]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - mm/memcontrol.c
memcg: move charges of anonymous page
[mirror_ubuntu-zesty-kernel.git] / mm / memcontrol.c
1 /* memcontrol.c - Memory Controller
2 *
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5 *
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation; either version 2 of the License, or
12 * (at your option) any later version.
13 *
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
18 */
19
20 #include <linux/res_counter.h>
21 #include <linux/memcontrol.h>
22 #include <linux/cgroup.h>
23 #include <linux/mm.h>
24 #include <linux/hugetlb.h>
25 #include <linux/pagemap.h>
26 #include <linux/smp.h>
27 #include <linux/page-flags.h>
28 #include <linux/backing-dev.h>
29 #include <linux/bit_spinlock.h>
30 #include <linux/rcupdate.h>
31 #include <linux/limits.h>
32 #include <linux/mutex.h>
33 #include <linux/rbtree.h>
34 #include <linux/slab.h>
35 #include <linux/swap.h>
36 #include <linux/spinlock.h>
37 #include <linux/fs.h>
38 #include <linux/seq_file.h>
39 #include <linux/vmalloc.h>
40 #include <linux/mm_inline.h>
41 #include <linux/page_cgroup.h>
42 #include <linux/cpu.h>
43 #include "internal.h"
44
45 #include <asm/uaccess.h>
46
47 struct cgroup_subsys mem_cgroup_subsys __read_mostly;
48 #define MEM_CGROUP_RECLAIM_RETRIES 5
49 struct mem_cgroup *root_mem_cgroup __read_mostly;
50
51 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
52 /* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
53 int do_swap_account __read_mostly;
54 static int really_do_swap_account __initdata = 1; /* for remember boot option*/
55 #else
56 #define do_swap_account (0)
57 #endif
58
59 #define SOFTLIMIT_EVENTS_THRESH (1000)
60
61 /*
62 * Statistics for memory cgroup.
63 */
64 enum mem_cgroup_stat_index {
65 /*
66 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
67 */
68 MEM_CGROUP_STAT_CACHE, /* # of pages charged as cache */
69 MEM_CGROUP_STAT_RSS, /* # of pages charged as anon rss */
70 MEM_CGROUP_STAT_FILE_MAPPED, /* # of pages charged as file rss */
71 MEM_CGROUP_STAT_PGPGIN_COUNT, /* # of pages paged in */
72 MEM_CGROUP_STAT_PGPGOUT_COUNT, /* # of pages paged out */
73 MEM_CGROUP_STAT_EVENTS, /* sum of pagein + pageout for internal use */
74 MEM_CGROUP_STAT_SWAPOUT, /* # of pages, swapped out */
75
76 MEM_CGROUP_STAT_NSTATS,
77 };
78
79 struct mem_cgroup_stat_cpu {
80 s64 count[MEM_CGROUP_STAT_NSTATS];
81 } ____cacheline_aligned_in_smp;
82
83 struct mem_cgroup_stat {
84 struct mem_cgroup_stat_cpu cpustat[0];
85 };
86
87 static inline void
88 __mem_cgroup_stat_reset_safe(struct mem_cgroup_stat_cpu *stat,
89 enum mem_cgroup_stat_index idx)
90 {
91 stat->count[idx] = 0;
92 }
93
94 static inline s64
95 __mem_cgroup_stat_read_local(struct mem_cgroup_stat_cpu *stat,
96 enum mem_cgroup_stat_index idx)
97 {
98 return stat->count[idx];
99 }
100
101 /*
102 * For accounting under irq disable, no need for increment preempt count.
103 */
104 static inline void __mem_cgroup_stat_add_safe(struct mem_cgroup_stat_cpu *stat,
105 enum mem_cgroup_stat_index idx, int val)
106 {
107 stat->count[idx] += val;
108 }
109
110 static s64 mem_cgroup_read_stat(struct mem_cgroup_stat *stat,
111 enum mem_cgroup_stat_index idx)
112 {
113 int cpu;
114 s64 ret = 0;
115 for_each_possible_cpu(cpu)
116 ret += stat->cpustat[cpu].count[idx];
117 return ret;
118 }
119
120 static s64 mem_cgroup_local_usage(struct mem_cgroup_stat *stat)
121 {
122 s64 ret;
123
124 ret = mem_cgroup_read_stat(stat, MEM_CGROUP_STAT_CACHE);
125 ret += mem_cgroup_read_stat(stat, MEM_CGROUP_STAT_RSS);
126 return ret;
127 }
128
129 /*
130 * per-zone information in memory controller.
131 */
132 struct mem_cgroup_per_zone {
133 /*
134 * spin_lock to protect the per cgroup LRU
135 */
136 struct list_head lists[NR_LRU_LISTS];
137 unsigned long count[NR_LRU_LISTS];
138
139 struct zone_reclaim_stat reclaim_stat;
140 struct rb_node tree_node; /* RB tree node */
141 unsigned long long usage_in_excess;/* Set to the value by which */
142 /* the soft limit is exceeded*/
143 bool on_tree;
144 struct mem_cgroup *mem; /* Back pointer, we cannot */
145 /* use container_of */
146 };
147 /* Macro for accessing counter */
148 #define MEM_CGROUP_ZSTAT(mz, idx) ((mz)->count[(idx)])
149
150 struct mem_cgroup_per_node {
151 struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
152 };
153
154 struct mem_cgroup_lru_info {
155 struct mem_cgroup_per_node *nodeinfo[MAX_NUMNODES];
156 };
157
158 /*
159 * Cgroups above their limits are maintained in a RB-Tree, independent of
160 * their hierarchy representation
161 */
162
163 struct mem_cgroup_tree_per_zone {
164 struct rb_root rb_root;
165 spinlock_t lock;
166 };
167
168 struct mem_cgroup_tree_per_node {
169 struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
170 };
171
172 struct mem_cgroup_tree {
173 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
174 };
175
176 static struct mem_cgroup_tree soft_limit_tree __read_mostly;
177
178 /*
179 * The memory controller data structure. The memory controller controls both
180 * page cache and RSS per cgroup. We would eventually like to provide
181 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
182 * to help the administrator determine what knobs to tune.
183 *
184 * TODO: Add a water mark for the memory controller. Reclaim will begin when
185 * we hit the water mark. May be even add a low water mark, such that
186 * no reclaim occurs from a cgroup at it's low water mark, this is
187 * a feature that will be implemented much later in the future.
188 */
189 struct mem_cgroup {
190 struct cgroup_subsys_state css;
191 /*
192 * the counter to account for memory usage
193 */
194 struct res_counter res;
195 /*
196 * the counter to account for mem+swap usage.
197 */
198 struct res_counter memsw;
199 /*
200 * Per cgroup active and inactive list, similar to the
201 * per zone LRU lists.
202 */
203 struct mem_cgroup_lru_info info;
204
205 /*
206 protect against reclaim related member.
207 */
208 spinlock_t reclaim_param_lock;
209
210 int prev_priority; /* for recording reclaim priority */
211
212 /*
213 * While reclaiming in a hierarchy, we cache the last child we
214 * reclaimed from.
215 */
216 int last_scanned_child;
217 /*
218 * Should the accounting and control be hierarchical, per subtree?
219 */
220 bool use_hierarchy;
221 unsigned long last_oom_jiffies;
222 atomic_t refcnt;
223
224 unsigned int swappiness;
225
226 /* set when res.limit == memsw.limit */
227 bool memsw_is_minimum;
228
229 /*
230 * Should we move charges of a task when a task is moved into this
231 * mem_cgroup ? And what type of charges should we move ?
232 */
233 unsigned long move_charge_at_immigrate;
234
235 /*
236 * statistics. This must be placed at the end of memcg.
237 */
238 struct mem_cgroup_stat stat;
239 };
240
241 /* Stuffs for move charges at task migration. */
242 /*
243 * Types of charges to be moved. "move_charge_at_immitgrate" is treated as a
244 * left-shifted bitmap of these types.
245 */
246 enum move_type {
247 MOVE_CHARGE_TYPE_ANON, /* private anonymous page and swap of it */
248 NR_MOVE_TYPE,
249 };
250
251 /* "mc" and its members are protected by cgroup_mutex */
252 static struct move_charge_struct {
253 struct mem_cgroup *from;
254 struct mem_cgroup *to;
255 unsigned long precharge;
256 } mc;
257
258 /*
259 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
260 * limit reclaim to prevent infinite loops, if they ever occur.
261 */
262 #define MEM_CGROUP_MAX_RECLAIM_LOOPS (100)
263 #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS (2)
264
265 enum charge_type {
266 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
267 MEM_CGROUP_CHARGE_TYPE_MAPPED,
268 MEM_CGROUP_CHARGE_TYPE_SHMEM, /* used by page migration of shmem */
269 MEM_CGROUP_CHARGE_TYPE_FORCE, /* used by force_empty */
270 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
271 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
272 NR_CHARGE_TYPE,
273 };
274
275 /* only for here (for easy reading.) */
276 #define PCGF_CACHE (1UL << PCG_CACHE)
277 #define PCGF_USED (1UL << PCG_USED)
278 #define PCGF_LOCK (1UL << PCG_LOCK)
279 /* Not used, but added here for completeness */
280 #define PCGF_ACCT (1UL << PCG_ACCT)
281
282 /* for encoding cft->private value on file */
283 #define _MEM (0)
284 #define _MEMSWAP (1)
285 #define MEMFILE_PRIVATE(x, val) (((x) << 16) | (val))
286 #define MEMFILE_TYPE(val) (((val) >> 16) & 0xffff)
287 #define MEMFILE_ATTR(val) ((val) & 0xffff)
288
289 /*
290 * Reclaim flags for mem_cgroup_hierarchical_reclaim
291 */
292 #define MEM_CGROUP_RECLAIM_NOSWAP_BIT 0x0
293 #define MEM_CGROUP_RECLAIM_NOSWAP (1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
294 #define MEM_CGROUP_RECLAIM_SHRINK_BIT 0x1
295 #define MEM_CGROUP_RECLAIM_SHRINK (1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)
296 #define MEM_CGROUP_RECLAIM_SOFT_BIT 0x2
297 #define MEM_CGROUP_RECLAIM_SOFT (1 << MEM_CGROUP_RECLAIM_SOFT_BIT)
298
299 static void mem_cgroup_get(struct mem_cgroup *mem);
300 static void mem_cgroup_put(struct mem_cgroup *mem);
301 static struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *mem);
302 static void drain_all_stock_async(void);
303
304 static struct mem_cgroup_per_zone *
305 mem_cgroup_zoneinfo(struct mem_cgroup *mem, int nid, int zid)
306 {
307 return &mem->info.nodeinfo[nid]->zoneinfo[zid];
308 }
309
310 struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *mem)
311 {
312 return &mem->css;
313 }
314
315 static struct mem_cgroup_per_zone *
316 page_cgroup_zoneinfo(struct page_cgroup *pc)
317 {
318 struct mem_cgroup *mem = pc->mem_cgroup;
319 int nid = page_cgroup_nid(pc);
320 int zid = page_cgroup_zid(pc);
321
322 if (!mem)
323 return NULL;
324
325 return mem_cgroup_zoneinfo(mem, nid, zid);
326 }
327
328 static struct mem_cgroup_tree_per_zone *
329 soft_limit_tree_node_zone(int nid, int zid)
330 {
331 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
332 }
333
334 static struct mem_cgroup_tree_per_zone *
335 soft_limit_tree_from_page(struct page *page)
336 {
337 int nid = page_to_nid(page);
338 int zid = page_zonenum(page);
339
340 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
341 }
342
343 static void
344 __mem_cgroup_insert_exceeded(struct mem_cgroup *mem,
345 struct mem_cgroup_per_zone *mz,
346 struct mem_cgroup_tree_per_zone *mctz,
347 unsigned long long new_usage_in_excess)
348 {
349 struct rb_node **p = &mctz->rb_root.rb_node;
350 struct rb_node *parent = NULL;
351 struct mem_cgroup_per_zone *mz_node;
352
353 if (mz->on_tree)
354 return;
355
356 mz->usage_in_excess = new_usage_in_excess;
357 if (!mz->usage_in_excess)
358 return;
359 while (*p) {
360 parent = *p;
361 mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
362 tree_node);
363 if (mz->usage_in_excess < mz_node->usage_in_excess)
364 p = &(*p)->rb_left;
365 /*
366 * We can't avoid mem cgroups that are over their soft
367 * limit by the same amount
368 */
369 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
370 p = &(*p)->rb_right;
371 }
372 rb_link_node(&mz->tree_node, parent, p);
373 rb_insert_color(&mz->tree_node, &mctz->rb_root);
374 mz->on_tree = true;
375 }
376
377 static void
378 __mem_cgroup_remove_exceeded(struct mem_cgroup *mem,
379 struct mem_cgroup_per_zone *mz,
380 struct mem_cgroup_tree_per_zone *mctz)
381 {
382 if (!mz->on_tree)
383 return;
384 rb_erase(&mz->tree_node, &mctz->rb_root);
385 mz->on_tree = false;
386 }
387
388 static void
389 mem_cgroup_remove_exceeded(struct mem_cgroup *mem,
390 struct mem_cgroup_per_zone *mz,
391 struct mem_cgroup_tree_per_zone *mctz)
392 {
393 spin_lock(&mctz->lock);
394 __mem_cgroup_remove_exceeded(mem, mz, mctz);
395 spin_unlock(&mctz->lock);
396 }
397
398 static bool mem_cgroup_soft_limit_check(struct mem_cgroup *mem)
399 {
400 bool ret = false;
401 int cpu;
402 s64 val;
403 struct mem_cgroup_stat_cpu *cpustat;
404
405 cpu = get_cpu();
406 cpustat = &mem->stat.cpustat[cpu];
407 val = __mem_cgroup_stat_read_local(cpustat, MEM_CGROUP_STAT_EVENTS);
408 if (unlikely(val > SOFTLIMIT_EVENTS_THRESH)) {
409 __mem_cgroup_stat_reset_safe(cpustat, MEM_CGROUP_STAT_EVENTS);
410 ret = true;
411 }
412 put_cpu();
413 return ret;
414 }
415
416 static void mem_cgroup_update_tree(struct mem_cgroup *mem, struct page *page)
417 {
418 unsigned long long excess;
419 struct mem_cgroup_per_zone *mz;
420 struct mem_cgroup_tree_per_zone *mctz;
421 int nid = page_to_nid(page);
422 int zid = page_zonenum(page);
423 mctz = soft_limit_tree_from_page(page);
424
425 /*
426 * Necessary to update all ancestors when hierarchy is used.
427 * because their event counter is not touched.
428 */
429 for (; mem; mem = parent_mem_cgroup(mem)) {
430 mz = mem_cgroup_zoneinfo(mem, nid, zid);
431 excess = res_counter_soft_limit_excess(&mem->res);
432 /*
433 * We have to update the tree if mz is on RB-tree or
434 * mem is over its softlimit.
435 */
436 if (excess || mz->on_tree) {
437 spin_lock(&mctz->lock);
438 /* if on-tree, remove it */
439 if (mz->on_tree)
440 __mem_cgroup_remove_exceeded(mem, mz, mctz);
441 /*
442 * Insert again. mz->usage_in_excess will be updated.
443 * If excess is 0, no tree ops.
444 */
445 __mem_cgroup_insert_exceeded(mem, mz, mctz, excess);
446 spin_unlock(&mctz->lock);
447 }
448 }
449 }
450
451 static void mem_cgroup_remove_from_trees(struct mem_cgroup *mem)
452 {
453 int node, zone;
454 struct mem_cgroup_per_zone *mz;
455 struct mem_cgroup_tree_per_zone *mctz;
456
457 for_each_node_state(node, N_POSSIBLE) {
458 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
459 mz = mem_cgroup_zoneinfo(mem, node, zone);
460 mctz = soft_limit_tree_node_zone(node, zone);
461 mem_cgroup_remove_exceeded(mem, mz, mctz);
462 }
463 }
464 }
465
466 static inline unsigned long mem_cgroup_get_excess(struct mem_cgroup *mem)
467 {
468 return res_counter_soft_limit_excess(&mem->res) >> PAGE_SHIFT;
469 }
470
471 static struct mem_cgroup_per_zone *
472 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
473 {
474 struct rb_node *rightmost = NULL;
475 struct mem_cgroup_per_zone *mz;
476
477 retry:
478 mz = NULL;
479 rightmost = rb_last(&mctz->rb_root);
480 if (!rightmost)
481 goto done; /* Nothing to reclaim from */
482
483 mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
484 /*
485 * Remove the node now but someone else can add it back,
486 * we will to add it back at the end of reclaim to its correct
487 * position in the tree.
488 */
489 __mem_cgroup_remove_exceeded(mz->mem, mz, mctz);
490 if (!res_counter_soft_limit_excess(&mz->mem->res) ||
491 !css_tryget(&mz->mem->css))
492 goto retry;
493 done:
494 return mz;
495 }
496
497 static struct mem_cgroup_per_zone *
498 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
499 {
500 struct mem_cgroup_per_zone *mz;
501
502 spin_lock(&mctz->lock);
503 mz = __mem_cgroup_largest_soft_limit_node(mctz);
504 spin_unlock(&mctz->lock);
505 return mz;
506 }
507
508 static void mem_cgroup_swap_statistics(struct mem_cgroup *mem,
509 bool charge)
510 {
511 int val = (charge) ? 1 : -1;
512 struct mem_cgroup_stat *stat = &mem->stat;
513 struct mem_cgroup_stat_cpu *cpustat;
514 int cpu = get_cpu();
515
516 cpustat = &stat->cpustat[cpu];
517 __mem_cgroup_stat_add_safe(cpustat, MEM_CGROUP_STAT_SWAPOUT, val);
518 put_cpu();
519 }
520
521 static void mem_cgroup_charge_statistics(struct mem_cgroup *mem,
522 struct page_cgroup *pc,
523 bool charge)
524 {
525 int val = (charge) ? 1 : -1;
526 struct mem_cgroup_stat *stat = &mem->stat;
527 struct mem_cgroup_stat_cpu *cpustat;
528 int cpu = get_cpu();
529
530 cpustat = &stat->cpustat[cpu];
531 if (PageCgroupCache(pc))
532 __mem_cgroup_stat_add_safe(cpustat, MEM_CGROUP_STAT_CACHE, val);
533 else
534 __mem_cgroup_stat_add_safe(cpustat, MEM_CGROUP_STAT_RSS, val);
535
536 if (charge)
537 __mem_cgroup_stat_add_safe(cpustat,
538 MEM_CGROUP_STAT_PGPGIN_COUNT, 1);
539 else
540 __mem_cgroup_stat_add_safe(cpustat,
541 MEM_CGROUP_STAT_PGPGOUT_COUNT, 1);
542 __mem_cgroup_stat_add_safe(cpustat, MEM_CGROUP_STAT_EVENTS, 1);
543 put_cpu();
544 }
545
546 static unsigned long mem_cgroup_get_local_zonestat(struct mem_cgroup *mem,
547 enum lru_list idx)
548 {
549 int nid, zid;
550 struct mem_cgroup_per_zone *mz;
551 u64 total = 0;
552
553 for_each_online_node(nid)
554 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
555 mz = mem_cgroup_zoneinfo(mem, nid, zid);
556 total += MEM_CGROUP_ZSTAT(mz, idx);
557 }
558 return total;
559 }
560
561 static struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
562 {
563 return container_of(cgroup_subsys_state(cont,
564 mem_cgroup_subsys_id), struct mem_cgroup,
565 css);
566 }
567
568 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
569 {
570 /*
571 * mm_update_next_owner() may clear mm->owner to NULL
572 * if it races with swapoff, page migration, etc.
573 * So this can be called with p == NULL.
574 */
575 if (unlikely(!p))
576 return NULL;
577
578 return container_of(task_subsys_state(p, mem_cgroup_subsys_id),
579 struct mem_cgroup, css);
580 }
581
582 static struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
583 {
584 struct mem_cgroup *mem = NULL;
585
586 if (!mm)
587 return NULL;
588 /*
589 * Because we have no locks, mm->owner's may be being moved to other
590 * cgroup. We use css_tryget() here even if this looks
591 * pessimistic (rather than adding locks here).
592 */
593 rcu_read_lock();
594 do {
595 mem = mem_cgroup_from_task(rcu_dereference(mm->owner));
596 if (unlikely(!mem))
597 break;
598 } while (!css_tryget(&mem->css));
599 rcu_read_unlock();
600 return mem;
601 }
602
603 /*
604 * Call callback function against all cgroup under hierarchy tree.
605 */
606 static int mem_cgroup_walk_tree(struct mem_cgroup *root, void *data,
607 int (*func)(struct mem_cgroup *, void *))
608 {
609 int found, ret, nextid;
610 struct cgroup_subsys_state *css;
611 struct mem_cgroup *mem;
612
613 if (!root->use_hierarchy)
614 return (*func)(root, data);
615
616 nextid = 1;
617 do {
618 ret = 0;
619 mem = NULL;
620
621 rcu_read_lock();
622 css = css_get_next(&mem_cgroup_subsys, nextid, &root->css,
623 &found);
624 if (css && css_tryget(css))
625 mem = container_of(css, struct mem_cgroup, css);
626 rcu_read_unlock();
627
628 if (mem) {
629 ret = (*func)(mem, data);
630 css_put(&mem->css);
631 }
632 nextid = found + 1;
633 } while (!ret && css);
634
635 return ret;
636 }
637
638 static inline bool mem_cgroup_is_root(struct mem_cgroup *mem)
639 {
640 return (mem == root_mem_cgroup);
641 }
642
643 /*
644 * Following LRU functions are allowed to be used without PCG_LOCK.
645 * Operations are called by routine of global LRU independently from memcg.
646 * What we have to take care of here is validness of pc->mem_cgroup.
647 *
648 * Changes to pc->mem_cgroup happens when
649 * 1. charge
650 * 2. moving account
651 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
652 * It is added to LRU before charge.
653 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
654 * When moving account, the page is not on LRU. It's isolated.
655 */
656
657 void mem_cgroup_del_lru_list(struct page *page, enum lru_list lru)
658 {
659 struct page_cgroup *pc;
660 struct mem_cgroup_per_zone *mz;
661
662 if (mem_cgroup_disabled())
663 return;
664 pc = lookup_page_cgroup(page);
665 /* can happen while we handle swapcache. */
666 if (!TestClearPageCgroupAcctLRU(pc))
667 return;
668 VM_BUG_ON(!pc->mem_cgroup);
669 /*
670 * We don't check PCG_USED bit. It's cleared when the "page" is finally
671 * removed from global LRU.
672 */
673 mz = page_cgroup_zoneinfo(pc);
674 MEM_CGROUP_ZSTAT(mz, lru) -= 1;
675 if (mem_cgroup_is_root(pc->mem_cgroup))
676 return;
677 VM_BUG_ON(list_empty(&pc->lru));
678 list_del_init(&pc->lru);
679 return;
680 }
681
682 void mem_cgroup_del_lru(struct page *page)
683 {
684 mem_cgroup_del_lru_list(page, page_lru(page));
685 }
686
687 void mem_cgroup_rotate_lru_list(struct page *page, enum lru_list lru)
688 {
689 struct mem_cgroup_per_zone *mz;
690 struct page_cgroup *pc;
691
692 if (mem_cgroup_disabled())
693 return;
694
695 pc = lookup_page_cgroup(page);
696 /*
697 * Used bit is set without atomic ops but after smp_wmb().
698 * For making pc->mem_cgroup visible, insert smp_rmb() here.
699 */
700 smp_rmb();
701 /* unused or root page is not rotated. */
702 if (!PageCgroupUsed(pc) || mem_cgroup_is_root(pc->mem_cgroup))
703 return;
704 mz = page_cgroup_zoneinfo(pc);
705 list_move(&pc->lru, &mz->lists[lru]);
706 }
707
708 void mem_cgroup_add_lru_list(struct page *page, enum lru_list lru)
709 {
710 struct page_cgroup *pc;
711 struct mem_cgroup_per_zone *mz;
712
713 if (mem_cgroup_disabled())
714 return;
715 pc = lookup_page_cgroup(page);
716 VM_BUG_ON(PageCgroupAcctLRU(pc));
717 /*
718 * Used bit is set without atomic ops but after smp_wmb().
719 * For making pc->mem_cgroup visible, insert smp_rmb() here.
720 */
721 smp_rmb();
722 if (!PageCgroupUsed(pc))
723 return;
724
725 mz = page_cgroup_zoneinfo(pc);
726 MEM_CGROUP_ZSTAT(mz, lru) += 1;
727 SetPageCgroupAcctLRU(pc);
728 if (mem_cgroup_is_root(pc->mem_cgroup))
729 return;
730 list_add(&pc->lru, &mz->lists[lru]);
731 }
732
733 /*
734 * At handling SwapCache, pc->mem_cgroup may be changed while it's linked to
735 * lru because the page may.be reused after it's fully uncharged (because of
736 * SwapCache behavior).To handle that, unlink page_cgroup from LRU when charge
737 * it again. This function is only used to charge SwapCache. It's done under
738 * lock_page and expected that zone->lru_lock is never held.
739 */
740 static void mem_cgroup_lru_del_before_commit_swapcache(struct page *page)
741 {
742 unsigned long flags;
743 struct zone *zone = page_zone(page);
744 struct page_cgroup *pc = lookup_page_cgroup(page);
745
746 spin_lock_irqsave(&zone->lru_lock, flags);
747 /*
748 * Forget old LRU when this page_cgroup is *not* used. This Used bit
749 * is guarded by lock_page() because the page is SwapCache.
750 */
751 if (!PageCgroupUsed(pc))
752 mem_cgroup_del_lru_list(page, page_lru(page));
753 spin_unlock_irqrestore(&zone->lru_lock, flags);
754 }
755
756 static void mem_cgroup_lru_add_after_commit_swapcache(struct page *page)
757 {
758 unsigned long flags;
759 struct zone *zone = page_zone(page);
760 struct page_cgroup *pc = lookup_page_cgroup(page);
761
762 spin_lock_irqsave(&zone->lru_lock, flags);
763 /* link when the page is linked to LRU but page_cgroup isn't */
764 if (PageLRU(page) && !PageCgroupAcctLRU(pc))
765 mem_cgroup_add_lru_list(page, page_lru(page));
766 spin_unlock_irqrestore(&zone->lru_lock, flags);
767 }
768
769
770 void mem_cgroup_move_lists(struct page *page,
771 enum lru_list from, enum lru_list to)
772 {
773 if (mem_cgroup_disabled())
774 return;
775 mem_cgroup_del_lru_list(page, from);
776 mem_cgroup_add_lru_list(page, to);
777 }
778
779 int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *mem)
780 {
781 int ret;
782 struct mem_cgroup *curr = NULL;
783
784 task_lock(task);
785 rcu_read_lock();
786 curr = try_get_mem_cgroup_from_mm(task->mm);
787 rcu_read_unlock();
788 task_unlock(task);
789 if (!curr)
790 return 0;
791 /*
792 * We should check use_hierarchy of "mem" not "curr". Because checking
793 * use_hierarchy of "curr" here make this function true if hierarchy is
794 * enabled in "curr" and "curr" is a child of "mem" in *cgroup*
795 * hierarchy(even if use_hierarchy is disabled in "mem").
796 */
797 if (mem->use_hierarchy)
798 ret = css_is_ancestor(&curr->css, &mem->css);
799 else
800 ret = (curr == mem);
801 css_put(&curr->css);
802 return ret;
803 }
804
805 /*
806 * prev_priority control...this will be used in memory reclaim path.
807 */
808 int mem_cgroup_get_reclaim_priority(struct mem_cgroup *mem)
809 {
810 int prev_priority;
811
812 spin_lock(&mem->reclaim_param_lock);
813 prev_priority = mem->prev_priority;
814 spin_unlock(&mem->reclaim_param_lock);
815
816 return prev_priority;
817 }
818
819 void mem_cgroup_note_reclaim_priority(struct mem_cgroup *mem, int priority)
820 {
821 spin_lock(&mem->reclaim_param_lock);
822 if (priority < mem->prev_priority)
823 mem->prev_priority = priority;
824 spin_unlock(&mem->reclaim_param_lock);
825 }
826
827 void mem_cgroup_record_reclaim_priority(struct mem_cgroup *mem, int priority)
828 {
829 spin_lock(&mem->reclaim_param_lock);
830 mem->prev_priority = priority;
831 spin_unlock(&mem->reclaim_param_lock);
832 }
833
834 static int calc_inactive_ratio(struct mem_cgroup *memcg, unsigned long *present_pages)
835 {
836 unsigned long active;
837 unsigned long inactive;
838 unsigned long gb;
839 unsigned long inactive_ratio;
840
841 inactive = mem_cgroup_get_local_zonestat(memcg, LRU_INACTIVE_ANON);
842 active = mem_cgroup_get_local_zonestat(memcg, LRU_ACTIVE_ANON);
843
844 gb = (inactive + active) >> (30 - PAGE_SHIFT);
845 if (gb)
846 inactive_ratio = int_sqrt(10 * gb);
847 else
848 inactive_ratio = 1;
849
850 if (present_pages) {
851 present_pages[0] = inactive;
852 present_pages[1] = active;
853 }
854
855 return inactive_ratio;
856 }
857
858 int mem_cgroup_inactive_anon_is_low(struct mem_cgroup *memcg)
859 {
860 unsigned long active;
861 unsigned long inactive;
862 unsigned long present_pages[2];
863 unsigned long inactive_ratio;
864
865 inactive_ratio = calc_inactive_ratio(memcg, present_pages);
866
867 inactive = present_pages[0];
868 active = present_pages[1];
869
870 if (inactive * inactive_ratio < active)
871 return 1;
872
873 return 0;
874 }
875
876 int mem_cgroup_inactive_file_is_low(struct mem_cgroup *memcg)
877 {
878 unsigned long active;
879 unsigned long inactive;
880
881 inactive = mem_cgroup_get_local_zonestat(memcg, LRU_INACTIVE_FILE);
882 active = mem_cgroup_get_local_zonestat(memcg, LRU_ACTIVE_FILE);
883
884 return (active > inactive);
885 }
886
887 unsigned long mem_cgroup_zone_nr_pages(struct mem_cgroup *memcg,
888 struct zone *zone,
889 enum lru_list lru)
890 {
891 int nid = zone->zone_pgdat->node_id;
892 int zid = zone_idx(zone);
893 struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);
894
895 return MEM_CGROUP_ZSTAT(mz, lru);
896 }
897
898 struct zone_reclaim_stat *mem_cgroup_get_reclaim_stat(struct mem_cgroup *memcg,
899 struct zone *zone)
900 {
901 int nid = zone->zone_pgdat->node_id;
902 int zid = zone_idx(zone);
903 struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);
904
905 return &mz->reclaim_stat;
906 }
907
908 struct zone_reclaim_stat *
909 mem_cgroup_get_reclaim_stat_from_page(struct page *page)
910 {
911 struct page_cgroup *pc;
912 struct mem_cgroup_per_zone *mz;
913
914 if (mem_cgroup_disabled())
915 return NULL;
916
917 pc = lookup_page_cgroup(page);
918 /*
919 * Used bit is set without atomic ops but after smp_wmb().
920 * For making pc->mem_cgroup visible, insert smp_rmb() here.
921 */
922 smp_rmb();
923 if (!PageCgroupUsed(pc))
924 return NULL;
925
926 mz = page_cgroup_zoneinfo(pc);
927 if (!mz)
928 return NULL;
929
930 return &mz->reclaim_stat;
931 }
932
933 unsigned long mem_cgroup_isolate_pages(unsigned long nr_to_scan,
934 struct list_head *dst,
935 unsigned long *scanned, int order,
936 int mode, struct zone *z,
937 struct mem_cgroup *mem_cont,
938 int active, int file)
939 {
940 unsigned long nr_taken = 0;
941 struct page *page;
942 unsigned long scan;
943 LIST_HEAD(pc_list);
944 struct list_head *src;
945 struct page_cgroup *pc, *tmp;
946 int nid = z->zone_pgdat->node_id;
947 int zid = zone_idx(z);
948 struct mem_cgroup_per_zone *mz;
949 int lru = LRU_FILE * file + active;
950 int ret;
951
952 BUG_ON(!mem_cont);
953 mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
954 src = &mz->lists[lru];
955
956 scan = 0;
957 list_for_each_entry_safe_reverse(pc, tmp, src, lru) {
958 if (scan >= nr_to_scan)
959 break;
960
961 page = pc->page;
962 if (unlikely(!PageCgroupUsed(pc)))
963 continue;
964 if (unlikely(!PageLRU(page)))
965 continue;
966
967 scan++;
968 ret = __isolate_lru_page(page, mode, file);
969 switch (ret) {
970 case 0:
971 list_move(&page->lru, dst);
972 mem_cgroup_del_lru(page);
973 nr_taken++;
974 break;
975 case -EBUSY:
976 /* we don't affect global LRU but rotate in our LRU */
977 mem_cgroup_rotate_lru_list(page, page_lru(page));
978 break;
979 default:
980 break;
981 }
982 }
983
984 *scanned = scan;
985 return nr_taken;
986 }
987
988 #define mem_cgroup_from_res_counter(counter, member) \
989 container_of(counter, struct mem_cgroup, member)
990
991 static bool mem_cgroup_check_under_limit(struct mem_cgroup *mem)
992 {
993 if (do_swap_account) {
994 if (res_counter_check_under_limit(&mem->res) &&
995 res_counter_check_under_limit(&mem->memsw))
996 return true;
997 } else
998 if (res_counter_check_under_limit(&mem->res))
999 return true;
1000 return false;
1001 }
1002
1003 static unsigned int get_swappiness(struct mem_cgroup *memcg)
1004 {
1005 struct cgroup *cgrp = memcg->css.cgroup;
1006 unsigned int swappiness;
1007
1008 /* root ? */
1009 if (cgrp->parent == NULL)
1010 return vm_swappiness;
1011
1012 spin_lock(&memcg->reclaim_param_lock);
1013 swappiness = memcg->swappiness;
1014 spin_unlock(&memcg->reclaim_param_lock);
1015
1016 return swappiness;
1017 }
1018
1019 static int mem_cgroup_count_children_cb(struct mem_cgroup *mem, void *data)
1020 {
1021 int *val = data;
1022 (*val)++;
1023 return 0;
1024 }
1025
1026 /**
1027 * mem_cgroup_print_mem_info: Called from OOM with tasklist_lock held in read mode.
1028 * @memcg: The memory cgroup that went over limit
1029 * @p: Task that is going to be killed
1030 *
1031 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1032 * enabled
1033 */
1034 void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1035 {
1036 struct cgroup *task_cgrp;
1037 struct cgroup *mem_cgrp;
1038 /*
1039 * Need a buffer in BSS, can't rely on allocations. The code relies
1040 * on the assumption that OOM is serialized for memory controller.
1041 * If this assumption is broken, revisit this code.
1042 */
1043 static char memcg_name[PATH_MAX];
1044 int ret;
1045
1046 if (!memcg || !p)
1047 return;
1048
1049
1050 rcu_read_lock();
1051
1052 mem_cgrp = memcg->css.cgroup;
1053 task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);
1054
1055 ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
1056 if (ret < 0) {
1057 /*
1058 * Unfortunately, we are unable to convert to a useful name
1059 * But we'll still print out the usage information
1060 */
1061 rcu_read_unlock();
1062 goto done;
1063 }
1064 rcu_read_unlock();
1065
1066 printk(KERN_INFO "Task in %s killed", memcg_name);
1067
1068 rcu_read_lock();
1069 ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
1070 if (ret < 0) {
1071 rcu_read_unlock();
1072 goto done;
1073 }
1074 rcu_read_unlock();
1075
1076 /*
1077 * Continues from above, so we don't need an KERN_ level
1078 */
1079 printk(KERN_CONT " as a result of limit of %s\n", memcg_name);
1080 done:
1081
1082 printk(KERN_INFO "memory: usage %llukB, limit %llukB, failcnt %llu\n",
1083 res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
1084 res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
1085 res_counter_read_u64(&memcg->res, RES_FAILCNT));
1086 printk(KERN_INFO "memory+swap: usage %llukB, limit %llukB, "
1087 "failcnt %llu\n",
1088 res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
1089 res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
1090 res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
1091 }
1092
1093 /*
1094 * This function returns the number of memcg under hierarchy tree. Returns
1095 * 1(self count) if no children.
1096 */
1097 static int mem_cgroup_count_children(struct mem_cgroup *mem)
1098 {
1099 int num = 0;
1100 mem_cgroup_walk_tree(mem, &num, mem_cgroup_count_children_cb);
1101 return num;
1102 }
1103
1104 /*
1105 * Visit the first child (need not be the first child as per the ordering
1106 * of the cgroup list, since we track last_scanned_child) of @mem and use
1107 * that to reclaim free pages from.
1108 */
1109 static struct mem_cgroup *
1110 mem_cgroup_select_victim(struct mem_cgroup *root_mem)
1111 {
1112 struct mem_cgroup *ret = NULL;
1113 struct cgroup_subsys_state *css;
1114 int nextid, found;
1115
1116 if (!root_mem->use_hierarchy) {
1117 css_get(&root_mem->css);
1118 ret = root_mem;
1119 }
1120
1121 while (!ret) {
1122 rcu_read_lock();
1123 nextid = root_mem->last_scanned_child + 1;
1124 css = css_get_next(&mem_cgroup_subsys, nextid, &root_mem->css,
1125 &found);
1126 if (css && css_tryget(css))
1127 ret = container_of(css, struct mem_cgroup, css);
1128
1129 rcu_read_unlock();
1130 /* Updates scanning parameter */
1131 spin_lock(&root_mem->reclaim_param_lock);
1132 if (!css) {
1133 /* this means start scan from ID:1 */
1134 root_mem->last_scanned_child = 0;
1135 } else
1136 root_mem->last_scanned_child = found;
1137 spin_unlock(&root_mem->reclaim_param_lock);
1138 }
1139
1140 return ret;
1141 }
1142
1143 /*
1144 * Scan the hierarchy if needed to reclaim memory. We remember the last child
1145 * we reclaimed from, so that we don't end up penalizing one child extensively
1146 * based on its position in the children list.
1147 *
1148 * root_mem is the original ancestor that we've been reclaim from.
1149 *
1150 * We give up and return to the caller when we visit root_mem twice.
1151 * (other groups can be removed while we're walking....)
1152 *
1153 * If shrink==true, for avoiding to free too much, this returns immedieately.
1154 */
1155 static int mem_cgroup_hierarchical_reclaim(struct mem_cgroup *root_mem,
1156 struct zone *zone,
1157 gfp_t gfp_mask,
1158 unsigned long reclaim_options)
1159 {
1160 struct mem_cgroup *victim;
1161 int ret, total = 0;
1162 int loop = 0;
1163 bool noswap = reclaim_options & MEM_CGROUP_RECLAIM_NOSWAP;
1164 bool shrink = reclaim_options & MEM_CGROUP_RECLAIM_SHRINK;
1165 bool check_soft = reclaim_options & MEM_CGROUP_RECLAIM_SOFT;
1166 unsigned long excess = mem_cgroup_get_excess(root_mem);
1167
1168 /* If memsw_is_minimum==1, swap-out is of-no-use. */
1169 if (root_mem->memsw_is_minimum)
1170 noswap = true;
1171
1172 while (1) {
1173 victim = mem_cgroup_select_victim(root_mem);
1174 if (victim == root_mem) {
1175 loop++;
1176 if (loop >= 1)
1177 drain_all_stock_async();
1178 if (loop >= 2) {
1179 /*
1180 * If we have not been able to reclaim
1181 * anything, it might because there are
1182 * no reclaimable pages under this hierarchy
1183 */
1184 if (!check_soft || !total) {
1185 css_put(&victim->css);
1186 break;
1187 }
1188 /*
1189 * We want to do more targetted reclaim.
1190 * excess >> 2 is not to excessive so as to
1191 * reclaim too much, nor too less that we keep
1192 * coming back to reclaim from this cgroup
1193 */
1194 if (total >= (excess >> 2) ||
1195 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS)) {
1196 css_put(&victim->css);
1197 break;
1198 }
1199 }
1200 }
1201 if (!mem_cgroup_local_usage(&victim->stat)) {
1202 /* this cgroup's local usage == 0 */
1203 css_put(&victim->css);
1204 continue;
1205 }
1206 /* we use swappiness of local cgroup */
1207 if (check_soft)
1208 ret = mem_cgroup_shrink_node_zone(victim, gfp_mask,
1209 noswap, get_swappiness(victim), zone,
1210 zone->zone_pgdat->node_id);
1211 else
1212 ret = try_to_free_mem_cgroup_pages(victim, gfp_mask,
1213 noswap, get_swappiness(victim));
1214 css_put(&victim->css);
1215 /*
1216 * At shrinking usage, we can't check we should stop here or
1217 * reclaim more. It's depends on callers. last_scanned_child
1218 * will work enough for keeping fairness under tree.
1219 */
1220 if (shrink)
1221 return ret;
1222 total += ret;
1223 if (check_soft) {
1224 if (res_counter_check_under_soft_limit(&root_mem->res))
1225 return total;
1226 } else if (mem_cgroup_check_under_limit(root_mem))
1227 return 1 + total;
1228 }
1229 return total;
1230 }
1231
1232 bool mem_cgroup_oom_called(struct task_struct *task)
1233 {
1234 bool ret = false;
1235 struct mem_cgroup *mem;
1236 struct mm_struct *mm;
1237
1238 rcu_read_lock();
1239 mm = task->mm;
1240 if (!mm)
1241 mm = &init_mm;
1242 mem = mem_cgroup_from_task(rcu_dereference(mm->owner));
1243 if (mem && time_before(jiffies, mem->last_oom_jiffies + HZ/10))
1244 ret = true;
1245 rcu_read_unlock();
1246 return ret;
1247 }
1248
1249 static int record_last_oom_cb(struct mem_cgroup *mem, void *data)
1250 {
1251 mem->last_oom_jiffies = jiffies;
1252 return 0;
1253 }
1254
1255 static void record_last_oom(struct mem_cgroup *mem)
1256 {
1257 mem_cgroup_walk_tree(mem, NULL, record_last_oom_cb);
1258 }
1259
1260 /*
1261 * Currently used to update mapped file statistics, but the routine can be
1262 * generalized to update other statistics as well.
1263 */
1264 void mem_cgroup_update_file_mapped(struct page *page, int val)
1265 {
1266 struct mem_cgroup *mem;
1267 struct mem_cgroup_stat *stat;
1268 struct mem_cgroup_stat_cpu *cpustat;
1269 int cpu;
1270 struct page_cgroup *pc;
1271
1272 pc = lookup_page_cgroup(page);
1273 if (unlikely(!pc))
1274 return;
1275
1276 lock_page_cgroup(pc);
1277 mem = pc->mem_cgroup;
1278 if (!mem)
1279 goto done;
1280
1281 if (!PageCgroupUsed(pc))
1282 goto done;
1283
1284 /*
1285 * Preemption is already disabled, we don't need get_cpu()
1286 */
1287 cpu = smp_processor_id();
1288 stat = &mem->stat;
1289 cpustat = &stat->cpustat[cpu];
1290
1291 __mem_cgroup_stat_add_safe(cpustat, MEM_CGROUP_STAT_FILE_MAPPED, val);
1292 done:
1293 unlock_page_cgroup(pc);
1294 }
1295
1296 /*
1297 * size of first charge trial. "32" comes from vmscan.c's magic value.
1298 * TODO: maybe necessary to use big numbers in big irons.
1299 */
1300 #define CHARGE_SIZE (32 * PAGE_SIZE)
1301 struct memcg_stock_pcp {
1302 struct mem_cgroup *cached; /* this never be root cgroup */
1303 int charge;
1304 struct work_struct work;
1305 };
1306 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
1307 static atomic_t memcg_drain_count;
1308
1309 /*
1310 * Try to consume stocked charge on this cpu. If success, PAGE_SIZE is consumed
1311 * from local stock and true is returned. If the stock is 0 or charges from a
1312 * cgroup which is not current target, returns false. This stock will be
1313 * refilled.
1314 */
1315 static bool consume_stock(struct mem_cgroup *mem)
1316 {
1317 struct memcg_stock_pcp *stock;
1318 bool ret = true;
1319
1320 stock = &get_cpu_var(memcg_stock);
1321 if (mem == stock->cached && stock->charge)
1322 stock->charge -= PAGE_SIZE;
1323 else /* need to call res_counter_charge */
1324 ret = false;
1325 put_cpu_var(memcg_stock);
1326 return ret;
1327 }
1328
1329 /*
1330 * Returns stocks cached in percpu to res_counter and reset cached information.
1331 */
1332 static void drain_stock(struct memcg_stock_pcp *stock)
1333 {
1334 struct mem_cgroup *old = stock->cached;
1335
1336 if (stock->charge) {
1337 res_counter_uncharge(&old->res, stock->charge);
1338 if (do_swap_account)
1339 res_counter_uncharge(&old->memsw, stock->charge);
1340 }
1341 stock->cached = NULL;
1342 stock->charge = 0;
1343 }
1344
1345 /*
1346 * This must be called under preempt disabled or must be called by
1347 * a thread which is pinned to local cpu.
1348 */
1349 static void drain_local_stock(struct work_struct *dummy)
1350 {
1351 struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock);
1352 drain_stock(stock);
1353 }
1354
1355 /*
1356 * Cache charges(val) which is from res_counter, to local per_cpu area.
1357 * This will be consumed by consumt_stock() function, later.
1358 */
1359 static void refill_stock(struct mem_cgroup *mem, int val)
1360 {
1361 struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
1362
1363 if (stock->cached != mem) { /* reset if necessary */
1364 drain_stock(stock);
1365 stock->cached = mem;
1366 }
1367 stock->charge += val;
1368 put_cpu_var(memcg_stock);
1369 }
1370
1371 /*
1372 * Tries to drain stocked charges in other cpus. This function is asynchronous
1373 * and just put a work per cpu for draining localy on each cpu. Caller can
1374 * expects some charges will be back to res_counter later but cannot wait for
1375 * it.
1376 */
1377 static void drain_all_stock_async(void)
1378 {
1379 int cpu;
1380 /* This function is for scheduling "drain" in asynchronous way.
1381 * The result of "drain" is not directly handled by callers. Then,
1382 * if someone is calling drain, we don't have to call drain more.
1383 * Anyway, WORK_STRUCT_PENDING check in queue_work_on() will catch if
1384 * there is a race. We just do loose check here.
1385 */
1386 if (atomic_read(&memcg_drain_count))
1387 return;
1388 /* Notify other cpus that system-wide "drain" is running */
1389 atomic_inc(&memcg_drain_count);
1390 get_online_cpus();
1391 for_each_online_cpu(cpu) {
1392 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
1393 schedule_work_on(cpu, &stock->work);
1394 }
1395 put_online_cpus();
1396 atomic_dec(&memcg_drain_count);
1397 /* We don't wait for flush_work */
1398 }
1399
1400 /* This is a synchronous drain interface. */
1401 static void drain_all_stock_sync(void)
1402 {
1403 /* called when force_empty is called */
1404 atomic_inc(&memcg_drain_count);
1405 schedule_on_each_cpu(drain_local_stock);
1406 atomic_dec(&memcg_drain_count);
1407 }
1408
1409 static int __cpuinit memcg_stock_cpu_callback(struct notifier_block *nb,
1410 unsigned long action,
1411 void *hcpu)
1412 {
1413 int cpu = (unsigned long)hcpu;
1414 struct memcg_stock_pcp *stock;
1415
1416 if (action != CPU_DEAD)
1417 return NOTIFY_OK;
1418 stock = &per_cpu(memcg_stock, cpu);
1419 drain_stock(stock);
1420 return NOTIFY_OK;
1421 }
1422
1423 /*
1424 * Unlike exported interface, "oom" parameter is added. if oom==true,
1425 * oom-killer can be invoked.
1426 */
1427 static int __mem_cgroup_try_charge(struct mm_struct *mm,
1428 gfp_t gfp_mask, struct mem_cgroup **memcg,
1429 bool oom, struct page *page)
1430 {
1431 struct mem_cgroup *mem, *mem_over_limit;
1432 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
1433 struct res_counter *fail_res;
1434 int csize = CHARGE_SIZE;
1435
1436 if (unlikely(test_thread_flag(TIF_MEMDIE))) {
1437 /* Don't account this! */
1438 *memcg = NULL;
1439 return 0;
1440 }
1441
1442 /*
1443 * We always charge the cgroup the mm_struct belongs to.
1444 * The mm_struct's mem_cgroup changes on task migration if the
1445 * thread group leader migrates. It's possible that mm is not
1446 * set, if so charge the init_mm (happens for pagecache usage).
1447 */
1448 mem = *memcg;
1449 if (likely(!mem)) {
1450 mem = try_get_mem_cgroup_from_mm(mm);
1451 *memcg = mem;
1452 } else {
1453 css_get(&mem->css);
1454 }
1455 if (unlikely(!mem))
1456 return 0;
1457
1458 VM_BUG_ON(css_is_removed(&mem->css));
1459 if (mem_cgroup_is_root(mem))
1460 goto done;
1461
1462 while (1) {
1463 int ret = 0;
1464 unsigned long flags = 0;
1465
1466 if (consume_stock(mem))
1467 goto charged;
1468
1469 ret = res_counter_charge(&mem->res, csize, &fail_res);
1470 if (likely(!ret)) {
1471 if (!do_swap_account)
1472 break;
1473 ret = res_counter_charge(&mem->memsw, csize, &fail_res);
1474 if (likely(!ret))
1475 break;
1476 /* mem+swap counter fails */
1477 res_counter_uncharge(&mem->res, csize);
1478 flags |= MEM_CGROUP_RECLAIM_NOSWAP;
1479 mem_over_limit = mem_cgroup_from_res_counter(fail_res,
1480 memsw);
1481 } else
1482 /* mem counter fails */
1483 mem_over_limit = mem_cgroup_from_res_counter(fail_res,
1484 res);
1485
1486 /* reduce request size and retry */
1487 if (csize > PAGE_SIZE) {
1488 csize = PAGE_SIZE;
1489 continue;
1490 }
1491 if (!(gfp_mask & __GFP_WAIT))
1492 goto nomem;
1493
1494 ret = mem_cgroup_hierarchical_reclaim(mem_over_limit, NULL,
1495 gfp_mask, flags);
1496 if (ret)
1497 continue;
1498
1499 /*
1500 * try_to_free_mem_cgroup_pages() might not give us a full
1501 * picture of reclaim. Some pages are reclaimed and might be
1502 * moved to swap cache or just unmapped from the cgroup.
1503 * Check the limit again to see if the reclaim reduced the
1504 * current usage of the cgroup before giving up
1505 *
1506 */
1507 if (mem_cgroup_check_under_limit(mem_over_limit))
1508 continue;
1509
1510 if (!nr_retries--) {
1511 if (oom) {
1512 mem_cgroup_out_of_memory(mem_over_limit, gfp_mask);
1513 record_last_oom(mem_over_limit);
1514 }
1515 goto nomem;
1516 }
1517 }
1518 if (csize > PAGE_SIZE)
1519 refill_stock(mem, csize - PAGE_SIZE);
1520 charged:
1521 /*
1522 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
1523 * if they exceeds softlimit.
1524 */
1525 if (page && mem_cgroup_soft_limit_check(mem))
1526 mem_cgroup_update_tree(mem, page);
1527 done:
1528 return 0;
1529 nomem:
1530 css_put(&mem->css);
1531 return -ENOMEM;
1532 }
1533
1534 /*
1535 * Somemtimes we have to undo a charge we got by try_charge().
1536 * This function is for that and do uncharge, put css's refcnt.
1537 * gotten by try_charge().
1538 */
1539 static void mem_cgroup_cancel_charge(struct mem_cgroup *mem)
1540 {
1541 if (!mem_cgroup_is_root(mem)) {
1542 res_counter_uncharge(&mem->res, PAGE_SIZE);
1543 if (do_swap_account)
1544 res_counter_uncharge(&mem->memsw, PAGE_SIZE);
1545 }
1546 css_put(&mem->css);
1547 }
1548
1549 /*
1550 * A helper function to get mem_cgroup from ID. must be called under
1551 * rcu_read_lock(). The caller must check css_is_removed() or some if
1552 * it's concern. (dropping refcnt from swap can be called against removed
1553 * memcg.)
1554 */
1555 static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
1556 {
1557 struct cgroup_subsys_state *css;
1558
1559 /* ID 0 is unused ID */
1560 if (!id)
1561 return NULL;
1562 css = css_lookup(&mem_cgroup_subsys, id);
1563 if (!css)
1564 return NULL;
1565 return container_of(css, struct mem_cgroup, css);
1566 }
1567
1568 struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
1569 {
1570 struct mem_cgroup *mem = NULL;
1571 struct page_cgroup *pc;
1572 unsigned short id;
1573 swp_entry_t ent;
1574
1575 VM_BUG_ON(!PageLocked(page));
1576
1577 pc = lookup_page_cgroup(page);
1578 lock_page_cgroup(pc);
1579 if (PageCgroupUsed(pc)) {
1580 mem = pc->mem_cgroup;
1581 if (mem && !css_tryget(&mem->css))
1582 mem = NULL;
1583 } else if (PageSwapCache(page)) {
1584 ent.val = page_private(page);
1585 id = lookup_swap_cgroup(ent);
1586 rcu_read_lock();
1587 mem = mem_cgroup_lookup(id);
1588 if (mem && !css_tryget(&mem->css))
1589 mem = NULL;
1590 rcu_read_unlock();
1591 }
1592 unlock_page_cgroup(pc);
1593 return mem;
1594 }
1595
1596 /*
1597 * commit a charge got by __mem_cgroup_try_charge() and makes page_cgroup to be
1598 * USED state. If already USED, uncharge and return.
1599 */
1600
1601 static void __mem_cgroup_commit_charge(struct mem_cgroup *mem,
1602 struct page_cgroup *pc,
1603 enum charge_type ctype)
1604 {
1605 /* try_charge() can return NULL to *memcg, taking care of it. */
1606 if (!mem)
1607 return;
1608
1609 lock_page_cgroup(pc);
1610 if (unlikely(PageCgroupUsed(pc))) {
1611 unlock_page_cgroup(pc);
1612 mem_cgroup_cancel_charge(mem);
1613 return;
1614 }
1615
1616 pc->mem_cgroup = mem;
1617 /*
1618 * We access a page_cgroup asynchronously without lock_page_cgroup().
1619 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
1620 * is accessed after testing USED bit. To make pc->mem_cgroup visible
1621 * before USED bit, we need memory barrier here.
1622 * See mem_cgroup_add_lru_list(), etc.
1623 */
1624 smp_wmb();
1625 switch (ctype) {
1626 case MEM_CGROUP_CHARGE_TYPE_CACHE:
1627 case MEM_CGROUP_CHARGE_TYPE_SHMEM:
1628 SetPageCgroupCache(pc);
1629 SetPageCgroupUsed(pc);
1630 break;
1631 case MEM_CGROUP_CHARGE_TYPE_MAPPED:
1632 ClearPageCgroupCache(pc);
1633 SetPageCgroupUsed(pc);
1634 break;
1635 default:
1636 break;
1637 }
1638
1639 mem_cgroup_charge_statistics(mem, pc, true);
1640
1641 unlock_page_cgroup(pc);
1642 }
1643
1644 /**
1645 * __mem_cgroup_move_account - move account of the page
1646 * @pc: page_cgroup of the page.
1647 * @from: mem_cgroup which the page is moved from.
1648 * @to: mem_cgroup which the page is moved to. @from != @to.
1649 *
1650 * The caller must confirm following.
1651 * - page is not on LRU (isolate_page() is useful.)
1652 * - the pc is locked, used, and ->mem_cgroup points to @from.
1653 *
1654 * This function does "uncharge" from old cgroup but doesn't do "charge" to
1655 * new cgroup. It should be done by a caller.
1656 */
1657
1658 static void __mem_cgroup_move_account(struct page_cgroup *pc,
1659 struct mem_cgroup *from, struct mem_cgroup *to)
1660 {
1661 struct page *page;
1662 int cpu;
1663 struct mem_cgroup_stat *stat;
1664 struct mem_cgroup_stat_cpu *cpustat;
1665
1666 VM_BUG_ON(from == to);
1667 VM_BUG_ON(PageLRU(pc->page));
1668 VM_BUG_ON(!PageCgroupLocked(pc));
1669 VM_BUG_ON(!PageCgroupUsed(pc));
1670 VM_BUG_ON(pc->mem_cgroup != from);
1671
1672 if (!mem_cgroup_is_root(from))
1673 res_counter_uncharge(&from->res, PAGE_SIZE);
1674 mem_cgroup_charge_statistics(from, pc, false);
1675
1676 page = pc->page;
1677 if (page_mapped(page) && !PageAnon(page)) {
1678 cpu = smp_processor_id();
1679 /* Update mapped_file data for mem_cgroup "from" */
1680 stat = &from->stat;
1681 cpustat = &stat->cpustat[cpu];
1682 __mem_cgroup_stat_add_safe(cpustat, MEM_CGROUP_STAT_FILE_MAPPED,
1683 -1);
1684
1685 /* Update mapped_file data for mem_cgroup "to" */
1686 stat = &to->stat;
1687 cpustat = &stat->cpustat[cpu];
1688 __mem_cgroup_stat_add_safe(cpustat, MEM_CGROUP_STAT_FILE_MAPPED,
1689 1);
1690 }
1691
1692 if (do_swap_account && !mem_cgroup_is_root(from))
1693 res_counter_uncharge(&from->memsw, PAGE_SIZE);
1694 css_put(&from->css);
1695
1696 css_get(&to->css);
1697 pc->mem_cgroup = to;
1698 mem_cgroup_charge_statistics(to, pc, true);
1699 /*
1700 * We charges against "to" which may not have any tasks. Then, "to"
1701 * can be under rmdir(). But in current implementation, caller of
1702 * this function is just force_empty() and move charge, so it's
1703 * garanteed that "to" is never removed. So, we don't check rmdir
1704 * status here.
1705 */
1706 }
1707
1708 /*
1709 * check whether the @pc is valid for moving account and call
1710 * __mem_cgroup_move_account()
1711 */
1712 static int mem_cgroup_move_account(struct page_cgroup *pc,
1713 struct mem_cgroup *from, struct mem_cgroup *to)
1714 {
1715 int ret = -EINVAL;
1716 lock_page_cgroup(pc);
1717 if (PageCgroupUsed(pc) && pc->mem_cgroup == from) {
1718 __mem_cgroup_move_account(pc, from, to);
1719 ret = 0;
1720 }
1721 unlock_page_cgroup(pc);
1722 return ret;
1723 }
1724
1725 /*
1726 * move charges to its parent.
1727 */
1728
1729 static int mem_cgroup_move_parent(struct page_cgroup *pc,
1730 struct mem_cgroup *child,
1731 gfp_t gfp_mask)
1732 {
1733 struct page *page = pc->page;
1734 struct cgroup *cg = child->css.cgroup;
1735 struct cgroup *pcg = cg->parent;
1736 struct mem_cgroup *parent;
1737 int ret;
1738
1739 /* Is ROOT ? */
1740 if (!pcg)
1741 return -EINVAL;
1742
1743 ret = -EBUSY;
1744 if (!get_page_unless_zero(page))
1745 goto out;
1746 if (isolate_lru_page(page))
1747 goto put;
1748
1749 parent = mem_cgroup_from_cont(pcg);
1750 ret = __mem_cgroup_try_charge(NULL, gfp_mask, &parent, false, page);
1751 if (ret || !parent)
1752 goto put_back;
1753
1754 ret = mem_cgroup_move_account(pc, child, parent);
1755 if (!ret)
1756 css_put(&parent->css); /* drop extra refcnt by try_charge() */
1757 else
1758 mem_cgroup_cancel_charge(parent); /* does css_put */
1759 put_back:
1760 putback_lru_page(page);
1761 put:
1762 put_page(page);
1763 out:
1764 return ret;
1765 }
1766
1767 /*
1768 * Charge the memory controller for page usage.
1769 * Return
1770 * 0 if the charge was successful
1771 * < 0 if the cgroup is over its limit
1772 */
1773 static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
1774 gfp_t gfp_mask, enum charge_type ctype,
1775 struct mem_cgroup *memcg)
1776 {
1777 struct mem_cgroup *mem;
1778 struct page_cgroup *pc;
1779 int ret;
1780
1781 pc = lookup_page_cgroup(page);
1782 /* can happen at boot */
1783 if (unlikely(!pc))
1784 return 0;
1785 prefetchw(pc);
1786
1787 mem = memcg;
1788 ret = __mem_cgroup_try_charge(mm, gfp_mask, &mem, true, page);
1789 if (ret || !mem)
1790 return ret;
1791
1792 __mem_cgroup_commit_charge(mem, pc, ctype);
1793 return 0;
1794 }
1795
1796 int mem_cgroup_newpage_charge(struct page *page,
1797 struct mm_struct *mm, gfp_t gfp_mask)
1798 {
1799 if (mem_cgroup_disabled())
1800 return 0;
1801 if (PageCompound(page))
1802 return 0;
1803 /*
1804 * If already mapped, we don't have to account.
1805 * If page cache, page->mapping has address_space.
1806 * But page->mapping may have out-of-use anon_vma pointer,
1807 * detecit it by PageAnon() check. newly-mapped-anon's page->mapping
1808 * is NULL.
1809 */
1810 if (page_mapped(page) || (page->mapping && !PageAnon(page)))
1811 return 0;
1812 if (unlikely(!mm))
1813 mm = &init_mm;
1814 return mem_cgroup_charge_common(page, mm, gfp_mask,
1815 MEM_CGROUP_CHARGE_TYPE_MAPPED, NULL);
1816 }
1817
1818 static void
1819 __mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
1820 enum charge_type ctype);
1821
1822 int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
1823 gfp_t gfp_mask)
1824 {
1825 struct mem_cgroup *mem = NULL;
1826 int ret;
1827
1828 if (mem_cgroup_disabled())
1829 return 0;
1830 if (PageCompound(page))
1831 return 0;
1832 /*
1833 * Corner case handling. This is called from add_to_page_cache()
1834 * in usual. But some FS (shmem) precharges this page before calling it
1835 * and call add_to_page_cache() with GFP_NOWAIT.
1836 *
1837 * For GFP_NOWAIT case, the page may be pre-charged before calling
1838 * add_to_page_cache(). (See shmem.c) check it here and avoid to call
1839 * charge twice. (It works but has to pay a bit larger cost.)
1840 * And when the page is SwapCache, it should take swap information
1841 * into account. This is under lock_page() now.
1842 */
1843 if (!(gfp_mask & __GFP_WAIT)) {
1844 struct page_cgroup *pc;
1845
1846
1847 pc = lookup_page_cgroup(page);
1848 if (!pc)
1849 return 0;
1850 lock_page_cgroup(pc);
1851 if (PageCgroupUsed(pc)) {
1852 unlock_page_cgroup(pc);
1853 return 0;
1854 }
1855 unlock_page_cgroup(pc);
1856 }
1857
1858 if (unlikely(!mm && !mem))
1859 mm = &init_mm;
1860
1861 if (page_is_file_cache(page))
1862 return mem_cgroup_charge_common(page, mm, gfp_mask,
1863 MEM_CGROUP_CHARGE_TYPE_CACHE, NULL);
1864
1865 /* shmem */
1866 if (PageSwapCache(page)) {
1867 ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &mem);
1868 if (!ret)
1869 __mem_cgroup_commit_charge_swapin(page, mem,
1870 MEM_CGROUP_CHARGE_TYPE_SHMEM);
1871 } else
1872 ret = mem_cgroup_charge_common(page, mm, gfp_mask,
1873 MEM_CGROUP_CHARGE_TYPE_SHMEM, mem);
1874
1875 return ret;
1876 }
1877
1878 /*
1879 * While swap-in, try_charge -> commit or cancel, the page is locked.
1880 * And when try_charge() successfully returns, one refcnt to memcg without
1881 * struct page_cgroup is acquired. This refcnt will be consumed by
1882 * "commit()" or removed by "cancel()"
1883 */
1884 int mem_cgroup_try_charge_swapin(struct mm_struct *mm,
1885 struct page *page,
1886 gfp_t mask, struct mem_cgroup **ptr)
1887 {
1888 struct mem_cgroup *mem;
1889 int ret;
1890
1891 if (mem_cgroup_disabled())
1892 return 0;
1893
1894 if (!do_swap_account)
1895 goto charge_cur_mm;
1896 /*
1897 * A racing thread's fault, or swapoff, may have already updated
1898 * the pte, and even removed page from swap cache: in those cases
1899 * do_swap_page()'s pte_same() test will fail; but there's also a
1900 * KSM case which does need to charge the page.
1901 */
1902 if (!PageSwapCache(page))
1903 goto charge_cur_mm;
1904 mem = try_get_mem_cgroup_from_page(page);
1905 if (!mem)
1906 goto charge_cur_mm;
1907 *ptr = mem;
1908 ret = __mem_cgroup_try_charge(NULL, mask, ptr, true, page);
1909 /* drop extra refcnt from tryget */
1910 css_put(&mem->css);
1911 return ret;
1912 charge_cur_mm:
1913 if (unlikely(!mm))
1914 mm = &init_mm;
1915 return __mem_cgroup_try_charge(mm, mask, ptr, true, page);
1916 }
1917
1918 static void
1919 __mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
1920 enum charge_type ctype)
1921 {
1922 struct page_cgroup *pc;
1923
1924 if (mem_cgroup_disabled())
1925 return;
1926 if (!ptr)
1927 return;
1928 cgroup_exclude_rmdir(&ptr->css);
1929 pc = lookup_page_cgroup(page);
1930 mem_cgroup_lru_del_before_commit_swapcache(page);
1931 __mem_cgroup_commit_charge(ptr, pc, ctype);
1932 mem_cgroup_lru_add_after_commit_swapcache(page);
1933 /*
1934 * Now swap is on-memory. This means this page may be
1935 * counted both as mem and swap....double count.
1936 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
1937 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
1938 * may call delete_from_swap_cache() before reach here.
1939 */
1940 if (do_swap_account && PageSwapCache(page)) {
1941 swp_entry_t ent = {.val = page_private(page)};
1942 unsigned short id;
1943 struct mem_cgroup *memcg;
1944
1945 id = swap_cgroup_record(ent, 0);
1946 rcu_read_lock();
1947 memcg = mem_cgroup_lookup(id);
1948 if (memcg) {
1949 /*
1950 * This recorded memcg can be obsolete one. So, avoid
1951 * calling css_tryget
1952 */
1953 if (!mem_cgroup_is_root(memcg))
1954 res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
1955 mem_cgroup_swap_statistics(memcg, false);
1956 mem_cgroup_put(memcg);
1957 }
1958 rcu_read_unlock();
1959 }
1960 /*
1961 * At swapin, we may charge account against cgroup which has no tasks.
1962 * So, rmdir()->pre_destroy() can be called while we do this charge.
1963 * In that case, we need to call pre_destroy() again. check it here.
1964 */
1965 cgroup_release_and_wakeup_rmdir(&ptr->css);
1966 }
1967
1968 void mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr)
1969 {
1970 __mem_cgroup_commit_charge_swapin(page, ptr,
1971 MEM_CGROUP_CHARGE_TYPE_MAPPED);
1972 }
1973
1974 void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *mem)
1975 {
1976 if (mem_cgroup_disabled())
1977 return;
1978 if (!mem)
1979 return;
1980 mem_cgroup_cancel_charge(mem);
1981 }
1982
1983 static void
1984 __do_uncharge(struct mem_cgroup *mem, const enum charge_type ctype)
1985 {
1986 struct memcg_batch_info *batch = NULL;
1987 bool uncharge_memsw = true;
1988 /* If swapout, usage of swap doesn't decrease */
1989 if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
1990 uncharge_memsw = false;
1991 /*
1992 * do_batch > 0 when unmapping pages or inode invalidate/truncate.
1993 * In those cases, all pages freed continously can be expected to be in
1994 * the same cgroup and we have chance to coalesce uncharges.
1995 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
1996 * because we want to do uncharge as soon as possible.
1997 */
1998 if (!current->memcg_batch.do_batch || test_thread_flag(TIF_MEMDIE))
1999 goto direct_uncharge;
2000
2001 batch = &current->memcg_batch;
2002 /*
2003 * In usual, we do css_get() when we remember memcg pointer.
2004 * But in this case, we keep res->usage until end of a series of
2005 * uncharges. Then, it's ok to ignore memcg's refcnt.
2006 */
2007 if (!batch->memcg)
2008 batch->memcg = mem;
2009 /*
2010 * In typical case, batch->memcg == mem. This means we can
2011 * merge a series of uncharges to an uncharge of res_counter.
2012 * If not, we uncharge res_counter ony by one.
2013 */
2014 if (batch->memcg != mem)
2015 goto direct_uncharge;
2016 /* remember freed charge and uncharge it later */
2017 batch->bytes += PAGE_SIZE;
2018 if (uncharge_memsw)
2019 batch->memsw_bytes += PAGE_SIZE;
2020 return;
2021 direct_uncharge:
2022 res_counter_uncharge(&mem->res, PAGE_SIZE);
2023 if (uncharge_memsw)
2024 res_counter_uncharge(&mem->memsw, PAGE_SIZE);
2025 return;
2026 }
2027
2028 /*
2029 * uncharge if !page_mapped(page)
2030 */
2031 static struct mem_cgroup *
2032 __mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype)
2033 {
2034 struct page_cgroup *pc;
2035 struct mem_cgroup *mem = NULL;
2036 struct mem_cgroup_per_zone *mz;
2037
2038 if (mem_cgroup_disabled())
2039 return NULL;
2040
2041 if (PageSwapCache(page))
2042 return NULL;
2043
2044 /*
2045 * Check if our page_cgroup is valid
2046 */
2047 pc = lookup_page_cgroup(page);
2048 if (unlikely(!pc || !PageCgroupUsed(pc)))
2049 return NULL;
2050
2051 lock_page_cgroup(pc);
2052
2053 mem = pc->mem_cgroup;
2054
2055 if (!PageCgroupUsed(pc))
2056 goto unlock_out;
2057
2058 switch (ctype) {
2059 case MEM_CGROUP_CHARGE_TYPE_MAPPED:
2060 case MEM_CGROUP_CHARGE_TYPE_DROP:
2061 if (page_mapped(page))
2062 goto unlock_out;
2063 break;
2064 case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
2065 if (!PageAnon(page)) { /* Shared memory */
2066 if (page->mapping && !page_is_file_cache(page))
2067 goto unlock_out;
2068 } else if (page_mapped(page)) /* Anon */
2069 goto unlock_out;
2070 break;
2071 default:
2072 break;
2073 }
2074
2075 if (!mem_cgroup_is_root(mem))
2076 __do_uncharge(mem, ctype);
2077 if (ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
2078 mem_cgroup_swap_statistics(mem, true);
2079 mem_cgroup_charge_statistics(mem, pc, false);
2080
2081 ClearPageCgroupUsed(pc);
2082 /*
2083 * pc->mem_cgroup is not cleared here. It will be accessed when it's
2084 * freed from LRU. This is safe because uncharged page is expected not
2085 * to be reused (freed soon). Exception is SwapCache, it's handled by
2086 * special functions.
2087 */
2088
2089 mz = page_cgroup_zoneinfo(pc);
2090 unlock_page_cgroup(pc);
2091
2092 if (mem_cgroup_soft_limit_check(mem))
2093 mem_cgroup_update_tree(mem, page);
2094 /* at swapout, this memcg will be accessed to record to swap */
2095 if (ctype != MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
2096 css_put(&mem->css);
2097
2098 return mem;
2099
2100 unlock_out:
2101 unlock_page_cgroup(pc);
2102 return NULL;
2103 }
2104
2105 void mem_cgroup_uncharge_page(struct page *page)
2106 {
2107 /* early check. */
2108 if (page_mapped(page))
2109 return;
2110 if (page->mapping && !PageAnon(page))
2111 return;
2112 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_MAPPED);
2113 }
2114
2115 void mem_cgroup_uncharge_cache_page(struct page *page)
2116 {
2117 VM_BUG_ON(page_mapped(page));
2118 VM_BUG_ON(page->mapping);
2119 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE);
2120 }
2121
2122 /*
2123 * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
2124 * In that cases, pages are freed continuously and we can expect pages
2125 * are in the same memcg. All these calls itself limits the number of
2126 * pages freed at once, then uncharge_start/end() is called properly.
2127 * This may be called prural(2) times in a context,
2128 */
2129
2130 void mem_cgroup_uncharge_start(void)
2131 {
2132 current->memcg_batch.do_batch++;
2133 /* We can do nest. */
2134 if (current->memcg_batch.do_batch == 1) {
2135 current->memcg_batch.memcg = NULL;
2136 current->memcg_batch.bytes = 0;
2137 current->memcg_batch.memsw_bytes = 0;
2138 }
2139 }
2140
2141 void mem_cgroup_uncharge_end(void)
2142 {
2143 struct memcg_batch_info *batch = &current->memcg_batch;
2144
2145 if (!batch->do_batch)
2146 return;
2147
2148 batch->do_batch--;
2149 if (batch->do_batch) /* If stacked, do nothing. */
2150 return;
2151
2152 if (!batch->memcg)
2153 return;
2154 /*
2155 * This "batch->memcg" is valid without any css_get/put etc...
2156 * bacause we hide charges behind us.
2157 */
2158 if (batch->bytes)
2159 res_counter_uncharge(&batch->memcg->res, batch->bytes);
2160 if (batch->memsw_bytes)
2161 res_counter_uncharge(&batch->memcg->memsw, batch->memsw_bytes);
2162 /* forget this pointer (for sanity check) */
2163 batch->memcg = NULL;
2164 }
2165
2166 #ifdef CONFIG_SWAP
2167 /*
2168 * called after __delete_from_swap_cache() and drop "page" account.
2169 * memcg information is recorded to swap_cgroup of "ent"
2170 */
2171 void
2172 mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
2173 {
2174 struct mem_cgroup *memcg;
2175 int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;
2176
2177 if (!swapout) /* this was a swap cache but the swap is unused ! */
2178 ctype = MEM_CGROUP_CHARGE_TYPE_DROP;
2179
2180 memcg = __mem_cgroup_uncharge_common(page, ctype);
2181
2182 /* record memcg information */
2183 if (do_swap_account && swapout && memcg) {
2184 swap_cgroup_record(ent, css_id(&memcg->css));
2185 mem_cgroup_get(memcg);
2186 }
2187 if (swapout && memcg)
2188 css_put(&memcg->css);
2189 }
2190 #endif
2191
2192 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
2193 /*
2194 * called from swap_entry_free(). remove record in swap_cgroup and
2195 * uncharge "memsw" account.
2196 */
2197 void mem_cgroup_uncharge_swap(swp_entry_t ent)
2198 {
2199 struct mem_cgroup *memcg;
2200 unsigned short id;
2201
2202 if (!do_swap_account)
2203 return;
2204
2205 id = swap_cgroup_record(ent, 0);
2206 rcu_read_lock();
2207 memcg = mem_cgroup_lookup(id);
2208 if (memcg) {
2209 /*
2210 * We uncharge this because swap is freed.
2211 * This memcg can be obsolete one. We avoid calling css_tryget
2212 */
2213 if (!mem_cgroup_is_root(memcg))
2214 res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
2215 mem_cgroup_swap_statistics(memcg, false);
2216 mem_cgroup_put(memcg);
2217 }
2218 rcu_read_unlock();
2219 }
2220 #endif
2221
2222 /*
2223 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
2224 * page belongs to.
2225 */
2226 int mem_cgroup_prepare_migration(struct page *page, struct mem_cgroup **ptr)
2227 {
2228 struct page_cgroup *pc;
2229 struct mem_cgroup *mem = NULL;
2230 int ret = 0;
2231
2232 if (mem_cgroup_disabled())
2233 return 0;
2234
2235 pc = lookup_page_cgroup(page);
2236 lock_page_cgroup(pc);
2237 if (PageCgroupUsed(pc)) {
2238 mem = pc->mem_cgroup;
2239 css_get(&mem->css);
2240 }
2241 unlock_page_cgroup(pc);
2242
2243 if (mem) {
2244 ret = __mem_cgroup_try_charge(NULL, GFP_KERNEL, &mem, false,
2245 page);
2246 css_put(&mem->css);
2247 }
2248 *ptr = mem;
2249 return ret;
2250 }
2251
2252 /* remove redundant charge if migration failed*/
2253 void mem_cgroup_end_migration(struct mem_cgroup *mem,
2254 struct page *oldpage, struct page *newpage)
2255 {
2256 struct page *target, *unused;
2257 struct page_cgroup *pc;
2258 enum charge_type ctype;
2259
2260 if (!mem)
2261 return;
2262 cgroup_exclude_rmdir(&mem->css);
2263 /* at migration success, oldpage->mapping is NULL. */
2264 if (oldpage->mapping) {
2265 target = oldpage;
2266 unused = NULL;
2267 } else {
2268 target = newpage;
2269 unused = oldpage;
2270 }
2271
2272 if (PageAnon(target))
2273 ctype = MEM_CGROUP_CHARGE_TYPE_MAPPED;
2274 else if (page_is_file_cache(target))
2275 ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
2276 else
2277 ctype = MEM_CGROUP_CHARGE_TYPE_SHMEM;
2278
2279 /* unused page is not on radix-tree now. */
2280 if (unused)
2281 __mem_cgroup_uncharge_common(unused, ctype);
2282
2283 pc = lookup_page_cgroup(target);
2284 /*
2285 * __mem_cgroup_commit_charge() check PCG_USED bit of page_cgroup.
2286 * So, double-counting is effectively avoided.
2287 */
2288 __mem_cgroup_commit_charge(mem, pc, ctype);
2289
2290 /*
2291 * Both of oldpage and newpage are still under lock_page().
2292 * Then, we don't have to care about race in radix-tree.
2293 * But we have to be careful that this page is unmapped or not.
2294 *
2295 * There is a case for !page_mapped(). At the start of
2296 * migration, oldpage was mapped. But now, it's zapped.
2297 * But we know *target* page is not freed/reused under us.
2298 * mem_cgroup_uncharge_page() does all necessary checks.
2299 */
2300 if (ctype == MEM_CGROUP_CHARGE_TYPE_MAPPED)
2301 mem_cgroup_uncharge_page(target);
2302 /*
2303 * At migration, we may charge account against cgroup which has no tasks
2304 * So, rmdir()->pre_destroy() can be called while we do this charge.
2305 * In that case, we need to call pre_destroy() again. check it here.
2306 */
2307 cgroup_release_and_wakeup_rmdir(&mem->css);
2308 }
2309
2310 /*
2311 * A call to try to shrink memory usage on charge failure at shmem's swapin.
2312 * Calling hierarchical_reclaim is not enough because we should update
2313 * last_oom_jiffies to prevent pagefault_out_of_memory from invoking global OOM.
2314 * Moreover considering hierarchy, we should reclaim from the mem_over_limit,
2315 * not from the memcg which this page would be charged to.
2316 * try_charge_swapin does all of these works properly.
2317 */
2318 int mem_cgroup_shmem_charge_fallback(struct page *page,
2319 struct mm_struct *mm,
2320 gfp_t gfp_mask)
2321 {
2322 struct mem_cgroup *mem = NULL;
2323 int ret;
2324
2325 if (mem_cgroup_disabled())
2326 return 0;
2327
2328 ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &mem);
2329 if (!ret)
2330 mem_cgroup_cancel_charge_swapin(mem); /* it does !mem check */
2331
2332 return ret;
2333 }
2334
2335 static DEFINE_MUTEX(set_limit_mutex);
2336
2337 static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
2338 unsigned long long val)
2339 {
2340 int retry_count;
2341 u64 memswlimit;
2342 int ret = 0;
2343 int children = mem_cgroup_count_children(memcg);
2344 u64 curusage, oldusage;
2345
2346 /*
2347 * For keeping hierarchical_reclaim simple, how long we should retry
2348 * is depends on callers. We set our retry-count to be function
2349 * of # of children which we should visit in this loop.
2350 */
2351 retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;
2352
2353 oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
2354
2355 while (retry_count) {
2356 if (signal_pending(current)) {
2357 ret = -EINTR;
2358 break;
2359 }
2360 /*
2361 * Rather than hide all in some function, I do this in
2362 * open coded manner. You see what this really does.
2363 * We have to guarantee mem->res.limit < mem->memsw.limit.
2364 */
2365 mutex_lock(&set_limit_mutex);
2366 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
2367 if (memswlimit < val) {
2368 ret = -EINVAL;
2369 mutex_unlock(&set_limit_mutex);
2370 break;
2371 }
2372 ret = res_counter_set_limit(&memcg->res, val);
2373 if (!ret) {
2374 if (memswlimit == val)
2375 memcg->memsw_is_minimum = true;
2376 else
2377 memcg->memsw_is_minimum = false;
2378 }
2379 mutex_unlock(&set_limit_mutex);
2380
2381 if (!ret)
2382 break;
2383
2384 mem_cgroup_hierarchical_reclaim(memcg, NULL, GFP_KERNEL,
2385 MEM_CGROUP_RECLAIM_SHRINK);
2386 curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
2387 /* Usage is reduced ? */
2388 if (curusage >= oldusage)
2389 retry_count--;
2390 else
2391 oldusage = curusage;
2392 }
2393
2394 return ret;
2395 }
2396
2397 static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
2398 unsigned long long val)
2399 {
2400 int retry_count;
2401 u64 memlimit, oldusage, curusage;
2402 int children = mem_cgroup_count_children(memcg);
2403 int ret = -EBUSY;
2404
2405 /* see mem_cgroup_resize_res_limit */
2406 retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
2407 oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
2408 while (retry_count) {
2409 if (signal_pending(current)) {
2410 ret = -EINTR;
2411 break;
2412 }
2413 /*
2414 * Rather than hide all in some function, I do this in
2415 * open coded manner. You see what this really does.
2416 * We have to guarantee mem->res.limit < mem->memsw.limit.
2417 */
2418 mutex_lock(&set_limit_mutex);
2419 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
2420 if (memlimit > val) {
2421 ret = -EINVAL;
2422 mutex_unlock(&set_limit_mutex);
2423 break;
2424 }
2425 ret = res_counter_set_limit(&memcg->memsw, val);
2426 if (!ret) {
2427 if (memlimit == val)
2428 memcg->memsw_is_minimum = true;
2429 else
2430 memcg->memsw_is_minimum = false;
2431 }
2432 mutex_unlock(&set_limit_mutex);
2433
2434 if (!ret)
2435 break;
2436
2437 mem_cgroup_hierarchical_reclaim(memcg, NULL, GFP_KERNEL,
2438 MEM_CGROUP_RECLAIM_NOSWAP |
2439 MEM_CGROUP_RECLAIM_SHRINK);
2440 curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
2441 /* Usage is reduced ? */
2442 if (curusage >= oldusage)
2443 retry_count--;
2444 else
2445 oldusage = curusage;
2446 }
2447 return ret;
2448 }
2449
2450 unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
2451 gfp_t gfp_mask, int nid,
2452 int zid)
2453 {
2454 unsigned long nr_reclaimed = 0;
2455 struct mem_cgroup_per_zone *mz, *next_mz = NULL;
2456 unsigned long reclaimed;
2457 int loop = 0;
2458 struct mem_cgroup_tree_per_zone *mctz;
2459 unsigned long long excess;
2460
2461 if (order > 0)
2462 return 0;
2463
2464 mctz = soft_limit_tree_node_zone(nid, zid);
2465 /*
2466 * This loop can run a while, specially if mem_cgroup's continuously
2467 * keep exceeding their soft limit and putting the system under
2468 * pressure
2469 */
2470 do {
2471 if (next_mz)
2472 mz = next_mz;
2473 else
2474 mz = mem_cgroup_largest_soft_limit_node(mctz);
2475 if (!mz)
2476 break;
2477
2478 reclaimed = mem_cgroup_hierarchical_reclaim(mz->mem, zone,
2479 gfp_mask,
2480 MEM_CGROUP_RECLAIM_SOFT);
2481 nr_reclaimed += reclaimed;
2482 spin_lock(&mctz->lock);
2483
2484 /*
2485 * If we failed to reclaim anything from this memory cgroup
2486 * it is time to move on to the next cgroup
2487 */
2488 next_mz = NULL;
2489 if (!reclaimed) {
2490 do {
2491 /*
2492 * Loop until we find yet another one.
2493 *
2494 * By the time we get the soft_limit lock
2495 * again, someone might have aded the
2496 * group back on the RB tree. Iterate to
2497 * make sure we get a different mem.
2498 * mem_cgroup_largest_soft_limit_node returns
2499 * NULL if no other cgroup is present on
2500 * the tree
2501 */
2502 next_mz =
2503 __mem_cgroup_largest_soft_limit_node(mctz);
2504 if (next_mz == mz) {
2505 css_put(&next_mz->mem->css);
2506 next_mz = NULL;
2507 } else /* next_mz == NULL or other memcg */
2508 break;
2509 } while (1);
2510 }
2511 __mem_cgroup_remove_exceeded(mz->mem, mz, mctz);
2512 excess = res_counter_soft_limit_excess(&mz->mem->res);
2513 /*
2514 * One school of thought says that we should not add
2515 * back the node to the tree if reclaim returns 0.
2516 * But our reclaim could return 0, simply because due
2517 * to priority we are exposing a smaller subset of
2518 * memory to reclaim from. Consider this as a longer
2519 * term TODO.
2520 */
2521 /* If excess == 0, no tree ops */
2522 __mem_cgroup_insert_exceeded(mz->mem, mz, mctz, excess);
2523 spin_unlock(&mctz->lock);
2524 css_put(&mz->mem->css);
2525 loop++;
2526 /*
2527 * Could not reclaim anything and there are no more
2528 * mem cgroups to try or we seem to be looping without
2529 * reclaiming anything.
2530 */
2531 if (!nr_reclaimed &&
2532 (next_mz == NULL ||
2533 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
2534 break;
2535 } while (!nr_reclaimed);
2536 if (next_mz)
2537 css_put(&next_mz->mem->css);
2538 return nr_reclaimed;
2539 }
2540
2541 /*
2542 * This routine traverse page_cgroup in given list and drop them all.
2543 * *And* this routine doesn't reclaim page itself, just removes page_cgroup.
2544 */
2545 static int mem_cgroup_force_empty_list(struct mem_cgroup *mem,
2546 int node, int zid, enum lru_list lru)
2547 {
2548 struct zone *zone;
2549 struct mem_cgroup_per_zone *mz;
2550 struct page_cgroup *pc, *busy;
2551 unsigned long flags, loop;
2552 struct list_head *list;
2553 int ret = 0;
2554
2555 zone = &NODE_DATA(node)->node_zones[zid];
2556 mz = mem_cgroup_zoneinfo(mem, node, zid);
2557 list = &mz->lists[lru];
2558
2559 loop = MEM_CGROUP_ZSTAT(mz, lru);
2560 /* give some margin against EBUSY etc...*/
2561 loop += 256;
2562 busy = NULL;
2563 while (loop--) {
2564 ret = 0;
2565 spin_lock_irqsave(&zone->lru_lock, flags);
2566 if (list_empty(list)) {
2567 spin_unlock_irqrestore(&zone->lru_lock, flags);
2568 break;
2569 }
2570 pc = list_entry(list->prev, struct page_cgroup, lru);
2571 if (busy == pc) {
2572 list_move(&pc->lru, list);
2573 busy = NULL;
2574 spin_unlock_irqrestore(&zone->lru_lock, flags);
2575 continue;
2576 }
2577 spin_unlock_irqrestore(&zone->lru_lock, flags);
2578
2579 ret = mem_cgroup_move_parent(pc, mem, GFP_KERNEL);
2580 if (ret == -ENOMEM)
2581 break;
2582
2583 if (ret == -EBUSY || ret == -EINVAL) {
2584 /* found lock contention or "pc" is obsolete. */
2585 busy = pc;
2586 cond_resched();
2587 } else
2588 busy = NULL;
2589 }
2590
2591 if (!ret && !list_empty(list))
2592 return -EBUSY;
2593 return ret;
2594 }
2595
2596 /*
2597 * make mem_cgroup's charge to be 0 if there is no task.
2598 * This enables deleting this mem_cgroup.
2599 */
2600 static int mem_cgroup_force_empty(struct mem_cgroup *mem, bool free_all)
2601 {
2602 int ret;
2603 int node, zid, shrink;
2604 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
2605 struct cgroup *cgrp = mem->css.cgroup;
2606
2607 css_get(&mem->css);
2608
2609 shrink = 0;
2610 /* should free all ? */
2611 if (free_all)
2612 goto try_to_free;
2613 move_account:
2614 do {
2615 ret = -EBUSY;
2616 if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
2617 goto out;
2618 ret = -EINTR;
2619 if (signal_pending(current))
2620 goto out;
2621 /* This is for making all *used* pages to be on LRU. */
2622 lru_add_drain_all();
2623 drain_all_stock_sync();
2624 ret = 0;
2625 for_each_node_state(node, N_HIGH_MEMORY) {
2626 for (zid = 0; !ret && zid < MAX_NR_ZONES; zid++) {
2627 enum lru_list l;
2628 for_each_lru(l) {
2629 ret = mem_cgroup_force_empty_list(mem,
2630 node, zid, l);
2631 if (ret)
2632 break;
2633 }
2634 }
2635 if (ret)
2636 break;
2637 }
2638 /* it seems parent cgroup doesn't have enough mem */
2639 if (ret == -ENOMEM)
2640 goto try_to_free;
2641 cond_resched();
2642 /* "ret" should also be checked to ensure all lists are empty. */
2643 } while (mem->res.usage > 0 || ret);
2644 out:
2645 css_put(&mem->css);
2646 return ret;
2647
2648 try_to_free:
2649 /* returns EBUSY if there is a task or if we come here twice. */
2650 if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children) || shrink) {
2651 ret = -EBUSY;
2652 goto out;
2653 }
2654 /* we call try-to-free pages for make this cgroup empty */
2655 lru_add_drain_all();
2656 /* try to free all pages in this cgroup */
2657 shrink = 1;
2658 while (nr_retries && mem->res.usage > 0) {
2659 int progress;
2660
2661 if (signal_pending(current)) {
2662 ret = -EINTR;
2663 goto out;
2664 }
2665 progress = try_to_free_mem_cgroup_pages(mem, GFP_KERNEL,
2666 false, get_swappiness(mem));
2667 if (!progress) {
2668 nr_retries--;
2669 /* maybe some writeback is necessary */
2670 congestion_wait(BLK_RW_ASYNC, HZ/10);
2671 }
2672
2673 }
2674 lru_add_drain();
2675 /* try move_account...there may be some *locked* pages. */
2676 goto move_account;
2677 }
2678
2679 int mem_cgroup_force_empty_write(struct cgroup *cont, unsigned int event)
2680 {
2681 return mem_cgroup_force_empty(mem_cgroup_from_cont(cont), true);
2682 }
2683
2684
2685 static u64 mem_cgroup_hierarchy_read(struct cgroup *cont, struct cftype *cft)
2686 {
2687 return mem_cgroup_from_cont(cont)->use_hierarchy;
2688 }
2689
2690 static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft,
2691 u64 val)
2692 {
2693 int retval = 0;
2694 struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
2695 struct cgroup *parent = cont->parent;
2696 struct mem_cgroup *parent_mem = NULL;
2697
2698 if (parent)
2699 parent_mem = mem_cgroup_from_cont(parent);
2700
2701 cgroup_lock();
2702 /*
2703 * If parent's use_hierarchy is set, we can't make any modifications
2704 * in the child subtrees. If it is unset, then the change can
2705 * occur, provided the current cgroup has no children.
2706 *
2707 * For the root cgroup, parent_mem is NULL, we allow value to be
2708 * set if there are no children.
2709 */
2710 if ((!parent_mem || !parent_mem->use_hierarchy) &&
2711 (val == 1 || val == 0)) {
2712 if (list_empty(&cont->children))
2713 mem->use_hierarchy = val;
2714 else
2715 retval = -EBUSY;
2716 } else
2717 retval = -EINVAL;
2718 cgroup_unlock();
2719
2720 return retval;
2721 }
2722
2723 struct mem_cgroup_idx_data {
2724 s64 val;
2725 enum mem_cgroup_stat_index idx;
2726 };
2727
2728 static int
2729 mem_cgroup_get_idx_stat(struct mem_cgroup *mem, void *data)
2730 {
2731 struct mem_cgroup_idx_data *d = data;
2732 d->val += mem_cgroup_read_stat(&mem->stat, d->idx);
2733 return 0;
2734 }
2735
2736 static void
2737 mem_cgroup_get_recursive_idx_stat(struct mem_cgroup *mem,
2738 enum mem_cgroup_stat_index idx, s64 *val)
2739 {
2740 struct mem_cgroup_idx_data d;
2741 d.idx = idx;
2742 d.val = 0;
2743 mem_cgroup_walk_tree(mem, &d, mem_cgroup_get_idx_stat);
2744 *val = d.val;
2745 }
2746
2747 static u64 mem_cgroup_read(struct cgroup *cont, struct cftype *cft)
2748 {
2749 struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
2750 u64 idx_val, val;
2751 int type, name;
2752
2753 type = MEMFILE_TYPE(cft->private);
2754 name = MEMFILE_ATTR(cft->private);
2755 switch (type) {
2756 case _MEM:
2757 if (name == RES_USAGE && mem_cgroup_is_root(mem)) {
2758 mem_cgroup_get_recursive_idx_stat(mem,
2759 MEM_CGROUP_STAT_CACHE, &idx_val);
2760 val = idx_val;
2761 mem_cgroup_get_recursive_idx_stat(mem,
2762 MEM_CGROUP_STAT_RSS, &idx_val);
2763 val += idx_val;
2764 val <<= PAGE_SHIFT;
2765 } else
2766 val = res_counter_read_u64(&mem->res, name);
2767 break;
2768 case _MEMSWAP:
2769 if (name == RES_USAGE && mem_cgroup_is_root(mem)) {
2770 mem_cgroup_get_recursive_idx_stat(mem,
2771 MEM_CGROUP_STAT_CACHE, &idx_val);
2772 val = idx_val;
2773 mem_cgroup_get_recursive_idx_stat(mem,
2774 MEM_CGROUP_STAT_RSS, &idx_val);
2775 val += idx_val;
2776 mem_cgroup_get_recursive_idx_stat(mem,
2777 MEM_CGROUP_STAT_SWAPOUT, &idx_val);
2778 val += idx_val;
2779 val <<= PAGE_SHIFT;
2780 } else
2781 val = res_counter_read_u64(&mem->memsw, name);
2782 break;
2783 default:
2784 BUG();
2785 break;
2786 }
2787 return val;
2788 }
2789 /*
2790 * The user of this function is...
2791 * RES_LIMIT.
2792 */
2793 static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
2794 const char *buffer)
2795 {
2796 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
2797 int type, name;
2798 unsigned long long val;
2799 int ret;
2800
2801 type = MEMFILE_TYPE(cft->private);
2802 name = MEMFILE_ATTR(cft->private);
2803 switch (name) {
2804 case RES_LIMIT:
2805 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
2806 ret = -EINVAL;
2807 break;
2808 }
2809 /* This function does all necessary parse...reuse it */
2810 ret = res_counter_memparse_write_strategy(buffer, &val);
2811 if (ret)
2812 break;
2813 if (type == _MEM)
2814 ret = mem_cgroup_resize_limit(memcg, val);
2815 else
2816 ret = mem_cgroup_resize_memsw_limit(memcg, val);
2817 break;
2818 case RES_SOFT_LIMIT:
2819 ret = res_counter_memparse_write_strategy(buffer, &val);
2820 if (ret)
2821 break;
2822 /*
2823 * For memsw, soft limits are hard to implement in terms
2824 * of semantics, for now, we support soft limits for
2825 * control without swap
2826 */
2827 if (type == _MEM)
2828 ret = res_counter_set_soft_limit(&memcg->res, val);
2829 else
2830 ret = -EINVAL;
2831 break;
2832 default:
2833 ret = -EINVAL; /* should be BUG() ? */
2834 break;
2835 }
2836 return ret;
2837 }
2838
2839 static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
2840 unsigned long long *mem_limit, unsigned long long *memsw_limit)
2841 {
2842 struct cgroup *cgroup;
2843 unsigned long long min_limit, min_memsw_limit, tmp;
2844
2845 min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
2846 min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
2847 cgroup = memcg->css.cgroup;
2848 if (!memcg->use_hierarchy)
2849 goto out;
2850
2851 while (cgroup->parent) {
2852 cgroup = cgroup->parent;
2853 memcg = mem_cgroup_from_cont(cgroup);
2854 if (!memcg->use_hierarchy)
2855 break;
2856 tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
2857 min_limit = min(min_limit, tmp);
2858 tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
2859 min_memsw_limit = min(min_memsw_limit, tmp);
2860 }
2861 out:
2862 *mem_limit = min_limit;
2863 *memsw_limit = min_memsw_limit;
2864 return;
2865 }
2866
2867 static int mem_cgroup_reset(struct cgroup *cont, unsigned int event)
2868 {
2869 struct mem_cgroup *mem;
2870 int type, name;
2871
2872 mem = mem_cgroup_from_cont(cont);
2873 type = MEMFILE_TYPE(event);
2874 name = MEMFILE_ATTR(event);
2875 switch (name) {
2876 case RES_MAX_USAGE:
2877 if (type == _MEM)
2878 res_counter_reset_max(&mem->res);
2879 else
2880 res_counter_reset_max(&mem->memsw);
2881 break;
2882 case RES_FAILCNT:
2883 if (type == _MEM)
2884 res_counter_reset_failcnt(&mem->res);
2885 else
2886 res_counter_reset_failcnt(&mem->memsw);
2887 break;
2888 }
2889
2890 return 0;
2891 }
2892
2893 static u64 mem_cgroup_move_charge_read(struct cgroup *cgrp,
2894 struct cftype *cft)
2895 {
2896 return mem_cgroup_from_cont(cgrp)->move_charge_at_immigrate;
2897 }
2898
2899 static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
2900 struct cftype *cft, u64 val)
2901 {
2902 struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
2903
2904 if (val >= (1 << NR_MOVE_TYPE))
2905 return -EINVAL;
2906 /*
2907 * We check this value several times in both in can_attach() and
2908 * attach(), so we need cgroup lock to prevent this value from being
2909 * inconsistent.
2910 */
2911 cgroup_lock();
2912 mem->move_charge_at_immigrate = val;
2913 cgroup_unlock();
2914
2915 return 0;
2916 }
2917
2918
2919 /* For read statistics */
2920 enum {
2921 MCS_CACHE,
2922 MCS_RSS,
2923 MCS_FILE_MAPPED,
2924 MCS_PGPGIN,
2925 MCS_PGPGOUT,
2926 MCS_SWAP,
2927 MCS_INACTIVE_ANON,
2928 MCS_ACTIVE_ANON,
2929 MCS_INACTIVE_FILE,
2930 MCS_ACTIVE_FILE,
2931 MCS_UNEVICTABLE,
2932 NR_MCS_STAT,
2933 };
2934
2935 struct mcs_total_stat {
2936 s64 stat[NR_MCS_STAT];
2937 };
2938
2939 struct {
2940 char *local_name;
2941 char *total_name;
2942 } memcg_stat_strings[NR_MCS_STAT] = {
2943 {"cache", "total_cache"},
2944 {"rss", "total_rss"},
2945 {"mapped_file", "total_mapped_file"},
2946 {"pgpgin", "total_pgpgin"},
2947 {"pgpgout", "total_pgpgout"},
2948 {"swap", "total_swap"},
2949 {"inactive_anon", "total_inactive_anon"},
2950 {"active_anon", "total_active_anon"},
2951 {"inactive_file", "total_inactive_file"},
2952 {"active_file", "total_active_file"},
2953 {"unevictable", "total_unevictable"}
2954 };
2955
2956
2957 static int mem_cgroup_get_local_stat(struct mem_cgroup *mem, void *data)
2958 {
2959 struct mcs_total_stat *s = data;
2960 s64 val;
2961
2962 /* per cpu stat */
2963 val = mem_cgroup_read_stat(&mem->stat, MEM_CGROUP_STAT_CACHE);
2964 s->stat[MCS_CACHE] += val * PAGE_SIZE;
2965 val = mem_cgroup_read_stat(&mem->stat, MEM_CGROUP_STAT_RSS);
2966 s->stat[MCS_RSS] += val * PAGE_SIZE;
2967 val = mem_cgroup_read_stat(&mem->stat, MEM_CGROUP_STAT_FILE_MAPPED);
2968 s->stat[MCS_FILE_MAPPED] += val * PAGE_SIZE;
2969 val = mem_cgroup_read_stat(&mem->stat, MEM_CGROUP_STAT_PGPGIN_COUNT);
2970 s->stat[MCS_PGPGIN] += val;
2971 val = mem_cgroup_read_stat(&mem->stat, MEM_CGROUP_STAT_PGPGOUT_COUNT);
2972 s->stat[MCS_PGPGOUT] += val;
2973 if (do_swap_account) {
2974 val = mem_cgroup_read_stat(&mem->stat, MEM_CGROUP_STAT_SWAPOUT);
2975 s->stat[MCS_SWAP] += val * PAGE_SIZE;
2976 }
2977
2978 /* per zone stat */
2979 val = mem_cgroup_get_local_zonestat(mem, LRU_INACTIVE_ANON);
2980 s->stat[MCS_INACTIVE_ANON] += val * PAGE_SIZE;
2981 val = mem_cgroup_get_local_zonestat(mem, LRU_ACTIVE_ANON);
2982 s->stat[MCS_ACTIVE_ANON] += val * PAGE_SIZE;
2983 val = mem_cgroup_get_local_zonestat(mem, LRU_INACTIVE_FILE);
2984 s->stat[MCS_INACTIVE_FILE] += val * PAGE_SIZE;
2985 val = mem_cgroup_get_local_zonestat(mem, LRU_ACTIVE_FILE);
2986 s->stat[MCS_ACTIVE_FILE] += val * PAGE_SIZE;
2987 val = mem_cgroup_get_local_zonestat(mem, LRU_UNEVICTABLE);
2988 s->stat[MCS_UNEVICTABLE] += val * PAGE_SIZE;
2989 return 0;
2990 }
2991
2992 static void
2993 mem_cgroup_get_total_stat(struct mem_cgroup *mem, struct mcs_total_stat *s)
2994 {
2995 mem_cgroup_walk_tree(mem, s, mem_cgroup_get_local_stat);
2996 }
2997
2998 static int mem_control_stat_show(struct cgroup *cont, struct cftype *cft,
2999 struct cgroup_map_cb *cb)
3000 {
3001 struct mem_cgroup *mem_cont = mem_cgroup_from_cont(cont);
3002 struct mcs_total_stat mystat;
3003 int i;
3004
3005 memset(&mystat, 0, sizeof(mystat));
3006 mem_cgroup_get_local_stat(mem_cont, &mystat);
3007
3008 for (i = 0; i < NR_MCS_STAT; i++) {
3009 if (i == MCS_SWAP && !do_swap_account)
3010 continue;
3011 cb->fill(cb, memcg_stat_strings[i].local_name, mystat.stat[i]);
3012 }
3013
3014 /* Hierarchical information */
3015 {
3016 unsigned long long limit, memsw_limit;
3017 memcg_get_hierarchical_limit(mem_cont, &limit, &memsw_limit);
3018 cb->fill(cb, "hierarchical_memory_limit", limit);
3019 if (do_swap_account)
3020 cb->fill(cb, "hierarchical_memsw_limit", memsw_limit);
3021 }
3022
3023 memset(&mystat, 0, sizeof(mystat));
3024 mem_cgroup_get_total_stat(mem_cont, &mystat);
3025 for (i = 0; i < NR_MCS_STAT; i++) {
3026 if (i == MCS_SWAP && !do_swap_account)
3027 continue;
3028 cb->fill(cb, memcg_stat_strings[i].total_name, mystat.stat[i]);
3029 }
3030
3031 #ifdef CONFIG_DEBUG_VM
3032 cb->fill(cb, "inactive_ratio", calc_inactive_ratio(mem_cont, NULL));
3033
3034 {
3035 int nid, zid;
3036 struct mem_cgroup_per_zone *mz;
3037 unsigned long recent_rotated[2] = {0, 0};
3038 unsigned long recent_scanned[2] = {0, 0};
3039
3040 for_each_online_node(nid)
3041 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
3042 mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
3043
3044 recent_rotated[0] +=
3045 mz->reclaim_stat.recent_rotated[0];
3046 recent_rotated[1] +=
3047 mz->reclaim_stat.recent_rotated[1];
3048 recent_scanned[0] +=
3049 mz->reclaim_stat.recent_scanned[0];
3050 recent_scanned[1] +=
3051 mz->reclaim_stat.recent_scanned[1];
3052 }
3053 cb->fill(cb, "recent_rotated_anon", recent_rotated[0]);
3054 cb->fill(cb, "recent_rotated_file", recent_rotated[1]);
3055 cb->fill(cb, "recent_scanned_anon", recent_scanned[0]);
3056 cb->fill(cb, "recent_scanned_file", recent_scanned[1]);
3057 }
3058 #endif
3059
3060 return 0;
3061 }
3062
3063 static u64 mem_cgroup_swappiness_read(struct cgroup *cgrp, struct cftype *cft)
3064 {
3065 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
3066
3067 return get_swappiness(memcg);
3068 }
3069
3070 static int mem_cgroup_swappiness_write(struct cgroup *cgrp, struct cftype *cft,
3071 u64 val)
3072 {
3073 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
3074 struct mem_cgroup *parent;
3075
3076 if (val > 100)
3077 return -EINVAL;
3078
3079 if (cgrp->parent == NULL)
3080 return -EINVAL;
3081
3082 parent = mem_cgroup_from_cont(cgrp->parent);
3083
3084 cgroup_lock();
3085
3086 /* If under hierarchy, only empty-root can set this value */
3087 if ((parent->use_hierarchy) ||
3088 (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
3089 cgroup_unlock();
3090 return -EINVAL;
3091 }
3092
3093 spin_lock(&memcg->reclaim_param_lock);
3094 memcg->swappiness = val;
3095 spin_unlock(&memcg->reclaim_param_lock);
3096
3097 cgroup_unlock();
3098
3099 return 0;
3100 }
3101
3102
3103 static struct cftype mem_cgroup_files[] = {
3104 {
3105 .name = "usage_in_bytes",
3106 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
3107 .read_u64 = mem_cgroup_read,
3108 },
3109 {
3110 .name = "max_usage_in_bytes",
3111 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
3112 .trigger = mem_cgroup_reset,
3113 .read_u64 = mem_cgroup_read,
3114 },
3115 {
3116 .name = "limit_in_bytes",
3117 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
3118 .write_string = mem_cgroup_write,
3119 .read_u64 = mem_cgroup_read,
3120 },
3121 {
3122 .name = "soft_limit_in_bytes",
3123 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
3124 .write_string = mem_cgroup_write,
3125 .read_u64 = mem_cgroup_read,
3126 },
3127 {
3128 .name = "failcnt",
3129 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
3130 .trigger = mem_cgroup_reset,
3131 .read_u64 = mem_cgroup_read,
3132 },
3133 {
3134 .name = "stat",
3135 .read_map = mem_control_stat_show,
3136 },
3137 {
3138 .name = "force_empty",
3139 .trigger = mem_cgroup_force_empty_write,
3140 },
3141 {
3142 .name = "use_hierarchy",
3143 .write_u64 = mem_cgroup_hierarchy_write,
3144 .read_u64 = mem_cgroup_hierarchy_read,
3145 },
3146 {
3147 .name = "swappiness",
3148 .read_u64 = mem_cgroup_swappiness_read,
3149 .write_u64 = mem_cgroup_swappiness_write,
3150 },
3151 {
3152 .name = "move_charge_at_immigrate",
3153 .read_u64 = mem_cgroup_move_charge_read,
3154 .write_u64 = mem_cgroup_move_charge_write,
3155 },
3156 };
3157
3158 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
3159 static struct cftype memsw_cgroup_files[] = {
3160 {
3161 .name = "memsw.usage_in_bytes",
3162 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
3163 .read_u64 = mem_cgroup_read,
3164 },
3165 {
3166 .name = "memsw.max_usage_in_bytes",
3167 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
3168 .trigger = mem_cgroup_reset,
3169 .read_u64 = mem_cgroup_read,
3170 },
3171 {
3172 .name = "memsw.limit_in_bytes",
3173 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
3174 .write_string = mem_cgroup_write,
3175 .read_u64 = mem_cgroup_read,
3176 },
3177 {
3178 .name = "memsw.failcnt",
3179 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
3180 .trigger = mem_cgroup_reset,
3181 .read_u64 = mem_cgroup_read,
3182 },
3183 };
3184
3185 static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
3186 {
3187 if (!do_swap_account)
3188 return 0;
3189 return cgroup_add_files(cont, ss, memsw_cgroup_files,
3190 ARRAY_SIZE(memsw_cgroup_files));
3191 };
3192 #else
3193 static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
3194 {
3195 return 0;
3196 }
3197 #endif
3198
3199 static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
3200 {
3201 struct mem_cgroup_per_node *pn;
3202 struct mem_cgroup_per_zone *mz;
3203 enum lru_list l;
3204 int zone, tmp = node;
3205 /*
3206 * This routine is called against possible nodes.
3207 * But it's BUG to call kmalloc() against offline node.
3208 *
3209 * TODO: this routine can waste much memory for nodes which will
3210 * never be onlined. It's better to use memory hotplug callback
3211 * function.
3212 */
3213 if (!node_state(node, N_NORMAL_MEMORY))
3214 tmp = -1;
3215 pn = kmalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
3216 if (!pn)
3217 return 1;
3218
3219 mem->info.nodeinfo[node] = pn;
3220 memset(pn, 0, sizeof(*pn));
3221
3222 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
3223 mz = &pn->zoneinfo[zone];
3224 for_each_lru(l)
3225 INIT_LIST_HEAD(&mz->lists[l]);
3226 mz->usage_in_excess = 0;
3227 mz->on_tree = false;
3228 mz->mem = mem;
3229 }
3230 return 0;
3231 }
3232
3233 static void free_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
3234 {
3235 kfree(mem->info.nodeinfo[node]);
3236 }
3237
3238 static int mem_cgroup_size(void)
3239 {
3240 int cpustat_size = nr_cpu_ids * sizeof(struct mem_cgroup_stat_cpu);
3241 return sizeof(struct mem_cgroup) + cpustat_size;
3242 }
3243
3244 static struct mem_cgroup *mem_cgroup_alloc(void)
3245 {
3246 struct mem_cgroup *mem;
3247 int size = mem_cgroup_size();
3248
3249 if (size < PAGE_SIZE)
3250 mem = kmalloc(size, GFP_KERNEL);
3251 else
3252 mem = vmalloc(size);
3253
3254 if (mem)
3255 memset(mem, 0, size);
3256 return mem;
3257 }
3258
3259 /*
3260 * At destroying mem_cgroup, references from swap_cgroup can remain.
3261 * (scanning all at force_empty is too costly...)
3262 *
3263 * Instead of clearing all references at force_empty, we remember
3264 * the number of reference from swap_cgroup and free mem_cgroup when
3265 * it goes down to 0.
3266 *
3267 * Removal of cgroup itself succeeds regardless of refs from swap.
3268 */
3269
3270 static void __mem_cgroup_free(struct mem_cgroup *mem)
3271 {
3272 int node;
3273
3274 mem_cgroup_remove_from_trees(mem);
3275 free_css_id(&mem_cgroup_subsys, &mem->css);
3276
3277 for_each_node_state(node, N_POSSIBLE)
3278 free_mem_cgroup_per_zone_info(mem, node);
3279
3280 if (mem_cgroup_size() < PAGE_SIZE)
3281 kfree(mem);
3282 else
3283 vfree(mem);
3284 }
3285
3286 static void mem_cgroup_get(struct mem_cgroup *mem)
3287 {
3288 atomic_inc(&mem->refcnt);
3289 }
3290
3291 static void mem_cgroup_put(struct mem_cgroup *mem)
3292 {
3293 if (atomic_dec_and_test(&mem->refcnt)) {
3294 struct mem_cgroup *parent = parent_mem_cgroup(mem);
3295 __mem_cgroup_free(mem);
3296 if (parent)
3297 mem_cgroup_put(parent);
3298 }
3299 }
3300
3301 /*
3302 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
3303 */
3304 static struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *mem)
3305 {
3306 if (!mem->res.parent)
3307 return NULL;
3308 return mem_cgroup_from_res_counter(mem->res.parent, res);
3309 }
3310
3311 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
3312 static void __init enable_swap_cgroup(void)
3313 {
3314 if (!mem_cgroup_disabled() && really_do_swap_account)
3315 do_swap_account = 1;
3316 }
3317 #else
3318 static void __init enable_swap_cgroup(void)
3319 {
3320 }
3321 #endif
3322
3323 static int mem_cgroup_soft_limit_tree_init(void)
3324 {
3325 struct mem_cgroup_tree_per_node *rtpn;
3326 struct mem_cgroup_tree_per_zone *rtpz;
3327 int tmp, node, zone;
3328
3329 for_each_node_state(node, N_POSSIBLE) {
3330 tmp = node;
3331 if (!node_state(node, N_NORMAL_MEMORY))
3332 tmp = -1;
3333 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
3334 if (!rtpn)
3335 return 1;
3336
3337 soft_limit_tree.rb_tree_per_node[node] = rtpn;
3338
3339 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
3340 rtpz = &rtpn->rb_tree_per_zone[zone];
3341 rtpz->rb_root = RB_ROOT;
3342 spin_lock_init(&rtpz->lock);
3343 }
3344 }
3345 return 0;
3346 }
3347
3348 static struct cgroup_subsys_state * __ref
3349 mem_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cont)
3350 {
3351 struct mem_cgroup *mem, *parent;
3352 long error = -ENOMEM;
3353 int node;
3354
3355 mem = mem_cgroup_alloc();
3356 if (!mem)
3357 return ERR_PTR(error);
3358
3359 for_each_node_state(node, N_POSSIBLE)
3360 if (alloc_mem_cgroup_per_zone_info(mem, node))
3361 goto free_out;
3362
3363 /* root ? */
3364 if (cont->parent == NULL) {
3365 int cpu;
3366 enable_swap_cgroup();
3367 parent = NULL;
3368 root_mem_cgroup = mem;
3369 if (mem_cgroup_soft_limit_tree_init())
3370 goto free_out;
3371 for_each_possible_cpu(cpu) {
3372 struct memcg_stock_pcp *stock =
3373 &per_cpu(memcg_stock, cpu);
3374 INIT_WORK(&stock->work, drain_local_stock);
3375 }
3376 hotcpu_notifier(memcg_stock_cpu_callback, 0);
3377
3378 } else {
3379 parent = mem_cgroup_from_cont(cont->parent);
3380 mem->use_hierarchy = parent->use_hierarchy;
3381 }
3382
3383 if (parent && parent->use_hierarchy) {
3384 res_counter_init(&mem->res, &parent->res);
3385 res_counter_init(&mem->memsw, &parent->memsw);
3386 /*
3387 * We increment refcnt of the parent to ensure that we can
3388 * safely access it on res_counter_charge/uncharge.
3389 * This refcnt will be decremented when freeing this
3390 * mem_cgroup(see mem_cgroup_put).
3391 */
3392 mem_cgroup_get(parent);
3393 } else {
3394 res_counter_init(&mem->res, NULL);
3395 res_counter_init(&mem->memsw, NULL);
3396 }
3397 mem->last_scanned_child = 0;
3398 spin_lock_init(&mem->reclaim_param_lock);
3399
3400 if (parent)
3401 mem->swappiness = get_swappiness(parent);
3402 atomic_set(&mem->refcnt, 1);
3403 mem->move_charge_at_immigrate = 0;
3404 return &mem->css;
3405 free_out:
3406 __mem_cgroup_free(mem);
3407 root_mem_cgroup = NULL;
3408 return ERR_PTR(error);
3409 }
3410
3411 static int mem_cgroup_pre_destroy(struct cgroup_subsys *ss,
3412 struct cgroup *cont)
3413 {
3414 struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
3415
3416 return mem_cgroup_force_empty(mem, false);
3417 }
3418
3419 static void mem_cgroup_destroy(struct cgroup_subsys *ss,
3420 struct cgroup *cont)
3421 {
3422 struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
3423
3424 mem_cgroup_put(mem);
3425 }
3426
3427 static int mem_cgroup_populate(struct cgroup_subsys *ss,
3428 struct cgroup *cont)
3429 {
3430 int ret;
3431
3432 ret = cgroup_add_files(cont, ss, mem_cgroup_files,
3433 ARRAY_SIZE(mem_cgroup_files));
3434
3435 if (!ret)
3436 ret = register_memsw_files(cont, ss);
3437 return ret;
3438 }
3439
3440 /* Handlers for move charge at task migration. */
3441 static int mem_cgroup_do_precharge(void)
3442 {
3443 int ret = -ENOMEM;
3444 struct mem_cgroup *mem = mc.to;
3445
3446 ret = __mem_cgroup_try_charge(NULL, GFP_KERNEL, &mem, false, NULL);
3447 if (ret || !mem)
3448 return -ENOMEM;
3449
3450 mc.precharge++;
3451 return ret;
3452 }
3453
3454 /**
3455 * is_target_pte_for_mc - check a pte whether it is valid for move charge
3456 * @vma: the vma the pte to be checked belongs
3457 * @addr: the address corresponding to the pte to be checked
3458 * @ptent: the pte to be checked
3459 * @target: the pointer the target page will be stored(can be NULL)
3460 *
3461 * Returns
3462 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
3463 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
3464 * move charge. if @target is not NULL, the page is stored in target->page
3465 * with extra refcnt got(Callers should handle it).
3466 *
3467 * Called with pte lock held.
3468 */
3469 /* We add a new member later. */
3470 union mc_target {
3471 struct page *page;
3472 };
3473
3474 /* We add a new type later. */
3475 enum mc_target_type {
3476 MC_TARGET_NONE, /* not used */
3477 MC_TARGET_PAGE,
3478 };
3479
3480 static int is_target_pte_for_mc(struct vm_area_struct *vma,
3481 unsigned long addr, pte_t ptent, union mc_target *target)
3482 {
3483 struct page *page;
3484 struct page_cgroup *pc;
3485 int ret = 0;
3486 bool move_anon = test_bit(MOVE_CHARGE_TYPE_ANON,
3487 &mc.to->move_charge_at_immigrate);
3488
3489 if (!pte_present(ptent))
3490 return 0;
3491
3492 page = vm_normal_page(vma, addr, ptent);
3493 if (!page || !page_mapped(page))
3494 return 0;
3495 /*
3496 * TODO: We don't move charges of file(including shmem/tmpfs) pages for
3497 * now.
3498 */
3499 if (!move_anon || !PageAnon(page))
3500 return 0;
3501 /*
3502 * TODO: We don't move charges of shared(used by multiple processes)
3503 * pages for now.
3504 */
3505 if (page_mapcount(page) > 1)
3506 return 0;
3507 if (!get_page_unless_zero(page))
3508 return 0;
3509
3510 pc = lookup_page_cgroup(page);
3511 /*
3512 * Do only loose check w/o page_cgroup lock. mem_cgroup_move_account()
3513 * checks the pc is valid or not under the lock.
3514 */
3515 if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
3516 ret = MC_TARGET_PAGE;
3517 if (target)
3518 target->page = page;
3519 }
3520
3521 if (!ret || !target)
3522 put_page(page);
3523
3524 return ret;
3525 }
3526
3527 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
3528 unsigned long addr, unsigned long end,
3529 struct mm_walk *walk)
3530 {
3531 struct vm_area_struct *vma = walk->private;
3532 pte_t *pte;
3533 spinlock_t *ptl;
3534
3535 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
3536 for (; addr != end; pte++, addr += PAGE_SIZE)
3537 if (is_target_pte_for_mc(vma, addr, *pte, NULL))
3538 mc.precharge++; /* increment precharge temporarily */
3539 pte_unmap_unlock(pte - 1, ptl);
3540 cond_resched();
3541
3542 return 0;
3543 }
3544
3545 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
3546 {
3547 unsigned long precharge;
3548 struct vm_area_struct *vma;
3549
3550 down_read(&mm->mmap_sem);
3551 for (vma = mm->mmap; vma; vma = vma->vm_next) {
3552 struct mm_walk mem_cgroup_count_precharge_walk = {
3553 .pmd_entry = mem_cgroup_count_precharge_pte_range,
3554 .mm = mm,
3555 .private = vma,
3556 };
3557 if (is_vm_hugetlb_page(vma))
3558 continue;
3559 /* TODO: We don't move charges of shmem/tmpfs pages for now. */
3560 if (vma->vm_flags & VM_SHARED)
3561 continue;
3562 walk_page_range(vma->vm_start, vma->vm_end,
3563 &mem_cgroup_count_precharge_walk);
3564 }
3565 up_read(&mm->mmap_sem);
3566
3567 precharge = mc.precharge;
3568 mc.precharge = 0;
3569
3570 return precharge;
3571 }
3572
3573 #define PRECHARGE_AT_ONCE 256
3574 static int mem_cgroup_precharge_mc(struct mm_struct *mm)
3575 {
3576 int ret = 0;
3577 int count = PRECHARGE_AT_ONCE;
3578 unsigned long precharge = mem_cgroup_count_precharge(mm);
3579
3580 while (!ret && precharge--) {
3581 if (signal_pending(current)) {
3582 ret = -EINTR;
3583 break;
3584 }
3585 if (!count--) {
3586 count = PRECHARGE_AT_ONCE;
3587 cond_resched();
3588 }
3589 ret = mem_cgroup_do_precharge();
3590 }
3591
3592 return ret;
3593 }
3594
3595 static void mem_cgroup_clear_mc(void)
3596 {
3597 /* we must uncharge all the leftover precharges from mc.to */
3598 while (mc.precharge) {
3599 mem_cgroup_cancel_charge(mc.to);
3600 mc.precharge--;
3601 }
3602 mc.from = NULL;
3603 mc.to = NULL;
3604 }
3605
3606 static int mem_cgroup_can_attach(struct cgroup_subsys *ss,
3607 struct cgroup *cgroup,
3608 struct task_struct *p,
3609 bool threadgroup)
3610 {
3611 int ret = 0;
3612 struct mem_cgroup *mem = mem_cgroup_from_cont(cgroup);
3613
3614 if (mem->move_charge_at_immigrate) {
3615 struct mm_struct *mm;
3616 struct mem_cgroup *from = mem_cgroup_from_task(p);
3617
3618 VM_BUG_ON(from == mem);
3619
3620 mm = get_task_mm(p);
3621 if (!mm)
3622 return 0;
3623 /* We move charges only when we move a owner of the mm */
3624 if (mm->owner == p) {
3625 VM_BUG_ON(mc.from);
3626 VM_BUG_ON(mc.to);
3627 VM_BUG_ON(mc.precharge);
3628 mc.from = from;
3629 mc.to = mem;
3630 mc.precharge = 0;
3631
3632 ret = mem_cgroup_precharge_mc(mm);
3633 if (ret)
3634 mem_cgroup_clear_mc();
3635 }
3636 mmput(mm);
3637 }
3638 return ret;
3639 }
3640
3641 static void mem_cgroup_cancel_attach(struct cgroup_subsys *ss,
3642 struct cgroup *cgroup,
3643 struct task_struct *p,
3644 bool threadgroup)
3645 {
3646 mem_cgroup_clear_mc();
3647 }
3648
3649 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
3650 unsigned long addr, unsigned long end,
3651 struct mm_walk *walk)
3652 {
3653 int ret = 0;
3654 struct vm_area_struct *vma = walk->private;
3655 pte_t *pte;
3656 spinlock_t *ptl;
3657
3658 retry:
3659 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
3660 for (; addr != end; addr += PAGE_SIZE) {
3661 pte_t ptent = *(pte++);
3662 union mc_target target;
3663 int type;
3664 struct page *page;
3665 struct page_cgroup *pc;
3666
3667 if (!mc.precharge)
3668 break;
3669
3670 type = is_target_pte_for_mc(vma, addr, ptent, &target);
3671 switch (type) {
3672 case MC_TARGET_PAGE:
3673 page = target.page;
3674 if (isolate_lru_page(page))
3675 goto put;
3676 pc = lookup_page_cgroup(page);
3677 if (!mem_cgroup_move_account(pc, mc.from, mc.to)) {
3678 css_put(&mc.to->css);
3679 mc.precharge--;
3680 }
3681 putback_lru_page(page);
3682 put: /* is_target_pte_for_mc() gets the page */
3683 put_page(page);
3684 break;
3685 default:
3686 break;
3687 }
3688 }
3689 pte_unmap_unlock(pte - 1, ptl);
3690 cond_resched();
3691
3692 if (addr != end) {
3693 /*
3694 * We have consumed all precharges we got in can_attach().
3695 * We try charge one by one, but don't do any additional
3696 * charges to mc.to if we have failed in charge once in attach()
3697 * phase.
3698 */
3699 ret = mem_cgroup_do_precharge();
3700 if (!ret)
3701 goto retry;
3702 }
3703
3704 return ret;
3705 }
3706
3707 static void mem_cgroup_move_charge(struct mm_struct *mm)
3708 {
3709 struct vm_area_struct *vma;
3710
3711 lru_add_drain_all();
3712 down_read(&mm->mmap_sem);
3713 for (vma = mm->mmap; vma; vma = vma->vm_next) {
3714 int ret;
3715 struct mm_walk mem_cgroup_move_charge_walk = {
3716 .pmd_entry = mem_cgroup_move_charge_pte_range,
3717 .mm = mm,
3718 .private = vma,
3719 };
3720 if (is_vm_hugetlb_page(vma))
3721 continue;
3722 /* TODO: We don't move charges of shmem/tmpfs pages for now. */
3723 if (vma->vm_flags & VM_SHARED)
3724 continue;
3725 ret = walk_page_range(vma->vm_start, vma->vm_end,
3726 &mem_cgroup_move_charge_walk);
3727 if (ret)
3728 /*
3729 * means we have consumed all precharges and failed in
3730 * doing additional charge. Just abandon here.
3731 */
3732 break;
3733 }
3734 up_read(&mm->mmap_sem);
3735 }
3736
3737 static void mem_cgroup_move_task(struct cgroup_subsys *ss,
3738 struct cgroup *cont,
3739 struct cgroup *old_cont,
3740 struct task_struct *p,
3741 bool threadgroup)
3742 {
3743 struct mm_struct *mm;
3744
3745 if (!mc.to)
3746 /* no need to move charge */
3747 return;
3748
3749 mm = get_task_mm(p);
3750 if (mm) {
3751 mem_cgroup_move_charge(mm);
3752 mmput(mm);
3753 }
3754 mem_cgroup_clear_mc();
3755 }
3756
3757 struct cgroup_subsys mem_cgroup_subsys = {
3758 .name = "memory",
3759 .subsys_id = mem_cgroup_subsys_id,
3760 .create = mem_cgroup_create,
3761 .pre_destroy = mem_cgroup_pre_destroy,
3762 .destroy = mem_cgroup_destroy,
3763 .populate = mem_cgroup_populate,
3764 .can_attach = mem_cgroup_can_attach,
3765 .cancel_attach = mem_cgroup_cancel_attach,
3766 .attach = mem_cgroup_move_task,
3767 .early_init = 0,
3768 .use_id = 1,
3769 };
3770
3771 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
3772
3773 static int __init disable_swap_account(char *s)
3774 {
3775 really_do_swap_account = 0;
3776 return 1;
3777 }
3778 __setup("noswapaccount", disable_swap_account);
3779 #endif