]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - mm/mempolicy.c
ksm: rmap_walk to remove_migation_ptes
[mirror_ubuntu-zesty-kernel.git] / mm / mempolicy.c
1 /*
2 * Simple NUMA memory policy for the Linux kernel.
3 *
4 * Copyright 2003,2004 Andi Kleen, SuSE Labs.
5 * (C) Copyright 2005 Christoph Lameter, Silicon Graphics, Inc.
6 * Subject to the GNU Public License, version 2.
7 *
8 * NUMA policy allows the user to give hints in which node(s) memory should
9 * be allocated.
10 *
11 * Support four policies per VMA and per process:
12 *
13 * The VMA policy has priority over the process policy for a page fault.
14 *
15 * interleave Allocate memory interleaved over a set of nodes,
16 * with normal fallback if it fails.
17 * For VMA based allocations this interleaves based on the
18 * offset into the backing object or offset into the mapping
19 * for anonymous memory. For process policy an process counter
20 * is used.
21 *
22 * bind Only allocate memory on a specific set of nodes,
23 * no fallback.
24 * FIXME: memory is allocated starting with the first node
25 * to the last. It would be better if bind would truly restrict
26 * the allocation to memory nodes instead
27 *
28 * preferred Try a specific node first before normal fallback.
29 * As a special case node -1 here means do the allocation
30 * on the local CPU. This is normally identical to default,
31 * but useful to set in a VMA when you have a non default
32 * process policy.
33 *
34 * default Allocate on the local node first, or when on a VMA
35 * use the process policy. This is what Linux always did
36 * in a NUMA aware kernel and still does by, ahem, default.
37 *
38 * The process policy is applied for most non interrupt memory allocations
39 * in that process' context. Interrupts ignore the policies and always
40 * try to allocate on the local CPU. The VMA policy is only applied for memory
41 * allocations for a VMA in the VM.
42 *
43 * Currently there are a few corner cases in swapping where the policy
44 * is not applied, but the majority should be handled. When process policy
45 * is used it is not remembered over swap outs/swap ins.
46 *
47 * Only the highest zone in the zone hierarchy gets policied. Allocations
48 * requesting a lower zone just use default policy. This implies that
49 * on systems with highmem kernel lowmem allocation don't get policied.
50 * Same with GFP_DMA allocations.
51 *
52 * For shmfs/tmpfs/hugetlbfs shared memory the policy is shared between
53 * all users and remembered even when nobody has memory mapped.
54 */
55
56 /* Notebook:
57 fix mmap readahead to honour policy and enable policy for any page cache
58 object
59 statistics for bigpages
60 global policy for page cache? currently it uses process policy. Requires
61 first item above.
62 handle mremap for shared memory (currently ignored for the policy)
63 grows down?
64 make bind policy root only? It can trigger oom much faster and the
65 kernel is not always grateful with that.
66 */
67
68 #include <linux/mempolicy.h>
69 #include <linux/mm.h>
70 #include <linux/highmem.h>
71 #include <linux/hugetlb.h>
72 #include <linux/kernel.h>
73 #include <linux/sched.h>
74 #include <linux/nodemask.h>
75 #include <linux/cpuset.h>
76 #include <linux/gfp.h>
77 #include <linux/slab.h>
78 #include <linux/string.h>
79 #include <linux/module.h>
80 #include <linux/nsproxy.h>
81 #include <linux/interrupt.h>
82 #include <linux/init.h>
83 #include <linux/compat.h>
84 #include <linux/swap.h>
85 #include <linux/seq_file.h>
86 #include <linux/proc_fs.h>
87 #include <linux/migrate.h>
88 #include <linux/rmap.h>
89 #include <linux/security.h>
90 #include <linux/syscalls.h>
91 #include <linux/ctype.h>
92 #include <linux/mm_inline.h>
93
94 #include <asm/tlbflush.h>
95 #include <asm/uaccess.h>
96
97 #include "internal.h"
98
99 /* Internal flags */
100 #define MPOL_MF_DISCONTIG_OK (MPOL_MF_INTERNAL << 0) /* Skip checks for continuous vmas */
101 #define MPOL_MF_INVERT (MPOL_MF_INTERNAL << 1) /* Invert check for nodemask */
102 #define MPOL_MF_STATS (MPOL_MF_INTERNAL << 2) /* Gather statistics */
103
104 static struct kmem_cache *policy_cache;
105 static struct kmem_cache *sn_cache;
106
107 /* Highest zone. An specific allocation for a zone below that is not
108 policied. */
109 enum zone_type policy_zone = 0;
110
111 /*
112 * run-time system-wide default policy => local allocation
113 */
114 struct mempolicy default_policy = {
115 .refcnt = ATOMIC_INIT(1), /* never free it */
116 .mode = MPOL_PREFERRED,
117 .flags = MPOL_F_LOCAL,
118 };
119
120 static const struct mempolicy_operations {
121 int (*create)(struct mempolicy *pol, const nodemask_t *nodes);
122 void (*rebind)(struct mempolicy *pol, const nodemask_t *nodes);
123 } mpol_ops[MPOL_MAX];
124
125 /* Check that the nodemask contains at least one populated zone */
126 static int is_valid_nodemask(const nodemask_t *nodemask)
127 {
128 int nd, k;
129
130 /* Check that there is something useful in this mask */
131 k = policy_zone;
132
133 for_each_node_mask(nd, *nodemask) {
134 struct zone *z;
135
136 for (k = 0; k <= policy_zone; k++) {
137 z = &NODE_DATA(nd)->node_zones[k];
138 if (z->present_pages > 0)
139 return 1;
140 }
141 }
142
143 return 0;
144 }
145
146 static inline int mpol_store_user_nodemask(const struct mempolicy *pol)
147 {
148 return pol->flags & (MPOL_F_STATIC_NODES | MPOL_F_RELATIVE_NODES);
149 }
150
151 static void mpol_relative_nodemask(nodemask_t *ret, const nodemask_t *orig,
152 const nodemask_t *rel)
153 {
154 nodemask_t tmp;
155 nodes_fold(tmp, *orig, nodes_weight(*rel));
156 nodes_onto(*ret, tmp, *rel);
157 }
158
159 static int mpol_new_interleave(struct mempolicy *pol, const nodemask_t *nodes)
160 {
161 if (nodes_empty(*nodes))
162 return -EINVAL;
163 pol->v.nodes = *nodes;
164 return 0;
165 }
166
167 static int mpol_new_preferred(struct mempolicy *pol, const nodemask_t *nodes)
168 {
169 if (!nodes)
170 pol->flags |= MPOL_F_LOCAL; /* local allocation */
171 else if (nodes_empty(*nodes))
172 return -EINVAL; /* no allowed nodes */
173 else
174 pol->v.preferred_node = first_node(*nodes);
175 return 0;
176 }
177
178 static int mpol_new_bind(struct mempolicy *pol, const nodemask_t *nodes)
179 {
180 if (!is_valid_nodemask(nodes))
181 return -EINVAL;
182 pol->v.nodes = *nodes;
183 return 0;
184 }
185
186 /*
187 * mpol_set_nodemask is called after mpol_new() to set up the nodemask, if
188 * any, for the new policy. mpol_new() has already validated the nodes
189 * parameter with respect to the policy mode and flags. But, we need to
190 * handle an empty nodemask with MPOL_PREFERRED here.
191 *
192 * Must be called holding task's alloc_lock to protect task's mems_allowed
193 * and mempolicy. May also be called holding the mmap_semaphore for write.
194 */
195 static int mpol_set_nodemask(struct mempolicy *pol,
196 const nodemask_t *nodes, struct nodemask_scratch *nsc)
197 {
198 int ret;
199
200 /* if mode is MPOL_DEFAULT, pol is NULL. This is right. */
201 if (pol == NULL)
202 return 0;
203 /* Check N_HIGH_MEMORY */
204 nodes_and(nsc->mask1,
205 cpuset_current_mems_allowed, node_states[N_HIGH_MEMORY]);
206
207 VM_BUG_ON(!nodes);
208 if (pol->mode == MPOL_PREFERRED && nodes_empty(*nodes))
209 nodes = NULL; /* explicit local allocation */
210 else {
211 if (pol->flags & MPOL_F_RELATIVE_NODES)
212 mpol_relative_nodemask(&nsc->mask2, nodes,&nsc->mask1);
213 else
214 nodes_and(nsc->mask2, *nodes, nsc->mask1);
215
216 if (mpol_store_user_nodemask(pol))
217 pol->w.user_nodemask = *nodes;
218 else
219 pol->w.cpuset_mems_allowed =
220 cpuset_current_mems_allowed;
221 }
222
223 if (nodes)
224 ret = mpol_ops[pol->mode].create(pol, &nsc->mask2);
225 else
226 ret = mpol_ops[pol->mode].create(pol, NULL);
227 return ret;
228 }
229
230 /*
231 * This function just creates a new policy, does some check and simple
232 * initialization. You must invoke mpol_set_nodemask() to set nodes.
233 */
234 static struct mempolicy *mpol_new(unsigned short mode, unsigned short flags,
235 nodemask_t *nodes)
236 {
237 struct mempolicy *policy;
238
239 pr_debug("setting mode %d flags %d nodes[0] %lx\n",
240 mode, flags, nodes ? nodes_addr(*nodes)[0] : -1);
241
242 if (mode == MPOL_DEFAULT) {
243 if (nodes && !nodes_empty(*nodes))
244 return ERR_PTR(-EINVAL);
245 return NULL; /* simply delete any existing policy */
246 }
247 VM_BUG_ON(!nodes);
248
249 /*
250 * MPOL_PREFERRED cannot be used with MPOL_F_STATIC_NODES or
251 * MPOL_F_RELATIVE_NODES if the nodemask is empty (local allocation).
252 * All other modes require a valid pointer to a non-empty nodemask.
253 */
254 if (mode == MPOL_PREFERRED) {
255 if (nodes_empty(*nodes)) {
256 if (((flags & MPOL_F_STATIC_NODES) ||
257 (flags & MPOL_F_RELATIVE_NODES)))
258 return ERR_PTR(-EINVAL);
259 }
260 } else if (nodes_empty(*nodes))
261 return ERR_PTR(-EINVAL);
262 policy = kmem_cache_alloc(policy_cache, GFP_KERNEL);
263 if (!policy)
264 return ERR_PTR(-ENOMEM);
265 atomic_set(&policy->refcnt, 1);
266 policy->mode = mode;
267 policy->flags = flags;
268
269 return policy;
270 }
271
272 /* Slow path of a mpol destructor. */
273 void __mpol_put(struct mempolicy *p)
274 {
275 if (!atomic_dec_and_test(&p->refcnt))
276 return;
277 kmem_cache_free(policy_cache, p);
278 }
279
280 static void mpol_rebind_default(struct mempolicy *pol, const nodemask_t *nodes)
281 {
282 }
283
284 static void mpol_rebind_nodemask(struct mempolicy *pol,
285 const nodemask_t *nodes)
286 {
287 nodemask_t tmp;
288
289 if (pol->flags & MPOL_F_STATIC_NODES)
290 nodes_and(tmp, pol->w.user_nodemask, *nodes);
291 else if (pol->flags & MPOL_F_RELATIVE_NODES)
292 mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes);
293 else {
294 nodes_remap(tmp, pol->v.nodes, pol->w.cpuset_mems_allowed,
295 *nodes);
296 pol->w.cpuset_mems_allowed = *nodes;
297 }
298
299 pol->v.nodes = tmp;
300 if (!node_isset(current->il_next, tmp)) {
301 current->il_next = next_node(current->il_next, tmp);
302 if (current->il_next >= MAX_NUMNODES)
303 current->il_next = first_node(tmp);
304 if (current->il_next >= MAX_NUMNODES)
305 current->il_next = numa_node_id();
306 }
307 }
308
309 static void mpol_rebind_preferred(struct mempolicy *pol,
310 const nodemask_t *nodes)
311 {
312 nodemask_t tmp;
313
314 if (pol->flags & MPOL_F_STATIC_NODES) {
315 int node = first_node(pol->w.user_nodemask);
316
317 if (node_isset(node, *nodes)) {
318 pol->v.preferred_node = node;
319 pol->flags &= ~MPOL_F_LOCAL;
320 } else
321 pol->flags |= MPOL_F_LOCAL;
322 } else if (pol->flags & MPOL_F_RELATIVE_NODES) {
323 mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes);
324 pol->v.preferred_node = first_node(tmp);
325 } else if (!(pol->flags & MPOL_F_LOCAL)) {
326 pol->v.preferred_node = node_remap(pol->v.preferred_node,
327 pol->w.cpuset_mems_allowed,
328 *nodes);
329 pol->w.cpuset_mems_allowed = *nodes;
330 }
331 }
332
333 /* Migrate a policy to a different set of nodes */
334 static void mpol_rebind_policy(struct mempolicy *pol,
335 const nodemask_t *newmask)
336 {
337 if (!pol)
338 return;
339 if (!mpol_store_user_nodemask(pol) &&
340 nodes_equal(pol->w.cpuset_mems_allowed, *newmask))
341 return;
342 mpol_ops[pol->mode].rebind(pol, newmask);
343 }
344
345 /*
346 * Wrapper for mpol_rebind_policy() that just requires task
347 * pointer, and updates task mempolicy.
348 *
349 * Called with task's alloc_lock held.
350 */
351
352 void mpol_rebind_task(struct task_struct *tsk, const nodemask_t *new)
353 {
354 mpol_rebind_policy(tsk->mempolicy, new);
355 }
356
357 /*
358 * Rebind each vma in mm to new nodemask.
359 *
360 * Call holding a reference to mm. Takes mm->mmap_sem during call.
361 */
362
363 void mpol_rebind_mm(struct mm_struct *mm, nodemask_t *new)
364 {
365 struct vm_area_struct *vma;
366
367 down_write(&mm->mmap_sem);
368 for (vma = mm->mmap; vma; vma = vma->vm_next)
369 mpol_rebind_policy(vma->vm_policy, new);
370 up_write(&mm->mmap_sem);
371 }
372
373 static const struct mempolicy_operations mpol_ops[MPOL_MAX] = {
374 [MPOL_DEFAULT] = {
375 .rebind = mpol_rebind_default,
376 },
377 [MPOL_INTERLEAVE] = {
378 .create = mpol_new_interleave,
379 .rebind = mpol_rebind_nodemask,
380 },
381 [MPOL_PREFERRED] = {
382 .create = mpol_new_preferred,
383 .rebind = mpol_rebind_preferred,
384 },
385 [MPOL_BIND] = {
386 .create = mpol_new_bind,
387 .rebind = mpol_rebind_nodemask,
388 },
389 };
390
391 static void gather_stats(struct page *, void *, int pte_dirty);
392 static void migrate_page_add(struct page *page, struct list_head *pagelist,
393 unsigned long flags);
394
395 /* Scan through pages checking if pages follow certain conditions. */
396 static int check_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
397 unsigned long addr, unsigned long end,
398 const nodemask_t *nodes, unsigned long flags,
399 void *private)
400 {
401 pte_t *orig_pte;
402 pte_t *pte;
403 spinlock_t *ptl;
404
405 orig_pte = pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
406 do {
407 struct page *page;
408 int nid;
409
410 if (!pte_present(*pte))
411 continue;
412 page = vm_normal_page(vma, addr, *pte);
413 if (!page)
414 continue;
415 /*
416 * The check for PageReserved here is important to avoid
417 * handling zero pages and other pages that may have been
418 * marked special by the system.
419 *
420 * If the PageReserved would not be checked here then f.e.
421 * the location of the zero page could have an influence
422 * on MPOL_MF_STRICT, zero pages would be counted for
423 * the per node stats, and there would be useless attempts
424 * to put zero pages on the migration list.
425 */
426 if (PageReserved(page))
427 continue;
428 nid = page_to_nid(page);
429 if (node_isset(nid, *nodes) == !!(flags & MPOL_MF_INVERT))
430 continue;
431
432 if (flags & MPOL_MF_STATS)
433 gather_stats(page, private, pte_dirty(*pte));
434 else if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL))
435 migrate_page_add(page, private, flags);
436 else
437 break;
438 } while (pte++, addr += PAGE_SIZE, addr != end);
439 pte_unmap_unlock(orig_pte, ptl);
440 return addr != end;
441 }
442
443 static inline int check_pmd_range(struct vm_area_struct *vma, pud_t *pud,
444 unsigned long addr, unsigned long end,
445 const nodemask_t *nodes, unsigned long flags,
446 void *private)
447 {
448 pmd_t *pmd;
449 unsigned long next;
450
451 pmd = pmd_offset(pud, addr);
452 do {
453 next = pmd_addr_end(addr, end);
454 if (pmd_none_or_clear_bad(pmd))
455 continue;
456 if (check_pte_range(vma, pmd, addr, next, nodes,
457 flags, private))
458 return -EIO;
459 } while (pmd++, addr = next, addr != end);
460 return 0;
461 }
462
463 static inline int check_pud_range(struct vm_area_struct *vma, pgd_t *pgd,
464 unsigned long addr, unsigned long end,
465 const nodemask_t *nodes, unsigned long flags,
466 void *private)
467 {
468 pud_t *pud;
469 unsigned long next;
470
471 pud = pud_offset(pgd, addr);
472 do {
473 next = pud_addr_end(addr, end);
474 if (pud_none_or_clear_bad(pud))
475 continue;
476 if (check_pmd_range(vma, pud, addr, next, nodes,
477 flags, private))
478 return -EIO;
479 } while (pud++, addr = next, addr != end);
480 return 0;
481 }
482
483 static inline int check_pgd_range(struct vm_area_struct *vma,
484 unsigned long addr, unsigned long end,
485 const nodemask_t *nodes, unsigned long flags,
486 void *private)
487 {
488 pgd_t *pgd;
489 unsigned long next;
490
491 pgd = pgd_offset(vma->vm_mm, addr);
492 do {
493 next = pgd_addr_end(addr, end);
494 if (pgd_none_or_clear_bad(pgd))
495 continue;
496 if (check_pud_range(vma, pgd, addr, next, nodes,
497 flags, private))
498 return -EIO;
499 } while (pgd++, addr = next, addr != end);
500 return 0;
501 }
502
503 /*
504 * Check if all pages in a range are on a set of nodes.
505 * If pagelist != NULL then isolate pages from the LRU and
506 * put them on the pagelist.
507 */
508 static struct vm_area_struct *
509 check_range(struct mm_struct *mm, unsigned long start, unsigned long end,
510 const nodemask_t *nodes, unsigned long flags, void *private)
511 {
512 int err;
513 struct vm_area_struct *first, *vma, *prev;
514
515
516 first = find_vma(mm, start);
517 if (!first)
518 return ERR_PTR(-EFAULT);
519 prev = NULL;
520 for (vma = first; vma && vma->vm_start < end; vma = vma->vm_next) {
521 if (!(flags & MPOL_MF_DISCONTIG_OK)) {
522 if (!vma->vm_next && vma->vm_end < end)
523 return ERR_PTR(-EFAULT);
524 if (prev && prev->vm_end < vma->vm_start)
525 return ERR_PTR(-EFAULT);
526 }
527 if (!is_vm_hugetlb_page(vma) &&
528 ((flags & MPOL_MF_STRICT) ||
529 ((flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) &&
530 vma_migratable(vma)))) {
531 unsigned long endvma = vma->vm_end;
532
533 if (endvma > end)
534 endvma = end;
535 if (vma->vm_start > start)
536 start = vma->vm_start;
537 err = check_pgd_range(vma, start, endvma, nodes,
538 flags, private);
539 if (err) {
540 first = ERR_PTR(err);
541 break;
542 }
543 }
544 prev = vma;
545 }
546 return first;
547 }
548
549 /* Apply policy to a single VMA */
550 static int policy_vma(struct vm_area_struct *vma, struct mempolicy *new)
551 {
552 int err = 0;
553 struct mempolicy *old = vma->vm_policy;
554
555 pr_debug("vma %lx-%lx/%lx vm_ops %p vm_file %p set_policy %p\n",
556 vma->vm_start, vma->vm_end, vma->vm_pgoff,
557 vma->vm_ops, vma->vm_file,
558 vma->vm_ops ? vma->vm_ops->set_policy : NULL);
559
560 if (vma->vm_ops && vma->vm_ops->set_policy)
561 err = vma->vm_ops->set_policy(vma, new);
562 if (!err) {
563 mpol_get(new);
564 vma->vm_policy = new;
565 mpol_put(old);
566 }
567 return err;
568 }
569
570 /* Step 2: apply policy to a range and do splits. */
571 static int mbind_range(struct vm_area_struct *vma, unsigned long start,
572 unsigned long end, struct mempolicy *new)
573 {
574 struct vm_area_struct *next;
575 int err;
576
577 err = 0;
578 for (; vma && vma->vm_start < end; vma = next) {
579 next = vma->vm_next;
580 if (vma->vm_start < start)
581 err = split_vma(vma->vm_mm, vma, start, 1);
582 if (!err && vma->vm_end > end)
583 err = split_vma(vma->vm_mm, vma, end, 0);
584 if (!err)
585 err = policy_vma(vma, new);
586 if (err)
587 break;
588 }
589 return err;
590 }
591
592 /*
593 * Update task->flags PF_MEMPOLICY bit: set iff non-default
594 * mempolicy. Allows more rapid checking of this (combined perhaps
595 * with other PF_* flag bits) on memory allocation hot code paths.
596 *
597 * If called from outside this file, the task 'p' should -only- be
598 * a newly forked child not yet visible on the task list, because
599 * manipulating the task flags of a visible task is not safe.
600 *
601 * The above limitation is why this routine has the funny name
602 * mpol_fix_fork_child_flag().
603 *
604 * It is also safe to call this with a task pointer of current,
605 * which the static wrapper mpol_set_task_struct_flag() does,
606 * for use within this file.
607 */
608
609 void mpol_fix_fork_child_flag(struct task_struct *p)
610 {
611 if (p->mempolicy)
612 p->flags |= PF_MEMPOLICY;
613 else
614 p->flags &= ~PF_MEMPOLICY;
615 }
616
617 static void mpol_set_task_struct_flag(void)
618 {
619 mpol_fix_fork_child_flag(current);
620 }
621
622 /* Set the process memory policy */
623 static long do_set_mempolicy(unsigned short mode, unsigned short flags,
624 nodemask_t *nodes)
625 {
626 struct mempolicy *new, *old;
627 struct mm_struct *mm = current->mm;
628 NODEMASK_SCRATCH(scratch);
629 int ret;
630
631 if (!scratch)
632 return -ENOMEM;
633
634 new = mpol_new(mode, flags, nodes);
635 if (IS_ERR(new)) {
636 ret = PTR_ERR(new);
637 goto out;
638 }
639 /*
640 * prevent changing our mempolicy while show_numa_maps()
641 * is using it.
642 * Note: do_set_mempolicy() can be called at init time
643 * with no 'mm'.
644 */
645 if (mm)
646 down_write(&mm->mmap_sem);
647 task_lock(current);
648 ret = mpol_set_nodemask(new, nodes, scratch);
649 if (ret) {
650 task_unlock(current);
651 if (mm)
652 up_write(&mm->mmap_sem);
653 mpol_put(new);
654 goto out;
655 }
656 old = current->mempolicy;
657 current->mempolicy = new;
658 mpol_set_task_struct_flag();
659 if (new && new->mode == MPOL_INTERLEAVE &&
660 nodes_weight(new->v.nodes))
661 current->il_next = first_node(new->v.nodes);
662 task_unlock(current);
663 if (mm)
664 up_write(&mm->mmap_sem);
665
666 mpol_put(old);
667 ret = 0;
668 out:
669 NODEMASK_SCRATCH_FREE(scratch);
670 return ret;
671 }
672
673 /*
674 * Return nodemask for policy for get_mempolicy() query
675 *
676 * Called with task's alloc_lock held
677 */
678 static void get_policy_nodemask(struct mempolicy *p, nodemask_t *nodes)
679 {
680 nodes_clear(*nodes);
681 if (p == &default_policy)
682 return;
683
684 switch (p->mode) {
685 case MPOL_BIND:
686 /* Fall through */
687 case MPOL_INTERLEAVE:
688 *nodes = p->v.nodes;
689 break;
690 case MPOL_PREFERRED:
691 if (!(p->flags & MPOL_F_LOCAL))
692 node_set(p->v.preferred_node, *nodes);
693 /* else return empty node mask for local allocation */
694 break;
695 default:
696 BUG();
697 }
698 }
699
700 static int lookup_node(struct mm_struct *mm, unsigned long addr)
701 {
702 struct page *p;
703 int err;
704
705 err = get_user_pages(current, mm, addr & PAGE_MASK, 1, 0, 0, &p, NULL);
706 if (err >= 0) {
707 err = page_to_nid(p);
708 put_page(p);
709 }
710 return err;
711 }
712
713 /* Retrieve NUMA policy */
714 static long do_get_mempolicy(int *policy, nodemask_t *nmask,
715 unsigned long addr, unsigned long flags)
716 {
717 int err;
718 struct mm_struct *mm = current->mm;
719 struct vm_area_struct *vma = NULL;
720 struct mempolicy *pol = current->mempolicy;
721
722 if (flags &
723 ~(unsigned long)(MPOL_F_NODE|MPOL_F_ADDR|MPOL_F_MEMS_ALLOWED))
724 return -EINVAL;
725
726 if (flags & MPOL_F_MEMS_ALLOWED) {
727 if (flags & (MPOL_F_NODE|MPOL_F_ADDR))
728 return -EINVAL;
729 *policy = 0; /* just so it's initialized */
730 task_lock(current);
731 *nmask = cpuset_current_mems_allowed;
732 task_unlock(current);
733 return 0;
734 }
735
736 if (flags & MPOL_F_ADDR) {
737 /*
738 * Do NOT fall back to task policy if the
739 * vma/shared policy at addr is NULL. We
740 * want to return MPOL_DEFAULT in this case.
741 */
742 down_read(&mm->mmap_sem);
743 vma = find_vma_intersection(mm, addr, addr+1);
744 if (!vma) {
745 up_read(&mm->mmap_sem);
746 return -EFAULT;
747 }
748 if (vma->vm_ops && vma->vm_ops->get_policy)
749 pol = vma->vm_ops->get_policy(vma, addr);
750 else
751 pol = vma->vm_policy;
752 } else if (addr)
753 return -EINVAL;
754
755 if (!pol)
756 pol = &default_policy; /* indicates default behavior */
757
758 if (flags & MPOL_F_NODE) {
759 if (flags & MPOL_F_ADDR) {
760 err = lookup_node(mm, addr);
761 if (err < 0)
762 goto out;
763 *policy = err;
764 } else if (pol == current->mempolicy &&
765 pol->mode == MPOL_INTERLEAVE) {
766 *policy = current->il_next;
767 } else {
768 err = -EINVAL;
769 goto out;
770 }
771 } else {
772 *policy = pol == &default_policy ? MPOL_DEFAULT :
773 pol->mode;
774 /*
775 * Internal mempolicy flags must be masked off before exposing
776 * the policy to userspace.
777 */
778 *policy |= (pol->flags & MPOL_MODE_FLAGS);
779 }
780
781 if (vma) {
782 up_read(&current->mm->mmap_sem);
783 vma = NULL;
784 }
785
786 err = 0;
787 if (nmask) {
788 task_lock(current);
789 get_policy_nodemask(pol, nmask);
790 task_unlock(current);
791 }
792
793 out:
794 mpol_cond_put(pol);
795 if (vma)
796 up_read(&current->mm->mmap_sem);
797 return err;
798 }
799
800 #ifdef CONFIG_MIGRATION
801 /*
802 * page migration
803 */
804 static void migrate_page_add(struct page *page, struct list_head *pagelist,
805 unsigned long flags)
806 {
807 /*
808 * Avoid migrating a page that is shared with others.
809 */
810 if ((flags & MPOL_MF_MOVE_ALL) || page_mapcount(page) == 1) {
811 if (!isolate_lru_page(page)) {
812 list_add_tail(&page->lru, pagelist);
813 inc_zone_page_state(page, NR_ISOLATED_ANON +
814 page_is_file_cache(page));
815 }
816 }
817 }
818
819 static struct page *new_node_page(struct page *page, unsigned long node, int **x)
820 {
821 return alloc_pages_exact_node(node, GFP_HIGHUSER_MOVABLE, 0);
822 }
823
824 /*
825 * Migrate pages from one node to a target node.
826 * Returns error or the number of pages not migrated.
827 */
828 static int migrate_to_node(struct mm_struct *mm, int source, int dest,
829 int flags)
830 {
831 nodemask_t nmask;
832 LIST_HEAD(pagelist);
833 int err = 0;
834
835 nodes_clear(nmask);
836 node_set(source, nmask);
837
838 check_range(mm, mm->mmap->vm_start, TASK_SIZE, &nmask,
839 flags | MPOL_MF_DISCONTIG_OK, &pagelist);
840
841 if (!list_empty(&pagelist))
842 err = migrate_pages(&pagelist, new_node_page, dest);
843
844 return err;
845 }
846
847 /*
848 * Move pages between the two nodesets so as to preserve the physical
849 * layout as much as possible.
850 *
851 * Returns the number of page that could not be moved.
852 */
853 int do_migrate_pages(struct mm_struct *mm,
854 const nodemask_t *from_nodes, const nodemask_t *to_nodes, int flags)
855 {
856 int busy = 0;
857 int err;
858 nodemask_t tmp;
859
860 err = migrate_prep();
861 if (err)
862 return err;
863
864 down_read(&mm->mmap_sem);
865
866 err = migrate_vmas(mm, from_nodes, to_nodes, flags);
867 if (err)
868 goto out;
869
870 /*
871 * Find a 'source' bit set in 'tmp' whose corresponding 'dest'
872 * bit in 'to' is not also set in 'tmp'. Clear the found 'source'
873 * bit in 'tmp', and return that <source, dest> pair for migration.
874 * The pair of nodemasks 'to' and 'from' define the map.
875 *
876 * If no pair of bits is found that way, fallback to picking some
877 * pair of 'source' and 'dest' bits that are not the same. If the
878 * 'source' and 'dest' bits are the same, this represents a node
879 * that will be migrating to itself, so no pages need move.
880 *
881 * If no bits are left in 'tmp', or if all remaining bits left
882 * in 'tmp' correspond to the same bit in 'to', return false
883 * (nothing left to migrate).
884 *
885 * This lets us pick a pair of nodes to migrate between, such that
886 * if possible the dest node is not already occupied by some other
887 * source node, minimizing the risk of overloading the memory on a
888 * node that would happen if we migrated incoming memory to a node
889 * before migrating outgoing memory source that same node.
890 *
891 * A single scan of tmp is sufficient. As we go, we remember the
892 * most recent <s, d> pair that moved (s != d). If we find a pair
893 * that not only moved, but what's better, moved to an empty slot
894 * (d is not set in tmp), then we break out then, with that pair.
895 * Otherwise when we finish scannng from_tmp, we at least have the
896 * most recent <s, d> pair that moved. If we get all the way through
897 * the scan of tmp without finding any node that moved, much less
898 * moved to an empty node, then there is nothing left worth migrating.
899 */
900
901 tmp = *from_nodes;
902 while (!nodes_empty(tmp)) {
903 int s,d;
904 int source = -1;
905 int dest = 0;
906
907 for_each_node_mask(s, tmp) {
908 d = node_remap(s, *from_nodes, *to_nodes);
909 if (s == d)
910 continue;
911
912 source = s; /* Node moved. Memorize */
913 dest = d;
914
915 /* dest not in remaining from nodes? */
916 if (!node_isset(dest, tmp))
917 break;
918 }
919 if (source == -1)
920 break;
921
922 node_clear(source, tmp);
923 err = migrate_to_node(mm, source, dest, flags);
924 if (err > 0)
925 busy += err;
926 if (err < 0)
927 break;
928 }
929 out:
930 up_read(&mm->mmap_sem);
931 if (err < 0)
932 return err;
933 return busy;
934
935 }
936
937 /*
938 * Allocate a new page for page migration based on vma policy.
939 * Start assuming that page is mapped by vma pointed to by @private.
940 * Search forward from there, if not. N.B., this assumes that the
941 * list of pages handed to migrate_pages()--which is how we get here--
942 * is in virtual address order.
943 */
944 static struct page *new_vma_page(struct page *page, unsigned long private, int **x)
945 {
946 struct vm_area_struct *vma = (struct vm_area_struct *)private;
947 unsigned long uninitialized_var(address);
948
949 while (vma) {
950 address = page_address_in_vma(page, vma);
951 if (address != -EFAULT)
952 break;
953 vma = vma->vm_next;
954 }
955
956 /*
957 * if !vma, alloc_page_vma() will use task or system default policy
958 */
959 return alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
960 }
961 #else
962
963 static void migrate_page_add(struct page *page, struct list_head *pagelist,
964 unsigned long flags)
965 {
966 }
967
968 int do_migrate_pages(struct mm_struct *mm,
969 const nodemask_t *from_nodes, const nodemask_t *to_nodes, int flags)
970 {
971 return -ENOSYS;
972 }
973
974 static struct page *new_vma_page(struct page *page, unsigned long private, int **x)
975 {
976 return NULL;
977 }
978 #endif
979
980 static long do_mbind(unsigned long start, unsigned long len,
981 unsigned short mode, unsigned short mode_flags,
982 nodemask_t *nmask, unsigned long flags)
983 {
984 struct vm_area_struct *vma;
985 struct mm_struct *mm = current->mm;
986 struct mempolicy *new;
987 unsigned long end;
988 int err;
989 LIST_HEAD(pagelist);
990
991 if (flags & ~(unsigned long)(MPOL_MF_STRICT |
992 MPOL_MF_MOVE | MPOL_MF_MOVE_ALL))
993 return -EINVAL;
994 if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
995 return -EPERM;
996
997 if (start & ~PAGE_MASK)
998 return -EINVAL;
999
1000 if (mode == MPOL_DEFAULT)
1001 flags &= ~MPOL_MF_STRICT;
1002
1003 len = (len + PAGE_SIZE - 1) & PAGE_MASK;
1004 end = start + len;
1005
1006 if (end < start)
1007 return -EINVAL;
1008 if (end == start)
1009 return 0;
1010
1011 new = mpol_new(mode, mode_flags, nmask);
1012 if (IS_ERR(new))
1013 return PTR_ERR(new);
1014
1015 /*
1016 * If we are using the default policy then operation
1017 * on discontinuous address spaces is okay after all
1018 */
1019 if (!new)
1020 flags |= MPOL_MF_DISCONTIG_OK;
1021
1022 pr_debug("mbind %lx-%lx mode:%d flags:%d nodes:%lx\n",
1023 start, start + len, mode, mode_flags,
1024 nmask ? nodes_addr(*nmask)[0] : -1);
1025
1026 if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) {
1027
1028 err = migrate_prep();
1029 if (err)
1030 goto mpol_out;
1031 }
1032 {
1033 NODEMASK_SCRATCH(scratch);
1034 if (scratch) {
1035 down_write(&mm->mmap_sem);
1036 task_lock(current);
1037 err = mpol_set_nodemask(new, nmask, scratch);
1038 task_unlock(current);
1039 if (err)
1040 up_write(&mm->mmap_sem);
1041 } else
1042 err = -ENOMEM;
1043 NODEMASK_SCRATCH_FREE(scratch);
1044 }
1045 if (err)
1046 goto mpol_out;
1047
1048 vma = check_range(mm, start, end, nmask,
1049 flags | MPOL_MF_INVERT, &pagelist);
1050
1051 err = PTR_ERR(vma);
1052 if (!IS_ERR(vma)) {
1053 int nr_failed = 0;
1054
1055 err = mbind_range(vma, start, end, new);
1056
1057 if (!list_empty(&pagelist))
1058 nr_failed = migrate_pages(&pagelist, new_vma_page,
1059 (unsigned long)vma);
1060
1061 if (!err && nr_failed && (flags & MPOL_MF_STRICT))
1062 err = -EIO;
1063 } else
1064 putback_lru_pages(&pagelist);
1065
1066 up_write(&mm->mmap_sem);
1067 mpol_out:
1068 mpol_put(new);
1069 return err;
1070 }
1071
1072 /*
1073 * User space interface with variable sized bitmaps for nodelists.
1074 */
1075
1076 /* Copy a node mask from user space. */
1077 static int get_nodes(nodemask_t *nodes, const unsigned long __user *nmask,
1078 unsigned long maxnode)
1079 {
1080 unsigned long k;
1081 unsigned long nlongs;
1082 unsigned long endmask;
1083
1084 --maxnode;
1085 nodes_clear(*nodes);
1086 if (maxnode == 0 || !nmask)
1087 return 0;
1088 if (maxnode > PAGE_SIZE*BITS_PER_BYTE)
1089 return -EINVAL;
1090
1091 nlongs = BITS_TO_LONGS(maxnode);
1092 if ((maxnode % BITS_PER_LONG) == 0)
1093 endmask = ~0UL;
1094 else
1095 endmask = (1UL << (maxnode % BITS_PER_LONG)) - 1;
1096
1097 /* When the user specified more nodes than supported just check
1098 if the non supported part is all zero. */
1099 if (nlongs > BITS_TO_LONGS(MAX_NUMNODES)) {
1100 if (nlongs > PAGE_SIZE/sizeof(long))
1101 return -EINVAL;
1102 for (k = BITS_TO_LONGS(MAX_NUMNODES); k < nlongs; k++) {
1103 unsigned long t;
1104 if (get_user(t, nmask + k))
1105 return -EFAULT;
1106 if (k == nlongs - 1) {
1107 if (t & endmask)
1108 return -EINVAL;
1109 } else if (t)
1110 return -EINVAL;
1111 }
1112 nlongs = BITS_TO_LONGS(MAX_NUMNODES);
1113 endmask = ~0UL;
1114 }
1115
1116 if (copy_from_user(nodes_addr(*nodes), nmask, nlongs*sizeof(unsigned long)))
1117 return -EFAULT;
1118 nodes_addr(*nodes)[nlongs-1] &= endmask;
1119 return 0;
1120 }
1121
1122 /* Copy a kernel node mask to user space */
1123 static int copy_nodes_to_user(unsigned long __user *mask, unsigned long maxnode,
1124 nodemask_t *nodes)
1125 {
1126 unsigned long copy = ALIGN(maxnode-1, 64) / 8;
1127 const int nbytes = BITS_TO_LONGS(MAX_NUMNODES) * sizeof(long);
1128
1129 if (copy > nbytes) {
1130 if (copy > PAGE_SIZE)
1131 return -EINVAL;
1132 if (clear_user((char __user *)mask + nbytes, copy - nbytes))
1133 return -EFAULT;
1134 copy = nbytes;
1135 }
1136 return copy_to_user(mask, nodes_addr(*nodes), copy) ? -EFAULT : 0;
1137 }
1138
1139 SYSCALL_DEFINE6(mbind, unsigned long, start, unsigned long, len,
1140 unsigned long, mode, unsigned long __user *, nmask,
1141 unsigned long, maxnode, unsigned, flags)
1142 {
1143 nodemask_t nodes;
1144 int err;
1145 unsigned short mode_flags;
1146
1147 mode_flags = mode & MPOL_MODE_FLAGS;
1148 mode &= ~MPOL_MODE_FLAGS;
1149 if (mode >= MPOL_MAX)
1150 return -EINVAL;
1151 if ((mode_flags & MPOL_F_STATIC_NODES) &&
1152 (mode_flags & MPOL_F_RELATIVE_NODES))
1153 return -EINVAL;
1154 err = get_nodes(&nodes, nmask, maxnode);
1155 if (err)
1156 return err;
1157 return do_mbind(start, len, mode, mode_flags, &nodes, flags);
1158 }
1159
1160 /* Set the process memory policy */
1161 SYSCALL_DEFINE3(set_mempolicy, int, mode, unsigned long __user *, nmask,
1162 unsigned long, maxnode)
1163 {
1164 int err;
1165 nodemask_t nodes;
1166 unsigned short flags;
1167
1168 flags = mode & MPOL_MODE_FLAGS;
1169 mode &= ~MPOL_MODE_FLAGS;
1170 if ((unsigned int)mode >= MPOL_MAX)
1171 return -EINVAL;
1172 if ((flags & MPOL_F_STATIC_NODES) && (flags & MPOL_F_RELATIVE_NODES))
1173 return -EINVAL;
1174 err = get_nodes(&nodes, nmask, maxnode);
1175 if (err)
1176 return err;
1177 return do_set_mempolicy(mode, flags, &nodes);
1178 }
1179
1180 SYSCALL_DEFINE4(migrate_pages, pid_t, pid, unsigned long, maxnode,
1181 const unsigned long __user *, old_nodes,
1182 const unsigned long __user *, new_nodes)
1183 {
1184 const struct cred *cred = current_cred(), *tcred;
1185 struct mm_struct *mm;
1186 struct task_struct *task;
1187 nodemask_t old;
1188 nodemask_t new;
1189 nodemask_t task_nodes;
1190 int err;
1191
1192 err = get_nodes(&old, old_nodes, maxnode);
1193 if (err)
1194 return err;
1195
1196 err = get_nodes(&new, new_nodes, maxnode);
1197 if (err)
1198 return err;
1199
1200 /* Find the mm_struct */
1201 read_lock(&tasklist_lock);
1202 task = pid ? find_task_by_vpid(pid) : current;
1203 if (!task) {
1204 read_unlock(&tasklist_lock);
1205 return -ESRCH;
1206 }
1207 mm = get_task_mm(task);
1208 read_unlock(&tasklist_lock);
1209
1210 if (!mm)
1211 return -EINVAL;
1212
1213 /*
1214 * Check if this process has the right to modify the specified
1215 * process. The right exists if the process has administrative
1216 * capabilities, superuser privileges or the same
1217 * userid as the target process.
1218 */
1219 rcu_read_lock();
1220 tcred = __task_cred(task);
1221 if (cred->euid != tcred->suid && cred->euid != tcred->uid &&
1222 cred->uid != tcred->suid && cred->uid != tcred->uid &&
1223 !capable(CAP_SYS_NICE)) {
1224 rcu_read_unlock();
1225 err = -EPERM;
1226 goto out;
1227 }
1228 rcu_read_unlock();
1229
1230 task_nodes = cpuset_mems_allowed(task);
1231 /* Is the user allowed to access the target nodes? */
1232 if (!nodes_subset(new, task_nodes) && !capable(CAP_SYS_NICE)) {
1233 err = -EPERM;
1234 goto out;
1235 }
1236
1237 if (!nodes_subset(new, node_states[N_HIGH_MEMORY])) {
1238 err = -EINVAL;
1239 goto out;
1240 }
1241
1242 err = security_task_movememory(task);
1243 if (err)
1244 goto out;
1245
1246 err = do_migrate_pages(mm, &old, &new,
1247 capable(CAP_SYS_NICE) ? MPOL_MF_MOVE_ALL : MPOL_MF_MOVE);
1248 out:
1249 mmput(mm);
1250 return err;
1251 }
1252
1253
1254 /* Retrieve NUMA policy */
1255 SYSCALL_DEFINE5(get_mempolicy, int __user *, policy,
1256 unsigned long __user *, nmask, unsigned long, maxnode,
1257 unsigned long, addr, unsigned long, flags)
1258 {
1259 int err;
1260 int uninitialized_var(pval);
1261 nodemask_t nodes;
1262
1263 if (nmask != NULL && maxnode < MAX_NUMNODES)
1264 return -EINVAL;
1265
1266 err = do_get_mempolicy(&pval, &nodes, addr, flags);
1267
1268 if (err)
1269 return err;
1270
1271 if (policy && put_user(pval, policy))
1272 return -EFAULT;
1273
1274 if (nmask)
1275 err = copy_nodes_to_user(nmask, maxnode, &nodes);
1276
1277 return err;
1278 }
1279
1280 #ifdef CONFIG_COMPAT
1281
1282 asmlinkage long compat_sys_get_mempolicy(int __user *policy,
1283 compat_ulong_t __user *nmask,
1284 compat_ulong_t maxnode,
1285 compat_ulong_t addr, compat_ulong_t flags)
1286 {
1287 long err;
1288 unsigned long __user *nm = NULL;
1289 unsigned long nr_bits, alloc_size;
1290 DECLARE_BITMAP(bm, MAX_NUMNODES);
1291
1292 nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1293 alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1294
1295 if (nmask)
1296 nm = compat_alloc_user_space(alloc_size);
1297
1298 err = sys_get_mempolicy(policy, nm, nr_bits+1, addr, flags);
1299
1300 if (!err && nmask) {
1301 err = copy_from_user(bm, nm, alloc_size);
1302 /* ensure entire bitmap is zeroed */
1303 err |= clear_user(nmask, ALIGN(maxnode-1, 8) / 8);
1304 err |= compat_put_bitmap(nmask, bm, nr_bits);
1305 }
1306
1307 return err;
1308 }
1309
1310 asmlinkage long compat_sys_set_mempolicy(int mode, compat_ulong_t __user *nmask,
1311 compat_ulong_t maxnode)
1312 {
1313 long err = 0;
1314 unsigned long __user *nm = NULL;
1315 unsigned long nr_bits, alloc_size;
1316 DECLARE_BITMAP(bm, MAX_NUMNODES);
1317
1318 nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1319 alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1320
1321 if (nmask) {
1322 err = compat_get_bitmap(bm, nmask, nr_bits);
1323 nm = compat_alloc_user_space(alloc_size);
1324 err |= copy_to_user(nm, bm, alloc_size);
1325 }
1326
1327 if (err)
1328 return -EFAULT;
1329
1330 return sys_set_mempolicy(mode, nm, nr_bits+1);
1331 }
1332
1333 asmlinkage long compat_sys_mbind(compat_ulong_t start, compat_ulong_t len,
1334 compat_ulong_t mode, compat_ulong_t __user *nmask,
1335 compat_ulong_t maxnode, compat_ulong_t flags)
1336 {
1337 long err = 0;
1338 unsigned long __user *nm = NULL;
1339 unsigned long nr_bits, alloc_size;
1340 nodemask_t bm;
1341
1342 nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1343 alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1344
1345 if (nmask) {
1346 err = compat_get_bitmap(nodes_addr(bm), nmask, nr_bits);
1347 nm = compat_alloc_user_space(alloc_size);
1348 err |= copy_to_user(nm, nodes_addr(bm), alloc_size);
1349 }
1350
1351 if (err)
1352 return -EFAULT;
1353
1354 return sys_mbind(start, len, mode, nm, nr_bits+1, flags);
1355 }
1356
1357 #endif
1358
1359 /*
1360 * get_vma_policy(@task, @vma, @addr)
1361 * @task - task for fallback if vma policy == default
1362 * @vma - virtual memory area whose policy is sought
1363 * @addr - address in @vma for shared policy lookup
1364 *
1365 * Returns effective policy for a VMA at specified address.
1366 * Falls back to @task or system default policy, as necessary.
1367 * Current or other task's task mempolicy and non-shared vma policies
1368 * are protected by the task's mmap_sem, which must be held for read by
1369 * the caller.
1370 * Shared policies [those marked as MPOL_F_SHARED] require an extra reference
1371 * count--added by the get_policy() vm_op, as appropriate--to protect against
1372 * freeing by another task. It is the caller's responsibility to free the
1373 * extra reference for shared policies.
1374 */
1375 static struct mempolicy *get_vma_policy(struct task_struct *task,
1376 struct vm_area_struct *vma, unsigned long addr)
1377 {
1378 struct mempolicy *pol = task->mempolicy;
1379
1380 if (vma) {
1381 if (vma->vm_ops && vma->vm_ops->get_policy) {
1382 struct mempolicy *vpol = vma->vm_ops->get_policy(vma,
1383 addr);
1384 if (vpol)
1385 pol = vpol;
1386 } else if (vma->vm_policy)
1387 pol = vma->vm_policy;
1388 }
1389 if (!pol)
1390 pol = &default_policy;
1391 return pol;
1392 }
1393
1394 /*
1395 * Return a nodemask representing a mempolicy for filtering nodes for
1396 * page allocation
1397 */
1398 static nodemask_t *policy_nodemask(gfp_t gfp, struct mempolicy *policy)
1399 {
1400 /* Lower zones don't get a nodemask applied for MPOL_BIND */
1401 if (unlikely(policy->mode == MPOL_BIND) &&
1402 gfp_zone(gfp) >= policy_zone &&
1403 cpuset_nodemask_valid_mems_allowed(&policy->v.nodes))
1404 return &policy->v.nodes;
1405
1406 return NULL;
1407 }
1408
1409 /* Return a zonelist indicated by gfp for node representing a mempolicy */
1410 static struct zonelist *policy_zonelist(gfp_t gfp, struct mempolicy *policy)
1411 {
1412 int nd = numa_node_id();
1413
1414 switch (policy->mode) {
1415 case MPOL_PREFERRED:
1416 if (!(policy->flags & MPOL_F_LOCAL))
1417 nd = policy->v.preferred_node;
1418 break;
1419 case MPOL_BIND:
1420 /*
1421 * Normally, MPOL_BIND allocations are node-local within the
1422 * allowed nodemask. However, if __GFP_THISNODE is set and the
1423 * current node is part of the mask, we use the zonelist for
1424 * the first node in the mask instead.
1425 */
1426 if (unlikely(gfp & __GFP_THISNODE) &&
1427 unlikely(!node_isset(nd, policy->v.nodes)))
1428 nd = first_node(policy->v.nodes);
1429 break;
1430 case MPOL_INTERLEAVE: /* should not happen */
1431 break;
1432 default:
1433 BUG();
1434 }
1435 return node_zonelist(nd, gfp);
1436 }
1437
1438 /* Do dynamic interleaving for a process */
1439 static unsigned interleave_nodes(struct mempolicy *policy)
1440 {
1441 unsigned nid, next;
1442 struct task_struct *me = current;
1443
1444 nid = me->il_next;
1445 next = next_node(nid, policy->v.nodes);
1446 if (next >= MAX_NUMNODES)
1447 next = first_node(policy->v.nodes);
1448 if (next < MAX_NUMNODES)
1449 me->il_next = next;
1450 return nid;
1451 }
1452
1453 /*
1454 * Depending on the memory policy provide a node from which to allocate the
1455 * next slab entry.
1456 * @policy must be protected by freeing by the caller. If @policy is
1457 * the current task's mempolicy, this protection is implicit, as only the
1458 * task can change it's policy. The system default policy requires no
1459 * such protection.
1460 */
1461 unsigned slab_node(struct mempolicy *policy)
1462 {
1463 if (!policy || policy->flags & MPOL_F_LOCAL)
1464 return numa_node_id();
1465
1466 switch (policy->mode) {
1467 case MPOL_PREFERRED:
1468 /*
1469 * handled MPOL_F_LOCAL above
1470 */
1471 return policy->v.preferred_node;
1472
1473 case MPOL_INTERLEAVE:
1474 return interleave_nodes(policy);
1475
1476 case MPOL_BIND: {
1477 /*
1478 * Follow bind policy behavior and start allocation at the
1479 * first node.
1480 */
1481 struct zonelist *zonelist;
1482 struct zone *zone;
1483 enum zone_type highest_zoneidx = gfp_zone(GFP_KERNEL);
1484 zonelist = &NODE_DATA(numa_node_id())->node_zonelists[0];
1485 (void)first_zones_zonelist(zonelist, highest_zoneidx,
1486 &policy->v.nodes,
1487 &zone);
1488 return zone->node;
1489 }
1490
1491 default:
1492 BUG();
1493 }
1494 }
1495
1496 /* Do static interleaving for a VMA with known offset. */
1497 static unsigned offset_il_node(struct mempolicy *pol,
1498 struct vm_area_struct *vma, unsigned long off)
1499 {
1500 unsigned nnodes = nodes_weight(pol->v.nodes);
1501 unsigned target;
1502 int c;
1503 int nid = -1;
1504
1505 if (!nnodes)
1506 return numa_node_id();
1507 target = (unsigned int)off % nnodes;
1508 c = 0;
1509 do {
1510 nid = next_node(nid, pol->v.nodes);
1511 c++;
1512 } while (c <= target);
1513 return nid;
1514 }
1515
1516 /* Determine a node number for interleave */
1517 static inline unsigned interleave_nid(struct mempolicy *pol,
1518 struct vm_area_struct *vma, unsigned long addr, int shift)
1519 {
1520 if (vma) {
1521 unsigned long off;
1522
1523 /*
1524 * for small pages, there is no difference between
1525 * shift and PAGE_SHIFT, so the bit-shift is safe.
1526 * for huge pages, since vm_pgoff is in units of small
1527 * pages, we need to shift off the always 0 bits to get
1528 * a useful offset.
1529 */
1530 BUG_ON(shift < PAGE_SHIFT);
1531 off = vma->vm_pgoff >> (shift - PAGE_SHIFT);
1532 off += (addr - vma->vm_start) >> shift;
1533 return offset_il_node(pol, vma, off);
1534 } else
1535 return interleave_nodes(pol);
1536 }
1537
1538 #ifdef CONFIG_HUGETLBFS
1539 /*
1540 * huge_zonelist(@vma, @addr, @gfp_flags, @mpol)
1541 * @vma = virtual memory area whose policy is sought
1542 * @addr = address in @vma for shared policy lookup and interleave policy
1543 * @gfp_flags = for requested zone
1544 * @mpol = pointer to mempolicy pointer for reference counted mempolicy
1545 * @nodemask = pointer to nodemask pointer for MPOL_BIND nodemask
1546 *
1547 * Returns a zonelist suitable for a huge page allocation and a pointer
1548 * to the struct mempolicy for conditional unref after allocation.
1549 * If the effective policy is 'BIND, returns a pointer to the mempolicy's
1550 * @nodemask for filtering the zonelist.
1551 */
1552 struct zonelist *huge_zonelist(struct vm_area_struct *vma, unsigned long addr,
1553 gfp_t gfp_flags, struct mempolicy **mpol,
1554 nodemask_t **nodemask)
1555 {
1556 struct zonelist *zl;
1557
1558 *mpol = get_vma_policy(current, vma, addr);
1559 *nodemask = NULL; /* assume !MPOL_BIND */
1560
1561 if (unlikely((*mpol)->mode == MPOL_INTERLEAVE)) {
1562 zl = node_zonelist(interleave_nid(*mpol, vma, addr,
1563 huge_page_shift(hstate_vma(vma))), gfp_flags);
1564 } else {
1565 zl = policy_zonelist(gfp_flags, *mpol);
1566 if ((*mpol)->mode == MPOL_BIND)
1567 *nodemask = &(*mpol)->v.nodes;
1568 }
1569 return zl;
1570 }
1571
1572 /*
1573 * init_nodemask_of_mempolicy
1574 *
1575 * If the current task's mempolicy is "default" [NULL], return 'false'
1576 * to indicate default policy. Otherwise, extract the policy nodemask
1577 * for 'bind' or 'interleave' policy into the argument nodemask, or
1578 * initialize the argument nodemask to contain the single node for
1579 * 'preferred' or 'local' policy and return 'true' to indicate presence
1580 * of non-default mempolicy.
1581 *
1582 * We don't bother with reference counting the mempolicy [mpol_get/put]
1583 * because the current task is examining it's own mempolicy and a task's
1584 * mempolicy is only ever changed by the task itself.
1585 *
1586 * N.B., it is the caller's responsibility to free a returned nodemask.
1587 */
1588 bool init_nodemask_of_mempolicy(nodemask_t *mask)
1589 {
1590 struct mempolicy *mempolicy;
1591 int nid;
1592
1593 if (!(mask && current->mempolicy))
1594 return false;
1595
1596 mempolicy = current->mempolicy;
1597 switch (mempolicy->mode) {
1598 case MPOL_PREFERRED:
1599 if (mempolicy->flags & MPOL_F_LOCAL)
1600 nid = numa_node_id();
1601 else
1602 nid = mempolicy->v.preferred_node;
1603 init_nodemask_of_node(mask, nid);
1604 break;
1605
1606 case MPOL_BIND:
1607 /* Fall through */
1608 case MPOL_INTERLEAVE:
1609 *mask = mempolicy->v.nodes;
1610 break;
1611
1612 default:
1613 BUG();
1614 }
1615
1616 return true;
1617 }
1618 #endif
1619
1620 /* Allocate a page in interleaved policy.
1621 Own path because it needs to do special accounting. */
1622 static struct page *alloc_page_interleave(gfp_t gfp, unsigned order,
1623 unsigned nid)
1624 {
1625 struct zonelist *zl;
1626 struct page *page;
1627
1628 zl = node_zonelist(nid, gfp);
1629 page = __alloc_pages(gfp, order, zl);
1630 if (page && page_zone(page) == zonelist_zone(&zl->_zonerefs[0]))
1631 inc_zone_page_state(page, NUMA_INTERLEAVE_HIT);
1632 return page;
1633 }
1634
1635 /**
1636 * alloc_page_vma - Allocate a page for a VMA.
1637 *
1638 * @gfp:
1639 * %GFP_USER user allocation.
1640 * %GFP_KERNEL kernel allocations,
1641 * %GFP_HIGHMEM highmem/user allocations,
1642 * %GFP_FS allocation should not call back into a file system.
1643 * %GFP_ATOMIC don't sleep.
1644 *
1645 * @vma: Pointer to VMA or NULL if not available.
1646 * @addr: Virtual Address of the allocation. Must be inside the VMA.
1647 *
1648 * This function allocates a page from the kernel page pool and applies
1649 * a NUMA policy associated with the VMA or the current process.
1650 * When VMA is not NULL caller must hold down_read on the mmap_sem of the
1651 * mm_struct of the VMA to prevent it from going away. Should be used for
1652 * all allocations for pages that will be mapped into
1653 * user space. Returns NULL when no page can be allocated.
1654 *
1655 * Should be called with the mm_sem of the vma hold.
1656 */
1657 struct page *
1658 alloc_page_vma(gfp_t gfp, struct vm_area_struct *vma, unsigned long addr)
1659 {
1660 struct mempolicy *pol = get_vma_policy(current, vma, addr);
1661 struct zonelist *zl;
1662
1663 if (unlikely(pol->mode == MPOL_INTERLEAVE)) {
1664 unsigned nid;
1665
1666 nid = interleave_nid(pol, vma, addr, PAGE_SHIFT);
1667 mpol_cond_put(pol);
1668 return alloc_page_interleave(gfp, 0, nid);
1669 }
1670 zl = policy_zonelist(gfp, pol);
1671 if (unlikely(mpol_needs_cond_ref(pol))) {
1672 /*
1673 * slow path: ref counted shared policy
1674 */
1675 struct page *page = __alloc_pages_nodemask(gfp, 0,
1676 zl, policy_nodemask(gfp, pol));
1677 __mpol_put(pol);
1678 return page;
1679 }
1680 /*
1681 * fast path: default or task policy
1682 */
1683 return __alloc_pages_nodemask(gfp, 0, zl, policy_nodemask(gfp, pol));
1684 }
1685
1686 /**
1687 * alloc_pages_current - Allocate pages.
1688 *
1689 * @gfp:
1690 * %GFP_USER user allocation,
1691 * %GFP_KERNEL kernel allocation,
1692 * %GFP_HIGHMEM highmem allocation,
1693 * %GFP_FS don't call back into a file system.
1694 * %GFP_ATOMIC don't sleep.
1695 * @order: Power of two of allocation size in pages. 0 is a single page.
1696 *
1697 * Allocate a page from the kernel page pool. When not in
1698 * interrupt context and apply the current process NUMA policy.
1699 * Returns NULL when no page can be allocated.
1700 *
1701 * Don't call cpuset_update_task_memory_state() unless
1702 * 1) it's ok to take cpuset_sem (can WAIT), and
1703 * 2) allocating for current task (not interrupt).
1704 */
1705 struct page *alloc_pages_current(gfp_t gfp, unsigned order)
1706 {
1707 struct mempolicy *pol = current->mempolicy;
1708
1709 if (!pol || in_interrupt() || (gfp & __GFP_THISNODE))
1710 pol = &default_policy;
1711
1712 /*
1713 * No reference counting needed for current->mempolicy
1714 * nor system default_policy
1715 */
1716 if (pol->mode == MPOL_INTERLEAVE)
1717 return alloc_page_interleave(gfp, order, interleave_nodes(pol));
1718 return __alloc_pages_nodemask(gfp, order,
1719 policy_zonelist(gfp, pol), policy_nodemask(gfp, pol));
1720 }
1721 EXPORT_SYMBOL(alloc_pages_current);
1722
1723 /*
1724 * If mpol_dup() sees current->cpuset == cpuset_being_rebound, then it
1725 * rebinds the mempolicy its copying by calling mpol_rebind_policy()
1726 * with the mems_allowed returned by cpuset_mems_allowed(). This
1727 * keeps mempolicies cpuset relative after its cpuset moves. See
1728 * further kernel/cpuset.c update_nodemask().
1729 */
1730
1731 /* Slow path of a mempolicy duplicate */
1732 struct mempolicy *__mpol_dup(struct mempolicy *old)
1733 {
1734 struct mempolicy *new = kmem_cache_alloc(policy_cache, GFP_KERNEL);
1735
1736 if (!new)
1737 return ERR_PTR(-ENOMEM);
1738 if (current_cpuset_is_being_rebound()) {
1739 nodemask_t mems = cpuset_mems_allowed(current);
1740 mpol_rebind_policy(old, &mems);
1741 }
1742 *new = *old;
1743 atomic_set(&new->refcnt, 1);
1744 return new;
1745 }
1746
1747 /*
1748 * If *frompol needs [has] an extra ref, copy *frompol to *tompol ,
1749 * eliminate the * MPOL_F_* flags that require conditional ref and
1750 * [NOTE!!!] drop the extra ref. Not safe to reference *frompol directly
1751 * after return. Use the returned value.
1752 *
1753 * Allows use of a mempolicy for, e.g., multiple allocations with a single
1754 * policy lookup, even if the policy needs/has extra ref on lookup.
1755 * shmem_readahead needs this.
1756 */
1757 struct mempolicy *__mpol_cond_copy(struct mempolicy *tompol,
1758 struct mempolicy *frompol)
1759 {
1760 if (!mpol_needs_cond_ref(frompol))
1761 return frompol;
1762
1763 *tompol = *frompol;
1764 tompol->flags &= ~MPOL_F_SHARED; /* copy doesn't need unref */
1765 __mpol_put(frompol);
1766 return tompol;
1767 }
1768
1769 static int mpol_match_intent(const struct mempolicy *a,
1770 const struct mempolicy *b)
1771 {
1772 if (a->flags != b->flags)
1773 return 0;
1774 if (!mpol_store_user_nodemask(a))
1775 return 1;
1776 return nodes_equal(a->w.user_nodemask, b->w.user_nodemask);
1777 }
1778
1779 /* Slow path of a mempolicy comparison */
1780 int __mpol_equal(struct mempolicy *a, struct mempolicy *b)
1781 {
1782 if (!a || !b)
1783 return 0;
1784 if (a->mode != b->mode)
1785 return 0;
1786 if (a->mode != MPOL_DEFAULT && !mpol_match_intent(a, b))
1787 return 0;
1788 switch (a->mode) {
1789 case MPOL_BIND:
1790 /* Fall through */
1791 case MPOL_INTERLEAVE:
1792 return nodes_equal(a->v.nodes, b->v.nodes);
1793 case MPOL_PREFERRED:
1794 return a->v.preferred_node == b->v.preferred_node &&
1795 a->flags == b->flags;
1796 default:
1797 BUG();
1798 return 0;
1799 }
1800 }
1801
1802 /*
1803 * Shared memory backing store policy support.
1804 *
1805 * Remember policies even when nobody has shared memory mapped.
1806 * The policies are kept in Red-Black tree linked from the inode.
1807 * They are protected by the sp->lock spinlock, which should be held
1808 * for any accesses to the tree.
1809 */
1810
1811 /* lookup first element intersecting start-end */
1812 /* Caller holds sp->lock */
1813 static struct sp_node *
1814 sp_lookup(struct shared_policy *sp, unsigned long start, unsigned long end)
1815 {
1816 struct rb_node *n = sp->root.rb_node;
1817
1818 while (n) {
1819 struct sp_node *p = rb_entry(n, struct sp_node, nd);
1820
1821 if (start >= p->end)
1822 n = n->rb_right;
1823 else if (end <= p->start)
1824 n = n->rb_left;
1825 else
1826 break;
1827 }
1828 if (!n)
1829 return NULL;
1830 for (;;) {
1831 struct sp_node *w = NULL;
1832 struct rb_node *prev = rb_prev(n);
1833 if (!prev)
1834 break;
1835 w = rb_entry(prev, struct sp_node, nd);
1836 if (w->end <= start)
1837 break;
1838 n = prev;
1839 }
1840 return rb_entry(n, struct sp_node, nd);
1841 }
1842
1843 /* Insert a new shared policy into the list. */
1844 /* Caller holds sp->lock */
1845 static void sp_insert(struct shared_policy *sp, struct sp_node *new)
1846 {
1847 struct rb_node **p = &sp->root.rb_node;
1848 struct rb_node *parent = NULL;
1849 struct sp_node *nd;
1850
1851 while (*p) {
1852 parent = *p;
1853 nd = rb_entry(parent, struct sp_node, nd);
1854 if (new->start < nd->start)
1855 p = &(*p)->rb_left;
1856 else if (new->end > nd->end)
1857 p = &(*p)->rb_right;
1858 else
1859 BUG();
1860 }
1861 rb_link_node(&new->nd, parent, p);
1862 rb_insert_color(&new->nd, &sp->root);
1863 pr_debug("inserting %lx-%lx: %d\n", new->start, new->end,
1864 new->policy ? new->policy->mode : 0);
1865 }
1866
1867 /* Find shared policy intersecting idx */
1868 struct mempolicy *
1869 mpol_shared_policy_lookup(struct shared_policy *sp, unsigned long idx)
1870 {
1871 struct mempolicy *pol = NULL;
1872 struct sp_node *sn;
1873
1874 if (!sp->root.rb_node)
1875 return NULL;
1876 spin_lock(&sp->lock);
1877 sn = sp_lookup(sp, idx, idx+1);
1878 if (sn) {
1879 mpol_get(sn->policy);
1880 pol = sn->policy;
1881 }
1882 spin_unlock(&sp->lock);
1883 return pol;
1884 }
1885
1886 static void sp_delete(struct shared_policy *sp, struct sp_node *n)
1887 {
1888 pr_debug("deleting %lx-l%lx\n", n->start, n->end);
1889 rb_erase(&n->nd, &sp->root);
1890 mpol_put(n->policy);
1891 kmem_cache_free(sn_cache, n);
1892 }
1893
1894 static struct sp_node *sp_alloc(unsigned long start, unsigned long end,
1895 struct mempolicy *pol)
1896 {
1897 struct sp_node *n = kmem_cache_alloc(sn_cache, GFP_KERNEL);
1898
1899 if (!n)
1900 return NULL;
1901 n->start = start;
1902 n->end = end;
1903 mpol_get(pol);
1904 pol->flags |= MPOL_F_SHARED; /* for unref */
1905 n->policy = pol;
1906 return n;
1907 }
1908
1909 /* Replace a policy range. */
1910 static int shared_policy_replace(struct shared_policy *sp, unsigned long start,
1911 unsigned long end, struct sp_node *new)
1912 {
1913 struct sp_node *n, *new2 = NULL;
1914
1915 restart:
1916 spin_lock(&sp->lock);
1917 n = sp_lookup(sp, start, end);
1918 /* Take care of old policies in the same range. */
1919 while (n && n->start < end) {
1920 struct rb_node *next = rb_next(&n->nd);
1921 if (n->start >= start) {
1922 if (n->end <= end)
1923 sp_delete(sp, n);
1924 else
1925 n->start = end;
1926 } else {
1927 /* Old policy spanning whole new range. */
1928 if (n->end > end) {
1929 if (!new2) {
1930 spin_unlock(&sp->lock);
1931 new2 = sp_alloc(end, n->end, n->policy);
1932 if (!new2)
1933 return -ENOMEM;
1934 goto restart;
1935 }
1936 n->end = start;
1937 sp_insert(sp, new2);
1938 new2 = NULL;
1939 break;
1940 } else
1941 n->end = start;
1942 }
1943 if (!next)
1944 break;
1945 n = rb_entry(next, struct sp_node, nd);
1946 }
1947 if (new)
1948 sp_insert(sp, new);
1949 spin_unlock(&sp->lock);
1950 if (new2) {
1951 mpol_put(new2->policy);
1952 kmem_cache_free(sn_cache, new2);
1953 }
1954 return 0;
1955 }
1956
1957 /**
1958 * mpol_shared_policy_init - initialize shared policy for inode
1959 * @sp: pointer to inode shared policy
1960 * @mpol: struct mempolicy to install
1961 *
1962 * Install non-NULL @mpol in inode's shared policy rb-tree.
1963 * On entry, the current task has a reference on a non-NULL @mpol.
1964 * This must be released on exit.
1965 * This is called at get_inode() calls and we can use GFP_KERNEL.
1966 */
1967 void mpol_shared_policy_init(struct shared_policy *sp, struct mempolicy *mpol)
1968 {
1969 int ret;
1970
1971 sp->root = RB_ROOT; /* empty tree == default mempolicy */
1972 spin_lock_init(&sp->lock);
1973
1974 if (mpol) {
1975 struct vm_area_struct pvma;
1976 struct mempolicy *new;
1977 NODEMASK_SCRATCH(scratch);
1978
1979 if (!scratch)
1980 return;
1981 /* contextualize the tmpfs mount point mempolicy */
1982 new = mpol_new(mpol->mode, mpol->flags, &mpol->w.user_nodemask);
1983 if (IS_ERR(new)) {
1984 mpol_put(mpol); /* drop our ref on sb mpol */
1985 NODEMASK_SCRATCH_FREE(scratch);
1986 return; /* no valid nodemask intersection */
1987 }
1988
1989 task_lock(current);
1990 ret = mpol_set_nodemask(new, &mpol->w.user_nodemask, scratch);
1991 task_unlock(current);
1992 mpol_put(mpol); /* drop our ref on sb mpol */
1993 if (ret) {
1994 NODEMASK_SCRATCH_FREE(scratch);
1995 mpol_put(new);
1996 return;
1997 }
1998
1999 /* Create pseudo-vma that contains just the policy */
2000 memset(&pvma, 0, sizeof(struct vm_area_struct));
2001 pvma.vm_end = TASK_SIZE; /* policy covers entire file */
2002 mpol_set_shared_policy(sp, &pvma, new); /* adds ref */
2003 mpol_put(new); /* drop initial ref */
2004 NODEMASK_SCRATCH_FREE(scratch);
2005 }
2006 }
2007
2008 int mpol_set_shared_policy(struct shared_policy *info,
2009 struct vm_area_struct *vma, struct mempolicy *npol)
2010 {
2011 int err;
2012 struct sp_node *new = NULL;
2013 unsigned long sz = vma_pages(vma);
2014
2015 pr_debug("set_shared_policy %lx sz %lu %d %d %lx\n",
2016 vma->vm_pgoff,
2017 sz, npol ? npol->mode : -1,
2018 npol ? npol->flags : -1,
2019 npol ? nodes_addr(npol->v.nodes)[0] : -1);
2020
2021 if (npol) {
2022 new = sp_alloc(vma->vm_pgoff, vma->vm_pgoff + sz, npol);
2023 if (!new)
2024 return -ENOMEM;
2025 }
2026 err = shared_policy_replace(info, vma->vm_pgoff, vma->vm_pgoff+sz, new);
2027 if (err && new)
2028 kmem_cache_free(sn_cache, new);
2029 return err;
2030 }
2031
2032 /* Free a backing policy store on inode delete. */
2033 void mpol_free_shared_policy(struct shared_policy *p)
2034 {
2035 struct sp_node *n;
2036 struct rb_node *next;
2037
2038 if (!p->root.rb_node)
2039 return;
2040 spin_lock(&p->lock);
2041 next = rb_first(&p->root);
2042 while (next) {
2043 n = rb_entry(next, struct sp_node, nd);
2044 next = rb_next(&n->nd);
2045 rb_erase(&n->nd, &p->root);
2046 mpol_put(n->policy);
2047 kmem_cache_free(sn_cache, n);
2048 }
2049 spin_unlock(&p->lock);
2050 }
2051
2052 /* assumes fs == KERNEL_DS */
2053 void __init numa_policy_init(void)
2054 {
2055 nodemask_t interleave_nodes;
2056 unsigned long largest = 0;
2057 int nid, prefer = 0;
2058
2059 policy_cache = kmem_cache_create("numa_policy",
2060 sizeof(struct mempolicy),
2061 0, SLAB_PANIC, NULL);
2062
2063 sn_cache = kmem_cache_create("shared_policy_node",
2064 sizeof(struct sp_node),
2065 0, SLAB_PANIC, NULL);
2066
2067 /*
2068 * Set interleaving policy for system init. Interleaving is only
2069 * enabled across suitably sized nodes (default is >= 16MB), or
2070 * fall back to the largest node if they're all smaller.
2071 */
2072 nodes_clear(interleave_nodes);
2073 for_each_node_state(nid, N_HIGH_MEMORY) {
2074 unsigned long total_pages = node_present_pages(nid);
2075
2076 /* Preserve the largest node */
2077 if (largest < total_pages) {
2078 largest = total_pages;
2079 prefer = nid;
2080 }
2081
2082 /* Interleave this node? */
2083 if ((total_pages << PAGE_SHIFT) >= (16 << 20))
2084 node_set(nid, interleave_nodes);
2085 }
2086
2087 /* All too small, use the largest */
2088 if (unlikely(nodes_empty(interleave_nodes)))
2089 node_set(prefer, interleave_nodes);
2090
2091 if (do_set_mempolicy(MPOL_INTERLEAVE, 0, &interleave_nodes))
2092 printk("numa_policy_init: interleaving failed\n");
2093 }
2094
2095 /* Reset policy of current process to default */
2096 void numa_default_policy(void)
2097 {
2098 do_set_mempolicy(MPOL_DEFAULT, 0, NULL);
2099 }
2100
2101 /*
2102 * Parse and format mempolicy from/to strings
2103 */
2104
2105 /*
2106 * "local" is pseudo-policy: MPOL_PREFERRED with MPOL_F_LOCAL flag
2107 * Used only for mpol_parse_str() and mpol_to_str()
2108 */
2109 #define MPOL_LOCAL (MPOL_INTERLEAVE + 1)
2110 static const char * const policy_types[] =
2111 { "default", "prefer", "bind", "interleave", "local" };
2112
2113
2114 #ifdef CONFIG_TMPFS
2115 /**
2116 * mpol_parse_str - parse string to mempolicy
2117 * @str: string containing mempolicy to parse
2118 * @mpol: pointer to struct mempolicy pointer, returned on success.
2119 * @no_context: flag whether to "contextualize" the mempolicy
2120 *
2121 * Format of input:
2122 * <mode>[=<flags>][:<nodelist>]
2123 *
2124 * if @no_context is true, save the input nodemask in w.user_nodemask in
2125 * the returned mempolicy. This will be used to "clone" the mempolicy in
2126 * a specific context [cpuset] at a later time. Used to parse tmpfs mpol
2127 * mount option. Note that if 'static' or 'relative' mode flags were
2128 * specified, the input nodemask will already have been saved. Saving
2129 * it again is redundant, but safe.
2130 *
2131 * On success, returns 0, else 1
2132 */
2133 int mpol_parse_str(char *str, struct mempolicy **mpol, int no_context)
2134 {
2135 struct mempolicy *new = NULL;
2136 unsigned short uninitialized_var(mode);
2137 unsigned short uninitialized_var(mode_flags);
2138 nodemask_t nodes;
2139 char *nodelist = strchr(str, ':');
2140 char *flags = strchr(str, '=');
2141 int i;
2142 int err = 1;
2143
2144 if (nodelist) {
2145 /* NUL-terminate mode or flags string */
2146 *nodelist++ = '\0';
2147 if (nodelist_parse(nodelist, nodes))
2148 goto out;
2149 if (!nodes_subset(nodes, node_states[N_HIGH_MEMORY]))
2150 goto out;
2151 } else
2152 nodes_clear(nodes);
2153
2154 if (flags)
2155 *flags++ = '\0'; /* terminate mode string */
2156
2157 for (i = 0; i <= MPOL_LOCAL; i++) {
2158 if (!strcmp(str, policy_types[i])) {
2159 mode = i;
2160 break;
2161 }
2162 }
2163 if (i > MPOL_LOCAL)
2164 goto out;
2165
2166 switch (mode) {
2167 case MPOL_PREFERRED:
2168 /*
2169 * Insist on a nodelist of one node only
2170 */
2171 if (nodelist) {
2172 char *rest = nodelist;
2173 while (isdigit(*rest))
2174 rest++;
2175 if (!*rest)
2176 err = 0;
2177 }
2178 break;
2179 case MPOL_INTERLEAVE:
2180 /*
2181 * Default to online nodes with memory if no nodelist
2182 */
2183 if (!nodelist)
2184 nodes = node_states[N_HIGH_MEMORY];
2185 err = 0;
2186 break;
2187 case MPOL_LOCAL:
2188 /*
2189 * Don't allow a nodelist; mpol_new() checks flags
2190 */
2191 if (nodelist)
2192 goto out;
2193 mode = MPOL_PREFERRED;
2194 break;
2195
2196 /*
2197 * case MPOL_BIND: mpol_new() enforces non-empty nodemask.
2198 * case MPOL_DEFAULT: mpol_new() enforces empty nodemask, ignores flags.
2199 */
2200 }
2201
2202 mode_flags = 0;
2203 if (flags) {
2204 /*
2205 * Currently, we only support two mutually exclusive
2206 * mode flags.
2207 */
2208 if (!strcmp(flags, "static"))
2209 mode_flags |= MPOL_F_STATIC_NODES;
2210 else if (!strcmp(flags, "relative"))
2211 mode_flags |= MPOL_F_RELATIVE_NODES;
2212 else
2213 err = 1;
2214 }
2215
2216 new = mpol_new(mode, mode_flags, &nodes);
2217 if (IS_ERR(new))
2218 err = 1;
2219 else {
2220 int ret;
2221 NODEMASK_SCRATCH(scratch);
2222 if (scratch) {
2223 task_lock(current);
2224 ret = mpol_set_nodemask(new, &nodes, scratch);
2225 task_unlock(current);
2226 } else
2227 ret = -ENOMEM;
2228 NODEMASK_SCRATCH_FREE(scratch);
2229 if (ret) {
2230 err = 1;
2231 mpol_put(new);
2232 } else if (no_context) {
2233 /* save for contextualization */
2234 new->w.user_nodemask = nodes;
2235 }
2236 }
2237
2238 out:
2239 /* Restore string for error message */
2240 if (nodelist)
2241 *--nodelist = ':';
2242 if (flags)
2243 *--flags = '=';
2244 if (!err)
2245 *mpol = new;
2246 return err;
2247 }
2248 #endif /* CONFIG_TMPFS */
2249
2250 /**
2251 * mpol_to_str - format a mempolicy structure for printing
2252 * @buffer: to contain formatted mempolicy string
2253 * @maxlen: length of @buffer
2254 * @pol: pointer to mempolicy to be formatted
2255 * @no_context: "context free" mempolicy - use nodemask in w.user_nodemask
2256 *
2257 * Convert a mempolicy into a string.
2258 * Returns the number of characters in buffer (if positive)
2259 * or an error (negative)
2260 */
2261 int mpol_to_str(char *buffer, int maxlen, struct mempolicy *pol, int no_context)
2262 {
2263 char *p = buffer;
2264 int l;
2265 nodemask_t nodes;
2266 unsigned short mode;
2267 unsigned short flags = pol ? pol->flags : 0;
2268
2269 /*
2270 * Sanity check: room for longest mode, flag and some nodes
2271 */
2272 VM_BUG_ON(maxlen < strlen("interleave") + strlen("relative") + 16);
2273
2274 if (!pol || pol == &default_policy)
2275 mode = MPOL_DEFAULT;
2276 else
2277 mode = pol->mode;
2278
2279 switch (mode) {
2280 case MPOL_DEFAULT:
2281 nodes_clear(nodes);
2282 break;
2283
2284 case MPOL_PREFERRED:
2285 nodes_clear(nodes);
2286 if (flags & MPOL_F_LOCAL)
2287 mode = MPOL_LOCAL; /* pseudo-policy */
2288 else
2289 node_set(pol->v.preferred_node, nodes);
2290 break;
2291
2292 case MPOL_BIND:
2293 /* Fall through */
2294 case MPOL_INTERLEAVE:
2295 if (no_context)
2296 nodes = pol->w.user_nodemask;
2297 else
2298 nodes = pol->v.nodes;
2299 break;
2300
2301 default:
2302 BUG();
2303 }
2304
2305 l = strlen(policy_types[mode]);
2306 if (buffer + maxlen < p + l + 1)
2307 return -ENOSPC;
2308
2309 strcpy(p, policy_types[mode]);
2310 p += l;
2311
2312 if (flags & MPOL_MODE_FLAGS) {
2313 if (buffer + maxlen < p + 2)
2314 return -ENOSPC;
2315 *p++ = '=';
2316
2317 /*
2318 * Currently, the only defined flags are mutually exclusive
2319 */
2320 if (flags & MPOL_F_STATIC_NODES)
2321 p += snprintf(p, buffer + maxlen - p, "static");
2322 else if (flags & MPOL_F_RELATIVE_NODES)
2323 p += snprintf(p, buffer + maxlen - p, "relative");
2324 }
2325
2326 if (!nodes_empty(nodes)) {
2327 if (buffer + maxlen < p + 2)
2328 return -ENOSPC;
2329 *p++ = ':';
2330 p += nodelist_scnprintf(p, buffer + maxlen - p, nodes);
2331 }
2332 return p - buffer;
2333 }
2334
2335 struct numa_maps {
2336 unsigned long pages;
2337 unsigned long anon;
2338 unsigned long active;
2339 unsigned long writeback;
2340 unsigned long mapcount_max;
2341 unsigned long dirty;
2342 unsigned long swapcache;
2343 unsigned long node[MAX_NUMNODES];
2344 };
2345
2346 static void gather_stats(struct page *page, void *private, int pte_dirty)
2347 {
2348 struct numa_maps *md = private;
2349 int count = page_mapcount(page);
2350
2351 md->pages++;
2352 if (pte_dirty || PageDirty(page))
2353 md->dirty++;
2354
2355 if (PageSwapCache(page))
2356 md->swapcache++;
2357
2358 if (PageActive(page) || PageUnevictable(page))
2359 md->active++;
2360
2361 if (PageWriteback(page))
2362 md->writeback++;
2363
2364 if (PageAnon(page))
2365 md->anon++;
2366
2367 if (count > md->mapcount_max)
2368 md->mapcount_max = count;
2369
2370 md->node[page_to_nid(page)]++;
2371 }
2372
2373 #ifdef CONFIG_HUGETLB_PAGE
2374 static void check_huge_range(struct vm_area_struct *vma,
2375 unsigned long start, unsigned long end,
2376 struct numa_maps *md)
2377 {
2378 unsigned long addr;
2379 struct page *page;
2380 struct hstate *h = hstate_vma(vma);
2381 unsigned long sz = huge_page_size(h);
2382
2383 for (addr = start; addr < end; addr += sz) {
2384 pte_t *ptep = huge_pte_offset(vma->vm_mm,
2385 addr & huge_page_mask(h));
2386 pte_t pte;
2387
2388 if (!ptep)
2389 continue;
2390
2391 pte = *ptep;
2392 if (pte_none(pte))
2393 continue;
2394
2395 page = pte_page(pte);
2396 if (!page)
2397 continue;
2398
2399 gather_stats(page, md, pte_dirty(*ptep));
2400 }
2401 }
2402 #else
2403 static inline void check_huge_range(struct vm_area_struct *vma,
2404 unsigned long start, unsigned long end,
2405 struct numa_maps *md)
2406 {
2407 }
2408 #endif
2409
2410 /*
2411 * Display pages allocated per node and memory policy via /proc.
2412 */
2413 int show_numa_map(struct seq_file *m, void *v)
2414 {
2415 struct proc_maps_private *priv = m->private;
2416 struct vm_area_struct *vma = v;
2417 struct numa_maps *md;
2418 struct file *file = vma->vm_file;
2419 struct mm_struct *mm = vma->vm_mm;
2420 struct mempolicy *pol;
2421 int n;
2422 char buffer[50];
2423
2424 if (!mm)
2425 return 0;
2426
2427 md = kzalloc(sizeof(struct numa_maps), GFP_KERNEL);
2428 if (!md)
2429 return 0;
2430
2431 pol = get_vma_policy(priv->task, vma, vma->vm_start);
2432 mpol_to_str(buffer, sizeof(buffer), pol, 0);
2433 mpol_cond_put(pol);
2434
2435 seq_printf(m, "%08lx %s", vma->vm_start, buffer);
2436
2437 if (file) {
2438 seq_printf(m, " file=");
2439 seq_path(m, &file->f_path, "\n\t= ");
2440 } else if (vma->vm_start <= mm->brk && vma->vm_end >= mm->start_brk) {
2441 seq_printf(m, " heap");
2442 } else if (vma->vm_start <= mm->start_stack &&
2443 vma->vm_end >= mm->start_stack) {
2444 seq_printf(m, " stack");
2445 }
2446
2447 if (is_vm_hugetlb_page(vma)) {
2448 check_huge_range(vma, vma->vm_start, vma->vm_end, md);
2449 seq_printf(m, " huge");
2450 } else {
2451 check_pgd_range(vma, vma->vm_start, vma->vm_end,
2452 &node_states[N_HIGH_MEMORY], MPOL_MF_STATS, md);
2453 }
2454
2455 if (!md->pages)
2456 goto out;
2457
2458 if (md->anon)
2459 seq_printf(m," anon=%lu",md->anon);
2460
2461 if (md->dirty)
2462 seq_printf(m," dirty=%lu",md->dirty);
2463
2464 if (md->pages != md->anon && md->pages != md->dirty)
2465 seq_printf(m, " mapped=%lu", md->pages);
2466
2467 if (md->mapcount_max > 1)
2468 seq_printf(m, " mapmax=%lu", md->mapcount_max);
2469
2470 if (md->swapcache)
2471 seq_printf(m," swapcache=%lu", md->swapcache);
2472
2473 if (md->active < md->pages && !is_vm_hugetlb_page(vma))
2474 seq_printf(m," active=%lu", md->active);
2475
2476 if (md->writeback)
2477 seq_printf(m," writeback=%lu", md->writeback);
2478
2479 for_each_node_state(n, N_HIGH_MEMORY)
2480 if (md->node[n])
2481 seq_printf(m, " N%d=%lu", n, md->node[n]);
2482 out:
2483 seq_putc(m, '\n');
2484 kfree(md);
2485
2486 if (m->count < m->size)
2487 m->version = (vma != priv->tail_vma) ? vma->vm_start : 0;
2488 return 0;
2489 }