]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - mm/hugetlb.c
hugetlb, memory_hotplug: prefer to use reserved pages for migration
[mirror_ubuntu-bionic-kernel.git] / mm / hugetlb.c
1 /*
2 * Generic hugetlb support.
3 * (C) Nadia Yvette Chambers, April 2004
4 */
5 #include <linux/list.h>
6 #include <linux/init.h>
7 #include <linux/mm.h>
8 #include <linux/seq_file.h>
9 #include <linux/sysctl.h>
10 #include <linux/highmem.h>
11 #include <linux/mmu_notifier.h>
12 #include <linux/nodemask.h>
13 #include <linux/pagemap.h>
14 #include <linux/mempolicy.h>
15 #include <linux/compiler.h>
16 #include <linux/cpuset.h>
17 #include <linux/mutex.h>
18 #include <linux/bootmem.h>
19 #include <linux/sysfs.h>
20 #include <linux/slab.h>
21 #include <linux/sched/signal.h>
22 #include <linux/rmap.h>
23 #include <linux/swap.h>
24 #include <linux/swapops.h>
25 #include <linux/jhash.h>
26
27 #include <asm/page.h>
28 #include <asm/pgtable.h>
29 #include <asm/tlb.h>
30
31 #include <linux/io.h>
32 #include <linux/hugetlb.h>
33 #include <linux/hugetlb_cgroup.h>
34 #include <linux/node.h>
35 #include <linux/userfaultfd_k.h>
36 #include "internal.h"
37
38 int hugepages_treat_as_movable;
39
40 int hugetlb_max_hstate __read_mostly;
41 unsigned int default_hstate_idx;
42 struct hstate hstates[HUGE_MAX_HSTATE];
43 /*
44 * Minimum page order among possible hugepage sizes, set to a proper value
45 * at boot time.
46 */
47 static unsigned int minimum_order __read_mostly = UINT_MAX;
48
49 __initdata LIST_HEAD(huge_boot_pages);
50
51 /* for command line parsing */
52 static struct hstate * __initdata parsed_hstate;
53 static unsigned long __initdata default_hstate_max_huge_pages;
54 static unsigned long __initdata default_hstate_size;
55 static bool __initdata parsed_valid_hugepagesz = true;
56
57 /*
58 * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
59 * free_huge_pages, and surplus_huge_pages.
60 */
61 DEFINE_SPINLOCK(hugetlb_lock);
62
63 /*
64 * Serializes faults on the same logical page. This is used to
65 * prevent spurious OOMs when the hugepage pool is fully utilized.
66 */
67 static int num_fault_mutexes;
68 struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp;
69
70 /* Forward declaration */
71 static int hugetlb_acct_memory(struct hstate *h, long delta);
72
73 static char * __init memfmt(char *buf, unsigned long n)
74 {
75 if (n >= (1UL << 30))
76 sprintf(buf, "%lu GB", n >> 30);
77 else if (n >= (1UL << 20))
78 sprintf(buf, "%lu MB", n >> 20);
79 else
80 sprintf(buf, "%lu KB", n >> 10);
81 return buf;
82 }
83
84 static inline void unlock_or_release_subpool(struct hugepage_subpool *spool)
85 {
86 bool free = (spool->count == 0) && (spool->used_hpages == 0);
87
88 spin_unlock(&spool->lock);
89
90 /* If no pages are used, and no other handles to the subpool
91 * remain, give up any reservations mased on minimum size and
92 * free the subpool */
93 if (free) {
94 if (spool->min_hpages != -1)
95 hugetlb_acct_memory(spool->hstate,
96 -spool->min_hpages);
97 kfree(spool);
98 }
99 }
100
101 struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
102 long min_hpages)
103 {
104 struct hugepage_subpool *spool;
105
106 spool = kzalloc(sizeof(*spool), GFP_KERNEL);
107 if (!spool)
108 return NULL;
109
110 spin_lock_init(&spool->lock);
111 spool->count = 1;
112 spool->max_hpages = max_hpages;
113 spool->hstate = h;
114 spool->min_hpages = min_hpages;
115
116 if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) {
117 kfree(spool);
118 return NULL;
119 }
120 spool->rsv_hpages = min_hpages;
121
122 return spool;
123 }
124
125 void hugepage_put_subpool(struct hugepage_subpool *spool)
126 {
127 spin_lock(&spool->lock);
128 BUG_ON(!spool->count);
129 spool->count--;
130 unlock_or_release_subpool(spool);
131 }
132
133 /*
134 * Subpool accounting for allocating and reserving pages.
135 * Return -ENOMEM if there are not enough resources to satisfy the
136 * the request. Otherwise, return the number of pages by which the
137 * global pools must be adjusted (upward). The returned value may
138 * only be different than the passed value (delta) in the case where
139 * a subpool minimum size must be manitained.
140 */
141 static long hugepage_subpool_get_pages(struct hugepage_subpool *spool,
142 long delta)
143 {
144 long ret = delta;
145
146 if (!spool)
147 return ret;
148
149 spin_lock(&spool->lock);
150
151 if (spool->max_hpages != -1) { /* maximum size accounting */
152 if ((spool->used_hpages + delta) <= spool->max_hpages)
153 spool->used_hpages += delta;
154 else {
155 ret = -ENOMEM;
156 goto unlock_ret;
157 }
158 }
159
160 /* minimum size accounting */
161 if (spool->min_hpages != -1 && spool->rsv_hpages) {
162 if (delta > spool->rsv_hpages) {
163 /*
164 * Asking for more reserves than those already taken on
165 * behalf of subpool. Return difference.
166 */
167 ret = delta - spool->rsv_hpages;
168 spool->rsv_hpages = 0;
169 } else {
170 ret = 0; /* reserves already accounted for */
171 spool->rsv_hpages -= delta;
172 }
173 }
174
175 unlock_ret:
176 spin_unlock(&spool->lock);
177 return ret;
178 }
179
180 /*
181 * Subpool accounting for freeing and unreserving pages.
182 * Return the number of global page reservations that must be dropped.
183 * The return value may only be different than the passed value (delta)
184 * in the case where a subpool minimum size must be maintained.
185 */
186 static long hugepage_subpool_put_pages(struct hugepage_subpool *spool,
187 long delta)
188 {
189 long ret = delta;
190
191 if (!spool)
192 return delta;
193
194 spin_lock(&spool->lock);
195
196 if (spool->max_hpages != -1) /* maximum size accounting */
197 spool->used_hpages -= delta;
198
199 /* minimum size accounting */
200 if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) {
201 if (spool->rsv_hpages + delta <= spool->min_hpages)
202 ret = 0;
203 else
204 ret = spool->rsv_hpages + delta - spool->min_hpages;
205
206 spool->rsv_hpages += delta;
207 if (spool->rsv_hpages > spool->min_hpages)
208 spool->rsv_hpages = spool->min_hpages;
209 }
210
211 /*
212 * If hugetlbfs_put_super couldn't free spool due to an outstanding
213 * quota reference, free it now.
214 */
215 unlock_or_release_subpool(spool);
216
217 return ret;
218 }
219
220 static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
221 {
222 return HUGETLBFS_SB(inode->i_sb)->spool;
223 }
224
225 static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
226 {
227 return subpool_inode(file_inode(vma->vm_file));
228 }
229
230 /*
231 * Region tracking -- allows tracking of reservations and instantiated pages
232 * across the pages in a mapping.
233 *
234 * The region data structures are embedded into a resv_map and protected
235 * by a resv_map's lock. The set of regions within the resv_map represent
236 * reservations for huge pages, or huge pages that have already been
237 * instantiated within the map. The from and to elements are huge page
238 * indicies into the associated mapping. from indicates the starting index
239 * of the region. to represents the first index past the end of the region.
240 *
241 * For example, a file region structure with from == 0 and to == 4 represents
242 * four huge pages in a mapping. It is important to note that the to element
243 * represents the first element past the end of the region. This is used in
244 * arithmetic as 4(to) - 0(from) = 4 huge pages in the region.
245 *
246 * Interval notation of the form [from, to) will be used to indicate that
247 * the endpoint from is inclusive and to is exclusive.
248 */
249 struct file_region {
250 struct list_head link;
251 long from;
252 long to;
253 };
254
255 /*
256 * Add the huge page range represented by [f, t) to the reserve
257 * map. In the normal case, existing regions will be expanded
258 * to accommodate the specified range. Sufficient regions should
259 * exist for expansion due to the previous call to region_chg
260 * with the same range. However, it is possible that region_del
261 * could have been called after region_chg and modifed the map
262 * in such a way that no region exists to be expanded. In this
263 * case, pull a region descriptor from the cache associated with
264 * the map and use that for the new range.
265 *
266 * Return the number of new huge pages added to the map. This
267 * number is greater than or equal to zero.
268 */
269 static long region_add(struct resv_map *resv, long f, long t)
270 {
271 struct list_head *head = &resv->regions;
272 struct file_region *rg, *nrg, *trg;
273 long add = 0;
274
275 spin_lock(&resv->lock);
276 /* Locate the region we are either in or before. */
277 list_for_each_entry(rg, head, link)
278 if (f <= rg->to)
279 break;
280
281 /*
282 * If no region exists which can be expanded to include the
283 * specified range, the list must have been modified by an
284 * interleving call to region_del(). Pull a region descriptor
285 * from the cache and use it for this range.
286 */
287 if (&rg->link == head || t < rg->from) {
288 VM_BUG_ON(resv->region_cache_count <= 0);
289
290 resv->region_cache_count--;
291 nrg = list_first_entry(&resv->region_cache, struct file_region,
292 link);
293 list_del(&nrg->link);
294
295 nrg->from = f;
296 nrg->to = t;
297 list_add(&nrg->link, rg->link.prev);
298
299 add += t - f;
300 goto out_locked;
301 }
302
303 /* Round our left edge to the current segment if it encloses us. */
304 if (f > rg->from)
305 f = rg->from;
306
307 /* Check for and consume any regions we now overlap with. */
308 nrg = rg;
309 list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
310 if (&rg->link == head)
311 break;
312 if (rg->from > t)
313 break;
314
315 /* If this area reaches higher then extend our area to
316 * include it completely. If this is not the first area
317 * which we intend to reuse, free it. */
318 if (rg->to > t)
319 t = rg->to;
320 if (rg != nrg) {
321 /* Decrement return value by the deleted range.
322 * Another range will span this area so that by
323 * end of routine add will be >= zero
324 */
325 add -= (rg->to - rg->from);
326 list_del(&rg->link);
327 kfree(rg);
328 }
329 }
330
331 add += (nrg->from - f); /* Added to beginning of region */
332 nrg->from = f;
333 add += t - nrg->to; /* Added to end of region */
334 nrg->to = t;
335
336 out_locked:
337 resv->adds_in_progress--;
338 spin_unlock(&resv->lock);
339 VM_BUG_ON(add < 0);
340 return add;
341 }
342
343 /*
344 * Examine the existing reserve map and determine how many
345 * huge pages in the specified range [f, t) are NOT currently
346 * represented. This routine is called before a subsequent
347 * call to region_add that will actually modify the reserve
348 * map to add the specified range [f, t). region_chg does
349 * not change the number of huge pages represented by the
350 * map. However, if the existing regions in the map can not
351 * be expanded to represent the new range, a new file_region
352 * structure is added to the map as a placeholder. This is
353 * so that the subsequent region_add call will have all the
354 * regions it needs and will not fail.
355 *
356 * Upon entry, region_chg will also examine the cache of region descriptors
357 * associated with the map. If there are not enough descriptors cached, one
358 * will be allocated for the in progress add operation.
359 *
360 * Returns the number of huge pages that need to be added to the existing
361 * reservation map for the range [f, t). This number is greater or equal to
362 * zero. -ENOMEM is returned if a new file_region structure or cache entry
363 * is needed and can not be allocated.
364 */
365 static long region_chg(struct resv_map *resv, long f, long t)
366 {
367 struct list_head *head = &resv->regions;
368 struct file_region *rg, *nrg = NULL;
369 long chg = 0;
370
371 retry:
372 spin_lock(&resv->lock);
373 retry_locked:
374 resv->adds_in_progress++;
375
376 /*
377 * Check for sufficient descriptors in the cache to accommodate
378 * the number of in progress add operations.
379 */
380 if (resv->adds_in_progress > resv->region_cache_count) {
381 struct file_region *trg;
382
383 VM_BUG_ON(resv->adds_in_progress - resv->region_cache_count > 1);
384 /* Must drop lock to allocate a new descriptor. */
385 resv->adds_in_progress--;
386 spin_unlock(&resv->lock);
387
388 trg = kmalloc(sizeof(*trg), GFP_KERNEL);
389 if (!trg) {
390 kfree(nrg);
391 return -ENOMEM;
392 }
393
394 spin_lock(&resv->lock);
395 list_add(&trg->link, &resv->region_cache);
396 resv->region_cache_count++;
397 goto retry_locked;
398 }
399
400 /* Locate the region we are before or in. */
401 list_for_each_entry(rg, head, link)
402 if (f <= rg->to)
403 break;
404
405 /* If we are below the current region then a new region is required.
406 * Subtle, allocate a new region at the position but make it zero
407 * size such that we can guarantee to record the reservation. */
408 if (&rg->link == head || t < rg->from) {
409 if (!nrg) {
410 resv->adds_in_progress--;
411 spin_unlock(&resv->lock);
412 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
413 if (!nrg)
414 return -ENOMEM;
415
416 nrg->from = f;
417 nrg->to = f;
418 INIT_LIST_HEAD(&nrg->link);
419 goto retry;
420 }
421
422 list_add(&nrg->link, rg->link.prev);
423 chg = t - f;
424 goto out_nrg;
425 }
426
427 /* Round our left edge to the current segment if it encloses us. */
428 if (f > rg->from)
429 f = rg->from;
430 chg = t - f;
431
432 /* Check for and consume any regions we now overlap with. */
433 list_for_each_entry(rg, rg->link.prev, link) {
434 if (&rg->link == head)
435 break;
436 if (rg->from > t)
437 goto out;
438
439 /* We overlap with this area, if it extends further than
440 * us then we must extend ourselves. Account for its
441 * existing reservation. */
442 if (rg->to > t) {
443 chg += rg->to - t;
444 t = rg->to;
445 }
446 chg -= rg->to - rg->from;
447 }
448
449 out:
450 spin_unlock(&resv->lock);
451 /* We already know we raced and no longer need the new region */
452 kfree(nrg);
453 return chg;
454 out_nrg:
455 spin_unlock(&resv->lock);
456 return chg;
457 }
458
459 /*
460 * Abort the in progress add operation. The adds_in_progress field
461 * of the resv_map keeps track of the operations in progress between
462 * calls to region_chg and region_add. Operations are sometimes
463 * aborted after the call to region_chg. In such cases, region_abort
464 * is called to decrement the adds_in_progress counter.
465 *
466 * NOTE: The range arguments [f, t) are not needed or used in this
467 * routine. They are kept to make reading the calling code easier as
468 * arguments will match the associated region_chg call.
469 */
470 static void region_abort(struct resv_map *resv, long f, long t)
471 {
472 spin_lock(&resv->lock);
473 VM_BUG_ON(!resv->region_cache_count);
474 resv->adds_in_progress--;
475 spin_unlock(&resv->lock);
476 }
477
478 /*
479 * Delete the specified range [f, t) from the reserve map. If the
480 * t parameter is LONG_MAX, this indicates that ALL regions after f
481 * should be deleted. Locate the regions which intersect [f, t)
482 * and either trim, delete or split the existing regions.
483 *
484 * Returns the number of huge pages deleted from the reserve map.
485 * In the normal case, the return value is zero or more. In the
486 * case where a region must be split, a new region descriptor must
487 * be allocated. If the allocation fails, -ENOMEM will be returned.
488 * NOTE: If the parameter t == LONG_MAX, then we will never split
489 * a region and possibly return -ENOMEM. Callers specifying
490 * t == LONG_MAX do not need to check for -ENOMEM error.
491 */
492 static long region_del(struct resv_map *resv, long f, long t)
493 {
494 struct list_head *head = &resv->regions;
495 struct file_region *rg, *trg;
496 struct file_region *nrg = NULL;
497 long del = 0;
498
499 retry:
500 spin_lock(&resv->lock);
501 list_for_each_entry_safe(rg, trg, head, link) {
502 /*
503 * Skip regions before the range to be deleted. file_region
504 * ranges are normally of the form [from, to). However, there
505 * may be a "placeholder" entry in the map which is of the form
506 * (from, to) with from == to. Check for placeholder entries
507 * at the beginning of the range to be deleted.
508 */
509 if (rg->to <= f && (rg->to != rg->from || rg->to != f))
510 continue;
511
512 if (rg->from >= t)
513 break;
514
515 if (f > rg->from && t < rg->to) { /* Must split region */
516 /*
517 * Check for an entry in the cache before dropping
518 * lock and attempting allocation.
519 */
520 if (!nrg &&
521 resv->region_cache_count > resv->adds_in_progress) {
522 nrg = list_first_entry(&resv->region_cache,
523 struct file_region,
524 link);
525 list_del(&nrg->link);
526 resv->region_cache_count--;
527 }
528
529 if (!nrg) {
530 spin_unlock(&resv->lock);
531 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
532 if (!nrg)
533 return -ENOMEM;
534 goto retry;
535 }
536
537 del += t - f;
538
539 /* New entry for end of split region */
540 nrg->from = t;
541 nrg->to = rg->to;
542 INIT_LIST_HEAD(&nrg->link);
543
544 /* Original entry is trimmed */
545 rg->to = f;
546
547 list_add(&nrg->link, &rg->link);
548 nrg = NULL;
549 break;
550 }
551
552 if (f <= rg->from && t >= rg->to) { /* Remove entire region */
553 del += rg->to - rg->from;
554 list_del(&rg->link);
555 kfree(rg);
556 continue;
557 }
558
559 if (f <= rg->from) { /* Trim beginning of region */
560 del += t - rg->from;
561 rg->from = t;
562 } else { /* Trim end of region */
563 del += rg->to - f;
564 rg->to = f;
565 }
566 }
567
568 spin_unlock(&resv->lock);
569 kfree(nrg);
570 return del;
571 }
572
573 /*
574 * A rare out of memory error was encountered which prevented removal of
575 * the reserve map region for a page. The huge page itself was free'ed
576 * and removed from the page cache. This routine will adjust the subpool
577 * usage count, and the global reserve count if needed. By incrementing
578 * these counts, the reserve map entry which could not be deleted will
579 * appear as a "reserved" entry instead of simply dangling with incorrect
580 * counts.
581 */
582 void hugetlb_fix_reserve_counts(struct inode *inode)
583 {
584 struct hugepage_subpool *spool = subpool_inode(inode);
585 long rsv_adjust;
586
587 rsv_adjust = hugepage_subpool_get_pages(spool, 1);
588 if (rsv_adjust) {
589 struct hstate *h = hstate_inode(inode);
590
591 hugetlb_acct_memory(h, 1);
592 }
593 }
594
595 /*
596 * Count and return the number of huge pages in the reserve map
597 * that intersect with the range [f, t).
598 */
599 static long region_count(struct resv_map *resv, long f, long t)
600 {
601 struct list_head *head = &resv->regions;
602 struct file_region *rg;
603 long chg = 0;
604
605 spin_lock(&resv->lock);
606 /* Locate each segment we overlap with, and count that overlap. */
607 list_for_each_entry(rg, head, link) {
608 long seg_from;
609 long seg_to;
610
611 if (rg->to <= f)
612 continue;
613 if (rg->from >= t)
614 break;
615
616 seg_from = max(rg->from, f);
617 seg_to = min(rg->to, t);
618
619 chg += seg_to - seg_from;
620 }
621 spin_unlock(&resv->lock);
622
623 return chg;
624 }
625
626 /*
627 * Convert the address within this vma to the page offset within
628 * the mapping, in pagecache page units; huge pages here.
629 */
630 static pgoff_t vma_hugecache_offset(struct hstate *h,
631 struct vm_area_struct *vma, unsigned long address)
632 {
633 return ((address - vma->vm_start) >> huge_page_shift(h)) +
634 (vma->vm_pgoff >> huge_page_order(h));
635 }
636
637 pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
638 unsigned long address)
639 {
640 return vma_hugecache_offset(hstate_vma(vma), vma, address);
641 }
642 EXPORT_SYMBOL_GPL(linear_hugepage_index);
643
644 /*
645 * Return the size of the pages allocated when backing a VMA. In the majority
646 * cases this will be same size as used by the page table entries.
647 */
648 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
649 {
650 struct hstate *hstate;
651
652 if (!is_vm_hugetlb_page(vma))
653 return PAGE_SIZE;
654
655 hstate = hstate_vma(vma);
656
657 return 1UL << huge_page_shift(hstate);
658 }
659 EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
660
661 /*
662 * Return the page size being used by the MMU to back a VMA. In the majority
663 * of cases, the page size used by the kernel matches the MMU size. On
664 * architectures where it differs, an architecture-specific version of this
665 * function is required.
666 */
667 #ifndef vma_mmu_pagesize
668 unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
669 {
670 return vma_kernel_pagesize(vma);
671 }
672 #endif
673
674 /*
675 * Flags for MAP_PRIVATE reservations. These are stored in the bottom
676 * bits of the reservation map pointer, which are always clear due to
677 * alignment.
678 */
679 #define HPAGE_RESV_OWNER (1UL << 0)
680 #define HPAGE_RESV_UNMAPPED (1UL << 1)
681 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
682
683 /*
684 * These helpers are used to track how many pages are reserved for
685 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
686 * is guaranteed to have their future faults succeed.
687 *
688 * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
689 * the reserve counters are updated with the hugetlb_lock held. It is safe
690 * to reset the VMA at fork() time as it is not in use yet and there is no
691 * chance of the global counters getting corrupted as a result of the values.
692 *
693 * The private mapping reservation is represented in a subtly different
694 * manner to a shared mapping. A shared mapping has a region map associated
695 * with the underlying file, this region map represents the backing file
696 * pages which have ever had a reservation assigned which this persists even
697 * after the page is instantiated. A private mapping has a region map
698 * associated with the original mmap which is attached to all VMAs which
699 * reference it, this region map represents those offsets which have consumed
700 * reservation ie. where pages have been instantiated.
701 */
702 static unsigned long get_vma_private_data(struct vm_area_struct *vma)
703 {
704 return (unsigned long)vma->vm_private_data;
705 }
706
707 static void set_vma_private_data(struct vm_area_struct *vma,
708 unsigned long value)
709 {
710 vma->vm_private_data = (void *)value;
711 }
712
713 struct resv_map *resv_map_alloc(void)
714 {
715 struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
716 struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL);
717
718 if (!resv_map || !rg) {
719 kfree(resv_map);
720 kfree(rg);
721 return NULL;
722 }
723
724 kref_init(&resv_map->refs);
725 spin_lock_init(&resv_map->lock);
726 INIT_LIST_HEAD(&resv_map->regions);
727
728 resv_map->adds_in_progress = 0;
729
730 INIT_LIST_HEAD(&resv_map->region_cache);
731 list_add(&rg->link, &resv_map->region_cache);
732 resv_map->region_cache_count = 1;
733
734 return resv_map;
735 }
736
737 void resv_map_release(struct kref *ref)
738 {
739 struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
740 struct list_head *head = &resv_map->region_cache;
741 struct file_region *rg, *trg;
742
743 /* Clear out any active regions before we release the map. */
744 region_del(resv_map, 0, LONG_MAX);
745
746 /* ... and any entries left in the cache */
747 list_for_each_entry_safe(rg, trg, head, link) {
748 list_del(&rg->link);
749 kfree(rg);
750 }
751
752 VM_BUG_ON(resv_map->adds_in_progress);
753
754 kfree(resv_map);
755 }
756
757 static inline struct resv_map *inode_resv_map(struct inode *inode)
758 {
759 return inode->i_mapping->private_data;
760 }
761
762 static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
763 {
764 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
765 if (vma->vm_flags & VM_MAYSHARE) {
766 struct address_space *mapping = vma->vm_file->f_mapping;
767 struct inode *inode = mapping->host;
768
769 return inode_resv_map(inode);
770
771 } else {
772 return (struct resv_map *)(get_vma_private_data(vma) &
773 ~HPAGE_RESV_MASK);
774 }
775 }
776
777 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
778 {
779 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
780 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
781
782 set_vma_private_data(vma, (get_vma_private_data(vma) &
783 HPAGE_RESV_MASK) | (unsigned long)map);
784 }
785
786 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
787 {
788 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
789 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
790
791 set_vma_private_data(vma, get_vma_private_data(vma) | flags);
792 }
793
794 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
795 {
796 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
797
798 return (get_vma_private_data(vma) & flag) != 0;
799 }
800
801 /* Reset counters to 0 and clear all HPAGE_RESV_* flags */
802 void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
803 {
804 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
805 if (!(vma->vm_flags & VM_MAYSHARE))
806 vma->vm_private_data = (void *)0;
807 }
808
809 /* Returns true if the VMA has associated reserve pages */
810 static bool vma_has_reserves(struct vm_area_struct *vma, long chg)
811 {
812 if (vma->vm_flags & VM_NORESERVE) {
813 /*
814 * This address is already reserved by other process(chg == 0),
815 * so, we should decrement reserved count. Without decrementing,
816 * reserve count remains after releasing inode, because this
817 * allocated page will go into page cache and is regarded as
818 * coming from reserved pool in releasing step. Currently, we
819 * don't have any other solution to deal with this situation
820 * properly, so add work-around here.
821 */
822 if (vma->vm_flags & VM_MAYSHARE && chg == 0)
823 return true;
824 else
825 return false;
826 }
827
828 /* Shared mappings always use reserves */
829 if (vma->vm_flags & VM_MAYSHARE) {
830 /*
831 * We know VM_NORESERVE is not set. Therefore, there SHOULD
832 * be a region map for all pages. The only situation where
833 * there is no region map is if a hole was punched via
834 * fallocate. In this case, there really are no reverves to
835 * use. This situation is indicated if chg != 0.
836 */
837 if (chg)
838 return false;
839 else
840 return true;
841 }
842
843 /*
844 * Only the process that called mmap() has reserves for
845 * private mappings.
846 */
847 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
848 /*
849 * Like the shared case above, a hole punch or truncate
850 * could have been performed on the private mapping.
851 * Examine the value of chg to determine if reserves
852 * actually exist or were previously consumed.
853 * Very Subtle - The value of chg comes from a previous
854 * call to vma_needs_reserves(). The reserve map for
855 * private mappings has different (opposite) semantics
856 * than that of shared mappings. vma_needs_reserves()
857 * has already taken this difference in semantics into
858 * account. Therefore, the meaning of chg is the same
859 * as in the shared case above. Code could easily be
860 * combined, but keeping it separate draws attention to
861 * subtle differences.
862 */
863 if (chg)
864 return false;
865 else
866 return true;
867 }
868
869 return false;
870 }
871
872 static void enqueue_huge_page(struct hstate *h, struct page *page)
873 {
874 int nid = page_to_nid(page);
875 list_move(&page->lru, &h->hugepage_freelists[nid]);
876 h->free_huge_pages++;
877 h->free_huge_pages_node[nid]++;
878 }
879
880 static struct page *dequeue_huge_page_node_exact(struct hstate *h, int nid)
881 {
882 struct page *page;
883
884 list_for_each_entry(page, &h->hugepage_freelists[nid], lru)
885 if (!PageHWPoison(page))
886 break;
887 /*
888 * if 'non-isolated free hugepage' not found on the list,
889 * the allocation fails.
890 */
891 if (&h->hugepage_freelists[nid] == &page->lru)
892 return NULL;
893 list_move(&page->lru, &h->hugepage_activelist);
894 set_page_refcounted(page);
895 h->free_huge_pages--;
896 h->free_huge_pages_node[nid]--;
897 return page;
898 }
899
900 static struct page *dequeue_huge_page_node(struct hstate *h, int nid)
901 {
902 struct page *page;
903 int node;
904
905 if (nid != NUMA_NO_NODE)
906 return dequeue_huge_page_node_exact(h, nid);
907
908 for_each_online_node(node) {
909 page = dequeue_huge_page_node_exact(h, node);
910 if (page)
911 return page;
912 }
913 return NULL;
914 }
915
916 /* Movability of hugepages depends on migration support. */
917 static inline gfp_t htlb_alloc_mask(struct hstate *h)
918 {
919 if (hugepages_treat_as_movable || hugepage_migration_supported(h))
920 return GFP_HIGHUSER_MOVABLE;
921 else
922 return GFP_HIGHUSER;
923 }
924
925 static struct page *dequeue_huge_page_vma(struct hstate *h,
926 struct vm_area_struct *vma,
927 unsigned long address, int avoid_reserve,
928 long chg)
929 {
930 struct page *page = NULL;
931 struct mempolicy *mpol;
932 nodemask_t *nodemask;
933 gfp_t gfp_mask;
934 int nid;
935 struct zonelist *zonelist;
936 struct zone *zone;
937 struct zoneref *z;
938 unsigned int cpuset_mems_cookie;
939
940 /*
941 * A child process with MAP_PRIVATE mappings created by their parent
942 * have no page reserves. This check ensures that reservations are
943 * not "stolen". The child may still get SIGKILLed
944 */
945 if (!vma_has_reserves(vma, chg) &&
946 h->free_huge_pages - h->resv_huge_pages == 0)
947 goto err;
948
949 /* If reserves cannot be used, ensure enough pages are in the pool */
950 if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
951 goto err;
952
953 retry_cpuset:
954 cpuset_mems_cookie = read_mems_allowed_begin();
955 gfp_mask = htlb_alloc_mask(h);
956 nid = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
957 zonelist = node_zonelist(nid, gfp_mask);
958
959 for_each_zone_zonelist_nodemask(zone, z, zonelist,
960 MAX_NR_ZONES - 1, nodemask) {
961 if (cpuset_zone_allowed(zone, gfp_mask)) {
962 page = dequeue_huge_page_node(h, zone_to_nid(zone));
963 if (page) {
964 if (avoid_reserve)
965 break;
966 if (!vma_has_reserves(vma, chg))
967 break;
968
969 SetPagePrivate(page);
970 h->resv_huge_pages--;
971 break;
972 }
973 }
974 }
975
976 mpol_cond_put(mpol);
977 if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie)))
978 goto retry_cpuset;
979 return page;
980
981 err:
982 return NULL;
983 }
984
985 /*
986 * common helper functions for hstate_next_node_to_{alloc|free}.
987 * We may have allocated or freed a huge page based on a different
988 * nodes_allowed previously, so h->next_node_to_{alloc|free} might
989 * be outside of *nodes_allowed. Ensure that we use an allowed
990 * node for alloc or free.
991 */
992 static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
993 {
994 nid = next_node_in(nid, *nodes_allowed);
995 VM_BUG_ON(nid >= MAX_NUMNODES);
996
997 return nid;
998 }
999
1000 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
1001 {
1002 if (!node_isset(nid, *nodes_allowed))
1003 nid = next_node_allowed(nid, nodes_allowed);
1004 return nid;
1005 }
1006
1007 /*
1008 * returns the previously saved node ["this node"] from which to
1009 * allocate a persistent huge page for the pool and advance the
1010 * next node from which to allocate, handling wrap at end of node
1011 * mask.
1012 */
1013 static int hstate_next_node_to_alloc(struct hstate *h,
1014 nodemask_t *nodes_allowed)
1015 {
1016 int nid;
1017
1018 VM_BUG_ON(!nodes_allowed);
1019
1020 nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
1021 h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
1022
1023 return nid;
1024 }
1025
1026 /*
1027 * helper for free_pool_huge_page() - return the previously saved
1028 * node ["this node"] from which to free a huge page. Advance the
1029 * next node id whether or not we find a free huge page to free so
1030 * that the next attempt to free addresses the next node.
1031 */
1032 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
1033 {
1034 int nid;
1035
1036 VM_BUG_ON(!nodes_allowed);
1037
1038 nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
1039 h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
1040
1041 return nid;
1042 }
1043
1044 #define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask) \
1045 for (nr_nodes = nodes_weight(*mask); \
1046 nr_nodes > 0 && \
1047 ((node = hstate_next_node_to_alloc(hs, mask)) || 1); \
1048 nr_nodes--)
1049
1050 #define for_each_node_mask_to_free(hs, nr_nodes, node, mask) \
1051 for (nr_nodes = nodes_weight(*mask); \
1052 nr_nodes > 0 && \
1053 ((node = hstate_next_node_to_free(hs, mask)) || 1); \
1054 nr_nodes--)
1055
1056 #ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE
1057 static void destroy_compound_gigantic_page(struct page *page,
1058 unsigned int order)
1059 {
1060 int i;
1061 int nr_pages = 1 << order;
1062 struct page *p = page + 1;
1063
1064 atomic_set(compound_mapcount_ptr(page), 0);
1065 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1066 clear_compound_head(p);
1067 set_page_refcounted(p);
1068 }
1069
1070 set_compound_order(page, 0);
1071 __ClearPageHead(page);
1072 }
1073
1074 static void free_gigantic_page(struct page *page, unsigned int order)
1075 {
1076 free_contig_range(page_to_pfn(page), 1 << order);
1077 }
1078
1079 static int __alloc_gigantic_page(unsigned long start_pfn,
1080 unsigned long nr_pages)
1081 {
1082 unsigned long end_pfn = start_pfn + nr_pages;
1083 return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE,
1084 GFP_KERNEL);
1085 }
1086
1087 static bool pfn_range_valid_gigantic(struct zone *z,
1088 unsigned long start_pfn, unsigned long nr_pages)
1089 {
1090 unsigned long i, end_pfn = start_pfn + nr_pages;
1091 struct page *page;
1092
1093 for (i = start_pfn; i < end_pfn; i++) {
1094 if (!pfn_valid(i))
1095 return false;
1096
1097 page = pfn_to_page(i);
1098
1099 if (page_zone(page) != z)
1100 return false;
1101
1102 if (PageReserved(page))
1103 return false;
1104
1105 if (page_count(page) > 0)
1106 return false;
1107
1108 if (PageHuge(page))
1109 return false;
1110 }
1111
1112 return true;
1113 }
1114
1115 static bool zone_spans_last_pfn(const struct zone *zone,
1116 unsigned long start_pfn, unsigned long nr_pages)
1117 {
1118 unsigned long last_pfn = start_pfn + nr_pages - 1;
1119 return zone_spans_pfn(zone, last_pfn);
1120 }
1121
1122 static struct page *alloc_gigantic_page(int nid, unsigned int order)
1123 {
1124 unsigned long nr_pages = 1 << order;
1125 unsigned long ret, pfn, flags;
1126 struct zone *z;
1127
1128 z = NODE_DATA(nid)->node_zones;
1129 for (; z - NODE_DATA(nid)->node_zones < MAX_NR_ZONES; z++) {
1130 spin_lock_irqsave(&z->lock, flags);
1131
1132 pfn = ALIGN(z->zone_start_pfn, nr_pages);
1133 while (zone_spans_last_pfn(z, pfn, nr_pages)) {
1134 if (pfn_range_valid_gigantic(z, pfn, nr_pages)) {
1135 /*
1136 * We release the zone lock here because
1137 * alloc_contig_range() will also lock the zone
1138 * at some point. If there's an allocation
1139 * spinning on this lock, it may win the race
1140 * and cause alloc_contig_range() to fail...
1141 */
1142 spin_unlock_irqrestore(&z->lock, flags);
1143 ret = __alloc_gigantic_page(pfn, nr_pages);
1144 if (!ret)
1145 return pfn_to_page(pfn);
1146 spin_lock_irqsave(&z->lock, flags);
1147 }
1148 pfn += nr_pages;
1149 }
1150
1151 spin_unlock_irqrestore(&z->lock, flags);
1152 }
1153
1154 return NULL;
1155 }
1156
1157 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid);
1158 static void prep_compound_gigantic_page(struct page *page, unsigned int order);
1159
1160 static struct page *alloc_fresh_gigantic_page_node(struct hstate *h, int nid)
1161 {
1162 struct page *page;
1163
1164 page = alloc_gigantic_page(nid, huge_page_order(h));
1165 if (page) {
1166 prep_compound_gigantic_page(page, huge_page_order(h));
1167 prep_new_huge_page(h, page, nid);
1168 }
1169
1170 return page;
1171 }
1172
1173 static int alloc_fresh_gigantic_page(struct hstate *h,
1174 nodemask_t *nodes_allowed)
1175 {
1176 struct page *page = NULL;
1177 int nr_nodes, node;
1178
1179 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
1180 page = alloc_fresh_gigantic_page_node(h, node);
1181 if (page)
1182 return 1;
1183 }
1184
1185 return 0;
1186 }
1187
1188 #else /* !CONFIG_ARCH_HAS_GIGANTIC_PAGE */
1189 static inline bool gigantic_page_supported(void) { return false; }
1190 static inline void free_gigantic_page(struct page *page, unsigned int order) { }
1191 static inline void destroy_compound_gigantic_page(struct page *page,
1192 unsigned int order) { }
1193 static inline int alloc_fresh_gigantic_page(struct hstate *h,
1194 nodemask_t *nodes_allowed) { return 0; }
1195 #endif
1196
1197 static void update_and_free_page(struct hstate *h, struct page *page)
1198 {
1199 int i;
1200
1201 if (hstate_is_gigantic(h) && !gigantic_page_supported())
1202 return;
1203
1204 h->nr_huge_pages--;
1205 h->nr_huge_pages_node[page_to_nid(page)]--;
1206 for (i = 0; i < pages_per_huge_page(h); i++) {
1207 page[i].flags &= ~(1 << PG_locked | 1 << PG_error |
1208 1 << PG_referenced | 1 << PG_dirty |
1209 1 << PG_active | 1 << PG_private |
1210 1 << PG_writeback);
1211 }
1212 VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page);
1213 set_compound_page_dtor(page, NULL_COMPOUND_DTOR);
1214 set_page_refcounted(page);
1215 if (hstate_is_gigantic(h)) {
1216 destroy_compound_gigantic_page(page, huge_page_order(h));
1217 free_gigantic_page(page, huge_page_order(h));
1218 } else {
1219 __free_pages(page, huge_page_order(h));
1220 }
1221 }
1222
1223 struct hstate *size_to_hstate(unsigned long size)
1224 {
1225 struct hstate *h;
1226
1227 for_each_hstate(h) {
1228 if (huge_page_size(h) == size)
1229 return h;
1230 }
1231 return NULL;
1232 }
1233
1234 /*
1235 * Test to determine whether the hugepage is "active/in-use" (i.e. being linked
1236 * to hstate->hugepage_activelist.)
1237 *
1238 * This function can be called for tail pages, but never returns true for them.
1239 */
1240 bool page_huge_active(struct page *page)
1241 {
1242 VM_BUG_ON_PAGE(!PageHuge(page), page);
1243 return PageHead(page) && PagePrivate(&page[1]);
1244 }
1245
1246 /* never called for tail page */
1247 static void set_page_huge_active(struct page *page)
1248 {
1249 VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
1250 SetPagePrivate(&page[1]);
1251 }
1252
1253 static void clear_page_huge_active(struct page *page)
1254 {
1255 VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
1256 ClearPagePrivate(&page[1]);
1257 }
1258
1259 void free_huge_page(struct page *page)
1260 {
1261 /*
1262 * Can't pass hstate in here because it is called from the
1263 * compound page destructor.
1264 */
1265 struct hstate *h = page_hstate(page);
1266 int nid = page_to_nid(page);
1267 struct hugepage_subpool *spool =
1268 (struct hugepage_subpool *)page_private(page);
1269 bool restore_reserve;
1270
1271 set_page_private(page, 0);
1272 page->mapping = NULL;
1273 VM_BUG_ON_PAGE(page_count(page), page);
1274 VM_BUG_ON_PAGE(page_mapcount(page), page);
1275 restore_reserve = PagePrivate(page);
1276 ClearPagePrivate(page);
1277
1278 /*
1279 * A return code of zero implies that the subpool will be under its
1280 * minimum size if the reservation is not restored after page is free.
1281 * Therefore, force restore_reserve operation.
1282 */
1283 if (hugepage_subpool_put_pages(spool, 1) == 0)
1284 restore_reserve = true;
1285
1286 spin_lock(&hugetlb_lock);
1287 clear_page_huge_active(page);
1288 hugetlb_cgroup_uncharge_page(hstate_index(h),
1289 pages_per_huge_page(h), page);
1290 if (restore_reserve)
1291 h->resv_huge_pages++;
1292
1293 if (h->surplus_huge_pages_node[nid]) {
1294 /* remove the page from active list */
1295 list_del(&page->lru);
1296 update_and_free_page(h, page);
1297 h->surplus_huge_pages--;
1298 h->surplus_huge_pages_node[nid]--;
1299 } else {
1300 arch_clear_hugepage_flags(page);
1301 enqueue_huge_page(h, page);
1302 }
1303 spin_unlock(&hugetlb_lock);
1304 }
1305
1306 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
1307 {
1308 INIT_LIST_HEAD(&page->lru);
1309 set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
1310 spin_lock(&hugetlb_lock);
1311 set_hugetlb_cgroup(page, NULL);
1312 h->nr_huge_pages++;
1313 h->nr_huge_pages_node[nid]++;
1314 spin_unlock(&hugetlb_lock);
1315 put_page(page); /* free it into the hugepage allocator */
1316 }
1317
1318 static void prep_compound_gigantic_page(struct page *page, unsigned int order)
1319 {
1320 int i;
1321 int nr_pages = 1 << order;
1322 struct page *p = page + 1;
1323
1324 /* we rely on prep_new_huge_page to set the destructor */
1325 set_compound_order(page, order);
1326 __ClearPageReserved(page);
1327 __SetPageHead(page);
1328 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1329 /*
1330 * For gigantic hugepages allocated through bootmem at
1331 * boot, it's safer to be consistent with the not-gigantic
1332 * hugepages and clear the PG_reserved bit from all tail pages
1333 * too. Otherwse drivers using get_user_pages() to access tail
1334 * pages may get the reference counting wrong if they see
1335 * PG_reserved set on a tail page (despite the head page not
1336 * having PG_reserved set). Enforcing this consistency between
1337 * head and tail pages allows drivers to optimize away a check
1338 * on the head page when they need know if put_page() is needed
1339 * after get_user_pages().
1340 */
1341 __ClearPageReserved(p);
1342 set_page_count(p, 0);
1343 set_compound_head(p, page);
1344 }
1345 atomic_set(compound_mapcount_ptr(page), -1);
1346 }
1347
1348 /*
1349 * PageHuge() only returns true for hugetlbfs pages, but not for normal or
1350 * transparent huge pages. See the PageTransHuge() documentation for more
1351 * details.
1352 */
1353 int PageHuge(struct page *page)
1354 {
1355 if (!PageCompound(page))
1356 return 0;
1357
1358 page = compound_head(page);
1359 return page[1].compound_dtor == HUGETLB_PAGE_DTOR;
1360 }
1361 EXPORT_SYMBOL_GPL(PageHuge);
1362
1363 /*
1364 * PageHeadHuge() only returns true for hugetlbfs head page, but not for
1365 * normal or transparent huge pages.
1366 */
1367 int PageHeadHuge(struct page *page_head)
1368 {
1369 if (!PageHead(page_head))
1370 return 0;
1371
1372 return get_compound_page_dtor(page_head) == free_huge_page;
1373 }
1374
1375 pgoff_t __basepage_index(struct page *page)
1376 {
1377 struct page *page_head = compound_head(page);
1378 pgoff_t index = page_index(page_head);
1379 unsigned long compound_idx;
1380
1381 if (!PageHuge(page_head))
1382 return page_index(page);
1383
1384 if (compound_order(page_head) >= MAX_ORDER)
1385 compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
1386 else
1387 compound_idx = page - page_head;
1388
1389 return (index << compound_order(page_head)) + compound_idx;
1390 }
1391
1392 static struct page *alloc_fresh_huge_page_node(struct hstate *h, int nid)
1393 {
1394 struct page *page;
1395
1396 page = __alloc_pages_node(nid,
1397 htlb_alloc_mask(h)|__GFP_COMP|__GFP_THISNODE|
1398 __GFP_REPEAT|__GFP_NOWARN,
1399 huge_page_order(h));
1400 if (page) {
1401 prep_new_huge_page(h, page, nid);
1402 }
1403
1404 return page;
1405 }
1406
1407 static int alloc_fresh_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
1408 {
1409 struct page *page;
1410 int nr_nodes, node;
1411 int ret = 0;
1412
1413 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
1414 page = alloc_fresh_huge_page_node(h, node);
1415 if (page) {
1416 ret = 1;
1417 break;
1418 }
1419 }
1420
1421 if (ret)
1422 count_vm_event(HTLB_BUDDY_PGALLOC);
1423 else
1424 count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
1425
1426 return ret;
1427 }
1428
1429 /*
1430 * Free huge page from pool from next node to free.
1431 * Attempt to keep persistent huge pages more or less
1432 * balanced over allowed nodes.
1433 * Called with hugetlb_lock locked.
1434 */
1435 static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
1436 bool acct_surplus)
1437 {
1438 int nr_nodes, node;
1439 int ret = 0;
1440
1441 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
1442 /*
1443 * If we're returning unused surplus pages, only examine
1444 * nodes with surplus pages.
1445 */
1446 if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
1447 !list_empty(&h->hugepage_freelists[node])) {
1448 struct page *page =
1449 list_entry(h->hugepage_freelists[node].next,
1450 struct page, lru);
1451 list_del(&page->lru);
1452 h->free_huge_pages--;
1453 h->free_huge_pages_node[node]--;
1454 if (acct_surplus) {
1455 h->surplus_huge_pages--;
1456 h->surplus_huge_pages_node[node]--;
1457 }
1458 update_and_free_page(h, page);
1459 ret = 1;
1460 break;
1461 }
1462 }
1463
1464 return ret;
1465 }
1466
1467 /*
1468 * Dissolve a given free hugepage into free buddy pages. This function does
1469 * nothing for in-use (including surplus) hugepages. Returns -EBUSY if the
1470 * number of free hugepages would be reduced below the number of reserved
1471 * hugepages.
1472 */
1473 int dissolve_free_huge_page(struct page *page)
1474 {
1475 int rc = 0;
1476
1477 spin_lock(&hugetlb_lock);
1478 if (PageHuge(page) && !page_count(page)) {
1479 struct page *head = compound_head(page);
1480 struct hstate *h = page_hstate(head);
1481 int nid = page_to_nid(head);
1482 if (h->free_huge_pages - h->resv_huge_pages == 0) {
1483 rc = -EBUSY;
1484 goto out;
1485 }
1486 /*
1487 * Move PageHWPoison flag from head page to the raw error page,
1488 * which makes any subpages rather than the error page reusable.
1489 */
1490 if (PageHWPoison(head) && page != head) {
1491 SetPageHWPoison(page);
1492 ClearPageHWPoison(head);
1493 }
1494 list_del(&head->lru);
1495 h->free_huge_pages--;
1496 h->free_huge_pages_node[nid]--;
1497 h->max_huge_pages--;
1498 update_and_free_page(h, head);
1499 }
1500 out:
1501 spin_unlock(&hugetlb_lock);
1502 return rc;
1503 }
1504
1505 /*
1506 * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
1507 * make specified memory blocks removable from the system.
1508 * Note that this will dissolve a free gigantic hugepage completely, if any
1509 * part of it lies within the given range.
1510 * Also note that if dissolve_free_huge_page() returns with an error, all
1511 * free hugepages that were dissolved before that error are lost.
1512 */
1513 int dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
1514 {
1515 unsigned long pfn;
1516 struct page *page;
1517 int rc = 0;
1518
1519 if (!hugepages_supported())
1520 return rc;
1521
1522 for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << minimum_order) {
1523 page = pfn_to_page(pfn);
1524 if (PageHuge(page) && !page_count(page)) {
1525 rc = dissolve_free_huge_page(page);
1526 if (rc)
1527 break;
1528 }
1529 }
1530
1531 return rc;
1532 }
1533
1534 /*
1535 * There are 3 ways this can get called:
1536 * 1. With vma+addr: we use the VMA's memory policy
1537 * 2. With !vma, but nid=NUMA_NO_NODE: We try to allocate a huge
1538 * page from any node, and let the buddy allocator itself figure
1539 * it out.
1540 * 3. With !vma, but nid!=NUMA_NO_NODE. We allocate a huge page
1541 * strictly from 'nid'
1542 */
1543 static struct page *__hugetlb_alloc_buddy_huge_page(struct hstate *h,
1544 struct vm_area_struct *vma, unsigned long addr, int nid)
1545 {
1546 int order = huge_page_order(h);
1547 gfp_t gfp = htlb_alloc_mask(h)|__GFP_COMP|__GFP_REPEAT|__GFP_NOWARN;
1548 unsigned int cpuset_mems_cookie;
1549
1550 /*
1551 * We need a VMA to get a memory policy. If we do not
1552 * have one, we use the 'nid' argument.
1553 *
1554 * The mempolicy stuff below has some non-inlined bits
1555 * and calls ->vm_ops. That makes it hard to optimize at
1556 * compile-time, even when NUMA is off and it does
1557 * nothing. This helps the compiler optimize it out.
1558 */
1559 if (!IS_ENABLED(CONFIG_NUMA) || !vma) {
1560 /*
1561 * If a specific node is requested, make sure to
1562 * get memory from there, but only when a node
1563 * is explicitly specified.
1564 */
1565 if (nid != NUMA_NO_NODE)
1566 gfp |= __GFP_THISNODE;
1567 /*
1568 * Make sure to call something that can handle
1569 * nid=NUMA_NO_NODE
1570 */
1571 return alloc_pages_node(nid, gfp, order);
1572 }
1573
1574 /*
1575 * OK, so we have a VMA. Fetch the mempolicy and try to
1576 * allocate a huge page with it. We will only reach this
1577 * when CONFIG_NUMA=y.
1578 */
1579 do {
1580 struct page *page;
1581 struct mempolicy *mpol;
1582 int nid;
1583 nodemask_t *nodemask;
1584
1585 cpuset_mems_cookie = read_mems_allowed_begin();
1586 nid = huge_node(vma, addr, gfp, &mpol, &nodemask);
1587 mpol_cond_put(mpol);
1588 page = __alloc_pages_nodemask(gfp, order, nid, nodemask);
1589 if (page)
1590 return page;
1591 } while (read_mems_allowed_retry(cpuset_mems_cookie));
1592
1593 return NULL;
1594 }
1595
1596 /*
1597 * There are two ways to allocate a huge page:
1598 * 1. When you have a VMA and an address (like a fault)
1599 * 2. When you have no VMA (like when setting /proc/.../nr_hugepages)
1600 *
1601 * 'vma' and 'addr' are only for (1). 'nid' is always NUMA_NO_NODE in
1602 * this case which signifies that the allocation should be done with
1603 * respect for the VMA's memory policy.
1604 *
1605 * For (2), we ignore 'vma' and 'addr' and use 'nid' exclusively. This
1606 * implies that memory policies will not be taken in to account.
1607 */
1608 static struct page *__alloc_buddy_huge_page(struct hstate *h,
1609 struct vm_area_struct *vma, unsigned long addr, int nid)
1610 {
1611 struct page *page;
1612 unsigned int r_nid;
1613
1614 if (hstate_is_gigantic(h))
1615 return NULL;
1616
1617 /*
1618 * Make sure that anyone specifying 'nid' is not also specifying a VMA.
1619 * This makes sure the caller is picking _one_ of the modes with which
1620 * we can call this function, not both.
1621 */
1622 if (vma || (addr != -1)) {
1623 VM_WARN_ON_ONCE(addr == -1);
1624 VM_WARN_ON_ONCE(nid != NUMA_NO_NODE);
1625 }
1626 /*
1627 * Assume we will successfully allocate the surplus page to
1628 * prevent racing processes from causing the surplus to exceed
1629 * overcommit
1630 *
1631 * This however introduces a different race, where a process B
1632 * tries to grow the static hugepage pool while alloc_pages() is
1633 * called by process A. B will only examine the per-node
1634 * counters in determining if surplus huge pages can be
1635 * converted to normal huge pages in adjust_pool_surplus(). A
1636 * won't be able to increment the per-node counter, until the
1637 * lock is dropped by B, but B doesn't drop hugetlb_lock until
1638 * no more huge pages can be converted from surplus to normal
1639 * state (and doesn't try to convert again). Thus, we have a
1640 * case where a surplus huge page exists, the pool is grown, and
1641 * the surplus huge page still exists after, even though it
1642 * should just have been converted to a normal huge page. This
1643 * does not leak memory, though, as the hugepage will be freed
1644 * once it is out of use. It also does not allow the counters to
1645 * go out of whack in adjust_pool_surplus() as we don't modify
1646 * the node values until we've gotten the hugepage and only the
1647 * per-node value is checked there.
1648 */
1649 spin_lock(&hugetlb_lock);
1650 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
1651 spin_unlock(&hugetlb_lock);
1652 return NULL;
1653 } else {
1654 h->nr_huge_pages++;
1655 h->surplus_huge_pages++;
1656 }
1657 spin_unlock(&hugetlb_lock);
1658
1659 page = __hugetlb_alloc_buddy_huge_page(h, vma, addr, nid);
1660
1661 spin_lock(&hugetlb_lock);
1662 if (page) {
1663 INIT_LIST_HEAD(&page->lru);
1664 r_nid = page_to_nid(page);
1665 set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
1666 set_hugetlb_cgroup(page, NULL);
1667 /*
1668 * We incremented the global counters already
1669 */
1670 h->nr_huge_pages_node[r_nid]++;
1671 h->surplus_huge_pages_node[r_nid]++;
1672 __count_vm_event(HTLB_BUDDY_PGALLOC);
1673 } else {
1674 h->nr_huge_pages--;
1675 h->surplus_huge_pages--;
1676 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
1677 }
1678 spin_unlock(&hugetlb_lock);
1679
1680 return page;
1681 }
1682
1683 /*
1684 * Allocate a huge page from 'nid'. Note, 'nid' may be
1685 * NUMA_NO_NODE, which means that it may be allocated
1686 * anywhere.
1687 */
1688 static
1689 struct page *__alloc_buddy_huge_page_no_mpol(struct hstate *h, int nid)
1690 {
1691 unsigned long addr = -1;
1692
1693 return __alloc_buddy_huge_page(h, NULL, addr, nid);
1694 }
1695
1696 /*
1697 * Use the VMA's mpolicy to allocate a huge page from the buddy.
1698 */
1699 static
1700 struct page *__alloc_buddy_huge_page_with_mpol(struct hstate *h,
1701 struct vm_area_struct *vma, unsigned long addr)
1702 {
1703 return __alloc_buddy_huge_page(h, vma, addr, NUMA_NO_NODE);
1704 }
1705
1706 /*
1707 * This allocation function is useful in the context where vma is irrelevant.
1708 * E.g. soft-offlining uses this function because it only cares physical
1709 * address of error page.
1710 */
1711 struct page *alloc_huge_page_node(struct hstate *h, int nid)
1712 {
1713 struct page *page = NULL;
1714
1715 spin_lock(&hugetlb_lock);
1716 if (h->free_huge_pages - h->resv_huge_pages > 0)
1717 page = dequeue_huge_page_node(h, nid);
1718 spin_unlock(&hugetlb_lock);
1719
1720 if (!page)
1721 page = __alloc_buddy_huge_page_no_mpol(h, nid);
1722
1723 return page;
1724 }
1725
1726 struct page *alloc_huge_page_nodemask(struct hstate *h, const nodemask_t *nmask)
1727 {
1728 struct page *page = NULL;
1729 int node;
1730
1731 spin_lock(&hugetlb_lock);
1732 if (h->free_huge_pages - h->resv_huge_pages > 0) {
1733 for_each_node_mask(node, *nmask) {
1734 page = dequeue_huge_page_node_exact(h, node);
1735 if (page)
1736 break;
1737 }
1738 }
1739 spin_unlock(&hugetlb_lock);
1740 if (page)
1741 return page;
1742
1743 /* No reservations, try to overcommit */
1744 for_each_node_mask(node, *nmask) {
1745 page = __alloc_buddy_huge_page_no_mpol(h, node);
1746 if (page)
1747 return page;
1748 }
1749
1750 return NULL;
1751 }
1752
1753 /*
1754 * Increase the hugetlb pool such that it can accommodate a reservation
1755 * of size 'delta'.
1756 */
1757 static int gather_surplus_pages(struct hstate *h, int delta)
1758 {
1759 struct list_head surplus_list;
1760 struct page *page, *tmp;
1761 int ret, i;
1762 int needed, allocated;
1763 bool alloc_ok = true;
1764
1765 needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
1766 if (needed <= 0) {
1767 h->resv_huge_pages += delta;
1768 return 0;
1769 }
1770
1771 allocated = 0;
1772 INIT_LIST_HEAD(&surplus_list);
1773
1774 ret = -ENOMEM;
1775 retry:
1776 spin_unlock(&hugetlb_lock);
1777 for (i = 0; i < needed; i++) {
1778 page = __alloc_buddy_huge_page_no_mpol(h, NUMA_NO_NODE);
1779 if (!page) {
1780 alloc_ok = false;
1781 break;
1782 }
1783 list_add(&page->lru, &surplus_list);
1784 }
1785 allocated += i;
1786
1787 /*
1788 * After retaking hugetlb_lock, we need to recalculate 'needed'
1789 * because either resv_huge_pages or free_huge_pages may have changed.
1790 */
1791 spin_lock(&hugetlb_lock);
1792 needed = (h->resv_huge_pages + delta) -
1793 (h->free_huge_pages + allocated);
1794 if (needed > 0) {
1795 if (alloc_ok)
1796 goto retry;
1797 /*
1798 * We were not able to allocate enough pages to
1799 * satisfy the entire reservation so we free what
1800 * we've allocated so far.
1801 */
1802 goto free;
1803 }
1804 /*
1805 * The surplus_list now contains _at_least_ the number of extra pages
1806 * needed to accommodate the reservation. Add the appropriate number
1807 * of pages to the hugetlb pool and free the extras back to the buddy
1808 * allocator. Commit the entire reservation here to prevent another
1809 * process from stealing the pages as they are added to the pool but
1810 * before they are reserved.
1811 */
1812 needed += allocated;
1813 h->resv_huge_pages += delta;
1814 ret = 0;
1815
1816 /* Free the needed pages to the hugetlb pool */
1817 list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
1818 if ((--needed) < 0)
1819 break;
1820 /*
1821 * This page is now managed by the hugetlb allocator and has
1822 * no users -- drop the buddy allocator's reference.
1823 */
1824 put_page_testzero(page);
1825 VM_BUG_ON_PAGE(page_count(page), page);
1826 enqueue_huge_page(h, page);
1827 }
1828 free:
1829 spin_unlock(&hugetlb_lock);
1830
1831 /* Free unnecessary surplus pages to the buddy allocator */
1832 list_for_each_entry_safe(page, tmp, &surplus_list, lru)
1833 put_page(page);
1834 spin_lock(&hugetlb_lock);
1835
1836 return ret;
1837 }
1838
1839 /*
1840 * This routine has two main purposes:
1841 * 1) Decrement the reservation count (resv_huge_pages) by the value passed
1842 * in unused_resv_pages. This corresponds to the prior adjustments made
1843 * to the associated reservation map.
1844 * 2) Free any unused surplus pages that may have been allocated to satisfy
1845 * the reservation. As many as unused_resv_pages may be freed.
1846 *
1847 * Called with hugetlb_lock held. However, the lock could be dropped (and
1848 * reacquired) during calls to cond_resched_lock. Whenever dropping the lock,
1849 * we must make sure nobody else can claim pages we are in the process of
1850 * freeing. Do this by ensuring resv_huge_page always is greater than the
1851 * number of huge pages we plan to free when dropping the lock.
1852 */
1853 static void return_unused_surplus_pages(struct hstate *h,
1854 unsigned long unused_resv_pages)
1855 {
1856 unsigned long nr_pages;
1857
1858 /* Cannot return gigantic pages currently */
1859 if (hstate_is_gigantic(h))
1860 goto out;
1861
1862 /*
1863 * Part (or even all) of the reservation could have been backed
1864 * by pre-allocated pages. Only free surplus pages.
1865 */
1866 nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
1867
1868 /*
1869 * We want to release as many surplus pages as possible, spread
1870 * evenly across all nodes with memory. Iterate across these nodes
1871 * until we can no longer free unreserved surplus pages. This occurs
1872 * when the nodes with surplus pages have no free pages.
1873 * free_pool_huge_page() will balance the the freed pages across the
1874 * on-line nodes with memory and will handle the hstate accounting.
1875 *
1876 * Note that we decrement resv_huge_pages as we free the pages. If
1877 * we drop the lock, resv_huge_pages will still be sufficiently large
1878 * to cover subsequent pages we may free.
1879 */
1880 while (nr_pages--) {
1881 h->resv_huge_pages--;
1882 unused_resv_pages--;
1883 if (!free_pool_huge_page(h, &node_states[N_MEMORY], 1))
1884 goto out;
1885 cond_resched_lock(&hugetlb_lock);
1886 }
1887
1888 out:
1889 /* Fully uncommit the reservation */
1890 h->resv_huge_pages -= unused_resv_pages;
1891 }
1892
1893
1894 /*
1895 * vma_needs_reservation, vma_commit_reservation and vma_end_reservation
1896 * are used by the huge page allocation routines to manage reservations.
1897 *
1898 * vma_needs_reservation is called to determine if the huge page at addr
1899 * within the vma has an associated reservation. If a reservation is
1900 * needed, the value 1 is returned. The caller is then responsible for
1901 * managing the global reservation and subpool usage counts. After
1902 * the huge page has been allocated, vma_commit_reservation is called
1903 * to add the page to the reservation map. If the page allocation fails,
1904 * the reservation must be ended instead of committed. vma_end_reservation
1905 * is called in such cases.
1906 *
1907 * In the normal case, vma_commit_reservation returns the same value
1908 * as the preceding vma_needs_reservation call. The only time this
1909 * is not the case is if a reserve map was changed between calls. It
1910 * is the responsibility of the caller to notice the difference and
1911 * take appropriate action.
1912 *
1913 * vma_add_reservation is used in error paths where a reservation must
1914 * be restored when a newly allocated huge page must be freed. It is
1915 * to be called after calling vma_needs_reservation to determine if a
1916 * reservation exists.
1917 */
1918 enum vma_resv_mode {
1919 VMA_NEEDS_RESV,
1920 VMA_COMMIT_RESV,
1921 VMA_END_RESV,
1922 VMA_ADD_RESV,
1923 };
1924 static long __vma_reservation_common(struct hstate *h,
1925 struct vm_area_struct *vma, unsigned long addr,
1926 enum vma_resv_mode mode)
1927 {
1928 struct resv_map *resv;
1929 pgoff_t idx;
1930 long ret;
1931
1932 resv = vma_resv_map(vma);
1933 if (!resv)
1934 return 1;
1935
1936 idx = vma_hugecache_offset(h, vma, addr);
1937 switch (mode) {
1938 case VMA_NEEDS_RESV:
1939 ret = region_chg(resv, idx, idx + 1);
1940 break;
1941 case VMA_COMMIT_RESV:
1942 ret = region_add(resv, idx, idx + 1);
1943 break;
1944 case VMA_END_RESV:
1945 region_abort(resv, idx, idx + 1);
1946 ret = 0;
1947 break;
1948 case VMA_ADD_RESV:
1949 if (vma->vm_flags & VM_MAYSHARE)
1950 ret = region_add(resv, idx, idx + 1);
1951 else {
1952 region_abort(resv, idx, idx + 1);
1953 ret = region_del(resv, idx, idx + 1);
1954 }
1955 break;
1956 default:
1957 BUG();
1958 }
1959
1960 if (vma->vm_flags & VM_MAYSHARE)
1961 return ret;
1962 else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) && ret >= 0) {
1963 /*
1964 * In most cases, reserves always exist for private mappings.
1965 * However, a file associated with mapping could have been
1966 * hole punched or truncated after reserves were consumed.
1967 * As subsequent fault on such a range will not use reserves.
1968 * Subtle - The reserve map for private mappings has the
1969 * opposite meaning than that of shared mappings. If NO
1970 * entry is in the reserve map, it means a reservation exists.
1971 * If an entry exists in the reserve map, it means the
1972 * reservation has already been consumed. As a result, the
1973 * return value of this routine is the opposite of the
1974 * value returned from reserve map manipulation routines above.
1975 */
1976 if (ret)
1977 return 0;
1978 else
1979 return 1;
1980 }
1981 else
1982 return ret < 0 ? ret : 0;
1983 }
1984
1985 static long vma_needs_reservation(struct hstate *h,
1986 struct vm_area_struct *vma, unsigned long addr)
1987 {
1988 return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV);
1989 }
1990
1991 static long vma_commit_reservation(struct hstate *h,
1992 struct vm_area_struct *vma, unsigned long addr)
1993 {
1994 return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV);
1995 }
1996
1997 static void vma_end_reservation(struct hstate *h,
1998 struct vm_area_struct *vma, unsigned long addr)
1999 {
2000 (void)__vma_reservation_common(h, vma, addr, VMA_END_RESV);
2001 }
2002
2003 static long vma_add_reservation(struct hstate *h,
2004 struct vm_area_struct *vma, unsigned long addr)
2005 {
2006 return __vma_reservation_common(h, vma, addr, VMA_ADD_RESV);
2007 }
2008
2009 /*
2010 * This routine is called to restore a reservation on error paths. In the
2011 * specific error paths, a huge page was allocated (via alloc_huge_page)
2012 * and is about to be freed. If a reservation for the page existed,
2013 * alloc_huge_page would have consumed the reservation and set PagePrivate
2014 * in the newly allocated page. When the page is freed via free_huge_page,
2015 * the global reservation count will be incremented if PagePrivate is set.
2016 * However, free_huge_page can not adjust the reserve map. Adjust the
2017 * reserve map here to be consistent with global reserve count adjustments
2018 * to be made by free_huge_page.
2019 */
2020 static void restore_reserve_on_error(struct hstate *h,
2021 struct vm_area_struct *vma, unsigned long address,
2022 struct page *page)
2023 {
2024 if (unlikely(PagePrivate(page))) {
2025 long rc = vma_needs_reservation(h, vma, address);
2026
2027 if (unlikely(rc < 0)) {
2028 /*
2029 * Rare out of memory condition in reserve map
2030 * manipulation. Clear PagePrivate so that
2031 * global reserve count will not be incremented
2032 * by free_huge_page. This will make it appear
2033 * as though the reservation for this page was
2034 * consumed. This may prevent the task from
2035 * faulting in the page at a later time. This
2036 * is better than inconsistent global huge page
2037 * accounting of reserve counts.
2038 */
2039 ClearPagePrivate(page);
2040 } else if (rc) {
2041 rc = vma_add_reservation(h, vma, address);
2042 if (unlikely(rc < 0))
2043 /*
2044 * See above comment about rare out of
2045 * memory condition.
2046 */
2047 ClearPagePrivate(page);
2048 } else
2049 vma_end_reservation(h, vma, address);
2050 }
2051 }
2052
2053 struct page *alloc_huge_page(struct vm_area_struct *vma,
2054 unsigned long addr, int avoid_reserve)
2055 {
2056 struct hugepage_subpool *spool = subpool_vma(vma);
2057 struct hstate *h = hstate_vma(vma);
2058 struct page *page;
2059 long map_chg, map_commit;
2060 long gbl_chg;
2061 int ret, idx;
2062 struct hugetlb_cgroup *h_cg;
2063
2064 idx = hstate_index(h);
2065 /*
2066 * Examine the region/reserve map to determine if the process
2067 * has a reservation for the page to be allocated. A return
2068 * code of zero indicates a reservation exists (no change).
2069 */
2070 map_chg = gbl_chg = vma_needs_reservation(h, vma, addr);
2071 if (map_chg < 0)
2072 return ERR_PTR(-ENOMEM);
2073
2074 /*
2075 * Processes that did not create the mapping will have no
2076 * reserves as indicated by the region/reserve map. Check
2077 * that the allocation will not exceed the subpool limit.
2078 * Allocations for MAP_NORESERVE mappings also need to be
2079 * checked against any subpool limit.
2080 */
2081 if (map_chg || avoid_reserve) {
2082 gbl_chg = hugepage_subpool_get_pages(spool, 1);
2083 if (gbl_chg < 0) {
2084 vma_end_reservation(h, vma, addr);
2085 return ERR_PTR(-ENOSPC);
2086 }
2087
2088 /*
2089 * Even though there was no reservation in the region/reserve
2090 * map, there could be reservations associated with the
2091 * subpool that can be used. This would be indicated if the
2092 * return value of hugepage_subpool_get_pages() is zero.
2093 * However, if avoid_reserve is specified we still avoid even
2094 * the subpool reservations.
2095 */
2096 if (avoid_reserve)
2097 gbl_chg = 1;
2098 }
2099
2100 ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
2101 if (ret)
2102 goto out_subpool_put;
2103
2104 spin_lock(&hugetlb_lock);
2105 /*
2106 * glb_chg is passed to indicate whether or not a page must be taken
2107 * from the global free pool (global change). gbl_chg == 0 indicates
2108 * a reservation exists for the allocation.
2109 */
2110 page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, gbl_chg);
2111 if (!page) {
2112 spin_unlock(&hugetlb_lock);
2113 page = __alloc_buddy_huge_page_with_mpol(h, vma, addr);
2114 if (!page)
2115 goto out_uncharge_cgroup;
2116 if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) {
2117 SetPagePrivate(page);
2118 h->resv_huge_pages--;
2119 }
2120 spin_lock(&hugetlb_lock);
2121 list_move(&page->lru, &h->hugepage_activelist);
2122 /* Fall through */
2123 }
2124 hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
2125 spin_unlock(&hugetlb_lock);
2126
2127 set_page_private(page, (unsigned long)spool);
2128
2129 map_commit = vma_commit_reservation(h, vma, addr);
2130 if (unlikely(map_chg > map_commit)) {
2131 /*
2132 * The page was added to the reservation map between
2133 * vma_needs_reservation and vma_commit_reservation.
2134 * This indicates a race with hugetlb_reserve_pages.
2135 * Adjust for the subpool count incremented above AND
2136 * in hugetlb_reserve_pages for the same page. Also,
2137 * the reservation count added in hugetlb_reserve_pages
2138 * no longer applies.
2139 */
2140 long rsv_adjust;
2141
2142 rsv_adjust = hugepage_subpool_put_pages(spool, 1);
2143 hugetlb_acct_memory(h, -rsv_adjust);
2144 }
2145 return page;
2146
2147 out_uncharge_cgroup:
2148 hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
2149 out_subpool_put:
2150 if (map_chg || avoid_reserve)
2151 hugepage_subpool_put_pages(spool, 1);
2152 vma_end_reservation(h, vma, addr);
2153 return ERR_PTR(-ENOSPC);
2154 }
2155
2156 /*
2157 * alloc_huge_page()'s wrapper which simply returns the page if allocation
2158 * succeeds, otherwise NULL. This function is called from new_vma_page(),
2159 * where no ERR_VALUE is expected to be returned.
2160 */
2161 struct page *alloc_huge_page_noerr(struct vm_area_struct *vma,
2162 unsigned long addr, int avoid_reserve)
2163 {
2164 struct page *page = alloc_huge_page(vma, addr, avoid_reserve);
2165 if (IS_ERR(page))
2166 page = NULL;
2167 return page;
2168 }
2169
2170 int __weak alloc_bootmem_huge_page(struct hstate *h)
2171 {
2172 struct huge_bootmem_page *m;
2173 int nr_nodes, node;
2174
2175 for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
2176 void *addr;
2177
2178 addr = memblock_virt_alloc_try_nid_nopanic(
2179 huge_page_size(h), huge_page_size(h),
2180 0, BOOTMEM_ALLOC_ACCESSIBLE, node);
2181 if (addr) {
2182 /*
2183 * Use the beginning of the huge page to store the
2184 * huge_bootmem_page struct (until gather_bootmem
2185 * puts them into the mem_map).
2186 */
2187 m = addr;
2188 goto found;
2189 }
2190 }
2191 return 0;
2192
2193 found:
2194 BUG_ON(!IS_ALIGNED(virt_to_phys(m), huge_page_size(h)));
2195 /* Put them into a private list first because mem_map is not up yet */
2196 list_add(&m->list, &huge_boot_pages);
2197 m->hstate = h;
2198 return 1;
2199 }
2200
2201 static void __init prep_compound_huge_page(struct page *page,
2202 unsigned int order)
2203 {
2204 if (unlikely(order > (MAX_ORDER - 1)))
2205 prep_compound_gigantic_page(page, order);
2206 else
2207 prep_compound_page(page, order);
2208 }
2209
2210 /* Put bootmem huge pages into the standard lists after mem_map is up */
2211 static void __init gather_bootmem_prealloc(void)
2212 {
2213 struct huge_bootmem_page *m;
2214
2215 list_for_each_entry(m, &huge_boot_pages, list) {
2216 struct hstate *h = m->hstate;
2217 struct page *page;
2218
2219 #ifdef CONFIG_HIGHMEM
2220 page = pfn_to_page(m->phys >> PAGE_SHIFT);
2221 memblock_free_late(__pa(m),
2222 sizeof(struct huge_bootmem_page));
2223 #else
2224 page = virt_to_page(m);
2225 #endif
2226 WARN_ON(page_count(page) != 1);
2227 prep_compound_huge_page(page, h->order);
2228 WARN_ON(PageReserved(page));
2229 prep_new_huge_page(h, page, page_to_nid(page));
2230 /*
2231 * If we had gigantic hugepages allocated at boot time, we need
2232 * to restore the 'stolen' pages to totalram_pages in order to
2233 * fix confusing memory reports from free(1) and another
2234 * side-effects, like CommitLimit going negative.
2235 */
2236 if (hstate_is_gigantic(h))
2237 adjust_managed_page_count(page, 1 << h->order);
2238 }
2239 }
2240
2241 static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
2242 {
2243 unsigned long i;
2244
2245 for (i = 0; i < h->max_huge_pages; ++i) {
2246 if (hstate_is_gigantic(h)) {
2247 if (!alloc_bootmem_huge_page(h))
2248 break;
2249 } else if (!alloc_fresh_huge_page(h,
2250 &node_states[N_MEMORY]))
2251 break;
2252 }
2253 if (i < h->max_huge_pages) {
2254 char buf[32];
2255
2256 memfmt(buf, huge_page_size(h)),
2257 pr_warn("HugeTLB: allocating %lu of page size %s failed. Only allocated %lu hugepages.\n",
2258 h->max_huge_pages, buf, i);
2259 h->max_huge_pages = i;
2260 }
2261 }
2262
2263 static void __init hugetlb_init_hstates(void)
2264 {
2265 struct hstate *h;
2266
2267 for_each_hstate(h) {
2268 if (minimum_order > huge_page_order(h))
2269 minimum_order = huge_page_order(h);
2270
2271 /* oversize hugepages were init'ed in early boot */
2272 if (!hstate_is_gigantic(h))
2273 hugetlb_hstate_alloc_pages(h);
2274 }
2275 VM_BUG_ON(minimum_order == UINT_MAX);
2276 }
2277
2278 static void __init report_hugepages(void)
2279 {
2280 struct hstate *h;
2281
2282 for_each_hstate(h) {
2283 char buf[32];
2284 pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
2285 memfmt(buf, huge_page_size(h)),
2286 h->free_huge_pages);
2287 }
2288 }
2289
2290 #ifdef CONFIG_HIGHMEM
2291 static void try_to_free_low(struct hstate *h, unsigned long count,
2292 nodemask_t *nodes_allowed)
2293 {
2294 int i;
2295
2296 if (hstate_is_gigantic(h))
2297 return;
2298
2299 for_each_node_mask(i, *nodes_allowed) {
2300 struct page *page, *next;
2301 struct list_head *freel = &h->hugepage_freelists[i];
2302 list_for_each_entry_safe(page, next, freel, lru) {
2303 if (count >= h->nr_huge_pages)
2304 return;
2305 if (PageHighMem(page))
2306 continue;
2307 list_del(&page->lru);
2308 update_and_free_page(h, page);
2309 h->free_huge_pages--;
2310 h->free_huge_pages_node[page_to_nid(page)]--;
2311 }
2312 }
2313 }
2314 #else
2315 static inline void try_to_free_low(struct hstate *h, unsigned long count,
2316 nodemask_t *nodes_allowed)
2317 {
2318 }
2319 #endif
2320
2321 /*
2322 * Increment or decrement surplus_huge_pages. Keep node-specific counters
2323 * balanced by operating on them in a round-robin fashion.
2324 * Returns 1 if an adjustment was made.
2325 */
2326 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
2327 int delta)
2328 {
2329 int nr_nodes, node;
2330
2331 VM_BUG_ON(delta != -1 && delta != 1);
2332
2333 if (delta < 0) {
2334 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
2335 if (h->surplus_huge_pages_node[node])
2336 goto found;
2337 }
2338 } else {
2339 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
2340 if (h->surplus_huge_pages_node[node] <
2341 h->nr_huge_pages_node[node])
2342 goto found;
2343 }
2344 }
2345 return 0;
2346
2347 found:
2348 h->surplus_huge_pages += delta;
2349 h->surplus_huge_pages_node[node] += delta;
2350 return 1;
2351 }
2352
2353 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
2354 static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count,
2355 nodemask_t *nodes_allowed)
2356 {
2357 unsigned long min_count, ret;
2358
2359 if (hstate_is_gigantic(h) && !gigantic_page_supported())
2360 return h->max_huge_pages;
2361
2362 /*
2363 * Increase the pool size
2364 * First take pages out of surplus state. Then make up the
2365 * remaining difference by allocating fresh huge pages.
2366 *
2367 * We might race with __alloc_buddy_huge_page() here and be unable
2368 * to convert a surplus huge page to a normal huge page. That is
2369 * not critical, though, it just means the overall size of the
2370 * pool might be one hugepage larger than it needs to be, but
2371 * within all the constraints specified by the sysctls.
2372 */
2373 spin_lock(&hugetlb_lock);
2374 while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
2375 if (!adjust_pool_surplus(h, nodes_allowed, -1))
2376 break;
2377 }
2378
2379 while (count > persistent_huge_pages(h)) {
2380 /*
2381 * If this allocation races such that we no longer need the
2382 * page, free_huge_page will handle it by freeing the page
2383 * and reducing the surplus.
2384 */
2385 spin_unlock(&hugetlb_lock);
2386
2387 /* yield cpu to avoid soft lockup */
2388 cond_resched();
2389
2390 if (hstate_is_gigantic(h))
2391 ret = alloc_fresh_gigantic_page(h, nodes_allowed);
2392 else
2393 ret = alloc_fresh_huge_page(h, nodes_allowed);
2394 spin_lock(&hugetlb_lock);
2395 if (!ret)
2396 goto out;
2397
2398 /* Bail for signals. Probably ctrl-c from user */
2399 if (signal_pending(current))
2400 goto out;
2401 }
2402
2403 /*
2404 * Decrease the pool size
2405 * First return free pages to the buddy allocator (being careful
2406 * to keep enough around to satisfy reservations). Then place
2407 * pages into surplus state as needed so the pool will shrink
2408 * to the desired size as pages become free.
2409 *
2410 * By placing pages into the surplus state independent of the
2411 * overcommit value, we are allowing the surplus pool size to
2412 * exceed overcommit. There are few sane options here. Since
2413 * __alloc_buddy_huge_page() is checking the global counter,
2414 * though, we'll note that we're not allowed to exceed surplus
2415 * and won't grow the pool anywhere else. Not until one of the
2416 * sysctls are changed, or the surplus pages go out of use.
2417 */
2418 min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
2419 min_count = max(count, min_count);
2420 try_to_free_low(h, min_count, nodes_allowed);
2421 while (min_count < persistent_huge_pages(h)) {
2422 if (!free_pool_huge_page(h, nodes_allowed, 0))
2423 break;
2424 cond_resched_lock(&hugetlb_lock);
2425 }
2426 while (count < persistent_huge_pages(h)) {
2427 if (!adjust_pool_surplus(h, nodes_allowed, 1))
2428 break;
2429 }
2430 out:
2431 ret = persistent_huge_pages(h);
2432 spin_unlock(&hugetlb_lock);
2433 return ret;
2434 }
2435
2436 #define HSTATE_ATTR_RO(_name) \
2437 static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
2438
2439 #define HSTATE_ATTR(_name) \
2440 static struct kobj_attribute _name##_attr = \
2441 __ATTR(_name, 0644, _name##_show, _name##_store)
2442
2443 static struct kobject *hugepages_kobj;
2444 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
2445
2446 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
2447
2448 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
2449 {
2450 int i;
2451
2452 for (i = 0; i < HUGE_MAX_HSTATE; i++)
2453 if (hstate_kobjs[i] == kobj) {
2454 if (nidp)
2455 *nidp = NUMA_NO_NODE;
2456 return &hstates[i];
2457 }
2458
2459 return kobj_to_node_hstate(kobj, nidp);
2460 }
2461
2462 static ssize_t nr_hugepages_show_common(struct kobject *kobj,
2463 struct kobj_attribute *attr, char *buf)
2464 {
2465 struct hstate *h;
2466 unsigned long nr_huge_pages;
2467 int nid;
2468
2469 h = kobj_to_hstate(kobj, &nid);
2470 if (nid == NUMA_NO_NODE)
2471 nr_huge_pages = h->nr_huge_pages;
2472 else
2473 nr_huge_pages = h->nr_huge_pages_node[nid];
2474
2475 return sprintf(buf, "%lu\n", nr_huge_pages);
2476 }
2477
2478 static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
2479 struct hstate *h, int nid,
2480 unsigned long count, size_t len)
2481 {
2482 int err;
2483 NODEMASK_ALLOC(nodemask_t, nodes_allowed, GFP_KERNEL | __GFP_NORETRY);
2484
2485 if (hstate_is_gigantic(h) && !gigantic_page_supported()) {
2486 err = -EINVAL;
2487 goto out;
2488 }
2489
2490 if (nid == NUMA_NO_NODE) {
2491 /*
2492 * global hstate attribute
2493 */
2494 if (!(obey_mempolicy &&
2495 init_nodemask_of_mempolicy(nodes_allowed))) {
2496 NODEMASK_FREE(nodes_allowed);
2497 nodes_allowed = &node_states[N_MEMORY];
2498 }
2499 } else if (nodes_allowed) {
2500 /*
2501 * per node hstate attribute: adjust count to global,
2502 * but restrict alloc/free to the specified node.
2503 */
2504 count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
2505 init_nodemask_of_node(nodes_allowed, nid);
2506 } else
2507 nodes_allowed = &node_states[N_MEMORY];
2508
2509 h->max_huge_pages = set_max_huge_pages(h, count, nodes_allowed);
2510
2511 if (nodes_allowed != &node_states[N_MEMORY])
2512 NODEMASK_FREE(nodes_allowed);
2513
2514 return len;
2515 out:
2516 NODEMASK_FREE(nodes_allowed);
2517 return err;
2518 }
2519
2520 static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
2521 struct kobject *kobj, const char *buf,
2522 size_t len)
2523 {
2524 struct hstate *h;
2525 unsigned long count;
2526 int nid;
2527 int err;
2528
2529 err = kstrtoul(buf, 10, &count);
2530 if (err)
2531 return err;
2532
2533 h = kobj_to_hstate(kobj, &nid);
2534 return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
2535 }
2536
2537 static ssize_t nr_hugepages_show(struct kobject *kobj,
2538 struct kobj_attribute *attr, char *buf)
2539 {
2540 return nr_hugepages_show_common(kobj, attr, buf);
2541 }
2542
2543 static ssize_t nr_hugepages_store(struct kobject *kobj,
2544 struct kobj_attribute *attr, const char *buf, size_t len)
2545 {
2546 return nr_hugepages_store_common(false, kobj, buf, len);
2547 }
2548 HSTATE_ATTR(nr_hugepages);
2549
2550 #ifdef CONFIG_NUMA
2551
2552 /*
2553 * hstate attribute for optionally mempolicy-based constraint on persistent
2554 * huge page alloc/free.
2555 */
2556 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
2557 struct kobj_attribute *attr, char *buf)
2558 {
2559 return nr_hugepages_show_common(kobj, attr, buf);
2560 }
2561
2562 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
2563 struct kobj_attribute *attr, const char *buf, size_t len)
2564 {
2565 return nr_hugepages_store_common(true, kobj, buf, len);
2566 }
2567 HSTATE_ATTR(nr_hugepages_mempolicy);
2568 #endif
2569
2570
2571 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
2572 struct kobj_attribute *attr, char *buf)
2573 {
2574 struct hstate *h = kobj_to_hstate(kobj, NULL);
2575 return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
2576 }
2577
2578 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
2579 struct kobj_attribute *attr, const char *buf, size_t count)
2580 {
2581 int err;
2582 unsigned long input;
2583 struct hstate *h = kobj_to_hstate(kobj, NULL);
2584
2585 if (hstate_is_gigantic(h))
2586 return -EINVAL;
2587
2588 err = kstrtoul(buf, 10, &input);
2589 if (err)
2590 return err;
2591
2592 spin_lock(&hugetlb_lock);
2593 h->nr_overcommit_huge_pages = input;
2594 spin_unlock(&hugetlb_lock);
2595
2596 return count;
2597 }
2598 HSTATE_ATTR(nr_overcommit_hugepages);
2599
2600 static ssize_t free_hugepages_show(struct kobject *kobj,
2601 struct kobj_attribute *attr, char *buf)
2602 {
2603 struct hstate *h;
2604 unsigned long free_huge_pages;
2605 int nid;
2606
2607 h = kobj_to_hstate(kobj, &nid);
2608 if (nid == NUMA_NO_NODE)
2609 free_huge_pages = h->free_huge_pages;
2610 else
2611 free_huge_pages = h->free_huge_pages_node[nid];
2612
2613 return sprintf(buf, "%lu\n", free_huge_pages);
2614 }
2615 HSTATE_ATTR_RO(free_hugepages);
2616
2617 static ssize_t resv_hugepages_show(struct kobject *kobj,
2618 struct kobj_attribute *attr, char *buf)
2619 {
2620 struct hstate *h = kobj_to_hstate(kobj, NULL);
2621 return sprintf(buf, "%lu\n", h->resv_huge_pages);
2622 }
2623 HSTATE_ATTR_RO(resv_hugepages);
2624
2625 static ssize_t surplus_hugepages_show(struct kobject *kobj,
2626 struct kobj_attribute *attr, char *buf)
2627 {
2628 struct hstate *h;
2629 unsigned long surplus_huge_pages;
2630 int nid;
2631
2632 h = kobj_to_hstate(kobj, &nid);
2633 if (nid == NUMA_NO_NODE)
2634 surplus_huge_pages = h->surplus_huge_pages;
2635 else
2636 surplus_huge_pages = h->surplus_huge_pages_node[nid];
2637
2638 return sprintf(buf, "%lu\n", surplus_huge_pages);
2639 }
2640 HSTATE_ATTR_RO(surplus_hugepages);
2641
2642 static struct attribute *hstate_attrs[] = {
2643 &nr_hugepages_attr.attr,
2644 &nr_overcommit_hugepages_attr.attr,
2645 &free_hugepages_attr.attr,
2646 &resv_hugepages_attr.attr,
2647 &surplus_hugepages_attr.attr,
2648 #ifdef CONFIG_NUMA
2649 &nr_hugepages_mempolicy_attr.attr,
2650 #endif
2651 NULL,
2652 };
2653
2654 static struct attribute_group hstate_attr_group = {
2655 .attrs = hstate_attrs,
2656 };
2657
2658 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
2659 struct kobject **hstate_kobjs,
2660 struct attribute_group *hstate_attr_group)
2661 {
2662 int retval;
2663 int hi = hstate_index(h);
2664
2665 hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
2666 if (!hstate_kobjs[hi])
2667 return -ENOMEM;
2668
2669 retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
2670 if (retval)
2671 kobject_put(hstate_kobjs[hi]);
2672
2673 return retval;
2674 }
2675
2676 static void __init hugetlb_sysfs_init(void)
2677 {
2678 struct hstate *h;
2679 int err;
2680
2681 hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
2682 if (!hugepages_kobj)
2683 return;
2684
2685 for_each_hstate(h) {
2686 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
2687 hstate_kobjs, &hstate_attr_group);
2688 if (err)
2689 pr_err("Hugetlb: Unable to add hstate %s", h->name);
2690 }
2691 }
2692
2693 #ifdef CONFIG_NUMA
2694
2695 /*
2696 * node_hstate/s - associate per node hstate attributes, via their kobjects,
2697 * with node devices in node_devices[] using a parallel array. The array
2698 * index of a node device or _hstate == node id.
2699 * This is here to avoid any static dependency of the node device driver, in
2700 * the base kernel, on the hugetlb module.
2701 */
2702 struct node_hstate {
2703 struct kobject *hugepages_kobj;
2704 struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
2705 };
2706 static struct node_hstate node_hstates[MAX_NUMNODES];
2707
2708 /*
2709 * A subset of global hstate attributes for node devices
2710 */
2711 static struct attribute *per_node_hstate_attrs[] = {
2712 &nr_hugepages_attr.attr,
2713 &free_hugepages_attr.attr,
2714 &surplus_hugepages_attr.attr,
2715 NULL,
2716 };
2717
2718 static struct attribute_group per_node_hstate_attr_group = {
2719 .attrs = per_node_hstate_attrs,
2720 };
2721
2722 /*
2723 * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
2724 * Returns node id via non-NULL nidp.
2725 */
2726 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
2727 {
2728 int nid;
2729
2730 for (nid = 0; nid < nr_node_ids; nid++) {
2731 struct node_hstate *nhs = &node_hstates[nid];
2732 int i;
2733 for (i = 0; i < HUGE_MAX_HSTATE; i++)
2734 if (nhs->hstate_kobjs[i] == kobj) {
2735 if (nidp)
2736 *nidp = nid;
2737 return &hstates[i];
2738 }
2739 }
2740
2741 BUG();
2742 return NULL;
2743 }
2744
2745 /*
2746 * Unregister hstate attributes from a single node device.
2747 * No-op if no hstate attributes attached.
2748 */
2749 static void hugetlb_unregister_node(struct node *node)
2750 {
2751 struct hstate *h;
2752 struct node_hstate *nhs = &node_hstates[node->dev.id];
2753
2754 if (!nhs->hugepages_kobj)
2755 return; /* no hstate attributes */
2756
2757 for_each_hstate(h) {
2758 int idx = hstate_index(h);
2759 if (nhs->hstate_kobjs[idx]) {
2760 kobject_put(nhs->hstate_kobjs[idx]);
2761 nhs->hstate_kobjs[idx] = NULL;
2762 }
2763 }
2764
2765 kobject_put(nhs->hugepages_kobj);
2766 nhs->hugepages_kobj = NULL;
2767 }
2768
2769
2770 /*
2771 * Register hstate attributes for a single node device.
2772 * No-op if attributes already registered.
2773 */
2774 static void hugetlb_register_node(struct node *node)
2775 {
2776 struct hstate *h;
2777 struct node_hstate *nhs = &node_hstates[node->dev.id];
2778 int err;
2779
2780 if (nhs->hugepages_kobj)
2781 return; /* already allocated */
2782
2783 nhs->hugepages_kobj = kobject_create_and_add("hugepages",
2784 &node->dev.kobj);
2785 if (!nhs->hugepages_kobj)
2786 return;
2787
2788 for_each_hstate(h) {
2789 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
2790 nhs->hstate_kobjs,
2791 &per_node_hstate_attr_group);
2792 if (err) {
2793 pr_err("Hugetlb: Unable to add hstate %s for node %d\n",
2794 h->name, node->dev.id);
2795 hugetlb_unregister_node(node);
2796 break;
2797 }
2798 }
2799 }
2800
2801 /*
2802 * hugetlb init time: register hstate attributes for all registered node
2803 * devices of nodes that have memory. All on-line nodes should have
2804 * registered their associated device by this time.
2805 */
2806 static void __init hugetlb_register_all_nodes(void)
2807 {
2808 int nid;
2809
2810 for_each_node_state(nid, N_MEMORY) {
2811 struct node *node = node_devices[nid];
2812 if (node->dev.id == nid)
2813 hugetlb_register_node(node);
2814 }
2815
2816 /*
2817 * Let the node device driver know we're here so it can
2818 * [un]register hstate attributes on node hotplug.
2819 */
2820 register_hugetlbfs_with_node(hugetlb_register_node,
2821 hugetlb_unregister_node);
2822 }
2823 #else /* !CONFIG_NUMA */
2824
2825 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
2826 {
2827 BUG();
2828 if (nidp)
2829 *nidp = -1;
2830 return NULL;
2831 }
2832
2833 static void hugetlb_register_all_nodes(void) { }
2834
2835 #endif
2836
2837 static int __init hugetlb_init(void)
2838 {
2839 int i;
2840
2841 if (!hugepages_supported())
2842 return 0;
2843
2844 if (!size_to_hstate(default_hstate_size)) {
2845 if (default_hstate_size != 0) {
2846 pr_err("HugeTLB: unsupported default_hugepagesz %lu. Reverting to %lu\n",
2847 default_hstate_size, HPAGE_SIZE);
2848 }
2849
2850 default_hstate_size = HPAGE_SIZE;
2851 if (!size_to_hstate(default_hstate_size))
2852 hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
2853 }
2854 default_hstate_idx = hstate_index(size_to_hstate(default_hstate_size));
2855 if (default_hstate_max_huge_pages) {
2856 if (!default_hstate.max_huge_pages)
2857 default_hstate.max_huge_pages = default_hstate_max_huge_pages;
2858 }
2859
2860 hugetlb_init_hstates();
2861 gather_bootmem_prealloc();
2862 report_hugepages();
2863
2864 hugetlb_sysfs_init();
2865 hugetlb_register_all_nodes();
2866 hugetlb_cgroup_file_init();
2867
2868 #ifdef CONFIG_SMP
2869 num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
2870 #else
2871 num_fault_mutexes = 1;
2872 #endif
2873 hugetlb_fault_mutex_table =
2874 kmalloc(sizeof(struct mutex) * num_fault_mutexes, GFP_KERNEL);
2875 BUG_ON(!hugetlb_fault_mutex_table);
2876
2877 for (i = 0; i < num_fault_mutexes; i++)
2878 mutex_init(&hugetlb_fault_mutex_table[i]);
2879 return 0;
2880 }
2881 subsys_initcall(hugetlb_init);
2882
2883 /* Should be called on processing a hugepagesz=... option */
2884 void __init hugetlb_bad_size(void)
2885 {
2886 parsed_valid_hugepagesz = false;
2887 }
2888
2889 void __init hugetlb_add_hstate(unsigned int order)
2890 {
2891 struct hstate *h;
2892 unsigned long i;
2893
2894 if (size_to_hstate(PAGE_SIZE << order)) {
2895 pr_warn("hugepagesz= specified twice, ignoring\n");
2896 return;
2897 }
2898 BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
2899 BUG_ON(order == 0);
2900 h = &hstates[hugetlb_max_hstate++];
2901 h->order = order;
2902 h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
2903 h->nr_huge_pages = 0;
2904 h->free_huge_pages = 0;
2905 for (i = 0; i < MAX_NUMNODES; ++i)
2906 INIT_LIST_HEAD(&h->hugepage_freelists[i]);
2907 INIT_LIST_HEAD(&h->hugepage_activelist);
2908 h->next_nid_to_alloc = first_memory_node;
2909 h->next_nid_to_free = first_memory_node;
2910 snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
2911 huge_page_size(h)/1024);
2912
2913 parsed_hstate = h;
2914 }
2915
2916 static int __init hugetlb_nrpages_setup(char *s)
2917 {
2918 unsigned long *mhp;
2919 static unsigned long *last_mhp;
2920
2921 if (!parsed_valid_hugepagesz) {
2922 pr_warn("hugepages = %s preceded by "
2923 "an unsupported hugepagesz, ignoring\n", s);
2924 parsed_valid_hugepagesz = true;
2925 return 1;
2926 }
2927 /*
2928 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter yet,
2929 * so this hugepages= parameter goes to the "default hstate".
2930 */
2931 else if (!hugetlb_max_hstate)
2932 mhp = &default_hstate_max_huge_pages;
2933 else
2934 mhp = &parsed_hstate->max_huge_pages;
2935
2936 if (mhp == last_mhp) {
2937 pr_warn("hugepages= specified twice without interleaving hugepagesz=, ignoring\n");
2938 return 1;
2939 }
2940
2941 if (sscanf(s, "%lu", mhp) <= 0)
2942 *mhp = 0;
2943
2944 /*
2945 * Global state is always initialized later in hugetlb_init.
2946 * But we need to allocate >= MAX_ORDER hstates here early to still
2947 * use the bootmem allocator.
2948 */
2949 if (hugetlb_max_hstate && parsed_hstate->order >= MAX_ORDER)
2950 hugetlb_hstate_alloc_pages(parsed_hstate);
2951
2952 last_mhp = mhp;
2953
2954 return 1;
2955 }
2956 __setup("hugepages=", hugetlb_nrpages_setup);
2957
2958 static int __init hugetlb_default_setup(char *s)
2959 {
2960 default_hstate_size = memparse(s, &s);
2961 return 1;
2962 }
2963 __setup("default_hugepagesz=", hugetlb_default_setup);
2964
2965 static unsigned int cpuset_mems_nr(unsigned int *array)
2966 {
2967 int node;
2968 unsigned int nr = 0;
2969
2970 for_each_node_mask(node, cpuset_current_mems_allowed)
2971 nr += array[node];
2972
2973 return nr;
2974 }
2975
2976 #ifdef CONFIG_SYSCTL
2977 static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
2978 struct ctl_table *table, int write,
2979 void __user *buffer, size_t *length, loff_t *ppos)
2980 {
2981 struct hstate *h = &default_hstate;
2982 unsigned long tmp = h->max_huge_pages;
2983 int ret;
2984
2985 if (!hugepages_supported())
2986 return -EOPNOTSUPP;
2987
2988 table->data = &tmp;
2989 table->maxlen = sizeof(unsigned long);
2990 ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2991 if (ret)
2992 goto out;
2993
2994 if (write)
2995 ret = __nr_hugepages_store_common(obey_mempolicy, h,
2996 NUMA_NO_NODE, tmp, *length);
2997 out:
2998 return ret;
2999 }
3000
3001 int hugetlb_sysctl_handler(struct ctl_table *table, int write,
3002 void __user *buffer, size_t *length, loff_t *ppos)
3003 {
3004
3005 return hugetlb_sysctl_handler_common(false, table, write,
3006 buffer, length, ppos);
3007 }
3008
3009 #ifdef CONFIG_NUMA
3010 int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
3011 void __user *buffer, size_t *length, loff_t *ppos)
3012 {
3013 return hugetlb_sysctl_handler_common(true, table, write,
3014 buffer, length, ppos);
3015 }
3016 #endif /* CONFIG_NUMA */
3017
3018 int hugetlb_overcommit_handler(struct ctl_table *table, int write,
3019 void __user *buffer,
3020 size_t *length, loff_t *ppos)
3021 {
3022 struct hstate *h = &default_hstate;
3023 unsigned long tmp;
3024 int ret;
3025
3026 if (!hugepages_supported())
3027 return -EOPNOTSUPP;
3028
3029 tmp = h->nr_overcommit_huge_pages;
3030
3031 if (write && hstate_is_gigantic(h))
3032 return -EINVAL;
3033
3034 table->data = &tmp;
3035 table->maxlen = sizeof(unsigned long);
3036 ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
3037 if (ret)
3038 goto out;
3039
3040 if (write) {
3041 spin_lock(&hugetlb_lock);
3042 h->nr_overcommit_huge_pages = tmp;
3043 spin_unlock(&hugetlb_lock);
3044 }
3045 out:
3046 return ret;
3047 }
3048
3049 #endif /* CONFIG_SYSCTL */
3050
3051 void hugetlb_report_meminfo(struct seq_file *m)
3052 {
3053 struct hstate *h = &default_hstate;
3054 if (!hugepages_supported())
3055 return;
3056 seq_printf(m,
3057 "HugePages_Total: %5lu\n"
3058 "HugePages_Free: %5lu\n"
3059 "HugePages_Rsvd: %5lu\n"
3060 "HugePages_Surp: %5lu\n"
3061 "Hugepagesize: %8lu kB\n",
3062 h->nr_huge_pages,
3063 h->free_huge_pages,
3064 h->resv_huge_pages,
3065 h->surplus_huge_pages,
3066 1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
3067 }
3068
3069 int hugetlb_report_node_meminfo(int nid, char *buf)
3070 {
3071 struct hstate *h = &default_hstate;
3072 if (!hugepages_supported())
3073 return 0;
3074 return sprintf(buf,
3075 "Node %d HugePages_Total: %5u\n"
3076 "Node %d HugePages_Free: %5u\n"
3077 "Node %d HugePages_Surp: %5u\n",
3078 nid, h->nr_huge_pages_node[nid],
3079 nid, h->free_huge_pages_node[nid],
3080 nid, h->surplus_huge_pages_node[nid]);
3081 }
3082
3083 void hugetlb_show_meminfo(void)
3084 {
3085 struct hstate *h;
3086 int nid;
3087
3088 if (!hugepages_supported())
3089 return;
3090
3091 for_each_node_state(nid, N_MEMORY)
3092 for_each_hstate(h)
3093 pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
3094 nid,
3095 h->nr_huge_pages_node[nid],
3096 h->free_huge_pages_node[nid],
3097 h->surplus_huge_pages_node[nid],
3098 1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
3099 }
3100
3101 void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm)
3102 {
3103 seq_printf(m, "HugetlbPages:\t%8lu kB\n",
3104 atomic_long_read(&mm->hugetlb_usage) << (PAGE_SHIFT - 10));
3105 }
3106
3107 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
3108 unsigned long hugetlb_total_pages(void)
3109 {
3110 struct hstate *h;
3111 unsigned long nr_total_pages = 0;
3112
3113 for_each_hstate(h)
3114 nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
3115 return nr_total_pages;
3116 }
3117
3118 static int hugetlb_acct_memory(struct hstate *h, long delta)
3119 {
3120 int ret = -ENOMEM;
3121
3122 spin_lock(&hugetlb_lock);
3123 /*
3124 * When cpuset is configured, it breaks the strict hugetlb page
3125 * reservation as the accounting is done on a global variable. Such
3126 * reservation is completely rubbish in the presence of cpuset because
3127 * the reservation is not checked against page availability for the
3128 * current cpuset. Application can still potentially OOM'ed by kernel
3129 * with lack of free htlb page in cpuset that the task is in.
3130 * Attempt to enforce strict accounting with cpuset is almost
3131 * impossible (or too ugly) because cpuset is too fluid that
3132 * task or memory node can be dynamically moved between cpusets.
3133 *
3134 * The change of semantics for shared hugetlb mapping with cpuset is
3135 * undesirable. However, in order to preserve some of the semantics,
3136 * we fall back to check against current free page availability as
3137 * a best attempt and hopefully to minimize the impact of changing
3138 * semantics that cpuset has.
3139 */
3140 if (delta > 0) {
3141 if (gather_surplus_pages(h, delta) < 0)
3142 goto out;
3143
3144 if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
3145 return_unused_surplus_pages(h, delta);
3146 goto out;
3147 }
3148 }
3149
3150 ret = 0;
3151 if (delta < 0)
3152 return_unused_surplus_pages(h, (unsigned long) -delta);
3153
3154 out:
3155 spin_unlock(&hugetlb_lock);
3156 return ret;
3157 }
3158
3159 static void hugetlb_vm_op_open(struct vm_area_struct *vma)
3160 {
3161 struct resv_map *resv = vma_resv_map(vma);
3162
3163 /*
3164 * This new VMA should share its siblings reservation map if present.
3165 * The VMA will only ever have a valid reservation map pointer where
3166 * it is being copied for another still existing VMA. As that VMA
3167 * has a reference to the reservation map it cannot disappear until
3168 * after this open call completes. It is therefore safe to take a
3169 * new reference here without additional locking.
3170 */
3171 if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
3172 kref_get(&resv->refs);
3173 }
3174
3175 static void hugetlb_vm_op_close(struct vm_area_struct *vma)
3176 {
3177 struct hstate *h = hstate_vma(vma);
3178 struct resv_map *resv = vma_resv_map(vma);
3179 struct hugepage_subpool *spool = subpool_vma(vma);
3180 unsigned long reserve, start, end;
3181 long gbl_reserve;
3182
3183 if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
3184 return;
3185
3186 start = vma_hugecache_offset(h, vma, vma->vm_start);
3187 end = vma_hugecache_offset(h, vma, vma->vm_end);
3188
3189 reserve = (end - start) - region_count(resv, start, end);
3190
3191 kref_put(&resv->refs, resv_map_release);
3192
3193 if (reserve) {
3194 /*
3195 * Decrement reserve counts. The global reserve count may be
3196 * adjusted if the subpool has a minimum size.
3197 */
3198 gbl_reserve = hugepage_subpool_put_pages(spool, reserve);
3199 hugetlb_acct_memory(h, -gbl_reserve);
3200 }
3201 }
3202
3203 /*
3204 * We cannot handle pagefaults against hugetlb pages at all. They cause
3205 * handle_mm_fault() to try to instantiate regular-sized pages in the
3206 * hugegpage VMA. do_page_fault() is supposed to trap this, so BUG is we get
3207 * this far.
3208 */
3209 static int hugetlb_vm_op_fault(struct vm_fault *vmf)
3210 {
3211 BUG();
3212 return 0;
3213 }
3214
3215 const struct vm_operations_struct hugetlb_vm_ops = {
3216 .fault = hugetlb_vm_op_fault,
3217 .open = hugetlb_vm_op_open,
3218 .close = hugetlb_vm_op_close,
3219 };
3220
3221 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
3222 int writable)
3223 {
3224 pte_t entry;
3225
3226 if (writable) {
3227 entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
3228 vma->vm_page_prot)));
3229 } else {
3230 entry = huge_pte_wrprotect(mk_huge_pte(page,
3231 vma->vm_page_prot));
3232 }
3233 entry = pte_mkyoung(entry);
3234 entry = pte_mkhuge(entry);
3235 entry = arch_make_huge_pte(entry, vma, page, writable);
3236
3237 return entry;
3238 }
3239
3240 static void set_huge_ptep_writable(struct vm_area_struct *vma,
3241 unsigned long address, pte_t *ptep)
3242 {
3243 pte_t entry;
3244
3245 entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
3246 if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
3247 update_mmu_cache(vma, address, ptep);
3248 }
3249
3250 bool is_hugetlb_entry_migration(pte_t pte)
3251 {
3252 swp_entry_t swp;
3253
3254 if (huge_pte_none(pte) || pte_present(pte))
3255 return false;
3256 swp = pte_to_swp_entry(pte);
3257 if (non_swap_entry(swp) && is_migration_entry(swp))
3258 return true;
3259 else
3260 return false;
3261 }
3262
3263 static int is_hugetlb_entry_hwpoisoned(pte_t pte)
3264 {
3265 swp_entry_t swp;
3266
3267 if (huge_pte_none(pte) || pte_present(pte))
3268 return 0;
3269 swp = pte_to_swp_entry(pte);
3270 if (non_swap_entry(swp) && is_hwpoison_entry(swp))
3271 return 1;
3272 else
3273 return 0;
3274 }
3275
3276 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
3277 struct vm_area_struct *vma)
3278 {
3279 pte_t *src_pte, *dst_pte, entry;
3280 struct page *ptepage;
3281 unsigned long addr;
3282 int cow;
3283 struct hstate *h = hstate_vma(vma);
3284 unsigned long sz = huge_page_size(h);
3285 unsigned long mmun_start; /* For mmu_notifiers */
3286 unsigned long mmun_end; /* For mmu_notifiers */
3287 int ret = 0;
3288
3289 cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
3290
3291 mmun_start = vma->vm_start;
3292 mmun_end = vma->vm_end;
3293 if (cow)
3294 mmu_notifier_invalidate_range_start(src, mmun_start, mmun_end);
3295
3296 for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
3297 spinlock_t *src_ptl, *dst_ptl;
3298 src_pte = huge_pte_offset(src, addr, sz);
3299 if (!src_pte)
3300 continue;
3301 dst_pte = huge_pte_alloc(dst, addr, sz);
3302 if (!dst_pte) {
3303 ret = -ENOMEM;
3304 break;
3305 }
3306
3307 /* If the pagetables are shared don't copy or take references */
3308 if (dst_pte == src_pte)
3309 continue;
3310
3311 dst_ptl = huge_pte_lock(h, dst, dst_pte);
3312 src_ptl = huge_pte_lockptr(h, src, src_pte);
3313 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
3314 entry = huge_ptep_get(src_pte);
3315 if (huge_pte_none(entry)) { /* skip none entry */
3316 ;
3317 } else if (unlikely(is_hugetlb_entry_migration(entry) ||
3318 is_hugetlb_entry_hwpoisoned(entry))) {
3319 swp_entry_t swp_entry = pte_to_swp_entry(entry);
3320
3321 if (is_write_migration_entry(swp_entry) && cow) {
3322 /*
3323 * COW mappings require pages in both
3324 * parent and child to be set to read.
3325 */
3326 make_migration_entry_read(&swp_entry);
3327 entry = swp_entry_to_pte(swp_entry);
3328 set_huge_swap_pte_at(src, addr, src_pte,
3329 entry, sz);
3330 }
3331 set_huge_swap_pte_at(dst, addr, dst_pte, entry, sz);
3332 } else {
3333 if (cow) {
3334 huge_ptep_set_wrprotect(src, addr, src_pte);
3335 mmu_notifier_invalidate_range(src, mmun_start,
3336 mmun_end);
3337 }
3338 entry = huge_ptep_get(src_pte);
3339 ptepage = pte_page(entry);
3340 get_page(ptepage);
3341 page_dup_rmap(ptepage, true);
3342 set_huge_pte_at(dst, addr, dst_pte, entry);
3343 hugetlb_count_add(pages_per_huge_page(h), dst);
3344 }
3345 spin_unlock(src_ptl);
3346 spin_unlock(dst_ptl);
3347 }
3348
3349 if (cow)
3350 mmu_notifier_invalidate_range_end(src, mmun_start, mmun_end);
3351
3352 return ret;
3353 }
3354
3355 void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
3356 unsigned long start, unsigned long end,
3357 struct page *ref_page)
3358 {
3359 struct mm_struct *mm = vma->vm_mm;
3360 unsigned long address;
3361 pte_t *ptep;
3362 pte_t pte;
3363 spinlock_t *ptl;
3364 struct page *page;
3365 struct hstate *h = hstate_vma(vma);
3366 unsigned long sz = huge_page_size(h);
3367 const unsigned long mmun_start = start; /* For mmu_notifiers */
3368 const unsigned long mmun_end = end; /* For mmu_notifiers */
3369
3370 WARN_ON(!is_vm_hugetlb_page(vma));
3371 BUG_ON(start & ~huge_page_mask(h));
3372 BUG_ON(end & ~huge_page_mask(h));
3373
3374 /*
3375 * This is a hugetlb vma, all the pte entries should point
3376 * to huge page.
3377 */
3378 tlb_remove_check_page_size_change(tlb, sz);
3379 tlb_start_vma(tlb, vma);
3380 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
3381 address = start;
3382 for (; address < end; address += sz) {
3383 ptep = huge_pte_offset(mm, address, sz);
3384 if (!ptep)
3385 continue;
3386
3387 ptl = huge_pte_lock(h, mm, ptep);
3388 if (huge_pmd_unshare(mm, &address, ptep)) {
3389 spin_unlock(ptl);
3390 continue;
3391 }
3392
3393 pte = huge_ptep_get(ptep);
3394 if (huge_pte_none(pte)) {
3395 spin_unlock(ptl);
3396 continue;
3397 }
3398
3399 /*
3400 * Migrating hugepage or HWPoisoned hugepage is already
3401 * unmapped and its refcount is dropped, so just clear pte here.
3402 */
3403 if (unlikely(!pte_present(pte))) {
3404 huge_pte_clear(mm, address, ptep, sz);
3405 spin_unlock(ptl);
3406 continue;
3407 }
3408
3409 page = pte_page(pte);
3410 /*
3411 * If a reference page is supplied, it is because a specific
3412 * page is being unmapped, not a range. Ensure the page we
3413 * are about to unmap is the actual page of interest.
3414 */
3415 if (ref_page) {
3416 if (page != ref_page) {
3417 spin_unlock(ptl);
3418 continue;
3419 }
3420 /*
3421 * Mark the VMA as having unmapped its page so that
3422 * future faults in this VMA will fail rather than
3423 * looking like data was lost
3424 */
3425 set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
3426 }
3427
3428 pte = huge_ptep_get_and_clear(mm, address, ptep);
3429 tlb_remove_huge_tlb_entry(h, tlb, ptep, address);
3430 if (huge_pte_dirty(pte))
3431 set_page_dirty(page);
3432
3433 hugetlb_count_sub(pages_per_huge_page(h), mm);
3434 page_remove_rmap(page, true);
3435
3436 spin_unlock(ptl);
3437 tlb_remove_page_size(tlb, page, huge_page_size(h));
3438 /*
3439 * Bail out after unmapping reference page if supplied
3440 */
3441 if (ref_page)
3442 break;
3443 }
3444 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
3445 tlb_end_vma(tlb, vma);
3446 }
3447
3448 void __unmap_hugepage_range_final(struct mmu_gather *tlb,
3449 struct vm_area_struct *vma, unsigned long start,
3450 unsigned long end, struct page *ref_page)
3451 {
3452 __unmap_hugepage_range(tlb, vma, start, end, ref_page);
3453
3454 /*
3455 * Clear this flag so that x86's huge_pmd_share page_table_shareable
3456 * test will fail on a vma being torn down, and not grab a page table
3457 * on its way out. We're lucky that the flag has such an appropriate
3458 * name, and can in fact be safely cleared here. We could clear it
3459 * before the __unmap_hugepage_range above, but all that's necessary
3460 * is to clear it before releasing the i_mmap_rwsem. This works
3461 * because in the context this is called, the VMA is about to be
3462 * destroyed and the i_mmap_rwsem is held.
3463 */
3464 vma->vm_flags &= ~VM_MAYSHARE;
3465 }
3466
3467 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
3468 unsigned long end, struct page *ref_page)
3469 {
3470 struct mm_struct *mm;
3471 struct mmu_gather tlb;
3472
3473 mm = vma->vm_mm;
3474
3475 tlb_gather_mmu(&tlb, mm, start, end);
3476 __unmap_hugepage_range(&tlb, vma, start, end, ref_page);
3477 tlb_finish_mmu(&tlb, start, end);
3478 }
3479
3480 /*
3481 * This is called when the original mapper is failing to COW a MAP_PRIVATE
3482 * mappping it owns the reserve page for. The intention is to unmap the page
3483 * from other VMAs and let the children be SIGKILLed if they are faulting the
3484 * same region.
3485 */
3486 static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
3487 struct page *page, unsigned long address)
3488 {
3489 struct hstate *h = hstate_vma(vma);
3490 struct vm_area_struct *iter_vma;
3491 struct address_space *mapping;
3492 pgoff_t pgoff;
3493
3494 /*
3495 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
3496 * from page cache lookup which is in HPAGE_SIZE units.
3497 */
3498 address = address & huge_page_mask(h);
3499 pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
3500 vma->vm_pgoff;
3501 mapping = vma->vm_file->f_mapping;
3502
3503 /*
3504 * Take the mapping lock for the duration of the table walk. As
3505 * this mapping should be shared between all the VMAs,
3506 * __unmap_hugepage_range() is called as the lock is already held
3507 */
3508 i_mmap_lock_write(mapping);
3509 vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
3510 /* Do not unmap the current VMA */
3511 if (iter_vma == vma)
3512 continue;
3513
3514 /*
3515 * Shared VMAs have their own reserves and do not affect
3516 * MAP_PRIVATE accounting but it is possible that a shared
3517 * VMA is using the same page so check and skip such VMAs.
3518 */
3519 if (iter_vma->vm_flags & VM_MAYSHARE)
3520 continue;
3521
3522 /*
3523 * Unmap the page from other VMAs without their own reserves.
3524 * They get marked to be SIGKILLed if they fault in these
3525 * areas. This is because a future no-page fault on this VMA
3526 * could insert a zeroed page instead of the data existing
3527 * from the time of fork. This would look like data corruption
3528 */
3529 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
3530 unmap_hugepage_range(iter_vma, address,
3531 address + huge_page_size(h), page);
3532 }
3533 i_mmap_unlock_write(mapping);
3534 }
3535
3536 /*
3537 * Hugetlb_cow() should be called with page lock of the original hugepage held.
3538 * Called with hugetlb_instantiation_mutex held and pte_page locked so we
3539 * cannot race with other handlers or page migration.
3540 * Keep the pte_same checks anyway to make transition from the mutex easier.
3541 */
3542 static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
3543 unsigned long address, pte_t *ptep,
3544 struct page *pagecache_page, spinlock_t *ptl)
3545 {
3546 pte_t pte;
3547 struct hstate *h = hstate_vma(vma);
3548 struct page *old_page, *new_page;
3549 int ret = 0, outside_reserve = 0;
3550 unsigned long mmun_start; /* For mmu_notifiers */
3551 unsigned long mmun_end; /* For mmu_notifiers */
3552
3553 pte = huge_ptep_get(ptep);
3554 old_page = pte_page(pte);
3555
3556 retry_avoidcopy:
3557 /* If no-one else is actually using this page, avoid the copy
3558 * and just make the page writable */
3559 if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
3560 page_move_anon_rmap(old_page, vma);
3561 set_huge_ptep_writable(vma, address, ptep);
3562 return 0;
3563 }
3564
3565 /*
3566 * If the process that created a MAP_PRIVATE mapping is about to
3567 * perform a COW due to a shared page count, attempt to satisfy
3568 * the allocation without using the existing reserves. The pagecache
3569 * page is used to determine if the reserve at this address was
3570 * consumed or not. If reserves were used, a partial faulted mapping
3571 * at the time of fork() could consume its reserves on COW instead
3572 * of the full address range.
3573 */
3574 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
3575 old_page != pagecache_page)
3576 outside_reserve = 1;
3577
3578 get_page(old_page);
3579
3580 /*
3581 * Drop page table lock as buddy allocator may be called. It will
3582 * be acquired again before returning to the caller, as expected.
3583 */
3584 spin_unlock(ptl);
3585 new_page = alloc_huge_page(vma, address, outside_reserve);
3586
3587 if (IS_ERR(new_page)) {
3588 /*
3589 * If a process owning a MAP_PRIVATE mapping fails to COW,
3590 * it is due to references held by a child and an insufficient
3591 * huge page pool. To guarantee the original mappers
3592 * reliability, unmap the page from child processes. The child
3593 * may get SIGKILLed if it later faults.
3594 */
3595 if (outside_reserve) {
3596 put_page(old_page);
3597 BUG_ON(huge_pte_none(pte));
3598 unmap_ref_private(mm, vma, old_page, address);
3599 BUG_ON(huge_pte_none(pte));
3600 spin_lock(ptl);
3601 ptep = huge_pte_offset(mm, address & huge_page_mask(h),
3602 huge_page_size(h));
3603 if (likely(ptep &&
3604 pte_same(huge_ptep_get(ptep), pte)))
3605 goto retry_avoidcopy;
3606 /*
3607 * race occurs while re-acquiring page table
3608 * lock, and our job is done.
3609 */
3610 return 0;
3611 }
3612
3613 ret = (PTR_ERR(new_page) == -ENOMEM) ?
3614 VM_FAULT_OOM : VM_FAULT_SIGBUS;
3615 goto out_release_old;
3616 }
3617
3618 /*
3619 * When the original hugepage is shared one, it does not have
3620 * anon_vma prepared.
3621 */
3622 if (unlikely(anon_vma_prepare(vma))) {
3623 ret = VM_FAULT_OOM;
3624 goto out_release_all;
3625 }
3626
3627 copy_user_huge_page(new_page, old_page, address, vma,
3628 pages_per_huge_page(h));
3629 __SetPageUptodate(new_page);
3630 set_page_huge_active(new_page);
3631
3632 mmun_start = address & huge_page_mask(h);
3633 mmun_end = mmun_start + huge_page_size(h);
3634 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
3635
3636 /*
3637 * Retake the page table lock to check for racing updates
3638 * before the page tables are altered
3639 */
3640 spin_lock(ptl);
3641 ptep = huge_pte_offset(mm, address & huge_page_mask(h),
3642 huge_page_size(h));
3643 if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) {
3644 ClearPagePrivate(new_page);
3645
3646 /* Break COW */
3647 huge_ptep_clear_flush(vma, address, ptep);
3648 mmu_notifier_invalidate_range(mm, mmun_start, mmun_end);
3649 set_huge_pte_at(mm, address, ptep,
3650 make_huge_pte(vma, new_page, 1));
3651 page_remove_rmap(old_page, true);
3652 hugepage_add_new_anon_rmap(new_page, vma, address);
3653 /* Make the old page be freed below */
3654 new_page = old_page;
3655 }
3656 spin_unlock(ptl);
3657 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
3658 out_release_all:
3659 restore_reserve_on_error(h, vma, address, new_page);
3660 put_page(new_page);
3661 out_release_old:
3662 put_page(old_page);
3663
3664 spin_lock(ptl); /* Caller expects lock to be held */
3665 return ret;
3666 }
3667
3668 /* Return the pagecache page at a given address within a VMA */
3669 static struct page *hugetlbfs_pagecache_page(struct hstate *h,
3670 struct vm_area_struct *vma, unsigned long address)
3671 {
3672 struct address_space *mapping;
3673 pgoff_t idx;
3674
3675 mapping = vma->vm_file->f_mapping;
3676 idx = vma_hugecache_offset(h, vma, address);
3677
3678 return find_lock_page(mapping, idx);
3679 }
3680
3681 /*
3682 * Return whether there is a pagecache page to back given address within VMA.
3683 * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
3684 */
3685 static bool hugetlbfs_pagecache_present(struct hstate *h,
3686 struct vm_area_struct *vma, unsigned long address)
3687 {
3688 struct address_space *mapping;
3689 pgoff_t idx;
3690 struct page *page;
3691
3692 mapping = vma->vm_file->f_mapping;
3693 idx = vma_hugecache_offset(h, vma, address);
3694
3695 page = find_get_page(mapping, idx);
3696 if (page)
3697 put_page(page);
3698 return page != NULL;
3699 }
3700
3701 int huge_add_to_page_cache(struct page *page, struct address_space *mapping,
3702 pgoff_t idx)
3703 {
3704 struct inode *inode = mapping->host;
3705 struct hstate *h = hstate_inode(inode);
3706 int err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
3707
3708 if (err)
3709 return err;
3710 ClearPagePrivate(page);
3711
3712 spin_lock(&inode->i_lock);
3713 inode->i_blocks += blocks_per_huge_page(h);
3714 spin_unlock(&inode->i_lock);
3715 return 0;
3716 }
3717
3718 static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
3719 struct address_space *mapping, pgoff_t idx,
3720 unsigned long address, pte_t *ptep, unsigned int flags)
3721 {
3722 struct hstate *h = hstate_vma(vma);
3723 int ret = VM_FAULT_SIGBUS;
3724 int anon_rmap = 0;
3725 unsigned long size;
3726 struct page *page;
3727 pte_t new_pte;
3728 spinlock_t *ptl;
3729
3730 /*
3731 * Currently, we are forced to kill the process in the event the
3732 * original mapper has unmapped pages from the child due to a failed
3733 * COW. Warn that such a situation has occurred as it may not be obvious
3734 */
3735 if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
3736 pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n",
3737 current->pid);
3738 return ret;
3739 }
3740
3741 /*
3742 * Use page lock to guard against racing truncation
3743 * before we get page_table_lock.
3744 */
3745 retry:
3746 page = find_lock_page(mapping, idx);
3747 if (!page) {
3748 size = i_size_read(mapping->host) >> huge_page_shift(h);
3749 if (idx >= size)
3750 goto out;
3751
3752 /*
3753 * Check for page in userfault range
3754 */
3755 if (userfaultfd_missing(vma)) {
3756 u32 hash;
3757 struct vm_fault vmf = {
3758 .vma = vma,
3759 .address = address,
3760 .flags = flags,
3761 /*
3762 * Hard to debug if it ends up being
3763 * used by a callee that assumes
3764 * something about the other
3765 * uninitialized fields... same as in
3766 * memory.c
3767 */
3768 };
3769
3770 /*
3771 * hugetlb_fault_mutex must be dropped before
3772 * handling userfault. Reacquire after handling
3773 * fault to make calling code simpler.
3774 */
3775 hash = hugetlb_fault_mutex_hash(h, mm, vma, mapping,
3776 idx, address);
3777 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
3778 ret = handle_userfault(&vmf, VM_UFFD_MISSING);
3779 mutex_lock(&hugetlb_fault_mutex_table[hash]);
3780 goto out;
3781 }
3782
3783 page = alloc_huge_page(vma, address, 0);
3784 if (IS_ERR(page)) {
3785 ret = PTR_ERR(page);
3786 if (ret == -ENOMEM)
3787 ret = VM_FAULT_OOM;
3788 else
3789 ret = VM_FAULT_SIGBUS;
3790 goto out;
3791 }
3792 clear_huge_page(page, address, pages_per_huge_page(h));
3793 __SetPageUptodate(page);
3794 set_page_huge_active(page);
3795
3796 if (vma->vm_flags & VM_MAYSHARE) {
3797 int err = huge_add_to_page_cache(page, mapping, idx);
3798 if (err) {
3799 put_page(page);
3800 if (err == -EEXIST)
3801 goto retry;
3802 goto out;
3803 }
3804 } else {
3805 lock_page(page);
3806 if (unlikely(anon_vma_prepare(vma))) {
3807 ret = VM_FAULT_OOM;
3808 goto backout_unlocked;
3809 }
3810 anon_rmap = 1;
3811 }
3812 } else {
3813 /*
3814 * If memory error occurs between mmap() and fault, some process
3815 * don't have hwpoisoned swap entry for errored virtual address.
3816 * So we need to block hugepage fault by PG_hwpoison bit check.
3817 */
3818 if (unlikely(PageHWPoison(page))) {
3819 ret = VM_FAULT_HWPOISON |
3820 VM_FAULT_SET_HINDEX(hstate_index(h));
3821 goto backout_unlocked;
3822 }
3823 }
3824
3825 /*
3826 * If we are going to COW a private mapping later, we examine the
3827 * pending reservations for this page now. This will ensure that
3828 * any allocations necessary to record that reservation occur outside
3829 * the spinlock.
3830 */
3831 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
3832 if (vma_needs_reservation(h, vma, address) < 0) {
3833 ret = VM_FAULT_OOM;
3834 goto backout_unlocked;
3835 }
3836 /* Just decrements count, does not deallocate */
3837 vma_end_reservation(h, vma, address);
3838 }
3839
3840 ptl = huge_pte_lock(h, mm, ptep);
3841 size = i_size_read(mapping->host) >> huge_page_shift(h);
3842 if (idx >= size)
3843 goto backout;
3844
3845 ret = 0;
3846 if (!huge_pte_none(huge_ptep_get(ptep)))
3847 goto backout;
3848
3849 if (anon_rmap) {
3850 ClearPagePrivate(page);
3851 hugepage_add_new_anon_rmap(page, vma, address);
3852 } else
3853 page_dup_rmap(page, true);
3854 new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
3855 && (vma->vm_flags & VM_SHARED)));
3856 set_huge_pte_at(mm, address, ptep, new_pte);
3857
3858 hugetlb_count_add(pages_per_huge_page(h), mm);
3859 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
3860 /* Optimization, do the COW without a second fault */
3861 ret = hugetlb_cow(mm, vma, address, ptep, page, ptl);
3862 }
3863
3864 spin_unlock(ptl);
3865 unlock_page(page);
3866 out:
3867 return ret;
3868
3869 backout:
3870 spin_unlock(ptl);
3871 backout_unlocked:
3872 unlock_page(page);
3873 restore_reserve_on_error(h, vma, address, page);
3874 put_page(page);
3875 goto out;
3876 }
3877
3878 #ifdef CONFIG_SMP
3879 u32 hugetlb_fault_mutex_hash(struct hstate *h, struct mm_struct *mm,
3880 struct vm_area_struct *vma,
3881 struct address_space *mapping,
3882 pgoff_t idx, unsigned long address)
3883 {
3884 unsigned long key[2];
3885 u32 hash;
3886
3887 if (vma->vm_flags & VM_SHARED) {
3888 key[0] = (unsigned long) mapping;
3889 key[1] = idx;
3890 } else {
3891 key[0] = (unsigned long) mm;
3892 key[1] = address >> huge_page_shift(h);
3893 }
3894
3895 hash = jhash2((u32 *)&key, sizeof(key)/sizeof(u32), 0);
3896
3897 return hash & (num_fault_mutexes - 1);
3898 }
3899 #else
3900 /*
3901 * For uniprocesor systems we always use a single mutex, so just
3902 * return 0 and avoid the hashing overhead.
3903 */
3904 u32 hugetlb_fault_mutex_hash(struct hstate *h, struct mm_struct *mm,
3905 struct vm_area_struct *vma,
3906 struct address_space *mapping,
3907 pgoff_t idx, unsigned long address)
3908 {
3909 return 0;
3910 }
3911 #endif
3912
3913 int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3914 unsigned long address, unsigned int flags)
3915 {
3916 pte_t *ptep, entry;
3917 spinlock_t *ptl;
3918 int ret;
3919 u32 hash;
3920 pgoff_t idx;
3921 struct page *page = NULL;
3922 struct page *pagecache_page = NULL;
3923 struct hstate *h = hstate_vma(vma);
3924 struct address_space *mapping;
3925 int need_wait_lock = 0;
3926
3927 address &= huge_page_mask(h);
3928
3929 ptep = huge_pte_offset(mm, address, huge_page_size(h));
3930 if (ptep) {
3931 entry = huge_ptep_get(ptep);
3932 if (unlikely(is_hugetlb_entry_migration(entry))) {
3933 migration_entry_wait_huge(vma, mm, ptep);
3934 return 0;
3935 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
3936 return VM_FAULT_HWPOISON_LARGE |
3937 VM_FAULT_SET_HINDEX(hstate_index(h));
3938 } else {
3939 ptep = huge_pte_alloc(mm, address, huge_page_size(h));
3940 if (!ptep)
3941 return VM_FAULT_OOM;
3942 }
3943
3944 mapping = vma->vm_file->f_mapping;
3945 idx = vma_hugecache_offset(h, vma, address);
3946
3947 /*
3948 * Serialize hugepage allocation and instantiation, so that we don't
3949 * get spurious allocation failures if two CPUs race to instantiate
3950 * the same page in the page cache.
3951 */
3952 hash = hugetlb_fault_mutex_hash(h, mm, vma, mapping, idx, address);
3953 mutex_lock(&hugetlb_fault_mutex_table[hash]);
3954
3955 entry = huge_ptep_get(ptep);
3956 if (huge_pte_none(entry)) {
3957 ret = hugetlb_no_page(mm, vma, mapping, idx, address, ptep, flags);
3958 goto out_mutex;
3959 }
3960
3961 ret = 0;
3962
3963 /*
3964 * entry could be a migration/hwpoison entry at this point, so this
3965 * check prevents the kernel from going below assuming that we have
3966 * a active hugepage in pagecache. This goto expects the 2nd page fault,
3967 * and is_hugetlb_entry_(migration|hwpoisoned) check will properly
3968 * handle it.
3969 */
3970 if (!pte_present(entry))
3971 goto out_mutex;
3972
3973 /*
3974 * If we are going to COW the mapping later, we examine the pending
3975 * reservations for this page now. This will ensure that any
3976 * allocations necessary to record that reservation occur outside the
3977 * spinlock. For private mappings, we also lookup the pagecache
3978 * page now as it is used to determine if a reservation has been
3979 * consumed.
3980 */
3981 if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
3982 if (vma_needs_reservation(h, vma, address) < 0) {
3983 ret = VM_FAULT_OOM;
3984 goto out_mutex;
3985 }
3986 /* Just decrements count, does not deallocate */
3987 vma_end_reservation(h, vma, address);
3988
3989 if (!(vma->vm_flags & VM_MAYSHARE))
3990 pagecache_page = hugetlbfs_pagecache_page(h,
3991 vma, address);
3992 }
3993
3994 ptl = huge_pte_lock(h, mm, ptep);
3995
3996 /* Check for a racing update before calling hugetlb_cow */
3997 if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
3998 goto out_ptl;
3999
4000 /*
4001 * hugetlb_cow() requires page locks of pte_page(entry) and
4002 * pagecache_page, so here we need take the former one
4003 * when page != pagecache_page or !pagecache_page.
4004 */
4005 page = pte_page(entry);
4006 if (page != pagecache_page)
4007 if (!trylock_page(page)) {
4008 need_wait_lock = 1;
4009 goto out_ptl;
4010 }
4011
4012 get_page(page);
4013
4014 if (flags & FAULT_FLAG_WRITE) {
4015 if (!huge_pte_write(entry)) {
4016 ret = hugetlb_cow(mm, vma, address, ptep,
4017 pagecache_page, ptl);
4018 goto out_put_page;
4019 }
4020 entry = huge_pte_mkdirty(entry);
4021 }
4022 entry = pte_mkyoung(entry);
4023 if (huge_ptep_set_access_flags(vma, address, ptep, entry,
4024 flags & FAULT_FLAG_WRITE))
4025 update_mmu_cache(vma, address, ptep);
4026 out_put_page:
4027 if (page != pagecache_page)
4028 unlock_page(page);
4029 put_page(page);
4030 out_ptl:
4031 spin_unlock(ptl);
4032
4033 if (pagecache_page) {
4034 unlock_page(pagecache_page);
4035 put_page(pagecache_page);
4036 }
4037 out_mutex:
4038 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
4039 /*
4040 * Generally it's safe to hold refcount during waiting page lock. But
4041 * here we just wait to defer the next page fault to avoid busy loop and
4042 * the page is not used after unlocked before returning from the current
4043 * page fault. So we are safe from accessing freed page, even if we wait
4044 * here without taking refcount.
4045 */
4046 if (need_wait_lock)
4047 wait_on_page_locked(page);
4048 return ret;
4049 }
4050
4051 /*
4052 * Used by userfaultfd UFFDIO_COPY. Based on mcopy_atomic_pte with
4053 * modifications for huge pages.
4054 */
4055 int hugetlb_mcopy_atomic_pte(struct mm_struct *dst_mm,
4056 pte_t *dst_pte,
4057 struct vm_area_struct *dst_vma,
4058 unsigned long dst_addr,
4059 unsigned long src_addr,
4060 struct page **pagep)
4061 {
4062 int vm_shared = dst_vma->vm_flags & VM_SHARED;
4063 struct hstate *h = hstate_vma(dst_vma);
4064 pte_t _dst_pte;
4065 spinlock_t *ptl;
4066 int ret;
4067 struct page *page;
4068
4069 if (!*pagep) {
4070 ret = -ENOMEM;
4071 page = alloc_huge_page(dst_vma, dst_addr, 0);
4072 if (IS_ERR(page))
4073 goto out;
4074
4075 ret = copy_huge_page_from_user(page,
4076 (const void __user *) src_addr,
4077 pages_per_huge_page(h), false);
4078
4079 /* fallback to copy_from_user outside mmap_sem */
4080 if (unlikely(ret)) {
4081 ret = -EFAULT;
4082 *pagep = page;
4083 /* don't free the page */
4084 goto out;
4085 }
4086 } else {
4087 page = *pagep;
4088 *pagep = NULL;
4089 }
4090
4091 /*
4092 * The memory barrier inside __SetPageUptodate makes sure that
4093 * preceding stores to the page contents become visible before
4094 * the set_pte_at() write.
4095 */
4096 __SetPageUptodate(page);
4097 set_page_huge_active(page);
4098
4099 /*
4100 * If shared, add to page cache
4101 */
4102 if (vm_shared) {
4103 struct address_space *mapping = dst_vma->vm_file->f_mapping;
4104 pgoff_t idx = vma_hugecache_offset(h, dst_vma, dst_addr);
4105
4106 ret = huge_add_to_page_cache(page, mapping, idx);
4107 if (ret)
4108 goto out_release_nounlock;
4109 }
4110
4111 ptl = huge_pte_lockptr(h, dst_mm, dst_pte);
4112 spin_lock(ptl);
4113
4114 ret = -EEXIST;
4115 if (!huge_pte_none(huge_ptep_get(dst_pte)))
4116 goto out_release_unlock;
4117
4118 if (vm_shared) {
4119 page_dup_rmap(page, true);
4120 } else {
4121 ClearPagePrivate(page);
4122 hugepage_add_new_anon_rmap(page, dst_vma, dst_addr);
4123 }
4124
4125 _dst_pte = make_huge_pte(dst_vma, page, dst_vma->vm_flags & VM_WRITE);
4126 if (dst_vma->vm_flags & VM_WRITE)
4127 _dst_pte = huge_pte_mkdirty(_dst_pte);
4128 _dst_pte = pte_mkyoung(_dst_pte);
4129
4130 set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte);
4131
4132 (void)huge_ptep_set_access_flags(dst_vma, dst_addr, dst_pte, _dst_pte,
4133 dst_vma->vm_flags & VM_WRITE);
4134 hugetlb_count_add(pages_per_huge_page(h), dst_mm);
4135
4136 /* No need to invalidate - it was non-present before */
4137 update_mmu_cache(dst_vma, dst_addr, dst_pte);
4138
4139 spin_unlock(ptl);
4140 if (vm_shared)
4141 unlock_page(page);
4142 ret = 0;
4143 out:
4144 return ret;
4145 out_release_unlock:
4146 spin_unlock(ptl);
4147 out_release_nounlock:
4148 if (vm_shared)
4149 unlock_page(page);
4150 put_page(page);
4151 goto out;
4152 }
4153
4154 long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
4155 struct page **pages, struct vm_area_struct **vmas,
4156 unsigned long *position, unsigned long *nr_pages,
4157 long i, unsigned int flags, int *nonblocking)
4158 {
4159 unsigned long pfn_offset;
4160 unsigned long vaddr = *position;
4161 unsigned long remainder = *nr_pages;
4162 struct hstate *h = hstate_vma(vma);
4163
4164 while (vaddr < vma->vm_end && remainder) {
4165 pte_t *pte;
4166 spinlock_t *ptl = NULL;
4167 int absent;
4168 struct page *page;
4169
4170 /*
4171 * If we have a pending SIGKILL, don't keep faulting pages and
4172 * potentially allocating memory.
4173 */
4174 if (unlikely(fatal_signal_pending(current))) {
4175 remainder = 0;
4176 break;
4177 }
4178
4179 /*
4180 * Some archs (sparc64, sh*) have multiple pte_ts to
4181 * each hugepage. We have to make sure we get the
4182 * first, for the page indexing below to work.
4183 *
4184 * Note that page table lock is not held when pte is null.
4185 */
4186 pte = huge_pte_offset(mm, vaddr & huge_page_mask(h),
4187 huge_page_size(h));
4188 if (pte)
4189 ptl = huge_pte_lock(h, mm, pte);
4190 absent = !pte || huge_pte_none(huge_ptep_get(pte));
4191
4192 /*
4193 * When coredumping, it suits get_dump_page if we just return
4194 * an error where there's an empty slot with no huge pagecache
4195 * to back it. This way, we avoid allocating a hugepage, and
4196 * the sparse dumpfile avoids allocating disk blocks, but its
4197 * huge holes still show up with zeroes where they need to be.
4198 */
4199 if (absent && (flags & FOLL_DUMP) &&
4200 !hugetlbfs_pagecache_present(h, vma, vaddr)) {
4201 if (pte)
4202 spin_unlock(ptl);
4203 remainder = 0;
4204 break;
4205 }
4206
4207 /*
4208 * We need call hugetlb_fault for both hugepages under migration
4209 * (in which case hugetlb_fault waits for the migration,) and
4210 * hwpoisoned hugepages (in which case we need to prevent the
4211 * caller from accessing to them.) In order to do this, we use
4212 * here is_swap_pte instead of is_hugetlb_entry_migration and
4213 * is_hugetlb_entry_hwpoisoned. This is because it simply covers
4214 * both cases, and because we can't follow correct pages
4215 * directly from any kind of swap entries.
4216 */
4217 if (absent || is_swap_pte(huge_ptep_get(pte)) ||
4218 ((flags & FOLL_WRITE) &&
4219 !huge_pte_write(huge_ptep_get(pte)))) {
4220 int ret;
4221 unsigned int fault_flags = 0;
4222
4223 if (pte)
4224 spin_unlock(ptl);
4225 if (flags & FOLL_WRITE)
4226 fault_flags |= FAULT_FLAG_WRITE;
4227 if (nonblocking)
4228 fault_flags |= FAULT_FLAG_ALLOW_RETRY;
4229 if (flags & FOLL_NOWAIT)
4230 fault_flags |= FAULT_FLAG_ALLOW_RETRY |
4231 FAULT_FLAG_RETRY_NOWAIT;
4232 if (flags & FOLL_TRIED) {
4233 VM_WARN_ON_ONCE(fault_flags &
4234 FAULT_FLAG_ALLOW_RETRY);
4235 fault_flags |= FAULT_FLAG_TRIED;
4236 }
4237 ret = hugetlb_fault(mm, vma, vaddr, fault_flags);
4238 if (ret & VM_FAULT_ERROR) {
4239 int err = vm_fault_to_errno(ret, flags);
4240
4241 if (err)
4242 return err;
4243
4244 remainder = 0;
4245 break;
4246 }
4247 if (ret & VM_FAULT_RETRY) {
4248 if (nonblocking)
4249 *nonblocking = 0;
4250 *nr_pages = 0;
4251 /*
4252 * VM_FAULT_RETRY must not return an
4253 * error, it will return zero
4254 * instead.
4255 *
4256 * No need to update "position" as the
4257 * caller will not check it after
4258 * *nr_pages is set to 0.
4259 */
4260 return i;
4261 }
4262 continue;
4263 }
4264
4265 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
4266 page = pte_page(huge_ptep_get(pte));
4267 same_page:
4268 if (pages) {
4269 pages[i] = mem_map_offset(page, pfn_offset);
4270 get_page(pages[i]);
4271 }
4272
4273 if (vmas)
4274 vmas[i] = vma;
4275
4276 vaddr += PAGE_SIZE;
4277 ++pfn_offset;
4278 --remainder;
4279 ++i;
4280 if (vaddr < vma->vm_end && remainder &&
4281 pfn_offset < pages_per_huge_page(h)) {
4282 /*
4283 * We use pfn_offset to avoid touching the pageframes
4284 * of this compound page.
4285 */
4286 goto same_page;
4287 }
4288 spin_unlock(ptl);
4289 }
4290 *nr_pages = remainder;
4291 /*
4292 * setting position is actually required only if remainder is
4293 * not zero but it's faster not to add a "if (remainder)"
4294 * branch.
4295 */
4296 *position = vaddr;
4297
4298 return i ? i : -EFAULT;
4299 }
4300
4301 #ifndef __HAVE_ARCH_FLUSH_HUGETLB_TLB_RANGE
4302 /*
4303 * ARCHes with special requirements for evicting HUGETLB backing TLB entries can
4304 * implement this.
4305 */
4306 #define flush_hugetlb_tlb_range(vma, addr, end) flush_tlb_range(vma, addr, end)
4307 #endif
4308
4309 unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
4310 unsigned long address, unsigned long end, pgprot_t newprot)
4311 {
4312 struct mm_struct *mm = vma->vm_mm;
4313 unsigned long start = address;
4314 pte_t *ptep;
4315 pte_t pte;
4316 struct hstate *h = hstate_vma(vma);
4317 unsigned long pages = 0;
4318
4319 BUG_ON(address >= end);
4320 flush_cache_range(vma, address, end);
4321
4322 mmu_notifier_invalidate_range_start(mm, start, end);
4323 i_mmap_lock_write(vma->vm_file->f_mapping);
4324 for (; address < end; address += huge_page_size(h)) {
4325 spinlock_t *ptl;
4326 ptep = huge_pte_offset(mm, address, huge_page_size(h));
4327 if (!ptep)
4328 continue;
4329 ptl = huge_pte_lock(h, mm, ptep);
4330 if (huge_pmd_unshare(mm, &address, ptep)) {
4331 pages++;
4332 spin_unlock(ptl);
4333 continue;
4334 }
4335 pte = huge_ptep_get(ptep);
4336 if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
4337 spin_unlock(ptl);
4338 continue;
4339 }
4340 if (unlikely(is_hugetlb_entry_migration(pte))) {
4341 swp_entry_t entry = pte_to_swp_entry(pte);
4342
4343 if (is_write_migration_entry(entry)) {
4344 pte_t newpte;
4345
4346 make_migration_entry_read(&entry);
4347 newpte = swp_entry_to_pte(entry);
4348 set_huge_swap_pte_at(mm, address, ptep,
4349 newpte, huge_page_size(h));
4350 pages++;
4351 }
4352 spin_unlock(ptl);
4353 continue;
4354 }
4355 if (!huge_pte_none(pte)) {
4356 pte = huge_ptep_get_and_clear(mm, address, ptep);
4357 pte = pte_mkhuge(huge_pte_modify(pte, newprot));
4358 pte = arch_make_huge_pte(pte, vma, NULL, 0);
4359 set_huge_pte_at(mm, address, ptep, pte);
4360 pages++;
4361 }
4362 spin_unlock(ptl);
4363 }
4364 /*
4365 * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
4366 * may have cleared our pud entry and done put_page on the page table:
4367 * once we release i_mmap_rwsem, another task can do the final put_page
4368 * and that page table be reused and filled with junk.
4369 */
4370 flush_hugetlb_tlb_range(vma, start, end);
4371 mmu_notifier_invalidate_range(mm, start, end);
4372 i_mmap_unlock_write(vma->vm_file->f_mapping);
4373 mmu_notifier_invalidate_range_end(mm, start, end);
4374
4375 return pages << h->order;
4376 }
4377
4378 int hugetlb_reserve_pages(struct inode *inode,
4379 long from, long to,
4380 struct vm_area_struct *vma,
4381 vm_flags_t vm_flags)
4382 {
4383 long ret, chg;
4384 struct hstate *h = hstate_inode(inode);
4385 struct hugepage_subpool *spool = subpool_inode(inode);
4386 struct resv_map *resv_map;
4387 long gbl_reserve;
4388
4389 /*
4390 * Only apply hugepage reservation if asked. At fault time, an
4391 * attempt will be made for VM_NORESERVE to allocate a page
4392 * without using reserves
4393 */
4394 if (vm_flags & VM_NORESERVE)
4395 return 0;
4396
4397 /*
4398 * Shared mappings base their reservation on the number of pages that
4399 * are already allocated on behalf of the file. Private mappings need
4400 * to reserve the full area even if read-only as mprotect() may be
4401 * called to make the mapping read-write. Assume !vma is a shm mapping
4402 */
4403 if (!vma || vma->vm_flags & VM_MAYSHARE) {
4404 resv_map = inode_resv_map(inode);
4405
4406 chg = region_chg(resv_map, from, to);
4407
4408 } else {
4409 resv_map = resv_map_alloc();
4410 if (!resv_map)
4411 return -ENOMEM;
4412
4413 chg = to - from;
4414
4415 set_vma_resv_map(vma, resv_map);
4416 set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
4417 }
4418
4419 if (chg < 0) {
4420 ret = chg;
4421 goto out_err;
4422 }
4423
4424 /*
4425 * There must be enough pages in the subpool for the mapping. If
4426 * the subpool has a minimum size, there may be some global
4427 * reservations already in place (gbl_reserve).
4428 */
4429 gbl_reserve = hugepage_subpool_get_pages(spool, chg);
4430 if (gbl_reserve < 0) {
4431 ret = -ENOSPC;
4432 goto out_err;
4433 }
4434
4435 /*
4436 * Check enough hugepages are available for the reservation.
4437 * Hand the pages back to the subpool if there are not
4438 */
4439 ret = hugetlb_acct_memory(h, gbl_reserve);
4440 if (ret < 0) {
4441 /* put back original number of pages, chg */
4442 (void)hugepage_subpool_put_pages(spool, chg);
4443 goto out_err;
4444 }
4445
4446 /*
4447 * Account for the reservations made. Shared mappings record regions
4448 * that have reservations as they are shared by multiple VMAs.
4449 * When the last VMA disappears, the region map says how much
4450 * the reservation was and the page cache tells how much of
4451 * the reservation was consumed. Private mappings are per-VMA and
4452 * only the consumed reservations are tracked. When the VMA
4453 * disappears, the original reservation is the VMA size and the
4454 * consumed reservations are stored in the map. Hence, nothing
4455 * else has to be done for private mappings here
4456 */
4457 if (!vma || vma->vm_flags & VM_MAYSHARE) {
4458 long add = region_add(resv_map, from, to);
4459
4460 if (unlikely(chg > add)) {
4461 /*
4462 * pages in this range were added to the reserve
4463 * map between region_chg and region_add. This
4464 * indicates a race with alloc_huge_page. Adjust
4465 * the subpool and reserve counts modified above
4466 * based on the difference.
4467 */
4468 long rsv_adjust;
4469
4470 rsv_adjust = hugepage_subpool_put_pages(spool,
4471 chg - add);
4472 hugetlb_acct_memory(h, -rsv_adjust);
4473 }
4474 }
4475 return 0;
4476 out_err:
4477 if (!vma || vma->vm_flags & VM_MAYSHARE)
4478 /* Don't call region_abort if region_chg failed */
4479 if (chg >= 0)
4480 region_abort(resv_map, from, to);
4481 if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
4482 kref_put(&resv_map->refs, resv_map_release);
4483 return ret;
4484 }
4485
4486 long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
4487 long freed)
4488 {
4489 struct hstate *h = hstate_inode(inode);
4490 struct resv_map *resv_map = inode_resv_map(inode);
4491 long chg = 0;
4492 struct hugepage_subpool *spool = subpool_inode(inode);
4493 long gbl_reserve;
4494
4495 if (resv_map) {
4496 chg = region_del(resv_map, start, end);
4497 /*
4498 * region_del() can fail in the rare case where a region
4499 * must be split and another region descriptor can not be
4500 * allocated. If end == LONG_MAX, it will not fail.
4501 */
4502 if (chg < 0)
4503 return chg;
4504 }
4505
4506 spin_lock(&inode->i_lock);
4507 inode->i_blocks -= (blocks_per_huge_page(h) * freed);
4508 spin_unlock(&inode->i_lock);
4509
4510 /*
4511 * If the subpool has a minimum size, the number of global
4512 * reservations to be released may be adjusted.
4513 */
4514 gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed));
4515 hugetlb_acct_memory(h, -gbl_reserve);
4516
4517 return 0;
4518 }
4519
4520 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
4521 static unsigned long page_table_shareable(struct vm_area_struct *svma,
4522 struct vm_area_struct *vma,
4523 unsigned long addr, pgoff_t idx)
4524 {
4525 unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
4526 svma->vm_start;
4527 unsigned long sbase = saddr & PUD_MASK;
4528 unsigned long s_end = sbase + PUD_SIZE;
4529
4530 /* Allow segments to share if only one is marked locked */
4531 unsigned long vm_flags = vma->vm_flags & VM_LOCKED_CLEAR_MASK;
4532 unsigned long svm_flags = svma->vm_flags & VM_LOCKED_CLEAR_MASK;
4533
4534 /*
4535 * match the virtual addresses, permission and the alignment of the
4536 * page table page.
4537 */
4538 if (pmd_index(addr) != pmd_index(saddr) ||
4539 vm_flags != svm_flags ||
4540 sbase < svma->vm_start || svma->vm_end < s_end)
4541 return 0;
4542
4543 return saddr;
4544 }
4545
4546 static bool vma_shareable(struct vm_area_struct *vma, unsigned long addr)
4547 {
4548 unsigned long base = addr & PUD_MASK;
4549 unsigned long end = base + PUD_SIZE;
4550
4551 /*
4552 * check on proper vm_flags and page table alignment
4553 */
4554 if (vma->vm_flags & VM_MAYSHARE &&
4555 vma->vm_start <= base && end <= vma->vm_end)
4556 return true;
4557 return false;
4558 }
4559
4560 /*
4561 * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
4562 * and returns the corresponding pte. While this is not necessary for the
4563 * !shared pmd case because we can allocate the pmd later as well, it makes the
4564 * code much cleaner. pmd allocation is essential for the shared case because
4565 * pud has to be populated inside the same i_mmap_rwsem section - otherwise
4566 * racing tasks could either miss the sharing (see huge_pte_offset) or select a
4567 * bad pmd for sharing.
4568 */
4569 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
4570 {
4571 struct vm_area_struct *vma = find_vma(mm, addr);
4572 struct address_space *mapping = vma->vm_file->f_mapping;
4573 pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
4574 vma->vm_pgoff;
4575 struct vm_area_struct *svma;
4576 unsigned long saddr;
4577 pte_t *spte = NULL;
4578 pte_t *pte;
4579 spinlock_t *ptl;
4580
4581 if (!vma_shareable(vma, addr))
4582 return (pte_t *)pmd_alloc(mm, pud, addr);
4583
4584 i_mmap_lock_write(mapping);
4585 vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
4586 if (svma == vma)
4587 continue;
4588
4589 saddr = page_table_shareable(svma, vma, addr, idx);
4590 if (saddr) {
4591 spte = huge_pte_offset(svma->vm_mm, saddr,
4592 vma_mmu_pagesize(svma));
4593 if (spte) {
4594 get_page(virt_to_page(spte));
4595 break;
4596 }
4597 }
4598 }
4599
4600 if (!spte)
4601 goto out;
4602
4603 ptl = huge_pte_lock(hstate_vma(vma), mm, spte);
4604 if (pud_none(*pud)) {
4605 pud_populate(mm, pud,
4606 (pmd_t *)((unsigned long)spte & PAGE_MASK));
4607 mm_inc_nr_pmds(mm);
4608 } else {
4609 put_page(virt_to_page(spte));
4610 }
4611 spin_unlock(ptl);
4612 out:
4613 pte = (pte_t *)pmd_alloc(mm, pud, addr);
4614 i_mmap_unlock_write(mapping);
4615 return pte;
4616 }
4617
4618 /*
4619 * unmap huge page backed by shared pte.
4620 *
4621 * Hugetlb pte page is ref counted at the time of mapping. If pte is shared
4622 * indicated by page_count > 1, unmap is achieved by clearing pud and
4623 * decrementing the ref count. If count == 1, the pte page is not shared.
4624 *
4625 * called with page table lock held.
4626 *
4627 * returns: 1 successfully unmapped a shared pte page
4628 * 0 the underlying pte page is not shared, or it is the last user
4629 */
4630 int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
4631 {
4632 pgd_t *pgd = pgd_offset(mm, *addr);
4633 p4d_t *p4d = p4d_offset(pgd, *addr);
4634 pud_t *pud = pud_offset(p4d, *addr);
4635
4636 BUG_ON(page_count(virt_to_page(ptep)) == 0);
4637 if (page_count(virt_to_page(ptep)) == 1)
4638 return 0;
4639
4640 pud_clear(pud);
4641 put_page(virt_to_page(ptep));
4642 mm_dec_nr_pmds(mm);
4643 *addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE;
4644 return 1;
4645 }
4646 #define want_pmd_share() (1)
4647 #else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
4648 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
4649 {
4650 return NULL;
4651 }
4652
4653 int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
4654 {
4655 return 0;
4656 }
4657 #define want_pmd_share() (0)
4658 #endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
4659
4660 #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
4661 pte_t *huge_pte_alloc(struct mm_struct *mm,
4662 unsigned long addr, unsigned long sz)
4663 {
4664 pgd_t *pgd;
4665 p4d_t *p4d;
4666 pud_t *pud;
4667 pte_t *pte = NULL;
4668
4669 pgd = pgd_offset(mm, addr);
4670 p4d = p4d_offset(pgd, addr);
4671 pud = pud_alloc(mm, p4d, addr);
4672 if (pud) {
4673 if (sz == PUD_SIZE) {
4674 pte = (pte_t *)pud;
4675 } else {
4676 BUG_ON(sz != PMD_SIZE);
4677 if (want_pmd_share() && pud_none(*pud))
4678 pte = huge_pmd_share(mm, addr, pud);
4679 else
4680 pte = (pte_t *)pmd_alloc(mm, pud, addr);
4681 }
4682 }
4683 BUG_ON(pte && pte_present(*pte) && !pte_huge(*pte));
4684
4685 return pte;
4686 }
4687
4688 pte_t *huge_pte_offset(struct mm_struct *mm,
4689 unsigned long addr, unsigned long sz)
4690 {
4691 pgd_t *pgd;
4692 p4d_t *p4d;
4693 pud_t *pud;
4694 pmd_t *pmd;
4695
4696 pgd = pgd_offset(mm, addr);
4697 if (!pgd_present(*pgd))
4698 return NULL;
4699 p4d = p4d_offset(pgd, addr);
4700 if (!p4d_present(*p4d))
4701 return NULL;
4702 pud = pud_offset(p4d, addr);
4703 if (!pud_present(*pud))
4704 return NULL;
4705 if (pud_huge(*pud))
4706 return (pte_t *)pud;
4707 pmd = pmd_offset(pud, addr);
4708 return (pte_t *) pmd;
4709 }
4710
4711 #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
4712
4713 /*
4714 * These functions are overwritable if your architecture needs its own
4715 * behavior.
4716 */
4717 struct page * __weak
4718 follow_huge_addr(struct mm_struct *mm, unsigned long address,
4719 int write)
4720 {
4721 return ERR_PTR(-EINVAL);
4722 }
4723
4724 struct page * __weak
4725 follow_huge_pd(struct vm_area_struct *vma,
4726 unsigned long address, hugepd_t hpd, int flags, int pdshift)
4727 {
4728 WARN(1, "hugepd follow called with no support for hugepage directory format\n");
4729 return NULL;
4730 }
4731
4732 struct page * __weak
4733 follow_huge_pmd(struct mm_struct *mm, unsigned long address,
4734 pmd_t *pmd, int flags)
4735 {
4736 struct page *page = NULL;
4737 spinlock_t *ptl;
4738 pte_t pte;
4739 retry:
4740 ptl = pmd_lockptr(mm, pmd);
4741 spin_lock(ptl);
4742 /*
4743 * make sure that the address range covered by this pmd is not
4744 * unmapped from other threads.
4745 */
4746 if (!pmd_huge(*pmd))
4747 goto out;
4748 pte = huge_ptep_get((pte_t *)pmd);
4749 if (pte_present(pte)) {
4750 page = pmd_page(*pmd) + ((address & ~PMD_MASK) >> PAGE_SHIFT);
4751 if (flags & FOLL_GET)
4752 get_page(page);
4753 } else {
4754 if (is_hugetlb_entry_migration(pte)) {
4755 spin_unlock(ptl);
4756 __migration_entry_wait(mm, (pte_t *)pmd, ptl);
4757 goto retry;
4758 }
4759 /*
4760 * hwpoisoned entry is treated as no_page_table in
4761 * follow_page_mask().
4762 */
4763 }
4764 out:
4765 spin_unlock(ptl);
4766 return page;
4767 }
4768
4769 struct page * __weak
4770 follow_huge_pud(struct mm_struct *mm, unsigned long address,
4771 pud_t *pud, int flags)
4772 {
4773 if (flags & FOLL_GET)
4774 return NULL;
4775
4776 return pte_page(*(pte_t *)pud) + ((address & ~PUD_MASK) >> PAGE_SHIFT);
4777 }
4778
4779 struct page * __weak
4780 follow_huge_pgd(struct mm_struct *mm, unsigned long address, pgd_t *pgd, int flags)
4781 {
4782 if (flags & FOLL_GET)
4783 return NULL;
4784
4785 return pte_page(*(pte_t *)pgd) + ((address & ~PGDIR_MASK) >> PAGE_SHIFT);
4786 }
4787
4788 bool isolate_huge_page(struct page *page, struct list_head *list)
4789 {
4790 bool ret = true;
4791
4792 VM_BUG_ON_PAGE(!PageHead(page), page);
4793 spin_lock(&hugetlb_lock);
4794 if (!page_huge_active(page) || !get_page_unless_zero(page)) {
4795 ret = false;
4796 goto unlock;
4797 }
4798 clear_page_huge_active(page);
4799 list_move_tail(&page->lru, list);
4800 unlock:
4801 spin_unlock(&hugetlb_lock);
4802 return ret;
4803 }
4804
4805 void putback_active_hugepage(struct page *page)
4806 {
4807 VM_BUG_ON_PAGE(!PageHead(page), page);
4808 spin_lock(&hugetlb_lock);
4809 set_page_huge_active(page);
4810 list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist);
4811 spin_unlock(&hugetlb_lock);
4812 put_page(page);
4813 }