]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - mm/mempolicy.c
Merge tag 'platform-drivers-x86-v5.13-3' of git://git.kernel.org/pub/scm/linux/kernel...
[mirror_ubuntu-jammy-kernel.git] / mm / mempolicy.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Simple NUMA memory policy for the Linux kernel.
4 *
5 * Copyright 2003,2004 Andi Kleen, SuSE Labs.
6 * (C) Copyright 2005 Christoph Lameter, Silicon Graphics, Inc.
7 *
8 * NUMA policy allows the user to give hints in which node(s) memory should
9 * be allocated.
10 *
11 * Support four policies per VMA and per process:
12 *
13 * The VMA policy has priority over the process policy for a page fault.
14 *
15 * interleave Allocate memory interleaved over a set of nodes,
16 * with normal fallback if it fails.
17 * For VMA based allocations this interleaves based on the
18 * offset into the backing object or offset into the mapping
19 * for anonymous memory. For process policy an process counter
20 * is used.
21 *
22 * bind Only allocate memory on a specific set of nodes,
23 * no fallback.
24 * FIXME: memory is allocated starting with the first node
25 * to the last. It would be better if bind would truly restrict
26 * the allocation to memory nodes instead
27 *
28 * preferred Try a specific node first before normal fallback.
29 * As a special case NUMA_NO_NODE here means do the allocation
30 * on the local CPU. This is normally identical to default,
31 * but useful to set in a VMA when you have a non default
32 * process policy.
33 *
34 * default Allocate on the local node first, or when on a VMA
35 * use the process policy. This is what Linux always did
36 * in a NUMA aware kernel and still does by, ahem, default.
37 *
38 * The process policy is applied for most non interrupt memory allocations
39 * in that process' context. Interrupts ignore the policies and always
40 * try to allocate on the local CPU. The VMA policy is only applied for memory
41 * allocations for a VMA in the VM.
42 *
43 * Currently there are a few corner cases in swapping where the policy
44 * is not applied, but the majority should be handled. When process policy
45 * is used it is not remembered over swap outs/swap ins.
46 *
47 * Only the highest zone in the zone hierarchy gets policied. Allocations
48 * requesting a lower zone just use default policy. This implies that
49 * on systems with highmem kernel lowmem allocation don't get policied.
50 * Same with GFP_DMA allocations.
51 *
52 * For shmfs/tmpfs/hugetlbfs shared memory the policy is shared between
53 * all users and remembered even when nobody has memory mapped.
54 */
55
56 /* Notebook:
57 fix mmap readahead to honour policy and enable policy for any page cache
58 object
59 statistics for bigpages
60 global policy for page cache? currently it uses process policy. Requires
61 first item above.
62 handle mremap for shared memory (currently ignored for the policy)
63 grows down?
64 make bind policy root only? It can trigger oom much faster and the
65 kernel is not always grateful with that.
66 */
67
68 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
69
70 #include <linux/mempolicy.h>
71 #include <linux/pagewalk.h>
72 #include <linux/highmem.h>
73 #include <linux/hugetlb.h>
74 #include <linux/kernel.h>
75 #include <linux/sched.h>
76 #include <linux/sched/mm.h>
77 #include <linux/sched/numa_balancing.h>
78 #include <linux/sched/task.h>
79 #include <linux/nodemask.h>
80 #include <linux/cpuset.h>
81 #include <linux/slab.h>
82 #include <linux/string.h>
83 #include <linux/export.h>
84 #include <linux/nsproxy.h>
85 #include <linux/interrupt.h>
86 #include <linux/init.h>
87 #include <linux/compat.h>
88 #include <linux/ptrace.h>
89 #include <linux/swap.h>
90 #include <linux/seq_file.h>
91 #include <linux/proc_fs.h>
92 #include <linux/migrate.h>
93 #include <linux/ksm.h>
94 #include <linux/rmap.h>
95 #include <linux/security.h>
96 #include <linux/syscalls.h>
97 #include <linux/ctype.h>
98 #include <linux/mm_inline.h>
99 #include <linux/mmu_notifier.h>
100 #include <linux/printk.h>
101 #include <linux/swapops.h>
102
103 #include <asm/tlbflush.h>
104 #include <linux/uaccess.h>
105
106 #include "internal.h"
107
108 /* Internal flags */
109 #define MPOL_MF_DISCONTIG_OK (MPOL_MF_INTERNAL << 0) /* Skip checks for continuous vmas */
110 #define MPOL_MF_INVERT (MPOL_MF_INTERNAL << 1) /* Invert check for nodemask */
111
112 static struct kmem_cache *policy_cache;
113 static struct kmem_cache *sn_cache;
114
115 /* Highest zone. An specific allocation for a zone below that is not
116 policied. */
117 enum zone_type policy_zone = 0;
118
119 /*
120 * run-time system-wide default policy => local allocation
121 */
122 static struct mempolicy default_policy = {
123 .refcnt = ATOMIC_INIT(1), /* never free it */
124 .mode = MPOL_PREFERRED,
125 .flags = MPOL_F_LOCAL,
126 };
127
128 static struct mempolicy preferred_node_policy[MAX_NUMNODES];
129
130 /**
131 * numa_map_to_online_node - Find closest online node
132 * @node: Node id to start the search
133 *
134 * Lookup the next closest node by distance if @nid is not online.
135 */
136 int numa_map_to_online_node(int node)
137 {
138 int min_dist = INT_MAX, dist, n, min_node;
139
140 if (node == NUMA_NO_NODE || node_online(node))
141 return node;
142
143 min_node = node;
144 for_each_online_node(n) {
145 dist = node_distance(node, n);
146 if (dist < min_dist) {
147 min_dist = dist;
148 min_node = n;
149 }
150 }
151
152 return min_node;
153 }
154 EXPORT_SYMBOL_GPL(numa_map_to_online_node);
155
156 struct mempolicy *get_task_policy(struct task_struct *p)
157 {
158 struct mempolicy *pol = p->mempolicy;
159 int node;
160
161 if (pol)
162 return pol;
163
164 node = numa_node_id();
165 if (node != NUMA_NO_NODE) {
166 pol = &preferred_node_policy[node];
167 /* preferred_node_policy is not initialised early in boot */
168 if (pol->mode)
169 return pol;
170 }
171
172 return &default_policy;
173 }
174
175 static const struct mempolicy_operations {
176 int (*create)(struct mempolicy *pol, const nodemask_t *nodes);
177 void (*rebind)(struct mempolicy *pol, const nodemask_t *nodes);
178 } mpol_ops[MPOL_MAX];
179
180 static inline int mpol_store_user_nodemask(const struct mempolicy *pol)
181 {
182 return pol->flags & MPOL_MODE_FLAGS;
183 }
184
185 static void mpol_relative_nodemask(nodemask_t *ret, const nodemask_t *orig,
186 const nodemask_t *rel)
187 {
188 nodemask_t tmp;
189 nodes_fold(tmp, *orig, nodes_weight(*rel));
190 nodes_onto(*ret, tmp, *rel);
191 }
192
193 static int mpol_new_interleave(struct mempolicy *pol, const nodemask_t *nodes)
194 {
195 if (nodes_empty(*nodes))
196 return -EINVAL;
197 pol->v.nodes = *nodes;
198 return 0;
199 }
200
201 static int mpol_new_preferred(struct mempolicy *pol, const nodemask_t *nodes)
202 {
203 if (!nodes)
204 pol->flags |= MPOL_F_LOCAL; /* local allocation */
205 else if (nodes_empty(*nodes))
206 return -EINVAL; /* no allowed nodes */
207 else
208 pol->v.preferred_node = first_node(*nodes);
209 return 0;
210 }
211
212 static int mpol_new_bind(struct mempolicy *pol, const nodemask_t *nodes)
213 {
214 if (nodes_empty(*nodes))
215 return -EINVAL;
216 pol->v.nodes = *nodes;
217 return 0;
218 }
219
220 /*
221 * mpol_set_nodemask is called after mpol_new() to set up the nodemask, if
222 * any, for the new policy. mpol_new() has already validated the nodes
223 * parameter with respect to the policy mode and flags. But, we need to
224 * handle an empty nodemask with MPOL_PREFERRED here.
225 *
226 * Must be called holding task's alloc_lock to protect task's mems_allowed
227 * and mempolicy. May also be called holding the mmap_lock for write.
228 */
229 static int mpol_set_nodemask(struct mempolicy *pol,
230 const nodemask_t *nodes, struct nodemask_scratch *nsc)
231 {
232 int ret;
233
234 /* if mode is MPOL_DEFAULT, pol is NULL. This is right. */
235 if (pol == NULL)
236 return 0;
237 /* Check N_MEMORY */
238 nodes_and(nsc->mask1,
239 cpuset_current_mems_allowed, node_states[N_MEMORY]);
240
241 VM_BUG_ON(!nodes);
242 if (pol->mode == MPOL_PREFERRED && nodes_empty(*nodes))
243 nodes = NULL; /* explicit local allocation */
244 else {
245 if (pol->flags & MPOL_F_RELATIVE_NODES)
246 mpol_relative_nodemask(&nsc->mask2, nodes, &nsc->mask1);
247 else
248 nodes_and(nsc->mask2, *nodes, nsc->mask1);
249
250 if (mpol_store_user_nodemask(pol))
251 pol->w.user_nodemask = *nodes;
252 else
253 pol->w.cpuset_mems_allowed =
254 cpuset_current_mems_allowed;
255 }
256
257 if (nodes)
258 ret = mpol_ops[pol->mode].create(pol, &nsc->mask2);
259 else
260 ret = mpol_ops[pol->mode].create(pol, NULL);
261 return ret;
262 }
263
264 /*
265 * This function just creates a new policy, does some check and simple
266 * initialization. You must invoke mpol_set_nodemask() to set nodes.
267 */
268 static struct mempolicy *mpol_new(unsigned short mode, unsigned short flags,
269 nodemask_t *nodes)
270 {
271 struct mempolicy *policy;
272
273 pr_debug("setting mode %d flags %d nodes[0] %lx\n",
274 mode, flags, nodes ? nodes_addr(*nodes)[0] : NUMA_NO_NODE);
275
276 if (mode == MPOL_DEFAULT) {
277 if (nodes && !nodes_empty(*nodes))
278 return ERR_PTR(-EINVAL);
279 return NULL;
280 }
281 VM_BUG_ON(!nodes);
282
283 /*
284 * MPOL_PREFERRED cannot be used with MPOL_F_STATIC_NODES or
285 * MPOL_F_RELATIVE_NODES if the nodemask is empty (local allocation).
286 * All other modes require a valid pointer to a non-empty nodemask.
287 */
288 if (mode == MPOL_PREFERRED) {
289 if (nodes_empty(*nodes)) {
290 if (((flags & MPOL_F_STATIC_NODES) ||
291 (flags & MPOL_F_RELATIVE_NODES)))
292 return ERR_PTR(-EINVAL);
293 }
294 } else if (mode == MPOL_LOCAL) {
295 if (!nodes_empty(*nodes) ||
296 (flags & MPOL_F_STATIC_NODES) ||
297 (flags & MPOL_F_RELATIVE_NODES))
298 return ERR_PTR(-EINVAL);
299 mode = MPOL_PREFERRED;
300 } else if (nodes_empty(*nodes))
301 return ERR_PTR(-EINVAL);
302 policy = kmem_cache_alloc(policy_cache, GFP_KERNEL);
303 if (!policy)
304 return ERR_PTR(-ENOMEM);
305 atomic_set(&policy->refcnt, 1);
306 policy->mode = mode;
307 policy->flags = flags;
308
309 return policy;
310 }
311
312 /* Slow path of a mpol destructor. */
313 void __mpol_put(struct mempolicy *p)
314 {
315 if (!atomic_dec_and_test(&p->refcnt))
316 return;
317 kmem_cache_free(policy_cache, p);
318 }
319
320 static void mpol_rebind_default(struct mempolicy *pol, const nodemask_t *nodes)
321 {
322 }
323
324 static void mpol_rebind_nodemask(struct mempolicy *pol, const nodemask_t *nodes)
325 {
326 nodemask_t tmp;
327
328 if (pol->flags & MPOL_F_STATIC_NODES)
329 nodes_and(tmp, pol->w.user_nodemask, *nodes);
330 else if (pol->flags & MPOL_F_RELATIVE_NODES)
331 mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes);
332 else {
333 nodes_remap(tmp, pol->v.nodes, pol->w.cpuset_mems_allowed,
334 *nodes);
335 pol->w.cpuset_mems_allowed = *nodes;
336 }
337
338 if (nodes_empty(tmp))
339 tmp = *nodes;
340
341 pol->v.nodes = tmp;
342 }
343
344 static void mpol_rebind_preferred(struct mempolicy *pol,
345 const nodemask_t *nodes)
346 {
347 nodemask_t tmp;
348
349 if (pol->flags & MPOL_F_STATIC_NODES) {
350 int node = first_node(pol->w.user_nodemask);
351
352 if (node_isset(node, *nodes)) {
353 pol->v.preferred_node = node;
354 pol->flags &= ~MPOL_F_LOCAL;
355 } else
356 pol->flags |= MPOL_F_LOCAL;
357 } else if (pol->flags & MPOL_F_RELATIVE_NODES) {
358 mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes);
359 pol->v.preferred_node = first_node(tmp);
360 } else if (!(pol->flags & MPOL_F_LOCAL)) {
361 pol->v.preferred_node = node_remap(pol->v.preferred_node,
362 pol->w.cpuset_mems_allowed,
363 *nodes);
364 pol->w.cpuset_mems_allowed = *nodes;
365 }
366 }
367
368 /*
369 * mpol_rebind_policy - Migrate a policy to a different set of nodes
370 *
371 * Per-vma policies are protected by mmap_lock. Allocations using per-task
372 * policies are protected by task->mems_allowed_seq to prevent a premature
373 * OOM/allocation failure due to parallel nodemask modification.
374 */
375 static void mpol_rebind_policy(struct mempolicy *pol, const nodemask_t *newmask)
376 {
377 if (!pol)
378 return;
379 if (!mpol_store_user_nodemask(pol) && !(pol->flags & MPOL_F_LOCAL) &&
380 nodes_equal(pol->w.cpuset_mems_allowed, *newmask))
381 return;
382
383 mpol_ops[pol->mode].rebind(pol, newmask);
384 }
385
386 /*
387 * Wrapper for mpol_rebind_policy() that just requires task
388 * pointer, and updates task mempolicy.
389 *
390 * Called with task's alloc_lock held.
391 */
392
393 void mpol_rebind_task(struct task_struct *tsk, const nodemask_t *new)
394 {
395 mpol_rebind_policy(tsk->mempolicy, new);
396 }
397
398 /*
399 * Rebind each vma in mm to new nodemask.
400 *
401 * Call holding a reference to mm. Takes mm->mmap_lock during call.
402 */
403
404 void mpol_rebind_mm(struct mm_struct *mm, nodemask_t *new)
405 {
406 struct vm_area_struct *vma;
407
408 mmap_write_lock(mm);
409 for (vma = mm->mmap; vma; vma = vma->vm_next)
410 mpol_rebind_policy(vma->vm_policy, new);
411 mmap_write_unlock(mm);
412 }
413
414 static const struct mempolicy_operations mpol_ops[MPOL_MAX] = {
415 [MPOL_DEFAULT] = {
416 .rebind = mpol_rebind_default,
417 },
418 [MPOL_INTERLEAVE] = {
419 .create = mpol_new_interleave,
420 .rebind = mpol_rebind_nodemask,
421 },
422 [MPOL_PREFERRED] = {
423 .create = mpol_new_preferred,
424 .rebind = mpol_rebind_preferred,
425 },
426 [MPOL_BIND] = {
427 .create = mpol_new_bind,
428 .rebind = mpol_rebind_nodemask,
429 },
430 };
431
432 static int migrate_page_add(struct page *page, struct list_head *pagelist,
433 unsigned long flags);
434
435 struct queue_pages {
436 struct list_head *pagelist;
437 unsigned long flags;
438 nodemask_t *nmask;
439 unsigned long start;
440 unsigned long end;
441 struct vm_area_struct *first;
442 };
443
444 /*
445 * Check if the page's nid is in qp->nmask.
446 *
447 * If MPOL_MF_INVERT is set in qp->flags, check if the nid is
448 * in the invert of qp->nmask.
449 */
450 static inline bool queue_pages_required(struct page *page,
451 struct queue_pages *qp)
452 {
453 int nid = page_to_nid(page);
454 unsigned long flags = qp->flags;
455
456 return node_isset(nid, *qp->nmask) == !(flags & MPOL_MF_INVERT);
457 }
458
459 /*
460 * queue_pages_pmd() has four possible return values:
461 * 0 - pages are placed on the right node or queued successfully.
462 * 1 - there is unmovable page, and MPOL_MF_MOVE* & MPOL_MF_STRICT were
463 * specified.
464 * 2 - THP was split.
465 * -EIO - is migration entry or only MPOL_MF_STRICT was specified and an
466 * existing page was already on a node that does not follow the
467 * policy.
468 */
469 static int queue_pages_pmd(pmd_t *pmd, spinlock_t *ptl, unsigned long addr,
470 unsigned long end, struct mm_walk *walk)
471 __releases(ptl)
472 {
473 int ret = 0;
474 struct page *page;
475 struct queue_pages *qp = walk->private;
476 unsigned long flags;
477
478 if (unlikely(is_pmd_migration_entry(*pmd))) {
479 ret = -EIO;
480 goto unlock;
481 }
482 page = pmd_page(*pmd);
483 if (is_huge_zero_page(page)) {
484 spin_unlock(ptl);
485 __split_huge_pmd(walk->vma, pmd, addr, false, NULL);
486 ret = 2;
487 goto out;
488 }
489 if (!queue_pages_required(page, qp))
490 goto unlock;
491
492 flags = qp->flags;
493 /* go to thp migration */
494 if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) {
495 if (!vma_migratable(walk->vma) ||
496 migrate_page_add(page, qp->pagelist, flags)) {
497 ret = 1;
498 goto unlock;
499 }
500 } else
501 ret = -EIO;
502 unlock:
503 spin_unlock(ptl);
504 out:
505 return ret;
506 }
507
508 /*
509 * Scan through pages checking if pages follow certain conditions,
510 * and move them to the pagelist if they do.
511 *
512 * queue_pages_pte_range() has three possible return values:
513 * 0 - pages are placed on the right node or queued successfully.
514 * 1 - there is unmovable page, and MPOL_MF_MOVE* & MPOL_MF_STRICT were
515 * specified.
516 * -EIO - only MPOL_MF_STRICT was specified and an existing page was already
517 * on a node that does not follow the policy.
518 */
519 static int queue_pages_pte_range(pmd_t *pmd, unsigned long addr,
520 unsigned long end, struct mm_walk *walk)
521 {
522 struct vm_area_struct *vma = walk->vma;
523 struct page *page;
524 struct queue_pages *qp = walk->private;
525 unsigned long flags = qp->flags;
526 int ret;
527 bool has_unmovable = false;
528 pte_t *pte, *mapped_pte;
529 spinlock_t *ptl;
530
531 ptl = pmd_trans_huge_lock(pmd, vma);
532 if (ptl) {
533 ret = queue_pages_pmd(pmd, ptl, addr, end, walk);
534 if (ret != 2)
535 return ret;
536 }
537 /* THP was split, fall through to pte walk */
538
539 if (pmd_trans_unstable(pmd))
540 return 0;
541
542 mapped_pte = pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl);
543 for (; addr != end; pte++, addr += PAGE_SIZE) {
544 if (!pte_present(*pte))
545 continue;
546 page = vm_normal_page(vma, addr, *pte);
547 if (!page)
548 continue;
549 /*
550 * vm_normal_page() filters out zero pages, but there might
551 * still be PageReserved pages to skip, perhaps in a VDSO.
552 */
553 if (PageReserved(page))
554 continue;
555 if (!queue_pages_required(page, qp))
556 continue;
557 if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) {
558 /* MPOL_MF_STRICT must be specified if we get here */
559 if (!vma_migratable(vma)) {
560 has_unmovable = true;
561 break;
562 }
563
564 /*
565 * Do not abort immediately since there may be
566 * temporary off LRU pages in the range. Still
567 * need migrate other LRU pages.
568 */
569 if (migrate_page_add(page, qp->pagelist, flags))
570 has_unmovable = true;
571 } else
572 break;
573 }
574 pte_unmap_unlock(mapped_pte, ptl);
575 cond_resched();
576
577 if (has_unmovable)
578 return 1;
579
580 return addr != end ? -EIO : 0;
581 }
582
583 static int queue_pages_hugetlb(pte_t *pte, unsigned long hmask,
584 unsigned long addr, unsigned long end,
585 struct mm_walk *walk)
586 {
587 int ret = 0;
588 #ifdef CONFIG_HUGETLB_PAGE
589 struct queue_pages *qp = walk->private;
590 unsigned long flags = (qp->flags & MPOL_MF_VALID);
591 struct page *page;
592 spinlock_t *ptl;
593 pte_t entry;
594
595 ptl = huge_pte_lock(hstate_vma(walk->vma), walk->mm, pte);
596 entry = huge_ptep_get(pte);
597 if (!pte_present(entry))
598 goto unlock;
599 page = pte_page(entry);
600 if (!queue_pages_required(page, qp))
601 goto unlock;
602
603 if (flags == MPOL_MF_STRICT) {
604 /*
605 * STRICT alone means only detecting misplaced page and no
606 * need to further check other vma.
607 */
608 ret = -EIO;
609 goto unlock;
610 }
611
612 if (!vma_migratable(walk->vma)) {
613 /*
614 * Must be STRICT with MOVE*, otherwise .test_walk() have
615 * stopped walking current vma.
616 * Detecting misplaced page but allow migrating pages which
617 * have been queued.
618 */
619 ret = 1;
620 goto unlock;
621 }
622
623 /* With MPOL_MF_MOVE, we migrate only unshared hugepage. */
624 if (flags & (MPOL_MF_MOVE_ALL) ||
625 (flags & MPOL_MF_MOVE && page_mapcount(page) == 1)) {
626 if (!isolate_huge_page(page, qp->pagelist) &&
627 (flags & MPOL_MF_STRICT))
628 /*
629 * Failed to isolate page but allow migrating pages
630 * which have been queued.
631 */
632 ret = 1;
633 }
634 unlock:
635 spin_unlock(ptl);
636 #else
637 BUG();
638 #endif
639 return ret;
640 }
641
642 #ifdef CONFIG_NUMA_BALANCING
643 /*
644 * This is used to mark a range of virtual addresses to be inaccessible.
645 * These are later cleared by a NUMA hinting fault. Depending on these
646 * faults, pages may be migrated for better NUMA placement.
647 *
648 * This is assuming that NUMA faults are handled using PROT_NONE. If
649 * an architecture makes a different choice, it will need further
650 * changes to the core.
651 */
652 unsigned long change_prot_numa(struct vm_area_struct *vma,
653 unsigned long addr, unsigned long end)
654 {
655 int nr_updated;
656
657 nr_updated = change_protection(vma, addr, end, PAGE_NONE, MM_CP_PROT_NUMA);
658 if (nr_updated)
659 count_vm_numa_events(NUMA_PTE_UPDATES, nr_updated);
660
661 return nr_updated;
662 }
663 #else
664 static unsigned long change_prot_numa(struct vm_area_struct *vma,
665 unsigned long addr, unsigned long end)
666 {
667 return 0;
668 }
669 #endif /* CONFIG_NUMA_BALANCING */
670
671 static int queue_pages_test_walk(unsigned long start, unsigned long end,
672 struct mm_walk *walk)
673 {
674 struct vm_area_struct *vma = walk->vma;
675 struct queue_pages *qp = walk->private;
676 unsigned long endvma = vma->vm_end;
677 unsigned long flags = qp->flags;
678
679 /* range check first */
680 VM_BUG_ON_VMA(!range_in_vma(vma, start, end), vma);
681
682 if (!qp->first) {
683 qp->first = vma;
684 if (!(flags & MPOL_MF_DISCONTIG_OK) &&
685 (qp->start < vma->vm_start))
686 /* hole at head side of range */
687 return -EFAULT;
688 }
689 if (!(flags & MPOL_MF_DISCONTIG_OK) &&
690 ((vma->vm_end < qp->end) &&
691 (!vma->vm_next || vma->vm_end < vma->vm_next->vm_start)))
692 /* hole at middle or tail of range */
693 return -EFAULT;
694
695 /*
696 * Need check MPOL_MF_STRICT to return -EIO if possible
697 * regardless of vma_migratable
698 */
699 if (!vma_migratable(vma) &&
700 !(flags & MPOL_MF_STRICT))
701 return 1;
702
703 if (endvma > end)
704 endvma = end;
705
706 if (flags & MPOL_MF_LAZY) {
707 /* Similar to task_numa_work, skip inaccessible VMAs */
708 if (!is_vm_hugetlb_page(vma) && vma_is_accessible(vma) &&
709 !(vma->vm_flags & VM_MIXEDMAP))
710 change_prot_numa(vma, start, endvma);
711 return 1;
712 }
713
714 /* queue pages from current vma */
715 if (flags & MPOL_MF_VALID)
716 return 0;
717 return 1;
718 }
719
720 static const struct mm_walk_ops queue_pages_walk_ops = {
721 .hugetlb_entry = queue_pages_hugetlb,
722 .pmd_entry = queue_pages_pte_range,
723 .test_walk = queue_pages_test_walk,
724 };
725
726 /*
727 * Walk through page tables and collect pages to be migrated.
728 *
729 * If pages found in a given range are on a set of nodes (determined by
730 * @nodes and @flags,) it's isolated and queued to the pagelist which is
731 * passed via @private.
732 *
733 * queue_pages_range() has three possible return values:
734 * 1 - there is unmovable page, but MPOL_MF_MOVE* & MPOL_MF_STRICT were
735 * specified.
736 * 0 - queue pages successfully or no misplaced page.
737 * errno - i.e. misplaced pages with MPOL_MF_STRICT specified (-EIO) or
738 * memory range specified by nodemask and maxnode points outside
739 * your accessible address space (-EFAULT)
740 */
741 static int
742 queue_pages_range(struct mm_struct *mm, unsigned long start, unsigned long end,
743 nodemask_t *nodes, unsigned long flags,
744 struct list_head *pagelist)
745 {
746 int err;
747 struct queue_pages qp = {
748 .pagelist = pagelist,
749 .flags = flags,
750 .nmask = nodes,
751 .start = start,
752 .end = end,
753 .first = NULL,
754 };
755
756 err = walk_page_range(mm, start, end, &queue_pages_walk_ops, &qp);
757
758 if (!qp.first)
759 /* whole range in hole */
760 err = -EFAULT;
761
762 return err;
763 }
764
765 /*
766 * Apply policy to a single VMA
767 * This must be called with the mmap_lock held for writing.
768 */
769 static int vma_replace_policy(struct vm_area_struct *vma,
770 struct mempolicy *pol)
771 {
772 int err;
773 struct mempolicy *old;
774 struct mempolicy *new;
775
776 pr_debug("vma %lx-%lx/%lx vm_ops %p vm_file %p set_policy %p\n",
777 vma->vm_start, vma->vm_end, vma->vm_pgoff,
778 vma->vm_ops, vma->vm_file,
779 vma->vm_ops ? vma->vm_ops->set_policy : NULL);
780
781 new = mpol_dup(pol);
782 if (IS_ERR(new))
783 return PTR_ERR(new);
784
785 if (vma->vm_ops && vma->vm_ops->set_policy) {
786 err = vma->vm_ops->set_policy(vma, new);
787 if (err)
788 goto err_out;
789 }
790
791 old = vma->vm_policy;
792 vma->vm_policy = new; /* protected by mmap_lock */
793 mpol_put(old);
794
795 return 0;
796 err_out:
797 mpol_put(new);
798 return err;
799 }
800
801 /* Step 2: apply policy to a range and do splits. */
802 static int mbind_range(struct mm_struct *mm, unsigned long start,
803 unsigned long end, struct mempolicy *new_pol)
804 {
805 struct vm_area_struct *next;
806 struct vm_area_struct *prev;
807 struct vm_area_struct *vma;
808 int err = 0;
809 pgoff_t pgoff;
810 unsigned long vmstart;
811 unsigned long vmend;
812
813 vma = find_vma(mm, start);
814 VM_BUG_ON(!vma);
815
816 prev = vma->vm_prev;
817 if (start > vma->vm_start)
818 prev = vma;
819
820 for (; vma && vma->vm_start < end; prev = vma, vma = next) {
821 next = vma->vm_next;
822 vmstart = max(start, vma->vm_start);
823 vmend = min(end, vma->vm_end);
824
825 if (mpol_equal(vma_policy(vma), new_pol))
826 continue;
827
828 pgoff = vma->vm_pgoff +
829 ((vmstart - vma->vm_start) >> PAGE_SHIFT);
830 prev = vma_merge(mm, prev, vmstart, vmend, vma->vm_flags,
831 vma->anon_vma, vma->vm_file, pgoff,
832 new_pol, vma->vm_userfaultfd_ctx);
833 if (prev) {
834 vma = prev;
835 next = vma->vm_next;
836 if (mpol_equal(vma_policy(vma), new_pol))
837 continue;
838 /* vma_merge() joined vma && vma->next, case 8 */
839 goto replace;
840 }
841 if (vma->vm_start != vmstart) {
842 err = split_vma(vma->vm_mm, vma, vmstart, 1);
843 if (err)
844 goto out;
845 }
846 if (vma->vm_end != vmend) {
847 err = split_vma(vma->vm_mm, vma, vmend, 0);
848 if (err)
849 goto out;
850 }
851 replace:
852 err = vma_replace_policy(vma, new_pol);
853 if (err)
854 goto out;
855 }
856
857 out:
858 return err;
859 }
860
861 /* Set the process memory policy */
862 static long do_set_mempolicy(unsigned short mode, unsigned short flags,
863 nodemask_t *nodes)
864 {
865 struct mempolicy *new, *old;
866 NODEMASK_SCRATCH(scratch);
867 int ret;
868
869 if (!scratch)
870 return -ENOMEM;
871
872 new = mpol_new(mode, flags, nodes);
873 if (IS_ERR(new)) {
874 ret = PTR_ERR(new);
875 goto out;
876 }
877
878 if (flags & MPOL_F_NUMA_BALANCING) {
879 if (new && new->mode == MPOL_BIND) {
880 new->flags |= (MPOL_F_MOF | MPOL_F_MORON);
881 } else {
882 ret = -EINVAL;
883 mpol_put(new);
884 goto out;
885 }
886 }
887
888 ret = mpol_set_nodemask(new, nodes, scratch);
889 if (ret) {
890 mpol_put(new);
891 goto out;
892 }
893 task_lock(current);
894 old = current->mempolicy;
895 current->mempolicy = new;
896 if (new && new->mode == MPOL_INTERLEAVE)
897 current->il_prev = MAX_NUMNODES-1;
898 task_unlock(current);
899 mpol_put(old);
900 ret = 0;
901 out:
902 NODEMASK_SCRATCH_FREE(scratch);
903 return ret;
904 }
905
906 /*
907 * Return nodemask for policy for get_mempolicy() query
908 *
909 * Called with task's alloc_lock held
910 */
911 static void get_policy_nodemask(struct mempolicy *p, nodemask_t *nodes)
912 {
913 nodes_clear(*nodes);
914 if (p == &default_policy)
915 return;
916
917 switch (p->mode) {
918 case MPOL_BIND:
919 case MPOL_INTERLEAVE:
920 *nodes = p->v.nodes;
921 break;
922 case MPOL_PREFERRED:
923 if (!(p->flags & MPOL_F_LOCAL))
924 node_set(p->v.preferred_node, *nodes);
925 /* else return empty node mask for local allocation */
926 break;
927 default:
928 BUG();
929 }
930 }
931
932 static int lookup_node(struct mm_struct *mm, unsigned long addr)
933 {
934 struct page *p = NULL;
935 int err;
936
937 int locked = 1;
938 err = get_user_pages_locked(addr & PAGE_MASK, 1, 0, &p, &locked);
939 if (err > 0) {
940 err = page_to_nid(p);
941 put_page(p);
942 }
943 if (locked)
944 mmap_read_unlock(mm);
945 return err;
946 }
947
948 /* Retrieve NUMA policy */
949 static long do_get_mempolicy(int *policy, nodemask_t *nmask,
950 unsigned long addr, unsigned long flags)
951 {
952 int err;
953 struct mm_struct *mm = current->mm;
954 struct vm_area_struct *vma = NULL;
955 struct mempolicy *pol = current->mempolicy, *pol_refcount = NULL;
956
957 if (flags &
958 ~(unsigned long)(MPOL_F_NODE|MPOL_F_ADDR|MPOL_F_MEMS_ALLOWED))
959 return -EINVAL;
960
961 if (flags & MPOL_F_MEMS_ALLOWED) {
962 if (flags & (MPOL_F_NODE|MPOL_F_ADDR))
963 return -EINVAL;
964 *policy = 0; /* just so it's initialized */
965 task_lock(current);
966 *nmask = cpuset_current_mems_allowed;
967 task_unlock(current);
968 return 0;
969 }
970
971 if (flags & MPOL_F_ADDR) {
972 /*
973 * Do NOT fall back to task policy if the
974 * vma/shared policy at addr is NULL. We
975 * want to return MPOL_DEFAULT in this case.
976 */
977 mmap_read_lock(mm);
978 vma = find_vma_intersection(mm, addr, addr+1);
979 if (!vma) {
980 mmap_read_unlock(mm);
981 return -EFAULT;
982 }
983 if (vma->vm_ops && vma->vm_ops->get_policy)
984 pol = vma->vm_ops->get_policy(vma, addr);
985 else
986 pol = vma->vm_policy;
987 } else if (addr)
988 return -EINVAL;
989
990 if (!pol)
991 pol = &default_policy; /* indicates default behavior */
992
993 if (flags & MPOL_F_NODE) {
994 if (flags & MPOL_F_ADDR) {
995 /*
996 * Take a refcount on the mpol, lookup_node()
997 * will drop the mmap_lock, so after calling
998 * lookup_node() only "pol" remains valid, "vma"
999 * is stale.
1000 */
1001 pol_refcount = pol;
1002 vma = NULL;
1003 mpol_get(pol);
1004 err = lookup_node(mm, addr);
1005 if (err < 0)
1006 goto out;
1007 *policy = err;
1008 } else if (pol == current->mempolicy &&
1009 pol->mode == MPOL_INTERLEAVE) {
1010 *policy = next_node_in(current->il_prev, pol->v.nodes);
1011 } else {
1012 err = -EINVAL;
1013 goto out;
1014 }
1015 } else {
1016 *policy = pol == &default_policy ? MPOL_DEFAULT :
1017 pol->mode;
1018 /*
1019 * Internal mempolicy flags must be masked off before exposing
1020 * the policy to userspace.
1021 */
1022 *policy |= (pol->flags & MPOL_MODE_FLAGS);
1023 }
1024
1025 err = 0;
1026 if (nmask) {
1027 if (mpol_store_user_nodemask(pol)) {
1028 *nmask = pol->w.user_nodemask;
1029 } else {
1030 task_lock(current);
1031 get_policy_nodemask(pol, nmask);
1032 task_unlock(current);
1033 }
1034 }
1035
1036 out:
1037 mpol_cond_put(pol);
1038 if (vma)
1039 mmap_read_unlock(mm);
1040 if (pol_refcount)
1041 mpol_put(pol_refcount);
1042 return err;
1043 }
1044
1045 #ifdef CONFIG_MIGRATION
1046 /*
1047 * page migration, thp tail pages can be passed.
1048 */
1049 static int migrate_page_add(struct page *page, struct list_head *pagelist,
1050 unsigned long flags)
1051 {
1052 struct page *head = compound_head(page);
1053 /*
1054 * Avoid migrating a page that is shared with others.
1055 */
1056 if ((flags & MPOL_MF_MOVE_ALL) || page_mapcount(head) == 1) {
1057 if (!isolate_lru_page(head)) {
1058 list_add_tail(&head->lru, pagelist);
1059 mod_node_page_state(page_pgdat(head),
1060 NR_ISOLATED_ANON + page_is_file_lru(head),
1061 thp_nr_pages(head));
1062 } else if (flags & MPOL_MF_STRICT) {
1063 /*
1064 * Non-movable page may reach here. And, there may be
1065 * temporary off LRU pages or non-LRU movable pages.
1066 * Treat them as unmovable pages since they can't be
1067 * isolated, so they can't be moved at the moment. It
1068 * should return -EIO for this case too.
1069 */
1070 return -EIO;
1071 }
1072 }
1073
1074 return 0;
1075 }
1076
1077 /*
1078 * Migrate pages from one node to a target node.
1079 * Returns error or the number of pages not migrated.
1080 */
1081 static int migrate_to_node(struct mm_struct *mm, int source, int dest,
1082 int flags)
1083 {
1084 nodemask_t nmask;
1085 LIST_HEAD(pagelist);
1086 int err = 0;
1087 struct migration_target_control mtc = {
1088 .nid = dest,
1089 .gfp_mask = GFP_HIGHUSER_MOVABLE | __GFP_THISNODE,
1090 };
1091
1092 nodes_clear(nmask);
1093 node_set(source, nmask);
1094
1095 /*
1096 * This does not "check" the range but isolates all pages that
1097 * need migration. Between passing in the full user address
1098 * space range and MPOL_MF_DISCONTIG_OK, this call can not fail.
1099 */
1100 VM_BUG_ON(!(flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)));
1101 queue_pages_range(mm, mm->mmap->vm_start, mm->task_size, &nmask,
1102 flags | MPOL_MF_DISCONTIG_OK, &pagelist);
1103
1104 if (!list_empty(&pagelist)) {
1105 err = migrate_pages(&pagelist, alloc_migration_target, NULL,
1106 (unsigned long)&mtc, MIGRATE_SYNC, MR_SYSCALL);
1107 if (err)
1108 putback_movable_pages(&pagelist);
1109 }
1110
1111 return err;
1112 }
1113
1114 /*
1115 * Move pages between the two nodesets so as to preserve the physical
1116 * layout as much as possible.
1117 *
1118 * Returns the number of page that could not be moved.
1119 */
1120 int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from,
1121 const nodemask_t *to, int flags)
1122 {
1123 int busy = 0;
1124 int err = 0;
1125 nodemask_t tmp;
1126
1127 lru_cache_disable();
1128
1129 mmap_read_lock(mm);
1130
1131 /*
1132 * Find a 'source' bit set in 'tmp' whose corresponding 'dest'
1133 * bit in 'to' is not also set in 'tmp'. Clear the found 'source'
1134 * bit in 'tmp', and return that <source, dest> pair for migration.
1135 * The pair of nodemasks 'to' and 'from' define the map.
1136 *
1137 * If no pair of bits is found that way, fallback to picking some
1138 * pair of 'source' and 'dest' bits that are not the same. If the
1139 * 'source' and 'dest' bits are the same, this represents a node
1140 * that will be migrating to itself, so no pages need move.
1141 *
1142 * If no bits are left in 'tmp', or if all remaining bits left
1143 * in 'tmp' correspond to the same bit in 'to', return false
1144 * (nothing left to migrate).
1145 *
1146 * This lets us pick a pair of nodes to migrate between, such that
1147 * if possible the dest node is not already occupied by some other
1148 * source node, minimizing the risk of overloading the memory on a
1149 * node that would happen if we migrated incoming memory to a node
1150 * before migrating outgoing memory source that same node.
1151 *
1152 * A single scan of tmp is sufficient. As we go, we remember the
1153 * most recent <s, d> pair that moved (s != d). If we find a pair
1154 * that not only moved, but what's better, moved to an empty slot
1155 * (d is not set in tmp), then we break out then, with that pair.
1156 * Otherwise when we finish scanning from_tmp, we at least have the
1157 * most recent <s, d> pair that moved. If we get all the way through
1158 * the scan of tmp without finding any node that moved, much less
1159 * moved to an empty node, then there is nothing left worth migrating.
1160 */
1161
1162 tmp = *from;
1163 while (!nodes_empty(tmp)) {
1164 int s, d;
1165 int source = NUMA_NO_NODE;
1166 int dest = 0;
1167
1168 for_each_node_mask(s, tmp) {
1169
1170 /*
1171 * do_migrate_pages() tries to maintain the relative
1172 * node relationship of the pages established between
1173 * threads and memory areas.
1174 *
1175 * However if the number of source nodes is not equal to
1176 * the number of destination nodes we can not preserve
1177 * this node relative relationship. In that case, skip
1178 * copying memory from a node that is in the destination
1179 * mask.
1180 *
1181 * Example: [2,3,4] -> [3,4,5] moves everything.
1182 * [0-7] - > [3,4,5] moves only 0,1,2,6,7.
1183 */
1184
1185 if ((nodes_weight(*from) != nodes_weight(*to)) &&
1186 (node_isset(s, *to)))
1187 continue;
1188
1189 d = node_remap(s, *from, *to);
1190 if (s == d)
1191 continue;
1192
1193 source = s; /* Node moved. Memorize */
1194 dest = d;
1195
1196 /* dest not in remaining from nodes? */
1197 if (!node_isset(dest, tmp))
1198 break;
1199 }
1200 if (source == NUMA_NO_NODE)
1201 break;
1202
1203 node_clear(source, tmp);
1204 err = migrate_to_node(mm, source, dest, flags);
1205 if (err > 0)
1206 busy += err;
1207 if (err < 0)
1208 break;
1209 }
1210 mmap_read_unlock(mm);
1211
1212 lru_cache_enable();
1213 if (err < 0)
1214 return err;
1215 return busy;
1216
1217 }
1218
1219 /*
1220 * Allocate a new page for page migration based on vma policy.
1221 * Start by assuming the page is mapped by the same vma as contains @start.
1222 * Search forward from there, if not. N.B., this assumes that the
1223 * list of pages handed to migrate_pages()--which is how we get here--
1224 * is in virtual address order.
1225 */
1226 static struct page *new_page(struct page *page, unsigned long start)
1227 {
1228 struct vm_area_struct *vma;
1229 unsigned long address;
1230
1231 vma = find_vma(current->mm, start);
1232 while (vma) {
1233 address = page_address_in_vma(page, vma);
1234 if (address != -EFAULT)
1235 break;
1236 vma = vma->vm_next;
1237 }
1238
1239 if (PageHuge(page)) {
1240 return alloc_huge_page_vma(page_hstate(compound_head(page)),
1241 vma, address);
1242 } else if (PageTransHuge(page)) {
1243 struct page *thp;
1244
1245 thp = alloc_hugepage_vma(GFP_TRANSHUGE, vma, address,
1246 HPAGE_PMD_ORDER);
1247 if (!thp)
1248 return NULL;
1249 prep_transhuge_page(thp);
1250 return thp;
1251 }
1252 /*
1253 * if !vma, alloc_page_vma() will use task or system default policy
1254 */
1255 return alloc_page_vma(GFP_HIGHUSER_MOVABLE | __GFP_RETRY_MAYFAIL,
1256 vma, address);
1257 }
1258 #else
1259
1260 static int migrate_page_add(struct page *page, struct list_head *pagelist,
1261 unsigned long flags)
1262 {
1263 return -EIO;
1264 }
1265
1266 int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from,
1267 const nodemask_t *to, int flags)
1268 {
1269 return -ENOSYS;
1270 }
1271
1272 static struct page *new_page(struct page *page, unsigned long start)
1273 {
1274 return NULL;
1275 }
1276 #endif
1277
1278 static long do_mbind(unsigned long start, unsigned long len,
1279 unsigned short mode, unsigned short mode_flags,
1280 nodemask_t *nmask, unsigned long flags)
1281 {
1282 struct mm_struct *mm = current->mm;
1283 struct mempolicy *new;
1284 unsigned long end;
1285 int err;
1286 int ret;
1287 LIST_HEAD(pagelist);
1288
1289 if (flags & ~(unsigned long)MPOL_MF_VALID)
1290 return -EINVAL;
1291 if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1292 return -EPERM;
1293
1294 if (start & ~PAGE_MASK)
1295 return -EINVAL;
1296
1297 if (mode == MPOL_DEFAULT)
1298 flags &= ~MPOL_MF_STRICT;
1299
1300 len = (len + PAGE_SIZE - 1) & PAGE_MASK;
1301 end = start + len;
1302
1303 if (end < start)
1304 return -EINVAL;
1305 if (end == start)
1306 return 0;
1307
1308 new = mpol_new(mode, mode_flags, nmask);
1309 if (IS_ERR(new))
1310 return PTR_ERR(new);
1311
1312 if (flags & MPOL_MF_LAZY)
1313 new->flags |= MPOL_F_MOF;
1314
1315 /*
1316 * If we are using the default policy then operation
1317 * on discontinuous address spaces is okay after all
1318 */
1319 if (!new)
1320 flags |= MPOL_MF_DISCONTIG_OK;
1321
1322 pr_debug("mbind %lx-%lx mode:%d flags:%d nodes:%lx\n",
1323 start, start + len, mode, mode_flags,
1324 nmask ? nodes_addr(*nmask)[0] : NUMA_NO_NODE);
1325
1326 if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) {
1327
1328 lru_cache_disable();
1329 }
1330 {
1331 NODEMASK_SCRATCH(scratch);
1332 if (scratch) {
1333 mmap_write_lock(mm);
1334 err = mpol_set_nodemask(new, nmask, scratch);
1335 if (err)
1336 mmap_write_unlock(mm);
1337 } else
1338 err = -ENOMEM;
1339 NODEMASK_SCRATCH_FREE(scratch);
1340 }
1341 if (err)
1342 goto mpol_out;
1343
1344 ret = queue_pages_range(mm, start, end, nmask,
1345 flags | MPOL_MF_INVERT, &pagelist);
1346
1347 if (ret < 0) {
1348 err = ret;
1349 goto up_out;
1350 }
1351
1352 err = mbind_range(mm, start, end, new);
1353
1354 if (!err) {
1355 int nr_failed = 0;
1356
1357 if (!list_empty(&pagelist)) {
1358 WARN_ON_ONCE(flags & MPOL_MF_LAZY);
1359 nr_failed = migrate_pages(&pagelist, new_page, NULL,
1360 start, MIGRATE_SYNC, MR_MEMPOLICY_MBIND);
1361 if (nr_failed)
1362 putback_movable_pages(&pagelist);
1363 }
1364
1365 if ((ret > 0) || (nr_failed && (flags & MPOL_MF_STRICT)))
1366 err = -EIO;
1367 } else {
1368 up_out:
1369 if (!list_empty(&pagelist))
1370 putback_movable_pages(&pagelist);
1371 }
1372
1373 mmap_write_unlock(mm);
1374 mpol_out:
1375 mpol_put(new);
1376 if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL))
1377 lru_cache_enable();
1378 return err;
1379 }
1380
1381 /*
1382 * User space interface with variable sized bitmaps for nodelists.
1383 */
1384
1385 /* Copy a node mask from user space. */
1386 static int get_nodes(nodemask_t *nodes, const unsigned long __user *nmask,
1387 unsigned long maxnode)
1388 {
1389 unsigned long k;
1390 unsigned long t;
1391 unsigned long nlongs;
1392 unsigned long endmask;
1393
1394 --maxnode;
1395 nodes_clear(*nodes);
1396 if (maxnode == 0 || !nmask)
1397 return 0;
1398 if (maxnode > PAGE_SIZE*BITS_PER_BYTE)
1399 return -EINVAL;
1400
1401 nlongs = BITS_TO_LONGS(maxnode);
1402 if ((maxnode % BITS_PER_LONG) == 0)
1403 endmask = ~0UL;
1404 else
1405 endmask = (1UL << (maxnode % BITS_PER_LONG)) - 1;
1406
1407 /*
1408 * When the user specified more nodes than supported just check
1409 * if the non supported part is all zero.
1410 *
1411 * If maxnode have more longs than MAX_NUMNODES, check
1412 * the bits in that area first. And then go through to
1413 * check the rest bits which equal or bigger than MAX_NUMNODES.
1414 * Otherwise, just check bits [MAX_NUMNODES, maxnode).
1415 */
1416 if (nlongs > BITS_TO_LONGS(MAX_NUMNODES)) {
1417 for (k = BITS_TO_LONGS(MAX_NUMNODES); k < nlongs; k++) {
1418 if (get_user(t, nmask + k))
1419 return -EFAULT;
1420 if (k == nlongs - 1) {
1421 if (t & endmask)
1422 return -EINVAL;
1423 } else if (t)
1424 return -EINVAL;
1425 }
1426 nlongs = BITS_TO_LONGS(MAX_NUMNODES);
1427 endmask = ~0UL;
1428 }
1429
1430 if (maxnode > MAX_NUMNODES && MAX_NUMNODES % BITS_PER_LONG != 0) {
1431 unsigned long valid_mask = endmask;
1432
1433 valid_mask &= ~((1UL << (MAX_NUMNODES % BITS_PER_LONG)) - 1);
1434 if (get_user(t, nmask + nlongs - 1))
1435 return -EFAULT;
1436 if (t & valid_mask)
1437 return -EINVAL;
1438 }
1439
1440 if (copy_from_user(nodes_addr(*nodes), nmask, nlongs*sizeof(unsigned long)))
1441 return -EFAULT;
1442 nodes_addr(*nodes)[nlongs-1] &= endmask;
1443 return 0;
1444 }
1445
1446 /* Copy a kernel node mask to user space */
1447 static int copy_nodes_to_user(unsigned long __user *mask, unsigned long maxnode,
1448 nodemask_t *nodes)
1449 {
1450 unsigned long copy = ALIGN(maxnode-1, 64) / 8;
1451 unsigned int nbytes = BITS_TO_LONGS(nr_node_ids) * sizeof(long);
1452
1453 if (copy > nbytes) {
1454 if (copy > PAGE_SIZE)
1455 return -EINVAL;
1456 if (clear_user((char __user *)mask + nbytes, copy - nbytes))
1457 return -EFAULT;
1458 copy = nbytes;
1459 }
1460 return copy_to_user(mask, nodes_addr(*nodes), copy) ? -EFAULT : 0;
1461 }
1462
1463 static long kernel_mbind(unsigned long start, unsigned long len,
1464 unsigned long mode, const unsigned long __user *nmask,
1465 unsigned long maxnode, unsigned int flags)
1466 {
1467 nodemask_t nodes;
1468 int err;
1469 unsigned short mode_flags;
1470
1471 start = untagged_addr(start);
1472 mode_flags = mode & MPOL_MODE_FLAGS;
1473 mode &= ~MPOL_MODE_FLAGS;
1474 if (mode >= MPOL_MAX)
1475 return -EINVAL;
1476 if ((mode_flags & MPOL_F_STATIC_NODES) &&
1477 (mode_flags & MPOL_F_RELATIVE_NODES))
1478 return -EINVAL;
1479 err = get_nodes(&nodes, nmask, maxnode);
1480 if (err)
1481 return err;
1482 return do_mbind(start, len, mode, mode_flags, &nodes, flags);
1483 }
1484
1485 SYSCALL_DEFINE6(mbind, unsigned long, start, unsigned long, len,
1486 unsigned long, mode, const unsigned long __user *, nmask,
1487 unsigned long, maxnode, unsigned int, flags)
1488 {
1489 return kernel_mbind(start, len, mode, nmask, maxnode, flags);
1490 }
1491
1492 /* Set the process memory policy */
1493 static long kernel_set_mempolicy(int mode, const unsigned long __user *nmask,
1494 unsigned long maxnode)
1495 {
1496 int err;
1497 nodemask_t nodes;
1498 unsigned short flags;
1499
1500 flags = mode & MPOL_MODE_FLAGS;
1501 mode &= ~MPOL_MODE_FLAGS;
1502 if ((unsigned int)mode >= MPOL_MAX)
1503 return -EINVAL;
1504 if ((flags & MPOL_F_STATIC_NODES) && (flags & MPOL_F_RELATIVE_NODES))
1505 return -EINVAL;
1506 err = get_nodes(&nodes, nmask, maxnode);
1507 if (err)
1508 return err;
1509 return do_set_mempolicy(mode, flags, &nodes);
1510 }
1511
1512 SYSCALL_DEFINE3(set_mempolicy, int, mode, const unsigned long __user *, nmask,
1513 unsigned long, maxnode)
1514 {
1515 return kernel_set_mempolicy(mode, nmask, maxnode);
1516 }
1517
1518 static int kernel_migrate_pages(pid_t pid, unsigned long maxnode,
1519 const unsigned long __user *old_nodes,
1520 const unsigned long __user *new_nodes)
1521 {
1522 struct mm_struct *mm = NULL;
1523 struct task_struct *task;
1524 nodemask_t task_nodes;
1525 int err;
1526 nodemask_t *old;
1527 nodemask_t *new;
1528 NODEMASK_SCRATCH(scratch);
1529
1530 if (!scratch)
1531 return -ENOMEM;
1532
1533 old = &scratch->mask1;
1534 new = &scratch->mask2;
1535
1536 err = get_nodes(old, old_nodes, maxnode);
1537 if (err)
1538 goto out;
1539
1540 err = get_nodes(new, new_nodes, maxnode);
1541 if (err)
1542 goto out;
1543
1544 /* Find the mm_struct */
1545 rcu_read_lock();
1546 task = pid ? find_task_by_vpid(pid) : current;
1547 if (!task) {
1548 rcu_read_unlock();
1549 err = -ESRCH;
1550 goto out;
1551 }
1552 get_task_struct(task);
1553
1554 err = -EINVAL;
1555
1556 /*
1557 * Check if this process has the right to modify the specified process.
1558 * Use the regular "ptrace_may_access()" checks.
1559 */
1560 if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) {
1561 rcu_read_unlock();
1562 err = -EPERM;
1563 goto out_put;
1564 }
1565 rcu_read_unlock();
1566
1567 task_nodes = cpuset_mems_allowed(task);
1568 /* Is the user allowed to access the target nodes? */
1569 if (!nodes_subset(*new, task_nodes) && !capable(CAP_SYS_NICE)) {
1570 err = -EPERM;
1571 goto out_put;
1572 }
1573
1574 task_nodes = cpuset_mems_allowed(current);
1575 nodes_and(*new, *new, task_nodes);
1576 if (nodes_empty(*new))
1577 goto out_put;
1578
1579 err = security_task_movememory(task);
1580 if (err)
1581 goto out_put;
1582
1583 mm = get_task_mm(task);
1584 put_task_struct(task);
1585
1586 if (!mm) {
1587 err = -EINVAL;
1588 goto out;
1589 }
1590
1591 err = do_migrate_pages(mm, old, new,
1592 capable(CAP_SYS_NICE) ? MPOL_MF_MOVE_ALL : MPOL_MF_MOVE);
1593
1594 mmput(mm);
1595 out:
1596 NODEMASK_SCRATCH_FREE(scratch);
1597
1598 return err;
1599
1600 out_put:
1601 put_task_struct(task);
1602 goto out;
1603
1604 }
1605
1606 SYSCALL_DEFINE4(migrate_pages, pid_t, pid, unsigned long, maxnode,
1607 const unsigned long __user *, old_nodes,
1608 const unsigned long __user *, new_nodes)
1609 {
1610 return kernel_migrate_pages(pid, maxnode, old_nodes, new_nodes);
1611 }
1612
1613
1614 /* Retrieve NUMA policy */
1615 static int kernel_get_mempolicy(int __user *policy,
1616 unsigned long __user *nmask,
1617 unsigned long maxnode,
1618 unsigned long addr,
1619 unsigned long flags)
1620 {
1621 int err;
1622 int pval;
1623 nodemask_t nodes;
1624
1625 if (nmask != NULL && maxnode < nr_node_ids)
1626 return -EINVAL;
1627
1628 addr = untagged_addr(addr);
1629
1630 err = do_get_mempolicy(&pval, &nodes, addr, flags);
1631
1632 if (err)
1633 return err;
1634
1635 if (policy && put_user(pval, policy))
1636 return -EFAULT;
1637
1638 if (nmask)
1639 err = copy_nodes_to_user(nmask, maxnode, &nodes);
1640
1641 return err;
1642 }
1643
1644 SYSCALL_DEFINE5(get_mempolicy, int __user *, policy,
1645 unsigned long __user *, nmask, unsigned long, maxnode,
1646 unsigned long, addr, unsigned long, flags)
1647 {
1648 return kernel_get_mempolicy(policy, nmask, maxnode, addr, flags);
1649 }
1650
1651 #ifdef CONFIG_COMPAT
1652
1653 COMPAT_SYSCALL_DEFINE5(get_mempolicy, int __user *, policy,
1654 compat_ulong_t __user *, nmask,
1655 compat_ulong_t, maxnode,
1656 compat_ulong_t, addr, compat_ulong_t, flags)
1657 {
1658 long err;
1659 unsigned long __user *nm = NULL;
1660 unsigned long nr_bits, alloc_size;
1661 DECLARE_BITMAP(bm, MAX_NUMNODES);
1662
1663 nr_bits = min_t(unsigned long, maxnode-1, nr_node_ids);
1664 alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1665
1666 if (nmask)
1667 nm = compat_alloc_user_space(alloc_size);
1668
1669 err = kernel_get_mempolicy(policy, nm, nr_bits+1, addr, flags);
1670
1671 if (!err && nmask) {
1672 unsigned long copy_size;
1673 copy_size = min_t(unsigned long, sizeof(bm), alloc_size);
1674 err = copy_from_user(bm, nm, copy_size);
1675 /* ensure entire bitmap is zeroed */
1676 err |= clear_user(nmask, ALIGN(maxnode-1, 8) / 8);
1677 err |= compat_put_bitmap(nmask, bm, nr_bits);
1678 }
1679
1680 return err;
1681 }
1682
1683 COMPAT_SYSCALL_DEFINE3(set_mempolicy, int, mode, compat_ulong_t __user *, nmask,
1684 compat_ulong_t, maxnode)
1685 {
1686 unsigned long __user *nm = NULL;
1687 unsigned long nr_bits, alloc_size;
1688 DECLARE_BITMAP(bm, MAX_NUMNODES);
1689
1690 nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1691 alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1692
1693 if (nmask) {
1694 if (compat_get_bitmap(bm, nmask, nr_bits))
1695 return -EFAULT;
1696 nm = compat_alloc_user_space(alloc_size);
1697 if (copy_to_user(nm, bm, alloc_size))
1698 return -EFAULT;
1699 }
1700
1701 return kernel_set_mempolicy(mode, nm, nr_bits+1);
1702 }
1703
1704 COMPAT_SYSCALL_DEFINE6(mbind, compat_ulong_t, start, compat_ulong_t, len,
1705 compat_ulong_t, mode, compat_ulong_t __user *, nmask,
1706 compat_ulong_t, maxnode, compat_ulong_t, flags)
1707 {
1708 unsigned long __user *nm = NULL;
1709 unsigned long nr_bits, alloc_size;
1710 nodemask_t bm;
1711
1712 nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1713 alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1714
1715 if (nmask) {
1716 if (compat_get_bitmap(nodes_addr(bm), nmask, nr_bits))
1717 return -EFAULT;
1718 nm = compat_alloc_user_space(alloc_size);
1719 if (copy_to_user(nm, nodes_addr(bm), alloc_size))
1720 return -EFAULT;
1721 }
1722
1723 return kernel_mbind(start, len, mode, nm, nr_bits+1, flags);
1724 }
1725
1726 COMPAT_SYSCALL_DEFINE4(migrate_pages, compat_pid_t, pid,
1727 compat_ulong_t, maxnode,
1728 const compat_ulong_t __user *, old_nodes,
1729 const compat_ulong_t __user *, new_nodes)
1730 {
1731 unsigned long __user *old = NULL;
1732 unsigned long __user *new = NULL;
1733 nodemask_t tmp_mask;
1734 unsigned long nr_bits;
1735 unsigned long size;
1736
1737 nr_bits = min_t(unsigned long, maxnode - 1, MAX_NUMNODES);
1738 size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1739 if (old_nodes) {
1740 if (compat_get_bitmap(nodes_addr(tmp_mask), old_nodes, nr_bits))
1741 return -EFAULT;
1742 old = compat_alloc_user_space(new_nodes ? size * 2 : size);
1743 if (new_nodes)
1744 new = old + size / sizeof(unsigned long);
1745 if (copy_to_user(old, nodes_addr(tmp_mask), size))
1746 return -EFAULT;
1747 }
1748 if (new_nodes) {
1749 if (compat_get_bitmap(nodes_addr(tmp_mask), new_nodes, nr_bits))
1750 return -EFAULT;
1751 if (new == NULL)
1752 new = compat_alloc_user_space(size);
1753 if (copy_to_user(new, nodes_addr(tmp_mask), size))
1754 return -EFAULT;
1755 }
1756 return kernel_migrate_pages(pid, nr_bits + 1, old, new);
1757 }
1758
1759 #endif /* CONFIG_COMPAT */
1760
1761 bool vma_migratable(struct vm_area_struct *vma)
1762 {
1763 if (vma->vm_flags & (VM_IO | VM_PFNMAP))
1764 return false;
1765
1766 /*
1767 * DAX device mappings require predictable access latency, so avoid
1768 * incurring periodic faults.
1769 */
1770 if (vma_is_dax(vma))
1771 return false;
1772
1773 if (is_vm_hugetlb_page(vma) &&
1774 !hugepage_migration_supported(hstate_vma(vma)))
1775 return false;
1776
1777 /*
1778 * Migration allocates pages in the highest zone. If we cannot
1779 * do so then migration (at least from node to node) is not
1780 * possible.
1781 */
1782 if (vma->vm_file &&
1783 gfp_zone(mapping_gfp_mask(vma->vm_file->f_mapping))
1784 < policy_zone)
1785 return false;
1786 return true;
1787 }
1788
1789 struct mempolicy *__get_vma_policy(struct vm_area_struct *vma,
1790 unsigned long addr)
1791 {
1792 struct mempolicy *pol = NULL;
1793
1794 if (vma) {
1795 if (vma->vm_ops && vma->vm_ops->get_policy) {
1796 pol = vma->vm_ops->get_policy(vma, addr);
1797 } else if (vma->vm_policy) {
1798 pol = vma->vm_policy;
1799
1800 /*
1801 * shmem_alloc_page() passes MPOL_F_SHARED policy with
1802 * a pseudo vma whose vma->vm_ops=NULL. Take a reference
1803 * count on these policies which will be dropped by
1804 * mpol_cond_put() later
1805 */
1806 if (mpol_needs_cond_ref(pol))
1807 mpol_get(pol);
1808 }
1809 }
1810
1811 return pol;
1812 }
1813
1814 /*
1815 * get_vma_policy(@vma, @addr)
1816 * @vma: virtual memory area whose policy is sought
1817 * @addr: address in @vma for shared policy lookup
1818 *
1819 * Returns effective policy for a VMA at specified address.
1820 * Falls back to current->mempolicy or system default policy, as necessary.
1821 * Shared policies [those marked as MPOL_F_SHARED] require an extra reference
1822 * count--added by the get_policy() vm_op, as appropriate--to protect against
1823 * freeing by another task. It is the caller's responsibility to free the
1824 * extra reference for shared policies.
1825 */
1826 static struct mempolicy *get_vma_policy(struct vm_area_struct *vma,
1827 unsigned long addr)
1828 {
1829 struct mempolicy *pol = __get_vma_policy(vma, addr);
1830
1831 if (!pol)
1832 pol = get_task_policy(current);
1833
1834 return pol;
1835 }
1836
1837 bool vma_policy_mof(struct vm_area_struct *vma)
1838 {
1839 struct mempolicy *pol;
1840
1841 if (vma->vm_ops && vma->vm_ops->get_policy) {
1842 bool ret = false;
1843
1844 pol = vma->vm_ops->get_policy(vma, vma->vm_start);
1845 if (pol && (pol->flags & MPOL_F_MOF))
1846 ret = true;
1847 mpol_cond_put(pol);
1848
1849 return ret;
1850 }
1851
1852 pol = vma->vm_policy;
1853 if (!pol)
1854 pol = get_task_policy(current);
1855
1856 return pol->flags & MPOL_F_MOF;
1857 }
1858
1859 static int apply_policy_zone(struct mempolicy *policy, enum zone_type zone)
1860 {
1861 enum zone_type dynamic_policy_zone = policy_zone;
1862
1863 BUG_ON(dynamic_policy_zone == ZONE_MOVABLE);
1864
1865 /*
1866 * if policy->v.nodes has movable memory only,
1867 * we apply policy when gfp_zone(gfp) = ZONE_MOVABLE only.
1868 *
1869 * policy->v.nodes is intersect with node_states[N_MEMORY].
1870 * so if the following test fails, it implies
1871 * policy->v.nodes has movable memory only.
1872 */
1873 if (!nodes_intersects(policy->v.nodes, node_states[N_HIGH_MEMORY]))
1874 dynamic_policy_zone = ZONE_MOVABLE;
1875
1876 return zone >= dynamic_policy_zone;
1877 }
1878
1879 /*
1880 * Return a nodemask representing a mempolicy for filtering nodes for
1881 * page allocation
1882 */
1883 nodemask_t *policy_nodemask(gfp_t gfp, struct mempolicy *policy)
1884 {
1885 /* Lower zones don't get a nodemask applied for MPOL_BIND */
1886 if (unlikely(policy->mode == MPOL_BIND) &&
1887 apply_policy_zone(policy, gfp_zone(gfp)) &&
1888 cpuset_nodemask_valid_mems_allowed(&policy->v.nodes))
1889 return &policy->v.nodes;
1890
1891 return NULL;
1892 }
1893
1894 /* Return the node id preferred by the given mempolicy, or the given id */
1895 static int policy_node(gfp_t gfp, struct mempolicy *policy, int nd)
1896 {
1897 if (policy->mode == MPOL_PREFERRED && !(policy->flags & MPOL_F_LOCAL))
1898 nd = policy->v.preferred_node;
1899 else {
1900 /*
1901 * __GFP_THISNODE shouldn't even be used with the bind policy
1902 * because we might easily break the expectation to stay on the
1903 * requested node and not break the policy.
1904 */
1905 WARN_ON_ONCE(policy->mode == MPOL_BIND && (gfp & __GFP_THISNODE));
1906 }
1907
1908 return nd;
1909 }
1910
1911 /* Do dynamic interleaving for a process */
1912 static unsigned interleave_nodes(struct mempolicy *policy)
1913 {
1914 unsigned next;
1915 struct task_struct *me = current;
1916
1917 next = next_node_in(me->il_prev, policy->v.nodes);
1918 if (next < MAX_NUMNODES)
1919 me->il_prev = next;
1920 return next;
1921 }
1922
1923 /*
1924 * Depending on the memory policy provide a node from which to allocate the
1925 * next slab entry.
1926 */
1927 unsigned int mempolicy_slab_node(void)
1928 {
1929 struct mempolicy *policy;
1930 int node = numa_mem_id();
1931
1932 if (in_interrupt())
1933 return node;
1934
1935 policy = current->mempolicy;
1936 if (!policy || policy->flags & MPOL_F_LOCAL)
1937 return node;
1938
1939 switch (policy->mode) {
1940 case MPOL_PREFERRED:
1941 /*
1942 * handled MPOL_F_LOCAL above
1943 */
1944 return policy->v.preferred_node;
1945
1946 case MPOL_INTERLEAVE:
1947 return interleave_nodes(policy);
1948
1949 case MPOL_BIND: {
1950 struct zoneref *z;
1951
1952 /*
1953 * Follow bind policy behavior and start allocation at the
1954 * first node.
1955 */
1956 struct zonelist *zonelist;
1957 enum zone_type highest_zoneidx = gfp_zone(GFP_KERNEL);
1958 zonelist = &NODE_DATA(node)->node_zonelists[ZONELIST_FALLBACK];
1959 z = first_zones_zonelist(zonelist, highest_zoneidx,
1960 &policy->v.nodes);
1961 return z->zone ? zone_to_nid(z->zone) : node;
1962 }
1963
1964 default:
1965 BUG();
1966 }
1967 }
1968
1969 /*
1970 * Do static interleaving for a VMA with known offset @n. Returns the n'th
1971 * node in pol->v.nodes (starting from n=0), wrapping around if n exceeds the
1972 * number of present nodes.
1973 */
1974 static unsigned offset_il_node(struct mempolicy *pol, unsigned long n)
1975 {
1976 unsigned nnodes = nodes_weight(pol->v.nodes);
1977 unsigned target;
1978 int i;
1979 int nid;
1980
1981 if (!nnodes)
1982 return numa_node_id();
1983 target = (unsigned int)n % nnodes;
1984 nid = first_node(pol->v.nodes);
1985 for (i = 0; i < target; i++)
1986 nid = next_node(nid, pol->v.nodes);
1987 return nid;
1988 }
1989
1990 /* Determine a node number for interleave */
1991 static inline unsigned interleave_nid(struct mempolicy *pol,
1992 struct vm_area_struct *vma, unsigned long addr, int shift)
1993 {
1994 if (vma) {
1995 unsigned long off;
1996
1997 /*
1998 * for small pages, there is no difference between
1999 * shift and PAGE_SHIFT, so the bit-shift is safe.
2000 * for huge pages, since vm_pgoff is in units of small
2001 * pages, we need to shift off the always 0 bits to get
2002 * a useful offset.
2003 */
2004 BUG_ON(shift < PAGE_SHIFT);
2005 off = vma->vm_pgoff >> (shift - PAGE_SHIFT);
2006 off += (addr - vma->vm_start) >> shift;
2007 return offset_il_node(pol, off);
2008 } else
2009 return interleave_nodes(pol);
2010 }
2011
2012 #ifdef CONFIG_HUGETLBFS
2013 /*
2014 * huge_node(@vma, @addr, @gfp_flags, @mpol)
2015 * @vma: virtual memory area whose policy is sought
2016 * @addr: address in @vma for shared policy lookup and interleave policy
2017 * @gfp_flags: for requested zone
2018 * @mpol: pointer to mempolicy pointer for reference counted mempolicy
2019 * @nodemask: pointer to nodemask pointer for MPOL_BIND nodemask
2020 *
2021 * Returns a nid suitable for a huge page allocation and a pointer
2022 * to the struct mempolicy for conditional unref after allocation.
2023 * If the effective policy is 'BIND, returns a pointer to the mempolicy's
2024 * @nodemask for filtering the zonelist.
2025 *
2026 * Must be protected by read_mems_allowed_begin()
2027 */
2028 int huge_node(struct vm_area_struct *vma, unsigned long addr, gfp_t gfp_flags,
2029 struct mempolicy **mpol, nodemask_t **nodemask)
2030 {
2031 int nid;
2032
2033 *mpol = get_vma_policy(vma, addr);
2034 *nodemask = NULL; /* assume !MPOL_BIND */
2035
2036 if (unlikely((*mpol)->mode == MPOL_INTERLEAVE)) {
2037 nid = interleave_nid(*mpol, vma, addr,
2038 huge_page_shift(hstate_vma(vma)));
2039 } else {
2040 nid = policy_node(gfp_flags, *mpol, numa_node_id());
2041 if ((*mpol)->mode == MPOL_BIND)
2042 *nodemask = &(*mpol)->v.nodes;
2043 }
2044 return nid;
2045 }
2046
2047 /*
2048 * init_nodemask_of_mempolicy
2049 *
2050 * If the current task's mempolicy is "default" [NULL], return 'false'
2051 * to indicate default policy. Otherwise, extract the policy nodemask
2052 * for 'bind' or 'interleave' policy into the argument nodemask, or
2053 * initialize the argument nodemask to contain the single node for
2054 * 'preferred' or 'local' policy and return 'true' to indicate presence
2055 * of non-default mempolicy.
2056 *
2057 * We don't bother with reference counting the mempolicy [mpol_get/put]
2058 * because the current task is examining it's own mempolicy and a task's
2059 * mempolicy is only ever changed by the task itself.
2060 *
2061 * N.B., it is the caller's responsibility to free a returned nodemask.
2062 */
2063 bool init_nodemask_of_mempolicy(nodemask_t *mask)
2064 {
2065 struct mempolicy *mempolicy;
2066 int nid;
2067
2068 if (!(mask && current->mempolicy))
2069 return false;
2070
2071 task_lock(current);
2072 mempolicy = current->mempolicy;
2073 switch (mempolicy->mode) {
2074 case MPOL_PREFERRED:
2075 if (mempolicy->flags & MPOL_F_LOCAL)
2076 nid = numa_node_id();
2077 else
2078 nid = mempolicy->v.preferred_node;
2079 init_nodemask_of_node(mask, nid);
2080 break;
2081
2082 case MPOL_BIND:
2083 case MPOL_INTERLEAVE:
2084 *mask = mempolicy->v.nodes;
2085 break;
2086
2087 default:
2088 BUG();
2089 }
2090 task_unlock(current);
2091
2092 return true;
2093 }
2094 #endif
2095
2096 /*
2097 * mempolicy_nodemask_intersects
2098 *
2099 * If tsk's mempolicy is "default" [NULL], return 'true' to indicate default
2100 * policy. Otherwise, check for intersection between mask and the policy
2101 * nodemask for 'bind' or 'interleave' policy. For 'preferred' or 'local'
2102 * policy, always return true since it may allocate elsewhere on fallback.
2103 *
2104 * Takes task_lock(tsk) to prevent freeing of its mempolicy.
2105 */
2106 bool mempolicy_nodemask_intersects(struct task_struct *tsk,
2107 const nodemask_t *mask)
2108 {
2109 struct mempolicy *mempolicy;
2110 bool ret = true;
2111
2112 if (!mask)
2113 return ret;
2114 task_lock(tsk);
2115 mempolicy = tsk->mempolicy;
2116 if (!mempolicy)
2117 goto out;
2118
2119 switch (mempolicy->mode) {
2120 case MPOL_PREFERRED:
2121 /*
2122 * MPOL_PREFERRED and MPOL_F_LOCAL are only preferred nodes to
2123 * allocate from, they may fallback to other nodes when oom.
2124 * Thus, it's possible for tsk to have allocated memory from
2125 * nodes in mask.
2126 */
2127 break;
2128 case MPOL_BIND:
2129 case MPOL_INTERLEAVE:
2130 ret = nodes_intersects(mempolicy->v.nodes, *mask);
2131 break;
2132 default:
2133 BUG();
2134 }
2135 out:
2136 task_unlock(tsk);
2137 return ret;
2138 }
2139
2140 /* Allocate a page in interleaved policy.
2141 Own path because it needs to do special accounting. */
2142 static struct page *alloc_page_interleave(gfp_t gfp, unsigned order,
2143 unsigned nid)
2144 {
2145 struct page *page;
2146
2147 page = __alloc_pages(gfp, order, nid, NULL);
2148 /* skip NUMA_INTERLEAVE_HIT counter update if numa stats is disabled */
2149 if (!static_branch_likely(&vm_numa_stat_key))
2150 return page;
2151 if (page && page_to_nid(page) == nid) {
2152 preempt_disable();
2153 __inc_numa_state(page_zone(page), NUMA_INTERLEAVE_HIT);
2154 preempt_enable();
2155 }
2156 return page;
2157 }
2158
2159 /**
2160 * alloc_pages_vma - Allocate a page for a VMA.
2161 * @gfp: GFP flags.
2162 * @order: Order of the GFP allocation.
2163 * @vma: Pointer to VMA or NULL if not available.
2164 * @addr: Virtual address of the allocation. Must be inside @vma.
2165 * @node: Which node to prefer for allocation (modulo policy).
2166 * @hugepage: For hugepages try only the preferred node if possible.
2167 *
2168 * Allocate a page for a specific address in @vma, using the appropriate
2169 * NUMA policy. When @vma is not NULL the caller must hold the mmap_lock
2170 * of the mm_struct of the VMA to prevent it from going away. Should be
2171 * used for all allocations for pages that will be mapped into user space.
2172 *
2173 * Return: The page on success or NULL if allocation fails.
2174 */
2175 struct page *alloc_pages_vma(gfp_t gfp, int order, struct vm_area_struct *vma,
2176 unsigned long addr, int node, bool hugepage)
2177 {
2178 struct mempolicy *pol;
2179 struct page *page;
2180 int preferred_nid;
2181 nodemask_t *nmask;
2182
2183 pol = get_vma_policy(vma, addr);
2184
2185 if (pol->mode == MPOL_INTERLEAVE) {
2186 unsigned nid;
2187
2188 nid = interleave_nid(pol, vma, addr, PAGE_SHIFT + order);
2189 mpol_cond_put(pol);
2190 page = alloc_page_interleave(gfp, order, nid);
2191 goto out;
2192 }
2193
2194 if (unlikely(IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) && hugepage)) {
2195 int hpage_node = node;
2196
2197 /*
2198 * For hugepage allocation and non-interleave policy which
2199 * allows the current node (or other explicitly preferred
2200 * node) we only try to allocate from the current/preferred
2201 * node and don't fall back to other nodes, as the cost of
2202 * remote accesses would likely offset THP benefits.
2203 *
2204 * If the policy is interleave, or does not allow the current
2205 * node in its nodemask, we allocate the standard way.
2206 */
2207 if (pol->mode == MPOL_PREFERRED && !(pol->flags & MPOL_F_LOCAL))
2208 hpage_node = pol->v.preferred_node;
2209
2210 nmask = policy_nodemask(gfp, pol);
2211 if (!nmask || node_isset(hpage_node, *nmask)) {
2212 mpol_cond_put(pol);
2213 /*
2214 * First, try to allocate THP only on local node, but
2215 * don't reclaim unnecessarily, just compact.
2216 */
2217 page = __alloc_pages_node(hpage_node,
2218 gfp | __GFP_THISNODE | __GFP_NORETRY, order);
2219
2220 /*
2221 * If hugepage allocations are configured to always
2222 * synchronous compact or the vma has been madvised
2223 * to prefer hugepage backing, retry allowing remote
2224 * memory with both reclaim and compact as well.
2225 */
2226 if (!page && (gfp & __GFP_DIRECT_RECLAIM))
2227 page = __alloc_pages_node(hpage_node,
2228 gfp, order);
2229
2230 goto out;
2231 }
2232 }
2233
2234 nmask = policy_nodemask(gfp, pol);
2235 preferred_nid = policy_node(gfp, pol, node);
2236 page = __alloc_pages(gfp, order, preferred_nid, nmask);
2237 mpol_cond_put(pol);
2238 out:
2239 return page;
2240 }
2241 EXPORT_SYMBOL(alloc_pages_vma);
2242
2243 /**
2244 * alloc_pages - Allocate pages.
2245 * @gfp: GFP flags.
2246 * @order: Power of two of number of pages to allocate.
2247 *
2248 * Allocate 1 << @order contiguous pages. The physical address of the
2249 * first page is naturally aligned (eg an order-3 allocation will be aligned
2250 * to a multiple of 8 * PAGE_SIZE bytes). The NUMA policy of the current
2251 * process is honoured when in process context.
2252 *
2253 * Context: Can be called from any context, providing the appropriate GFP
2254 * flags are used.
2255 * Return: The page on success or NULL if allocation fails.
2256 */
2257 struct page *alloc_pages(gfp_t gfp, unsigned order)
2258 {
2259 struct mempolicy *pol = &default_policy;
2260 struct page *page;
2261
2262 if (!in_interrupt() && !(gfp & __GFP_THISNODE))
2263 pol = get_task_policy(current);
2264
2265 /*
2266 * No reference counting needed for current->mempolicy
2267 * nor system default_policy
2268 */
2269 if (pol->mode == MPOL_INTERLEAVE)
2270 page = alloc_page_interleave(gfp, order, interleave_nodes(pol));
2271 else
2272 page = __alloc_pages(gfp, order,
2273 policy_node(gfp, pol, numa_node_id()),
2274 policy_nodemask(gfp, pol));
2275
2276 return page;
2277 }
2278 EXPORT_SYMBOL(alloc_pages);
2279
2280 int vma_dup_policy(struct vm_area_struct *src, struct vm_area_struct *dst)
2281 {
2282 struct mempolicy *pol = mpol_dup(vma_policy(src));
2283
2284 if (IS_ERR(pol))
2285 return PTR_ERR(pol);
2286 dst->vm_policy = pol;
2287 return 0;
2288 }
2289
2290 /*
2291 * If mpol_dup() sees current->cpuset == cpuset_being_rebound, then it
2292 * rebinds the mempolicy its copying by calling mpol_rebind_policy()
2293 * with the mems_allowed returned by cpuset_mems_allowed(). This
2294 * keeps mempolicies cpuset relative after its cpuset moves. See
2295 * further kernel/cpuset.c update_nodemask().
2296 *
2297 * current's mempolicy may be rebinded by the other task(the task that changes
2298 * cpuset's mems), so we needn't do rebind work for current task.
2299 */
2300
2301 /* Slow path of a mempolicy duplicate */
2302 struct mempolicy *__mpol_dup(struct mempolicy *old)
2303 {
2304 struct mempolicy *new = kmem_cache_alloc(policy_cache, GFP_KERNEL);
2305
2306 if (!new)
2307 return ERR_PTR(-ENOMEM);
2308
2309 /* task's mempolicy is protected by alloc_lock */
2310 if (old == current->mempolicy) {
2311 task_lock(current);
2312 *new = *old;
2313 task_unlock(current);
2314 } else
2315 *new = *old;
2316
2317 if (current_cpuset_is_being_rebound()) {
2318 nodemask_t mems = cpuset_mems_allowed(current);
2319 mpol_rebind_policy(new, &mems);
2320 }
2321 atomic_set(&new->refcnt, 1);
2322 return new;
2323 }
2324
2325 /* Slow path of a mempolicy comparison */
2326 bool __mpol_equal(struct mempolicy *a, struct mempolicy *b)
2327 {
2328 if (!a || !b)
2329 return false;
2330 if (a->mode != b->mode)
2331 return false;
2332 if (a->flags != b->flags)
2333 return false;
2334 if (mpol_store_user_nodemask(a))
2335 if (!nodes_equal(a->w.user_nodemask, b->w.user_nodemask))
2336 return false;
2337
2338 switch (a->mode) {
2339 case MPOL_BIND:
2340 case MPOL_INTERLEAVE:
2341 return !!nodes_equal(a->v.nodes, b->v.nodes);
2342 case MPOL_PREFERRED:
2343 /* a's ->flags is the same as b's */
2344 if (a->flags & MPOL_F_LOCAL)
2345 return true;
2346 return a->v.preferred_node == b->v.preferred_node;
2347 default:
2348 BUG();
2349 return false;
2350 }
2351 }
2352
2353 /*
2354 * Shared memory backing store policy support.
2355 *
2356 * Remember policies even when nobody has shared memory mapped.
2357 * The policies are kept in Red-Black tree linked from the inode.
2358 * They are protected by the sp->lock rwlock, which should be held
2359 * for any accesses to the tree.
2360 */
2361
2362 /*
2363 * lookup first element intersecting start-end. Caller holds sp->lock for
2364 * reading or for writing
2365 */
2366 static struct sp_node *
2367 sp_lookup(struct shared_policy *sp, unsigned long start, unsigned long end)
2368 {
2369 struct rb_node *n = sp->root.rb_node;
2370
2371 while (n) {
2372 struct sp_node *p = rb_entry(n, struct sp_node, nd);
2373
2374 if (start >= p->end)
2375 n = n->rb_right;
2376 else if (end <= p->start)
2377 n = n->rb_left;
2378 else
2379 break;
2380 }
2381 if (!n)
2382 return NULL;
2383 for (;;) {
2384 struct sp_node *w = NULL;
2385 struct rb_node *prev = rb_prev(n);
2386 if (!prev)
2387 break;
2388 w = rb_entry(prev, struct sp_node, nd);
2389 if (w->end <= start)
2390 break;
2391 n = prev;
2392 }
2393 return rb_entry(n, struct sp_node, nd);
2394 }
2395
2396 /*
2397 * Insert a new shared policy into the list. Caller holds sp->lock for
2398 * writing.
2399 */
2400 static void sp_insert(struct shared_policy *sp, struct sp_node *new)
2401 {
2402 struct rb_node **p = &sp->root.rb_node;
2403 struct rb_node *parent = NULL;
2404 struct sp_node *nd;
2405
2406 while (*p) {
2407 parent = *p;
2408 nd = rb_entry(parent, struct sp_node, nd);
2409 if (new->start < nd->start)
2410 p = &(*p)->rb_left;
2411 else if (new->end > nd->end)
2412 p = &(*p)->rb_right;
2413 else
2414 BUG();
2415 }
2416 rb_link_node(&new->nd, parent, p);
2417 rb_insert_color(&new->nd, &sp->root);
2418 pr_debug("inserting %lx-%lx: %d\n", new->start, new->end,
2419 new->policy ? new->policy->mode : 0);
2420 }
2421
2422 /* Find shared policy intersecting idx */
2423 struct mempolicy *
2424 mpol_shared_policy_lookup(struct shared_policy *sp, unsigned long idx)
2425 {
2426 struct mempolicy *pol = NULL;
2427 struct sp_node *sn;
2428
2429 if (!sp->root.rb_node)
2430 return NULL;
2431 read_lock(&sp->lock);
2432 sn = sp_lookup(sp, idx, idx+1);
2433 if (sn) {
2434 mpol_get(sn->policy);
2435 pol = sn->policy;
2436 }
2437 read_unlock(&sp->lock);
2438 return pol;
2439 }
2440
2441 static void sp_free(struct sp_node *n)
2442 {
2443 mpol_put(n->policy);
2444 kmem_cache_free(sn_cache, n);
2445 }
2446
2447 /**
2448 * mpol_misplaced - check whether current page node is valid in policy
2449 *
2450 * @page: page to be checked
2451 * @vma: vm area where page mapped
2452 * @addr: virtual address where page mapped
2453 *
2454 * Lookup current policy node id for vma,addr and "compare to" page's
2455 * node id. Policy determination "mimics" alloc_page_vma().
2456 * Called from fault path where we know the vma and faulting address.
2457 *
2458 * Return: -1 if the page is in a node that is valid for this policy, or a
2459 * suitable node ID to allocate a replacement page from.
2460 */
2461 int mpol_misplaced(struct page *page, struct vm_area_struct *vma, unsigned long addr)
2462 {
2463 struct mempolicy *pol;
2464 struct zoneref *z;
2465 int curnid = page_to_nid(page);
2466 unsigned long pgoff;
2467 int thiscpu = raw_smp_processor_id();
2468 int thisnid = cpu_to_node(thiscpu);
2469 int polnid = NUMA_NO_NODE;
2470 int ret = -1;
2471
2472 pol = get_vma_policy(vma, addr);
2473 if (!(pol->flags & MPOL_F_MOF))
2474 goto out;
2475
2476 switch (pol->mode) {
2477 case MPOL_INTERLEAVE:
2478 pgoff = vma->vm_pgoff;
2479 pgoff += (addr - vma->vm_start) >> PAGE_SHIFT;
2480 polnid = offset_il_node(pol, pgoff);
2481 break;
2482
2483 case MPOL_PREFERRED:
2484 if (pol->flags & MPOL_F_LOCAL)
2485 polnid = numa_node_id();
2486 else
2487 polnid = pol->v.preferred_node;
2488 break;
2489
2490 case MPOL_BIND:
2491 /* Optimize placement among multiple nodes via NUMA balancing */
2492 if (pol->flags & MPOL_F_MORON) {
2493 if (node_isset(thisnid, pol->v.nodes))
2494 break;
2495 goto out;
2496 }
2497
2498 /*
2499 * allows binding to multiple nodes.
2500 * use current page if in policy nodemask,
2501 * else select nearest allowed node, if any.
2502 * If no allowed nodes, use current [!misplaced].
2503 */
2504 if (node_isset(curnid, pol->v.nodes))
2505 goto out;
2506 z = first_zones_zonelist(
2507 node_zonelist(numa_node_id(), GFP_HIGHUSER),
2508 gfp_zone(GFP_HIGHUSER),
2509 &pol->v.nodes);
2510 polnid = zone_to_nid(z->zone);
2511 break;
2512
2513 default:
2514 BUG();
2515 }
2516
2517 /* Migrate the page towards the node whose CPU is referencing it */
2518 if (pol->flags & MPOL_F_MORON) {
2519 polnid = thisnid;
2520
2521 if (!should_numa_migrate_memory(current, page, curnid, thiscpu))
2522 goto out;
2523 }
2524
2525 if (curnid != polnid)
2526 ret = polnid;
2527 out:
2528 mpol_cond_put(pol);
2529
2530 return ret;
2531 }
2532
2533 /*
2534 * Drop the (possibly final) reference to task->mempolicy. It needs to be
2535 * dropped after task->mempolicy is set to NULL so that any allocation done as
2536 * part of its kmem_cache_free(), such as by KASAN, doesn't reference a freed
2537 * policy.
2538 */
2539 void mpol_put_task_policy(struct task_struct *task)
2540 {
2541 struct mempolicy *pol;
2542
2543 task_lock(task);
2544 pol = task->mempolicy;
2545 task->mempolicy = NULL;
2546 task_unlock(task);
2547 mpol_put(pol);
2548 }
2549
2550 static void sp_delete(struct shared_policy *sp, struct sp_node *n)
2551 {
2552 pr_debug("deleting %lx-l%lx\n", n->start, n->end);
2553 rb_erase(&n->nd, &sp->root);
2554 sp_free(n);
2555 }
2556
2557 static void sp_node_init(struct sp_node *node, unsigned long start,
2558 unsigned long end, struct mempolicy *pol)
2559 {
2560 node->start = start;
2561 node->end = end;
2562 node->policy = pol;
2563 }
2564
2565 static struct sp_node *sp_alloc(unsigned long start, unsigned long end,
2566 struct mempolicy *pol)
2567 {
2568 struct sp_node *n;
2569 struct mempolicy *newpol;
2570
2571 n = kmem_cache_alloc(sn_cache, GFP_KERNEL);
2572 if (!n)
2573 return NULL;
2574
2575 newpol = mpol_dup(pol);
2576 if (IS_ERR(newpol)) {
2577 kmem_cache_free(sn_cache, n);
2578 return NULL;
2579 }
2580 newpol->flags |= MPOL_F_SHARED;
2581 sp_node_init(n, start, end, newpol);
2582
2583 return n;
2584 }
2585
2586 /* Replace a policy range. */
2587 static int shared_policy_replace(struct shared_policy *sp, unsigned long start,
2588 unsigned long end, struct sp_node *new)
2589 {
2590 struct sp_node *n;
2591 struct sp_node *n_new = NULL;
2592 struct mempolicy *mpol_new = NULL;
2593 int ret = 0;
2594
2595 restart:
2596 write_lock(&sp->lock);
2597 n = sp_lookup(sp, start, end);
2598 /* Take care of old policies in the same range. */
2599 while (n && n->start < end) {
2600 struct rb_node *next = rb_next(&n->nd);
2601 if (n->start >= start) {
2602 if (n->end <= end)
2603 sp_delete(sp, n);
2604 else
2605 n->start = end;
2606 } else {
2607 /* Old policy spanning whole new range. */
2608 if (n->end > end) {
2609 if (!n_new)
2610 goto alloc_new;
2611
2612 *mpol_new = *n->policy;
2613 atomic_set(&mpol_new->refcnt, 1);
2614 sp_node_init(n_new, end, n->end, mpol_new);
2615 n->end = start;
2616 sp_insert(sp, n_new);
2617 n_new = NULL;
2618 mpol_new = NULL;
2619 break;
2620 } else
2621 n->end = start;
2622 }
2623 if (!next)
2624 break;
2625 n = rb_entry(next, struct sp_node, nd);
2626 }
2627 if (new)
2628 sp_insert(sp, new);
2629 write_unlock(&sp->lock);
2630 ret = 0;
2631
2632 err_out:
2633 if (mpol_new)
2634 mpol_put(mpol_new);
2635 if (n_new)
2636 kmem_cache_free(sn_cache, n_new);
2637
2638 return ret;
2639
2640 alloc_new:
2641 write_unlock(&sp->lock);
2642 ret = -ENOMEM;
2643 n_new = kmem_cache_alloc(sn_cache, GFP_KERNEL);
2644 if (!n_new)
2645 goto err_out;
2646 mpol_new = kmem_cache_alloc(policy_cache, GFP_KERNEL);
2647 if (!mpol_new)
2648 goto err_out;
2649 goto restart;
2650 }
2651
2652 /**
2653 * mpol_shared_policy_init - initialize shared policy for inode
2654 * @sp: pointer to inode shared policy
2655 * @mpol: struct mempolicy to install
2656 *
2657 * Install non-NULL @mpol in inode's shared policy rb-tree.
2658 * On entry, the current task has a reference on a non-NULL @mpol.
2659 * This must be released on exit.
2660 * This is called at get_inode() calls and we can use GFP_KERNEL.
2661 */
2662 void mpol_shared_policy_init(struct shared_policy *sp, struct mempolicy *mpol)
2663 {
2664 int ret;
2665
2666 sp->root = RB_ROOT; /* empty tree == default mempolicy */
2667 rwlock_init(&sp->lock);
2668
2669 if (mpol) {
2670 struct vm_area_struct pvma;
2671 struct mempolicy *new;
2672 NODEMASK_SCRATCH(scratch);
2673
2674 if (!scratch)
2675 goto put_mpol;
2676 /* contextualize the tmpfs mount point mempolicy */
2677 new = mpol_new(mpol->mode, mpol->flags, &mpol->w.user_nodemask);
2678 if (IS_ERR(new))
2679 goto free_scratch; /* no valid nodemask intersection */
2680
2681 task_lock(current);
2682 ret = mpol_set_nodemask(new, &mpol->w.user_nodemask, scratch);
2683 task_unlock(current);
2684 if (ret)
2685 goto put_new;
2686
2687 /* Create pseudo-vma that contains just the policy */
2688 vma_init(&pvma, NULL);
2689 pvma.vm_end = TASK_SIZE; /* policy covers entire file */
2690 mpol_set_shared_policy(sp, &pvma, new); /* adds ref */
2691
2692 put_new:
2693 mpol_put(new); /* drop initial ref */
2694 free_scratch:
2695 NODEMASK_SCRATCH_FREE(scratch);
2696 put_mpol:
2697 mpol_put(mpol); /* drop our incoming ref on sb mpol */
2698 }
2699 }
2700
2701 int mpol_set_shared_policy(struct shared_policy *info,
2702 struct vm_area_struct *vma, struct mempolicy *npol)
2703 {
2704 int err;
2705 struct sp_node *new = NULL;
2706 unsigned long sz = vma_pages(vma);
2707
2708 pr_debug("set_shared_policy %lx sz %lu %d %d %lx\n",
2709 vma->vm_pgoff,
2710 sz, npol ? npol->mode : -1,
2711 npol ? npol->flags : -1,
2712 npol ? nodes_addr(npol->v.nodes)[0] : NUMA_NO_NODE);
2713
2714 if (npol) {
2715 new = sp_alloc(vma->vm_pgoff, vma->vm_pgoff + sz, npol);
2716 if (!new)
2717 return -ENOMEM;
2718 }
2719 err = shared_policy_replace(info, vma->vm_pgoff, vma->vm_pgoff+sz, new);
2720 if (err && new)
2721 sp_free(new);
2722 return err;
2723 }
2724
2725 /* Free a backing policy store on inode delete. */
2726 void mpol_free_shared_policy(struct shared_policy *p)
2727 {
2728 struct sp_node *n;
2729 struct rb_node *next;
2730
2731 if (!p->root.rb_node)
2732 return;
2733 write_lock(&p->lock);
2734 next = rb_first(&p->root);
2735 while (next) {
2736 n = rb_entry(next, struct sp_node, nd);
2737 next = rb_next(&n->nd);
2738 sp_delete(p, n);
2739 }
2740 write_unlock(&p->lock);
2741 }
2742
2743 #ifdef CONFIG_NUMA_BALANCING
2744 static int __initdata numabalancing_override;
2745
2746 static void __init check_numabalancing_enable(void)
2747 {
2748 bool numabalancing_default = false;
2749
2750 if (IS_ENABLED(CONFIG_NUMA_BALANCING_DEFAULT_ENABLED))
2751 numabalancing_default = true;
2752
2753 /* Parsed by setup_numabalancing. override == 1 enables, -1 disables */
2754 if (numabalancing_override)
2755 set_numabalancing_state(numabalancing_override == 1);
2756
2757 if (num_online_nodes() > 1 && !numabalancing_override) {
2758 pr_info("%s automatic NUMA balancing. Configure with numa_balancing= or the kernel.numa_balancing sysctl\n",
2759 numabalancing_default ? "Enabling" : "Disabling");
2760 set_numabalancing_state(numabalancing_default);
2761 }
2762 }
2763
2764 static int __init setup_numabalancing(char *str)
2765 {
2766 int ret = 0;
2767 if (!str)
2768 goto out;
2769
2770 if (!strcmp(str, "enable")) {
2771 numabalancing_override = 1;
2772 ret = 1;
2773 } else if (!strcmp(str, "disable")) {
2774 numabalancing_override = -1;
2775 ret = 1;
2776 }
2777 out:
2778 if (!ret)
2779 pr_warn("Unable to parse numa_balancing=\n");
2780
2781 return ret;
2782 }
2783 __setup("numa_balancing=", setup_numabalancing);
2784 #else
2785 static inline void __init check_numabalancing_enable(void)
2786 {
2787 }
2788 #endif /* CONFIG_NUMA_BALANCING */
2789
2790 /* assumes fs == KERNEL_DS */
2791 void __init numa_policy_init(void)
2792 {
2793 nodemask_t interleave_nodes;
2794 unsigned long largest = 0;
2795 int nid, prefer = 0;
2796
2797 policy_cache = kmem_cache_create("numa_policy",
2798 sizeof(struct mempolicy),
2799 0, SLAB_PANIC, NULL);
2800
2801 sn_cache = kmem_cache_create("shared_policy_node",
2802 sizeof(struct sp_node),
2803 0, SLAB_PANIC, NULL);
2804
2805 for_each_node(nid) {
2806 preferred_node_policy[nid] = (struct mempolicy) {
2807 .refcnt = ATOMIC_INIT(1),
2808 .mode = MPOL_PREFERRED,
2809 .flags = MPOL_F_MOF | MPOL_F_MORON,
2810 .v = { .preferred_node = nid, },
2811 };
2812 }
2813
2814 /*
2815 * Set interleaving policy for system init. Interleaving is only
2816 * enabled across suitably sized nodes (default is >= 16MB), or
2817 * fall back to the largest node if they're all smaller.
2818 */
2819 nodes_clear(interleave_nodes);
2820 for_each_node_state(nid, N_MEMORY) {
2821 unsigned long total_pages = node_present_pages(nid);
2822
2823 /* Preserve the largest node */
2824 if (largest < total_pages) {
2825 largest = total_pages;
2826 prefer = nid;
2827 }
2828
2829 /* Interleave this node? */
2830 if ((total_pages << PAGE_SHIFT) >= (16 << 20))
2831 node_set(nid, interleave_nodes);
2832 }
2833
2834 /* All too small, use the largest */
2835 if (unlikely(nodes_empty(interleave_nodes)))
2836 node_set(prefer, interleave_nodes);
2837
2838 if (do_set_mempolicy(MPOL_INTERLEAVE, 0, &interleave_nodes))
2839 pr_err("%s: interleaving failed\n", __func__);
2840
2841 check_numabalancing_enable();
2842 }
2843
2844 /* Reset policy of current process to default */
2845 void numa_default_policy(void)
2846 {
2847 do_set_mempolicy(MPOL_DEFAULT, 0, NULL);
2848 }
2849
2850 /*
2851 * Parse and format mempolicy from/to strings
2852 */
2853
2854 /*
2855 * "local" is implemented internally by MPOL_PREFERRED with MPOL_F_LOCAL flag.
2856 */
2857 static const char * const policy_modes[] =
2858 {
2859 [MPOL_DEFAULT] = "default",
2860 [MPOL_PREFERRED] = "prefer",
2861 [MPOL_BIND] = "bind",
2862 [MPOL_INTERLEAVE] = "interleave",
2863 [MPOL_LOCAL] = "local",
2864 };
2865
2866
2867 #ifdef CONFIG_TMPFS
2868 /**
2869 * mpol_parse_str - parse string to mempolicy, for tmpfs mpol mount option.
2870 * @str: string containing mempolicy to parse
2871 * @mpol: pointer to struct mempolicy pointer, returned on success.
2872 *
2873 * Format of input:
2874 * <mode>[=<flags>][:<nodelist>]
2875 *
2876 * On success, returns 0, else 1
2877 */
2878 int mpol_parse_str(char *str, struct mempolicy **mpol)
2879 {
2880 struct mempolicy *new = NULL;
2881 unsigned short mode_flags;
2882 nodemask_t nodes;
2883 char *nodelist = strchr(str, ':');
2884 char *flags = strchr(str, '=');
2885 int err = 1, mode;
2886
2887 if (flags)
2888 *flags++ = '\0'; /* terminate mode string */
2889
2890 if (nodelist) {
2891 /* NUL-terminate mode or flags string */
2892 *nodelist++ = '\0';
2893 if (nodelist_parse(nodelist, nodes))
2894 goto out;
2895 if (!nodes_subset(nodes, node_states[N_MEMORY]))
2896 goto out;
2897 } else
2898 nodes_clear(nodes);
2899
2900 mode = match_string(policy_modes, MPOL_MAX, str);
2901 if (mode < 0)
2902 goto out;
2903
2904 switch (mode) {
2905 case MPOL_PREFERRED:
2906 /*
2907 * Insist on a nodelist of one node only, although later
2908 * we use first_node(nodes) to grab a single node, so here
2909 * nodelist (or nodes) cannot be empty.
2910 */
2911 if (nodelist) {
2912 char *rest = nodelist;
2913 while (isdigit(*rest))
2914 rest++;
2915 if (*rest)
2916 goto out;
2917 if (nodes_empty(nodes))
2918 goto out;
2919 }
2920 break;
2921 case MPOL_INTERLEAVE:
2922 /*
2923 * Default to online nodes with memory if no nodelist
2924 */
2925 if (!nodelist)
2926 nodes = node_states[N_MEMORY];
2927 break;
2928 case MPOL_LOCAL:
2929 /*
2930 * Don't allow a nodelist; mpol_new() checks flags
2931 */
2932 if (nodelist)
2933 goto out;
2934 mode = MPOL_PREFERRED;
2935 break;
2936 case MPOL_DEFAULT:
2937 /*
2938 * Insist on a empty nodelist
2939 */
2940 if (!nodelist)
2941 err = 0;
2942 goto out;
2943 case MPOL_BIND:
2944 /*
2945 * Insist on a nodelist
2946 */
2947 if (!nodelist)
2948 goto out;
2949 }
2950
2951 mode_flags = 0;
2952 if (flags) {
2953 /*
2954 * Currently, we only support two mutually exclusive
2955 * mode flags.
2956 */
2957 if (!strcmp(flags, "static"))
2958 mode_flags |= MPOL_F_STATIC_NODES;
2959 else if (!strcmp(flags, "relative"))
2960 mode_flags |= MPOL_F_RELATIVE_NODES;
2961 else
2962 goto out;
2963 }
2964
2965 new = mpol_new(mode, mode_flags, &nodes);
2966 if (IS_ERR(new))
2967 goto out;
2968
2969 /*
2970 * Save nodes for mpol_to_str() to show the tmpfs mount options
2971 * for /proc/mounts, /proc/pid/mounts and /proc/pid/mountinfo.
2972 */
2973 if (mode != MPOL_PREFERRED)
2974 new->v.nodes = nodes;
2975 else if (nodelist)
2976 new->v.preferred_node = first_node(nodes);
2977 else
2978 new->flags |= MPOL_F_LOCAL;
2979
2980 /*
2981 * Save nodes for contextualization: this will be used to "clone"
2982 * the mempolicy in a specific context [cpuset] at a later time.
2983 */
2984 new->w.user_nodemask = nodes;
2985
2986 err = 0;
2987
2988 out:
2989 /* Restore string for error message */
2990 if (nodelist)
2991 *--nodelist = ':';
2992 if (flags)
2993 *--flags = '=';
2994 if (!err)
2995 *mpol = new;
2996 return err;
2997 }
2998 #endif /* CONFIG_TMPFS */
2999
3000 /**
3001 * mpol_to_str - format a mempolicy structure for printing
3002 * @buffer: to contain formatted mempolicy string
3003 * @maxlen: length of @buffer
3004 * @pol: pointer to mempolicy to be formatted
3005 *
3006 * Convert @pol into a string. If @buffer is too short, truncate the string.
3007 * Recommend a @maxlen of at least 32 for the longest mode, "interleave", the
3008 * longest flag, "relative", and to display at least a few node ids.
3009 */
3010 void mpol_to_str(char *buffer, int maxlen, struct mempolicy *pol)
3011 {
3012 char *p = buffer;
3013 nodemask_t nodes = NODE_MASK_NONE;
3014 unsigned short mode = MPOL_DEFAULT;
3015 unsigned short flags = 0;
3016
3017 if (pol && pol != &default_policy && !(pol->flags & MPOL_F_MORON)) {
3018 mode = pol->mode;
3019 flags = pol->flags;
3020 }
3021
3022 switch (mode) {
3023 case MPOL_DEFAULT:
3024 break;
3025 case MPOL_PREFERRED:
3026 if (flags & MPOL_F_LOCAL)
3027 mode = MPOL_LOCAL;
3028 else
3029 node_set(pol->v.preferred_node, nodes);
3030 break;
3031 case MPOL_BIND:
3032 case MPOL_INTERLEAVE:
3033 nodes = pol->v.nodes;
3034 break;
3035 default:
3036 WARN_ON_ONCE(1);
3037 snprintf(p, maxlen, "unknown");
3038 return;
3039 }
3040
3041 p += snprintf(p, maxlen, "%s", policy_modes[mode]);
3042
3043 if (flags & MPOL_MODE_FLAGS) {
3044 p += snprintf(p, buffer + maxlen - p, "=");
3045
3046 /*
3047 * Currently, the only defined flags are mutually exclusive
3048 */
3049 if (flags & MPOL_F_STATIC_NODES)
3050 p += snprintf(p, buffer + maxlen - p, "static");
3051 else if (flags & MPOL_F_RELATIVE_NODES)
3052 p += snprintf(p, buffer + maxlen - p, "relative");
3053 }
3054
3055 if (!nodes_empty(nodes))
3056 p += scnprintf(p, buffer + maxlen - p, ":%*pbl",
3057 nodemask_pr_args(&nodes));
3058 }