]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - mm/memcontrol.c
Merge tag 'nfsd-5.11-1' of git://git.linux-nfs.org/projects/cel/cel-2.6
[mirror_ubuntu-hirsute-kernel.git] / mm / memcontrol.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* memcontrol.c - Memory Controller
3 *
4 * Copyright IBM Corporation, 2007
5 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
6 *
7 * Copyright 2007 OpenVZ SWsoft Inc
8 * Author: Pavel Emelianov <xemul@openvz.org>
9 *
10 * Memory thresholds
11 * Copyright (C) 2009 Nokia Corporation
12 * Author: Kirill A. Shutemov
13 *
14 * Kernel Memory Controller
15 * Copyright (C) 2012 Parallels Inc. and Google Inc.
16 * Authors: Glauber Costa and Suleiman Souhlal
17 *
18 * Native page reclaim
19 * Charge lifetime sanitation
20 * Lockless page tracking & accounting
21 * Unified hierarchy configuration model
22 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
23 *
24 * Per memcg lru locking
25 * Copyright (C) 2020 Alibaba, Inc, Alex Shi
26 */
27
28 #include <linux/page_counter.h>
29 #include <linux/memcontrol.h>
30 #include <linux/cgroup.h>
31 #include <linux/pagewalk.h>
32 #include <linux/sched/mm.h>
33 #include <linux/shmem_fs.h>
34 #include <linux/hugetlb.h>
35 #include <linux/pagemap.h>
36 #include <linux/vm_event_item.h>
37 #include <linux/smp.h>
38 #include <linux/page-flags.h>
39 #include <linux/backing-dev.h>
40 #include <linux/bit_spinlock.h>
41 #include <linux/rcupdate.h>
42 #include <linux/limits.h>
43 #include <linux/export.h>
44 #include <linux/mutex.h>
45 #include <linux/rbtree.h>
46 #include <linux/slab.h>
47 #include <linux/swap.h>
48 #include <linux/swapops.h>
49 #include <linux/spinlock.h>
50 #include <linux/eventfd.h>
51 #include <linux/poll.h>
52 #include <linux/sort.h>
53 #include <linux/fs.h>
54 #include <linux/seq_file.h>
55 #include <linux/vmpressure.h>
56 #include <linux/mm_inline.h>
57 #include <linux/swap_cgroup.h>
58 #include <linux/cpu.h>
59 #include <linux/oom.h>
60 #include <linux/lockdep.h>
61 #include <linux/file.h>
62 #include <linux/tracehook.h>
63 #include <linux/psi.h>
64 #include <linux/seq_buf.h>
65 #include "internal.h"
66 #include <net/sock.h>
67 #include <net/ip.h>
68 #include "slab.h"
69
70 #include <linux/uaccess.h>
71
72 #include <trace/events/vmscan.h>
73
74 struct cgroup_subsys memory_cgrp_subsys __read_mostly;
75 EXPORT_SYMBOL(memory_cgrp_subsys);
76
77 struct mem_cgroup *root_mem_cgroup __read_mostly;
78
79 /* Active memory cgroup to use from an interrupt context */
80 DEFINE_PER_CPU(struct mem_cgroup *, int_active_memcg);
81
82 /* Socket memory accounting disabled? */
83 static bool cgroup_memory_nosocket;
84
85 /* Kernel memory accounting disabled? */
86 static bool cgroup_memory_nokmem;
87
88 /* Whether the swap controller is active */
89 #ifdef CONFIG_MEMCG_SWAP
90 bool cgroup_memory_noswap __read_mostly;
91 #else
92 #define cgroup_memory_noswap 1
93 #endif
94
95 #ifdef CONFIG_CGROUP_WRITEBACK
96 static DECLARE_WAIT_QUEUE_HEAD(memcg_cgwb_frn_waitq);
97 #endif
98
99 /* Whether legacy memory+swap accounting is active */
100 static bool do_memsw_account(void)
101 {
102 return !cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_noswap;
103 }
104
105 #define THRESHOLDS_EVENTS_TARGET 128
106 #define SOFTLIMIT_EVENTS_TARGET 1024
107
108 /*
109 * Cgroups above their limits are maintained in a RB-Tree, independent of
110 * their hierarchy representation
111 */
112
113 struct mem_cgroup_tree_per_node {
114 struct rb_root rb_root;
115 struct rb_node *rb_rightmost;
116 spinlock_t lock;
117 };
118
119 struct mem_cgroup_tree {
120 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
121 };
122
123 static struct mem_cgroup_tree soft_limit_tree __read_mostly;
124
125 /* for OOM */
126 struct mem_cgroup_eventfd_list {
127 struct list_head list;
128 struct eventfd_ctx *eventfd;
129 };
130
131 /*
132 * cgroup_event represents events which userspace want to receive.
133 */
134 struct mem_cgroup_event {
135 /*
136 * memcg which the event belongs to.
137 */
138 struct mem_cgroup *memcg;
139 /*
140 * eventfd to signal userspace about the event.
141 */
142 struct eventfd_ctx *eventfd;
143 /*
144 * Each of these stored in a list by the cgroup.
145 */
146 struct list_head list;
147 /*
148 * register_event() callback will be used to add new userspace
149 * waiter for changes related to this event. Use eventfd_signal()
150 * on eventfd to send notification to userspace.
151 */
152 int (*register_event)(struct mem_cgroup *memcg,
153 struct eventfd_ctx *eventfd, const char *args);
154 /*
155 * unregister_event() callback will be called when userspace closes
156 * the eventfd or on cgroup removing. This callback must be set,
157 * if you want provide notification functionality.
158 */
159 void (*unregister_event)(struct mem_cgroup *memcg,
160 struct eventfd_ctx *eventfd);
161 /*
162 * All fields below needed to unregister event when
163 * userspace closes eventfd.
164 */
165 poll_table pt;
166 wait_queue_head_t *wqh;
167 wait_queue_entry_t wait;
168 struct work_struct remove;
169 };
170
171 static void mem_cgroup_threshold(struct mem_cgroup *memcg);
172 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
173
174 /* Stuffs for move charges at task migration. */
175 /*
176 * Types of charges to be moved.
177 */
178 #define MOVE_ANON 0x1U
179 #define MOVE_FILE 0x2U
180 #define MOVE_MASK (MOVE_ANON | MOVE_FILE)
181
182 /* "mc" and its members are protected by cgroup_mutex */
183 static struct move_charge_struct {
184 spinlock_t lock; /* for from, to */
185 struct mm_struct *mm;
186 struct mem_cgroup *from;
187 struct mem_cgroup *to;
188 unsigned long flags;
189 unsigned long precharge;
190 unsigned long moved_charge;
191 unsigned long moved_swap;
192 struct task_struct *moving_task; /* a task moving charges */
193 wait_queue_head_t waitq; /* a waitq for other context */
194 } mc = {
195 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
196 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
197 };
198
199 /*
200 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
201 * limit reclaim to prevent infinite loops, if they ever occur.
202 */
203 #define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
204 #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
205
206 /* for encoding cft->private value on file */
207 enum res_type {
208 _MEM,
209 _MEMSWAP,
210 _OOM_TYPE,
211 _KMEM,
212 _TCP,
213 };
214
215 #define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
216 #define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
217 #define MEMFILE_ATTR(val) ((val) & 0xffff)
218 /* Used for OOM nofiier */
219 #define OOM_CONTROL (0)
220
221 /*
222 * Iteration constructs for visiting all cgroups (under a tree). If
223 * loops are exited prematurely (break), mem_cgroup_iter_break() must
224 * be used for reference counting.
225 */
226 #define for_each_mem_cgroup_tree(iter, root) \
227 for (iter = mem_cgroup_iter(root, NULL, NULL); \
228 iter != NULL; \
229 iter = mem_cgroup_iter(root, iter, NULL))
230
231 #define for_each_mem_cgroup(iter) \
232 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
233 iter != NULL; \
234 iter = mem_cgroup_iter(NULL, iter, NULL))
235
236 static inline bool should_force_charge(void)
237 {
238 return tsk_is_oom_victim(current) || fatal_signal_pending(current) ||
239 (current->flags & PF_EXITING);
240 }
241
242 /* Some nice accessors for the vmpressure. */
243 struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
244 {
245 if (!memcg)
246 memcg = root_mem_cgroup;
247 return &memcg->vmpressure;
248 }
249
250 struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
251 {
252 return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
253 }
254
255 #ifdef CONFIG_MEMCG_KMEM
256 extern spinlock_t css_set_lock;
257
258 static void obj_cgroup_release(struct percpu_ref *ref)
259 {
260 struct obj_cgroup *objcg = container_of(ref, struct obj_cgroup, refcnt);
261 struct mem_cgroup *memcg;
262 unsigned int nr_bytes;
263 unsigned int nr_pages;
264 unsigned long flags;
265
266 /*
267 * At this point all allocated objects are freed, and
268 * objcg->nr_charged_bytes can't have an arbitrary byte value.
269 * However, it can be PAGE_SIZE or (x * PAGE_SIZE).
270 *
271 * The following sequence can lead to it:
272 * 1) CPU0: objcg == stock->cached_objcg
273 * 2) CPU1: we do a small allocation (e.g. 92 bytes),
274 * PAGE_SIZE bytes are charged
275 * 3) CPU1: a process from another memcg is allocating something,
276 * the stock if flushed,
277 * objcg->nr_charged_bytes = PAGE_SIZE - 92
278 * 5) CPU0: we do release this object,
279 * 92 bytes are added to stock->nr_bytes
280 * 6) CPU0: stock is flushed,
281 * 92 bytes are added to objcg->nr_charged_bytes
282 *
283 * In the result, nr_charged_bytes == PAGE_SIZE.
284 * This page will be uncharged in obj_cgroup_release().
285 */
286 nr_bytes = atomic_read(&objcg->nr_charged_bytes);
287 WARN_ON_ONCE(nr_bytes & (PAGE_SIZE - 1));
288 nr_pages = nr_bytes >> PAGE_SHIFT;
289
290 spin_lock_irqsave(&css_set_lock, flags);
291 memcg = obj_cgroup_memcg(objcg);
292 if (nr_pages)
293 __memcg_kmem_uncharge(memcg, nr_pages);
294 list_del(&objcg->list);
295 mem_cgroup_put(memcg);
296 spin_unlock_irqrestore(&css_set_lock, flags);
297
298 percpu_ref_exit(ref);
299 kfree_rcu(objcg, rcu);
300 }
301
302 static struct obj_cgroup *obj_cgroup_alloc(void)
303 {
304 struct obj_cgroup *objcg;
305 int ret;
306
307 objcg = kzalloc(sizeof(struct obj_cgroup), GFP_KERNEL);
308 if (!objcg)
309 return NULL;
310
311 ret = percpu_ref_init(&objcg->refcnt, obj_cgroup_release, 0,
312 GFP_KERNEL);
313 if (ret) {
314 kfree(objcg);
315 return NULL;
316 }
317 INIT_LIST_HEAD(&objcg->list);
318 return objcg;
319 }
320
321 static void memcg_reparent_objcgs(struct mem_cgroup *memcg,
322 struct mem_cgroup *parent)
323 {
324 struct obj_cgroup *objcg, *iter;
325
326 objcg = rcu_replace_pointer(memcg->objcg, NULL, true);
327
328 spin_lock_irq(&css_set_lock);
329
330 /* Move active objcg to the parent's list */
331 xchg(&objcg->memcg, parent);
332 css_get(&parent->css);
333 list_add(&objcg->list, &parent->objcg_list);
334
335 /* Move already reparented objcgs to the parent's list */
336 list_for_each_entry(iter, &memcg->objcg_list, list) {
337 css_get(&parent->css);
338 xchg(&iter->memcg, parent);
339 css_put(&memcg->css);
340 }
341 list_splice(&memcg->objcg_list, &parent->objcg_list);
342
343 spin_unlock_irq(&css_set_lock);
344
345 percpu_ref_kill(&objcg->refcnt);
346 }
347
348 /*
349 * This will be used as a shrinker list's index.
350 * The main reason for not using cgroup id for this:
351 * this works better in sparse environments, where we have a lot of memcgs,
352 * but only a few kmem-limited. Or also, if we have, for instance, 200
353 * memcgs, and none but the 200th is kmem-limited, we'd have to have a
354 * 200 entry array for that.
355 *
356 * The current size of the caches array is stored in memcg_nr_cache_ids. It
357 * will double each time we have to increase it.
358 */
359 static DEFINE_IDA(memcg_cache_ida);
360 int memcg_nr_cache_ids;
361
362 /* Protects memcg_nr_cache_ids */
363 static DECLARE_RWSEM(memcg_cache_ids_sem);
364
365 void memcg_get_cache_ids(void)
366 {
367 down_read(&memcg_cache_ids_sem);
368 }
369
370 void memcg_put_cache_ids(void)
371 {
372 up_read(&memcg_cache_ids_sem);
373 }
374
375 /*
376 * MIN_SIZE is different than 1, because we would like to avoid going through
377 * the alloc/free process all the time. In a small machine, 4 kmem-limited
378 * cgroups is a reasonable guess. In the future, it could be a parameter or
379 * tunable, but that is strictly not necessary.
380 *
381 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
382 * this constant directly from cgroup, but it is understandable that this is
383 * better kept as an internal representation in cgroup.c. In any case, the
384 * cgrp_id space is not getting any smaller, and we don't have to necessarily
385 * increase ours as well if it increases.
386 */
387 #define MEMCG_CACHES_MIN_SIZE 4
388 #define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
389
390 /*
391 * A lot of the calls to the cache allocation functions are expected to be
392 * inlined by the compiler. Since the calls to memcg_slab_pre_alloc_hook() are
393 * conditional to this static branch, we'll have to allow modules that does
394 * kmem_cache_alloc and the such to see this symbol as well
395 */
396 DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key);
397 EXPORT_SYMBOL(memcg_kmem_enabled_key);
398 #endif
399
400 static int memcg_shrinker_map_size;
401 static DEFINE_MUTEX(memcg_shrinker_map_mutex);
402
403 static void memcg_free_shrinker_map_rcu(struct rcu_head *head)
404 {
405 kvfree(container_of(head, struct memcg_shrinker_map, rcu));
406 }
407
408 static int memcg_expand_one_shrinker_map(struct mem_cgroup *memcg,
409 int size, int old_size)
410 {
411 struct memcg_shrinker_map *new, *old;
412 int nid;
413
414 lockdep_assert_held(&memcg_shrinker_map_mutex);
415
416 for_each_node(nid) {
417 old = rcu_dereference_protected(
418 mem_cgroup_nodeinfo(memcg, nid)->shrinker_map, true);
419 /* Not yet online memcg */
420 if (!old)
421 return 0;
422
423 new = kvmalloc_node(sizeof(*new) + size, GFP_KERNEL, nid);
424 if (!new)
425 return -ENOMEM;
426
427 /* Set all old bits, clear all new bits */
428 memset(new->map, (int)0xff, old_size);
429 memset((void *)new->map + old_size, 0, size - old_size);
430
431 rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_map, new);
432 call_rcu(&old->rcu, memcg_free_shrinker_map_rcu);
433 }
434
435 return 0;
436 }
437
438 static void memcg_free_shrinker_maps(struct mem_cgroup *memcg)
439 {
440 struct mem_cgroup_per_node *pn;
441 struct memcg_shrinker_map *map;
442 int nid;
443
444 if (mem_cgroup_is_root(memcg))
445 return;
446
447 for_each_node(nid) {
448 pn = mem_cgroup_nodeinfo(memcg, nid);
449 map = rcu_dereference_protected(pn->shrinker_map, true);
450 if (map)
451 kvfree(map);
452 rcu_assign_pointer(pn->shrinker_map, NULL);
453 }
454 }
455
456 static int memcg_alloc_shrinker_maps(struct mem_cgroup *memcg)
457 {
458 struct memcg_shrinker_map *map;
459 int nid, size, ret = 0;
460
461 if (mem_cgroup_is_root(memcg))
462 return 0;
463
464 mutex_lock(&memcg_shrinker_map_mutex);
465 size = memcg_shrinker_map_size;
466 for_each_node(nid) {
467 map = kvzalloc_node(sizeof(*map) + size, GFP_KERNEL, nid);
468 if (!map) {
469 memcg_free_shrinker_maps(memcg);
470 ret = -ENOMEM;
471 break;
472 }
473 rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_map, map);
474 }
475 mutex_unlock(&memcg_shrinker_map_mutex);
476
477 return ret;
478 }
479
480 int memcg_expand_shrinker_maps(int new_id)
481 {
482 int size, old_size, ret = 0;
483 struct mem_cgroup *memcg;
484
485 size = DIV_ROUND_UP(new_id + 1, BITS_PER_LONG) * sizeof(unsigned long);
486 old_size = memcg_shrinker_map_size;
487 if (size <= old_size)
488 return 0;
489
490 mutex_lock(&memcg_shrinker_map_mutex);
491 if (!root_mem_cgroup)
492 goto unlock;
493
494 for_each_mem_cgroup(memcg) {
495 if (mem_cgroup_is_root(memcg))
496 continue;
497 ret = memcg_expand_one_shrinker_map(memcg, size, old_size);
498 if (ret) {
499 mem_cgroup_iter_break(NULL, memcg);
500 goto unlock;
501 }
502 }
503 unlock:
504 if (!ret)
505 memcg_shrinker_map_size = size;
506 mutex_unlock(&memcg_shrinker_map_mutex);
507 return ret;
508 }
509
510 void memcg_set_shrinker_bit(struct mem_cgroup *memcg, int nid, int shrinker_id)
511 {
512 if (shrinker_id >= 0 && memcg && !mem_cgroup_is_root(memcg)) {
513 struct memcg_shrinker_map *map;
514
515 rcu_read_lock();
516 map = rcu_dereference(memcg->nodeinfo[nid]->shrinker_map);
517 /* Pairs with smp mb in shrink_slab() */
518 smp_mb__before_atomic();
519 set_bit(shrinker_id, map->map);
520 rcu_read_unlock();
521 }
522 }
523
524 /**
525 * mem_cgroup_css_from_page - css of the memcg associated with a page
526 * @page: page of interest
527 *
528 * If memcg is bound to the default hierarchy, css of the memcg associated
529 * with @page is returned. The returned css remains associated with @page
530 * until it is released.
531 *
532 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
533 * is returned.
534 */
535 struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page)
536 {
537 struct mem_cgroup *memcg;
538
539 memcg = page_memcg(page);
540
541 if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
542 memcg = root_mem_cgroup;
543
544 return &memcg->css;
545 }
546
547 /**
548 * page_cgroup_ino - return inode number of the memcg a page is charged to
549 * @page: the page
550 *
551 * Look up the closest online ancestor of the memory cgroup @page is charged to
552 * and return its inode number or 0 if @page is not charged to any cgroup. It
553 * is safe to call this function without holding a reference to @page.
554 *
555 * Note, this function is inherently racy, because there is nothing to prevent
556 * the cgroup inode from getting torn down and potentially reallocated a moment
557 * after page_cgroup_ino() returns, so it only should be used by callers that
558 * do not care (such as procfs interfaces).
559 */
560 ino_t page_cgroup_ino(struct page *page)
561 {
562 struct mem_cgroup *memcg;
563 unsigned long ino = 0;
564
565 rcu_read_lock();
566 memcg = page_memcg_check(page);
567
568 while (memcg && !(memcg->css.flags & CSS_ONLINE))
569 memcg = parent_mem_cgroup(memcg);
570 if (memcg)
571 ino = cgroup_ino(memcg->css.cgroup);
572 rcu_read_unlock();
573 return ino;
574 }
575
576 static struct mem_cgroup_per_node *
577 mem_cgroup_page_nodeinfo(struct mem_cgroup *memcg, struct page *page)
578 {
579 int nid = page_to_nid(page);
580
581 return memcg->nodeinfo[nid];
582 }
583
584 static struct mem_cgroup_tree_per_node *
585 soft_limit_tree_node(int nid)
586 {
587 return soft_limit_tree.rb_tree_per_node[nid];
588 }
589
590 static struct mem_cgroup_tree_per_node *
591 soft_limit_tree_from_page(struct page *page)
592 {
593 int nid = page_to_nid(page);
594
595 return soft_limit_tree.rb_tree_per_node[nid];
596 }
597
598 static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_node *mz,
599 struct mem_cgroup_tree_per_node *mctz,
600 unsigned long new_usage_in_excess)
601 {
602 struct rb_node **p = &mctz->rb_root.rb_node;
603 struct rb_node *parent = NULL;
604 struct mem_cgroup_per_node *mz_node;
605 bool rightmost = true;
606
607 if (mz->on_tree)
608 return;
609
610 mz->usage_in_excess = new_usage_in_excess;
611 if (!mz->usage_in_excess)
612 return;
613 while (*p) {
614 parent = *p;
615 mz_node = rb_entry(parent, struct mem_cgroup_per_node,
616 tree_node);
617 if (mz->usage_in_excess < mz_node->usage_in_excess) {
618 p = &(*p)->rb_left;
619 rightmost = false;
620 } else {
621 p = &(*p)->rb_right;
622 }
623 }
624
625 if (rightmost)
626 mctz->rb_rightmost = &mz->tree_node;
627
628 rb_link_node(&mz->tree_node, parent, p);
629 rb_insert_color(&mz->tree_node, &mctz->rb_root);
630 mz->on_tree = true;
631 }
632
633 static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
634 struct mem_cgroup_tree_per_node *mctz)
635 {
636 if (!mz->on_tree)
637 return;
638
639 if (&mz->tree_node == mctz->rb_rightmost)
640 mctz->rb_rightmost = rb_prev(&mz->tree_node);
641
642 rb_erase(&mz->tree_node, &mctz->rb_root);
643 mz->on_tree = false;
644 }
645
646 static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
647 struct mem_cgroup_tree_per_node *mctz)
648 {
649 unsigned long flags;
650
651 spin_lock_irqsave(&mctz->lock, flags);
652 __mem_cgroup_remove_exceeded(mz, mctz);
653 spin_unlock_irqrestore(&mctz->lock, flags);
654 }
655
656 static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
657 {
658 unsigned long nr_pages = page_counter_read(&memcg->memory);
659 unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
660 unsigned long excess = 0;
661
662 if (nr_pages > soft_limit)
663 excess = nr_pages - soft_limit;
664
665 return excess;
666 }
667
668 static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
669 {
670 unsigned long excess;
671 struct mem_cgroup_per_node *mz;
672 struct mem_cgroup_tree_per_node *mctz;
673
674 mctz = soft_limit_tree_from_page(page);
675 if (!mctz)
676 return;
677 /*
678 * Necessary to update all ancestors when hierarchy is used.
679 * because their event counter is not touched.
680 */
681 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
682 mz = mem_cgroup_page_nodeinfo(memcg, page);
683 excess = soft_limit_excess(memcg);
684 /*
685 * We have to update the tree if mz is on RB-tree or
686 * mem is over its softlimit.
687 */
688 if (excess || mz->on_tree) {
689 unsigned long flags;
690
691 spin_lock_irqsave(&mctz->lock, flags);
692 /* if on-tree, remove it */
693 if (mz->on_tree)
694 __mem_cgroup_remove_exceeded(mz, mctz);
695 /*
696 * Insert again. mz->usage_in_excess will be updated.
697 * If excess is 0, no tree ops.
698 */
699 __mem_cgroup_insert_exceeded(mz, mctz, excess);
700 spin_unlock_irqrestore(&mctz->lock, flags);
701 }
702 }
703 }
704
705 static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
706 {
707 struct mem_cgroup_tree_per_node *mctz;
708 struct mem_cgroup_per_node *mz;
709 int nid;
710
711 for_each_node(nid) {
712 mz = mem_cgroup_nodeinfo(memcg, nid);
713 mctz = soft_limit_tree_node(nid);
714 if (mctz)
715 mem_cgroup_remove_exceeded(mz, mctz);
716 }
717 }
718
719 static struct mem_cgroup_per_node *
720 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
721 {
722 struct mem_cgroup_per_node *mz;
723
724 retry:
725 mz = NULL;
726 if (!mctz->rb_rightmost)
727 goto done; /* Nothing to reclaim from */
728
729 mz = rb_entry(mctz->rb_rightmost,
730 struct mem_cgroup_per_node, tree_node);
731 /*
732 * Remove the node now but someone else can add it back,
733 * we will to add it back at the end of reclaim to its correct
734 * position in the tree.
735 */
736 __mem_cgroup_remove_exceeded(mz, mctz);
737 if (!soft_limit_excess(mz->memcg) ||
738 !css_tryget(&mz->memcg->css))
739 goto retry;
740 done:
741 return mz;
742 }
743
744 static struct mem_cgroup_per_node *
745 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
746 {
747 struct mem_cgroup_per_node *mz;
748
749 spin_lock_irq(&mctz->lock);
750 mz = __mem_cgroup_largest_soft_limit_node(mctz);
751 spin_unlock_irq(&mctz->lock);
752 return mz;
753 }
754
755 /**
756 * __mod_memcg_state - update cgroup memory statistics
757 * @memcg: the memory cgroup
758 * @idx: the stat item - can be enum memcg_stat_item or enum node_stat_item
759 * @val: delta to add to the counter, can be negative
760 */
761 void __mod_memcg_state(struct mem_cgroup *memcg, int idx, int val)
762 {
763 long x, threshold = MEMCG_CHARGE_BATCH;
764
765 if (mem_cgroup_disabled())
766 return;
767
768 if (memcg_stat_item_in_bytes(idx))
769 threshold <<= PAGE_SHIFT;
770
771 x = val + __this_cpu_read(memcg->vmstats_percpu->stat[idx]);
772 if (unlikely(abs(x) > threshold)) {
773 struct mem_cgroup *mi;
774
775 /*
776 * Batch local counters to keep them in sync with
777 * the hierarchical ones.
778 */
779 __this_cpu_add(memcg->vmstats_local->stat[idx], x);
780 for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
781 atomic_long_add(x, &mi->vmstats[idx]);
782 x = 0;
783 }
784 __this_cpu_write(memcg->vmstats_percpu->stat[idx], x);
785 }
786
787 static struct mem_cgroup_per_node *
788 parent_nodeinfo(struct mem_cgroup_per_node *pn, int nid)
789 {
790 struct mem_cgroup *parent;
791
792 parent = parent_mem_cgroup(pn->memcg);
793 if (!parent)
794 return NULL;
795 return mem_cgroup_nodeinfo(parent, nid);
796 }
797
798 void __mod_memcg_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
799 int val)
800 {
801 struct mem_cgroup_per_node *pn;
802 struct mem_cgroup *memcg;
803 long x, threshold = MEMCG_CHARGE_BATCH;
804
805 pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
806 memcg = pn->memcg;
807
808 /* Update memcg */
809 __mod_memcg_state(memcg, idx, val);
810
811 /* Update lruvec */
812 __this_cpu_add(pn->lruvec_stat_local->count[idx], val);
813
814 if (vmstat_item_in_bytes(idx))
815 threshold <<= PAGE_SHIFT;
816
817 x = val + __this_cpu_read(pn->lruvec_stat_cpu->count[idx]);
818 if (unlikely(abs(x) > threshold)) {
819 pg_data_t *pgdat = lruvec_pgdat(lruvec);
820 struct mem_cgroup_per_node *pi;
821
822 for (pi = pn; pi; pi = parent_nodeinfo(pi, pgdat->node_id))
823 atomic_long_add(x, &pi->lruvec_stat[idx]);
824 x = 0;
825 }
826 __this_cpu_write(pn->lruvec_stat_cpu->count[idx], x);
827 }
828
829 /**
830 * __mod_lruvec_state - update lruvec memory statistics
831 * @lruvec: the lruvec
832 * @idx: the stat item
833 * @val: delta to add to the counter, can be negative
834 *
835 * The lruvec is the intersection of the NUMA node and a cgroup. This
836 * function updates the all three counters that are affected by a
837 * change of state at this level: per-node, per-cgroup, per-lruvec.
838 */
839 void __mod_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
840 int val)
841 {
842 /* Update node */
843 __mod_node_page_state(lruvec_pgdat(lruvec), idx, val);
844
845 /* Update memcg and lruvec */
846 if (!mem_cgroup_disabled())
847 __mod_memcg_lruvec_state(lruvec, idx, val);
848 }
849
850 void __mod_lruvec_page_state(struct page *page, enum node_stat_item idx,
851 int val)
852 {
853 struct page *head = compound_head(page); /* rmap on tail pages */
854 struct mem_cgroup *memcg = page_memcg(head);
855 pg_data_t *pgdat = page_pgdat(page);
856 struct lruvec *lruvec;
857
858 /* Untracked pages have no memcg, no lruvec. Update only the node */
859 if (!memcg) {
860 __mod_node_page_state(pgdat, idx, val);
861 return;
862 }
863
864 lruvec = mem_cgroup_lruvec(memcg, pgdat);
865 __mod_lruvec_state(lruvec, idx, val);
866 }
867 EXPORT_SYMBOL(__mod_lruvec_page_state);
868
869 void __mod_lruvec_kmem_state(void *p, enum node_stat_item idx, int val)
870 {
871 pg_data_t *pgdat = page_pgdat(virt_to_page(p));
872 struct mem_cgroup *memcg;
873 struct lruvec *lruvec;
874
875 rcu_read_lock();
876 memcg = mem_cgroup_from_obj(p);
877
878 /*
879 * Untracked pages have no memcg, no lruvec. Update only the
880 * node. If we reparent the slab objects to the root memcg,
881 * when we free the slab object, we need to update the per-memcg
882 * vmstats to keep it correct for the root memcg.
883 */
884 if (!memcg) {
885 __mod_node_page_state(pgdat, idx, val);
886 } else {
887 lruvec = mem_cgroup_lruvec(memcg, pgdat);
888 __mod_lruvec_state(lruvec, idx, val);
889 }
890 rcu_read_unlock();
891 }
892
893 /**
894 * __count_memcg_events - account VM events in a cgroup
895 * @memcg: the memory cgroup
896 * @idx: the event item
897 * @count: the number of events that occured
898 */
899 void __count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx,
900 unsigned long count)
901 {
902 unsigned long x;
903
904 if (mem_cgroup_disabled())
905 return;
906
907 x = count + __this_cpu_read(memcg->vmstats_percpu->events[idx]);
908 if (unlikely(x > MEMCG_CHARGE_BATCH)) {
909 struct mem_cgroup *mi;
910
911 /*
912 * Batch local counters to keep them in sync with
913 * the hierarchical ones.
914 */
915 __this_cpu_add(memcg->vmstats_local->events[idx], x);
916 for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
917 atomic_long_add(x, &mi->vmevents[idx]);
918 x = 0;
919 }
920 __this_cpu_write(memcg->vmstats_percpu->events[idx], x);
921 }
922
923 static unsigned long memcg_events(struct mem_cgroup *memcg, int event)
924 {
925 return atomic_long_read(&memcg->vmevents[event]);
926 }
927
928 static unsigned long memcg_events_local(struct mem_cgroup *memcg, int event)
929 {
930 long x = 0;
931 int cpu;
932
933 for_each_possible_cpu(cpu)
934 x += per_cpu(memcg->vmstats_local->events[event], cpu);
935 return x;
936 }
937
938 static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
939 struct page *page,
940 int nr_pages)
941 {
942 /* pagein of a big page is an event. So, ignore page size */
943 if (nr_pages > 0)
944 __count_memcg_events(memcg, PGPGIN, 1);
945 else {
946 __count_memcg_events(memcg, PGPGOUT, 1);
947 nr_pages = -nr_pages; /* for event */
948 }
949
950 __this_cpu_add(memcg->vmstats_percpu->nr_page_events, nr_pages);
951 }
952
953 static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
954 enum mem_cgroup_events_target target)
955 {
956 unsigned long val, next;
957
958 val = __this_cpu_read(memcg->vmstats_percpu->nr_page_events);
959 next = __this_cpu_read(memcg->vmstats_percpu->targets[target]);
960 /* from time_after() in jiffies.h */
961 if ((long)(next - val) < 0) {
962 switch (target) {
963 case MEM_CGROUP_TARGET_THRESH:
964 next = val + THRESHOLDS_EVENTS_TARGET;
965 break;
966 case MEM_CGROUP_TARGET_SOFTLIMIT:
967 next = val + SOFTLIMIT_EVENTS_TARGET;
968 break;
969 default:
970 break;
971 }
972 __this_cpu_write(memcg->vmstats_percpu->targets[target], next);
973 return true;
974 }
975 return false;
976 }
977
978 /*
979 * Check events in order.
980 *
981 */
982 static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
983 {
984 /* threshold event is triggered in finer grain than soft limit */
985 if (unlikely(mem_cgroup_event_ratelimit(memcg,
986 MEM_CGROUP_TARGET_THRESH))) {
987 bool do_softlimit;
988
989 do_softlimit = mem_cgroup_event_ratelimit(memcg,
990 MEM_CGROUP_TARGET_SOFTLIMIT);
991 mem_cgroup_threshold(memcg);
992 if (unlikely(do_softlimit))
993 mem_cgroup_update_tree(memcg, page);
994 }
995 }
996
997 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
998 {
999 /*
1000 * mm_update_next_owner() may clear mm->owner to NULL
1001 * if it races with swapoff, page migration, etc.
1002 * So this can be called with p == NULL.
1003 */
1004 if (unlikely(!p))
1005 return NULL;
1006
1007 return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
1008 }
1009 EXPORT_SYMBOL(mem_cgroup_from_task);
1010
1011 /**
1012 * get_mem_cgroup_from_mm: Obtain a reference on given mm_struct's memcg.
1013 * @mm: mm from which memcg should be extracted. It can be NULL.
1014 *
1015 * Obtain a reference on mm->memcg and returns it if successful. Otherwise
1016 * root_mem_cgroup is returned. However if mem_cgroup is disabled, NULL is
1017 * returned.
1018 */
1019 struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
1020 {
1021 struct mem_cgroup *memcg;
1022
1023 if (mem_cgroup_disabled())
1024 return NULL;
1025
1026 rcu_read_lock();
1027 do {
1028 /*
1029 * Page cache insertions can happen withou an
1030 * actual mm context, e.g. during disk probing
1031 * on boot, loopback IO, acct() writes etc.
1032 */
1033 if (unlikely(!mm))
1034 memcg = root_mem_cgroup;
1035 else {
1036 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1037 if (unlikely(!memcg))
1038 memcg = root_mem_cgroup;
1039 }
1040 } while (!css_tryget(&memcg->css));
1041 rcu_read_unlock();
1042 return memcg;
1043 }
1044 EXPORT_SYMBOL(get_mem_cgroup_from_mm);
1045
1046 /**
1047 * get_mem_cgroup_from_page: Obtain a reference on given page's memcg.
1048 * @page: page from which memcg should be extracted.
1049 *
1050 * Obtain a reference on page->memcg and returns it if successful. Otherwise
1051 * root_mem_cgroup is returned.
1052 */
1053 struct mem_cgroup *get_mem_cgroup_from_page(struct page *page)
1054 {
1055 struct mem_cgroup *memcg = page_memcg(page);
1056
1057 if (mem_cgroup_disabled())
1058 return NULL;
1059
1060 rcu_read_lock();
1061 /* Page should not get uncharged and freed memcg under us. */
1062 if (!memcg || WARN_ON_ONCE(!css_tryget(&memcg->css)))
1063 memcg = root_mem_cgroup;
1064 rcu_read_unlock();
1065 return memcg;
1066 }
1067 EXPORT_SYMBOL(get_mem_cgroup_from_page);
1068
1069 static __always_inline struct mem_cgroup *active_memcg(void)
1070 {
1071 if (in_interrupt())
1072 return this_cpu_read(int_active_memcg);
1073 else
1074 return current->active_memcg;
1075 }
1076
1077 static __always_inline struct mem_cgroup *get_active_memcg(void)
1078 {
1079 struct mem_cgroup *memcg;
1080
1081 rcu_read_lock();
1082 memcg = active_memcg();
1083 if (memcg) {
1084 /* current->active_memcg must hold a ref. */
1085 if (WARN_ON_ONCE(!css_tryget(&memcg->css)))
1086 memcg = root_mem_cgroup;
1087 else
1088 memcg = current->active_memcg;
1089 }
1090 rcu_read_unlock();
1091
1092 return memcg;
1093 }
1094
1095 static __always_inline bool memcg_kmem_bypass(void)
1096 {
1097 /* Allow remote memcg charging from any context. */
1098 if (unlikely(active_memcg()))
1099 return false;
1100
1101 /* Memcg to charge can't be determined. */
1102 if (in_interrupt() || !current->mm || (current->flags & PF_KTHREAD))
1103 return true;
1104
1105 return false;
1106 }
1107
1108 /**
1109 * If active memcg is set, do not fallback to current->mm->memcg.
1110 */
1111 static __always_inline struct mem_cgroup *get_mem_cgroup_from_current(void)
1112 {
1113 if (memcg_kmem_bypass())
1114 return NULL;
1115
1116 if (unlikely(active_memcg()))
1117 return get_active_memcg();
1118
1119 return get_mem_cgroup_from_mm(current->mm);
1120 }
1121
1122 /**
1123 * mem_cgroup_iter - iterate over memory cgroup hierarchy
1124 * @root: hierarchy root
1125 * @prev: previously returned memcg, NULL on first invocation
1126 * @reclaim: cookie for shared reclaim walks, NULL for full walks
1127 *
1128 * Returns references to children of the hierarchy below @root, or
1129 * @root itself, or %NULL after a full round-trip.
1130 *
1131 * Caller must pass the return value in @prev on subsequent
1132 * invocations for reference counting, or use mem_cgroup_iter_break()
1133 * to cancel a hierarchy walk before the round-trip is complete.
1134 *
1135 * Reclaimers can specify a node in @reclaim to divide up the memcgs
1136 * in the hierarchy among all concurrent reclaimers operating on the
1137 * same node.
1138 */
1139 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
1140 struct mem_cgroup *prev,
1141 struct mem_cgroup_reclaim_cookie *reclaim)
1142 {
1143 struct mem_cgroup_reclaim_iter *iter;
1144 struct cgroup_subsys_state *css = NULL;
1145 struct mem_cgroup *memcg = NULL;
1146 struct mem_cgroup *pos = NULL;
1147
1148 if (mem_cgroup_disabled())
1149 return NULL;
1150
1151 if (!root)
1152 root = root_mem_cgroup;
1153
1154 if (prev && !reclaim)
1155 pos = prev;
1156
1157 rcu_read_lock();
1158
1159 if (reclaim) {
1160 struct mem_cgroup_per_node *mz;
1161
1162 mz = mem_cgroup_nodeinfo(root, reclaim->pgdat->node_id);
1163 iter = &mz->iter;
1164
1165 if (prev && reclaim->generation != iter->generation)
1166 goto out_unlock;
1167
1168 while (1) {
1169 pos = READ_ONCE(iter->position);
1170 if (!pos || css_tryget(&pos->css))
1171 break;
1172 /*
1173 * css reference reached zero, so iter->position will
1174 * be cleared by ->css_released. However, we should not
1175 * rely on this happening soon, because ->css_released
1176 * is called from a work queue, and by busy-waiting we
1177 * might block it. So we clear iter->position right
1178 * away.
1179 */
1180 (void)cmpxchg(&iter->position, pos, NULL);
1181 }
1182 }
1183
1184 if (pos)
1185 css = &pos->css;
1186
1187 for (;;) {
1188 css = css_next_descendant_pre(css, &root->css);
1189 if (!css) {
1190 /*
1191 * Reclaimers share the hierarchy walk, and a
1192 * new one might jump in right at the end of
1193 * the hierarchy - make sure they see at least
1194 * one group and restart from the beginning.
1195 */
1196 if (!prev)
1197 continue;
1198 break;
1199 }
1200
1201 /*
1202 * Verify the css and acquire a reference. The root
1203 * is provided by the caller, so we know it's alive
1204 * and kicking, and don't take an extra reference.
1205 */
1206 memcg = mem_cgroup_from_css(css);
1207
1208 if (css == &root->css)
1209 break;
1210
1211 if (css_tryget(css))
1212 break;
1213
1214 memcg = NULL;
1215 }
1216
1217 if (reclaim) {
1218 /*
1219 * The position could have already been updated by a competing
1220 * thread, so check that the value hasn't changed since we read
1221 * it to avoid reclaiming from the same cgroup twice.
1222 */
1223 (void)cmpxchg(&iter->position, pos, memcg);
1224
1225 if (pos)
1226 css_put(&pos->css);
1227
1228 if (!memcg)
1229 iter->generation++;
1230 else if (!prev)
1231 reclaim->generation = iter->generation;
1232 }
1233
1234 out_unlock:
1235 rcu_read_unlock();
1236 if (prev && prev != root)
1237 css_put(&prev->css);
1238
1239 return memcg;
1240 }
1241
1242 /**
1243 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
1244 * @root: hierarchy root
1245 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
1246 */
1247 void mem_cgroup_iter_break(struct mem_cgroup *root,
1248 struct mem_cgroup *prev)
1249 {
1250 if (!root)
1251 root = root_mem_cgroup;
1252 if (prev && prev != root)
1253 css_put(&prev->css);
1254 }
1255
1256 static void __invalidate_reclaim_iterators(struct mem_cgroup *from,
1257 struct mem_cgroup *dead_memcg)
1258 {
1259 struct mem_cgroup_reclaim_iter *iter;
1260 struct mem_cgroup_per_node *mz;
1261 int nid;
1262
1263 for_each_node(nid) {
1264 mz = mem_cgroup_nodeinfo(from, nid);
1265 iter = &mz->iter;
1266 cmpxchg(&iter->position, dead_memcg, NULL);
1267 }
1268 }
1269
1270 static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
1271 {
1272 struct mem_cgroup *memcg = dead_memcg;
1273 struct mem_cgroup *last;
1274
1275 do {
1276 __invalidate_reclaim_iterators(memcg, dead_memcg);
1277 last = memcg;
1278 } while ((memcg = parent_mem_cgroup(memcg)));
1279
1280 /*
1281 * When cgruop1 non-hierarchy mode is used,
1282 * parent_mem_cgroup() does not walk all the way up to the
1283 * cgroup root (root_mem_cgroup). So we have to handle
1284 * dead_memcg from cgroup root separately.
1285 */
1286 if (last != root_mem_cgroup)
1287 __invalidate_reclaim_iterators(root_mem_cgroup,
1288 dead_memcg);
1289 }
1290
1291 /**
1292 * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy
1293 * @memcg: hierarchy root
1294 * @fn: function to call for each task
1295 * @arg: argument passed to @fn
1296 *
1297 * This function iterates over tasks attached to @memcg or to any of its
1298 * descendants and calls @fn for each task. If @fn returns a non-zero
1299 * value, the function breaks the iteration loop and returns the value.
1300 * Otherwise, it will iterate over all tasks and return 0.
1301 *
1302 * This function must not be called for the root memory cgroup.
1303 */
1304 int mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
1305 int (*fn)(struct task_struct *, void *), void *arg)
1306 {
1307 struct mem_cgroup *iter;
1308 int ret = 0;
1309
1310 BUG_ON(memcg == root_mem_cgroup);
1311
1312 for_each_mem_cgroup_tree(iter, memcg) {
1313 struct css_task_iter it;
1314 struct task_struct *task;
1315
1316 css_task_iter_start(&iter->css, CSS_TASK_ITER_PROCS, &it);
1317 while (!ret && (task = css_task_iter_next(&it)))
1318 ret = fn(task, arg);
1319 css_task_iter_end(&it);
1320 if (ret) {
1321 mem_cgroup_iter_break(memcg, iter);
1322 break;
1323 }
1324 }
1325 return ret;
1326 }
1327
1328 #ifdef CONFIG_DEBUG_VM
1329 void lruvec_memcg_debug(struct lruvec *lruvec, struct page *page)
1330 {
1331 struct mem_cgroup *memcg;
1332
1333 if (mem_cgroup_disabled())
1334 return;
1335
1336 memcg = page_memcg(page);
1337
1338 if (!memcg)
1339 VM_BUG_ON_PAGE(lruvec_memcg(lruvec) != root_mem_cgroup, page);
1340 else
1341 VM_BUG_ON_PAGE(lruvec_memcg(lruvec) != memcg, page);
1342 }
1343 #endif
1344
1345 /**
1346 * lock_page_lruvec - lock and return lruvec for a given page.
1347 * @page: the page
1348 *
1349 * This series functions should be used in either conditions:
1350 * PageLRU is cleared or unset
1351 * or page->_refcount is zero
1352 * or page is locked.
1353 */
1354 struct lruvec *lock_page_lruvec(struct page *page)
1355 {
1356 struct lruvec *lruvec;
1357 struct pglist_data *pgdat = page_pgdat(page);
1358
1359 rcu_read_lock();
1360 lruvec = mem_cgroup_page_lruvec(page, pgdat);
1361 spin_lock(&lruvec->lru_lock);
1362 rcu_read_unlock();
1363
1364 lruvec_memcg_debug(lruvec, page);
1365
1366 return lruvec;
1367 }
1368
1369 struct lruvec *lock_page_lruvec_irq(struct page *page)
1370 {
1371 struct lruvec *lruvec;
1372 struct pglist_data *pgdat = page_pgdat(page);
1373
1374 rcu_read_lock();
1375 lruvec = mem_cgroup_page_lruvec(page, pgdat);
1376 spin_lock_irq(&lruvec->lru_lock);
1377 rcu_read_unlock();
1378
1379 lruvec_memcg_debug(lruvec, page);
1380
1381 return lruvec;
1382 }
1383
1384 struct lruvec *lock_page_lruvec_irqsave(struct page *page, unsigned long *flags)
1385 {
1386 struct lruvec *lruvec;
1387 struct pglist_data *pgdat = page_pgdat(page);
1388
1389 rcu_read_lock();
1390 lruvec = mem_cgroup_page_lruvec(page, pgdat);
1391 spin_lock_irqsave(&lruvec->lru_lock, *flags);
1392 rcu_read_unlock();
1393
1394 lruvec_memcg_debug(lruvec, page);
1395
1396 return lruvec;
1397 }
1398
1399 /**
1400 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1401 * @lruvec: mem_cgroup per zone lru vector
1402 * @lru: index of lru list the page is sitting on
1403 * @zid: zone id of the accounted pages
1404 * @nr_pages: positive when adding or negative when removing
1405 *
1406 * This function must be called under lru_lock, just before a page is added
1407 * to or just after a page is removed from an lru list (that ordering being
1408 * so as to allow it to check that lru_size 0 is consistent with list_empty).
1409 */
1410 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1411 int zid, int nr_pages)
1412 {
1413 struct mem_cgroup_per_node *mz;
1414 unsigned long *lru_size;
1415 long size;
1416
1417 if (mem_cgroup_disabled())
1418 return;
1419
1420 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
1421 lru_size = &mz->lru_zone_size[zid][lru];
1422
1423 if (nr_pages < 0)
1424 *lru_size += nr_pages;
1425
1426 size = *lru_size;
1427 if (WARN_ONCE(size < 0,
1428 "%s(%p, %d, %d): lru_size %ld\n",
1429 __func__, lruvec, lru, nr_pages, size)) {
1430 VM_BUG_ON(1);
1431 *lru_size = 0;
1432 }
1433
1434 if (nr_pages > 0)
1435 *lru_size += nr_pages;
1436 }
1437
1438 /**
1439 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1440 * @memcg: the memory cgroup
1441 *
1442 * Returns the maximum amount of memory @mem can be charged with, in
1443 * pages.
1444 */
1445 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1446 {
1447 unsigned long margin = 0;
1448 unsigned long count;
1449 unsigned long limit;
1450
1451 count = page_counter_read(&memcg->memory);
1452 limit = READ_ONCE(memcg->memory.max);
1453 if (count < limit)
1454 margin = limit - count;
1455
1456 if (do_memsw_account()) {
1457 count = page_counter_read(&memcg->memsw);
1458 limit = READ_ONCE(memcg->memsw.max);
1459 if (count < limit)
1460 margin = min(margin, limit - count);
1461 else
1462 margin = 0;
1463 }
1464
1465 return margin;
1466 }
1467
1468 /*
1469 * A routine for checking "mem" is under move_account() or not.
1470 *
1471 * Checking a cgroup is mc.from or mc.to or under hierarchy of
1472 * moving cgroups. This is for waiting at high-memory pressure
1473 * caused by "move".
1474 */
1475 static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1476 {
1477 struct mem_cgroup *from;
1478 struct mem_cgroup *to;
1479 bool ret = false;
1480 /*
1481 * Unlike task_move routines, we access mc.to, mc.from not under
1482 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1483 */
1484 spin_lock(&mc.lock);
1485 from = mc.from;
1486 to = mc.to;
1487 if (!from)
1488 goto unlock;
1489
1490 ret = mem_cgroup_is_descendant(from, memcg) ||
1491 mem_cgroup_is_descendant(to, memcg);
1492 unlock:
1493 spin_unlock(&mc.lock);
1494 return ret;
1495 }
1496
1497 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1498 {
1499 if (mc.moving_task && current != mc.moving_task) {
1500 if (mem_cgroup_under_move(memcg)) {
1501 DEFINE_WAIT(wait);
1502 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1503 /* moving charge context might have finished. */
1504 if (mc.moving_task)
1505 schedule();
1506 finish_wait(&mc.waitq, &wait);
1507 return true;
1508 }
1509 }
1510 return false;
1511 }
1512
1513 struct memory_stat {
1514 const char *name;
1515 unsigned int ratio;
1516 unsigned int idx;
1517 };
1518
1519 static struct memory_stat memory_stats[] = {
1520 { "anon", PAGE_SIZE, NR_ANON_MAPPED },
1521 { "file", PAGE_SIZE, NR_FILE_PAGES },
1522 { "kernel_stack", 1024, NR_KERNEL_STACK_KB },
1523 { "pagetables", PAGE_SIZE, NR_PAGETABLE },
1524 { "percpu", 1, MEMCG_PERCPU_B },
1525 { "sock", PAGE_SIZE, MEMCG_SOCK },
1526 { "shmem", PAGE_SIZE, NR_SHMEM },
1527 { "file_mapped", PAGE_SIZE, NR_FILE_MAPPED },
1528 { "file_dirty", PAGE_SIZE, NR_FILE_DIRTY },
1529 { "file_writeback", PAGE_SIZE, NR_WRITEBACK },
1530 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1531 /*
1532 * The ratio will be initialized in memory_stats_init(). Because
1533 * on some architectures, the macro of HPAGE_PMD_SIZE is not
1534 * constant(e.g. powerpc).
1535 */
1536 { "anon_thp", 0, NR_ANON_THPS },
1537 { "file_thp", 0, NR_FILE_THPS },
1538 { "shmem_thp", 0, NR_SHMEM_THPS },
1539 #endif
1540 { "inactive_anon", PAGE_SIZE, NR_INACTIVE_ANON },
1541 { "active_anon", PAGE_SIZE, NR_ACTIVE_ANON },
1542 { "inactive_file", PAGE_SIZE, NR_INACTIVE_FILE },
1543 { "active_file", PAGE_SIZE, NR_ACTIVE_FILE },
1544 { "unevictable", PAGE_SIZE, NR_UNEVICTABLE },
1545
1546 /*
1547 * Note: The slab_reclaimable and slab_unreclaimable must be
1548 * together and slab_reclaimable must be in front.
1549 */
1550 { "slab_reclaimable", 1, NR_SLAB_RECLAIMABLE_B },
1551 { "slab_unreclaimable", 1, NR_SLAB_UNRECLAIMABLE_B },
1552
1553 /* The memory events */
1554 { "workingset_refault_anon", 1, WORKINGSET_REFAULT_ANON },
1555 { "workingset_refault_file", 1, WORKINGSET_REFAULT_FILE },
1556 { "workingset_activate_anon", 1, WORKINGSET_ACTIVATE_ANON },
1557 { "workingset_activate_file", 1, WORKINGSET_ACTIVATE_FILE },
1558 { "workingset_restore_anon", 1, WORKINGSET_RESTORE_ANON },
1559 { "workingset_restore_file", 1, WORKINGSET_RESTORE_FILE },
1560 { "workingset_nodereclaim", 1, WORKINGSET_NODERECLAIM },
1561 };
1562
1563 static int __init memory_stats_init(void)
1564 {
1565 int i;
1566
1567 for (i = 0; i < ARRAY_SIZE(memory_stats); i++) {
1568 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1569 if (memory_stats[i].idx == NR_ANON_THPS ||
1570 memory_stats[i].idx == NR_FILE_THPS ||
1571 memory_stats[i].idx == NR_SHMEM_THPS)
1572 memory_stats[i].ratio = HPAGE_PMD_SIZE;
1573 #endif
1574 VM_BUG_ON(!memory_stats[i].ratio);
1575 VM_BUG_ON(memory_stats[i].idx >= MEMCG_NR_STAT);
1576 }
1577
1578 return 0;
1579 }
1580 pure_initcall(memory_stats_init);
1581
1582 static char *memory_stat_format(struct mem_cgroup *memcg)
1583 {
1584 struct seq_buf s;
1585 int i;
1586
1587 seq_buf_init(&s, kmalloc(PAGE_SIZE, GFP_KERNEL), PAGE_SIZE);
1588 if (!s.buffer)
1589 return NULL;
1590
1591 /*
1592 * Provide statistics on the state of the memory subsystem as
1593 * well as cumulative event counters that show past behavior.
1594 *
1595 * This list is ordered following a combination of these gradients:
1596 * 1) generic big picture -> specifics and details
1597 * 2) reflecting userspace activity -> reflecting kernel heuristics
1598 *
1599 * Current memory state:
1600 */
1601
1602 for (i = 0; i < ARRAY_SIZE(memory_stats); i++) {
1603 u64 size;
1604
1605 size = memcg_page_state(memcg, memory_stats[i].idx);
1606 size *= memory_stats[i].ratio;
1607 seq_buf_printf(&s, "%s %llu\n", memory_stats[i].name, size);
1608
1609 if (unlikely(memory_stats[i].idx == NR_SLAB_UNRECLAIMABLE_B)) {
1610 size = memcg_page_state(memcg, NR_SLAB_RECLAIMABLE_B) +
1611 memcg_page_state(memcg, NR_SLAB_UNRECLAIMABLE_B);
1612 seq_buf_printf(&s, "slab %llu\n", size);
1613 }
1614 }
1615
1616 /* Accumulated memory events */
1617
1618 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGFAULT),
1619 memcg_events(memcg, PGFAULT));
1620 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGMAJFAULT),
1621 memcg_events(memcg, PGMAJFAULT));
1622 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGREFILL),
1623 memcg_events(memcg, PGREFILL));
1624 seq_buf_printf(&s, "pgscan %lu\n",
1625 memcg_events(memcg, PGSCAN_KSWAPD) +
1626 memcg_events(memcg, PGSCAN_DIRECT));
1627 seq_buf_printf(&s, "pgsteal %lu\n",
1628 memcg_events(memcg, PGSTEAL_KSWAPD) +
1629 memcg_events(memcg, PGSTEAL_DIRECT));
1630 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGACTIVATE),
1631 memcg_events(memcg, PGACTIVATE));
1632 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGDEACTIVATE),
1633 memcg_events(memcg, PGDEACTIVATE));
1634 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGLAZYFREE),
1635 memcg_events(memcg, PGLAZYFREE));
1636 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGLAZYFREED),
1637 memcg_events(memcg, PGLAZYFREED));
1638
1639 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1640 seq_buf_printf(&s, "%s %lu\n", vm_event_name(THP_FAULT_ALLOC),
1641 memcg_events(memcg, THP_FAULT_ALLOC));
1642 seq_buf_printf(&s, "%s %lu\n", vm_event_name(THP_COLLAPSE_ALLOC),
1643 memcg_events(memcg, THP_COLLAPSE_ALLOC));
1644 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1645
1646 /* The above should easily fit into one page */
1647 WARN_ON_ONCE(seq_buf_has_overflowed(&s));
1648
1649 return s.buffer;
1650 }
1651
1652 #define K(x) ((x) << (PAGE_SHIFT-10))
1653 /**
1654 * mem_cgroup_print_oom_context: Print OOM information relevant to
1655 * memory controller.
1656 * @memcg: The memory cgroup that went over limit
1657 * @p: Task that is going to be killed
1658 *
1659 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1660 * enabled
1661 */
1662 void mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p)
1663 {
1664 rcu_read_lock();
1665
1666 if (memcg) {
1667 pr_cont(",oom_memcg=");
1668 pr_cont_cgroup_path(memcg->css.cgroup);
1669 } else
1670 pr_cont(",global_oom");
1671 if (p) {
1672 pr_cont(",task_memcg=");
1673 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
1674 }
1675 rcu_read_unlock();
1676 }
1677
1678 /**
1679 * mem_cgroup_print_oom_meminfo: Print OOM memory information relevant to
1680 * memory controller.
1681 * @memcg: The memory cgroup that went over limit
1682 */
1683 void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg)
1684 {
1685 char *buf;
1686
1687 pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1688 K((u64)page_counter_read(&memcg->memory)),
1689 K((u64)READ_ONCE(memcg->memory.max)), memcg->memory.failcnt);
1690 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
1691 pr_info("swap: usage %llukB, limit %llukB, failcnt %lu\n",
1692 K((u64)page_counter_read(&memcg->swap)),
1693 K((u64)READ_ONCE(memcg->swap.max)), memcg->swap.failcnt);
1694 else {
1695 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1696 K((u64)page_counter_read(&memcg->memsw)),
1697 K((u64)memcg->memsw.max), memcg->memsw.failcnt);
1698 pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1699 K((u64)page_counter_read(&memcg->kmem)),
1700 K((u64)memcg->kmem.max), memcg->kmem.failcnt);
1701 }
1702
1703 pr_info("Memory cgroup stats for ");
1704 pr_cont_cgroup_path(memcg->css.cgroup);
1705 pr_cont(":");
1706 buf = memory_stat_format(memcg);
1707 if (!buf)
1708 return;
1709 pr_info("%s", buf);
1710 kfree(buf);
1711 }
1712
1713 /*
1714 * Return the memory (and swap, if configured) limit for a memcg.
1715 */
1716 unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg)
1717 {
1718 unsigned long max = READ_ONCE(memcg->memory.max);
1719
1720 if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
1721 if (mem_cgroup_swappiness(memcg))
1722 max += min(READ_ONCE(memcg->swap.max),
1723 (unsigned long)total_swap_pages);
1724 } else { /* v1 */
1725 if (mem_cgroup_swappiness(memcg)) {
1726 /* Calculate swap excess capacity from memsw limit */
1727 unsigned long swap = READ_ONCE(memcg->memsw.max) - max;
1728
1729 max += min(swap, (unsigned long)total_swap_pages);
1730 }
1731 }
1732 return max;
1733 }
1734
1735 unsigned long mem_cgroup_size(struct mem_cgroup *memcg)
1736 {
1737 return page_counter_read(&memcg->memory);
1738 }
1739
1740 static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1741 int order)
1742 {
1743 struct oom_control oc = {
1744 .zonelist = NULL,
1745 .nodemask = NULL,
1746 .memcg = memcg,
1747 .gfp_mask = gfp_mask,
1748 .order = order,
1749 };
1750 bool ret = true;
1751
1752 if (mutex_lock_killable(&oom_lock))
1753 return true;
1754
1755 if (mem_cgroup_margin(memcg) >= (1 << order))
1756 goto unlock;
1757
1758 /*
1759 * A few threads which were not waiting at mutex_lock_killable() can
1760 * fail to bail out. Therefore, check again after holding oom_lock.
1761 */
1762 ret = should_force_charge() || out_of_memory(&oc);
1763
1764 unlock:
1765 mutex_unlock(&oom_lock);
1766 return ret;
1767 }
1768
1769 static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1770 pg_data_t *pgdat,
1771 gfp_t gfp_mask,
1772 unsigned long *total_scanned)
1773 {
1774 struct mem_cgroup *victim = NULL;
1775 int total = 0;
1776 int loop = 0;
1777 unsigned long excess;
1778 unsigned long nr_scanned;
1779 struct mem_cgroup_reclaim_cookie reclaim = {
1780 .pgdat = pgdat,
1781 };
1782
1783 excess = soft_limit_excess(root_memcg);
1784
1785 while (1) {
1786 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1787 if (!victim) {
1788 loop++;
1789 if (loop >= 2) {
1790 /*
1791 * If we have not been able to reclaim
1792 * anything, it might because there are
1793 * no reclaimable pages under this hierarchy
1794 */
1795 if (!total)
1796 break;
1797 /*
1798 * We want to do more targeted reclaim.
1799 * excess >> 2 is not to excessive so as to
1800 * reclaim too much, nor too less that we keep
1801 * coming back to reclaim from this cgroup
1802 */
1803 if (total >= (excess >> 2) ||
1804 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1805 break;
1806 }
1807 continue;
1808 }
1809 total += mem_cgroup_shrink_node(victim, gfp_mask, false,
1810 pgdat, &nr_scanned);
1811 *total_scanned += nr_scanned;
1812 if (!soft_limit_excess(root_memcg))
1813 break;
1814 }
1815 mem_cgroup_iter_break(root_memcg, victim);
1816 return total;
1817 }
1818
1819 #ifdef CONFIG_LOCKDEP
1820 static struct lockdep_map memcg_oom_lock_dep_map = {
1821 .name = "memcg_oom_lock",
1822 };
1823 #endif
1824
1825 static DEFINE_SPINLOCK(memcg_oom_lock);
1826
1827 /*
1828 * Check OOM-Killer is already running under our hierarchy.
1829 * If someone is running, return false.
1830 */
1831 static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
1832 {
1833 struct mem_cgroup *iter, *failed = NULL;
1834
1835 spin_lock(&memcg_oom_lock);
1836
1837 for_each_mem_cgroup_tree(iter, memcg) {
1838 if (iter->oom_lock) {
1839 /*
1840 * this subtree of our hierarchy is already locked
1841 * so we cannot give a lock.
1842 */
1843 failed = iter;
1844 mem_cgroup_iter_break(memcg, iter);
1845 break;
1846 } else
1847 iter->oom_lock = true;
1848 }
1849
1850 if (failed) {
1851 /*
1852 * OK, we failed to lock the whole subtree so we have
1853 * to clean up what we set up to the failing subtree
1854 */
1855 for_each_mem_cgroup_tree(iter, memcg) {
1856 if (iter == failed) {
1857 mem_cgroup_iter_break(memcg, iter);
1858 break;
1859 }
1860 iter->oom_lock = false;
1861 }
1862 } else
1863 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
1864
1865 spin_unlock(&memcg_oom_lock);
1866
1867 return !failed;
1868 }
1869
1870 static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1871 {
1872 struct mem_cgroup *iter;
1873
1874 spin_lock(&memcg_oom_lock);
1875 mutex_release(&memcg_oom_lock_dep_map, _RET_IP_);
1876 for_each_mem_cgroup_tree(iter, memcg)
1877 iter->oom_lock = false;
1878 spin_unlock(&memcg_oom_lock);
1879 }
1880
1881 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1882 {
1883 struct mem_cgroup *iter;
1884
1885 spin_lock(&memcg_oom_lock);
1886 for_each_mem_cgroup_tree(iter, memcg)
1887 iter->under_oom++;
1888 spin_unlock(&memcg_oom_lock);
1889 }
1890
1891 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1892 {
1893 struct mem_cgroup *iter;
1894
1895 /*
1896 * Be careful about under_oom underflows becase a child memcg
1897 * could have been added after mem_cgroup_mark_under_oom.
1898 */
1899 spin_lock(&memcg_oom_lock);
1900 for_each_mem_cgroup_tree(iter, memcg)
1901 if (iter->under_oom > 0)
1902 iter->under_oom--;
1903 spin_unlock(&memcg_oom_lock);
1904 }
1905
1906 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1907
1908 struct oom_wait_info {
1909 struct mem_cgroup *memcg;
1910 wait_queue_entry_t wait;
1911 };
1912
1913 static int memcg_oom_wake_function(wait_queue_entry_t *wait,
1914 unsigned mode, int sync, void *arg)
1915 {
1916 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1917 struct mem_cgroup *oom_wait_memcg;
1918 struct oom_wait_info *oom_wait_info;
1919
1920 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1921 oom_wait_memcg = oom_wait_info->memcg;
1922
1923 if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
1924 !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
1925 return 0;
1926 return autoremove_wake_function(wait, mode, sync, arg);
1927 }
1928
1929 static void memcg_oom_recover(struct mem_cgroup *memcg)
1930 {
1931 /*
1932 * For the following lockless ->under_oom test, the only required
1933 * guarantee is that it must see the state asserted by an OOM when
1934 * this function is called as a result of userland actions
1935 * triggered by the notification of the OOM. This is trivially
1936 * achieved by invoking mem_cgroup_mark_under_oom() before
1937 * triggering notification.
1938 */
1939 if (memcg && memcg->under_oom)
1940 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
1941 }
1942
1943 enum oom_status {
1944 OOM_SUCCESS,
1945 OOM_FAILED,
1946 OOM_ASYNC,
1947 OOM_SKIPPED
1948 };
1949
1950 static enum oom_status mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
1951 {
1952 enum oom_status ret;
1953 bool locked;
1954
1955 if (order > PAGE_ALLOC_COSTLY_ORDER)
1956 return OOM_SKIPPED;
1957
1958 memcg_memory_event(memcg, MEMCG_OOM);
1959
1960 /*
1961 * We are in the middle of the charge context here, so we
1962 * don't want to block when potentially sitting on a callstack
1963 * that holds all kinds of filesystem and mm locks.
1964 *
1965 * cgroup1 allows disabling the OOM killer and waiting for outside
1966 * handling until the charge can succeed; remember the context and put
1967 * the task to sleep at the end of the page fault when all locks are
1968 * released.
1969 *
1970 * On the other hand, in-kernel OOM killer allows for an async victim
1971 * memory reclaim (oom_reaper) and that means that we are not solely
1972 * relying on the oom victim to make a forward progress and we can
1973 * invoke the oom killer here.
1974 *
1975 * Please note that mem_cgroup_out_of_memory might fail to find a
1976 * victim and then we have to bail out from the charge path.
1977 */
1978 if (memcg->oom_kill_disable) {
1979 if (!current->in_user_fault)
1980 return OOM_SKIPPED;
1981 css_get(&memcg->css);
1982 current->memcg_in_oom = memcg;
1983 current->memcg_oom_gfp_mask = mask;
1984 current->memcg_oom_order = order;
1985
1986 return OOM_ASYNC;
1987 }
1988
1989 mem_cgroup_mark_under_oom(memcg);
1990
1991 locked = mem_cgroup_oom_trylock(memcg);
1992
1993 if (locked)
1994 mem_cgroup_oom_notify(memcg);
1995
1996 mem_cgroup_unmark_under_oom(memcg);
1997 if (mem_cgroup_out_of_memory(memcg, mask, order))
1998 ret = OOM_SUCCESS;
1999 else
2000 ret = OOM_FAILED;
2001
2002 if (locked)
2003 mem_cgroup_oom_unlock(memcg);
2004
2005 return ret;
2006 }
2007
2008 /**
2009 * mem_cgroup_oom_synchronize - complete memcg OOM handling
2010 * @handle: actually kill/wait or just clean up the OOM state
2011 *
2012 * This has to be called at the end of a page fault if the memcg OOM
2013 * handler was enabled.
2014 *
2015 * Memcg supports userspace OOM handling where failed allocations must
2016 * sleep on a waitqueue until the userspace task resolves the
2017 * situation. Sleeping directly in the charge context with all kinds
2018 * of locks held is not a good idea, instead we remember an OOM state
2019 * in the task and mem_cgroup_oom_synchronize() has to be called at
2020 * the end of the page fault to complete the OOM handling.
2021 *
2022 * Returns %true if an ongoing memcg OOM situation was detected and
2023 * completed, %false otherwise.
2024 */
2025 bool mem_cgroup_oom_synchronize(bool handle)
2026 {
2027 struct mem_cgroup *memcg = current->memcg_in_oom;
2028 struct oom_wait_info owait;
2029 bool locked;
2030
2031 /* OOM is global, do not handle */
2032 if (!memcg)
2033 return false;
2034
2035 if (!handle)
2036 goto cleanup;
2037
2038 owait.memcg = memcg;
2039 owait.wait.flags = 0;
2040 owait.wait.func = memcg_oom_wake_function;
2041 owait.wait.private = current;
2042 INIT_LIST_HEAD(&owait.wait.entry);
2043
2044 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
2045 mem_cgroup_mark_under_oom(memcg);
2046
2047 locked = mem_cgroup_oom_trylock(memcg);
2048
2049 if (locked)
2050 mem_cgroup_oom_notify(memcg);
2051
2052 if (locked && !memcg->oom_kill_disable) {
2053 mem_cgroup_unmark_under_oom(memcg);
2054 finish_wait(&memcg_oom_waitq, &owait.wait);
2055 mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask,
2056 current->memcg_oom_order);
2057 } else {
2058 schedule();
2059 mem_cgroup_unmark_under_oom(memcg);
2060 finish_wait(&memcg_oom_waitq, &owait.wait);
2061 }
2062
2063 if (locked) {
2064 mem_cgroup_oom_unlock(memcg);
2065 /*
2066 * There is no guarantee that an OOM-lock contender
2067 * sees the wakeups triggered by the OOM kill
2068 * uncharges. Wake any sleepers explicitely.
2069 */
2070 memcg_oom_recover(memcg);
2071 }
2072 cleanup:
2073 current->memcg_in_oom = NULL;
2074 css_put(&memcg->css);
2075 return true;
2076 }
2077
2078 /**
2079 * mem_cgroup_get_oom_group - get a memory cgroup to clean up after OOM
2080 * @victim: task to be killed by the OOM killer
2081 * @oom_domain: memcg in case of memcg OOM, NULL in case of system-wide OOM
2082 *
2083 * Returns a pointer to a memory cgroup, which has to be cleaned up
2084 * by killing all belonging OOM-killable tasks.
2085 *
2086 * Caller has to call mem_cgroup_put() on the returned non-NULL memcg.
2087 */
2088 struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim,
2089 struct mem_cgroup *oom_domain)
2090 {
2091 struct mem_cgroup *oom_group = NULL;
2092 struct mem_cgroup *memcg;
2093
2094 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
2095 return NULL;
2096
2097 if (!oom_domain)
2098 oom_domain = root_mem_cgroup;
2099
2100 rcu_read_lock();
2101
2102 memcg = mem_cgroup_from_task(victim);
2103 if (memcg == root_mem_cgroup)
2104 goto out;
2105
2106 /*
2107 * If the victim task has been asynchronously moved to a different
2108 * memory cgroup, we might end up killing tasks outside oom_domain.
2109 * In this case it's better to ignore memory.group.oom.
2110 */
2111 if (unlikely(!mem_cgroup_is_descendant(memcg, oom_domain)))
2112 goto out;
2113
2114 /*
2115 * Traverse the memory cgroup hierarchy from the victim task's
2116 * cgroup up to the OOMing cgroup (or root) to find the
2117 * highest-level memory cgroup with oom.group set.
2118 */
2119 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
2120 if (memcg->oom_group)
2121 oom_group = memcg;
2122
2123 if (memcg == oom_domain)
2124 break;
2125 }
2126
2127 if (oom_group)
2128 css_get(&oom_group->css);
2129 out:
2130 rcu_read_unlock();
2131
2132 return oom_group;
2133 }
2134
2135 void mem_cgroup_print_oom_group(struct mem_cgroup *memcg)
2136 {
2137 pr_info("Tasks in ");
2138 pr_cont_cgroup_path(memcg->css.cgroup);
2139 pr_cont(" are going to be killed due to memory.oom.group set\n");
2140 }
2141
2142 /**
2143 * lock_page_memcg - lock a page and memcg binding
2144 * @page: the page
2145 *
2146 * This function protects unlocked LRU pages from being moved to
2147 * another cgroup.
2148 *
2149 * It ensures lifetime of the returned memcg. Caller is responsible
2150 * for the lifetime of the page; __unlock_page_memcg() is available
2151 * when @page might get freed inside the locked section.
2152 */
2153 struct mem_cgroup *lock_page_memcg(struct page *page)
2154 {
2155 struct page *head = compound_head(page); /* rmap on tail pages */
2156 struct mem_cgroup *memcg;
2157 unsigned long flags;
2158
2159 /*
2160 * The RCU lock is held throughout the transaction. The fast
2161 * path can get away without acquiring the memcg->move_lock
2162 * because page moving starts with an RCU grace period.
2163 *
2164 * The RCU lock also protects the memcg from being freed when
2165 * the page state that is going to change is the only thing
2166 * preventing the page itself from being freed. E.g. writeback
2167 * doesn't hold a page reference and relies on PG_writeback to
2168 * keep off truncation, migration and so forth.
2169 */
2170 rcu_read_lock();
2171
2172 if (mem_cgroup_disabled())
2173 return NULL;
2174 again:
2175 memcg = page_memcg(head);
2176 if (unlikely(!memcg))
2177 return NULL;
2178
2179 #ifdef CONFIG_PROVE_LOCKING
2180 local_irq_save(flags);
2181 might_lock(&memcg->move_lock);
2182 local_irq_restore(flags);
2183 #endif
2184
2185 if (atomic_read(&memcg->moving_account) <= 0)
2186 return memcg;
2187
2188 spin_lock_irqsave(&memcg->move_lock, flags);
2189 if (memcg != page_memcg(head)) {
2190 spin_unlock_irqrestore(&memcg->move_lock, flags);
2191 goto again;
2192 }
2193
2194 /*
2195 * When charge migration first begins, we can have locked and
2196 * unlocked page stat updates happening concurrently. Track
2197 * the task who has the lock for unlock_page_memcg().
2198 */
2199 memcg->move_lock_task = current;
2200 memcg->move_lock_flags = flags;
2201
2202 return memcg;
2203 }
2204 EXPORT_SYMBOL(lock_page_memcg);
2205
2206 /**
2207 * __unlock_page_memcg - unlock and unpin a memcg
2208 * @memcg: the memcg
2209 *
2210 * Unlock and unpin a memcg returned by lock_page_memcg().
2211 */
2212 void __unlock_page_memcg(struct mem_cgroup *memcg)
2213 {
2214 if (memcg && memcg->move_lock_task == current) {
2215 unsigned long flags = memcg->move_lock_flags;
2216
2217 memcg->move_lock_task = NULL;
2218 memcg->move_lock_flags = 0;
2219
2220 spin_unlock_irqrestore(&memcg->move_lock, flags);
2221 }
2222
2223 rcu_read_unlock();
2224 }
2225
2226 /**
2227 * unlock_page_memcg - unlock a page and memcg binding
2228 * @page: the page
2229 */
2230 void unlock_page_memcg(struct page *page)
2231 {
2232 struct page *head = compound_head(page);
2233
2234 __unlock_page_memcg(page_memcg(head));
2235 }
2236 EXPORT_SYMBOL(unlock_page_memcg);
2237
2238 struct memcg_stock_pcp {
2239 struct mem_cgroup *cached; /* this never be root cgroup */
2240 unsigned int nr_pages;
2241
2242 #ifdef CONFIG_MEMCG_KMEM
2243 struct obj_cgroup *cached_objcg;
2244 unsigned int nr_bytes;
2245 #endif
2246
2247 struct work_struct work;
2248 unsigned long flags;
2249 #define FLUSHING_CACHED_CHARGE 0
2250 };
2251 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
2252 static DEFINE_MUTEX(percpu_charge_mutex);
2253
2254 #ifdef CONFIG_MEMCG_KMEM
2255 static void drain_obj_stock(struct memcg_stock_pcp *stock);
2256 static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
2257 struct mem_cgroup *root_memcg);
2258
2259 #else
2260 static inline void drain_obj_stock(struct memcg_stock_pcp *stock)
2261 {
2262 }
2263 static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
2264 struct mem_cgroup *root_memcg)
2265 {
2266 return false;
2267 }
2268 #endif
2269
2270 /**
2271 * consume_stock: Try to consume stocked charge on this cpu.
2272 * @memcg: memcg to consume from.
2273 * @nr_pages: how many pages to charge.
2274 *
2275 * The charges will only happen if @memcg matches the current cpu's memcg
2276 * stock, and at least @nr_pages are available in that stock. Failure to
2277 * service an allocation will refill the stock.
2278 *
2279 * returns true if successful, false otherwise.
2280 */
2281 static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2282 {
2283 struct memcg_stock_pcp *stock;
2284 unsigned long flags;
2285 bool ret = false;
2286
2287 if (nr_pages > MEMCG_CHARGE_BATCH)
2288 return ret;
2289
2290 local_irq_save(flags);
2291
2292 stock = this_cpu_ptr(&memcg_stock);
2293 if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
2294 stock->nr_pages -= nr_pages;
2295 ret = true;
2296 }
2297
2298 local_irq_restore(flags);
2299
2300 return ret;
2301 }
2302
2303 /*
2304 * Returns stocks cached in percpu and reset cached information.
2305 */
2306 static void drain_stock(struct memcg_stock_pcp *stock)
2307 {
2308 struct mem_cgroup *old = stock->cached;
2309
2310 if (!old)
2311 return;
2312
2313 if (stock->nr_pages) {
2314 page_counter_uncharge(&old->memory, stock->nr_pages);
2315 if (do_memsw_account())
2316 page_counter_uncharge(&old->memsw, stock->nr_pages);
2317 stock->nr_pages = 0;
2318 }
2319
2320 css_put(&old->css);
2321 stock->cached = NULL;
2322 }
2323
2324 static void drain_local_stock(struct work_struct *dummy)
2325 {
2326 struct memcg_stock_pcp *stock;
2327 unsigned long flags;
2328
2329 /*
2330 * The only protection from memory hotplug vs. drain_stock races is
2331 * that we always operate on local CPU stock here with IRQ disabled
2332 */
2333 local_irq_save(flags);
2334
2335 stock = this_cpu_ptr(&memcg_stock);
2336 drain_obj_stock(stock);
2337 drain_stock(stock);
2338 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2339
2340 local_irq_restore(flags);
2341 }
2342
2343 /*
2344 * Cache charges(val) to local per_cpu area.
2345 * This will be consumed by consume_stock() function, later.
2346 */
2347 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2348 {
2349 struct memcg_stock_pcp *stock;
2350 unsigned long flags;
2351
2352 local_irq_save(flags);
2353
2354 stock = this_cpu_ptr(&memcg_stock);
2355 if (stock->cached != memcg) { /* reset if necessary */
2356 drain_stock(stock);
2357 css_get(&memcg->css);
2358 stock->cached = memcg;
2359 }
2360 stock->nr_pages += nr_pages;
2361
2362 if (stock->nr_pages > MEMCG_CHARGE_BATCH)
2363 drain_stock(stock);
2364
2365 local_irq_restore(flags);
2366 }
2367
2368 /*
2369 * Drains all per-CPU charge caches for given root_memcg resp. subtree
2370 * of the hierarchy under it.
2371 */
2372 static void drain_all_stock(struct mem_cgroup *root_memcg)
2373 {
2374 int cpu, curcpu;
2375
2376 /* If someone's already draining, avoid adding running more workers. */
2377 if (!mutex_trylock(&percpu_charge_mutex))
2378 return;
2379 /*
2380 * Notify other cpus that system-wide "drain" is running
2381 * We do not care about races with the cpu hotplug because cpu down
2382 * as well as workers from this path always operate on the local
2383 * per-cpu data. CPU up doesn't touch memcg_stock at all.
2384 */
2385 curcpu = get_cpu();
2386 for_each_online_cpu(cpu) {
2387 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2388 struct mem_cgroup *memcg;
2389 bool flush = false;
2390
2391 rcu_read_lock();
2392 memcg = stock->cached;
2393 if (memcg && stock->nr_pages &&
2394 mem_cgroup_is_descendant(memcg, root_memcg))
2395 flush = true;
2396 if (obj_stock_flush_required(stock, root_memcg))
2397 flush = true;
2398 rcu_read_unlock();
2399
2400 if (flush &&
2401 !test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2402 if (cpu == curcpu)
2403 drain_local_stock(&stock->work);
2404 else
2405 schedule_work_on(cpu, &stock->work);
2406 }
2407 }
2408 put_cpu();
2409 mutex_unlock(&percpu_charge_mutex);
2410 }
2411
2412 static int memcg_hotplug_cpu_dead(unsigned int cpu)
2413 {
2414 struct memcg_stock_pcp *stock;
2415 struct mem_cgroup *memcg, *mi;
2416
2417 stock = &per_cpu(memcg_stock, cpu);
2418 drain_stock(stock);
2419
2420 for_each_mem_cgroup(memcg) {
2421 int i;
2422
2423 for (i = 0; i < MEMCG_NR_STAT; i++) {
2424 int nid;
2425 long x;
2426
2427 x = this_cpu_xchg(memcg->vmstats_percpu->stat[i], 0);
2428 if (x)
2429 for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
2430 atomic_long_add(x, &memcg->vmstats[i]);
2431
2432 if (i >= NR_VM_NODE_STAT_ITEMS)
2433 continue;
2434
2435 for_each_node(nid) {
2436 struct mem_cgroup_per_node *pn;
2437
2438 pn = mem_cgroup_nodeinfo(memcg, nid);
2439 x = this_cpu_xchg(pn->lruvec_stat_cpu->count[i], 0);
2440 if (x)
2441 do {
2442 atomic_long_add(x, &pn->lruvec_stat[i]);
2443 } while ((pn = parent_nodeinfo(pn, nid)));
2444 }
2445 }
2446
2447 for (i = 0; i < NR_VM_EVENT_ITEMS; i++) {
2448 long x;
2449
2450 x = this_cpu_xchg(memcg->vmstats_percpu->events[i], 0);
2451 if (x)
2452 for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
2453 atomic_long_add(x, &memcg->vmevents[i]);
2454 }
2455 }
2456
2457 return 0;
2458 }
2459
2460 static unsigned long reclaim_high(struct mem_cgroup *memcg,
2461 unsigned int nr_pages,
2462 gfp_t gfp_mask)
2463 {
2464 unsigned long nr_reclaimed = 0;
2465
2466 do {
2467 unsigned long pflags;
2468
2469 if (page_counter_read(&memcg->memory) <=
2470 READ_ONCE(memcg->memory.high))
2471 continue;
2472
2473 memcg_memory_event(memcg, MEMCG_HIGH);
2474
2475 psi_memstall_enter(&pflags);
2476 nr_reclaimed += try_to_free_mem_cgroup_pages(memcg, nr_pages,
2477 gfp_mask, true);
2478 psi_memstall_leave(&pflags);
2479 } while ((memcg = parent_mem_cgroup(memcg)) &&
2480 !mem_cgroup_is_root(memcg));
2481
2482 return nr_reclaimed;
2483 }
2484
2485 static void high_work_func(struct work_struct *work)
2486 {
2487 struct mem_cgroup *memcg;
2488
2489 memcg = container_of(work, struct mem_cgroup, high_work);
2490 reclaim_high(memcg, MEMCG_CHARGE_BATCH, GFP_KERNEL);
2491 }
2492
2493 /*
2494 * Clamp the maximum sleep time per allocation batch to 2 seconds. This is
2495 * enough to still cause a significant slowdown in most cases, while still
2496 * allowing diagnostics and tracing to proceed without becoming stuck.
2497 */
2498 #define MEMCG_MAX_HIGH_DELAY_JIFFIES (2UL*HZ)
2499
2500 /*
2501 * When calculating the delay, we use these either side of the exponentiation to
2502 * maintain precision and scale to a reasonable number of jiffies (see the table
2503 * below.
2504 *
2505 * - MEMCG_DELAY_PRECISION_SHIFT: Extra precision bits while translating the
2506 * overage ratio to a delay.
2507 * - MEMCG_DELAY_SCALING_SHIFT: The number of bits to scale down the
2508 * proposed penalty in order to reduce to a reasonable number of jiffies, and
2509 * to produce a reasonable delay curve.
2510 *
2511 * MEMCG_DELAY_SCALING_SHIFT just happens to be a number that produces a
2512 * reasonable delay curve compared to precision-adjusted overage, not
2513 * penalising heavily at first, but still making sure that growth beyond the
2514 * limit penalises misbehaviour cgroups by slowing them down exponentially. For
2515 * example, with a high of 100 megabytes:
2516 *
2517 * +-------+------------------------+
2518 * | usage | time to allocate in ms |
2519 * +-------+------------------------+
2520 * | 100M | 0 |
2521 * | 101M | 6 |
2522 * | 102M | 25 |
2523 * | 103M | 57 |
2524 * | 104M | 102 |
2525 * | 105M | 159 |
2526 * | 106M | 230 |
2527 * | 107M | 313 |
2528 * | 108M | 409 |
2529 * | 109M | 518 |
2530 * | 110M | 639 |
2531 * | 111M | 774 |
2532 * | 112M | 921 |
2533 * | 113M | 1081 |
2534 * | 114M | 1254 |
2535 * | 115M | 1439 |
2536 * | 116M | 1638 |
2537 * | 117M | 1849 |
2538 * | 118M | 2000 |
2539 * | 119M | 2000 |
2540 * | 120M | 2000 |
2541 * +-------+------------------------+
2542 */
2543 #define MEMCG_DELAY_PRECISION_SHIFT 20
2544 #define MEMCG_DELAY_SCALING_SHIFT 14
2545
2546 static u64 calculate_overage(unsigned long usage, unsigned long high)
2547 {
2548 u64 overage;
2549
2550 if (usage <= high)
2551 return 0;
2552
2553 /*
2554 * Prevent division by 0 in overage calculation by acting as if
2555 * it was a threshold of 1 page
2556 */
2557 high = max(high, 1UL);
2558
2559 overage = usage - high;
2560 overage <<= MEMCG_DELAY_PRECISION_SHIFT;
2561 return div64_u64(overage, high);
2562 }
2563
2564 static u64 mem_find_max_overage(struct mem_cgroup *memcg)
2565 {
2566 u64 overage, max_overage = 0;
2567
2568 do {
2569 overage = calculate_overage(page_counter_read(&memcg->memory),
2570 READ_ONCE(memcg->memory.high));
2571 max_overage = max(overage, max_overage);
2572 } while ((memcg = parent_mem_cgroup(memcg)) &&
2573 !mem_cgroup_is_root(memcg));
2574
2575 return max_overage;
2576 }
2577
2578 static u64 swap_find_max_overage(struct mem_cgroup *memcg)
2579 {
2580 u64 overage, max_overage = 0;
2581
2582 do {
2583 overage = calculate_overage(page_counter_read(&memcg->swap),
2584 READ_ONCE(memcg->swap.high));
2585 if (overage)
2586 memcg_memory_event(memcg, MEMCG_SWAP_HIGH);
2587 max_overage = max(overage, max_overage);
2588 } while ((memcg = parent_mem_cgroup(memcg)) &&
2589 !mem_cgroup_is_root(memcg));
2590
2591 return max_overage;
2592 }
2593
2594 /*
2595 * Get the number of jiffies that we should penalise a mischievous cgroup which
2596 * is exceeding its memory.high by checking both it and its ancestors.
2597 */
2598 static unsigned long calculate_high_delay(struct mem_cgroup *memcg,
2599 unsigned int nr_pages,
2600 u64 max_overage)
2601 {
2602 unsigned long penalty_jiffies;
2603
2604 if (!max_overage)
2605 return 0;
2606
2607 /*
2608 * We use overage compared to memory.high to calculate the number of
2609 * jiffies to sleep (penalty_jiffies). Ideally this value should be
2610 * fairly lenient on small overages, and increasingly harsh when the
2611 * memcg in question makes it clear that it has no intention of stopping
2612 * its crazy behaviour, so we exponentially increase the delay based on
2613 * overage amount.
2614 */
2615 penalty_jiffies = max_overage * max_overage * HZ;
2616 penalty_jiffies >>= MEMCG_DELAY_PRECISION_SHIFT;
2617 penalty_jiffies >>= MEMCG_DELAY_SCALING_SHIFT;
2618
2619 /*
2620 * Factor in the task's own contribution to the overage, such that four
2621 * N-sized allocations are throttled approximately the same as one
2622 * 4N-sized allocation.
2623 *
2624 * MEMCG_CHARGE_BATCH pages is nominal, so work out how much smaller or
2625 * larger the current charge patch is than that.
2626 */
2627 return penalty_jiffies * nr_pages / MEMCG_CHARGE_BATCH;
2628 }
2629
2630 /*
2631 * Scheduled by try_charge() to be executed from the userland return path
2632 * and reclaims memory over the high limit.
2633 */
2634 void mem_cgroup_handle_over_high(void)
2635 {
2636 unsigned long penalty_jiffies;
2637 unsigned long pflags;
2638 unsigned long nr_reclaimed;
2639 unsigned int nr_pages = current->memcg_nr_pages_over_high;
2640 int nr_retries = MAX_RECLAIM_RETRIES;
2641 struct mem_cgroup *memcg;
2642 bool in_retry = false;
2643
2644 if (likely(!nr_pages))
2645 return;
2646
2647 memcg = get_mem_cgroup_from_mm(current->mm);
2648 current->memcg_nr_pages_over_high = 0;
2649
2650 retry_reclaim:
2651 /*
2652 * The allocating task should reclaim at least the batch size, but for
2653 * subsequent retries we only want to do what's necessary to prevent oom
2654 * or breaching resource isolation.
2655 *
2656 * This is distinct from memory.max or page allocator behaviour because
2657 * memory.high is currently batched, whereas memory.max and the page
2658 * allocator run every time an allocation is made.
2659 */
2660 nr_reclaimed = reclaim_high(memcg,
2661 in_retry ? SWAP_CLUSTER_MAX : nr_pages,
2662 GFP_KERNEL);
2663
2664 /*
2665 * memory.high is breached and reclaim is unable to keep up. Throttle
2666 * allocators proactively to slow down excessive growth.
2667 */
2668 penalty_jiffies = calculate_high_delay(memcg, nr_pages,
2669 mem_find_max_overage(memcg));
2670
2671 penalty_jiffies += calculate_high_delay(memcg, nr_pages,
2672 swap_find_max_overage(memcg));
2673
2674 /*
2675 * Clamp the max delay per usermode return so as to still keep the
2676 * application moving forwards and also permit diagnostics, albeit
2677 * extremely slowly.
2678 */
2679 penalty_jiffies = min(penalty_jiffies, MEMCG_MAX_HIGH_DELAY_JIFFIES);
2680
2681 /*
2682 * Don't sleep if the amount of jiffies this memcg owes us is so low
2683 * that it's not even worth doing, in an attempt to be nice to those who
2684 * go only a small amount over their memory.high value and maybe haven't
2685 * been aggressively reclaimed enough yet.
2686 */
2687 if (penalty_jiffies <= HZ / 100)
2688 goto out;
2689
2690 /*
2691 * If reclaim is making forward progress but we're still over
2692 * memory.high, we want to encourage that rather than doing allocator
2693 * throttling.
2694 */
2695 if (nr_reclaimed || nr_retries--) {
2696 in_retry = true;
2697 goto retry_reclaim;
2698 }
2699
2700 /*
2701 * If we exit early, we're guaranteed to die (since
2702 * schedule_timeout_killable sets TASK_KILLABLE). This means we don't
2703 * need to account for any ill-begotten jiffies to pay them off later.
2704 */
2705 psi_memstall_enter(&pflags);
2706 schedule_timeout_killable(penalty_jiffies);
2707 psi_memstall_leave(&pflags);
2708
2709 out:
2710 css_put(&memcg->css);
2711 }
2712
2713 static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2714 unsigned int nr_pages)
2715 {
2716 unsigned int batch = max(MEMCG_CHARGE_BATCH, nr_pages);
2717 int nr_retries = MAX_RECLAIM_RETRIES;
2718 struct mem_cgroup *mem_over_limit;
2719 struct page_counter *counter;
2720 enum oom_status oom_status;
2721 unsigned long nr_reclaimed;
2722 bool may_swap = true;
2723 bool drained = false;
2724 unsigned long pflags;
2725
2726 if (mem_cgroup_is_root(memcg))
2727 return 0;
2728 retry:
2729 if (consume_stock(memcg, nr_pages))
2730 return 0;
2731
2732 if (!do_memsw_account() ||
2733 page_counter_try_charge(&memcg->memsw, batch, &counter)) {
2734 if (page_counter_try_charge(&memcg->memory, batch, &counter))
2735 goto done_restock;
2736 if (do_memsw_account())
2737 page_counter_uncharge(&memcg->memsw, batch);
2738 mem_over_limit = mem_cgroup_from_counter(counter, memory);
2739 } else {
2740 mem_over_limit = mem_cgroup_from_counter(counter, memsw);
2741 may_swap = false;
2742 }
2743
2744 if (batch > nr_pages) {
2745 batch = nr_pages;
2746 goto retry;
2747 }
2748
2749 /*
2750 * Memcg doesn't have a dedicated reserve for atomic
2751 * allocations. But like the global atomic pool, we need to
2752 * put the burden of reclaim on regular allocation requests
2753 * and let these go through as privileged allocations.
2754 */
2755 if (gfp_mask & __GFP_ATOMIC)
2756 goto force;
2757
2758 /*
2759 * Unlike in global OOM situations, memcg is not in a physical
2760 * memory shortage. Allow dying and OOM-killed tasks to
2761 * bypass the last charges so that they can exit quickly and
2762 * free their memory.
2763 */
2764 if (unlikely(should_force_charge()))
2765 goto force;
2766
2767 /*
2768 * Prevent unbounded recursion when reclaim operations need to
2769 * allocate memory. This might exceed the limits temporarily,
2770 * but we prefer facilitating memory reclaim and getting back
2771 * under the limit over triggering OOM kills in these cases.
2772 */
2773 if (unlikely(current->flags & PF_MEMALLOC))
2774 goto force;
2775
2776 if (unlikely(task_in_memcg_oom(current)))
2777 goto nomem;
2778
2779 if (!gfpflags_allow_blocking(gfp_mask))
2780 goto nomem;
2781
2782 memcg_memory_event(mem_over_limit, MEMCG_MAX);
2783
2784 psi_memstall_enter(&pflags);
2785 nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
2786 gfp_mask, may_swap);
2787 psi_memstall_leave(&pflags);
2788
2789 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2790 goto retry;
2791
2792 if (!drained) {
2793 drain_all_stock(mem_over_limit);
2794 drained = true;
2795 goto retry;
2796 }
2797
2798 if (gfp_mask & __GFP_NORETRY)
2799 goto nomem;
2800 /*
2801 * Even though the limit is exceeded at this point, reclaim
2802 * may have been able to free some pages. Retry the charge
2803 * before killing the task.
2804 *
2805 * Only for regular pages, though: huge pages are rather
2806 * unlikely to succeed so close to the limit, and we fall back
2807 * to regular pages anyway in case of failure.
2808 */
2809 if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
2810 goto retry;
2811 /*
2812 * At task move, charge accounts can be doubly counted. So, it's
2813 * better to wait until the end of task_move if something is going on.
2814 */
2815 if (mem_cgroup_wait_acct_move(mem_over_limit))
2816 goto retry;
2817
2818 if (nr_retries--)
2819 goto retry;
2820
2821 if (gfp_mask & __GFP_RETRY_MAYFAIL)
2822 goto nomem;
2823
2824 if (gfp_mask & __GFP_NOFAIL)
2825 goto force;
2826
2827 if (fatal_signal_pending(current))
2828 goto force;
2829
2830 /*
2831 * keep retrying as long as the memcg oom killer is able to make
2832 * a forward progress or bypass the charge if the oom killer
2833 * couldn't make any progress.
2834 */
2835 oom_status = mem_cgroup_oom(mem_over_limit, gfp_mask,
2836 get_order(nr_pages * PAGE_SIZE));
2837 switch (oom_status) {
2838 case OOM_SUCCESS:
2839 nr_retries = MAX_RECLAIM_RETRIES;
2840 goto retry;
2841 case OOM_FAILED:
2842 goto force;
2843 default:
2844 goto nomem;
2845 }
2846 nomem:
2847 if (!(gfp_mask & __GFP_NOFAIL))
2848 return -ENOMEM;
2849 force:
2850 /*
2851 * The allocation either can't fail or will lead to more memory
2852 * being freed very soon. Allow memory usage go over the limit
2853 * temporarily by force charging it.
2854 */
2855 page_counter_charge(&memcg->memory, nr_pages);
2856 if (do_memsw_account())
2857 page_counter_charge(&memcg->memsw, nr_pages);
2858
2859 return 0;
2860
2861 done_restock:
2862 if (batch > nr_pages)
2863 refill_stock(memcg, batch - nr_pages);
2864
2865 /*
2866 * If the hierarchy is above the normal consumption range, schedule
2867 * reclaim on returning to userland. We can perform reclaim here
2868 * if __GFP_RECLAIM but let's always punt for simplicity and so that
2869 * GFP_KERNEL can consistently be used during reclaim. @memcg is
2870 * not recorded as it most likely matches current's and won't
2871 * change in the meantime. As high limit is checked again before
2872 * reclaim, the cost of mismatch is negligible.
2873 */
2874 do {
2875 bool mem_high, swap_high;
2876
2877 mem_high = page_counter_read(&memcg->memory) >
2878 READ_ONCE(memcg->memory.high);
2879 swap_high = page_counter_read(&memcg->swap) >
2880 READ_ONCE(memcg->swap.high);
2881
2882 /* Don't bother a random interrupted task */
2883 if (in_interrupt()) {
2884 if (mem_high) {
2885 schedule_work(&memcg->high_work);
2886 break;
2887 }
2888 continue;
2889 }
2890
2891 if (mem_high || swap_high) {
2892 /*
2893 * The allocating tasks in this cgroup will need to do
2894 * reclaim or be throttled to prevent further growth
2895 * of the memory or swap footprints.
2896 *
2897 * Target some best-effort fairness between the tasks,
2898 * and distribute reclaim work and delay penalties
2899 * based on how much each task is actually allocating.
2900 */
2901 current->memcg_nr_pages_over_high += batch;
2902 set_notify_resume(current);
2903 break;
2904 }
2905 } while ((memcg = parent_mem_cgroup(memcg)));
2906
2907 return 0;
2908 }
2909
2910 #if defined(CONFIG_MEMCG_KMEM) || defined(CONFIG_MMU)
2911 static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
2912 {
2913 if (mem_cgroup_is_root(memcg))
2914 return;
2915
2916 page_counter_uncharge(&memcg->memory, nr_pages);
2917 if (do_memsw_account())
2918 page_counter_uncharge(&memcg->memsw, nr_pages);
2919 }
2920 #endif
2921
2922 static void commit_charge(struct page *page, struct mem_cgroup *memcg)
2923 {
2924 VM_BUG_ON_PAGE(page_memcg(page), page);
2925 /*
2926 * Any of the following ensures page's memcg stability:
2927 *
2928 * - the page lock
2929 * - LRU isolation
2930 * - lock_page_memcg()
2931 * - exclusive reference
2932 */
2933 page->memcg_data = (unsigned long)memcg;
2934 }
2935
2936 #ifdef CONFIG_MEMCG_KMEM
2937 int memcg_alloc_page_obj_cgroups(struct page *page, struct kmem_cache *s,
2938 gfp_t gfp)
2939 {
2940 unsigned int objects = objs_per_slab_page(s, page);
2941 void *vec;
2942
2943 vec = kcalloc_node(objects, sizeof(struct obj_cgroup *), gfp,
2944 page_to_nid(page));
2945 if (!vec)
2946 return -ENOMEM;
2947
2948 if (!set_page_objcgs(page, vec))
2949 kfree(vec);
2950 else
2951 kmemleak_not_leak(vec);
2952
2953 return 0;
2954 }
2955
2956 /*
2957 * Returns a pointer to the memory cgroup to which the kernel object is charged.
2958 *
2959 * A passed kernel object can be a slab object or a generic kernel page, so
2960 * different mechanisms for getting the memory cgroup pointer should be used.
2961 * In certain cases (e.g. kernel stacks or large kmallocs with SLUB) the caller
2962 * can not know for sure how the kernel object is implemented.
2963 * mem_cgroup_from_obj() can be safely used in such cases.
2964 *
2965 * The caller must ensure the memcg lifetime, e.g. by taking rcu_read_lock(),
2966 * cgroup_mutex, etc.
2967 */
2968 struct mem_cgroup *mem_cgroup_from_obj(void *p)
2969 {
2970 struct page *page;
2971
2972 if (mem_cgroup_disabled())
2973 return NULL;
2974
2975 page = virt_to_head_page(p);
2976
2977 /*
2978 * Slab objects are accounted individually, not per-page.
2979 * Memcg membership data for each individual object is saved in
2980 * the page->obj_cgroups.
2981 */
2982 if (page_objcgs_check(page)) {
2983 struct obj_cgroup *objcg;
2984 unsigned int off;
2985
2986 off = obj_to_index(page->slab_cache, page, p);
2987 objcg = page_objcgs(page)[off];
2988 if (objcg)
2989 return obj_cgroup_memcg(objcg);
2990
2991 return NULL;
2992 }
2993
2994 /*
2995 * page_memcg_check() is used here, because page_has_obj_cgroups()
2996 * check above could fail because the object cgroups vector wasn't set
2997 * at that moment, but it can be set concurrently.
2998 * page_memcg_check(page) will guarantee that a proper memory
2999 * cgroup pointer or NULL will be returned.
3000 */
3001 return page_memcg_check(page);
3002 }
3003
3004 __always_inline struct obj_cgroup *get_obj_cgroup_from_current(void)
3005 {
3006 struct obj_cgroup *objcg = NULL;
3007 struct mem_cgroup *memcg;
3008
3009 if (memcg_kmem_bypass())
3010 return NULL;
3011
3012 rcu_read_lock();
3013 if (unlikely(active_memcg()))
3014 memcg = active_memcg();
3015 else
3016 memcg = mem_cgroup_from_task(current);
3017
3018 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg)) {
3019 objcg = rcu_dereference(memcg->objcg);
3020 if (objcg && obj_cgroup_tryget(objcg))
3021 break;
3022 objcg = NULL;
3023 }
3024 rcu_read_unlock();
3025
3026 return objcg;
3027 }
3028
3029 static int memcg_alloc_cache_id(void)
3030 {
3031 int id, size;
3032 int err;
3033
3034 id = ida_simple_get(&memcg_cache_ida,
3035 0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
3036 if (id < 0)
3037 return id;
3038
3039 if (id < memcg_nr_cache_ids)
3040 return id;
3041
3042 /*
3043 * There's no space for the new id in memcg_caches arrays,
3044 * so we have to grow them.
3045 */
3046 down_write(&memcg_cache_ids_sem);
3047
3048 size = 2 * (id + 1);
3049 if (size < MEMCG_CACHES_MIN_SIZE)
3050 size = MEMCG_CACHES_MIN_SIZE;
3051 else if (size > MEMCG_CACHES_MAX_SIZE)
3052 size = MEMCG_CACHES_MAX_SIZE;
3053
3054 err = memcg_update_all_list_lrus(size);
3055 if (!err)
3056 memcg_nr_cache_ids = size;
3057
3058 up_write(&memcg_cache_ids_sem);
3059
3060 if (err) {
3061 ida_simple_remove(&memcg_cache_ida, id);
3062 return err;
3063 }
3064 return id;
3065 }
3066
3067 static void memcg_free_cache_id(int id)
3068 {
3069 ida_simple_remove(&memcg_cache_ida, id);
3070 }
3071
3072 /**
3073 * __memcg_kmem_charge: charge a number of kernel pages to a memcg
3074 * @memcg: memory cgroup to charge
3075 * @gfp: reclaim mode
3076 * @nr_pages: number of pages to charge
3077 *
3078 * Returns 0 on success, an error code on failure.
3079 */
3080 int __memcg_kmem_charge(struct mem_cgroup *memcg, gfp_t gfp,
3081 unsigned int nr_pages)
3082 {
3083 struct page_counter *counter;
3084 int ret;
3085
3086 ret = try_charge(memcg, gfp, nr_pages);
3087 if (ret)
3088 return ret;
3089
3090 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) &&
3091 !page_counter_try_charge(&memcg->kmem, nr_pages, &counter)) {
3092
3093 /*
3094 * Enforce __GFP_NOFAIL allocation because callers are not
3095 * prepared to see failures and likely do not have any failure
3096 * handling code.
3097 */
3098 if (gfp & __GFP_NOFAIL) {
3099 page_counter_charge(&memcg->kmem, nr_pages);
3100 return 0;
3101 }
3102 cancel_charge(memcg, nr_pages);
3103 return -ENOMEM;
3104 }
3105 return 0;
3106 }
3107
3108 /**
3109 * __memcg_kmem_uncharge: uncharge a number of kernel pages from a memcg
3110 * @memcg: memcg to uncharge
3111 * @nr_pages: number of pages to uncharge
3112 */
3113 void __memcg_kmem_uncharge(struct mem_cgroup *memcg, unsigned int nr_pages)
3114 {
3115 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
3116 page_counter_uncharge(&memcg->kmem, nr_pages);
3117
3118 page_counter_uncharge(&memcg->memory, nr_pages);
3119 if (do_memsw_account())
3120 page_counter_uncharge(&memcg->memsw, nr_pages);
3121 }
3122
3123 /**
3124 * __memcg_kmem_charge_page: charge a kmem page to the current memory cgroup
3125 * @page: page to charge
3126 * @gfp: reclaim mode
3127 * @order: allocation order
3128 *
3129 * Returns 0 on success, an error code on failure.
3130 */
3131 int __memcg_kmem_charge_page(struct page *page, gfp_t gfp, int order)
3132 {
3133 struct mem_cgroup *memcg;
3134 int ret = 0;
3135
3136 memcg = get_mem_cgroup_from_current();
3137 if (memcg && !mem_cgroup_is_root(memcg)) {
3138 ret = __memcg_kmem_charge(memcg, gfp, 1 << order);
3139 if (!ret) {
3140 page->memcg_data = (unsigned long)memcg |
3141 MEMCG_DATA_KMEM;
3142 return 0;
3143 }
3144 css_put(&memcg->css);
3145 }
3146 return ret;
3147 }
3148
3149 /**
3150 * __memcg_kmem_uncharge_page: uncharge a kmem page
3151 * @page: page to uncharge
3152 * @order: allocation order
3153 */
3154 void __memcg_kmem_uncharge_page(struct page *page, int order)
3155 {
3156 struct mem_cgroup *memcg = page_memcg(page);
3157 unsigned int nr_pages = 1 << order;
3158
3159 if (!memcg)
3160 return;
3161
3162 VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
3163 __memcg_kmem_uncharge(memcg, nr_pages);
3164 page->memcg_data = 0;
3165 css_put(&memcg->css);
3166 }
3167
3168 static bool consume_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes)
3169 {
3170 struct memcg_stock_pcp *stock;
3171 unsigned long flags;
3172 bool ret = false;
3173
3174 local_irq_save(flags);
3175
3176 stock = this_cpu_ptr(&memcg_stock);
3177 if (objcg == stock->cached_objcg && stock->nr_bytes >= nr_bytes) {
3178 stock->nr_bytes -= nr_bytes;
3179 ret = true;
3180 }
3181
3182 local_irq_restore(flags);
3183
3184 return ret;
3185 }
3186
3187 static void drain_obj_stock(struct memcg_stock_pcp *stock)
3188 {
3189 struct obj_cgroup *old = stock->cached_objcg;
3190
3191 if (!old)
3192 return;
3193
3194 if (stock->nr_bytes) {
3195 unsigned int nr_pages = stock->nr_bytes >> PAGE_SHIFT;
3196 unsigned int nr_bytes = stock->nr_bytes & (PAGE_SIZE - 1);
3197
3198 if (nr_pages) {
3199 rcu_read_lock();
3200 __memcg_kmem_uncharge(obj_cgroup_memcg(old), nr_pages);
3201 rcu_read_unlock();
3202 }
3203
3204 /*
3205 * The leftover is flushed to the centralized per-memcg value.
3206 * On the next attempt to refill obj stock it will be moved
3207 * to a per-cpu stock (probably, on an other CPU), see
3208 * refill_obj_stock().
3209 *
3210 * How often it's flushed is a trade-off between the memory
3211 * limit enforcement accuracy and potential CPU contention,
3212 * so it might be changed in the future.
3213 */
3214 atomic_add(nr_bytes, &old->nr_charged_bytes);
3215 stock->nr_bytes = 0;
3216 }
3217
3218 obj_cgroup_put(old);
3219 stock->cached_objcg = NULL;
3220 }
3221
3222 static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
3223 struct mem_cgroup *root_memcg)
3224 {
3225 struct mem_cgroup *memcg;
3226
3227 if (stock->cached_objcg) {
3228 memcg = obj_cgroup_memcg(stock->cached_objcg);
3229 if (memcg && mem_cgroup_is_descendant(memcg, root_memcg))
3230 return true;
3231 }
3232
3233 return false;
3234 }
3235
3236 static void refill_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes)
3237 {
3238 struct memcg_stock_pcp *stock;
3239 unsigned long flags;
3240
3241 local_irq_save(flags);
3242
3243 stock = this_cpu_ptr(&memcg_stock);
3244 if (stock->cached_objcg != objcg) { /* reset if necessary */
3245 drain_obj_stock(stock);
3246 obj_cgroup_get(objcg);
3247 stock->cached_objcg = objcg;
3248 stock->nr_bytes = atomic_xchg(&objcg->nr_charged_bytes, 0);
3249 }
3250 stock->nr_bytes += nr_bytes;
3251
3252 if (stock->nr_bytes > PAGE_SIZE)
3253 drain_obj_stock(stock);
3254
3255 local_irq_restore(flags);
3256 }
3257
3258 int obj_cgroup_charge(struct obj_cgroup *objcg, gfp_t gfp, size_t size)
3259 {
3260 struct mem_cgroup *memcg;
3261 unsigned int nr_pages, nr_bytes;
3262 int ret;
3263
3264 if (consume_obj_stock(objcg, size))
3265 return 0;
3266
3267 /*
3268 * In theory, memcg->nr_charged_bytes can have enough
3269 * pre-charged bytes to satisfy the allocation. However,
3270 * flushing memcg->nr_charged_bytes requires two atomic
3271 * operations, and memcg->nr_charged_bytes can't be big,
3272 * so it's better to ignore it and try grab some new pages.
3273 * memcg->nr_charged_bytes will be flushed in
3274 * refill_obj_stock(), called from this function or
3275 * independently later.
3276 */
3277 rcu_read_lock();
3278 retry:
3279 memcg = obj_cgroup_memcg(objcg);
3280 if (unlikely(!css_tryget(&memcg->css)))
3281 goto retry;
3282 rcu_read_unlock();
3283
3284 nr_pages = size >> PAGE_SHIFT;
3285 nr_bytes = size & (PAGE_SIZE - 1);
3286
3287 if (nr_bytes)
3288 nr_pages += 1;
3289
3290 ret = __memcg_kmem_charge(memcg, gfp, nr_pages);
3291 if (!ret && nr_bytes)
3292 refill_obj_stock(objcg, PAGE_SIZE - nr_bytes);
3293
3294 css_put(&memcg->css);
3295 return ret;
3296 }
3297
3298 void obj_cgroup_uncharge(struct obj_cgroup *objcg, size_t size)
3299 {
3300 refill_obj_stock(objcg, size);
3301 }
3302
3303 #endif /* CONFIG_MEMCG_KMEM */
3304
3305 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3306 /*
3307 * Because page_memcg(head) is not set on compound tails, set it now.
3308 */
3309 void mem_cgroup_split_huge_fixup(struct page *head)
3310 {
3311 struct mem_cgroup *memcg = page_memcg(head);
3312 int i;
3313
3314 if (mem_cgroup_disabled())
3315 return;
3316
3317 for (i = 1; i < HPAGE_PMD_NR; i++) {
3318 css_get(&memcg->css);
3319 head[i].memcg_data = (unsigned long)memcg;
3320 }
3321 }
3322 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3323
3324 #ifdef CONFIG_MEMCG_SWAP
3325 /**
3326 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
3327 * @entry: swap entry to be moved
3328 * @from: mem_cgroup which the entry is moved from
3329 * @to: mem_cgroup which the entry is moved to
3330 *
3331 * It succeeds only when the swap_cgroup's record for this entry is the same
3332 * as the mem_cgroup's id of @from.
3333 *
3334 * Returns 0 on success, -EINVAL on failure.
3335 *
3336 * The caller must have charged to @to, IOW, called page_counter_charge() about
3337 * both res and memsw, and called css_get().
3338 */
3339 static int mem_cgroup_move_swap_account(swp_entry_t entry,
3340 struct mem_cgroup *from, struct mem_cgroup *to)
3341 {
3342 unsigned short old_id, new_id;
3343
3344 old_id = mem_cgroup_id(from);
3345 new_id = mem_cgroup_id(to);
3346
3347 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
3348 mod_memcg_state(from, MEMCG_SWAP, -1);
3349 mod_memcg_state(to, MEMCG_SWAP, 1);
3350 return 0;
3351 }
3352 return -EINVAL;
3353 }
3354 #else
3355 static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
3356 struct mem_cgroup *from, struct mem_cgroup *to)
3357 {
3358 return -EINVAL;
3359 }
3360 #endif
3361
3362 static DEFINE_MUTEX(memcg_max_mutex);
3363
3364 static int mem_cgroup_resize_max(struct mem_cgroup *memcg,
3365 unsigned long max, bool memsw)
3366 {
3367 bool enlarge = false;
3368 bool drained = false;
3369 int ret;
3370 bool limits_invariant;
3371 struct page_counter *counter = memsw ? &memcg->memsw : &memcg->memory;
3372
3373 do {
3374 if (signal_pending(current)) {
3375 ret = -EINTR;
3376 break;
3377 }
3378
3379 mutex_lock(&memcg_max_mutex);
3380 /*
3381 * Make sure that the new limit (memsw or memory limit) doesn't
3382 * break our basic invariant rule memory.max <= memsw.max.
3383 */
3384 limits_invariant = memsw ? max >= READ_ONCE(memcg->memory.max) :
3385 max <= memcg->memsw.max;
3386 if (!limits_invariant) {
3387 mutex_unlock(&memcg_max_mutex);
3388 ret = -EINVAL;
3389 break;
3390 }
3391 if (max > counter->max)
3392 enlarge = true;
3393 ret = page_counter_set_max(counter, max);
3394 mutex_unlock(&memcg_max_mutex);
3395
3396 if (!ret)
3397 break;
3398
3399 if (!drained) {
3400 drain_all_stock(memcg);
3401 drained = true;
3402 continue;
3403 }
3404
3405 if (!try_to_free_mem_cgroup_pages(memcg, 1,
3406 GFP_KERNEL, !memsw)) {
3407 ret = -EBUSY;
3408 break;
3409 }
3410 } while (true);
3411
3412 if (!ret && enlarge)
3413 memcg_oom_recover(memcg);
3414
3415 return ret;
3416 }
3417
3418 unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
3419 gfp_t gfp_mask,
3420 unsigned long *total_scanned)
3421 {
3422 unsigned long nr_reclaimed = 0;
3423 struct mem_cgroup_per_node *mz, *next_mz = NULL;
3424 unsigned long reclaimed;
3425 int loop = 0;
3426 struct mem_cgroup_tree_per_node *mctz;
3427 unsigned long excess;
3428 unsigned long nr_scanned;
3429
3430 if (order > 0)
3431 return 0;
3432
3433 mctz = soft_limit_tree_node(pgdat->node_id);
3434
3435 /*
3436 * Do not even bother to check the largest node if the root
3437 * is empty. Do it lockless to prevent lock bouncing. Races
3438 * are acceptable as soft limit is best effort anyway.
3439 */
3440 if (!mctz || RB_EMPTY_ROOT(&mctz->rb_root))
3441 return 0;
3442
3443 /*
3444 * This loop can run a while, specially if mem_cgroup's continuously
3445 * keep exceeding their soft limit and putting the system under
3446 * pressure
3447 */
3448 do {
3449 if (next_mz)
3450 mz = next_mz;
3451 else
3452 mz = mem_cgroup_largest_soft_limit_node(mctz);
3453 if (!mz)
3454 break;
3455
3456 nr_scanned = 0;
3457 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, pgdat,
3458 gfp_mask, &nr_scanned);
3459 nr_reclaimed += reclaimed;
3460 *total_scanned += nr_scanned;
3461 spin_lock_irq(&mctz->lock);
3462 __mem_cgroup_remove_exceeded(mz, mctz);
3463
3464 /*
3465 * If we failed to reclaim anything from this memory cgroup
3466 * it is time to move on to the next cgroup
3467 */
3468 next_mz = NULL;
3469 if (!reclaimed)
3470 next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
3471
3472 excess = soft_limit_excess(mz->memcg);
3473 /*
3474 * One school of thought says that we should not add
3475 * back the node to the tree if reclaim returns 0.
3476 * But our reclaim could return 0, simply because due
3477 * to priority we are exposing a smaller subset of
3478 * memory to reclaim from. Consider this as a longer
3479 * term TODO.
3480 */
3481 /* If excess == 0, no tree ops */
3482 __mem_cgroup_insert_exceeded(mz, mctz, excess);
3483 spin_unlock_irq(&mctz->lock);
3484 css_put(&mz->memcg->css);
3485 loop++;
3486 /*
3487 * Could not reclaim anything and there are no more
3488 * mem cgroups to try or we seem to be looping without
3489 * reclaiming anything.
3490 */
3491 if (!nr_reclaimed &&
3492 (next_mz == NULL ||
3493 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
3494 break;
3495 } while (!nr_reclaimed);
3496 if (next_mz)
3497 css_put(&next_mz->memcg->css);
3498 return nr_reclaimed;
3499 }
3500
3501 /*
3502 * Reclaims as many pages from the given memcg as possible.
3503 *
3504 * Caller is responsible for holding css reference for memcg.
3505 */
3506 static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
3507 {
3508 int nr_retries = MAX_RECLAIM_RETRIES;
3509
3510 /* we call try-to-free pages for make this cgroup empty */
3511 lru_add_drain_all();
3512
3513 drain_all_stock(memcg);
3514
3515 /* try to free all pages in this cgroup */
3516 while (nr_retries && page_counter_read(&memcg->memory)) {
3517 int progress;
3518
3519 if (signal_pending(current))
3520 return -EINTR;
3521
3522 progress = try_to_free_mem_cgroup_pages(memcg, 1,
3523 GFP_KERNEL, true);
3524 if (!progress) {
3525 nr_retries--;
3526 /* maybe some writeback is necessary */
3527 congestion_wait(BLK_RW_ASYNC, HZ/10);
3528 }
3529
3530 }
3531
3532 return 0;
3533 }
3534
3535 static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
3536 char *buf, size_t nbytes,
3537 loff_t off)
3538 {
3539 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3540
3541 if (mem_cgroup_is_root(memcg))
3542 return -EINVAL;
3543 return mem_cgroup_force_empty(memcg) ?: nbytes;
3544 }
3545
3546 static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
3547 struct cftype *cft)
3548 {
3549 return 1;
3550 }
3551
3552 static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
3553 struct cftype *cft, u64 val)
3554 {
3555 if (val == 1)
3556 return 0;
3557
3558 pr_warn_once("Non-hierarchical mode is deprecated. "
3559 "Please report your usecase to linux-mm@kvack.org if you "
3560 "depend on this functionality.\n");
3561
3562 return -EINVAL;
3563 }
3564
3565 static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
3566 {
3567 unsigned long val;
3568
3569 if (mem_cgroup_is_root(memcg)) {
3570 val = memcg_page_state(memcg, NR_FILE_PAGES) +
3571 memcg_page_state(memcg, NR_ANON_MAPPED);
3572 if (swap)
3573 val += memcg_page_state(memcg, MEMCG_SWAP);
3574 } else {
3575 if (!swap)
3576 val = page_counter_read(&memcg->memory);
3577 else
3578 val = page_counter_read(&memcg->memsw);
3579 }
3580 return val;
3581 }
3582
3583 enum {
3584 RES_USAGE,
3585 RES_LIMIT,
3586 RES_MAX_USAGE,
3587 RES_FAILCNT,
3588 RES_SOFT_LIMIT,
3589 };
3590
3591 static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
3592 struct cftype *cft)
3593 {
3594 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3595 struct page_counter *counter;
3596
3597 switch (MEMFILE_TYPE(cft->private)) {
3598 case _MEM:
3599 counter = &memcg->memory;
3600 break;
3601 case _MEMSWAP:
3602 counter = &memcg->memsw;
3603 break;
3604 case _KMEM:
3605 counter = &memcg->kmem;
3606 break;
3607 case _TCP:
3608 counter = &memcg->tcpmem;
3609 break;
3610 default:
3611 BUG();
3612 }
3613
3614 switch (MEMFILE_ATTR(cft->private)) {
3615 case RES_USAGE:
3616 if (counter == &memcg->memory)
3617 return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
3618 if (counter == &memcg->memsw)
3619 return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
3620 return (u64)page_counter_read(counter) * PAGE_SIZE;
3621 case RES_LIMIT:
3622 return (u64)counter->max * PAGE_SIZE;
3623 case RES_MAX_USAGE:
3624 return (u64)counter->watermark * PAGE_SIZE;
3625 case RES_FAILCNT:
3626 return counter->failcnt;
3627 case RES_SOFT_LIMIT:
3628 return (u64)memcg->soft_limit * PAGE_SIZE;
3629 default:
3630 BUG();
3631 }
3632 }
3633
3634 static void memcg_flush_percpu_vmstats(struct mem_cgroup *memcg)
3635 {
3636 unsigned long stat[MEMCG_NR_STAT] = {0};
3637 struct mem_cgroup *mi;
3638 int node, cpu, i;
3639
3640 for_each_online_cpu(cpu)
3641 for (i = 0; i < MEMCG_NR_STAT; i++)
3642 stat[i] += per_cpu(memcg->vmstats_percpu->stat[i], cpu);
3643
3644 for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
3645 for (i = 0; i < MEMCG_NR_STAT; i++)
3646 atomic_long_add(stat[i], &mi->vmstats[i]);
3647
3648 for_each_node(node) {
3649 struct mem_cgroup_per_node *pn = memcg->nodeinfo[node];
3650 struct mem_cgroup_per_node *pi;
3651
3652 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
3653 stat[i] = 0;
3654
3655 for_each_online_cpu(cpu)
3656 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
3657 stat[i] += per_cpu(
3658 pn->lruvec_stat_cpu->count[i], cpu);
3659
3660 for (pi = pn; pi; pi = parent_nodeinfo(pi, node))
3661 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
3662 atomic_long_add(stat[i], &pi->lruvec_stat[i]);
3663 }
3664 }
3665
3666 static void memcg_flush_percpu_vmevents(struct mem_cgroup *memcg)
3667 {
3668 unsigned long events[NR_VM_EVENT_ITEMS];
3669 struct mem_cgroup *mi;
3670 int cpu, i;
3671
3672 for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
3673 events[i] = 0;
3674
3675 for_each_online_cpu(cpu)
3676 for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
3677 events[i] += per_cpu(memcg->vmstats_percpu->events[i],
3678 cpu);
3679
3680 for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
3681 for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
3682 atomic_long_add(events[i], &mi->vmevents[i]);
3683 }
3684
3685 #ifdef CONFIG_MEMCG_KMEM
3686 static int memcg_online_kmem(struct mem_cgroup *memcg)
3687 {
3688 struct obj_cgroup *objcg;
3689 int memcg_id;
3690
3691 if (cgroup_memory_nokmem)
3692 return 0;
3693
3694 BUG_ON(memcg->kmemcg_id >= 0);
3695 BUG_ON(memcg->kmem_state);
3696
3697 memcg_id = memcg_alloc_cache_id();
3698 if (memcg_id < 0)
3699 return memcg_id;
3700
3701 objcg = obj_cgroup_alloc();
3702 if (!objcg) {
3703 memcg_free_cache_id(memcg_id);
3704 return -ENOMEM;
3705 }
3706 objcg->memcg = memcg;
3707 rcu_assign_pointer(memcg->objcg, objcg);
3708
3709 static_branch_enable(&memcg_kmem_enabled_key);
3710
3711 memcg->kmemcg_id = memcg_id;
3712 memcg->kmem_state = KMEM_ONLINE;
3713
3714 return 0;
3715 }
3716
3717 static void memcg_offline_kmem(struct mem_cgroup *memcg)
3718 {
3719 struct cgroup_subsys_state *css;
3720 struct mem_cgroup *parent, *child;
3721 int kmemcg_id;
3722
3723 if (memcg->kmem_state != KMEM_ONLINE)
3724 return;
3725
3726 memcg->kmem_state = KMEM_ALLOCATED;
3727
3728 parent = parent_mem_cgroup(memcg);
3729 if (!parent)
3730 parent = root_mem_cgroup;
3731
3732 memcg_reparent_objcgs(memcg, parent);
3733
3734 kmemcg_id = memcg->kmemcg_id;
3735 BUG_ON(kmemcg_id < 0);
3736
3737 /*
3738 * Change kmemcg_id of this cgroup and all its descendants to the
3739 * parent's id, and then move all entries from this cgroup's list_lrus
3740 * to ones of the parent. After we have finished, all list_lrus
3741 * corresponding to this cgroup are guaranteed to remain empty. The
3742 * ordering is imposed by list_lru_node->lock taken by
3743 * memcg_drain_all_list_lrus().
3744 */
3745 rcu_read_lock(); /* can be called from css_free w/o cgroup_mutex */
3746 css_for_each_descendant_pre(css, &memcg->css) {
3747 child = mem_cgroup_from_css(css);
3748 BUG_ON(child->kmemcg_id != kmemcg_id);
3749 child->kmemcg_id = parent->kmemcg_id;
3750 }
3751 rcu_read_unlock();
3752
3753 memcg_drain_all_list_lrus(kmemcg_id, parent);
3754
3755 memcg_free_cache_id(kmemcg_id);
3756 }
3757
3758 static void memcg_free_kmem(struct mem_cgroup *memcg)
3759 {
3760 /* css_alloc() failed, offlining didn't happen */
3761 if (unlikely(memcg->kmem_state == KMEM_ONLINE))
3762 memcg_offline_kmem(memcg);
3763 }
3764 #else
3765 static int memcg_online_kmem(struct mem_cgroup *memcg)
3766 {
3767 return 0;
3768 }
3769 static void memcg_offline_kmem(struct mem_cgroup *memcg)
3770 {
3771 }
3772 static void memcg_free_kmem(struct mem_cgroup *memcg)
3773 {
3774 }
3775 #endif /* CONFIG_MEMCG_KMEM */
3776
3777 static int memcg_update_kmem_max(struct mem_cgroup *memcg,
3778 unsigned long max)
3779 {
3780 int ret;
3781
3782 mutex_lock(&memcg_max_mutex);
3783 ret = page_counter_set_max(&memcg->kmem, max);
3784 mutex_unlock(&memcg_max_mutex);
3785 return ret;
3786 }
3787
3788 static int memcg_update_tcp_max(struct mem_cgroup *memcg, unsigned long max)
3789 {
3790 int ret;
3791
3792 mutex_lock(&memcg_max_mutex);
3793
3794 ret = page_counter_set_max(&memcg->tcpmem, max);
3795 if (ret)
3796 goto out;
3797
3798 if (!memcg->tcpmem_active) {
3799 /*
3800 * The active flag needs to be written after the static_key
3801 * update. This is what guarantees that the socket activation
3802 * function is the last one to run. See mem_cgroup_sk_alloc()
3803 * for details, and note that we don't mark any socket as
3804 * belonging to this memcg until that flag is up.
3805 *
3806 * We need to do this, because static_keys will span multiple
3807 * sites, but we can't control their order. If we mark a socket
3808 * as accounted, but the accounting functions are not patched in
3809 * yet, we'll lose accounting.
3810 *
3811 * We never race with the readers in mem_cgroup_sk_alloc(),
3812 * because when this value change, the code to process it is not
3813 * patched in yet.
3814 */
3815 static_branch_inc(&memcg_sockets_enabled_key);
3816 memcg->tcpmem_active = true;
3817 }
3818 out:
3819 mutex_unlock(&memcg_max_mutex);
3820 return ret;
3821 }
3822
3823 /*
3824 * The user of this function is...
3825 * RES_LIMIT.
3826 */
3827 static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
3828 char *buf, size_t nbytes, loff_t off)
3829 {
3830 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3831 unsigned long nr_pages;
3832 int ret;
3833
3834 buf = strstrip(buf);
3835 ret = page_counter_memparse(buf, "-1", &nr_pages);
3836 if (ret)
3837 return ret;
3838
3839 switch (MEMFILE_ATTR(of_cft(of)->private)) {
3840 case RES_LIMIT:
3841 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3842 ret = -EINVAL;
3843 break;
3844 }
3845 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3846 case _MEM:
3847 ret = mem_cgroup_resize_max(memcg, nr_pages, false);
3848 break;
3849 case _MEMSWAP:
3850 ret = mem_cgroup_resize_max(memcg, nr_pages, true);
3851 break;
3852 case _KMEM:
3853 pr_warn_once("kmem.limit_in_bytes is deprecated and will be removed. "
3854 "Please report your usecase to linux-mm@kvack.org if you "
3855 "depend on this functionality.\n");
3856 ret = memcg_update_kmem_max(memcg, nr_pages);
3857 break;
3858 case _TCP:
3859 ret = memcg_update_tcp_max(memcg, nr_pages);
3860 break;
3861 }
3862 break;
3863 case RES_SOFT_LIMIT:
3864 memcg->soft_limit = nr_pages;
3865 ret = 0;
3866 break;
3867 }
3868 return ret ?: nbytes;
3869 }
3870
3871 static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
3872 size_t nbytes, loff_t off)
3873 {
3874 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3875 struct page_counter *counter;
3876
3877 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3878 case _MEM:
3879 counter = &memcg->memory;
3880 break;
3881 case _MEMSWAP:
3882 counter = &memcg->memsw;
3883 break;
3884 case _KMEM:
3885 counter = &memcg->kmem;
3886 break;
3887 case _TCP:
3888 counter = &memcg->tcpmem;
3889 break;
3890 default:
3891 BUG();
3892 }
3893
3894 switch (MEMFILE_ATTR(of_cft(of)->private)) {
3895 case RES_MAX_USAGE:
3896 page_counter_reset_watermark(counter);
3897 break;
3898 case RES_FAILCNT:
3899 counter->failcnt = 0;
3900 break;
3901 default:
3902 BUG();
3903 }
3904
3905 return nbytes;
3906 }
3907
3908 static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
3909 struct cftype *cft)
3910 {
3911 return mem_cgroup_from_css(css)->move_charge_at_immigrate;
3912 }
3913
3914 #ifdef CONFIG_MMU
3915 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3916 struct cftype *cft, u64 val)
3917 {
3918 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3919
3920 if (val & ~MOVE_MASK)
3921 return -EINVAL;
3922
3923 /*
3924 * No kind of locking is needed in here, because ->can_attach() will
3925 * check this value once in the beginning of the process, and then carry
3926 * on with stale data. This means that changes to this value will only
3927 * affect task migrations starting after the change.
3928 */
3929 memcg->move_charge_at_immigrate = val;
3930 return 0;
3931 }
3932 #else
3933 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3934 struct cftype *cft, u64 val)
3935 {
3936 return -ENOSYS;
3937 }
3938 #endif
3939
3940 #ifdef CONFIG_NUMA
3941
3942 #define LRU_ALL_FILE (BIT(LRU_INACTIVE_FILE) | BIT(LRU_ACTIVE_FILE))
3943 #define LRU_ALL_ANON (BIT(LRU_INACTIVE_ANON) | BIT(LRU_ACTIVE_ANON))
3944 #define LRU_ALL ((1 << NR_LRU_LISTS) - 1)
3945
3946 static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
3947 int nid, unsigned int lru_mask, bool tree)
3948 {
3949 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid));
3950 unsigned long nr = 0;
3951 enum lru_list lru;
3952
3953 VM_BUG_ON((unsigned)nid >= nr_node_ids);
3954
3955 for_each_lru(lru) {
3956 if (!(BIT(lru) & lru_mask))
3957 continue;
3958 if (tree)
3959 nr += lruvec_page_state(lruvec, NR_LRU_BASE + lru);
3960 else
3961 nr += lruvec_page_state_local(lruvec, NR_LRU_BASE + lru);
3962 }
3963 return nr;
3964 }
3965
3966 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
3967 unsigned int lru_mask,
3968 bool tree)
3969 {
3970 unsigned long nr = 0;
3971 enum lru_list lru;
3972
3973 for_each_lru(lru) {
3974 if (!(BIT(lru) & lru_mask))
3975 continue;
3976 if (tree)
3977 nr += memcg_page_state(memcg, NR_LRU_BASE + lru);
3978 else
3979 nr += memcg_page_state_local(memcg, NR_LRU_BASE + lru);
3980 }
3981 return nr;
3982 }
3983
3984 static int memcg_numa_stat_show(struct seq_file *m, void *v)
3985 {
3986 struct numa_stat {
3987 const char *name;
3988 unsigned int lru_mask;
3989 };
3990
3991 static const struct numa_stat stats[] = {
3992 { "total", LRU_ALL },
3993 { "file", LRU_ALL_FILE },
3994 { "anon", LRU_ALL_ANON },
3995 { "unevictable", BIT(LRU_UNEVICTABLE) },
3996 };
3997 const struct numa_stat *stat;
3998 int nid;
3999 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
4000
4001 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
4002 seq_printf(m, "%s=%lu", stat->name,
4003 mem_cgroup_nr_lru_pages(memcg, stat->lru_mask,
4004 false));
4005 for_each_node_state(nid, N_MEMORY)
4006 seq_printf(m, " N%d=%lu", nid,
4007 mem_cgroup_node_nr_lru_pages(memcg, nid,
4008 stat->lru_mask, false));
4009 seq_putc(m, '\n');
4010 }
4011
4012 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
4013
4014 seq_printf(m, "hierarchical_%s=%lu", stat->name,
4015 mem_cgroup_nr_lru_pages(memcg, stat->lru_mask,
4016 true));
4017 for_each_node_state(nid, N_MEMORY)
4018 seq_printf(m, " N%d=%lu", nid,
4019 mem_cgroup_node_nr_lru_pages(memcg, nid,
4020 stat->lru_mask, true));
4021 seq_putc(m, '\n');
4022 }
4023
4024 return 0;
4025 }
4026 #endif /* CONFIG_NUMA */
4027
4028 static const unsigned int memcg1_stats[] = {
4029 NR_FILE_PAGES,
4030 NR_ANON_MAPPED,
4031 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4032 NR_ANON_THPS,
4033 #endif
4034 NR_SHMEM,
4035 NR_FILE_MAPPED,
4036 NR_FILE_DIRTY,
4037 NR_WRITEBACK,
4038 MEMCG_SWAP,
4039 };
4040
4041 static const char *const memcg1_stat_names[] = {
4042 "cache",
4043 "rss",
4044 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4045 "rss_huge",
4046 #endif
4047 "shmem",
4048 "mapped_file",
4049 "dirty",
4050 "writeback",
4051 "swap",
4052 };
4053
4054 /* Universal VM events cgroup1 shows, original sort order */
4055 static const unsigned int memcg1_events[] = {
4056 PGPGIN,
4057 PGPGOUT,
4058 PGFAULT,
4059 PGMAJFAULT,
4060 };
4061
4062 static int memcg_stat_show(struct seq_file *m, void *v)
4063 {
4064 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
4065 unsigned long memory, memsw;
4066 struct mem_cgroup *mi;
4067 unsigned int i;
4068
4069 BUILD_BUG_ON(ARRAY_SIZE(memcg1_stat_names) != ARRAY_SIZE(memcg1_stats));
4070
4071 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
4072 unsigned long nr;
4073
4074 if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
4075 continue;
4076 nr = memcg_page_state_local(memcg, memcg1_stats[i]);
4077 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4078 if (memcg1_stats[i] == NR_ANON_THPS)
4079 nr *= HPAGE_PMD_NR;
4080 #endif
4081 seq_printf(m, "%s %lu\n", memcg1_stat_names[i], nr * PAGE_SIZE);
4082 }
4083
4084 for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
4085 seq_printf(m, "%s %lu\n", vm_event_name(memcg1_events[i]),
4086 memcg_events_local(memcg, memcg1_events[i]));
4087
4088 for (i = 0; i < NR_LRU_LISTS; i++)
4089 seq_printf(m, "%s %lu\n", lru_list_name(i),
4090 memcg_page_state_local(memcg, NR_LRU_BASE + i) *
4091 PAGE_SIZE);
4092
4093 /* Hierarchical information */
4094 memory = memsw = PAGE_COUNTER_MAX;
4095 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
4096 memory = min(memory, READ_ONCE(mi->memory.max));
4097 memsw = min(memsw, READ_ONCE(mi->memsw.max));
4098 }
4099 seq_printf(m, "hierarchical_memory_limit %llu\n",
4100 (u64)memory * PAGE_SIZE);
4101 if (do_memsw_account())
4102 seq_printf(m, "hierarchical_memsw_limit %llu\n",
4103 (u64)memsw * PAGE_SIZE);
4104
4105 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
4106 unsigned long nr;
4107
4108 if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
4109 continue;
4110 nr = memcg_page_state(memcg, memcg1_stats[i]);
4111 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4112 if (memcg1_stats[i] == NR_ANON_THPS)
4113 nr *= HPAGE_PMD_NR;
4114 #endif
4115 seq_printf(m, "total_%s %llu\n", memcg1_stat_names[i],
4116 (u64)nr * PAGE_SIZE);
4117 }
4118
4119 for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
4120 seq_printf(m, "total_%s %llu\n",
4121 vm_event_name(memcg1_events[i]),
4122 (u64)memcg_events(memcg, memcg1_events[i]));
4123
4124 for (i = 0; i < NR_LRU_LISTS; i++)
4125 seq_printf(m, "total_%s %llu\n", lru_list_name(i),
4126 (u64)memcg_page_state(memcg, NR_LRU_BASE + i) *
4127 PAGE_SIZE);
4128
4129 #ifdef CONFIG_DEBUG_VM
4130 {
4131 pg_data_t *pgdat;
4132 struct mem_cgroup_per_node *mz;
4133 unsigned long anon_cost = 0;
4134 unsigned long file_cost = 0;
4135
4136 for_each_online_pgdat(pgdat) {
4137 mz = mem_cgroup_nodeinfo(memcg, pgdat->node_id);
4138
4139 anon_cost += mz->lruvec.anon_cost;
4140 file_cost += mz->lruvec.file_cost;
4141 }
4142 seq_printf(m, "anon_cost %lu\n", anon_cost);
4143 seq_printf(m, "file_cost %lu\n", file_cost);
4144 }
4145 #endif
4146
4147 return 0;
4148 }
4149
4150 static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
4151 struct cftype *cft)
4152 {
4153 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4154
4155 return mem_cgroup_swappiness(memcg);
4156 }
4157
4158 static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
4159 struct cftype *cft, u64 val)
4160 {
4161 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4162
4163 if (val > 100)
4164 return -EINVAL;
4165
4166 if (css->parent)
4167 memcg->swappiness = val;
4168 else
4169 vm_swappiness = val;
4170
4171 return 0;
4172 }
4173
4174 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
4175 {
4176 struct mem_cgroup_threshold_ary *t;
4177 unsigned long usage;
4178 int i;
4179
4180 rcu_read_lock();
4181 if (!swap)
4182 t = rcu_dereference(memcg->thresholds.primary);
4183 else
4184 t = rcu_dereference(memcg->memsw_thresholds.primary);
4185
4186 if (!t)
4187 goto unlock;
4188
4189 usage = mem_cgroup_usage(memcg, swap);
4190
4191 /*
4192 * current_threshold points to threshold just below or equal to usage.
4193 * If it's not true, a threshold was crossed after last
4194 * call of __mem_cgroup_threshold().
4195 */
4196 i = t->current_threshold;
4197
4198 /*
4199 * Iterate backward over array of thresholds starting from
4200 * current_threshold and check if a threshold is crossed.
4201 * If none of thresholds below usage is crossed, we read
4202 * only one element of the array here.
4203 */
4204 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
4205 eventfd_signal(t->entries[i].eventfd, 1);
4206
4207 /* i = current_threshold + 1 */
4208 i++;
4209
4210 /*
4211 * Iterate forward over array of thresholds starting from
4212 * current_threshold+1 and check if a threshold is crossed.
4213 * If none of thresholds above usage is crossed, we read
4214 * only one element of the array here.
4215 */
4216 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
4217 eventfd_signal(t->entries[i].eventfd, 1);
4218
4219 /* Update current_threshold */
4220 t->current_threshold = i - 1;
4221 unlock:
4222 rcu_read_unlock();
4223 }
4224
4225 static void mem_cgroup_threshold(struct mem_cgroup *memcg)
4226 {
4227 while (memcg) {
4228 __mem_cgroup_threshold(memcg, false);
4229 if (do_memsw_account())
4230 __mem_cgroup_threshold(memcg, true);
4231
4232 memcg = parent_mem_cgroup(memcg);
4233 }
4234 }
4235
4236 static int compare_thresholds(const void *a, const void *b)
4237 {
4238 const struct mem_cgroup_threshold *_a = a;
4239 const struct mem_cgroup_threshold *_b = b;
4240
4241 if (_a->threshold > _b->threshold)
4242 return 1;
4243
4244 if (_a->threshold < _b->threshold)
4245 return -1;
4246
4247 return 0;
4248 }
4249
4250 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
4251 {
4252 struct mem_cgroup_eventfd_list *ev;
4253
4254 spin_lock(&memcg_oom_lock);
4255
4256 list_for_each_entry(ev, &memcg->oom_notify, list)
4257 eventfd_signal(ev->eventfd, 1);
4258
4259 spin_unlock(&memcg_oom_lock);
4260 return 0;
4261 }
4262
4263 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
4264 {
4265 struct mem_cgroup *iter;
4266
4267 for_each_mem_cgroup_tree(iter, memcg)
4268 mem_cgroup_oom_notify_cb(iter);
4269 }
4270
4271 static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
4272 struct eventfd_ctx *eventfd, const char *args, enum res_type type)
4273 {
4274 struct mem_cgroup_thresholds *thresholds;
4275 struct mem_cgroup_threshold_ary *new;
4276 unsigned long threshold;
4277 unsigned long usage;
4278 int i, size, ret;
4279
4280 ret = page_counter_memparse(args, "-1", &threshold);
4281 if (ret)
4282 return ret;
4283
4284 mutex_lock(&memcg->thresholds_lock);
4285
4286 if (type == _MEM) {
4287 thresholds = &memcg->thresholds;
4288 usage = mem_cgroup_usage(memcg, false);
4289 } else if (type == _MEMSWAP) {
4290 thresholds = &memcg->memsw_thresholds;
4291 usage = mem_cgroup_usage(memcg, true);
4292 } else
4293 BUG();
4294
4295 /* Check if a threshold crossed before adding a new one */
4296 if (thresholds->primary)
4297 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4298
4299 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
4300
4301 /* Allocate memory for new array of thresholds */
4302 new = kmalloc(struct_size(new, entries, size), GFP_KERNEL);
4303 if (!new) {
4304 ret = -ENOMEM;
4305 goto unlock;
4306 }
4307 new->size = size;
4308
4309 /* Copy thresholds (if any) to new array */
4310 if (thresholds->primary)
4311 memcpy(new->entries, thresholds->primary->entries,
4312 flex_array_size(new, entries, size - 1));
4313
4314 /* Add new threshold */
4315 new->entries[size - 1].eventfd = eventfd;
4316 new->entries[size - 1].threshold = threshold;
4317
4318 /* Sort thresholds. Registering of new threshold isn't time-critical */
4319 sort(new->entries, size, sizeof(*new->entries),
4320 compare_thresholds, NULL);
4321
4322 /* Find current threshold */
4323 new->current_threshold = -1;
4324 for (i = 0; i < size; i++) {
4325 if (new->entries[i].threshold <= usage) {
4326 /*
4327 * new->current_threshold will not be used until
4328 * rcu_assign_pointer(), so it's safe to increment
4329 * it here.
4330 */
4331 ++new->current_threshold;
4332 } else
4333 break;
4334 }
4335
4336 /* Free old spare buffer and save old primary buffer as spare */
4337 kfree(thresholds->spare);
4338 thresholds->spare = thresholds->primary;
4339
4340 rcu_assign_pointer(thresholds->primary, new);
4341
4342 /* To be sure that nobody uses thresholds */
4343 synchronize_rcu();
4344
4345 unlock:
4346 mutex_unlock(&memcg->thresholds_lock);
4347
4348 return ret;
4349 }
4350
4351 static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
4352 struct eventfd_ctx *eventfd, const char *args)
4353 {
4354 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
4355 }
4356
4357 static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
4358 struct eventfd_ctx *eventfd, const char *args)
4359 {
4360 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
4361 }
4362
4363 static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4364 struct eventfd_ctx *eventfd, enum res_type type)
4365 {
4366 struct mem_cgroup_thresholds *thresholds;
4367 struct mem_cgroup_threshold_ary *new;
4368 unsigned long usage;
4369 int i, j, size, entries;
4370
4371 mutex_lock(&memcg->thresholds_lock);
4372
4373 if (type == _MEM) {
4374 thresholds = &memcg->thresholds;
4375 usage = mem_cgroup_usage(memcg, false);
4376 } else if (type == _MEMSWAP) {
4377 thresholds = &memcg->memsw_thresholds;
4378 usage = mem_cgroup_usage(memcg, true);
4379 } else
4380 BUG();
4381
4382 if (!thresholds->primary)
4383 goto unlock;
4384
4385 /* Check if a threshold crossed before removing */
4386 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4387
4388 /* Calculate new number of threshold */
4389 size = entries = 0;
4390 for (i = 0; i < thresholds->primary->size; i++) {
4391 if (thresholds->primary->entries[i].eventfd != eventfd)
4392 size++;
4393 else
4394 entries++;
4395 }
4396
4397 new = thresholds->spare;
4398
4399 /* If no items related to eventfd have been cleared, nothing to do */
4400 if (!entries)
4401 goto unlock;
4402
4403 /* Set thresholds array to NULL if we don't have thresholds */
4404 if (!size) {
4405 kfree(new);
4406 new = NULL;
4407 goto swap_buffers;
4408 }
4409
4410 new->size = size;
4411
4412 /* Copy thresholds and find current threshold */
4413 new->current_threshold = -1;
4414 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
4415 if (thresholds->primary->entries[i].eventfd == eventfd)
4416 continue;
4417
4418 new->entries[j] = thresholds->primary->entries[i];
4419 if (new->entries[j].threshold <= usage) {
4420 /*
4421 * new->current_threshold will not be used
4422 * until rcu_assign_pointer(), so it's safe to increment
4423 * it here.
4424 */
4425 ++new->current_threshold;
4426 }
4427 j++;
4428 }
4429
4430 swap_buffers:
4431 /* Swap primary and spare array */
4432 thresholds->spare = thresholds->primary;
4433
4434 rcu_assign_pointer(thresholds->primary, new);
4435
4436 /* To be sure that nobody uses thresholds */
4437 synchronize_rcu();
4438
4439 /* If all events are unregistered, free the spare array */
4440 if (!new) {
4441 kfree(thresholds->spare);
4442 thresholds->spare = NULL;
4443 }
4444 unlock:
4445 mutex_unlock(&memcg->thresholds_lock);
4446 }
4447
4448 static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4449 struct eventfd_ctx *eventfd)
4450 {
4451 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
4452 }
4453
4454 static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4455 struct eventfd_ctx *eventfd)
4456 {
4457 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
4458 }
4459
4460 static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
4461 struct eventfd_ctx *eventfd, const char *args)
4462 {
4463 struct mem_cgroup_eventfd_list *event;
4464
4465 event = kmalloc(sizeof(*event), GFP_KERNEL);
4466 if (!event)
4467 return -ENOMEM;
4468
4469 spin_lock(&memcg_oom_lock);
4470
4471 event->eventfd = eventfd;
4472 list_add(&event->list, &memcg->oom_notify);
4473
4474 /* already in OOM ? */
4475 if (memcg->under_oom)
4476 eventfd_signal(eventfd, 1);
4477 spin_unlock(&memcg_oom_lock);
4478
4479 return 0;
4480 }
4481
4482 static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
4483 struct eventfd_ctx *eventfd)
4484 {
4485 struct mem_cgroup_eventfd_list *ev, *tmp;
4486
4487 spin_lock(&memcg_oom_lock);
4488
4489 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
4490 if (ev->eventfd == eventfd) {
4491 list_del(&ev->list);
4492 kfree(ev);
4493 }
4494 }
4495
4496 spin_unlock(&memcg_oom_lock);
4497 }
4498
4499 static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
4500 {
4501 struct mem_cgroup *memcg = mem_cgroup_from_seq(sf);
4502
4503 seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
4504 seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
4505 seq_printf(sf, "oom_kill %lu\n",
4506 atomic_long_read(&memcg->memory_events[MEMCG_OOM_KILL]));
4507 return 0;
4508 }
4509
4510 static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
4511 struct cftype *cft, u64 val)
4512 {
4513 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4514
4515 /* cannot set to root cgroup and only 0 and 1 are allowed */
4516 if (!css->parent || !((val == 0) || (val == 1)))
4517 return -EINVAL;
4518
4519 memcg->oom_kill_disable = val;
4520 if (!val)
4521 memcg_oom_recover(memcg);
4522
4523 return 0;
4524 }
4525
4526 #ifdef CONFIG_CGROUP_WRITEBACK
4527
4528 #include <trace/events/writeback.h>
4529
4530 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
4531 {
4532 return wb_domain_init(&memcg->cgwb_domain, gfp);
4533 }
4534
4535 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
4536 {
4537 wb_domain_exit(&memcg->cgwb_domain);
4538 }
4539
4540 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
4541 {
4542 wb_domain_size_changed(&memcg->cgwb_domain);
4543 }
4544
4545 struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
4546 {
4547 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4548
4549 if (!memcg->css.parent)
4550 return NULL;
4551
4552 return &memcg->cgwb_domain;
4553 }
4554
4555 /*
4556 * idx can be of type enum memcg_stat_item or node_stat_item.
4557 * Keep in sync with memcg_exact_page().
4558 */
4559 static unsigned long memcg_exact_page_state(struct mem_cgroup *memcg, int idx)
4560 {
4561 long x = atomic_long_read(&memcg->vmstats[idx]);
4562 int cpu;
4563
4564 for_each_online_cpu(cpu)
4565 x += per_cpu_ptr(memcg->vmstats_percpu, cpu)->stat[idx];
4566 if (x < 0)
4567 x = 0;
4568 return x;
4569 }
4570
4571 /**
4572 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
4573 * @wb: bdi_writeback in question
4574 * @pfilepages: out parameter for number of file pages
4575 * @pheadroom: out parameter for number of allocatable pages according to memcg
4576 * @pdirty: out parameter for number of dirty pages
4577 * @pwriteback: out parameter for number of pages under writeback
4578 *
4579 * Determine the numbers of file, headroom, dirty, and writeback pages in
4580 * @wb's memcg. File, dirty and writeback are self-explanatory. Headroom
4581 * is a bit more involved.
4582 *
4583 * A memcg's headroom is "min(max, high) - used". In the hierarchy, the
4584 * headroom is calculated as the lowest headroom of itself and the
4585 * ancestors. Note that this doesn't consider the actual amount of
4586 * available memory in the system. The caller should further cap
4587 * *@pheadroom accordingly.
4588 */
4589 void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
4590 unsigned long *pheadroom, unsigned long *pdirty,
4591 unsigned long *pwriteback)
4592 {
4593 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4594 struct mem_cgroup *parent;
4595
4596 *pdirty = memcg_exact_page_state(memcg, NR_FILE_DIRTY);
4597
4598 *pwriteback = memcg_exact_page_state(memcg, NR_WRITEBACK);
4599 *pfilepages = memcg_exact_page_state(memcg, NR_INACTIVE_FILE) +
4600 memcg_exact_page_state(memcg, NR_ACTIVE_FILE);
4601 *pheadroom = PAGE_COUNTER_MAX;
4602
4603 while ((parent = parent_mem_cgroup(memcg))) {
4604 unsigned long ceiling = min(READ_ONCE(memcg->memory.max),
4605 READ_ONCE(memcg->memory.high));
4606 unsigned long used = page_counter_read(&memcg->memory);
4607
4608 *pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
4609 memcg = parent;
4610 }
4611 }
4612
4613 /*
4614 * Foreign dirty flushing
4615 *
4616 * There's an inherent mismatch between memcg and writeback. The former
4617 * trackes ownership per-page while the latter per-inode. This was a
4618 * deliberate design decision because honoring per-page ownership in the
4619 * writeback path is complicated, may lead to higher CPU and IO overheads
4620 * and deemed unnecessary given that write-sharing an inode across
4621 * different cgroups isn't a common use-case.
4622 *
4623 * Combined with inode majority-writer ownership switching, this works well
4624 * enough in most cases but there are some pathological cases. For
4625 * example, let's say there are two cgroups A and B which keep writing to
4626 * different but confined parts of the same inode. B owns the inode and
4627 * A's memory is limited far below B's. A's dirty ratio can rise enough to
4628 * trigger balance_dirty_pages() sleeps but B's can be low enough to avoid
4629 * triggering background writeback. A will be slowed down without a way to
4630 * make writeback of the dirty pages happen.
4631 *
4632 * Conditions like the above can lead to a cgroup getting repatedly and
4633 * severely throttled after making some progress after each
4634 * dirty_expire_interval while the underyling IO device is almost
4635 * completely idle.
4636 *
4637 * Solving this problem completely requires matching the ownership tracking
4638 * granularities between memcg and writeback in either direction. However,
4639 * the more egregious behaviors can be avoided by simply remembering the
4640 * most recent foreign dirtying events and initiating remote flushes on
4641 * them when local writeback isn't enough to keep the memory clean enough.
4642 *
4643 * The following two functions implement such mechanism. When a foreign
4644 * page - a page whose memcg and writeback ownerships don't match - is
4645 * dirtied, mem_cgroup_track_foreign_dirty() records the inode owning
4646 * bdi_writeback on the page owning memcg. When balance_dirty_pages()
4647 * decides that the memcg needs to sleep due to high dirty ratio, it calls
4648 * mem_cgroup_flush_foreign() which queues writeback on the recorded
4649 * foreign bdi_writebacks which haven't expired. Both the numbers of
4650 * recorded bdi_writebacks and concurrent in-flight foreign writebacks are
4651 * limited to MEMCG_CGWB_FRN_CNT.
4652 *
4653 * The mechanism only remembers IDs and doesn't hold any object references.
4654 * As being wrong occasionally doesn't matter, updates and accesses to the
4655 * records are lockless and racy.
4656 */
4657 void mem_cgroup_track_foreign_dirty_slowpath(struct page *page,
4658 struct bdi_writeback *wb)
4659 {
4660 struct mem_cgroup *memcg = page_memcg(page);
4661 struct memcg_cgwb_frn *frn;
4662 u64 now = get_jiffies_64();
4663 u64 oldest_at = now;
4664 int oldest = -1;
4665 int i;
4666
4667 trace_track_foreign_dirty(page, wb);
4668
4669 /*
4670 * Pick the slot to use. If there is already a slot for @wb, keep
4671 * using it. If not replace the oldest one which isn't being
4672 * written out.
4673 */
4674 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
4675 frn = &memcg->cgwb_frn[i];
4676 if (frn->bdi_id == wb->bdi->id &&
4677 frn->memcg_id == wb->memcg_css->id)
4678 break;
4679 if (time_before64(frn->at, oldest_at) &&
4680 atomic_read(&frn->done.cnt) == 1) {
4681 oldest = i;
4682 oldest_at = frn->at;
4683 }
4684 }
4685
4686 if (i < MEMCG_CGWB_FRN_CNT) {
4687 /*
4688 * Re-using an existing one. Update timestamp lazily to
4689 * avoid making the cacheline hot. We want them to be
4690 * reasonably up-to-date and significantly shorter than
4691 * dirty_expire_interval as that's what expires the record.
4692 * Use the shorter of 1s and dirty_expire_interval / 8.
4693 */
4694 unsigned long update_intv =
4695 min_t(unsigned long, HZ,
4696 msecs_to_jiffies(dirty_expire_interval * 10) / 8);
4697
4698 if (time_before64(frn->at, now - update_intv))
4699 frn->at = now;
4700 } else if (oldest >= 0) {
4701 /* replace the oldest free one */
4702 frn = &memcg->cgwb_frn[oldest];
4703 frn->bdi_id = wb->bdi->id;
4704 frn->memcg_id = wb->memcg_css->id;
4705 frn->at = now;
4706 }
4707 }
4708
4709 /* issue foreign writeback flushes for recorded foreign dirtying events */
4710 void mem_cgroup_flush_foreign(struct bdi_writeback *wb)
4711 {
4712 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4713 unsigned long intv = msecs_to_jiffies(dirty_expire_interval * 10);
4714 u64 now = jiffies_64;
4715 int i;
4716
4717 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
4718 struct memcg_cgwb_frn *frn = &memcg->cgwb_frn[i];
4719
4720 /*
4721 * If the record is older than dirty_expire_interval,
4722 * writeback on it has already started. No need to kick it
4723 * off again. Also, don't start a new one if there's
4724 * already one in flight.
4725 */
4726 if (time_after64(frn->at, now - intv) &&
4727 atomic_read(&frn->done.cnt) == 1) {
4728 frn->at = 0;
4729 trace_flush_foreign(wb, frn->bdi_id, frn->memcg_id);
4730 cgroup_writeback_by_id(frn->bdi_id, frn->memcg_id, 0,
4731 WB_REASON_FOREIGN_FLUSH,
4732 &frn->done);
4733 }
4734 }
4735 }
4736
4737 #else /* CONFIG_CGROUP_WRITEBACK */
4738
4739 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
4740 {
4741 return 0;
4742 }
4743
4744 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
4745 {
4746 }
4747
4748 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
4749 {
4750 }
4751
4752 #endif /* CONFIG_CGROUP_WRITEBACK */
4753
4754 /*
4755 * DO NOT USE IN NEW FILES.
4756 *
4757 * "cgroup.event_control" implementation.
4758 *
4759 * This is way over-engineered. It tries to support fully configurable
4760 * events for each user. Such level of flexibility is completely
4761 * unnecessary especially in the light of the planned unified hierarchy.
4762 *
4763 * Please deprecate this and replace with something simpler if at all
4764 * possible.
4765 */
4766
4767 /*
4768 * Unregister event and free resources.
4769 *
4770 * Gets called from workqueue.
4771 */
4772 static void memcg_event_remove(struct work_struct *work)
4773 {
4774 struct mem_cgroup_event *event =
4775 container_of(work, struct mem_cgroup_event, remove);
4776 struct mem_cgroup *memcg = event->memcg;
4777
4778 remove_wait_queue(event->wqh, &event->wait);
4779
4780 event->unregister_event(memcg, event->eventfd);
4781
4782 /* Notify userspace the event is going away. */
4783 eventfd_signal(event->eventfd, 1);
4784
4785 eventfd_ctx_put(event->eventfd);
4786 kfree(event);
4787 css_put(&memcg->css);
4788 }
4789
4790 /*
4791 * Gets called on EPOLLHUP on eventfd when user closes it.
4792 *
4793 * Called with wqh->lock held and interrupts disabled.
4794 */
4795 static int memcg_event_wake(wait_queue_entry_t *wait, unsigned mode,
4796 int sync, void *key)
4797 {
4798 struct mem_cgroup_event *event =
4799 container_of(wait, struct mem_cgroup_event, wait);
4800 struct mem_cgroup *memcg = event->memcg;
4801 __poll_t flags = key_to_poll(key);
4802
4803 if (flags & EPOLLHUP) {
4804 /*
4805 * If the event has been detached at cgroup removal, we
4806 * can simply return knowing the other side will cleanup
4807 * for us.
4808 *
4809 * We can't race against event freeing since the other
4810 * side will require wqh->lock via remove_wait_queue(),
4811 * which we hold.
4812 */
4813 spin_lock(&memcg->event_list_lock);
4814 if (!list_empty(&event->list)) {
4815 list_del_init(&event->list);
4816 /*
4817 * We are in atomic context, but cgroup_event_remove()
4818 * may sleep, so we have to call it in workqueue.
4819 */
4820 schedule_work(&event->remove);
4821 }
4822 spin_unlock(&memcg->event_list_lock);
4823 }
4824
4825 return 0;
4826 }
4827
4828 static void memcg_event_ptable_queue_proc(struct file *file,
4829 wait_queue_head_t *wqh, poll_table *pt)
4830 {
4831 struct mem_cgroup_event *event =
4832 container_of(pt, struct mem_cgroup_event, pt);
4833
4834 event->wqh = wqh;
4835 add_wait_queue(wqh, &event->wait);
4836 }
4837
4838 /*
4839 * DO NOT USE IN NEW FILES.
4840 *
4841 * Parse input and register new cgroup event handler.
4842 *
4843 * Input must be in format '<event_fd> <control_fd> <args>'.
4844 * Interpretation of args is defined by control file implementation.
4845 */
4846 static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
4847 char *buf, size_t nbytes, loff_t off)
4848 {
4849 struct cgroup_subsys_state *css = of_css(of);
4850 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4851 struct mem_cgroup_event *event;
4852 struct cgroup_subsys_state *cfile_css;
4853 unsigned int efd, cfd;
4854 struct fd efile;
4855 struct fd cfile;
4856 const char *name;
4857 char *endp;
4858 int ret;
4859
4860 buf = strstrip(buf);
4861
4862 efd = simple_strtoul(buf, &endp, 10);
4863 if (*endp != ' ')
4864 return -EINVAL;
4865 buf = endp + 1;
4866
4867 cfd = simple_strtoul(buf, &endp, 10);
4868 if ((*endp != ' ') && (*endp != '\0'))
4869 return -EINVAL;
4870 buf = endp + 1;
4871
4872 event = kzalloc(sizeof(*event), GFP_KERNEL);
4873 if (!event)
4874 return -ENOMEM;
4875
4876 event->memcg = memcg;
4877 INIT_LIST_HEAD(&event->list);
4878 init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
4879 init_waitqueue_func_entry(&event->wait, memcg_event_wake);
4880 INIT_WORK(&event->remove, memcg_event_remove);
4881
4882 efile = fdget(efd);
4883 if (!efile.file) {
4884 ret = -EBADF;
4885 goto out_kfree;
4886 }
4887
4888 event->eventfd = eventfd_ctx_fileget(efile.file);
4889 if (IS_ERR(event->eventfd)) {
4890 ret = PTR_ERR(event->eventfd);
4891 goto out_put_efile;
4892 }
4893
4894 cfile = fdget(cfd);
4895 if (!cfile.file) {
4896 ret = -EBADF;
4897 goto out_put_eventfd;
4898 }
4899
4900 /* the process need read permission on control file */
4901 /* AV: shouldn't we check that it's been opened for read instead? */
4902 ret = inode_permission(file_inode(cfile.file), MAY_READ);
4903 if (ret < 0)
4904 goto out_put_cfile;
4905
4906 /*
4907 * Determine the event callbacks and set them in @event. This used
4908 * to be done via struct cftype but cgroup core no longer knows
4909 * about these events. The following is crude but the whole thing
4910 * is for compatibility anyway.
4911 *
4912 * DO NOT ADD NEW FILES.
4913 */
4914 name = cfile.file->f_path.dentry->d_name.name;
4915
4916 if (!strcmp(name, "memory.usage_in_bytes")) {
4917 event->register_event = mem_cgroup_usage_register_event;
4918 event->unregister_event = mem_cgroup_usage_unregister_event;
4919 } else if (!strcmp(name, "memory.oom_control")) {
4920 event->register_event = mem_cgroup_oom_register_event;
4921 event->unregister_event = mem_cgroup_oom_unregister_event;
4922 } else if (!strcmp(name, "memory.pressure_level")) {
4923 event->register_event = vmpressure_register_event;
4924 event->unregister_event = vmpressure_unregister_event;
4925 } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
4926 event->register_event = memsw_cgroup_usage_register_event;
4927 event->unregister_event = memsw_cgroup_usage_unregister_event;
4928 } else {
4929 ret = -EINVAL;
4930 goto out_put_cfile;
4931 }
4932
4933 /*
4934 * Verify @cfile should belong to @css. Also, remaining events are
4935 * automatically removed on cgroup destruction but the removal is
4936 * asynchronous, so take an extra ref on @css.
4937 */
4938 cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
4939 &memory_cgrp_subsys);
4940 ret = -EINVAL;
4941 if (IS_ERR(cfile_css))
4942 goto out_put_cfile;
4943 if (cfile_css != css) {
4944 css_put(cfile_css);
4945 goto out_put_cfile;
4946 }
4947
4948 ret = event->register_event(memcg, event->eventfd, buf);
4949 if (ret)
4950 goto out_put_css;
4951
4952 vfs_poll(efile.file, &event->pt);
4953
4954 spin_lock(&memcg->event_list_lock);
4955 list_add(&event->list, &memcg->event_list);
4956 spin_unlock(&memcg->event_list_lock);
4957
4958 fdput(cfile);
4959 fdput(efile);
4960
4961 return nbytes;
4962
4963 out_put_css:
4964 css_put(css);
4965 out_put_cfile:
4966 fdput(cfile);
4967 out_put_eventfd:
4968 eventfd_ctx_put(event->eventfd);
4969 out_put_efile:
4970 fdput(efile);
4971 out_kfree:
4972 kfree(event);
4973
4974 return ret;
4975 }
4976
4977 static struct cftype mem_cgroup_legacy_files[] = {
4978 {
4979 .name = "usage_in_bytes",
4980 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
4981 .read_u64 = mem_cgroup_read_u64,
4982 },
4983 {
4984 .name = "max_usage_in_bytes",
4985 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
4986 .write = mem_cgroup_reset,
4987 .read_u64 = mem_cgroup_read_u64,
4988 },
4989 {
4990 .name = "limit_in_bytes",
4991 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
4992 .write = mem_cgroup_write,
4993 .read_u64 = mem_cgroup_read_u64,
4994 },
4995 {
4996 .name = "soft_limit_in_bytes",
4997 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
4998 .write = mem_cgroup_write,
4999 .read_u64 = mem_cgroup_read_u64,
5000 },
5001 {
5002 .name = "failcnt",
5003 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
5004 .write = mem_cgroup_reset,
5005 .read_u64 = mem_cgroup_read_u64,
5006 },
5007 {
5008 .name = "stat",
5009 .seq_show = memcg_stat_show,
5010 },
5011 {
5012 .name = "force_empty",
5013 .write = mem_cgroup_force_empty_write,
5014 },
5015 {
5016 .name = "use_hierarchy",
5017 .write_u64 = mem_cgroup_hierarchy_write,
5018 .read_u64 = mem_cgroup_hierarchy_read,
5019 },
5020 {
5021 .name = "cgroup.event_control", /* XXX: for compat */
5022 .write = memcg_write_event_control,
5023 .flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
5024 },
5025 {
5026 .name = "swappiness",
5027 .read_u64 = mem_cgroup_swappiness_read,
5028 .write_u64 = mem_cgroup_swappiness_write,
5029 },
5030 {
5031 .name = "move_charge_at_immigrate",
5032 .read_u64 = mem_cgroup_move_charge_read,
5033 .write_u64 = mem_cgroup_move_charge_write,
5034 },
5035 {
5036 .name = "oom_control",
5037 .seq_show = mem_cgroup_oom_control_read,
5038 .write_u64 = mem_cgroup_oom_control_write,
5039 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
5040 },
5041 {
5042 .name = "pressure_level",
5043 },
5044 #ifdef CONFIG_NUMA
5045 {
5046 .name = "numa_stat",
5047 .seq_show = memcg_numa_stat_show,
5048 },
5049 #endif
5050 {
5051 .name = "kmem.limit_in_bytes",
5052 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
5053 .write = mem_cgroup_write,
5054 .read_u64 = mem_cgroup_read_u64,
5055 },
5056 {
5057 .name = "kmem.usage_in_bytes",
5058 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
5059 .read_u64 = mem_cgroup_read_u64,
5060 },
5061 {
5062 .name = "kmem.failcnt",
5063 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
5064 .write = mem_cgroup_reset,
5065 .read_u64 = mem_cgroup_read_u64,
5066 },
5067 {
5068 .name = "kmem.max_usage_in_bytes",
5069 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
5070 .write = mem_cgroup_reset,
5071 .read_u64 = mem_cgroup_read_u64,
5072 },
5073 #if defined(CONFIG_MEMCG_KMEM) && \
5074 (defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG))
5075 {
5076 .name = "kmem.slabinfo",
5077 .seq_show = memcg_slab_show,
5078 },
5079 #endif
5080 {
5081 .name = "kmem.tcp.limit_in_bytes",
5082 .private = MEMFILE_PRIVATE(_TCP, RES_LIMIT),
5083 .write = mem_cgroup_write,
5084 .read_u64 = mem_cgroup_read_u64,
5085 },
5086 {
5087 .name = "kmem.tcp.usage_in_bytes",
5088 .private = MEMFILE_PRIVATE(_TCP, RES_USAGE),
5089 .read_u64 = mem_cgroup_read_u64,
5090 },
5091 {
5092 .name = "kmem.tcp.failcnt",
5093 .private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT),
5094 .write = mem_cgroup_reset,
5095 .read_u64 = mem_cgroup_read_u64,
5096 },
5097 {
5098 .name = "kmem.tcp.max_usage_in_bytes",
5099 .private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE),
5100 .write = mem_cgroup_reset,
5101 .read_u64 = mem_cgroup_read_u64,
5102 },
5103 { }, /* terminate */
5104 };
5105
5106 /*
5107 * Private memory cgroup IDR
5108 *
5109 * Swap-out records and page cache shadow entries need to store memcg
5110 * references in constrained space, so we maintain an ID space that is
5111 * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of
5112 * memory-controlled cgroups to 64k.
5113 *
5114 * However, there usually are many references to the offline CSS after
5115 * the cgroup has been destroyed, such as page cache or reclaimable
5116 * slab objects, that don't need to hang on to the ID. We want to keep
5117 * those dead CSS from occupying IDs, or we might quickly exhaust the
5118 * relatively small ID space and prevent the creation of new cgroups
5119 * even when there are much fewer than 64k cgroups - possibly none.
5120 *
5121 * Maintain a private 16-bit ID space for memcg, and allow the ID to
5122 * be freed and recycled when it's no longer needed, which is usually
5123 * when the CSS is offlined.
5124 *
5125 * The only exception to that are records of swapped out tmpfs/shmem
5126 * pages that need to be attributed to live ancestors on swapin. But
5127 * those references are manageable from userspace.
5128 */
5129
5130 static DEFINE_IDR(mem_cgroup_idr);
5131
5132 static void mem_cgroup_id_remove(struct mem_cgroup *memcg)
5133 {
5134 if (memcg->id.id > 0) {
5135 idr_remove(&mem_cgroup_idr, memcg->id.id);
5136 memcg->id.id = 0;
5137 }
5138 }
5139
5140 static void __maybe_unused mem_cgroup_id_get_many(struct mem_cgroup *memcg,
5141 unsigned int n)
5142 {
5143 refcount_add(n, &memcg->id.ref);
5144 }
5145
5146 static void mem_cgroup_id_put_many(struct mem_cgroup *memcg, unsigned int n)
5147 {
5148 if (refcount_sub_and_test(n, &memcg->id.ref)) {
5149 mem_cgroup_id_remove(memcg);
5150
5151 /* Memcg ID pins CSS */
5152 css_put(&memcg->css);
5153 }
5154 }
5155
5156 static inline void mem_cgroup_id_put(struct mem_cgroup *memcg)
5157 {
5158 mem_cgroup_id_put_many(memcg, 1);
5159 }
5160
5161 /**
5162 * mem_cgroup_from_id - look up a memcg from a memcg id
5163 * @id: the memcg id to look up
5164 *
5165 * Caller must hold rcu_read_lock().
5166 */
5167 struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
5168 {
5169 WARN_ON_ONCE(!rcu_read_lock_held());
5170 return idr_find(&mem_cgroup_idr, id);
5171 }
5172
5173 static int alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
5174 {
5175 struct mem_cgroup_per_node *pn;
5176 int tmp = node;
5177 /*
5178 * This routine is called against possible nodes.
5179 * But it's BUG to call kmalloc() against offline node.
5180 *
5181 * TODO: this routine can waste much memory for nodes which will
5182 * never be onlined. It's better to use memory hotplug callback
5183 * function.
5184 */
5185 if (!node_state(node, N_NORMAL_MEMORY))
5186 tmp = -1;
5187 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
5188 if (!pn)
5189 return 1;
5190
5191 pn->lruvec_stat_local = alloc_percpu_gfp(struct lruvec_stat,
5192 GFP_KERNEL_ACCOUNT);
5193 if (!pn->lruvec_stat_local) {
5194 kfree(pn);
5195 return 1;
5196 }
5197
5198 pn->lruvec_stat_cpu = alloc_percpu_gfp(struct lruvec_stat,
5199 GFP_KERNEL_ACCOUNT);
5200 if (!pn->lruvec_stat_cpu) {
5201 free_percpu(pn->lruvec_stat_local);
5202 kfree(pn);
5203 return 1;
5204 }
5205
5206 lruvec_init(&pn->lruvec);
5207 pn->usage_in_excess = 0;
5208 pn->on_tree = false;
5209 pn->memcg = memcg;
5210
5211 memcg->nodeinfo[node] = pn;
5212 return 0;
5213 }
5214
5215 static void free_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
5216 {
5217 struct mem_cgroup_per_node *pn = memcg->nodeinfo[node];
5218
5219 if (!pn)
5220 return;
5221
5222 free_percpu(pn->lruvec_stat_cpu);
5223 free_percpu(pn->lruvec_stat_local);
5224 kfree(pn);
5225 }
5226
5227 static void __mem_cgroup_free(struct mem_cgroup *memcg)
5228 {
5229 int node;
5230
5231 for_each_node(node)
5232 free_mem_cgroup_per_node_info(memcg, node);
5233 free_percpu(memcg->vmstats_percpu);
5234 free_percpu(memcg->vmstats_local);
5235 kfree(memcg);
5236 }
5237
5238 static void mem_cgroup_free(struct mem_cgroup *memcg)
5239 {
5240 memcg_wb_domain_exit(memcg);
5241 /*
5242 * Flush percpu vmstats and vmevents to guarantee the value correctness
5243 * on parent's and all ancestor levels.
5244 */
5245 memcg_flush_percpu_vmstats(memcg);
5246 memcg_flush_percpu_vmevents(memcg);
5247 __mem_cgroup_free(memcg);
5248 }
5249
5250 static struct mem_cgroup *mem_cgroup_alloc(void)
5251 {
5252 struct mem_cgroup *memcg;
5253 unsigned int size;
5254 int node;
5255 int __maybe_unused i;
5256 long error = -ENOMEM;
5257
5258 size = sizeof(struct mem_cgroup);
5259 size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
5260
5261 memcg = kzalloc(size, GFP_KERNEL);
5262 if (!memcg)
5263 return ERR_PTR(error);
5264
5265 memcg->id.id = idr_alloc(&mem_cgroup_idr, NULL,
5266 1, MEM_CGROUP_ID_MAX,
5267 GFP_KERNEL);
5268 if (memcg->id.id < 0) {
5269 error = memcg->id.id;
5270 goto fail;
5271 }
5272
5273 memcg->vmstats_local = alloc_percpu_gfp(struct memcg_vmstats_percpu,
5274 GFP_KERNEL_ACCOUNT);
5275 if (!memcg->vmstats_local)
5276 goto fail;
5277
5278 memcg->vmstats_percpu = alloc_percpu_gfp(struct memcg_vmstats_percpu,
5279 GFP_KERNEL_ACCOUNT);
5280 if (!memcg->vmstats_percpu)
5281 goto fail;
5282
5283 for_each_node(node)
5284 if (alloc_mem_cgroup_per_node_info(memcg, node))
5285 goto fail;
5286
5287 if (memcg_wb_domain_init(memcg, GFP_KERNEL))
5288 goto fail;
5289
5290 INIT_WORK(&memcg->high_work, high_work_func);
5291 INIT_LIST_HEAD(&memcg->oom_notify);
5292 mutex_init(&memcg->thresholds_lock);
5293 spin_lock_init(&memcg->move_lock);
5294 vmpressure_init(&memcg->vmpressure);
5295 INIT_LIST_HEAD(&memcg->event_list);
5296 spin_lock_init(&memcg->event_list_lock);
5297 memcg->socket_pressure = jiffies;
5298 #ifdef CONFIG_MEMCG_KMEM
5299 memcg->kmemcg_id = -1;
5300 INIT_LIST_HEAD(&memcg->objcg_list);
5301 #endif
5302 #ifdef CONFIG_CGROUP_WRITEBACK
5303 INIT_LIST_HEAD(&memcg->cgwb_list);
5304 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
5305 memcg->cgwb_frn[i].done =
5306 __WB_COMPLETION_INIT(&memcg_cgwb_frn_waitq);
5307 #endif
5308 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5309 spin_lock_init(&memcg->deferred_split_queue.split_queue_lock);
5310 INIT_LIST_HEAD(&memcg->deferred_split_queue.split_queue);
5311 memcg->deferred_split_queue.split_queue_len = 0;
5312 #endif
5313 idr_replace(&mem_cgroup_idr, memcg, memcg->id.id);
5314 return memcg;
5315 fail:
5316 mem_cgroup_id_remove(memcg);
5317 __mem_cgroup_free(memcg);
5318 return ERR_PTR(error);
5319 }
5320
5321 static struct cgroup_subsys_state * __ref
5322 mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
5323 {
5324 struct mem_cgroup *parent = mem_cgroup_from_css(parent_css);
5325 struct mem_cgroup *memcg, *old_memcg;
5326 long error = -ENOMEM;
5327
5328 old_memcg = set_active_memcg(parent);
5329 memcg = mem_cgroup_alloc();
5330 set_active_memcg(old_memcg);
5331 if (IS_ERR(memcg))
5332 return ERR_CAST(memcg);
5333
5334 page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX);
5335 memcg->soft_limit = PAGE_COUNTER_MAX;
5336 page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX);
5337 if (parent) {
5338 memcg->swappiness = mem_cgroup_swappiness(parent);
5339 memcg->oom_kill_disable = parent->oom_kill_disable;
5340
5341 page_counter_init(&memcg->memory, &parent->memory);
5342 page_counter_init(&memcg->swap, &parent->swap);
5343 page_counter_init(&memcg->kmem, &parent->kmem);
5344 page_counter_init(&memcg->tcpmem, &parent->tcpmem);
5345 } else {
5346 page_counter_init(&memcg->memory, NULL);
5347 page_counter_init(&memcg->swap, NULL);
5348 page_counter_init(&memcg->kmem, NULL);
5349 page_counter_init(&memcg->tcpmem, NULL);
5350
5351 root_mem_cgroup = memcg;
5352 return &memcg->css;
5353 }
5354
5355 /* The following stuff does not apply to the root */
5356 error = memcg_online_kmem(memcg);
5357 if (error)
5358 goto fail;
5359
5360 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
5361 static_branch_inc(&memcg_sockets_enabled_key);
5362
5363 return &memcg->css;
5364 fail:
5365 mem_cgroup_id_remove(memcg);
5366 mem_cgroup_free(memcg);
5367 return ERR_PTR(error);
5368 }
5369
5370 static int mem_cgroup_css_online(struct cgroup_subsys_state *css)
5371 {
5372 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5373
5374 /*
5375 * A memcg must be visible for memcg_expand_shrinker_maps()
5376 * by the time the maps are allocated. So, we allocate maps
5377 * here, when for_each_mem_cgroup() can't skip it.
5378 */
5379 if (memcg_alloc_shrinker_maps(memcg)) {
5380 mem_cgroup_id_remove(memcg);
5381 return -ENOMEM;
5382 }
5383
5384 /* Online state pins memcg ID, memcg ID pins CSS */
5385 refcount_set(&memcg->id.ref, 1);
5386 css_get(css);
5387 return 0;
5388 }
5389
5390 static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
5391 {
5392 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5393 struct mem_cgroup_event *event, *tmp;
5394
5395 /*
5396 * Unregister events and notify userspace.
5397 * Notify userspace about cgroup removing only after rmdir of cgroup
5398 * directory to avoid race between userspace and kernelspace.
5399 */
5400 spin_lock(&memcg->event_list_lock);
5401 list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
5402 list_del_init(&event->list);
5403 schedule_work(&event->remove);
5404 }
5405 spin_unlock(&memcg->event_list_lock);
5406
5407 page_counter_set_min(&memcg->memory, 0);
5408 page_counter_set_low(&memcg->memory, 0);
5409
5410 memcg_offline_kmem(memcg);
5411 wb_memcg_offline(memcg);
5412
5413 drain_all_stock(memcg);
5414
5415 mem_cgroup_id_put(memcg);
5416 }
5417
5418 static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
5419 {
5420 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5421
5422 invalidate_reclaim_iterators(memcg);
5423 }
5424
5425 static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
5426 {
5427 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5428 int __maybe_unused i;
5429
5430 #ifdef CONFIG_CGROUP_WRITEBACK
5431 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
5432 wb_wait_for_completion(&memcg->cgwb_frn[i].done);
5433 #endif
5434 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
5435 static_branch_dec(&memcg_sockets_enabled_key);
5436
5437 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active)
5438 static_branch_dec(&memcg_sockets_enabled_key);
5439
5440 vmpressure_cleanup(&memcg->vmpressure);
5441 cancel_work_sync(&memcg->high_work);
5442 mem_cgroup_remove_from_trees(memcg);
5443 memcg_free_shrinker_maps(memcg);
5444 memcg_free_kmem(memcg);
5445 mem_cgroup_free(memcg);
5446 }
5447
5448 /**
5449 * mem_cgroup_css_reset - reset the states of a mem_cgroup
5450 * @css: the target css
5451 *
5452 * Reset the states of the mem_cgroup associated with @css. This is
5453 * invoked when the userland requests disabling on the default hierarchy
5454 * but the memcg is pinned through dependency. The memcg should stop
5455 * applying policies and should revert to the vanilla state as it may be
5456 * made visible again.
5457 *
5458 * The current implementation only resets the essential configurations.
5459 * This needs to be expanded to cover all the visible parts.
5460 */
5461 static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
5462 {
5463 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5464
5465 page_counter_set_max(&memcg->memory, PAGE_COUNTER_MAX);
5466 page_counter_set_max(&memcg->swap, PAGE_COUNTER_MAX);
5467 page_counter_set_max(&memcg->kmem, PAGE_COUNTER_MAX);
5468 page_counter_set_max(&memcg->tcpmem, PAGE_COUNTER_MAX);
5469 page_counter_set_min(&memcg->memory, 0);
5470 page_counter_set_low(&memcg->memory, 0);
5471 page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX);
5472 memcg->soft_limit = PAGE_COUNTER_MAX;
5473 page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX);
5474 memcg_wb_domain_size_changed(memcg);
5475 }
5476
5477 #ifdef CONFIG_MMU
5478 /* Handlers for move charge at task migration. */
5479 static int mem_cgroup_do_precharge(unsigned long count)
5480 {
5481 int ret;
5482
5483 /* Try a single bulk charge without reclaim first, kswapd may wake */
5484 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
5485 if (!ret) {
5486 mc.precharge += count;
5487 return ret;
5488 }
5489
5490 /* Try charges one by one with reclaim, but do not retry */
5491 while (count--) {
5492 ret = try_charge(mc.to, GFP_KERNEL | __GFP_NORETRY, 1);
5493 if (ret)
5494 return ret;
5495 mc.precharge++;
5496 cond_resched();
5497 }
5498 return 0;
5499 }
5500
5501 union mc_target {
5502 struct page *page;
5503 swp_entry_t ent;
5504 };
5505
5506 enum mc_target_type {
5507 MC_TARGET_NONE = 0,
5508 MC_TARGET_PAGE,
5509 MC_TARGET_SWAP,
5510 MC_TARGET_DEVICE,
5511 };
5512
5513 static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
5514 unsigned long addr, pte_t ptent)
5515 {
5516 struct page *page = vm_normal_page(vma, addr, ptent);
5517
5518 if (!page || !page_mapped(page))
5519 return NULL;
5520 if (PageAnon(page)) {
5521 if (!(mc.flags & MOVE_ANON))
5522 return NULL;
5523 } else {
5524 if (!(mc.flags & MOVE_FILE))
5525 return NULL;
5526 }
5527 if (!get_page_unless_zero(page))
5528 return NULL;
5529
5530 return page;
5531 }
5532
5533 #if defined(CONFIG_SWAP) || defined(CONFIG_DEVICE_PRIVATE)
5534 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5535 pte_t ptent, swp_entry_t *entry)
5536 {
5537 struct page *page = NULL;
5538 swp_entry_t ent = pte_to_swp_entry(ptent);
5539
5540 if (!(mc.flags & MOVE_ANON))
5541 return NULL;
5542
5543 /*
5544 * Handle MEMORY_DEVICE_PRIVATE which are ZONE_DEVICE page belonging to
5545 * a device and because they are not accessible by CPU they are store
5546 * as special swap entry in the CPU page table.
5547 */
5548 if (is_device_private_entry(ent)) {
5549 page = device_private_entry_to_page(ent);
5550 /*
5551 * MEMORY_DEVICE_PRIVATE means ZONE_DEVICE page and which have
5552 * a refcount of 1 when free (unlike normal page)
5553 */
5554 if (!page_ref_add_unless(page, 1, 1))
5555 return NULL;
5556 return page;
5557 }
5558
5559 if (non_swap_entry(ent))
5560 return NULL;
5561
5562 /*
5563 * Because lookup_swap_cache() updates some statistics counter,
5564 * we call find_get_page() with swapper_space directly.
5565 */
5566 page = find_get_page(swap_address_space(ent), swp_offset(ent));
5567 entry->val = ent.val;
5568
5569 return page;
5570 }
5571 #else
5572 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5573 pte_t ptent, swp_entry_t *entry)
5574 {
5575 return NULL;
5576 }
5577 #endif
5578
5579 static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
5580 unsigned long addr, pte_t ptent, swp_entry_t *entry)
5581 {
5582 if (!vma->vm_file) /* anonymous vma */
5583 return NULL;
5584 if (!(mc.flags & MOVE_FILE))
5585 return NULL;
5586
5587 /* page is moved even if it's not RSS of this task(page-faulted). */
5588 /* shmem/tmpfs may report page out on swap: account for that too. */
5589 return find_get_incore_page(vma->vm_file->f_mapping,
5590 linear_page_index(vma, addr));
5591 }
5592
5593 /**
5594 * mem_cgroup_move_account - move account of the page
5595 * @page: the page
5596 * @compound: charge the page as compound or small page
5597 * @from: mem_cgroup which the page is moved from.
5598 * @to: mem_cgroup which the page is moved to. @from != @to.
5599 *
5600 * The caller must make sure the page is not on LRU (isolate_page() is useful.)
5601 *
5602 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
5603 * from old cgroup.
5604 */
5605 static int mem_cgroup_move_account(struct page *page,
5606 bool compound,
5607 struct mem_cgroup *from,
5608 struct mem_cgroup *to)
5609 {
5610 struct lruvec *from_vec, *to_vec;
5611 struct pglist_data *pgdat;
5612 unsigned int nr_pages = compound ? thp_nr_pages(page) : 1;
5613 int ret;
5614
5615 VM_BUG_ON(from == to);
5616 VM_BUG_ON_PAGE(PageLRU(page), page);
5617 VM_BUG_ON(compound && !PageTransHuge(page));
5618
5619 /*
5620 * Prevent mem_cgroup_migrate() from looking at
5621 * page's memory cgroup of its source page while we change it.
5622 */
5623 ret = -EBUSY;
5624 if (!trylock_page(page))
5625 goto out;
5626
5627 ret = -EINVAL;
5628 if (page_memcg(page) != from)
5629 goto out_unlock;
5630
5631 pgdat = page_pgdat(page);
5632 from_vec = mem_cgroup_lruvec(from, pgdat);
5633 to_vec = mem_cgroup_lruvec(to, pgdat);
5634
5635 lock_page_memcg(page);
5636
5637 if (PageAnon(page)) {
5638 if (page_mapped(page)) {
5639 __mod_lruvec_state(from_vec, NR_ANON_MAPPED, -nr_pages);
5640 __mod_lruvec_state(to_vec, NR_ANON_MAPPED, nr_pages);
5641 if (PageTransHuge(page)) {
5642 __mod_lruvec_state(from_vec, NR_ANON_THPS,
5643 -nr_pages);
5644 __mod_lruvec_state(to_vec, NR_ANON_THPS,
5645 nr_pages);
5646 }
5647
5648 }
5649 } else {
5650 __mod_lruvec_state(from_vec, NR_FILE_PAGES, -nr_pages);
5651 __mod_lruvec_state(to_vec, NR_FILE_PAGES, nr_pages);
5652
5653 if (PageSwapBacked(page)) {
5654 __mod_lruvec_state(from_vec, NR_SHMEM, -nr_pages);
5655 __mod_lruvec_state(to_vec, NR_SHMEM, nr_pages);
5656 }
5657
5658 if (page_mapped(page)) {
5659 __mod_lruvec_state(from_vec, NR_FILE_MAPPED, -nr_pages);
5660 __mod_lruvec_state(to_vec, NR_FILE_MAPPED, nr_pages);
5661 }
5662
5663 if (PageDirty(page)) {
5664 struct address_space *mapping = page_mapping(page);
5665
5666 if (mapping_can_writeback(mapping)) {
5667 __mod_lruvec_state(from_vec, NR_FILE_DIRTY,
5668 -nr_pages);
5669 __mod_lruvec_state(to_vec, NR_FILE_DIRTY,
5670 nr_pages);
5671 }
5672 }
5673 }
5674
5675 if (PageWriteback(page)) {
5676 __mod_lruvec_state(from_vec, NR_WRITEBACK, -nr_pages);
5677 __mod_lruvec_state(to_vec, NR_WRITEBACK, nr_pages);
5678 }
5679
5680 /*
5681 * All state has been migrated, let's switch to the new memcg.
5682 *
5683 * It is safe to change page's memcg here because the page
5684 * is referenced, charged, isolated, and locked: we can't race
5685 * with (un)charging, migration, LRU putback, or anything else
5686 * that would rely on a stable page's memory cgroup.
5687 *
5688 * Note that lock_page_memcg is a memcg lock, not a page lock,
5689 * to save space. As soon as we switch page's memory cgroup to a
5690 * new memcg that isn't locked, the above state can change
5691 * concurrently again. Make sure we're truly done with it.
5692 */
5693 smp_mb();
5694
5695 css_get(&to->css);
5696 css_put(&from->css);
5697
5698 page->memcg_data = (unsigned long)to;
5699
5700 __unlock_page_memcg(from);
5701
5702 ret = 0;
5703
5704 local_irq_disable();
5705 mem_cgroup_charge_statistics(to, page, nr_pages);
5706 memcg_check_events(to, page);
5707 mem_cgroup_charge_statistics(from, page, -nr_pages);
5708 memcg_check_events(from, page);
5709 local_irq_enable();
5710 out_unlock:
5711 unlock_page(page);
5712 out:
5713 return ret;
5714 }
5715
5716 /**
5717 * get_mctgt_type - get target type of moving charge
5718 * @vma: the vma the pte to be checked belongs
5719 * @addr: the address corresponding to the pte to be checked
5720 * @ptent: the pte to be checked
5721 * @target: the pointer the target page or swap ent will be stored(can be NULL)
5722 *
5723 * Returns
5724 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
5725 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
5726 * move charge. if @target is not NULL, the page is stored in target->page
5727 * with extra refcnt got(Callers should handle it).
5728 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
5729 * target for charge migration. if @target is not NULL, the entry is stored
5730 * in target->ent.
5731 * 3(MC_TARGET_DEVICE): like MC_TARGET_PAGE but page is MEMORY_DEVICE_PRIVATE
5732 * (so ZONE_DEVICE page and thus not on the lru).
5733 * For now we such page is charge like a regular page would be as for all
5734 * intent and purposes it is just special memory taking the place of a
5735 * regular page.
5736 *
5737 * See Documentations/vm/hmm.txt and include/linux/hmm.h
5738 *
5739 * Called with pte lock held.
5740 */
5741
5742 static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
5743 unsigned long addr, pte_t ptent, union mc_target *target)
5744 {
5745 struct page *page = NULL;
5746 enum mc_target_type ret = MC_TARGET_NONE;
5747 swp_entry_t ent = { .val = 0 };
5748
5749 if (pte_present(ptent))
5750 page = mc_handle_present_pte(vma, addr, ptent);
5751 else if (is_swap_pte(ptent))
5752 page = mc_handle_swap_pte(vma, ptent, &ent);
5753 else if (pte_none(ptent))
5754 page = mc_handle_file_pte(vma, addr, ptent, &ent);
5755
5756 if (!page && !ent.val)
5757 return ret;
5758 if (page) {
5759 /*
5760 * Do only loose check w/o serialization.
5761 * mem_cgroup_move_account() checks the page is valid or
5762 * not under LRU exclusion.
5763 */
5764 if (page_memcg(page) == mc.from) {
5765 ret = MC_TARGET_PAGE;
5766 if (is_device_private_page(page))
5767 ret = MC_TARGET_DEVICE;
5768 if (target)
5769 target->page = page;
5770 }
5771 if (!ret || !target)
5772 put_page(page);
5773 }
5774 /*
5775 * There is a swap entry and a page doesn't exist or isn't charged.
5776 * But we cannot move a tail-page in a THP.
5777 */
5778 if (ent.val && !ret && (!page || !PageTransCompound(page)) &&
5779 mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
5780 ret = MC_TARGET_SWAP;
5781 if (target)
5782 target->ent = ent;
5783 }
5784 return ret;
5785 }
5786
5787 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5788 /*
5789 * We don't consider PMD mapped swapping or file mapped pages because THP does
5790 * not support them for now.
5791 * Caller should make sure that pmd_trans_huge(pmd) is true.
5792 */
5793 static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5794 unsigned long addr, pmd_t pmd, union mc_target *target)
5795 {
5796 struct page *page = NULL;
5797 enum mc_target_type ret = MC_TARGET_NONE;
5798
5799 if (unlikely(is_swap_pmd(pmd))) {
5800 VM_BUG_ON(thp_migration_supported() &&
5801 !is_pmd_migration_entry(pmd));
5802 return ret;
5803 }
5804 page = pmd_page(pmd);
5805 VM_BUG_ON_PAGE(!page || !PageHead(page), page);
5806 if (!(mc.flags & MOVE_ANON))
5807 return ret;
5808 if (page_memcg(page) == mc.from) {
5809 ret = MC_TARGET_PAGE;
5810 if (target) {
5811 get_page(page);
5812 target->page = page;
5813 }
5814 }
5815 return ret;
5816 }
5817 #else
5818 static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5819 unsigned long addr, pmd_t pmd, union mc_target *target)
5820 {
5821 return MC_TARGET_NONE;
5822 }
5823 #endif
5824
5825 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
5826 unsigned long addr, unsigned long end,
5827 struct mm_walk *walk)
5828 {
5829 struct vm_area_struct *vma = walk->vma;
5830 pte_t *pte;
5831 spinlock_t *ptl;
5832
5833 ptl = pmd_trans_huge_lock(pmd, vma);
5834 if (ptl) {
5835 /*
5836 * Note their can not be MC_TARGET_DEVICE for now as we do not
5837 * support transparent huge page with MEMORY_DEVICE_PRIVATE but
5838 * this might change.
5839 */
5840 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
5841 mc.precharge += HPAGE_PMD_NR;
5842 spin_unlock(ptl);
5843 return 0;
5844 }
5845
5846 if (pmd_trans_unstable(pmd))
5847 return 0;
5848 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5849 for (; addr != end; pte++, addr += PAGE_SIZE)
5850 if (get_mctgt_type(vma, addr, *pte, NULL))
5851 mc.precharge++; /* increment precharge temporarily */
5852 pte_unmap_unlock(pte - 1, ptl);
5853 cond_resched();
5854
5855 return 0;
5856 }
5857
5858 static const struct mm_walk_ops precharge_walk_ops = {
5859 .pmd_entry = mem_cgroup_count_precharge_pte_range,
5860 };
5861
5862 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
5863 {
5864 unsigned long precharge;
5865
5866 mmap_read_lock(mm);
5867 walk_page_range(mm, 0, mm->highest_vm_end, &precharge_walk_ops, NULL);
5868 mmap_read_unlock(mm);
5869
5870 precharge = mc.precharge;
5871 mc.precharge = 0;
5872
5873 return precharge;
5874 }
5875
5876 static int mem_cgroup_precharge_mc(struct mm_struct *mm)
5877 {
5878 unsigned long precharge = mem_cgroup_count_precharge(mm);
5879
5880 VM_BUG_ON(mc.moving_task);
5881 mc.moving_task = current;
5882 return mem_cgroup_do_precharge(precharge);
5883 }
5884
5885 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
5886 static void __mem_cgroup_clear_mc(void)
5887 {
5888 struct mem_cgroup *from = mc.from;
5889 struct mem_cgroup *to = mc.to;
5890
5891 /* we must uncharge all the leftover precharges from mc.to */
5892 if (mc.precharge) {
5893 cancel_charge(mc.to, mc.precharge);
5894 mc.precharge = 0;
5895 }
5896 /*
5897 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
5898 * we must uncharge here.
5899 */
5900 if (mc.moved_charge) {
5901 cancel_charge(mc.from, mc.moved_charge);
5902 mc.moved_charge = 0;
5903 }
5904 /* we must fixup refcnts and charges */
5905 if (mc.moved_swap) {
5906 /* uncharge swap account from the old cgroup */
5907 if (!mem_cgroup_is_root(mc.from))
5908 page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
5909
5910 mem_cgroup_id_put_many(mc.from, mc.moved_swap);
5911
5912 /*
5913 * we charged both to->memory and to->memsw, so we
5914 * should uncharge to->memory.
5915 */
5916 if (!mem_cgroup_is_root(mc.to))
5917 page_counter_uncharge(&mc.to->memory, mc.moved_swap);
5918
5919 mc.moved_swap = 0;
5920 }
5921 memcg_oom_recover(from);
5922 memcg_oom_recover(to);
5923 wake_up_all(&mc.waitq);
5924 }
5925
5926 static void mem_cgroup_clear_mc(void)
5927 {
5928 struct mm_struct *mm = mc.mm;
5929
5930 /*
5931 * we must clear moving_task before waking up waiters at the end of
5932 * task migration.
5933 */
5934 mc.moving_task = NULL;
5935 __mem_cgroup_clear_mc();
5936 spin_lock(&mc.lock);
5937 mc.from = NULL;
5938 mc.to = NULL;
5939 mc.mm = NULL;
5940 spin_unlock(&mc.lock);
5941
5942 mmput(mm);
5943 }
5944
5945 static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
5946 {
5947 struct cgroup_subsys_state *css;
5948 struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */
5949 struct mem_cgroup *from;
5950 struct task_struct *leader, *p;
5951 struct mm_struct *mm;
5952 unsigned long move_flags;
5953 int ret = 0;
5954
5955 /* charge immigration isn't supported on the default hierarchy */
5956 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
5957 return 0;
5958
5959 /*
5960 * Multi-process migrations only happen on the default hierarchy
5961 * where charge immigration is not used. Perform charge
5962 * immigration if @tset contains a leader and whine if there are
5963 * multiple.
5964 */
5965 p = NULL;
5966 cgroup_taskset_for_each_leader(leader, css, tset) {
5967 WARN_ON_ONCE(p);
5968 p = leader;
5969 memcg = mem_cgroup_from_css(css);
5970 }
5971 if (!p)
5972 return 0;
5973
5974 /*
5975 * We are now commited to this value whatever it is. Changes in this
5976 * tunable will only affect upcoming migrations, not the current one.
5977 * So we need to save it, and keep it going.
5978 */
5979 move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
5980 if (!move_flags)
5981 return 0;
5982
5983 from = mem_cgroup_from_task(p);
5984
5985 VM_BUG_ON(from == memcg);
5986
5987 mm = get_task_mm(p);
5988 if (!mm)
5989 return 0;
5990 /* We move charges only when we move a owner of the mm */
5991 if (mm->owner == p) {
5992 VM_BUG_ON(mc.from);
5993 VM_BUG_ON(mc.to);
5994 VM_BUG_ON(mc.precharge);
5995 VM_BUG_ON(mc.moved_charge);
5996 VM_BUG_ON(mc.moved_swap);
5997
5998 spin_lock(&mc.lock);
5999 mc.mm = mm;
6000 mc.from = from;
6001 mc.to = memcg;
6002 mc.flags = move_flags;
6003 spin_unlock(&mc.lock);
6004 /* We set mc.moving_task later */
6005
6006 ret = mem_cgroup_precharge_mc(mm);
6007 if (ret)
6008 mem_cgroup_clear_mc();
6009 } else {
6010 mmput(mm);
6011 }
6012 return ret;
6013 }
6014
6015 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
6016 {
6017 if (mc.to)
6018 mem_cgroup_clear_mc();
6019 }
6020
6021 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
6022 unsigned long addr, unsigned long end,
6023 struct mm_walk *walk)
6024 {
6025 int ret = 0;
6026 struct vm_area_struct *vma = walk->vma;
6027 pte_t *pte;
6028 spinlock_t *ptl;
6029 enum mc_target_type target_type;
6030 union mc_target target;
6031 struct page *page;
6032
6033 ptl = pmd_trans_huge_lock(pmd, vma);
6034 if (ptl) {
6035 if (mc.precharge < HPAGE_PMD_NR) {
6036 spin_unlock(ptl);
6037 return 0;
6038 }
6039 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
6040 if (target_type == MC_TARGET_PAGE) {
6041 page = target.page;
6042 if (!isolate_lru_page(page)) {
6043 if (!mem_cgroup_move_account(page, true,
6044 mc.from, mc.to)) {
6045 mc.precharge -= HPAGE_PMD_NR;
6046 mc.moved_charge += HPAGE_PMD_NR;
6047 }
6048 putback_lru_page(page);
6049 }
6050 put_page(page);
6051 } else if (target_type == MC_TARGET_DEVICE) {
6052 page = target.page;
6053 if (!mem_cgroup_move_account(page, true,
6054 mc.from, mc.to)) {
6055 mc.precharge -= HPAGE_PMD_NR;
6056 mc.moved_charge += HPAGE_PMD_NR;
6057 }
6058 put_page(page);
6059 }
6060 spin_unlock(ptl);
6061 return 0;
6062 }
6063
6064 if (pmd_trans_unstable(pmd))
6065 return 0;
6066 retry:
6067 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
6068 for (; addr != end; addr += PAGE_SIZE) {
6069 pte_t ptent = *(pte++);
6070 bool device = false;
6071 swp_entry_t ent;
6072
6073 if (!mc.precharge)
6074 break;
6075
6076 switch (get_mctgt_type(vma, addr, ptent, &target)) {
6077 case MC_TARGET_DEVICE:
6078 device = true;
6079 fallthrough;
6080 case MC_TARGET_PAGE:
6081 page = target.page;
6082 /*
6083 * We can have a part of the split pmd here. Moving it
6084 * can be done but it would be too convoluted so simply
6085 * ignore such a partial THP and keep it in original
6086 * memcg. There should be somebody mapping the head.
6087 */
6088 if (PageTransCompound(page))
6089 goto put;
6090 if (!device && isolate_lru_page(page))
6091 goto put;
6092 if (!mem_cgroup_move_account(page, false,
6093 mc.from, mc.to)) {
6094 mc.precharge--;
6095 /* we uncharge from mc.from later. */
6096 mc.moved_charge++;
6097 }
6098 if (!device)
6099 putback_lru_page(page);
6100 put: /* get_mctgt_type() gets the page */
6101 put_page(page);
6102 break;
6103 case MC_TARGET_SWAP:
6104 ent = target.ent;
6105 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
6106 mc.precharge--;
6107 mem_cgroup_id_get_many(mc.to, 1);
6108 /* we fixup other refcnts and charges later. */
6109 mc.moved_swap++;
6110 }
6111 break;
6112 default:
6113 break;
6114 }
6115 }
6116 pte_unmap_unlock(pte - 1, ptl);
6117 cond_resched();
6118
6119 if (addr != end) {
6120 /*
6121 * We have consumed all precharges we got in can_attach().
6122 * We try charge one by one, but don't do any additional
6123 * charges to mc.to if we have failed in charge once in attach()
6124 * phase.
6125 */
6126 ret = mem_cgroup_do_precharge(1);
6127 if (!ret)
6128 goto retry;
6129 }
6130
6131 return ret;
6132 }
6133
6134 static const struct mm_walk_ops charge_walk_ops = {
6135 .pmd_entry = mem_cgroup_move_charge_pte_range,
6136 };
6137
6138 static void mem_cgroup_move_charge(void)
6139 {
6140 lru_add_drain_all();
6141 /*
6142 * Signal lock_page_memcg() to take the memcg's move_lock
6143 * while we're moving its pages to another memcg. Then wait
6144 * for already started RCU-only updates to finish.
6145 */
6146 atomic_inc(&mc.from->moving_account);
6147 synchronize_rcu();
6148 retry:
6149 if (unlikely(!mmap_read_trylock(mc.mm))) {
6150 /*
6151 * Someone who are holding the mmap_lock might be waiting in
6152 * waitq. So we cancel all extra charges, wake up all waiters,
6153 * and retry. Because we cancel precharges, we might not be able
6154 * to move enough charges, but moving charge is a best-effort
6155 * feature anyway, so it wouldn't be a big problem.
6156 */
6157 __mem_cgroup_clear_mc();
6158 cond_resched();
6159 goto retry;
6160 }
6161 /*
6162 * When we have consumed all precharges and failed in doing
6163 * additional charge, the page walk just aborts.
6164 */
6165 walk_page_range(mc.mm, 0, mc.mm->highest_vm_end, &charge_walk_ops,
6166 NULL);
6167
6168 mmap_read_unlock(mc.mm);
6169 atomic_dec(&mc.from->moving_account);
6170 }
6171
6172 static void mem_cgroup_move_task(void)
6173 {
6174 if (mc.to) {
6175 mem_cgroup_move_charge();
6176 mem_cgroup_clear_mc();
6177 }
6178 }
6179 #else /* !CONFIG_MMU */
6180 static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
6181 {
6182 return 0;
6183 }
6184 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
6185 {
6186 }
6187 static void mem_cgroup_move_task(void)
6188 {
6189 }
6190 #endif
6191
6192 static int seq_puts_memcg_tunable(struct seq_file *m, unsigned long value)
6193 {
6194 if (value == PAGE_COUNTER_MAX)
6195 seq_puts(m, "max\n");
6196 else
6197 seq_printf(m, "%llu\n", (u64)value * PAGE_SIZE);
6198
6199 return 0;
6200 }
6201
6202 static u64 memory_current_read(struct cgroup_subsys_state *css,
6203 struct cftype *cft)
6204 {
6205 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6206
6207 return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
6208 }
6209
6210 static int memory_min_show(struct seq_file *m, void *v)
6211 {
6212 return seq_puts_memcg_tunable(m,
6213 READ_ONCE(mem_cgroup_from_seq(m)->memory.min));
6214 }
6215
6216 static ssize_t memory_min_write(struct kernfs_open_file *of,
6217 char *buf, size_t nbytes, loff_t off)
6218 {
6219 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6220 unsigned long min;
6221 int err;
6222
6223 buf = strstrip(buf);
6224 err = page_counter_memparse(buf, "max", &min);
6225 if (err)
6226 return err;
6227
6228 page_counter_set_min(&memcg->memory, min);
6229
6230 return nbytes;
6231 }
6232
6233 static int memory_low_show(struct seq_file *m, void *v)
6234 {
6235 return seq_puts_memcg_tunable(m,
6236 READ_ONCE(mem_cgroup_from_seq(m)->memory.low));
6237 }
6238
6239 static ssize_t memory_low_write(struct kernfs_open_file *of,
6240 char *buf, size_t nbytes, loff_t off)
6241 {
6242 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6243 unsigned long low;
6244 int err;
6245
6246 buf = strstrip(buf);
6247 err = page_counter_memparse(buf, "max", &low);
6248 if (err)
6249 return err;
6250
6251 page_counter_set_low(&memcg->memory, low);
6252
6253 return nbytes;
6254 }
6255
6256 static int memory_high_show(struct seq_file *m, void *v)
6257 {
6258 return seq_puts_memcg_tunable(m,
6259 READ_ONCE(mem_cgroup_from_seq(m)->memory.high));
6260 }
6261
6262 static ssize_t memory_high_write(struct kernfs_open_file *of,
6263 char *buf, size_t nbytes, loff_t off)
6264 {
6265 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6266 unsigned int nr_retries = MAX_RECLAIM_RETRIES;
6267 bool drained = false;
6268 unsigned long high;
6269 int err;
6270
6271 buf = strstrip(buf);
6272 err = page_counter_memparse(buf, "max", &high);
6273 if (err)
6274 return err;
6275
6276 for (;;) {
6277 unsigned long nr_pages = page_counter_read(&memcg->memory);
6278 unsigned long reclaimed;
6279
6280 if (nr_pages <= high)
6281 break;
6282
6283 if (signal_pending(current))
6284 break;
6285
6286 if (!drained) {
6287 drain_all_stock(memcg);
6288 drained = true;
6289 continue;
6290 }
6291
6292 reclaimed = try_to_free_mem_cgroup_pages(memcg, nr_pages - high,
6293 GFP_KERNEL, true);
6294
6295 if (!reclaimed && !nr_retries--)
6296 break;
6297 }
6298
6299 page_counter_set_high(&memcg->memory, high);
6300
6301 memcg_wb_domain_size_changed(memcg);
6302
6303 return nbytes;
6304 }
6305
6306 static int memory_max_show(struct seq_file *m, void *v)
6307 {
6308 return seq_puts_memcg_tunable(m,
6309 READ_ONCE(mem_cgroup_from_seq(m)->memory.max));
6310 }
6311
6312 static ssize_t memory_max_write(struct kernfs_open_file *of,
6313 char *buf, size_t nbytes, loff_t off)
6314 {
6315 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6316 unsigned int nr_reclaims = MAX_RECLAIM_RETRIES;
6317 bool drained = false;
6318 unsigned long max;
6319 int err;
6320
6321 buf = strstrip(buf);
6322 err = page_counter_memparse(buf, "max", &max);
6323 if (err)
6324 return err;
6325
6326 xchg(&memcg->memory.max, max);
6327
6328 for (;;) {
6329 unsigned long nr_pages = page_counter_read(&memcg->memory);
6330
6331 if (nr_pages <= max)
6332 break;
6333
6334 if (signal_pending(current))
6335 break;
6336
6337 if (!drained) {
6338 drain_all_stock(memcg);
6339 drained = true;
6340 continue;
6341 }
6342
6343 if (nr_reclaims) {
6344 if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max,
6345 GFP_KERNEL, true))
6346 nr_reclaims--;
6347 continue;
6348 }
6349
6350 memcg_memory_event(memcg, MEMCG_OOM);
6351 if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0))
6352 break;
6353 }
6354
6355 memcg_wb_domain_size_changed(memcg);
6356 return nbytes;
6357 }
6358
6359 static void __memory_events_show(struct seq_file *m, atomic_long_t *events)
6360 {
6361 seq_printf(m, "low %lu\n", atomic_long_read(&events[MEMCG_LOW]));
6362 seq_printf(m, "high %lu\n", atomic_long_read(&events[MEMCG_HIGH]));
6363 seq_printf(m, "max %lu\n", atomic_long_read(&events[MEMCG_MAX]));
6364 seq_printf(m, "oom %lu\n", atomic_long_read(&events[MEMCG_OOM]));
6365 seq_printf(m, "oom_kill %lu\n",
6366 atomic_long_read(&events[MEMCG_OOM_KILL]));
6367 }
6368
6369 static int memory_events_show(struct seq_file *m, void *v)
6370 {
6371 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6372
6373 __memory_events_show(m, memcg->memory_events);
6374 return 0;
6375 }
6376
6377 static int memory_events_local_show(struct seq_file *m, void *v)
6378 {
6379 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6380
6381 __memory_events_show(m, memcg->memory_events_local);
6382 return 0;
6383 }
6384
6385 static int memory_stat_show(struct seq_file *m, void *v)
6386 {
6387 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6388 char *buf;
6389
6390 buf = memory_stat_format(memcg);
6391 if (!buf)
6392 return -ENOMEM;
6393 seq_puts(m, buf);
6394 kfree(buf);
6395 return 0;
6396 }
6397
6398 #ifdef CONFIG_NUMA
6399 static int memory_numa_stat_show(struct seq_file *m, void *v)
6400 {
6401 int i;
6402 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6403
6404 for (i = 0; i < ARRAY_SIZE(memory_stats); i++) {
6405 int nid;
6406
6407 if (memory_stats[i].idx >= NR_VM_NODE_STAT_ITEMS)
6408 continue;
6409
6410 seq_printf(m, "%s", memory_stats[i].name);
6411 for_each_node_state(nid, N_MEMORY) {
6412 u64 size;
6413 struct lruvec *lruvec;
6414
6415 lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid));
6416 size = lruvec_page_state(lruvec, memory_stats[i].idx);
6417 size *= memory_stats[i].ratio;
6418 seq_printf(m, " N%d=%llu", nid, size);
6419 }
6420 seq_putc(m, '\n');
6421 }
6422
6423 return 0;
6424 }
6425 #endif
6426
6427 static int memory_oom_group_show(struct seq_file *m, void *v)
6428 {
6429 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6430
6431 seq_printf(m, "%d\n", memcg->oom_group);
6432
6433 return 0;
6434 }
6435
6436 static ssize_t memory_oom_group_write(struct kernfs_open_file *of,
6437 char *buf, size_t nbytes, loff_t off)
6438 {
6439 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6440 int ret, oom_group;
6441
6442 buf = strstrip(buf);
6443 if (!buf)
6444 return -EINVAL;
6445
6446 ret = kstrtoint(buf, 0, &oom_group);
6447 if (ret)
6448 return ret;
6449
6450 if (oom_group != 0 && oom_group != 1)
6451 return -EINVAL;
6452
6453 memcg->oom_group = oom_group;
6454
6455 return nbytes;
6456 }
6457
6458 static struct cftype memory_files[] = {
6459 {
6460 .name = "current",
6461 .flags = CFTYPE_NOT_ON_ROOT,
6462 .read_u64 = memory_current_read,
6463 },
6464 {
6465 .name = "min",
6466 .flags = CFTYPE_NOT_ON_ROOT,
6467 .seq_show = memory_min_show,
6468 .write = memory_min_write,
6469 },
6470 {
6471 .name = "low",
6472 .flags = CFTYPE_NOT_ON_ROOT,
6473 .seq_show = memory_low_show,
6474 .write = memory_low_write,
6475 },
6476 {
6477 .name = "high",
6478 .flags = CFTYPE_NOT_ON_ROOT,
6479 .seq_show = memory_high_show,
6480 .write = memory_high_write,
6481 },
6482 {
6483 .name = "max",
6484 .flags = CFTYPE_NOT_ON_ROOT,
6485 .seq_show = memory_max_show,
6486 .write = memory_max_write,
6487 },
6488 {
6489 .name = "events",
6490 .flags = CFTYPE_NOT_ON_ROOT,
6491 .file_offset = offsetof(struct mem_cgroup, events_file),
6492 .seq_show = memory_events_show,
6493 },
6494 {
6495 .name = "events.local",
6496 .flags = CFTYPE_NOT_ON_ROOT,
6497 .file_offset = offsetof(struct mem_cgroup, events_local_file),
6498 .seq_show = memory_events_local_show,
6499 },
6500 {
6501 .name = "stat",
6502 .seq_show = memory_stat_show,
6503 },
6504 #ifdef CONFIG_NUMA
6505 {
6506 .name = "numa_stat",
6507 .seq_show = memory_numa_stat_show,
6508 },
6509 #endif
6510 {
6511 .name = "oom.group",
6512 .flags = CFTYPE_NOT_ON_ROOT | CFTYPE_NS_DELEGATABLE,
6513 .seq_show = memory_oom_group_show,
6514 .write = memory_oom_group_write,
6515 },
6516 { } /* terminate */
6517 };
6518
6519 struct cgroup_subsys memory_cgrp_subsys = {
6520 .css_alloc = mem_cgroup_css_alloc,
6521 .css_online = mem_cgroup_css_online,
6522 .css_offline = mem_cgroup_css_offline,
6523 .css_released = mem_cgroup_css_released,
6524 .css_free = mem_cgroup_css_free,
6525 .css_reset = mem_cgroup_css_reset,
6526 .can_attach = mem_cgroup_can_attach,
6527 .cancel_attach = mem_cgroup_cancel_attach,
6528 .post_attach = mem_cgroup_move_task,
6529 .dfl_cftypes = memory_files,
6530 .legacy_cftypes = mem_cgroup_legacy_files,
6531 .early_init = 0,
6532 };
6533
6534 /*
6535 * This function calculates an individual cgroup's effective
6536 * protection which is derived from its own memory.min/low, its
6537 * parent's and siblings' settings, as well as the actual memory
6538 * distribution in the tree.
6539 *
6540 * The following rules apply to the effective protection values:
6541 *
6542 * 1. At the first level of reclaim, effective protection is equal to
6543 * the declared protection in memory.min and memory.low.
6544 *
6545 * 2. To enable safe delegation of the protection configuration, at
6546 * subsequent levels the effective protection is capped to the
6547 * parent's effective protection.
6548 *
6549 * 3. To make complex and dynamic subtrees easier to configure, the
6550 * user is allowed to overcommit the declared protection at a given
6551 * level. If that is the case, the parent's effective protection is
6552 * distributed to the children in proportion to how much protection
6553 * they have declared and how much of it they are utilizing.
6554 *
6555 * This makes distribution proportional, but also work-conserving:
6556 * if one cgroup claims much more protection than it uses memory,
6557 * the unused remainder is available to its siblings.
6558 *
6559 * 4. Conversely, when the declared protection is undercommitted at a
6560 * given level, the distribution of the larger parental protection
6561 * budget is NOT proportional. A cgroup's protection from a sibling
6562 * is capped to its own memory.min/low setting.
6563 *
6564 * 5. However, to allow protecting recursive subtrees from each other
6565 * without having to declare each individual cgroup's fixed share
6566 * of the ancestor's claim to protection, any unutilized -
6567 * "floating" - protection from up the tree is distributed in
6568 * proportion to each cgroup's *usage*. This makes the protection
6569 * neutral wrt sibling cgroups and lets them compete freely over
6570 * the shared parental protection budget, but it protects the
6571 * subtree as a whole from neighboring subtrees.
6572 *
6573 * Note that 4. and 5. are not in conflict: 4. is about protecting
6574 * against immediate siblings whereas 5. is about protecting against
6575 * neighboring subtrees.
6576 */
6577 static unsigned long effective_protection(unsigned long usage,
6578 unsigned long parent_usage,
6579 unsigned long setting,
6580 unsigned long parent_effective,
6581 unsigned long siblings_protected)
6582 {
6583 unsigned long protected;
6584 unsigned long ep;
6585
6586 protected = min(usage, setting);
6587 /*
6588 * If all cgroups at this level combined claim and use more
6589 * protection then what the parent affords them, distribute
6590 * shares in proportion to utilization.
6591 *
6592 * We are using actual utilization rather than the statically
6593 * claimed protection in order to be work-conserving: claimed
6594 * but unused protection is available to siblings that would
6595 * otherwise get a smaller chunk than what they claimed.
6596 */
6597 if (siblings_protected > parent_effective)
6598 return protected * parent_effective / siblings_protected;
6599
6600 /*
6601 * Ok, utilized protection of all children is within what the
6602 * parent affords them, so we know whatever this child claims
6603 * and utilizes is effectively protected.
6604 *
6605 * If there is unprotected usage beyond this value, reclaim
6606 * will apply pressure in proportion to that amount.
6607 *
6608 * If there is unutilized protection, the cgroup will be fully
6609 * shielded from reclaim, but we do return a smaller value for
6610 * protection than what the group could enjoy in theory. This
6611 * is okay. With the overcommit distribution above, effective
6612 * protection is always dependent on how memory is actually
6613 * consumed among the siblings anyway.
6614 */
6615 ep = protected;
6616
6617 /*
6618 * If the children aren't claiming (all of) the protection
6619 * afforded to them by the parent, distribute the remainder in
6620 * proportion to the (unprotected) memory of each cgroup. That
6621 * way, cgroups that aren't explicitly prioritized wrt each
6622 * other compete freely over the allowance, but they are
6623 * collectively protected from neighboring trees.
6624 *
6625 * We're using unprotected memory for the weight so that if
6626 * some cgroups DO claim explicit protection, we don't protect
6627 * the same bytes twice.
6628 *
6629 * Check both usage and parent_usage against the respective
6630 * protected values. One should imply the other, but they
6631 * aren't read atomically - make sure the division is sane.
6632 */
6633 if (!(cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_RECURSIVE_PROT))
6634 return ep;
6635 if (parent_effective > siblings_protected &&
6636 parent_usage > siblings_protected &&
6637 usage > protected) {
6638 unsigned long unclaimed;
6639
6640 unclaimed = parent_effective - siblings_protected;
6641 unclaimed *= usage - protected;
6642 unclaimed /= parent_usage - siblings_protected;
6643
6644 ep += unclaimed;
6645 }
6646
6647 return ep;
6648 }
6649
6650 /**
6651 * mem_cgroup_protected - check if memory consumption is in the normal range
6652 * @root: the top ancestor of the sub-tree being checked
6653 * @memcg: the memory cgroup to check
6654 *
6655 * WARNING: This function is not stateless! It can only be used as part
6656 * of a top-down tree iteration, not for isolated queries.
6657 */
6658 void mem_cgroup_calculate_protection(struct mem_cgroup *root,
6659 struct mem_cgroup *memcg)
6660 {
6661 unsigned long usage, parent_usage;
6662 struct mem_cgroup *parent;
6663
6664 if (mem_cgroup_disabled())
6665 return;
6666
6667 if (!root)
6668 root = root_mem_cgroup;
6669
6670 /*
6671 * Effective values of the reclaim targets are ignored so they
6672 * can be stale. Have a look at mem_cgroup_protection for more
6673 * details.
6674 * TODO: calculation should be more robust so that we do not need
6675 * that special casing.
6676 */
6677 if (memcg == root)
6678 return;
6679
6680 usage = page_counter_read(&memcg->memory);
6681 if (!usage)
6682 return;
6683
6684 parent = parent_mem_cgroup(memcg);
6685 /* No parent means a non-hierarchical mode on v1 memcg */
6686 if (!parent)
6687 return;
6688
6689 if (parent == root) {
6690 memcg->memory.emin = READ_ONCE(memcg->memory.min);
6691 memcg->memory.elow = READ_ONCE(memcg->memory.low);
6692 return;
6693 }
6694
6695 parent_usage = page_counter_read(&parent->memory);
6696
6697 WRITE_ONCE(memcg->memory.emin, effective_protection(usage, parent_usage,
6698 READ_ONCE(memcg->memory.min),
6699 READ_ONCE(parent->memory.emin),
6700 atomic_long_read(&parent->memory.children_min_usage)));
6701
6702 WRITE_ONCE(memcg->memory.elow, effective_protection(usage, parent_usage,
6703 READ_ONCE(memcg->memory.low),
6704 READ_ONCE(parent->memory.elow),
6705 atomic_long_read(&parent->memory.children_low_usage)));
6706 }
6707
6708 /**
6709 * mem_cgroup_charge - charge a newly allocated page to a cgroup
6710 * @page: page to charge
6711 * @mm: mm context of the victim
6712 * @gfp_mask: reclaim mode
6713 *
6714 * Try to charge @page to the memcg that @mm belongs to, reclaiming
6715 * pages according to @gfp_mask if necessary.
6716 *
6717 * Returns 0 on success. Otherwise, an error code is returned.
6718 */
6719 int mem_cgroup_charge(struct page *page, struct mm_struct *mm, gfp_t gfp_mask)
6720 {
6721 unsigned int nr_pages = thp_nr_pages(page);
6722 struct mem_cgroup *memcg = NULL;
6723 int ret = 0;
6724
6725 if (mem_cgroup_disabled())
6726 goto out;
6727
6728 if (PageSwapCache(page)) {
6729 swp_entry_t ent = { .val = page_private(page), };
6730 unsigned short id;
6731
6732 /*
6733 * Every swap fault against a single page tries to charge the
6734 * page, bail as early as possible. shmem_unuse() encounters
6735 * already charged pages, too. page and memcg binding is
6736 * protected by the page lock, which serializes swap cache
6737 * removal, which in turn serializes uncharging.
6738 */
6739 VM_BUG_ON_PAGE(!PageLocked(page), page);
6740 if (page_memcg(compound_head(page)))
6741 goto out;
6742
6743 id = lookup_swap_cgroup_id(ent);
6744 rcu_read_lock();
6745 memcg = mem_cgroup_from_id(id);
6746 if (memcg && !css_tryget_online(&memcg->css))
6747 memcg = NULL;
6748 rcu_read_unlock();
6749 }
6750
6751 if (!memcg)
6752 memcg = get_mem_cgroup_from_mm(mm);
6753
6754 ret = try_charge(memcg, gfp_mask, nr_pages);
6755 if (ret)
6756 goto out_put;
6757
6758 css_get(&memcg->css);
6759 commit_charge(page, memcg);
6760
6761 local_irq_disable();
6762 mem_cgroup_charge_statistics(memcg, page, nr_pages);
6763 memcg_check_events(memcg, page);
6764 local_irq_enable();
6765
6766 if (PageSwapCache(page)) {
6767 swp_entry_t entry = { .val = page_private(page) };
6768 /*
6769 * The swap entry might not get freed for a long time,
6770 * let's not wait for it. The page already received a
6771 * memory+swap charge, drop the swap entry duplicate.
6772 */
6773 mem_cgroup_uncharge_swap(entry, nr_pages);
6774 }
6775
6776 out_put:
6777 css_put(&memcg->css);
6778 out:
6779 return ret;
6780 }
6781
6782 struct uncharge_gather {
6783 struct mem_cgroup *memcg;
6784 unsigned long nr_pages;
6785 unsigned long pgpgout;
6786 unsigned long nr_kmem;
6787 struct page *dummy_page;
6788 };
6789
6790 static inline void uncharge_gather_clear(struct uncharge_gather *ug)
6791 {
6792 memset(ug, 0, sizeof(*ug));
6793 }
6794
6795 static void uncharge_batch(const struct uncharge_gather *ug)
6796 {
6797 unsigned long flags;
6798
6799 if (!mem_cgroup_is_root(ug->memcg)) {
6800 page_counter_uncharge(&ug->memcg->memory, ug->nr_pages);
6801 if (do_memsw_account())
6802 page_counter_uncharge(&ug->memcg->memsw, ug->nr_pages);
6803 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && ug->nr_kmem)
6804 page_counter_uncharge(&ug->memcg->kmem, ug->nr_kmem);
6805 memcg_oom_recover(ug->memcg);
6806 }
6807
6808 local_irq_save(flags);
6809 __count_memcg_events(ug->memcg, PGPGOUT, ug->pgpgout);
6810 __this_cpu_add(ug->memcg->vmstats_percpu->nr_page_events, ug->nr_pages);
6811 memcg_check_events(ug->memcg, ug->dummy_page);
6812 local_irq_restore(flags);
6813
6814 /* drop reference from uncharge_page */
6815 css_put(&ug->memcg->css);
6816 }
6817
6818 static void uncharge_page(struct page *page, struct uncharge_gather *ug)
6819 {
6820 unsigned long nr_pages;
6821
6822 VM_BUG_ON_PAGE(PageLRU(page), page);
6823
6824 if (!page_memcg(page))
6825 return;
6826
6827 /*
6828 * Nobody should be changing or seriously looking at
6829 * page_memcg(page) at this point, we have fully
6830 * exclusive access to the page.
6831 */
6832
6833 if (ug->memcg != page_memcg(page)) {
6834 if (ug->memcg) {
6835 uncharge_batch(ug);
6836 uncharge_gather_clear(ug);
6837 }
6838 ug->memcg = page_memcg(page);
6839
6840 /* pairs with css_put in uncharge_batch */
6841 css_get(&ug->memcg->css);
6842 }
6843
6844 nr_pages = compound_nr(page);
6845 ug->nr_pages += nr_pages;
6846
6847 if (PageMemcgKmem(page))
6848 ug->nr_kmem += nr_pages;
6849 else
6850 ug->pgpgout++;
6851
6852 ug->dummy_page = page;
6853 page->memcg_data = 0;
6854 css_put(&ug->memcg->css);
6855 }
6856
6857 static void uncharge_list(struct list_head *page_list)
6858 {
6859 struct uncharge_gather ug;
6860 struct list_head *next;
6861
6862 uncharge_gather_clear(&ug);
6863
6864 /*
6865 * Note that the list can be a single page->lru; hence the
6866 * do-while loop instead of a simple list_for_each_entry().
6867 */
6868 next = page_list->next;
6869 do {
6870 struct page *page;
6871
6872 page = list_entry(next, struct page, lru);
6873 next = page->lru.next;
6874
6875 uncharge_page(page, &ug);
6876 } while (next != page_list);
6877
6878 if (ug.memcg)
6879 uncharge_batch(&ug);
6880 }
6881
6882 /**
6883 * mem_cgroup_uncharge - uncharge a page
6884 * @page: page to uncharge
6885 *
6886 * Uncharge a page previously charged with mem_cgroup_charge().
6887 */
6888 void mem_cgroup_uncharge(struct page *page)
6889 {
6890 struct uncharge_gather ug;
6891
6892 if (mem_cgroup_disabled())
6893 return;
6894
6895 /* Don't touch page->lru of any random page, pre-check: */
6896 if (!page_memcg(page))
6897 return;
6898
6899 uncharge_gather_clear(&ug);
6900 uncharge_page(page, &ug);
6901 uncharge_batch(&ug);
6902 }
6903
6904 /**
6905 * mem_cgroup_uncharge_list - uncharge a list of page
6906 * @page_list: list of pages to uncharge
6907 *
6908 * Uncharge a list of pages previously charged with
6909 * mem_cgroup_charge().
6910 */
6911 void mem_cgroup_uncharge_list(struct list_head *page_list)
6912 {
6913 if (mem_cgroup_disabled())
6914 return;
6915
6916 if (!list_empty(page_list))
6917 uncharge_list(page_list);
6918 }
6919
6920 /**
6921 * mem_cgroup_migrate - charge a page's replacement
6922 * @oldpage: currently circulating page
6923 * @newpage: replacement page
6924 *
6925 * Charge @newpage as a replacement page for @oldpage. @oldpage will
6926 * be uncharged upon free.
6927 *
6928 * Both pages must be locked, @newpage->mapping must be set up.
6929 */
6930 void mem_cgroup_migrate(struct page *oldpage, struct page *newpage)
6931 {
6932 struct mem_cgroup *memcg;
6933 unsigned int nr_pages;
6934 unsigned long flags;
6935
6936 VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
6937 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
6938 VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
6939 VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
6940 newpage);
6941
6942 if (mem_cgroup_disabled())
6943 return;
6944
6945 /* Page cache replacement: new page already charged? */
6946 if (page_memcg(newpage))
6947 return;
6948
6949 memcg = page_memcg(oldpage);
6950 VM_WARN_ON_ONCE_PAGE(!memcg, oldpage);
6951 if (!memcg)
6952 return;
6953
6954 /* Force-charge the new page. The old one will be freed soon */
6955 nr_pages = thp_nr_pages(newpage);
6956
6957 page_counter_charge(&memcg->memory, nr_pages);
6958 if (do_memsw_account())
6959 page_counter_charge(&memcg->memsw, nr_pages);
6960
6961 css_get(&memcg->css);
6962 commit_charge(newpage, memcg);
6963
6964 local_irq_save(flags);
6965 mem_cgroup_charge_statistics(memcg, newpage, nr_pages);
6966 memcg_check_events(memcg, newpage);
6967 local_irq_restore(flags);
6968 }
6969
6970 DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
6971 EXPORT_SYMBOL(memcg_sockets_enabled_key);
6972
6973 void mem_cgroup_sk_alloc(struct sock *sk)
6974 {
6975 struct mem_cgroup *memcg;
6976
6977 if (!mem_cgroup_sockets_enabled)
6978 return;
6979
6980 /* Do not associate the sock with unrelated interrupted task's memcg. */
6981 if (in_interrupt())
6982 return;
6983
6984 rcu_read_lock();
6985 memcg = mem_cgroup_from_task(current);
6986 if (memcg == root_mem_cgroup)
6987 goto out;
6988 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active)
6989 goto out;
6990 if (css_tryget(&memcg->css))
6991 sk->sk_memcg = memcg;
6992 out:
6993 rcu_read_unlock();
6994 }
6995
6996 void mem_cgroup_sk_free(struct sock *sk)
6997 {
6998 if (sk->sk_memcg)
6999 css_put(&sk->sk_memcg->css);
7000 }
7001
7002 /**
7003 * mem_cgroup_charge_skmem - charge socket memory
7004 * @memcg: memcg to charge
7005 * @nr_pages: number of pages to charge
7006 *
7007 * Charges @nr_pages to @memcg. Returns %true if the charge fit within
7008 * @memcg's configured limit, %false if the charge had to be forced.
7009 */
7010 bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
7011 {
7012 gfp_t gfp_mask = GFP_KERNEL;
7013
7014 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
7015 struct page_counter *fail;
7016
7017 if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) {
7018 memcg->tcpmem_pressure = 0;
7019 return true;
7020 }
7021 page_counter_charge(&memcg->tcpmem, nr_pages);
7022 memcg->tcpmem_pressure = 1;
7023 return false;
7024 }
7025
7026 /* Don't block in the packet receive path */
7027 if (in_softirq())
7028 gfp_mask = GFP_NOWAIT;
7029
7030 mod_memcg_state(memcg, MEMCG_SOCK, nr_pages);
7031
7032 if (try_charge(memcg, gfp_mask, nr_pages) == 0)
7033 return true;
7034
7035 try_charge(memcg, gfp_mask|__GFP_NOFAIL, nr_pages);
7036 return false;
7037 }
7038
7039 /**
7040 * mem_cgroup_uncharge_skmem - uncharge socket memory
7041 * @memcg: memcg to uncharge
7042 * @nr_pages: number of pages to uncharge
7043 */
7044 void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
7045 {
7046 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
7047 page_counter_uncharge(&memcg->tcpmem, nr_pages);
7048 return;
7049 }
7050
7051 mod_memcg_state(memcg, MEMCG_SOCK, -nr_pages);
7052
7053 refill_stock(memcg, nr_pages);
7054 }
7055
7056 static int __init cgroup_memory(char *s)
7057 {
7058 char *token;
7059
7060 while ((token = strsep(&s, ",")) != NULL) {
7061 if (!*token)
7062 continue;
7063 if (!strcmp(token, "nosocket"))
7064 cgroup_memory_nosocket = true;
7065 if (!strcmp(token, "nokmem"))
7066 cgroup_memory_nokmem = true;
7067 }
7068 return 0;
7069 }
7070 __setup("cgroup.memory=", cgroup_memory);
7071
7072 /*
7073 * subsys_initcall() for memory controller.
7074 *
7075 * Some parts like memcg_hotplug_cpu_dead() have to be initialized from this
7076 * context because of lock dependencies (cgroup_lock -> cpu hotplug) but
7077 * basically everything that doesn't depend on a specific mem_cgroup structure
7078 * should be initialized from here.
7079 */
7080 static int __init mem_cgroup_init(void)
7081 {
7082 int cpu, node;
7083
7084 cpuhp_setup_state_nocalls(CPUHP_MM_MEMCQ_DEAD, "mm/memctrl:dead", NULL,
7085 memcg_hotplug_cpu_dead);
7086
7087 for_each_possible_cpu(cpu)
7088 INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
7089 drain_local_stock);
7090
7091 for_each_node(node) {
7092 struct mem_cgroup_tree_per_node *rtpn;
7093
7094 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
7095 node_online(node) ? node : NUMA_NO_NODE);
7096
7097 rtpn->rb_root = RB_ROOT;
7098 rtpn->rb_rightmost = NULL;
7099 spin_lock_init(&rtpn->lock);
7100 soft_limit_tree.rb_tree_per_node[node] = rtpn;
7101 }
7102
7103 return 0;
7104 }
7105 subsys_initcall(mem_cgroup_init);
7106
7107 #ifdef CONFIG_MEMCG_SWAP
7108 static struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg)
7109 {
7110 while (!refcount_inc_not_zero(&memcg->id.ref)) {
7111 /*
7112 * The root cgroup cannot be destroyed, so it's refcount must
7113 * always be >= 1.
7114 */
7115 if (WARN_ON_ONCE(memcg == root_mem_cgroup)) {
7116 VM_BUG_ON(1);
7117 break;
7118 }
7119 memcg = parent_mem_cgroup(memcg);
7120 if (!memcg)
7121 memcg = root_mem_cgroup;
7122 }
7123 return memcg;
7124 }
7125
7126 /**
7127 * mem_cgroup_swapout - transfer a memsw charge to swap
7128 * @page: page whose memsw charge to transfer
7129 * @entry: swap entry to move the charge to
7130 *
7131 * Transfer the memsw charge of @page to @entry.
7132 */
7133 void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
7134 {
7135 struct mem_cgroup *memcg, *swap_memcg;
7136 unsigned int nr_entries;
7137 unsigned short oldid;
7138
7139 VM_BUG_ON_PAGE(PageLRU(page), page);
7140 VM_BUG_ON_PAGE(page_count(page), page);
7141
7142 if (mem_cgroup_disabled())
7143 return;
7144
7145 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
7146 return;
7147
7148 memcg = page_memcg(page);
7149
7150 VM_WARN_ON_ONCE_PAGE(!memcg, page);
7151 if (!memcg)
7152 return;
7153
7154 /*
7155 * In case the memcg owning these pages has been offlined and doesn't
7156 * have an ID allocated to it anymore, charge the closest online
7157 * ancestor for the swap instead and transfer the memory+swap charge.
7158 */
7159 swap_memcg = mem_cgroup_id_get_online(memcg);
7160 nr_entries = thp_nr_pages(page);
7161 /* Get references for the tail pages, too */
7162 if (nr_entries > 1)
7163 mem_cgroup_id_get_many(swap_memcg, nr_entries - 1);
7164 oldid = swap_cgroup_record(entry, mem_cgroup_id(swap_memcg),
7165 nr_entries);
7166 VM_BUG_ON_PAGE(oldid, page);
7167 mod_memcg_state(swap_memcg, MEMCG_SWAP, nr_entries);
7168
7169 page->memcg_data = 0;
7170
7171 if (!mem_cgroup_is_root(memcg))
7172 page_counter_uncharge(&memcg->memory, nr_entries);
7173
7174 if (!cgroup_memory_noswap && memcg != swap_memcg) {
7175 if (!mem_cgroup_is_root(swap_memcg))
7176 page_counter_charge(&swap_memcg->memsw, nr_entries);
7177 page_counter_uncharge(&memcg->memsw, nr_entries);
7178 }
7179
7180 /*
7181 * Interrupts should be disabled here because the caller holds the
7182 * i_pages lock which is taken with interrupts-off. It is
7183 * important here to have the interrupts disabled because it is the
7184 * only synchronisation we have for updating the per-CPU variables.
7185 */
7186 VM_BUG_ON(!irqs_disabled());
7187 mem_cgroup_charge_statistics(memcg, page, -nr_entries);
7188 memcg_check_events(memcg, page);
7189
7190 css_put(&memcg->css);
7191 }
7192
7193 /**
7194 * mem_cgroup_try_charge_swap - try charging swap space for a page
7195 * @page: page being added to swap
7196 * @entry: swap entry to charge
7197 *
7198 * Try to charge @page's memcg for the swap space at @entry.
7199 *
7200 * Returns 0 on success, -ENOMEM on failure.
7201 */
7202 int mem_cgroup_try_charge_swap(struct page *page, swp_entry_t entry)
7203 {
7204 unsigned int nr_pages = thp_nr_pages(page);
7205 struct page_counter *counter;
7206 struct mem_cgroup *memcg;
7207 unsigned short oldid;
7208
7209 if (mem_cgroup_disabled())
7210 return 0;
7211
7212 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
7213 return 0;
7214
7215 memcg = page_memcg(page);
7216
7217 VM_WARN_ON_ONCE_PAGE(!memcg, page);
7218 if (!memcg)
7219 return 0;
7220
7221 if (!entry.val) {
7222 memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
7223 return 0;
7224 }
7225
7226 memcg = mem_cgroup_id_get_online(memcg);
7227
7228 if (!cgroup_memory_noswap && !mem_cgroup_is_root(memcg) &&
7229 !page_counter_try_charge(&memcg->swap, nr_pages, &counter)) {
7230 memcg_memory_event(memcg, MEMCG_SWAP_MAX);
7231 memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
7232 mem_cgroup_id_put(memcg);
7233 return -ENOMEM;
7234 }
7235
7236 /* Get references for the tail pages, too */
7237 if (nr_pages > 1)
7238 mem_cgroup_id_get_many(memcg, nr_pages - 1);
7239 oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg), nr_pages);
7240 VM_BUG_ON_PAGE(oldid, page);
7241 mod_memcg_state(memcg, MEMCG_SWAP, nr_pages);
7242
7243 return 0;
7244 }
7245
7246 /**
7247 * mem_cgroup_uncharge_swap - uncharge swap space
7248 * @entry: swap entry to uncharge
7249 * @nr_pages: the amount of swap space to uncharge
7250 */
7251 void mem_cgroup_uncharge_swap(swp_entry_t entry, unsigned int nr_pages)
7252 {
7253 struct mem_cgroup *memcg;
7254 unsigned short id;
7255
7256 id = swap_cgroup_record(entry, 0, nr_pages);
7257 rcu_read_lock();
7258 memcg = mem_cgroup_from_id(id);
7259 if (memcg) {
7260 if (!cgroup_memory_noswap && !mem_cgroup_is_root(memcg)) {
7261 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
7262 page_counter_uncharge(&memcg->swap, nr_pages);
7263 else
7264 page_counter_uncharge(&memcg->memsw, nr_pages);
7265 }
7266 mod_memcg_state(memcg, MEMCG_SWAP, -nr_pages);
7267 mem_cgroup_id_put_many(memcg, nr_pages);
7268 }
7269 rcu_read_unlock();
7270 }
7271
7272 long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg)
7273 {
7274 long nr_swap_pages = get_nr_swap_pages();
7275
7276 if (cgroup_memory_noswap || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
7277 return nr_swap_pages;
7278 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
7279 nr_swap_pages = min_t(long, nr_swap_pages,
7280 READ_ONCE(memcg->swap.max) -
7281 page_counter_read(&memcg->swap));
7282 return nr_swap_pages;
7283 }
7284
7285 bool mem_cgroup_swap_full(struct page *page)
7286 {
7287 struct mem_cgroup *memcg;
7288
7289 VM_BUG_ON_PAGE(!PageLocked(page), page);
7290
7291 if (vm_swap_full())
7292 return true;
7293 if (cgroup_memory_noswap || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
7294 return false;
7295
7296 memcg = page_memcg(page);
7297 if (!memcg)
7298 return false;
7299
7300 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg)) {
7301 unsigned long usage = page_counter_read(&memcg->swap);
7302
7303 if (usage * 2 >= READ_ONCE(memcg->swap.high) ||
7304 usage * 2 >= READ_ONCE(memcg->swap.max))
7305 return true;
7306 }
7307
7308 return false;
7309 }
7310
7311 static int __init setup_swap_account(char *s)
7312 {
7313 if (!strcmp(s, "1"))
7314 cgroup_memory_noswap = false;
7315 else if (!strcmp(s, "0"))
7316 cgroup_memory_noswap = true;
7317 return 1;
7318 }
7319 __setup("swapaccount=", setup_swap_account);
7320
7321 static u64 swap_current_read(struct cgroup_subsys_state *css,
7322 struct cftype *cft)
7323 {
7324 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
7325
7326 return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE;
7327 }
7328
7329 static int swap_high_show(struct seq_file *m, void *v)
7330 {
7331 return seq_puts_memcg_tunable(m,
7332 READ_ONCE(mem_cgroup_from_seq(m)->swap.high));
7333 }
7334
7335 static ssize_t swap_high_write(struct kernfs_open_file *of,
7336 char *buf, size_t nbytes, loff_t off)
7337 {
7338 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
7339 unsigned long high;
7340 int err;
7341
7342 buf = strstrip(buf);
7343 err = page_counter_memparse(buf, "max", &high);
7344 if (err)
7345 return err;
7346
7347 page_counter_set_high(&memcg->swap, high);
7348
7349 return nbytes;
7350 }
7351
7352 static int swap_max_show(struct seq_file *m, void *v)
7353 {
7354 return seq_puts_memcg_tunable(m,
7355 READ_ONCE(mem_cgroup_from_seq(m)->swap.max));
7356 }
7357
7358 static ssize_t swap_max_write(struct kernfs_open_file *of,
7359 char *buf, size_t nbytes, loff_t off)
7360 {
7361 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
7362 unsigned long max;
7363 int err;
7364
7365 buf = strstrip(buf);
7366 err = page_counter_memparse(buf, "max", &max);
7367 if (err)
7368 return err;
7369
7370 xchg(&memcg->swap.max, max);
7371
7372 return nbytes;
7373 }
7374
7375 static int swap_events_show(struct seq_file *m, void *v)
7376 {
7377 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
7378
7379 seq_printf(m, "high %lu\n",
7380 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_HIGH]));
7381 seq_printf(m, "max %lu\n",
7382 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_MAX]));
7383 seq_printf(m, "fail %lu\n",
7384 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_FAIL]));
7385
7386 return 0;
7387 }
7388
7389 static struct cftype swap_files[] = {
7390 {
7391 .name = "swap.current",
7392 .flags = CFTYPE_NOT_ON_ROOT,
7393 .read_u64 = swap_current_read,
7394 },
7395 {
7396 .name = "swap.high",
7397 .flags = CFTYPE_NOT_ON_ROOT,
7398 .seq_show = swap_high_show,
7399 .write = swap_high_write,
7400 },
7401 {
7402 .name = "swap.max",
7403 .flags = CFTYPE_NOT_ON_ROOT,
7404 .seq_show = swap_max_show,
7405 .write = swap_max_write,
7406 },
7407 {
7408 .name = "swap.events",
7409 .flags = CFTYPE_NOT_ON_ROOT,
7410 .file_offset = offsetof(struct mem_cgroup, swap_events_file),
7411 .seq_show = swap_events_show,
7412 },
7413 { } /* terminate */
7414 };
7415
7416 static struct cftype memsw_files[] = {
7417 {
7418 .name = "memsw.usage_in_bytes",
7419 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
7420 .read_u64 = mem_cgroup_read_u64,
7421 },
7422 {
7423 .name = "memsw.max_usage_in_bytes",
7424 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
7425 .write = mem_cgroup_reset,
7426 .read_u64 = mem_cgroup_read_u64,
7427 },
7428 {
7429 .name = "memsw.limit_in_bytes",
7430 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
7431 .write = mem_cgroup_write,
7432 .read_u64 = mem_cgroup_read_u64,
7433 },
7434 {
7435 .name = "memsw.failcnt",
7436 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
7437 .write = mem_cgroup_reset,
7438 .read_u64 = mem_cgroup_read_u64,
7439 },
7440 { }, /* terminate */
7441 };
7442
7443 /*
7444 * If mem_cgroup_swap_init() is implemented as a subsys_initcall()
7445 * instead of a core_initcall(), this could mean cgroup_memory_noswap still
7446 * remains set to false even when memcg is disabled via "cgroup_disable=memory"
7447 * boot parameter. This may result in premature OOPS inside
7448 * mem_cgroup_get_nr_swap_pages() function in corner cases.
7449 */
7450 static int __init mem_cgroup_swap_init(void)
7451 {
7452 /* No memory control -> no swap control */
7453 if (mem_cgroup_disabled())
7454 cgroup_memory_noswap = true;
7455
7456 if (cgroup_memory_noswap)
7457 return 0;
7458
7459 WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys, swap_files));
7460 WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys, memsw_files));
7461
7462 return 0;
7463 }
7464 core_initcall(mem_cgroup_swap_init);
7465
7466 #endif /* CONFIG_MEMCG_SWAP */