1117
1118 unlock:
1119 spin_unlock(ptl);
1120 }
1121
1122 static int do_huge_pmd_wp_page_fallback(struct mm_struct *mm,
1123 struct vm_area_struct *vma,
1124 unsigned long address,
1125 pmd_t *pmd, pmd_t orig_pmd,
1126 struct page *page,
1127 unsigned long haddr)
1128 {
1129 struct mem_cgroup *memcg;
1130 spinlock_t *ptl;
1131 pgtable_t pgtable;
1132 pmd_t _pmd;
1133 int ret = 0, i;
1134 struct page **pages;
1135 unsigned long mmun_start; /* For mmu_notifiers */
1136 unsigned long mmun_end; /* For mmu_notifiers */
1137
1138 pages = kmalloc(sizeof(struct page *) * HPAGE_PMD_NR,
1139 GFP_KERNEL);
1140 if (unlikely(!pages)) {
1141 ret |= VM_FAULT_OOM;
1142 goto out;
1143 }
1144
1145 for (i = 0; i < HPAGE_PMD_NR; i++) {
1146 pages[i] = alloc_page_vma_node(GFP_HIGHUSER_MOVABLE |
1147 __GFP_OTHER_NODE,
1148 vma, address, page_to_nid(page));
1149 if (unlikely(!pages[i] ||
1150 mem_cgroup_try_charge(pages[i], mm, GFP_KERNEL,
1151 &memcg, false))) {
1152 if (pages[i])
1153 put_page(pages[i]);
1154 while (--i >= 0) {
1155 memcg = (void *)page_private(pages[i]);
1156 set_page_private(pages[i], 0);
1157 mem_cgroup_cancel_charge(pages[i], memcg,
1158 false);
1159 put_page(pages[i]);
1160 }
1161 kfree(pages);
1162 ret |= VM_FAULT_OOM;
1163 goto out;
1164 }
1165 set_page_private(pages[i], (unsigned long)memcg);
1166 }
1167
1168 for (i = 0; i < HPAGE_PMD_NR; i++) {
1169 copy_user_highpage(pages[i], page + i,
1170 haddr + PAGE_SIZE * i, vma);
1171 __SetPageUptodate(pages[i]);
1172 cond_resched();
1173 }
1174
1175 mmun_start = haddr;
1176 mmun_end = haddr + HPAGE_PMD_SIZE;
1177 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1178
1179 ptl = pmd_lock(mm, pmd);
1180 if (unlikely(!pmd_same(*pmd, orig_pmd)))
1181 goto out_free_pages;
1182 VM_BUG_ON_PAGE(!PageHead(page), page);
1183
1184 pmdp_huge_clear_flush_notify(vma, haddr, pmd);
1185 /* leave pmd empty until pte is filled */
1186
1187 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
1188 pmd_populate(mm, &_pmd, pgtable);
1189
1190 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
1191 pte_t *pte, entry;
1192 entry = mk_pte(pages[i], vma->vm_page_prot);
1193 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1194 memcg = (void *)page_private(pages[i]);
1195 set_page_private(pages[i], 0);
1196 page_add_new_anon_rmap(pages[i], vma, haddr, false);
1197 mem_cgroup_commit_charge(pages[i], memcg, false, false);
1198 lru_cache_add_active_or_unevictable(pages[i], vma);
1199 pte = pte_offset_map(&_pmd, haddr);
1200 VM_BUG_ON(!pte_none(*pte));
1201 set_pte_at(mm, haddr, pte, entry);
1202 pte_unmap(pte);
1203 }
1204 kfree(pages);
1205
1206 smp_wmb(); /* make pte visible before pmd */
1207 pmd_populate(mm, pmd, pgtable);
1208 page_remove_rmap(page, true);
1209 spin_unlock(ptl);
1210
1211 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1212
1213 ret |= VM_FAULT_WRITE;
1214 put_page(page);
1215
1216 out:
1217 return ret;
1218
1219 out_free_pages:
1220 spin_unlock(ptl);
1221 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1222 for (i = 0; i < HPAGE_PMD_NR; i++) {
1223 memcg = (void *)page_private(pages[i]);
1224 set_page_private(pages[i], 0);
1225 mem_cgroup_cancel_charge(pages[i], memcg, false);
1226 put_page(pages[i]);
1227 }
1228 kfree(pages);
1229 goto out;
1230 }
1231
1232 int do_huge_pmd_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
1233 unsigned long address, pmd_t *pmd, pmd_t orig_pmd)
1234 {
1235 spinlock_t *ptl;
1236 int ret = 0;
1237 struct page *page = NULL, *new_page;
1238 struct mem_cgroup *memcg;
1239 unsigned long haddr;
1240 unsigned long mmun_start; /* For mmu_notifiers */
1241 unsigned long mmun_end; /* For mmu_notifiers */
1242 gfp_t huge_gfp; /* for allocation and charge */
1243
1244 ptl = pmd_lockptr(mm, pmd);
1245 VM_BUG_ON_VMA(!vma->anon_vma, vma);
1246 haddr = address & HPAGE_PMD_MASK;
1247 if (is_huge_zero_pmd(orig_pmd))
1248 goto alloc;
1249 spin_lock(ptl);
1250 if (unlikely(!pmd_same(*pmd, orig_pmd)))
1251 goto out_unlock;
1252
1253 page = pmd_page(orig_pmd);
1254 VM_BUG_ON_PAGE(!PageCompound(page) || !PageHead(page), page);
1255 /*
1256 * We can only reuse the page if nobody else maps the huge page or it's
1257 * part. We can do it by checking page_mapcount() on each sub-page, but
1258 * it's expensive.
1259 * The cheaper way is to check page_count() to be equal 1: every
1260 * mapcount takes page reference reference, so this way we can
1261 * guarantee, that the PMD is the only mapping.
1262 * This can give false negative if somebody pinned the page, but that's
1263 * fine.
1264 */
1265 if (page_mapcount(page) == 1 && page_count(page) == 1) {
1266 pmd_t entry;
1267 entry = pmd_mkyoung(orig_pmd);
1268 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1269 if (pmdp_set_access_flags(vma, haddr, pmd, entry, 1))
1270 update_mmu_cache_pmd(vma, address, pmd);
1271 ret |= VM_FAULT_WRITE;
1272 goto out_unlock;
1273 }
1274 get_page(page);
1275 spin_unlock(ptl);
1276 alloc:
1277 if (transparent_hugepage_enabled(vma) &&
1278 !transparent_hugepage_debug_cow()) {
1279 huge_gfp = alloc_hugepage_gfpmask(transparent_hugepage_defrag(vma), 0);
1280 new_page = alloc_hugepage_vma(huge_gfp, vma, haddr, HPAGE_PMD_ORDER);
1281 } else
1282 new_page = NULL;
1283
1284 if (likely(new_page)) {
1285 prep_transhuge_page(new_page);
1286 } else {
1287 if (!page) {
1288 split_huge_pmd(vma, pmd, address);
1289 ret |= VM_FAULT_FALLBACK;
1290 } else {
1291 ret = do_huge_pmd_wp_page_fallback(mm, vma, address,
1292 pmd, orig_pmd, page, haddr);
1293 if (ret & VM_FAULT_OOM) {
1294 split_huge_pmd(vma, pmd, address);
1295 ret |= VM_FAULT_FALLBACK;
1296 }
1297 put_page(page);
1298 }
1299 count_vm_event(THP_FAULT_FALLBACK);
1300 goto out;
1301 }
1302
1303 if (unlikely(mem_cgroup_try_charge(new_page, mm, huge_gfp, &memcg,
1304 true))) {
1305 put_page(new_page);
1306 if (page) {
1307 split_huge_pmd(vma, pmd, address);
1308 put_page(page);
1309 } else
1310 split_huge_pmd(vma, pmd, address);
1311 ret |= VM_FAULT_FALLBACK;
1312 count_vm_event(THP_FAULT_FALLBACK);
1313 goto out;
1314 }
1315
1316 count_vm_event(THP_FAULT_ALLOC);
1317
1318 if (!page)
1319 clear_huge_page(new_page, haddr, HPAGE_PMD_NR);
1320 else
1321 copy_user_huge_page(new_page, page, haddr, vma, HPAGE_PMD_NR);
1322 __SetPageUptodate(new_page);
1323
1324 mmun_start = haddr;
1325 mmun_end = haddr + HPAGE_PMD_SIZE;
1326 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1327
1328 spin_lock(ptl);
1329 if (page)
1330 put_page(page);
1331 if (unlikely(!pmd_same(*pmd, orig_pmd))) {
1332 spin_unlock(ptl);
1333 mem_cgroup_cancel_charge(new_page, memcg, true);
1334 put_page(new_page);
1335 goto out_mn;
1336 } else {
1337 pmd_t entry;
1338 entry = mk_huge_pmd(new_page, vma->vm_page_prot);
1339 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1340 pmdp_huge_clear_flush_notify(vma, haddr, pmd);
1341 page_add_new_anon_rmap(new_page, vma, haddr, true);
1342 mem_cgroup_commit_charge(new_page, memcg, false, true);
1343 lru_cache_add_active_or_unevictable(new_page, vma);
1344 set_pmd_at(mm, haddr, pmd, entry);
1345 update_mmu_cache_pmd(vma, address, pmd);
1346 if (!page) {
1347 add_mm_counter(mm, MM_ANONPAGES, HPAGE_PMD_NR);
1348 put_huge_zero_page();
1349 } else {
1350 VM_BUG_ON_PAGE(!PageHead(page), page);
1351 page_remove_rmap(page, true);
1352 put_page(page);
1353 }
1354 ret |= VM_FAULT_WRITE;
1355 }
1356 spin_unlock(ptl);
1357 out_mn:
1358 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1359 out:
1360 return ret;
1361 out_unlock:
1362 spin_unlock(ptl);
1363 return ret;
1364 }
1365
1366 struct page *follow_trans_huge_pmd(struct vm_area_struct *vma,
1367 unsigned long addr,
1368 pmd_t *pmd,
1369 unsigned int flags)
1370 {
1371 struct mm_struct *mm = vma->vm_mm;
1372 struct page *page = NULL;
1373
1374 assert_spin_locked(pmd_lockptr(mm, pmd));
1375
1376 if (flags & FOLL_WRITE && !pmd_write(*pmd))
1377 goto out;
1378
1379 /* Avoid dumping huge zero page */
1380 if ((flags & FOLL_DUMP) && is_huge_zero_pmd(*pmd))
1381 return ERR_PTR(-EFAULT);
1382
1383 /* Full NUMA hinting faults to serialise migration in fault paths */
1384 if ((flags & FOLL_NUMA) && pmd_protnone(*pmd))
1385 goto out;
1386
1387 page = pmd_page(*pmd);
1388 VM_BUG_ON_PAGE(!PageHead(page), page);
1389 if (flags & FOLL_TOUCH)
1390 touch_pmd(vma, addr, pmd);
1391 if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
1392 /*
1393 * We don't mlock() pte-mapped THPs. This way we can avoid
1394 * leaking mlocked pages into non-VM_LOCKED VMAs.
1395 *
1396 * In most cases the pmd is the only mapping of the page as we
1397 * break COW for the mlock() -- see gup_flags |= FOLL_WRITE for
1398 * writable private mappings in populate_vma_page_range().
1399 *
1400 * The only scenario when we have the page shared here is if we
1401 * mlocking read-only mapping shared over fork(). We skip
1402 * mlocking such pages.
1403 */
1404 if (compound_mapcount(page) == 1 && !PageDoubleMap(page) &&
1405 page->mapping && trylock_page(page)) {
1406 lru_add_drain();
1407 if (page->mapping)
1408 mlock_vma_page(page);
1409 unlock_page(page);
1410 }
1411 }
1412 page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
1413 VM_BUG_ON_PAGE(!PageCompound(page), page);
1414 if (flags & FOLL_GET)
1415 get_page(page);
1416
1417 out:
1418 return page;
1419 }
1420
1421 /* NUMA hinting page fault entry point for trans huge pmds */
1422 int do_huge_pmd_numa_page(struct mm_struct *mm, struct vm_area_struct *vma,
1423 unsigned long addr, pmd_t pmd, pmd_t *pmdp)
1424 {
1425 spinlock_t *ptl;
1426 struct anon_vma *anon_vma = NULL;
1427 struct page *page;
1428 unsigned long haddr = addr & HPAGE_PMD_MASK;
1429 int page_nid = -1, this_nid = numa_node_id();
1430 int target_nid, last_cpupid = -1;
1431 bool page_locked;
1432 bool migrated = false;
1433 bool was_writable;
1434 int flags = 0;
1435
1436 /* A PROT_NONE fault should not end up here */
1437 BUG_ON(!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)));
1438
1439 ptl = pmd_lock(mm, pmdp);
1440 if (unlikely(!pmd_same(pmd, *pmdp)))
1441 goto out_unlock;
1442
1443 /*
1444 * If there are potential migrations, wait for completion and retry
1445 * without disrupting NUMA hinting information. Do not relock and
1446 * check_same as the page may no longer be mapped.
1447 */
1448 if (unlikely(pmd_trans_migrating(*pmdp))) {
1449 page = pmd_page(*pmdp);
1450 spin_unlock(ptl);
1451 wait_on_page_locked(page);
1452 goto out;
1453 }
1454
1455 page = pmd_page(pmd);
1456 BUG_ON(is_huge_zero_page(page));
1457 page_nid = page_to_nid(page);
1458 last_cpupid = page_cpupid_last(page);
1459 count_vm_numa_event(NUMA_HINT_FAULTS);
1460 if (page_nid == this_nid) {
1461 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
1462 flags |= TNF_FAULT_LOCAL;
1463 }
1464
1465 /* See similar comment in do_numa_page for explanation */
1466 if (!(vma->vm_flags & VM_WRITE))
1467 flags |= TNF_NO_GROUP;
1468
1469 /*
1470 * Acquire the page lock to serialise THP migrations but avoid dropping
1471 * page_table_lock if at all possible
1472 */
1473 page_locked = trylock_page(page);
1474 target_nid = mpol_misplaced(page, vma, haddr);
1475 if (target_nid == -1) {
1476 /* If the page was locked, there are no parallel migrations */
1477 if (page_locked)
1478 goto clear_pmdnuma;
1479 }
1480
1481 /* Migration could have started since the pmd_trans_migrating check */
1482 if (!page_locked) {
1483 spin_unlock(ptl);
1484 wait_on_page_locked(page);
1485 page_nid = -1;
1486 goto out;
1487 }
1488
1489 /*
1490 * Page is misplaced. Page lock serialises migrations. Acquire anon_vma
1491 * to serialises splits
1492 */
1493 get_page(page);
1494 spin_unlock(ptl);
1495 anon_vma = page_lock_anon_vma_read(page);
1496
1497 /* Confirm the PMD did not change while page_table_lock was released */
1498 spin_lock(ptl);
1499 if (unlikely(!pmd_same(pmd, *pmdp))) {
1500 unlock_page(page);
1501 put_page(page);
1502 page_nid = -1;
1503 goto out_unlock;
1504 }
1505
1506 /* Bail if we fail to protect against THP splits for any reason */
1507 if (unlikely(!anon_vma)) {
1508 put_page(page);
1509 page_nid = -1;
1510 goto clear_pmdnuma;
1511 }
1512
1513 /*
1514 * Migrate the THP to the requested node, returns with page unlocked
1515 * and access rights restored.
1516 */
1517 spin_unlock(ptl);
1518 migrated = migrate_misplaced_transhuge_page(mm, vma,
1519 pmdp, pmd, addr, page, target_nid);
1520 if (migrated) {
1521 flags |= TNF_MIGRATED;
1522 page_nid = target_nid;
1523 } else
1524 flags |= TNF_MIGRATE_FAIL;
1525
1526 goto out;
1527 clear_pmdnuma:
1528 BUG_ON(!PageLocked(page));
1529 was_writable = pmd_write(pmd);
1530 pmd = pmd_modify(pmd, vma->vm_page_prot);
1531 pmd = pmd_mkyoung(pmd);
1532 if (was_writable)
1533 pmd = pmd_mkwrite(pmd);
1534 set_pmd_at(mm, haddr, pmdp, pmd);
1535 update_mmu_cache_pmd(vma, addr, pmdp);
1536 unlock_page(page);
1537 out_unlock:
1538 spin_unlock(ptl);
1539
1540 out:
1541 if (anon_vma)
1542 page_unlock_anon_vma_read(anon_vma);
1543
1544 if (page_nid != -1)
1545 task_numa_fault(last_cpupid, page_nid, HPAGE_PMD_NR, flags);
1546
1547 return 0;
1548 }
1549
1550 int madvise_free_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1551 pmd_t *pmd, unsigned long addr, unsigned long next)
1552
1553 {
1554 spinlock_t *ptl;
1555 pmd_t orig_pmd;
1556 struct page *page;
1557 struct mm_struct *mm = tlb->mm;
1558 int ret = 0;
1559
1560 ptl = pmd_trans_huge_lock(pmd, vma);
1561 if (!ptl)
1562 goto out_unlocked;
1563
1564 orig_pmd = *pmd;
1565 if (is_huge_zero_pmd(orig_pmd)) {
1566 ret = 1;
1567 goto out;
1568 }
1569
1570 page = pmd_page(orig_pmd);
1571 /*
1572 * If other processes are mapping this page, we couldn't discard
1573 * the page unless they all do MADV_FREE so let's skip the page.
1574 */
1575 if (page_mapcount(page) != 1)
1576 goto out;
1577
1578 if (!trylock_page(page))
1579 goto out;
1580
1581 /*
1582 * If user want to discard part-pages of THP, split it so MADV_FREE
1583 * will deactivate only them.
1584 */
1585 if (next - addr != HPAGE_PMD_SIZE) {
1586 get_page(page);
1587 spin_unlock(ptl);
1588 if (split_huge_page(page)) {
1589 put_page(page);
1590 unlock_page(page);
1591 goto out_unlocked;
1592 }
1593 put_page(page);
1594 unlock_page(page);
1595 ret = 1;
1596 goto out_unlocked;
1597 }
1598
1599 if (PageDirty(page))
1600 ClearPageDirty(page);
1601 unlock_page(page);
1602
1603 if (PageActive(page))
1604 deactivate_page(page);
1605
1606 if (pmd_young(orig_pmd) || pmd_dirty(orig_pmd)) {
1607 orig_pmd = pmdp_huge_get_and_clear_full(tlb->mm, addr, pmd,
1608 tlb->fullmm);
1609 orig_pmd = pmd_mkold(orig_pmd);
1610 orig_pmd = pmd_mkclean(orig_pmd);
1611
1612 set_pmd_at(mm, addr, pmd, orig_pmd);
1613 tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1614 }
1615 ret = 1;
1616 out:
1617 spin_unlock(ptl);
1618 out_unlocked:
1619 return ret;
1620 }
1621
1622 int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1623 pmd_t *pmd, unsigned long addr)
1624 {
1625 pmd_t orig_pmd;
1626 spinlock_t *ptl;
1627
1628 ptl = __pmd_trans_huge_lock(pmd, vma);
1629 if (!ptl)
1630 return 0;
1631 /*
1632 * For architectures like ppc64 we look at deposited pgtable
1633 * when calling pmdp_huge_get_and_clear. So do the
1634 * pgtable_trans_huge_withdraw after finishing pmdp related
1635 * operations.
1636 */
1637 orig_pmd = pmdp_huge_get_and_clear_full(tlb->mm, addr, pmd,
1638 tlb->fullmm);
1639 tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1640 if (vma_is_dax(vma)) {
1641 spin_unlock(ptl);
1642 if (is_huge_zero_pmd(orig_pmd))
1643 put_huge_zero_page();
1644 } else if (is_huge_zero_pmd(orig_pmd)) {
1645 pte_free(tlb->mm, pgtable_trans_huge_withdraw(tlb->mm, pmd));
1646 atomic_long_dec(&tlb->mm->nr_ptes);
1647 spin_unlock(ptl);
1648 put_huge_zero_page();
1649 } else {
1650 struct page *page = pmd_page(orig_pmd);
1651 page_remove_rmap(page, true);
1652 VM_BUG_ON_PAGE(page_mapcount(page) < 0, page);
1653 add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
1654 VM_BUG_ON_PAGE(!PageHead(page), page);
1655 pte_free(tlb->mm, pgtable_trans_huge_withdraw(tlb->mm, pmd));
1656 atomic_long_dec(&tlb->mm->nr_ptes);
1657 spin_unlock(ptl);
1658 tlb_remove_page(tlb, page);
1659 }
1660 return 1;
1661 }
1662
1663 bool move_huge_pmd(struct vm_area_struct *vma, struct vm_area_struct *new_vma,
1664 unsigned long old_addr,
1665 unsigned long new_addr, unsigned long old_end,
1666 pmd_t *old_pmd, pmd_t *new_pmd)
1667 {
1668 spinlock_t *old_ptl, *new_ptl;
1669 pmd_t pmd;
1670
1671 struct mm_struct *mm = vma->vm_mm;
1672
1673 if ((old_addr & ~HPAGE_PMD_MASK) ||
1674 (new_addr & ~HPAGE_PMD_MASK) ||
1675 old_end - old_addr < HPAGE_PMD_SIZE ||
1676 (new_vma->vm_flags & VM_NOHUGEPAGE))
1677 return false;
1678
1679 /*
1680 * The destination pmd shouldn't be established, free_pgtables()
1681 * should have release it.
1682 */
1683 if (WARN_ON(!pmd_none(*new_pmd))) {
1684 VM_BUG_ON(pmd_trans_huge(*new_pmd));
1685 return false;
1686 }
1687
1688 /*
1689 * We don't have to worry about the ordering of src and dst
1690 * ptlocks because exclusive mmap_sem prevents deadlock.
1691 */
1692 old_ptl = __pmd_trans_huge_lock(old_pmd, vma);
1693 if (old_ptl) {
1694 new_ptl = pmd_lockptr(mm, new_pmd);
1695 if (new_ptl != old_ptl)
1696 spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
1697 pmd = pmdp_huge_get_and_clear(mm, old_addr, old_pmd);
1698 VM_BUG_ON(!pmd_none(*new_pmd));
1699
1700 if (pmd_move_must_withdraw(new_ptl, old_ptl)) {
1701 pgtable_t pgtable;
1702 pgtable = pgtable_trans_huge_withdraw(mm, old_pmd);
1703 pgtable_trans_huge_deposit(mm, new_pmd, pgtable);
1704 }
1705 set_pmd_at(mm, new_addr, new_pmd, pmd_mksoft_dirty(pmd));
1706 if (new_ptl != old_ptl)
1707 spin_unlock(new_ptl);
1708 spin_unlock(old_ptl);
1709 return true;
1710 }
1711 return false;
1712 }
1713
1714 /*
1715 * Returns
1716 * - 0 if PMD could not be locked
1717 * - 1 if PMD was locked but protections unchange and TLB flush unnecessary
1718 * - HPAGE_PMD_NR is protections changed and TLB flush necessary
1719 */
1720 int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
1721 unsigned long addr, pgprot_t newprot, int prot_numa)
1722 {
1723 struct mm_struct *mm = vma->vm_mm;
1724 spinlock_t *ptl;
1725 int ret = 0;
1726
1727 ptl = __pmd_trans_huge_lock(pmd, vma);
1728 if (ptl) {
1729 pmd_t entry;
1730 bool preserve_write = prot_numa && pmd_write(*pmd);
1731 ret = 1;
1732
1733 /*
1734 * Avoid trapping faults against the zero page. The read-only
1735 * data is likely to be read-cached on the local CPU and
1736 * local/remote hits to the zero page are not interesting.
1737 */
1738 if (prot_numa && is_huge_zero_pmd(*pmd)) {
1739 spin_unlock(ptl);
1740 return ret;
1741 }
1742
1743 if (!prot_numa || !pmd_protnone(*pmd)) {
1744 entry = pmdp_huge_get_and_clear_notify(mm, addr, pmd);
1745 entry = pmd_modify(entry, newprot);
1746 if (preserve_write)
1747 entry = pmd_mkwrite(entry);
1748 ret = HPAGE_PMD_NR;
1749 set_pmd_at(mm, addr, pmd, entry);
1750 BUG_ON(!preserve_write && pmd_write(entry));
1751 }
1752 spin_unlock(ptl);
1753 }
1754
1755 return ret;
1756 }
1757
1758 /*
1759 * Returns true if a given pmd maps a thp, false otherwise.
1760 *
1761 * Note that if it returns true, this routine returns without unlocking page
1762 * table lock. So callers must unlock it.
1763 */
1764 spinlock_t *__pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma)
1765 {
1766 spinlock_t *ptl;
1767 ptl = pmd_lock(vma->vm_mm, pmd);
1768 if (likely(pmd_trans_huge(*pmd) || pmd_devmap(*pmd)))
1769 return ptl;
1770 spin_unlock(ptl);
1771 return NULL;
1772 }
1773
1774 #define VM_NO_THP (VM_SPECIAL | VM_HUGETLB | VM_SHARED | VM_MAYSHARE)
1775
1776 int hugepage_madvise(struct vm_area_struct *vma,
1777 unsigned long *vm_flags, int advice)
1778 {
1779 switch (advice) {
1780 case MADV_HUGEPAGE:
1781 #ifdef CONFIG_S390
1782 /*
1783 * qemu blindly sets MADV_HUGEPAGE on all allocations, but s390
1784 * can't handle this properly after s390_enable_sie, so we simply
1785 * ignore the madvise to prevent qemu from causing a SIGSEGV.
1786 */
1787 if (mm_has_pgste(vma->vm_mm))
1788 return 0;
1789 #endif
1790 /*
1791 * Be somewhat over-protective like KSM for now!
1792 */
1793 if (*vm_flags & VM_NO_THP)
1794 return -EINVAL;
1795 *vm_flags &= ~VM_NOHUGEPAGE;
1796 *vm_flags |= VM_HUGEPAGE;
1797 /*
1798 * If the vma become good for khugepaged to scan,
1799 * register it here without waiting a page fault that
1800 * may not happen any time soon.
1801 */
1802 if (unlikely(khugepaged_enter_vma_merge(vma, *vm_flags)))
1803 return -ENOMEM;
1804 break;
1805 case MADV_NOHUGEPAGE:
1806 /*
1807 * Be somewhat over-protective like KSM for now!
1808 */
1809 if (*vm_flags & VM_NO_THP)
1810 return -EINVAL;
1811 *vm_flags &= ~VM_HUGEPAGE;
1812 *vm_flags |= VM_NOHUGEPAGE;
1813 /*
1814 * Setting VM_NOHUGEPAGE will prevent khugepaged from scanning
1815 * this vma even if we leave the mm registered in khugepaged if
1816 * it got registered before VM_NOHUGEPAGE was set.
1817 */
1818 break;
1819 }
1820
1821 return 0;
1822 }
1823
1824 static int __init khugepaged_slab_init(void)
1825 {
1826 mm_slot_cache = kmem_cache_create("khugepaged_mm_slot",
1827 sizeof(struct mm_slot),
1828 __alignof__(struct mm_slot), 0, NULL);
1829 if (!mm_slot_cache)
1830 return -ENOMEM;
1831
1832 return 0;
1833 }
1834
1835 static void __init khugepaged_slab_exit(void)
1836 {
1837 kmem_cache_destroy(mm_slot_cache);
1838 }
1839
1840 static inline struct mm_slot *alloc_mm_slot(void)
1841 {
1842 if (!mm_slot_cache) /* initialization failed */
1843 return NULL;
1844 return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
1845 }
1846
1847 static inline void free_mm_slot(struct mm_slot *mm_slot)
1848 {
1849 kmem_cache_free(mm_slot_cache, mm_slot);
1850 }
1851
1852 static struct mm_slot *get_mm_slot(struct mm_struct *mm)
1853 {
1854 struct mm_slot *mm_slot;
1855
1856 hash_for_each_possible(mm_slots_hash, mm_slot, hash, (unsigned long)mm)
1857 if (mm == mm_slot->mm)
1858 return mm_slot;
1859
1860 return NULL;
1861 }
1862
1863 static void insert_to_mm_slots_hash(struct mm_struct *mm,
1864 struct mm_slot *mm_slot)
1865 {
1866 mm_slot->mm = mm;
1867 hash_add(mm_slots_hash, &mm_slot->hash, (long)mm);
1868 }
1869
1870 static inline int khugepaged_test_exit(struct mm_struct *mm)
1871 {
1872 return atomic_read(&mm->mm_users) == 0;
1873 }
1874
1875 int __khugepaged_enter(struct mm_struct *mm)
1876 {
1877 struct mm_slot *mm_slot;
1878 int wakeup;
1879
1880 mm_slot = alloc_mm_slot();
1881 if (!mm_slot)
1882 return -ENOMEM;
1883
1884 /* __khugepaged_exit() must not run from under us */
1885 VM_BUG_ON_MM(khugepaged_test_exit(mm), mm);
1886 if (unlikely(test_and_set_bit(MMF_VM_HUGEPAGE, &mm->flags))) {
1887 free_mm_slot(mm_slot);
1888 return 0;
1889 }
1890
1891 spin_lock(&khugepaged_mm_lock);
1892 insert_to_mm_slots_hash(mm, mm_slot);
1893 /*
1894 * Insert just behind the scanning cursor, to let the area settle
1895 * down a little.
1896 */
1897 wakeup = list_empty(&khugepaged_scan.mm_head);
1898 list_add_tail(&mm_slot->mm_node, &khugepaged_scan.mm_head);
1899 spin_unlock(&khugepaged_mm_lock);
1900
1901 atomic_inc(&mm->mm_count);
1902 if (wakeup)
1903 wake_up_interruptible(&khugepaged_wait);
1904
1905 return 0;
1906 }
1907
1908 int khugepaged_enter_vma_merge(struct vm_area_struct *vma,
1909 unsigned long vm_flags)
1910 {
1911 unsigned long hstart, hend;
1912 if (!vma->anon_vma)
1913 /*
1914 * Not yet faulted in so we will register later in the
1915 * page fault if needed.
1916 */
1917 return 0;
1918 if (vma->vm_ops)
1919 /* khugepaged not yet working on file or special mappings */
1920 return 0;
1921 VM_BUG_ON_VMA(vm_flags & VM_NO_THP, vma);
1922 hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
1923 hend = vma->vm_end & HPAGE_PMD_MASK;
1924 if (hstart < hend)
1925 return khugepaged_enter(vma, vm_flags);
1926 return 0;
1927 }
1928
1929 void __khugepaged_exit(struct mm_struct *mm)
1930 {
1931 struct mm_slot *mm_slot;
1932 int free = 0;
1933
1934 spin_lock(&khugepaged_mm_lock);
1935 mm_slot = get_mm_slot(mm);
1936 if (mm_slot && khugepaged_scan.mm_slot != mm_slot) {
1937 hash_del(&mm_slot->hash);
1938 list_del(&mm_slot->mm_node);
1939 free = 1;
1940 }
1941 spin_unlock(&khugepaged_mm_lock);
1942
1943 if (free) {
1944 clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
1945 free_mm_slot(mm_slot);
1946 mmdrop(mm);
1947 } else if (mm_slot) {
1948 /*
1949 * This is required to serialize against
1950 * khugepaged_test_exit() (which is guaranteed to run
1951 * under mmap sem read mode). Stop here (after we
1952 * return all pagetables will be destroyed) until
1953 * khugepaged has finished working on the pagetables
1954 * under the mmap_sem.
1955 */
1956 down_write(&mm->mmap_sem);
1957 up_write(&mm->mmap_sem);
1958 }
1959 }
1960
1961 static void release_pte_page(struct page *page)
1962 {
1963 /* 0 stands for page_is_file_cache(page) == false */
1964 dec_zone_page_state(page, NR_ISOLATED_ANON + 0);
1965 unlock_page(page);
1966 putback_lru_page(page);
1967 }
1968
1969 static void release_pte_pages(pte_t *pte, pte_t *_pte)
1970 {
1971 while (--_pte >= pte) {
1972 pte_t pteval = *_pte;
1973 if (!pte_none(pteval) && !is_zero_pfn(pte_pfn(pteval)))
1974 release_pte_page(pte_page(pteval));
1975 }
1976 }
1977
1978 static int __collapse_huge_page_isolate(struct vm_area_struct *vma,
1979 unsigned long address,
1980 pte_t *pte)
1981 {
1982 struct page *page = NULL;
1983 pte_t *_pte;
1984 int none_or_zero = 0, result = 0;
1985 bool referenced = false, writable = false;
1986
1987 for (_pte = pte; _pte < pte+HPAGE_PMD_NR;
1988 _pte++, address += PAGE_SIZE) {
1989 pte_t pteval = *_pte;
1990 if (pte_none(pteval) || (pte_present(pteval) &&
1991 is_zero_pfn(pte_pfn(pteval)))) {
1992 if (!userfaultfd_armed(vma) &&
1993 ++none_or_zero <= khugepaged_max_ptes_none) {
1994 continue;
1995 } else {
1996 result = SCAN_EXCEED_NONE_PTE;
1997 goto out;
1998 }
1999 }
2000 if (!pte_present(pteval)) {
2001 result = SCAN_PTE_NON_PRESENT;
2002 goto out;
2003 }
2004 page = vm_normal_page(vma, address, pteval);
2005 if (unlikely(!page)) {
2006 result = SCAN_PAGE_NULL;
2007 goto out;
2008 }
2009
2010 VM_BUG_ON_PAGE(PageCompound(page), page);
2011 VM_BUG_ON_PAGE(!PageAnon(page), page);
2012 VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
2013
2014 /*
2015 * We can do it before isolate_lru_page because the
2016 * page can't be freed from under us. NOTE: PG_lock
2017 * is needed to serialize against split_huge_page
2018 * when invoked from the VM.
2019 */
2020 if (!trylock_page(page)) {
2021 result = SCAN_PAGE_LOCK;
2022 goto out;
2023 }
2024
2025 /*
2026 * cannot use mapcount: can't collapse if there's a gup pin.
2027 * The page must only be referenced by the scanned process
2028 * and page swap cache.
2029 */
2030 if (page_count(page) != 1 + !!PageSwapCache(page)) {
2031 unlock_page(page);
2032 result = SCAN_PAGE_COUNT;
2033 goto out;
2034 }
2035 if (pte_write(pteval)) {
2036 writable = true;
2037 } else {
2038 if (PageSwapCache(page) && !reuse_swap_page(page)) {
2039 unlock_page(page);
2040 result = SCAN_SWAP_CACHE_PAGE;
2041 goto out;
2042 }
2043 /*
2044 * Page is not in the swap cache. It can be collapsed
2045 * into a THP.
2046 */
2047 }
2048
2049 /*
2050 * Isolate the page to avoid collapsing an hugepage
2051 * currently in use by the VM.
2052 */
2053 if (isolate_lru_page(page)) {
2054 unlock_page(page);
2055 result = SCAN_DEL_PAGE_LRU;
2056 goto out;
2057 }
2058 /* 0 stands for page_is_file_cache(page) == false */
2059 inc_zone_page_state(page, NR_ISOLATED_ANON + 0);
2060 VM_BUG_ON_PAGE(!PageLocked(page), page);
2061 VM_BUG_ON_PAGE(PageLRU(page), page);
2062
2063 /* If there is no mapped pte young don't collapse the page */
2064 if (pte_young(pteval) ||
2065 page_is_young(page) || PageReferenced(page) ||
2066 mmu_notifier_test_young(vma->vm_mm, address))
2067 referenced = true;
2068 }
2069 if (likely(writable)) {
2070 if (likely(referenced)) {
2071 result = SCAN_SUCCEED;
2072 trace_mm_collapse_huge_page_isolate(page, none_or_zero,
2073 referenced, writable, result);
2074 return 1;
2075 }
2076 } else {
2077 result = SCAN_PAGE_RO;
2078 }
2079
2080 out:
2081 release_pte_pages(pte, _pte);
2082 trace_mm_collapse_huge_page_isolate(page, none_or_zero,
2083 referenced, writable, result);
2084 return 0;
2085 }
2086
2087 static void __collapse_huge_page_copy(pte_t *pte, struct page *page,
2088 struct vm_area_struct *vma,
2089 unsigned long address,
2090 spinlock_t *ptl)
2091 {
2092 pte_t *_pte;
2093 for (_pte = pte; _pte < pte+HPAGE_PMD_NR; _pte++) {
2094 pte_t pteval = *_pte;
2095 struct page *src_page;
2096
2097 if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) {
2098 clear_user_highpage(page, address);
2099 add_mm_counter(vma->vm_mm, MM_ANONPAGES, 1);
2100 if (is_zero_pfn(pte_pfn(pteval))) {
2101 /*
2102 * ptl mostly unnecessary.
2103 */
2104 spin_lock(ptl);
2105 /*
2106 * paravirt calls inside pte_clear here are
2107 * superfluous.
2108 */
2109 pte_clear(vma->vm_mm, address, _pte);
2110 spin_unlock(ptl);
2111 }
2112 } else {
2113 src_page = pte_page(pteval);
2114 copy_user_highpage(page, src_page, address, vma);
2115 VM_BUG_ON_PAGE(page_mapcount(src_page) != 1, src_page);
2116 release_pte_page(src_page);
2117 /*
2118 * ptl mostly unnecessary, but preempt has to
2119 * be disabled to update the per-cpu stats
2120 * inside page_remove_rmap().
2121 */
2122 spin_lock(ptl);
2123 /*
2124 * paravirt calls inside pte_clear here are
2125 * superfluous.
2126 */
2127 pte_clear(vma->vm_mm, address, _pte);
2128 page_remove_rmap(src_page, false);
2129 spin_unlock(ptl);
2130 free_page_and_swap_cache(src_page);
2131 }
2132
2133 address += PAGE_SIZE;
2134 page++;
2135 }
2136 }
2137
2138 static void khugepaged_alloc_sleep(void)
2139 {
2140 DEFINE_WAIT(wait);
2141
2142 add_wait_queue(&khugepaged_wait, &wait);
2143 freezable_schedule_timeout_interruptible(
2144 msecs_to_jiffies(khugepaged_alloc_sleep_millisecs));
2145 remove_wait_queue(&khugepaged_wait, &wait);
2146 }
2147
2148 static int khugepaged_node_load[MAX_NUMNODES];
2149
2150 static bool khugepaged_scan_abort(int nid)
2151 {
2152 int i;
2153
2154 /*
2155 * If zone_reclaim_mode is disabled, then no extra effort is made to
2156 * allocate memory locally.
2157 */
2158 if (!zone_reclaim_mode)
2159 return false;
2160
2161 /* If there is a count for this node already, it must be acceptable */
2162 if (khugepaged_node_load[nid])
2163 return false;
2164
2165 for (i = 0; i < MAX_NUMNODES; i++) {
2166 if (!khugepaged_node_load[i])
2167 continue;
2168 if (node_distance(nid, i) > RECLAIM_DISTANCE)
2169 return true;
2170 }
2171 return false;
2172 }
2173
2174 #ifdef CONFIG_NUMA
2175 static int khugepaged_find_target_node(void)
2176 {
2177 static int last_khugepaged_target_node = NUMA_NO_NODE;
2178 int nid, target_node = 0, max_value = 0;
2179
2180 /* find first node with max normal pages hit */
2181 for (nid = 0; nid < MAX_NUMNODES; nid++)
2182 if (khugepaged_node_load[nid] > max_value) {
2183 max_value = khugepaged_node_load[nid];
2184 target_node = nid;
2185 }
2186
2187 /* do some balance if several nodes have the same hit record */
2188 if (target_node <= last_khugepaged_target_node)
2189 for (nid = last_khugepaged_target_node + 1; nid < MAX_NUMNODES;
2190 nid++)
2191 if (max_value == khugepaged_node_load[nid]) {
2192 target_node = nid;
2193 break;
2194 }
2195
2196 last_khugepaged_target_node = target_node;
2197 return target_node;
2198 }
2199
2200 static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
2201 {
2202 if (IS_ERR(*hpage)) {
2203 if (!*wait)
2204 return false;
2205
2206 *wait = false;
2207 *hpage = NULL;
2208 khugepaged_alloc_sleep();
2209 } else if (*hpage) {
2210 put_page(*hpage);
2211 *hpage = NULL;
2212 }
2213
2214 return true;
2215 }
2216
2217 static struct page *
2218 khugepaged_alloc_page(struct page **hpage, gfp_t gfp, struct mm_struct *mm,
2219 unsigned long address, int node)
2220 {
2221 VM_BUG_ON_PAGE(*hpage, *hpage);
2222
2223 /*
2224 * Before allocating the hugepage, release the mmap_sem read lock.
2225 * The allocation can take potentially a long time if it involves
2226 * sync compaction, and we do not need to hold the mmap_sem during
2227 * that. We will recheck the vma after taking it again in write mode.
2228 */
2229 up_read(&mm->mmap_sem);
2230
2231 *hpage = __alloc_pages_node(node, gfp, HPAGE_PMD_ORDER);
2232 if (unlikely(!*hpage)) {
2233 count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
2234 *hpage = ERR_PTR(-ENOMEM);
2235 return NULL;
2236 }
2237
2238 prep_transhuge_page(*hpage);
2239 count_vm_event(THP_COLLAPSE_ALLOC);
2240 return *hpage;
2241 }
2242 #else
2243 static int khugepaged_find_target_node(void)
2244 {
2245 return 0;
2246 }
2247
2248 static inline struct page *alloc_hugepage(int defrag)
2249 {
2250 struct page *page;
2251
2252 page = alloc_pages(alloc_hugepage_gfpmask(defrag, 0), HPAGE_PMD_ORDER);
2253 if (page)
2254 prep_transhuge_page(page);
2255 return page;
2256 }
2257
2258 static struct page *khugepaged_alloc_hugepage(bool *wait)
2259 {
2260 struct page *hpage;
2261
2262 do {
2263 hpage = alloc_hugepage(khugepaged_defrag());
2264 if (!hpage) {
2265 count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
2266 if (!*wait)
2267 return NULL;
2268
2269 *wait = false;
2270 khugepaged_alloc_sleep();
2271 } else
2272 count_vm_event(THP_COLLAPSE_ALLOC);
2273 } while (unlikely(!hpage) && likely(khugepaged_enabled()));
2274
2275 return hpage;
2276 }
2277
2278 static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
2279 {
2280 if (!*hpage)
2281 *hpage = khugepaged_alloc_hugepage(wait);
2282
2283 if (unlikely(!*hpage))
2284 return false;
2285
2286 return true;
2287 }
2288
2289 static struct page *
2290 khugepaged_alloc_page(struct page **hpage, gfp_t gfp, struct mm_struct *mm,
2291 unsigned long address, int node)
2292 {
2293 up_read(&mm->mmap_sem);
2294 VM_BUG_ON(!*hpage);
2295
2296 return *hpage;
2297 }
2298 #endif
2299
2300 static bool hugepage_vma_check(struct vm_area_struct *vma)
2301 {
2302 if ((!(vma->vm_flags & VM_HUGEPAGE) && !khugepaged_always()) ||
2303 (vma->vm_flags & VM_NOHUGEPAGE))
2304 return false;
2305 if (!vma->anon_vma || vma->vm_ops)
2306 return false;
2307 if (is_vma_temporary_stack(vma))
2308 return false;
2309 VM_BUG_ON_VMA(vma->vm_flags & VM_NO_THP, vma);
2310 return true;
2311 }
2312
2313 static void collapse_huge_page(struct mm_struct *mm,
2314 unsigned long address,
2315 struct page **hpage,
2316 struct vm_area_struct *vma,
2317 int node)
2318 {
2319 pmd_t *pmd, _pmd;
2320 pte_t *pte;
2321 pgtable_t pgtable;
2322 struct page *new_page;
2323 spinlock_t *pmd_ptl, *pte_ptl;
2324 int isolated = 0, result = 0;
2325 unsigned long hstart, hend;
2326 struct mem_cgroup *memcg;
2327 unsigned long mmun_start; /* For mmu_notifiers */
2328 unsigned long mmun_end; /* For mmu_notifiers */
2329 gfp_t gfp;
2330
2331 VM_BUG_ON(address & ~HPAGE_PMD_MASK);
2332
2333 /* Only allocate from the target node */
2334 gfp = alloc_hugepage_gfpmask(khugepaged_defrag(), __GFP_OTHER_NODE) |
2335 __GFP_THISNODE;
2336
2337 /* release the mmap_sem read lock. */
2338 new_page = khugepaged_alloc_page(hpage, gfp, mm, address, node);
2339 if (!new_page) {
2340 result = SCAN_ALLOC_HUGE_PAGE_FAIL;
2341 goto out_nolock;
2342 }
2343
2344 if (unlikely(mem_cgroup_try_charge(new_page, mm, gfp, &memcg, true))) {
2345 result = SCAN_CGROUP_CHARGE_FAIL;
2346 goto out_nolock;
2347 }
2348
2349 /*
2350 * Prevent all access to pagetables with the exception of
2351 * gup_fast later hanlded by the ptep_clear_flush and the VM
2352 * handled by the anon_vma lock + PG_lock.
2353 */
2354 down_write(&mm->mmap_sem);
2355 if (unlikely(khugepaged_test_exit(mm))) {
2356 result = SCAN_ANY_PROCESS;
2357 goto out;
2358 }
2359
2360 vma = find_vma(mm, address);
2361 if (!vma) {
2362 result = SCAN_VMA_NULL;
2363 goto out;
2364 }
2365 hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
2366 hend = vma->vm_end & HPAGE_PMD_MASK;
2367 if (address < hstart || address + HPAGE_PMD_SIZE > hend) {
2368 result = SCAN_ADDRESS_RANGE;
2369 goto out;
2370 }
2371 if (!hugepage_vma_check(vma)) {
2372 result = SCAN_VMA_CHECK;
2373 goto out;
2374 }
2375 pmd = mm_find_pmd(mm, address);
2376 if (!pmd) {
2377 result = SCAN_PMD_NULL;
2378 goto out;
2379 }
2380
2381 anon_vma_lock_write(vma->anon_vma);
2382
2383 pte = pte_offset_map(pmd, address);
2384 pte_ptl = pte_lockptr(mm, pmd);
2385
2386 mmun_start = address;
2387 mmun_end = address + HPAGE_PMD_SIZE;
2388 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2389 pmd_ptl = pmd_lock(mm, pmd); /* probably unnecessary */
2390 /*
2391 * After this gup_fast can't run anymore. This also removes
2392 * any huge TLB entry from the CPU so we won't allow
2393 * huge and small TLB entries for the same virtual address
2394 * to avoid the risk of CPU bugs in that area.
2395 */
2396 _pmd = pmdp_collapse_flush(vma, address, pmd);
2397 spin_unlock(pmd_ptl);
2398 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2399
2400 spin_lock(pte_ptl);
2401 isolated = __collapse_huge_page_isolate(vma, address, pte);
2402 spin_unlock(pte_ptl);
2403
2404 if (unlikely(!isolated)) {
2405 pte_unmap(pte);
2406 spin_lock(pmd_ptl);
2407 BUG_ON(!pmd_none(*pmd));
2408 /*
2409 * We can only use set_pmd_at when establishing
2410 * hugepmds and never for establishing regular pmds that
2411 * points to regular pagetables. Use pmd_populate for that
2412 */
2413 pmd_populate(mm, pmd, pmd_pgtable(_pmd));
2414 spin_unlock(pmd_ptl);
2415 anon_vma_unlock_write(vma->anon_vma);
2416 result = SCAN_FAIL;
2417 goto out;
2418 }
2419
2420 /*
2421 * All pages are isolated and locked so anon_vma rmap
2422 * can't run anymore.
2423 */
2424 anon_vma_unlock_write(vma->anon_vma);
2425
2426 __collapse_huge_page_copy(pte, new_page, vma, address, pte_ptl);
2427 pte_unmap(pte);
2428 __SetPageUptodate(new_page);
2429 pgtable = pmd_pgtable(_pmd);
2430
2431 _pmd = mk_huge_pmd(new_page, vma->vm_page_prot);
2432 _pmd = maybe_pmd_mkwrite(pmd_mkdirty(_pmd), vma);
2433
2434 /*
2435 * spin_lock() below is not the equivalent of smp_wmb(), so
2436 * this is needed to avoid the copy_huge_page writes to become
2437 * visible after the set_pmd_at() write.
2438 */
2439 smp_wmb();
2440
2441 spin_lock(pmd_ptl);
2442 BUG_ON(!pmd_none(*pmd));
2443 page_add_new_anon_rmap(new_page, vma, address, true);
2444 mem_cgroup_commit_charge(new_page, memcg, false, true);
2445 lru_cache_add_active_or_unevictable(new_page, vma);
2446 pgtable_trans_huge_deposit(mm, pmd, pgtable);
2447 set_pmd_at(mm, address, pmd, _pmd);
2448 update_mmu_cache_pmd(vma, address, pmd);
2449 spin_unlock(pmd_ptl);
2450
2451 *hpage = NULL;
2452
2453 khugepaged_pages_collapsed++;
2454 result = SCAN_SUCCEED;
2455 out_up_write:
2456 up_write(&mm->mmap_sem);
2457 trace_mm_collapse_huge_page(mm, isolated, result);
2458 return;
2459
2460 out_nolock:
2461 trace_mm_collapse_huge_page(mm, isolated, result);
2462 return;
2463 out:
2464 mem_cgroup_cancel_charge(new_page, memcg, true);
2465 goto out_up_write;
2466 }
2467
2468 static int khugepaged_scan_pmd(struct mm_struct *mm,
2469 struct vm_area_struct *vma,
2470 unsigned long address,
2471 struct page **hpage)
2472 {
2473 pmd_t *pmd;
2474 pte_t *pte, *_pte;
2475 int ret = 0, none_or_zero = 0, result = 0;
2476 struct page *page = NULL;
2477 unsigned long _address;
2478 spinlock_t *ptl;
2479 int node = NUMA_NO_NODE;
2480 bool writable = false, referenced = false;
2481
2482 VM_BUG_ON(address & ~HPAGE_PMD_MASK);
2483
2484 pmd = mm_find_pmd(mm, address);
2485 if (!pmd) {
2486 result = SCAN_PMD_NULL;
2487 goto out;
2488 }
2489
2490 memset(khugepaged_node_load, 0, sizeof(khugepaged_node_load));
2491 pte = pte_offset_map_lock(mm, pmd, address, &ptl);
2492 for (_address = address, _pte = pte; _pte < pte+HPAGE_PMD_NR;
2493 _pte++, _address += PAGE_SIZE) {
2494 pte_t pteval = *_pte;
2495 if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) {
2496 if (!userfaultfd_armed(vma) &&
2497 ++none_or_zero <= khugepaged_max_ptes_none) {
2498 continue;
2499 } else {
2500 result = SCAN_EXCEED_NONE_PTE;
2501 goto out_unmap;
2502 }
2503 }
2504 if (!pte_present(pteval)) {
2505 result = SCAN_PTE_NON_PRESENT;
2506 goto out_unmap;
2507 }
2508 if (pte_write(pteval))
2509 writable = true;
2510
2511 page = vm_normal_page(vma, _address, pteval);
2512 if (unlikely(!page)) {
2513 result = SCAN_PAGE_NULL;
2514 goto out_unmap;
2515 }
2516
2517 /* TODO: teach khugepaged to collapse THP mapped with pte */
2518 if (PageCompound(page)) {
2519 result = SCAN_PAGE_COMPOUND;
2520 goto out_unmap;
2521 }
2522
2523 /*
2524 * Record which node the original page is from and save this
2525 * information to khugepaged_node_load[].
2526 * Khupaged will allocate hugepage from the node has the max
2527 * hit record.
2528 */
2529 node = page_to_nid(page);
2530 if (khugepaged_scan_abort(node)) {
2531 result = SCAN_SCAN_ABORT;
2532 goto out_unmap;
2533 }
2534 khugepaged_node_load[node]++;
2535 if (!PageLRU(page)) {
2536 result = SCAN_SCAN_ABORT;
2537 goto out_unmap;
2538 }
2539 if (PageLocked(page)) {
2540 result = SCAN_PAGE_LOCK;
2541 goto out_unmap;
2542 }
2543 if (!PageAnon(page)) {
2544 result = SCAN_PAGE_ANON;
2545 goto out_unmap;
2546 }
2547
2548 /*
2549 * cannot use mapcount: can't collapse if there's a gup pin.
2550 * The page must only be referenced by the scanned process
2551 * and page swap cache.
2552 */
2553 if (page_count(page) != 1 + !!PageSwapCache(page)) {
2554 result = SCAN_PAGE_COUNT;
2555 goto out_unmap;
2556 }
2557 if (pte_young(pteval) ||
2558 page_is_young(page) || PageReferenced(page) ||
2559 mmu_notifier_test_young(vma->vm_mm, address))
2560 referenced = true;
2561 }
2562 if (writable) {
2563 if (referenced) {
2564 result = SCAN_SUCCEED;
2565 ret = 1;
2566 } else {
2567 result = SCAN_NO_REFERENCED_PAGE;
2568 }
2569 } else {
2570 result = SCAN_PAGE_RO;
2571 }
2572 out_unmap:
2573 pte_unmap_unlock(pte, ptl);
2574 if (ret) {
2575 node = khugepaged_find_target_node();
2576 /* collapse_huge_page will return with the mmap_sem released */
2577 collapse_huge_page(mm, address, hpage, vma, node);
2578 }
2579 out:
2580 trace_mm_khugepaged_scan_pmd(mm, page, writable, referenced,
2581 none_or_zero, result);
2582 return ret;
2583 }
2584
2585 static void collect_mm_slot(struct mm_slot *mm_slot)
2586 {
2587 struct mm_struct *mm = mm_slot->mm;
2588
2589 VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock));
2590
2591 if (khugepaged_test_exit(mm)) {
2592 /* free mm_slot */
2593 hash_del(&mm_slot->hash);
2594 list_del(&mm_slot->mm_node);
2595
2596 /*
2597 * Not strictly needed because the mm exited already.
2598 *
2599 * clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
2600 */
2601
2602 /* khugepaged_mm_lock actually not necessary for the below */
2603 free_mm_slot(mm_slot);
2604 mmdrop(mm);
2605 }
2606 }
2607
2608 static unsigned int khugepaged_scan_mm_slot(unsigned int pages,
2609 struct page **hpage)
2610 __releases(&khugepaged_mm_lock)
2611 __acquires(&khugepaged_mm_lock)
2612 {
2613 struct mm_slot *mm_slot;
2614 struct mm_struct *mm;
2615 struct vm_area_struct *vma;
2616 int progress = 0;
2617
2618 VM_BUG_ON(!pages);
2619 VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock));
2620
2621 if (khugepaged_scan.mm_slot)
2622 mm_slot = khugepaged_scan.mm_slot;
2623 else {
2624 mm_slot = list_entry(khugepaged_scan.mm_head.next,
2625 struct mm_slot, mm_node);
2626 khugepaged_scan.address = 0;
2627 khugepaged_scan.mm_slot = mm_slot;
2628 }
2629 spin_unlock(&khugepaged_mm_lock);
2630
2631 mm = mm_slot->mm;
2632 down_read(&mm->mmap_sem);
2633 if (unlikely(khugepaged_test_exit(mm)))
2634 vma = NULL;
2635 else
2636 vma = find_vma(mm, khugepaged_scan.address);
2637
2638 progress++;
2639 for (; vma; vma = vma->vm_next) {
2640 unsigned long hstart, hend;
2641
2642 cond_resched();
2643 if (unlikely(khugepaged_test_exit(mm))) {
2644 progress++;
2645 break;
2646 }
2647 if (!hugepage_vma_check(vma)) {
2648 skip:
2649 progress++;
2650 continue;
2651 }
2652 hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
2653 hend = vma->vm_end & HPAGE_PMD_MASK;
2654 if (hstart >= hend)
2655 goto skip;
2656 if (khugepaged_scan.address > hend)
2657 goto skip;
2658 if (khugepaged_scan.address < hstart)
2659 khugepaged_scan.address = hstart;
2660 VM_BUG_ON(khugepaged_scan.address & ~HPAGE_PMD_MASK);
2661
2662 while (khugepaged_scan.address < hend) {
2663 int ret;
2664 cond_resched();
2665 if (unlikely(khugepaged_test_exit(mm)))
2666 goto breakouterloop;
2667
2668 VM_BUG_ON(khugepaged_scan.address < hstart ||
2669 khugepaged_scan.address + HPAGE_PMD_SIZE >
2670 hend);
2671 ret = khugepaged_scan_pmd(mm, vma,
2672 khugepaged_scan.address,
2673 hpage);
2674 /* move to next address */
2675 khugepaged_scan.address += HPAGE_PMD_SIZE;
2676 progress += HPAGE_PMD_NR;
2677 if (ret)
2678 /* we released mmap_sem so break loop */
2679 goto breakouterloop_mmap_sem;
2680 if (progress >= pages)
2681 goto breakouterloop;
2682 }
2683 }
2684 breakouterloop:
2685 up_read(&mm->mmap_sem); /* exit_mmap will destroy ptes after this */
2686 breakouterloop_mmap_sem:
2687
2688 spin_lock(&khugepaged_mm_lock);
2689 VM_BUG_ON(khugepaged_scan.mm_slot != mm_slot);
2690 /*
2691 * Release the current mm_slot if this mm is about to die, or
2692 * if we scanned all vmas of this mm.
2693 */
2694 if (khugepaged_test_exit(mm) || !vma) {
2695 /*
2696 * Make sure that if mm_users is reaching zero while
2697 * khugepaged runs here, khugepaged_exit will find
2698 * mm_slot not pointing to the exiting mm.
2699 */
2700 if (mm_slot->mm_node.next != &khugepaged_scan.mm_head) {
2701 khugepaged_scan.mm_slot = list_entry(
2702 mm_slot->mm_node.next,
2703 struct mm_slot, mm_node);
2704 khugepaged_scan.address = 0;
2705 } else {
2706 khugepaged_scan.mm_slot = NULL;
2707 khugepaged_full_scans++;
2708 }
2709
2710 collect_mm_slot(mm_slot);
2711 }
2712
2713 return progress;
2714 }
2715
2716 static int khugepaged_has_work(void)
2717 {
2718 return !list_empty(&khugepaged_scan.mm_head) &&
2719 khugepaged_enabled();
2720 }
2721
2722 static int khugepaged_wait_event(void)
2723 {
2724 return !list_empty(&khugepaged_scan.mm_head) ||
2725 kthread_should_stop();
2726 }
2727
2728 static void khugepaged_do_scan(void)
2729 {
2730 struct page *hpage = NULL;
2731 unsigned int progress = 0, pass_through_head = 0;
2732 unsigned int pages = khugepaged_pages_to_scan;
2733 bool wait = true;
2734
2735 barrier(); /* write khugepaged_pages_to_scan to local stack */
2736
2737 while (progress < pages) {
2738 if (!khugepaged_prealloc_page(&hpage, &wait))
2739 break;
2740
2741 cond_resched();
2742
2743 if (unlikely(kthread_should_stop() || try_to_freeze()))
2744 break;
2745
2746 spin_lock(&khugepaged_mm_lock);
2747 if (!khugepaged_scan.mm_slot)
2748 pass_through_head++;
2749 if (khugepaged_has_work() &&
2750 pass_through_head < 2)
2751 progress += khugepaged_scan_mm_slot(pages - progress,
2752 &hpage);
2753 else
2754 progress = pages;
2755 spin_unlock(&khugepaged_mm_lock);
2756 }
2757
2758 if (!IS_ERR_OR_NULL(hpage))
2759 put_page(hpage);
2760 }
2761
2762 static void khugepaged_wait_work(void)
2763 {
2764 if (khugepaged_has_work()) {
2765 if (!khugepaged_scan_sleep_millisecs)
2766 return;
2767
2768 wait_event_freezable_timeout(khugepaged_wait,
2769 kthread_should_stop(),
2770 msecs_to_jiffies(khugepaged_scan_sleep_millisecs));
2771 return;
2772 }
2773
2774 if (khugepaged_enabled())
2775 wait_event_freezable(khugepaged_wait, khugepaged_wait_event());
2776 }
2777
2778 static int khugepaged(void *none)
2779 {
2780 struct mm_slot *mm_slot;
2781
2782 set_freezable();
2783 set_user_nice(current, MAX_NICE);
2784
2785 while (!kthread_should_stop()) {
2786 khugepaged_do_scan();
2787 khugepaged_wait_work();
2788 }
2789
2790 spin_lock(&khugepaged_mm_lock);
2791 mm_slot = khugepaged_scan.mm_slot;
2792 khugepaged_scan.mm_slot = NULL;
2793 if (mm_slot)
2794 collect_mm_slot(mm_slot);
2795 spin_unlock(&khugepaged_mm_lock);
2796 return 0;
2797 }
2798
2799 static void __split_huge_zero_page_pmd(struct vm_area_struct *vma,
2800 unsigned long haddr, pmd_t *pmd)
2801 {
2802 struct mm_struct *mm = vma->vm_mm;
2803 pgtable_t pgtable;
2804 pmd_t _pmd;
2805 int i;
2806
2807 /* leave pmd empty until pte is filled */
2808 pmdp_huge_clear_flush_notify(vma, haddr, pmd);
2809
2810 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2811 pmd_populate(mm, &_pmd, pgtable);
2812
2813 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
2814 pte_t *pte, entry;
2815 entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot);
2816 entry = pte_mkspecial(entry);
2817 pte = pte_offset_map(&_pmd, haddr);
2818 VM_BUG_ON(!pte_none(*pte));
2819 set_pte_at(mm, haddr, pte, entry);
2820 pte_unmap(pte);
2821 }
2822 smp_wmb(); /* make pte visible before pmd */
2823 pmd_populate(mm, pmd, pgtable);
2824 put_huge_zero_page();
2825 }
2826
2827 static void __split_huge_pmd_locked(struct vm_area_struct *vma, pmd_t *pmd,
2828 unsigned long haddr, bool freeze)
2829 {
2830 struct mm_struct *mm = vma->vm_mm;
2831 struct page *page;
2832 pgtable_t pgtable;
2833 pmd_t _pmd;
2834 bool young, write, dirty;
2835 int i;
2836
2837 VM_BUG_ON(haddr & ~HPAGE_PMD_MASK);
2838 VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
2839 VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PMD_SIZE, vma);
2840 VM_BUG_ON(!pmd_trans_huge(*pmd) && !pmd_devmap(*pmd));
2841
2842 count_vm_event(THP_SPLIT_PMD);
2843
2844 if (vma_is_dax(vma)) {
2845 pmd_t _pmd = pmdp_huge_clear_flush_notify(vma, haddr, pmd);
2846 if (is_huge_zero_pmd(_pmd))
2847 put_huge_zero_page();
2848 return;
2849 } else if (is_huge_zero_pmd(*pmd)) {
2850 return __split_huge_zero_page_pmd(vma, haddr, pmd);
2851 }
2852
2853 page = pmd_page(*pmd);
2854 VM_BUG_ON_PAGE(!page_count(page), page);
2855 atomic_add(HPAGE_PMD_NR - 1, &page->_count);
2856 write = pmd_write(*pmd);
2857 young = pmd_young(*pmd);
2858 dirty = pmd_dirty(*pmd);
2859
2860 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2861 pmd_populate(mm, &_pmd, pgtable);
2862
2863 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
2864 pte_t entry, *pte;
2865 /*
2866 * Note that NUMA hinting access restrictions are not
2867 * transferred to avoid any possibility of altering
2868 * permissions across VMAs.
2869 */
2870 if (freeze) {
2871 swp_entry_t swp_entry;
2872 swp_entry = make_migration_entry(page + i, write);
2873 entry = swp_entry_to_pte(swp_entry);
2874 } else {
2875 entry = mk_pte(page + i, vma->vm_page_prot);
2876 entry = maybe_mkwrite(entry, vma);
2877 if (!write)
2878 entry = pte_wrprotect(entry);
2879 if (!young)
2880 entry = pte_mkold(entry);
2881 }
2882 if (dirty)
2883 SetPageDirty(page + i);
2884 pte = pte_offset_map(&_pmd, haddr);
2885 BUG_ON(!pte_none(*pte));
2886 set_pte_at(mm, haddr, pte, entry);
2887 atomic_inc(&page[i]._mapcount);
2888 pte_unmap(pte);
2889 }
2890
2891 /*
2892 * Set PG_double_map before dropping compound_mapcount to avoid
2893 * false-negative page_mapped().
2894 */
2895 if (compound_mapcount(page) > 1 && !TestSetPageDoubleMap(page)) {
2896 for (i = 0; i < HPAGE_PMD_NR; i++)
2897 atomic_inc(&page[i]._mapcount);
2898 }
2899
2900 if (atomic_add_negative(-1, compound_mapcount_ptr(page))) {
2901 /* Last compound_mapcount is gone. */
2902 __dec_zone_page_state(page, NR_ANON_TRANSPARENT_HUGEPAGES);
2903 if (TestClearPageDoubleMap(page)) {
2904 /* No need in mapcount reference anymore */
2905 for (i = 0; i < HPAGE_PMD_NR; i++)
2906 atomic_dec(&page[i]._mapcount);
2907 }
2908 }
2909
2910 smp_wmb(); /* make pte visible before pmd */
2911 /*
2912 * Up to this point the pmd is present and huge and userland has the
2913 * whole access to the hugepage during the split (which happens in
2914 * place). If we overwrite the pmd with the not-huge version pointing
2915 * to the pte here (which of course we could if all CPUs were bug
2916 * free), userland could trigger a small page size TLB miss on the
2917 * small sized TLB while the hugepage TLB entry is still established in
2918 * the huge TLB. Some CPU doesn't like that.
2919 * See http://support.amd.com/us/Processor_TechDocs/41322.pdf, Erratum
2920 * 383 on page 93. Intel should be safe but is also warns that it's
2921 * only safe if the permission and cache attributes of the two entries
2922 * loaded in the two TLB is identical (which should be the case here).
2923 * But it is generally safer to never allow small and huge TLB entries
2924 * for the same virtual address to be loaded simultaneously. So instead
2925 * of doing "pmd_populate(); flush_pmd_tlb_range();" we first mark the
2926 * current pmd notpresent (atomically because here the pmd_trans_huge
2927 * and pmd_trans_splitting must remain set at all times on the pmd
2928 * until the split is complete for this pmd), then we flush the SMP TLB
2929 * and finally we write the non-huge version of the pmd entry with
2930 * pmd_populate.
2931 */
2932 pmdp_invalidate(vma, haddr, pmd);
2933 pmd_populate(mm, pmd, pgtable);
2934
2935 if (freeze) {
2936 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
2937 page_remove_rmap(page + i, false);
2938 put_page(page + i);
2939 }
2940 }
2941 }
2942
2943 void __split_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
2944 unsigned long address)
2945 {
2946 spinlock_t *ptl;
2947 struct mm_struct *mm = vma->vm_mm;
2948 struct page *page = NULL;
2949 unsigned long haddr = address & HPAGE_PMD_MASK;
2950
2951 mmu_notifier_invalidate_range_start(mm, haddr, haddr + HPAGE_PMD_SIZE);
2952 ptl = pmd_lock(mm, pmd);
2953 if (pmd_trans_huge(*pmd)) {
2954 page = pmd_page(*pmd);
2955 if (PageMlocked(page))
2956 get_page(page);
2957 else
2958 page = NULL;
2959 } else if (!pmd_devmap(*pmd))
2960 goto out;
2961 __split_huge_pmd_locked(vma, pmd, haddr, false);
2962 out:
2963 spin_unlock(ptl);
2964 mmu_notifier_invalidate_range_end(mm, haddr, haddr + HPAGE_PMD_SIZE);
2965 if (page) {
2966 lock_page(page);
2967 munlock_vma_page(page);
2968 unlock_page(page);
2969 put_page(page);
2970 }
2971 }
2972
2973 static void split_huge_pmd_address(struct vm_area_struct *vma,
2974 unsigned long address)
2975 {
2976 pgd_t *pgd;
2977 pud_t *pud;
2978 pmd_t *pmd;
2979
2980 VM_BUG_ON(!(address & ~HPAGE_PMD_MASK));
2981
2982 pgd = pgd_offset(vma->vm_mm, address);
2983 if (!pgd_present(*pgd))
2984 return;
2985
2986 pud = pud_offset(pgd, address);
2987 if (!pud_present(*pud))
2988 return;
2989
2990 pmd = pmd_offset(pud, address);
2991 if (!pmd_present(*pmd) || (!pmd_trans_huge(*pmd) && !pmd_devmap(*pmd)))
2992 return;
2993 /*
2994 * Caller holds the mmap_sem write mode, so a huge pmd cannot
2995 * materialize from under us.
2996 */
2997 split_huge_pmd(vma, pmd, address);
2998 }
2999
3000 void vma_adjust_trans_huge(struct vm_area_struct *vma,
3001 unsigned long start,
3002 unsigned long end,
3003 long adjust_next)
3004 {
3005 /*
3006 * If the new start address isn't hpage aligned and it could
3007 * previously contain an hugepage: check if we need to split
3008 * an huge pmd.
3009 */
3010 if (start & ~HPAGE_PMD_MASK &&
3011 (start & HPAGE_PMD_MASK) >= vma->vm_start &&
3012 (start & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
3013 split_huge_pmd_address(vma, start);
3014
3015 /*
3016 * If the new end address isn't hpage aligned and it could
3017 * previously contain an hugepage: check if we need to split
3018 * an huge pmd.
3019 */
3020 if (end & ~HPAGE_PMD_MASK &&
3021 (end & HPAGE_PMD_MASK) >= vma->vm_start &&
3022 (end & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
3023 split_huge_pmd_address(vma, end);
3024
3025 /*
3026 * If we're also updating the vma->vm_next->vm_start, if the new
3027 * vm_next->vm_start isn't page aligned and it could previously
3028 * contain an hugepage: check if we need to split an huge pmd.
3029 */
3030 if (adjust_next > 0) {
3031 struct vm_area_struct *next = vma->vm_next;
3032 unsigned long nstart = next->vm_start;
3033 nstart += adjust_next << PAGE_SHIFT;
3034 if (nstart & ~HPAGE_PMD_MASK &&
3035 (nstart & HPAGE_PMD_MASK) >= next->vm_start &&
3036 (nstart & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= next->vm_end)
3037 split_huge_pmd_address(next, nstart);
3038 }
3039 }
3040
3041 static void freeze_page_vma(struct vm_area_struct *vma, struct page *page,
3042 unsigned long address)
3043 {
3044 unsigned long haddr = address & HPAGE_PMD_MASK;
3045 spinlock_t *ptl;
3046 pgd_t *pgd;
3047 pud_t *pud;
3048 pmd_t *pmd;
3049 pte_t *pte;
3050 int i, nr = HPAGE_PMD_NR;
3051
3052 /* Skip pages which doesn't belong to the VMA */
3053 if (address < vma->vm_start) {
3054 int off = (vma->vm_start - address) >> PAGE_SHIFT;
3055 page += off;
3056 nr -= off;
3057 address = vma->vm_start;
3058 }
3059
3060 pgd = pgd_offset(vma->vm_mm, address);
3061 if (!pgd_present(*pgd))
3062 return;
3063 pud = pud_offset(pgd, address);
3064 if (!pud_present(*pud))
3065 return;
3066 pmd = pmd_offset(pud, address);
3067 ptl = pmd_lock(vma->vm_mm, pmd);
3068 if (!pmd_present(*pmd)) {
3069 spin_unlock(ptl);
3070 return;
3071 }
3072 if (pmd_trans_huge(*pmd)) {
3073 if (page == pmd_page(*pmd))
3074 __split_huge_pmd_locked(vma, pmd, haddr, true);
3075 spin_unlock(ptl);
3076 return;
3077 }
3078 spin_unlock(ptl);
3079
3080 pte = pte_offset_map_lock(vma->vm_mm, pmd, address, &ptl);
3081 for (i = 0; i < nr; i++, address += PAGE_SIZE, page++, pte++) {
3082 pte_t entry, swp_pte;
3083 swp_entry_t swp_entry;
3084
3085 /*
3086 * We've just crossed page table boundary: need to map next one.
3087 * It can happen if THP was mremaped to non PMD-aligned address.
3088 */
3089 if (unlikely(address == haddr + HPAGE_PMD_SIZE)) {
3090 pte_unmap_unlock(pte - 1, ptl);
3091 pmd = mm_find_pmd(vma->vm_mm, address);
3092 if (!pmd)
3093 return;
3094 pte = pte_offset_map_lock(vma->vm_mm, pmd,
3095 address, &ptl);
3096 }
3097
3098 if (!pte_present(*pte))
3099 continue;
3100 if (page_to_pfn(page) != pte_pfn(*pte))
3101 continue;
3102 flush_cache_page(vma, address, page_to_pfn(page));
3103 entry = ptep_clear_flush(vma, address, pte);
3104 if (pte_dirty(entry))
3105 SetPageDirty(page);
3106 swp_entry = make_migration_entry(page, pte_write(entry));
3107 swp_pte = swp_entry_to_pte(swp_entry);
3108 if (pte_soft_dirty(entry))
3109 swp_pte = pte_swp_mksoft_dirty(swp_pte);
3110 set_pte_at(vma->vm_mm, address, pte, swp_pte);
3111 page_remove_rmap(page, false);
3112 put_page(page);
3113 }
3114 pte_unmap_unlock(pte - 1, ptl);
3115 }
3116
3117 static void freeze_page(struct anon_vma *anon_vma, struct page *page)
3118 {
3119 struct anon_vma_chain *avc;
3120 pgoff_t pgoff = page_to_pgoff(page);
3121
3122 VM_BUG_ON_PAGE(!PageHead(page), page);
3123
3124 anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, pgoff,
3125 pgoff + HPAGE_PMD_NR - 1) {
3126 unsigned long address = __vma_address(page, avc->vma);
3127
3128 mmu_notifier_invalidate_range_start(avc->vma->vm_mm,
3129 address, address + HPAGE_PMD_SIZE);
3130 freeze_page_vma(avc->vma, page, address);
3131 mmu_notifier_invalidate_range_end(avc->vma->vm_mm,
3132 address, address + HPAGE_PMD_SIZE);
3133 }
3134 }
3135
3136 static void unfreeze_page_vma(struct vm_area_struct *vma, struct page *page,
3137 unsigned long address)
3138 {
3139 spinlock_t *ptl;
3140 pmd_t *pmd;
3141 pte_t *pte, entry;
3142 swp_entry_t swp_entry;
3143 unsigned long haddr = address & HPAGE_PMD_MASK;
3144 int i, nr = HPAGE_PMD_NR;
3145
3146 /* Skip pages which doesn't belong to the VMA */
3147 if (address < vma->vm_start) {
3148 int off = (vma->vm_start - address) >> PAGE_SHIFT;
3149 page += off;
3150 nr -= off;
3151 address = vma->vm_start;
3152 }
3153
3154 pmd = mm_find_pmd(vma->vm_mm, address);
3155 if (!pmd)
3156 return;
3157
3158 pte = pte_offset_map_lock(vma->vm_mm, pmd, address, &ptl);
3159 for (i = 0; i < nr; i++, address += PAGE_SIZE, page++, pte++) {
3160 /*
3161 * We've just crossed page table boundary: need to map next one.
3162 * It can happen if THP was mremaped to non-PMD aligned address.
3163 */
3164 if (unlikely(address == haddr + HPAGE_PMD_SIZE)) {
3165 pte_unmap_unlock(pte - 1, ptl);
3166 pmd = mm_find_pmd(vma->vm_mm, address);
3167 if (!pmd)
3168 return;
3169 pte = pte_offset_map_lock(vma->vm_mm, pmd,
3170 address, &ptl);
3171 }
3172
3173 if (!is_swap_pte(*pte))
3174 continue;
3175
3176 swp_entry = pte_to_swp_entry(*pte);
3177 if (!is_migration_entry(swp_entry))
3178 continue;
3179 if (migration_entry_to_page(swp_entry) != page)
3180 continue;
3181
3182 get_page(page);
3183 page_add_anon_rmap(page, vma, address, false);
3184
3185 entry = pte_mkold(mk_pte(page, vma->vm_page_prot));
3186 if (PageDirty(page))
3187 entry = pte_mkdirty(entry);
3188 if (is_write_migration_entry(swp_entry))
3189 entry = maybe_mkwrite(entry, vma);
3190
3191 flush_dcache_page(page);
3192 set_pte_at(vma->vm_mm, address, pte, entry);
3193
3194 /* No need to invalidate - it was non-present before */
3195 update_mmu_cache(vma, address, pte);
3196 }
3197 pte_unmap_unlock(pte - 1, ptl);
3198 }
3199
3200 static void unfreeze_page(struct anon_vma *anon_vma, struct page *page)
3201 {
3202 struct anon_vma_chain *avc;
3203 pgoff_t pgoff = page_to_pgoff(page);
3204
3205 anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root,
3206 pgoff, pgoff + HPAGE_PMD_NR - 1) {
3207 unsigned long address = __vma_address(page, avc->vma);
3208
3209 mmu_notifier_invalidate_range_start(avc->vma->vm_mm,
3210 address, address + HPAGE_PMD_SIZE);
3211 unfreeze_page_vma(avc->vma, page, address);
3212 mmu_notifier_invalidate_range_end(avc->vma->vm_mm,
3213 address, address + HPAGE_PMD_SIZE);
3214 }
3215 }
3216
3217 static int __split_huge_page_tail(struct page *head, int tail,
3218 struct lruvec *lruvec, struct list_head *list)
3219 {
3220 int mapcount;
3221 struct page *page_tail = head + tail;
3222
3223 mapcount = atomic_read(&page_tail->_mapcount) + 1;
3224 VM_BUG_ON_PAGE(atomic_read(&page_tail->_count) != 0, page_tail);
3225
3226 /*
3227 * tail_page->_count is zero and not changing from under us. But
3228 * get_page_unless_zero() may be running from under us on the
3229 * tail_page. If we used atomic_set() below instead of atomic_add(), we
3230 * would then run atomic_set() concurrently with
3231 * get_page_unless_zero(), and atomic_set() is implemented in C not
3232 * using locked ops. spin_unlock on x86 sometime uses locked ops
3233 * because of PPro errata 66, 92, so unless somebody can guarantee
3234 * atomic_set() here would be safe on all archs (and not only on x86),
3235 * it's safer to use atomic_add().
3236 */
3237 atomic_add(mapcount + 1, &page_tail->_count);
3238
3239
3240 page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
3241 page_tail->flags |= (head->flags &
3242 ((1L << PG_referenced) |
3243 (1L << PG_swapbacked) |
3244 (1L << PG_mlocked) |
3245 (1L << PG_uptodate) |
3246 (1L << PG_active) |
3247 (1L << PG_locked) |
3248 (1L << PG_unevictable) |
3249 (1L << PG_dirty)));
3250
3251 /*
3252 * After clearing PageTail the gup refcount can be released.
3253 * Page flags also must be visible before we make the page non-compound.
3254 */
3255 smp_wmb();
3256
3257 clear_compound_head(page_tail);
3258
3259 if (page_is_young(head))
3260 set_page_young(page_tail);
3261 if (page_is_idle(head))
3262 set_page_idle(page_tail);
3263
3264 /* ->mapping in first tail page is compound_mapcount */
3265 VM_BUG_ON_PAGE(tail > 2 && page_tail->mapping != TAIL_MAPPING,
3266 page_tail);
3267 page_tail->mapping = head->mapping;
3268
3269 page_tail->index = head->index + tail;
3270 page_cpupid_xchg_last(page_tail, page_cpupid_last(head));
3271 lru_add_page_tail(head, page_tail, lruvec, list);
3272
3273 return mapcount;
3274 }
3275
3276 static void __split_huge_page(struct page *page, struct list_head *list)
3277 {
3278 struct page *head = compound_head(page);
3279 struct zone *zone = page_zone(head);
3280 struct lruvec *lruvec;
3281 int i, tail_mapcount;
3282
3283 /* prevent PageLRU to go away from under us, and freeze lru stats */
3284 spin_lock_irq(&zone->lru_lock);
3285 lruvec = mem_cgroup_page_lruvec(head, zone);
3286
3287 /* complete memcg works before add pages to LRU */
3288 mem_cgroup_split_huge_fixup(head);
3289
3290 tail_mapcount = 0;
3291 for (i = HPAGE_PMD_NR - 1; i >= 1; i--)
3292 tail_mapcount += __split_huge_page_tail(head, i, lruvec, list);
3293 atomic_sub(tail_mapcount, &head->_count);
3294
3295 ClearPageCompound(head);
3296 spin_unlock_irq(&zone->lru_lock);
3297
3298 unfreeze_page(page_anon_vma(head), head);
3299
3300 for (i = 0; i < HPAGE_PMD_NR; i++) {
3301 struct page *subpage = head + i;
3302 if (subpage == page)
3303 continue;
3304 unlock_page(subpage);
3305
3306 /*
3307 * Subpages may be freed if there wasn't any mapping
3308 * like if add_to_swap() is running on a lru page that
3309 * had its mapping zapped. And freeing these pages
3310 * requires taking the lru_lock so we do the put_page
3311 * of the tail pages after the split is complete.
3312 */
3313 put_page(subpage);
3314 }
3315 }
3316
3317 int total_mapcount(struct page *page)
3318 {
3319 int i, ret;
3320
3321 VM_BUG_ON_PAGE(PageTail(page), page);
3322
3323 if (likely(!PageCompound(page)))
3324 return atomic_read(&page->_mapcount) + 1;
3325
3326 ret = compound_mapcount(page);
3327 if (PageHuge(page))
3328 return ret;
3329 for (i = 0; i < HPAGE_PMD_NR; i++)
3330 ret += atomic_read(&page[i]._mapcount) + 1;
3331 if (PageDoubleMap(page))
3332 ret -= HPAGE_PMD_NR;
3333 return ret;
3334 }
3335
3336 /*
3337 * This function splits huge page into normal pages. @page can point to any
3338 * subpage of huge page to split. Split doesn't change the position of @page.
3339 *
3340 * Only caller must hold pin on the @page, otherwise split fails with -EBUSY.
3341 * The huge page must be locked.
3342 *
3343 * If @list is null, tail pages will be added to LRU list, otherwise, to @list.
3344 *
3345 * Both head page and tail pages will inherit mapping, flags, and so on from
3346 * the hugepage.
3347 *
3348 * GUP pin and PG_locked transferred to @page. Rest subpages can be freed if
3349 * they are not mapped.
3350 *
3351 * Returns 0 if the hugepage is split successfully.
3352 * Returns -EBUSY if the page is pinned or if anon_vma disappeared from under
3353 * us.
3354 */
3355 int split_huge_page_to_list(struct page *page, struct list_head *list)
3356 {
3357 struct page *head = compound_head(page);
3358 struct pglist_data *pgdata = NODE_DATA(page_to_nid(head));
3359 struct anon_vma *anon_vma;
3360 int count, mapcount, ret;
3361 bool mlocked;
3362 unsigned long flags;
3363
3364 VM_BUG_ON_PAGE(is_huge_zero_page(page), page);
3365 VM_BUG_ON_PAGE(!PageAnon(page), page);
3366 VM_BUG_ON_PAGE(!PageLocked(page), page);
3367 VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
3368 VM_BUG_ON_PAGE(!PageCompound(page), page);
3369
3370 /*
3371 * The caller does not necessarily hold an mmap_sem that would prevent
3372 * the anon_vma disappearing so we first we take a reference to it
3373 * and then lock the anon_vma for write. This is similar to
3374 * page_lock_anon_vma_read except the write lock is taken to serialise
3375 * against parallel split or collapse operations.
3376 */
3377 anon_vma = page_get_anon_vma(head);
3378 if (!anon_vma) {
3379 ret = -EBUSY;
3380 goto out;
3381 }
3382 anon_vma_lock_write(anon_vma);
3383
3384 /*
3385 * Racy check if we can split the page, before freeze_page() will
3386 * split PMDs
3387 */
3388 if (total_mapcount(head) != page_count(head) - 1) {
3389 ret = -EBUSY;
3390 goto out_unlock;
3391 }
3392
3393 mlocked = PageMlocked(page);
3394 freeze_page(anon_vma, head);
3395 VM_BUG_ON_PAGE(compound_mapcount(head), head);
3396
3397 /* Make sure the page is not on per-CPU pagevec as it takes pin */
3398 if (mlocked)
3399 lru_add_drain();
3400
3401 /* Prevent deferred_split_scan() touching ->_count */
3402 spin_lock_irqsave(&pgdata->split_queue_lock, flags);
3403 count = page_count(head);
3404 mapcount = total_mapcount(head);
3405 if (!mapcount && count == 1) {
3406 if (!list_empty(page_deferred_list(head))) {
3407 pgdata->split_queue_len--;
3408 list_del(page_deferred_list(head));
3409 }
3410 spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
3411 __split_huge_page(page, list);
3412 ret = 0;
3413 } else if (IS_ENABLED(CONFIG_DEBUG_VM) && mapcount) {
3414 spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
3415 pr_alert("total_mapcount: %u, page_count(): %u\n",
3416 mapcount, count);
3417 if (PageTail(page))
3418 dump_page(head, NULL);
3419 dump_page(page, "total_mapcount(head) > 0");
3420 BUG();
3421 } else {
3422 spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
3423 unfreeze_page(anon_vma, head);
3424 ret = -EBUSY;
3425 }
3426
3427 out_unlock:
3428 anon_vma_unlock_write(anon_vma);
3429 put_anon_vma(anon_vma);
3430 out:
3431 count_vm_event(!ret ? THP_SPLIT_PAGE : THP_SPLIT_PAGE_FAILED);
3432 return ret;
3433 }
3434
3435 void free_transhuge_page(struct page *page)
3436 {
3437 struct pglist_data *pgdata = NODE_DATA(page_to_nid(page));
3438 unsigned long flags;
3439
3440 spin_lock_irqsave(&pgdata->split_queue_lock, flags);
3441 if (!list_empty(page_deferred_list(page))) {
3442 pgdata->split_queue_len--;
3443 list_del(page_deferred_list(page));
3444 }
3445 spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
3446 free_compound_page(page);
3447 }
3448
3449 void deferred_split_huge_page(struct page *page)
3450 {
3451 struct pglist_data *pgdata = NODE_DATA(page_to_nid(page));
3452 unsigned long flags;
3453
3454 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
3455
3456 spin_lock_irqsave(&pgdata->split_queue_lock, flags);
3457 if (list_empty(page_deferred_list(page))) {
3458 list_add_tail(page_deferred_list(page), &pgdata->split_queue);
3459 pgdata->split_queue_len++;
3460 }
3461 spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
3462 }
3463
3464 static unsigned long deferred_split_count(struct shrinker *shrink,
3465 struct shrink_control *sc)
3466 {
3467 struct pglist_data *pgdata = NODE_DATA(sc->nid);
3468 return ACCESS_ONCE(pgdata->split_queue_len);
3469 }
3470
3471 static unsigned long deferred_split_scan(struct shrinker *shrink,
3472 struct shrink_control *sc)
3473 {
3474 struct pglist_data *pgdata = NODE_DATA(sc->nid);
3475 unsigned long flags;
3476 LIST_HEAD(list), *pos, *next;
3477 struct page *page;
3478 int split = 0;
3479
3480 spin_lock_irqsave(&pgdata->split_queue_lock, flags);
3481 /* Take pin on all head pages to avoid freeing them under us */
3482 list_for_each_safe(pos, next, &list) {
3483 page = list_entry((void *)pos, struct page, mapping);
3484 page = compound_head(page);
3485 if (get_page_unless_zero(page)) {
3486 list_move(page_deferred_list(page), &list);
3487 } else {
3488 /* We lost race with put_compound_page() */
3489 list_del_init(page_deferred_list(page));
3490 pgdata->split_queue_len--;
3491 }
3492 if (!--sc->nr_to_scan)
3493 break;
3494 }
3495 spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
3496
3497 list_for_each_safe(pos, next, &list) {
3498 page = list_entry((void *)pos, struct page, mapping);
3499 lock_page(page);
3500 /* split_huge_page() removes page from list on success */
3501 if (!split_huge_page(page))
3502 split++;
3503 unlock_page(page);
3504 put_page(page);
3505 }
3506
3507 spin_lock_irqsave(&pgdata->split_queue_lock, flags);
3508 list_splice_tail(&list, &pgdata->split_queue);
3509 spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
3510
3511 /*
3512 * Stop shrinker if we didn't split any page, but the queue is empty.
3513 * This can happen if pages were freed under us.
3514 */
3515 if (!split && list_empty(&pgdata->split_queue))
3516 return SHRINK_STOP;
3517 return split;
3518 }
3519
3520 static struct shrinker deferred_split_shrinker = {
3521 .count_objects = deferred_split_count,
3522 .scan_objects = deferred_split_scan,
3523 .seeks = DEFAULT_SEEKS,
3524 .flags = SHRINKER_NUMA_AWARE,
3525 };
3526
3527 #ifdef CONFIG_DEBUG_FS
3528 static int split_huge_pages_set(void *data, u64 val)
3529 {
3530 struct zone *zone;
3531 struct page *page;
3532 unsigned long pfn, max_zone_pfn;
3533 unsigned long total = 0, split = 0;
3534
3535 if (val != 1)
3536 return -EINVAL;
3537
3538 for_each_populated_zone(zone) {
3539 max_zone_pfn = zone_end_pfn(zone);
3540 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) {
3541 if (!pfn_valid(pfn))
3542 continue;
3543
3544 page = pfn_to_page(pfn);
3545 if (!get_page_unless_zero(page))
3546 continue;
3547
3548 if (zone != page_zone(page))
3549 goto next;
3550
3551 if (!PageHead(page) || !PageAnon(page) ||
3552 PageHuge(page))
3553 goto next;
3554
3555 total++;
3556 lock_page(page);
3557 if (!split_huge_page(page))
3558 split++;
3559 unlock_page(page);
3560 next:
3561 put_page(page);
3562 }
3563 }
3564
3565 pr_info("%lu of %lu THP split", split, total);
3566
3567 return 0;
3568 }
3569 DEFINE_SIMPLE_ATTRIBUTE(split_huge_pages_fops, NULL, split_huge_pages_set,
3570 "%llu\n");
3571
3572 static int __init split_huge_pages_debugfs(void)
3573 {
3574 void *ret;
3575
3576 ret = debugfs_create_file("split_huge_pages", 0644, NULL, NULL,
3577 &split_huge_pages_fops);
3578 if (!ret)
3579 pr_warn("Failed to create split_huge_pages in debugfs");
3580 return 0;
3581 }
3582 late_initcall(split_huge_pages_debugfs);
3583 #endif