]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - mm/migrate.c
mlxsw: spectrum_router: Consolidate nexthop helpers
[mirror_ubuntu-jammy-kernel.git] / mm / migrate.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Memory Migration functionality - linux/mm/migrate.c
4 *
5 * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter
6 *
7 * Page migration was first developed in the context of the memory hotplug
8 * project. The main authors of the migration code are:
9 *
10 * IWAMOTO Toshihiro <iwamoto@valinux.co.jp>
11 * Hirokazu Takahashi <taka@valinux.co.jp>
12 * Dave Hansen <haveblue@us.ibm.com>
13 * Christoph Lameter
14 */
15
16 #include <linux/migrate.h>
17 #include <linux/export.h>
18 #include <linux/swap.h>
19 #include <linux/swapops.h>
20 #include <linux/pagemap.h>
21 #include <linux/buffer_head.h>
22 #include <linux/mm_inline.h>
23 #include <linux/nsproxy.h>
24 #include <linux/pagevec.h>
25 #include <linux/ksm.h>
26 #include <linux/rmap.h>
27 #include <linux/topology.h>
28 #include <linux/cpu.h>
29 #include <linux/cpuset.h>
30 #include <linux/writeback.h>
31 #include <linux/mempolicy.h>
32 #include <linux/vmalloc.h>
33 #include <linux/security.h>
34 #include <linux/backing-dev.h>
35 #include <linux/compaction.h>
36 #include <linux/syscalls.h>
37 #include <linux/compat.h>
38 #include <linux/hugetlb.h>
39 #include <linux/hugetlb_cgroup.h>
40 #include <linux/gfp.h>
41 #include <linux/pagewalk.h>
42 #include <linux/pfn_t.h>
43 #include <linux/memremap.h>
44 #include <linux/userfaultfd_k.h>
45 #include <linux/balloon_compaction.h>
46 #include <linux/mmu_notifier.h>
47 #include <linux/page_idle.h>
48 #include <linux/page_owner.h>
49 #include <linux/sched/mm.h>
50 #include <linux/ptrace.h>
51 #include <linux/oom.h>
52
53 #include <asm/tlbflush.h>
54
55 #define CREATE_TRACE_POINTS
56 #include <trace/events/migrate.h>
57
58 #include "internal.h"
59
60 /*
61 * migrate_prep() needs to be called before we start compiling a list of pages
62 * to be migrated using isolate_lru_page(). If scheduling work on other CPUs is
63 * undesirable, use migrate_prep_local()
64 */
65 void migrate_prep(void)
66 {
67 /*
68 * Clear the LRU lists so pages can be isolated.
69 * Note that pages may be moved off the LRU after we have
70 * drained them. Those pages will fail to migrate like other
71 * pages that may be busy.
72 */
73 lru_add_drain_all();
74 }
75
76 /* Do the necessary work of migrate_prep but not if it involves other CPUs */
77 void migrate_prep_local(void)
78 {
79 lru_add_drain();
80 }
81
82 int isolate_movable_page(struct page *page, isolate_mode_t mode)
83 {
84 struct address_space *mapping;
85
86 /*
87 * Avoid burning cycles with pages that are yet under __free_pages(),
88 * or just got freed under us.
89 *
90 * In case we 'win' a race for a movable page being freed under us and
91 * raise its refcount preventing __free_pages() from doing its job
92 * the put_page() at the end of this block will take care of
93 * release this page, thus avoiding a nasty leakage.
94 */
95 if (unlikely(!get_page_unless_zero(page)))
96 goto out;
97
98 /*
99 * Check PageMovable before holding a PG_lock because page's owner
100 * assumes anybody doesn't touch PG_lock of newly allocated page
101 * so unconditionally grabbing the lock ruins page's owner side.
102 */
103 if (unlikely(!__PageMovable(page)))
104 goto out_putpage;
105 /*
106 * As movable pages are not isolated from LRU lists, concurrent
107 * compaction threads can race against page migration functions
108 * as well as race against the releasing a page.
109 *
110 * In order to avoid having an already isolated movable page
111 * being (wrongly) re-isolated while it is under migration,
112 * or to avoid attempting to isolate pages being released,
113 * lets be sure we have the page lock
114 * before proceeding with the movable page isolation steps.
115 */
116 if (unlikely(!trylock_page(page)))
117 goto out_putpage;
118
119 if (!PageMovable(page) || PageIsolated(page))
120 goto out_no_isolated;
121
122 mapping = page_mapping(page);
123 VM_BUG_ON_PAGE(!mapping, page);
124
125 if (!mapping->a_ops->isolate_page(page, mode))
126 goto out_no_isolated;
127
128 /* Driver shouldn't use PG_isolated bit of page->flags */
129 WARN_ON_ONCE(PageIsolated(page));
130 __SetPageIsolated(page);
131 unlock_page(page);
132
133 return 0;
134
135 out_no_isolated:
136 unlock_page(page);
137 out_putpage:
138 put_page(page);
139 out:
140 return -EBUSY;
141 }
142
143 /* It should be called on page which is PG_movable */
144 void putback_movable_page(struct page *page)
145 {
146 struct address_space *mapping;
147
148 VM_BUG_ON_PAGE(!PageLocked(page), page);
149 VM_BUG_ON_PAGE(!PageMovable(page), page);
150 VM_BUG_ON_PAGE(!PageIsolated(page), page);
151
152 mapping = page_mapping(page);
153 mapping->a_ops->putback_page(page);
154 __ClearPageIsolated(page);
155 }
156
157 /*
158 * Put previously isolated pages back onto the appropriate lists
159 * from where they were once taken off for compaction/migration.
160 *
161 * This function shall be used whenever the isolated pageset has been
162 * built from lru, balloon, hugetlbfs page. See isolate_migratepages_range()
163 * and isolate_huge_page().
164 */
165 void putback_movable_pages(struct list_head *l)
166 {
167 struct page *page;
168 struct page *page2;
169
170 list_for_each_entry_safe(page, page2, l, lru) {
171 if (unlikely(PageHuge(page))) {
172 putback_active_hugepage(page);
173 continue;
174 }
175 list_del(&page->lru);
176 /*
177 * We isolated non-lru movable page so here we can use
178 * __PageMovable because LRU page's mapping cannot have
179 * PAGE_MAPPING_MOVABLE.
180 */
181 if (unlikely(__PageMovable(page))) {
182 VM_BUG_ON_PAGE(!PageIsolated(page), page);
183 lock_page(page);
184 if (PageMovable(page))
185 putback_movable_page(page);
186 else
187 __ClearPageIsolated(page);
188 unlock_page(page);
189 put_page(page);
190 } else {
191 mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON +
192 page_is_file_lru(page), -thp_nr_pages(page));
193 putback_lru_page(page);
194 }
195 }
196 }
197
198 /*
199 * Restore a potential migration pte to a working pte entry
200 */
201 static bool remove_migration_pte(struct page *page, struct vm_area_struct *vma,
202 unsigned long addr, void *old)
203 {
204 struct page_vma_mapped_walk pvmw = {
205 .page = old,
206 .vma = vma,
207 .address = addr,
208 .flags = PVMW_SYNC | PVMW_MIGRATION,
209 };
210 struct page *new;
211 pte_t pte;
212 swp_entry_t entry;
213
214 VM_BUG_ON_PAGE(PageTail(page), page);
215 while (page_vma_mapped_walk(&pvmw)) {
216 if (PageKsm(page))
217 new = page;
218 else
219 new = page - pvmw.page->index +
220 linear_page_index(vma, pvmw.address);
221
222 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
223 /* PMD-mapped THP migration entry */
224 if (!pvmw.pte) {
225 VM_BUG_ON_PAGE(PageHuge(page) || !PageTransCompound(page), page);
226 remove_migration_pmd(&pvmw, new);
227 continue;
228 }
229 #endif
230
231 get_page(new);
232 pte = pte_mkold(mk_pte(new, READ_ONCE(vma->vm_page_prot)));
233 if (pte_swp_soft_dirty(*pvmw.pte))
234 pte = pte_mksoft_dirty(pte);
235
236 /*
237 * Recheck VMA as permissions can change since migration started
238 */
239 entry = pte_to_swp_entry(*pvmw.pte);
240 if (is_write_migration_entry(entry))
241 pte = maybe_mkwrite(pte, vma);
242 else if (pte_swp_uffd_wp(*pvmw.pte))
243 pte = pte_mkuffd_wp(pte);
244
245 if (unlikely(is_device_private_page(new))) {
246 entry = make_device_private_entry(new, pte_write(pte));
247 pte = swp_entry_to_pte(entry);
248 if (pte_swp_soft_dirty(*pvmw.pte))
249 pte = pte_swp_mksoft_dirty(pte);
250 if (pte_swp_uffd_wp(*pvmw.pte))
251 pte = pte_swp_mkuffd_wp(pte);
252 }
253
254 #ifdef CONFIG_HUGETLB_PAGE
255 if (PageHuge(new)) {
256 pte = pte_mkhuge(pte);
257 pte = arch_make_huge_pte(pte, vma, new, 0);
258 set_huge_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte);
259 if (PageAnon(new))
260 hugepage_add_anon_rmap(new, vma, pvmw.address);
261 else
262 page_dup_rmap(new, true);
263 } else
264 #endif
265 {
266 set_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte);
267
268 if (PageAnon(new))
269 page_add_anon_rmap(new, vma, pvmw.address, false);
270 else
271 page_add_file_rmap(new, false);
272 }
273 if (vma->vm_flags & VM_LOCKED && !PageTransCompound(new))
274 mlock_vma_page(new);
275
276 if (PageTransHuge(page) && PageMlocked(page))
277 clear_page_mlock(page);
278
279 /* No need to invalidate - it was non-present before */
280 update_mmu_cache(vma, pvmw.address, pvmw.pte);
281 }
282
283 return true;
284 }
285
286 /*
287 * Get rid of all migration entries and replace them by
288 * references to the indicated page.
289 */
290 void remove_migration_ptes(struct page *old, struct page *new, bool locked)
291 {
292 struct rmap_walk_control rwc = {
293 .rmap_one = remove_migration_pte,
294 .arg = old,
295 };
296
297 if (locked)
298 rmap_walk_locked(new, &rwc);
299 else
300 rmap_walk(new, &rwc);
301 }
302
303 /*
304 * Something used the pte of a page under migration. We need to
305 * get to the page and wait until migration is finished.
306 * When we return from this function the fault will be retried.
307 */
308 void __migration_entry_wait(struct mm_struct *mm, pte_t *ptep,
309 spinlock_t *ptl)
310 {
311 pte_t pte;
312 swp_entry_t entry;
313 struct page *page;
314
315 spin_lock(ptl);
316 pte = *ptep;
317 if (!is_swap_pte(pte))
318 goto out;
319
320 entry = pte_to_swp_entry(pte);
321 if (!is_migration_entry(entry))
322 goto out;
323
324 page = migration_entry_to_page(entry);
325
326 /*
327 * Once page cache replacement of page migration started, page_count
328 * is zero; but we must not call put_and_wait_on_page_locked() without
329 * a ref. Use get_page_unless_zero(), and just fault again if it fails.
330 */
331 if (!get_page_unless_zero(page))
332 goto out;
333 pte_unmap_unlock(ptep, ptl);
334 put_and_wait_on_page_locked(page, TASK_UNINTERRUPTIBLE);
335 return;
336 out:
337 pte_unmap_unlock(ptep, ptl);
338 }
339
340 void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd,
341 unsigned long address)
342 {
343 spinlock_t *ptl = pte_lockptr(mm, pmd);
344 pte_t *ptep = pte_offset_map(pmd, address);
345 __migration_entry_wait(mm, ptep, ptl);
346 }
347
348 void migration_entry_wait_huge(struct vm_area_struct *vma,
349 struct mm_struct *mm, pte_t *pte)
350 {
351 spinlock_t *ptl = huge_pte_lockptr(hstate_vma(vma), mm, pte);
352 __migration_entry_wait(mm, pte, ptl);
353 }
354
355 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
356 void pmd_migration_entry_wait(struct mm_struct *mm, pmd_t *pmd)
357 {
358 spinlock_t *ptl;
359 struct page *page;
360
361 ptl = pmd_lock(mm, pmd);
362 if (!is_pmd_migration_entry(*pmd))
363 goto unlock;
364 page = migration_entry_to_page(pmd_to_swp_entry(*pmd));
365 if (!get_page_unless_zero(page))
366 goto unlock;
367 spin_unlock(ptl);
368 put_and_wait_on_page_locked(page, TASK_UNINTERRUPTIBLE);
369 return;
370 unlock:
371 spin_unlock(ptl);
372 }
373 #endif
374
375 static int expected_page_refs(struct address_space *mapping, struct page *page)
376 {
377 int expected_count = 1;
378
379 /*
380 * Device private pages have an extra refcount as they are
381 * ZONE_DEVICE pages.
382 */
383 expected_count += is_device_private_page(page);
384 if (mapping)
385 expected_count += thp_nr_pages(page) + page_has_private(page);
386
387 return expected_count;
388 }
389
390 /*
391 * Replace the page in the mapping.
392 *
393 * The number of remaining references must be:
394 * 1 for anonymous pages without a mapping
395 * 2 for pages with a mapping
396 * 3 for pages with a mapping and PagePrivate/PagePrivate2 set.
397 */
398 int migrate_page_move_mapping(struct address_space *mapping,
399 struct page *newpage, struct page *page, int extra_count)
400 {
401 XA_STATE(xas, &mapping->i_pages, page_index(page));
402 struct zone *oldzone, *newzone;
403 int dirty;
404 int expected_count = expected_page_refs(mapping, page) + extra_count;
405 int nr = thp_nr_pages(page);
406
407 if (!mapping) {
408 /* Anonymous page without mapping */
409 if (page_count(page) != expected_count)
410 return -EAGAIN;
411
412 /* No turning back from here */
413 newpage->index = page->index;
414 newpage->mapping = page->mapping;
415 if (PageSwapBacked(page))
416 __SetPageSwapBacked(newpage);
417
418 return MIGRATEPAGE_SUCCESS;
419 }
420
421 oldzone = page_zone(page);
422 newzone = page_zone(newpage);
423
424 xas_lock_irq(&xas);
425 if (page_count(page) != expected_count || xas_load(&xas) != page) {
426 xas_unlock_irq(&xas);
427 return -EAGAIN;
428 }
429
430 if (!page_ref_freeze(page, expected_count)) {
431 xas_unlock_irq(&xas);
432 return -EAGAIN;
433 }
434
435 /*
436 * Now we know that no one else is looking at the page:
437 * no turning back from here.
438 */
439 newpage->index = page->index;
440 newpage->mapping = page->mapping;
441 page_ref_add(newpage, nr); /* add cache reference */
442 if (PageSwapBacked(page)) {
443 __SetPageSwapBacked(newpage);
444 if (PageSwapCache(page)) {
445 SetPageSwapCache(newpage);
446 set_page_private(newpage, page_private(page));
447 }
448 } else {
449 VM_BUG_ON_PAGE(PageSwapCache(page), page);
450 }
451
452 /* Move dirty while page refs frozen and newpage not yet exposed */
453 dirty = PageDirty(page);
454 if (dirty) {
455 ClearPageDirty(page);
456 SetPageDirty(newpage);
457 }
458
459 xas_store(&xas, newpage);
460 if (PageTransHuge(page)) {
461 int i;
462
463 for (i = 1; i < nr; i++) {
464 xas_next(&xas);
465 xas_store(&xas, newpage);
466 }
467 }
468
469 /*
470 * Drop cache reference from old page by unfreezing
471 * to one less reference.
472 * We know this isn't the last reference.
473 */
474 page_ref_unfreeze(page, expected_count - nr);
475
476 xas_unlock(&xas);
477 /* Leave irq disabled to prevent preemption while updating stats */
478
479 /*
480 * If moved to a different zone then also account
481 * the page for that zone. Other VM counters will be
482 * taken care of when we establish references to the
483 * new page and drop references to the old page.
484 *
485 * Note that anonymous pages are accounted for
486 * via NR_FILE_PAGES and NR_ANON_MAPPED if they
487 * are mapped to swap space.
488 */
489 if (newzone != oldzone) {
490 struct lruvec *old_lruvec, *new_lruvec;
491 struct mem_cgroup *memcg;
492
493 memcg = page_memcg(page);
494 old_lruvec = mem_cgroup_lruvec(memcg, oldzone->zone_pgdat);
495 new_lruvec = mem_cgroup_lruvec(memcg, newzone->zone_pgdat);
496
497 __mod_lruvec_state(old_lruvec, NR_FILE_PAGES, -nr);
498 __mod_lruvec_state(new_lruvec, NR_FILE_PAGES, nr);
499 if (PageSwapBacked(page) && !PageSwapCache(page)) {
500 __mod_lruvec_state(old_lruvec, NR_SHMEM, -nr);
501 __mod_lruvec_state(new_lruvec, NR_SHMEM, nr);
502 }
503 #ifdef CONFIG_SWAP
504 if (PageSwapCache(page)) {
505 __mod_lruvec_state(old_lruvec, NR_SWAPCACHE, -nr);
506 __mod_lruvec_state(new_lruvec, NR_SWAPCACHE, nr);
507 }
508 #endif
509 if (dirty && mapping_can_writeback(mapping)) {
510 __mod_lruvec_state(old_lruvec, NR_FILE_DIRTY, -nr);
511 __mod_zone_page_state(oldzone, NR_ZONE_WRITE_PENDING, -nr);
512 __mod_lruvec_state(new_lruvec, NR_FILE_DIRTY, nr);
513 __mod_zone_page_state(newzone, NR_ZONE_WRITE_PENDING, nr);
514 }
515 }
516 local_irq_enable();
517
518 return MIGRATEPAGE_SUCCESS;
519 }
520 EXPORT_SYMBOL(migrate_page_move_mapping);
521
522 /*
523 * The expected number of remaining references is the same as that
524 * of migrate_page_move_mapping().
525 */
526 int migrate_huge_page_move_mapping(struct address_space *mapping,
527 struct page *newpage, struct page *page)
528 {
529 XA_STATE(xas, &mapping->i_pages, page_index(page));
530 int expected_count;
531
532 xas_lock_irq(&xas);
533 expected_count = 2 + page_has_private(page);
534 if (page_count(page) != expected_count || xas_load(&xas) != page) {
535 xas_unlock_irq(&xas);
536 return -EAGAIN;
537 }
538
539 if (!page_ref_freeze(page, expected_count)) {
540 xas_unlock_irq(&xas);
541 return -EAGAIN;
542 }
543
544 newpage->index = page->index;
545 newpage->mapping = page->mapping;
546
547 get_page(newpage);
548
549 xas_store(&xas, newpage);
550
551 page_ref_unfreeze(page, expected_count - 1);
552
553 xas_unlock_irq(&xas);
554
555 return MIGRATEPAGE_SUCCESS;
556 }
557
558 /*
559 * Gigantic pages are so large that we do not guarantee that page++ pointer
560 * arithmetic will work across the entire page. We need something more
561 * specialized.
562 */
563 static void __copy_gigantic_page(struct page *dst, struct page *src,
564 int nr_pages)
565 {
566 int i;
567 struct page *dst_base = dst;
568 struct page *src_base = src;
569
570 for (i = 0; i < nr_pages; ) {
571 cond_resched();
572 copy_highpage(dst, src);
573
574 i++;
575 dst = mem_map_next(dst, dst_base, i);
576 src = mem_map_next(src, src_base, i);
577 }
578 }
579
580 static void copy_huge_page(struct page *dst, struct page *src)
581 {
582 int i;
583 int nr_pages;
584
585 if (PageHuge(src)) {
586 /* hugetlbfs page */
587 struct hstate *h = page_hstate(src);
588 nr_pages = pages_per_huge_page(h);
589
590 if (unlikely(nr_pages > MAX_ORDER_NR_PAGES)) {
591 __copy_gigantic_page(dst, src, nr_pages);
592 return;
593 }
594 } else {
595 /* thp page */
596 BUG_ON(!PageTransHuge(src));
597 nr_pages = thp_nr_pages(src);
598 }
599
600 for (i = 0; i < nr_pages; i++) {
601 cond_resched();
602 copy_highpage(dst + i, src + i);
603 }
604 }
605
606 /*
607 * Copy the page to its new location
608 */
609 void migrate_page_states(struct page *newpage, struct page *page)
610 {
611 int cpupid;
612
613 if (PageError(page))
614 SetPageError(newpage);
615 if (PageReferenced(page))
616 SetPageReferenced(newpage);
617 if (PageUptodate(page))
618 SetPageUptodate(newpage);
619 if (TestClearPageActive(page)) {
620 VM_BUG_ON_PAGE(PageUnevictable(page), page);
621 SetPageActive(newpage);
622 } else if (TestClearPageUnevictable(page))
623 SetPageUnevictable(newpage);
624 if (PageWorkingset(page))
625 SetPageWorkingset(newpage);
626 if (PageChecked(page))
627 SetPageChecked(newpage);
628 if (PageMappedToDisk(page))
629 SetPageMappedToDisk(newpage);
630
631 /* Move dirty on pages not done by migrate_page_move_mapping() */
632 if (PageDirty(page))
633 SetPageDirty(newpage);
634
635 if (page_is_young(page))
636 set_page_young(newpage);
637 if (page_is_idle(page))
638 set_page_idle(newpage);
639
640 /*
641 * Copy NUMA information to the new page, to prevent over-eager
642 * future migrations of this same page.
643 */
644 cpupid = page_cpupid_xchg_last(page, -1);
645 page_cpupid_xchg_last(newpage, cpupid);
646
647 ksm_migrate_page(newpage, page);
648 /*
649 * Please do not reorder this without considering how mm/ksm.c's
650 * get_ksm_page() depends upon ksm_migrate_page() and PageSwapCache().
651 */
652 if (PageSwapCache(page))
653 ClearPageSwapCache(page);
654 ClearPagePrivate(page);
655 set_page_private(page, 0);
656
657 /*
658 * If any waiters have accumulated on the new page then
659 * wake them up.
660 */
661 if (PageWriteback(newpage))
662 end_page_writeback(newpage);
663
664 /*
665 * PG_readahead shares the same bit with PG_reclaim. The above
666 * end_page_writeback() may clear PG_readahead mistakenly, so set the
667 * bit after that.
668 */
669 if (PageReadahead(page))
670 SetPageReadahead(newpage);
671
672 copy_page_owner(page, newpage);
673
674 if (!PageHuge(page))
675 mem_cgroup_migrate(page, newpage);
676 }
677 EXPORT_SYMBOL(migrate_page_states);
678
679 void migrate_page_copy(struct page *newpage, struct page *page)
680 {
681 if (PageHuge(page) || PageTransHuge(page))
682 copy_huge_page(newpage, page);
683 else
684 copy_highpage(newpage, page);
685
686 migrate_page_states(newpage, page);
687 }
688 EXPORT_SYMBOL(migrate_page_copy);
689
690 /************************************************************
691 * Migration functions
692 ***********************************************************/
693
694 /*
695 * Common logic to directly migrate a single LRU page suitable for
696 * pages that do not use PagePrivate/PagePrivate2.
697 *
698 * Pages are locked upon entry and exit.
699 */
700 int migrate_page(struct address_space *mapping,
701 struct page *newpage, struct page *page,
702 enum migrate_mode mode)
703 {
704 int rc;
705
706 BUG_ON(PageWriteback(page)); /* Writeback must be complete */
707
708 rc = migrate_page_move_mapping(mapping, newpage, page, 0);
709
710 if (rc != MIGRATEPAGE_SUCCESS)
711 return rc;
712
713 if (mode != MIGRATE_SYNC_NO_COPY)
714 migrate_page_copy(newpage, page);
715 else
716 migrate_page_states(newpage, page);
717 return MIGRATEPAGE_SUCCESS;
718 }
719 EXPORT_SYMBOL(migrate_page);
720
721 #ifdef CONFIG_BLOCK
722 /* Returns true if all buffers are successfully locked */
723 static bool buffer_migrate_lock_buffers(struct buffer_head *head,
724 enum migrate_mode mode)
725 {
726 struct buffer_head *bh = head;
727
728 /* Simple case, sync compaction */
729 if (mode != MIGRATE_ASYNC) {
730 do {
731 lock_buffer(bh);
732 bh = bh->b_this_page;
733
734 } while (bh != head);
735
736 return true;
737 }
738
739 /* async case, we cannot block on lock_buffer so use trylock_buffer */
740 do {
741 if (!trylock_buffer(bh)) {
742 /*
743 * We failed to lock the buffer and cannot stall in
744 * async migration. Release the taken locks
745 */
746 struct buffer_head *failed_bh = bh;
747 bh = head;
748 while (bh != failed_bh) {
749 unlock_buffer(bh);
750 bh = bh->b_this_page;
751 }
752 return false;
753 }
754
755 bh = bh->b_this_page;
756 } while (bh != head);
757 return true;
758 }
759
760 static int __buffer_migrate_page(struct address_space *mapping,
761 struct page *newpage, struct page *page, enum migrate_mode mode,
762 bool check_refs)
763 {
764 struct buffer_head *bh, *head;
765 int rc;
766 int expected_count;
767
768 if (!page_has_buffers(page))
769 return migrate_page(mapping, newpage, page, mode);
770
771 /* Check whether page does not have extra refs before we do more work */
772 expected_count = expected_page_refs(mapping, page);
773 if (page_count(page) != expected_count)
774 return -EAGAIN;
775
776 head = page_buffers(page);
777 if (!buffer_migrate_lock_buffers(head, mode))
778 return -EAGAIN;
779
780 if (check_refs) {
781 bool busy;
782 bool invalidated = false;
783
784 recheck_buffers:
785 busy = false;
786 spin_lock(&mapping->private_lock);
787 bh = head;
788 do {
789 if (atomic_read(&bh->b_count)) {
790 busy = true;
791 break;
792 }
793 bh = bh->b_this_page;
794 } while (bh != head);
795 if (busy) {
796 if (invalidated) {
797 rc = -EAGAIN;
798 goto unlock_buffers;
799 }
800 spin_unlock(&mapping->private_lock);
801 invalidate_bh_lrus();
802 invalidated = true;
803 goto recheck_buffers;
804 }
805 }
806
807 rc = migrate_page_move_mapping(mapping, newpage, page, 0);
808 if (rc != MIGRATEPAGE_SUCCESS)
809 goto unlock_buffers;
810
811 attach_page_private(newpage, detach_page_private(page));
812
813 bh = head;
814 do {
815 set_bh_page(bh, newpage, bh_offset(bh));
816 bh = bh->b_this_page;
817
818 } while (bh != head);
819
820 if (mode != MIGRATE_SYNC_NO_COPY)
821 migrate_page_copy(newpage, page);
822 else
823 migrate_page_states(newpage, page);
824
825 rc = MIGRATEPAGE_SUCCESS;
826 unlock_buffers:
827 if (check_refs)
828 spin_unlock(&mapping->private_lock);
829 bh = head;
830 do {
831 unlock_buffer(bh);
832 bh = bh->b_this_page;
833
834 } while (bh != head);
835
836 return rc;
837 }
838
839 /*
840 * Migration function for pages with buffers. This function can only be used
841 * if the underlying filesystem guarantees that no other references to "page"
842 * exist. For example attached buffer heads are accessed only under page lock.
843 */
844 int buffer_migrate_page(struct address_space *mapping,
845 struct page *newpage, struct page *page, enum migrate_mode mode)
846 {
847 return __buffer_migrate_page(mapping, newpage, page, mode, false);
848 }
849 EXPORT_SYMBOL(buffer_migrate_page);
850
851 /*
852 * Same as above except that this variant is more careful and checks that there
853 * are also no buffer head references. This function is the right one for
854 * mappings where buffer heads are directly looked up and referenced (such as
855 * block device mappings).
856 */
857 int buffer_migrate_page_norefs(struct address_space *mapping,
858 struct page *newpage, struct page *page, enum migrate_mode mode)
859 {
860 return __buffer_migrate_page(mapping, newpage, page, mode, true);
861 }
862 #endif
863
864 /*
865 * Writeback a page to clean the dirty state
866 */
867 static int writeout(struct address_space *mapping, struct page *page)
868 {
869 struct writeback_control wbc = {
870 .sync_mode = WB_SYNC_NONE,
871 .nr_to_write = 1,
872 .range_start = 0,
873 .range_end = LLONG_MAX,
874 .for_reclaim = 1
875 };
876 int rc;
877
878 if (!mapping->a_ops->writepage)
879 /* No write method for the address space */
880 return -EINVAL;
881
882 if (!clear_page_dirty_for_io(page))
883 /* Someone else already triggered a write */
884 return -EAGAIN;
885
886 /*
887 * A dirty page may imply that the underlying filesystem has
888 * the page on some queue. So the page must be clean for
889 * migration. Writeout may mean we loose the lock and the
890 * page state is no longer what we checked for earlier.
891 * At this point we know that the migration attempt cannot
892 * be successful.
893 */
894 remove_migration_ptes(page, page, false);
895
896 rc = mapping->a_ops->writepage(page, &wbc);
897
898 if (rc != AOP_WRITEPAGE_ACTIVATE)
899 /* unlocked. Relock */
900 lock_page(page);
901
902 return (rc < 0) ? -EIO : -EAGAIN;
903 }
904
905 /*
906 * Default handling if a filesystem does not provide a migration function.
907 */
908 static int fallback_migrate_page(struct address_space *mapping,
909 struct page *newpage, struct page *page, enum migrate_mode mode)
910 {
911 if (PageDirty(page)) {
912 /* Only writeback pages in full synchronous migration */
913 switch (mode) {
914 case MIGRATE_SYNC:
915 case MIGRATE_SYNC_NO_COPY:
916 break;
917 default:
918 return -EBUSY;
919 }
920 return writeout(mapping, page);
921 }
922
923 /*
924 * Buffers may be managed in a filesystem specific way.
925 * We must have no buffers or drop them.
926 */
927 if (page_has_private(page) &&
928 !try_to_release_page(page, GFP_KERNEL))
929 return mode == MIGRATE_SYNC ? -EAGAIN : -EBUSY;
930
931 return migrate_page(mapping, newpage, page, mode);
932 }
933
934 /*
935 * Move a page to a newly allocated page
936 * The page is locked and all ptes have been successfully removed.
937 *
938 * The new page will have replaced the old page if this function
939 * is successful.
940 *
941 * Return value:
942 * < 0 - error code
943 * MIGRATEPAGE_SUCCESS - success
944 */
945 static int move_to_new_page(struct page *newpage, struct page *page,
946 enum migrate_mode mode)
947 {
948 struct address_space *mapping;
949 int rc = -EAGAIN;
950 bool is_lru = !__PageMovable(page);
951
952 VM_BUG_ON_PAGE(!PageLocked(page), page);
953 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
954
955 mapping = page_mapping(page);
956
957 if (likely(is_lru)) {
958 if (!mapping)
959 rc = migrate_page(mapping, newpage, page, mode);
960 else if (mapping->a_ops->migratepage)
961 /*
962 * Most pages have a mapping and most filesystems
963 * provide a migratepage callback. Anonymous pages
964 * are part of swap space which also has its own
965 * migratepage callback. This is the most common path
966 * for page migration.
967 */
968 rc = mapping->a_ops->migratepage(mapping, newpage,
969 page, mode);
970 else
971 rc = fallback_migrate_page(mapping, newpage,
972 page, mode);
973 } else {
974 /*
975 * In case of non-lru page, it could be released after
976 * isolation step. In that case, we shouldn't try migration.
977 */
978 VM_BUG_ON_PAGE(!PageIsolated(page), page);
979 if (!PageMovable(page)) {
980 rc = MIGRATEPAGE_SUCCESS;
981 __ClearPageIsolated(page);
982 goto out;
983 }
984
985 rc = mapping->a_ops->migratepage(mapping, newpage,
986 page, mode);
987 WARN_ON_ONCE(rc == MIGRATEPAGE_SUCCESS &&
988 !PageIsolated(page));
989 }
990
991 /*
992 * When successful, old pagecache page->mapping must be cleared before
993 * page is freed; but stats require that PageAnon be left as PageAnon.
994 */
995 if (rc == MIGRATEPAGE_SUCCESS) {
996 if (__PageMovable(page)) {
997 VM_BUG_ON_PAGE(!PageIsolated(page), page);
998
999 /*
1000 * We clear PG_movable under page_lock so any compactor
1001 * cannot try to migrate this page.
1002 */
1003 __ClearPageIsolated(page);
1004 }
1005
1006 /*
1007 * Anonymous and movable page->mapping will be cleared by
1008 * free_pages_prepare so don't reset it here for keeping
1009 * the type to work PageAnon, for example.
1010 */
1011 if (!PageMappingFlags(page))
1012 page->mapping = NULL;
1013
1014 if (likely(!is_zone_device_page(newpage)))
1015 flush_dcache_page(newpage);
1016
1017 }
1018 out:
1019 return rc;
1020 }
1021
1022 static int __unmap_and_move(struct page *page, struct page *newpage,
1023 int force, enum migrate_mode mode)
1024 {
1025 int rc = -EAGAIN;
1026 int page_was_mapped = 0;
1027 struct anon_vma *anon_vma = NULL;
1028 bool is_lru = !__PageMovable(page);
1029
1030 if (!trylock_page(page)) {
1031 if (!force || mode == MIGRATE_ASYNC)
1032 goto out;
1033
1034 /*
1035 * It's not safe for direct compaction to call lock_page.
1036 * For example, during page readahead pages are added locked
1037 * to the LRU. Later, when the IO completes the pages are
1038 * marked uptodate and unlocked. However, the queueing
1039 * could be merging multiple pages for one bio (e.g.
1040 * mpage_readahead). If an allocation happens for the
1041 * second or third page, the process can end up locking
1042 * the same page twice and deadlocking. Rather than
1043 * trying to be clever about what pages can be locked,
1044 * avoid the use of lock_page for direct compaction
1045 * altogether.
1046 */
1047 if (current->flags & PF_MEMALLOC)
1048 goto out;
1049
1050 lock_page(page);
1051 }
1052
1053 if (PageWriteback(page)) {
1054 /*
1055 * Only in the case of a full synchronous migration is it
1056 * necessary to wait for PageWriteback. In the async case,
1057 * the retry loop is too short and in the sync-light case,
1058 * the overhead of stalling is too much
1059 */
1060 switch (mode) {
1061 case MIGRATE_SYNC:
1062 case MIGRATE_SYNC_NO_COPY:
1063 break;
1064 default:
1065 rc = -EBUSY;
1066 goto out_unlock;
1067 }
1068 if (!force)
1069 goto out_unlock;
1070 wait_on_page_writeback(page);
1071 }
1072
1073 /*
1074 * By try_to_unmap(), page->mapcount goes down to 0 here. In this case,
1075 * we cannot notice that anon_vma is freed while we migrates a page.
1076 * This get_anon_vma() delays freeing anon_vma pointer until the end
1077 * of migration. File cache pages are no problem because of page_lock()
1078 * File Caches may use write_page() or lock_page() in migration, then,
1079 * just care Anon page here.
1080 *
1081 * Only page_get_anon_vma() understands the subtleties of
1082 * getting a hold on an anon_vma from outside one of its mms.
1083 * But if we cannot get anon_vma, then we won't need it anyway,
1084 * because that implies that the anon page is no longer mapped
1085 * (and cannot be remapped so long as we hold the page lock).
1086 */
1087 if (PageAnon(page) && !PageKsm(page))
1088 anon_vma = page_get_anon_vma(page);
1089
1090 /*
1091 * Block others from accessing the new page when we get around to
1092 * establishing additional references. We are usually the only one
1093 * holding a reference to newpage at this point. We used to have a BUG
1094 * here if trylock_page(newpage) fails, but would like to allow for
1095 * cases where there might be a race with the previous use of newpage.
1096 * This is much like races on refcount of oldpage: just don't BUG().
1097 */
1098 if (unlikely(!trylock_page(newpage)))
1099 goto out_unlock;
1100
1101 if (unlikely(!is_lru)) {
1102 rc = move_to_new_page(newpage, page, mode);
1103 goto out_unlock_both;
1104 }
1105
1106 /*
1107 * Corner case handling:
1108 * 1. When a new swap-cache page is read into, it is added to the LRU
1109 * and treated as swapcache but it has no rmap yet.
1110 * Calling try_to_unmap() against a page->mapping==NULL page will
1111 * trigger a BUG. So handle it here.
1112 * 2. An orphaned page (see truncate_cleanup_page) might have
1113 * fs-private metadata. The page can be picked up due to memory
1114 * offlining. Everywhere else except page reclaim, the page is
1115 * invisible to the vm, so the page can not be migrated. So try to
1116 * free the metadata, so the page can be freed.
1117 */
1118 if (!page->mapping) {
1119 VM_BUG_ON_PAGE(PageAnon(page), page);
1120 if (page_has_private(page)) {
1121 try_to_free_buffers(page);
1122 goto out_unlock_both;
1123 }
1124 } else if (page_mapped(page)) {
1125 /* Establish migration ptes */
1126 VM_BUG_ON_PAGE(PageAnon(page) && !PageKsm(page) && !anon_vma,
1127 page);
1128 try_to_unmap(page, TTU_MIGRATION|TTU_IGNORE_MLOCK);
1129 page_was_mapped = 1;
1130 }
1131
1132 if (!page_mapped(page))
1133 rc = move_to_new_page(newpage, page, mode);
1134
1135 if (page_was_mapped)
1136 remove_migration_ptes(page,
1137 rc == MIGRATEPAGE_SUCCESS ? newpage : page, false);
1138
1139 out_unlock_both:
1140 unlock_page(newpage);
1141 out_unlock:
1142 /* Drop an anon_vma reference if we took one */
1143 if (anon_vma)
1144 put_anon_vma(anon_vma);
1145 unlock_page(page);
1146 out:
1147 /*
1148 * If migration is successful, decrease refcount of the newpage
1149 * which will not free the page because new page owner increased
1150 * refcounter. As well, if it is LRU page, add the page to LRU
1151 * list in here. Use the old state of the isolated source page to
1152 * determine if we migrated a LRU page. newpage was already unlocked
1153 * and possibly modified by its owner - don't rely on the page
1154 * state.
1155 */
1156 if (rc == MIGRATEPAGE_SUCCESS) {
1157 if (unlikely(!is_lru))
1158 put_page(newpage);
1159 else
1160 putback_lru_page(newpage);
1161 }
1162
1163 return rc;
1164 }
1165
1166 /*
1167 * Obtain the lock on page, remove all ptes and migrate the page
1168 * to the newly allocated page in newpage.
1169 */
1170 static int unmap_and_move(new_page_t get_new_page,
1171 free_page_t put_new_page,
1172 unsigned long private, struct page *page,
1173 int force, enum migrate_mode mode,
1174 enum migrate_reason reason,
1175 struct list_head *ret)
1176 {
1177 int rc = MIGRATEPAGE_SUCCESS;
1178 struct page *newpage = NULL;
1179
1180 if (!thp_migration_supported() && PageTransHuge(page))
1181 return -ENOSYS;
1182
1183 if (page_count(page) == 1) {
1184 /* page was freed from under us. So we are done. */
1185 ClearPageActive(page);
1186 ClearPageUnevictable(page);
1187 if (unlikely(__PageMovable(page))) {
1188 lock_page(page);
1189 if (!PageMovable(page))
1190 __ClearPageIsolated(page);
1191 unlock_page(page);
1192 }
1193 goto out;
1194 }
1195
1196 newpage = get_new_page(page, private);
1197 if (!newpage)
1198 return -ENOMEM;
1199
1200 rc = __unmap_and_move(page, newpage, force, mode);
1201 if (rc == MIGRATEPAGE_SUCCESS)
1202 set_page_owner_migrate_reason(newpage, reason);
1203
1204 out:
1205 if (rc != -EAGAIN) {
1206 /*
1207 * A page that has been migrated has all references
1208 * removed and will be freed. A page that has not been
1209 * migrated will have kept its references and be restored.
1210 */
1211 list_del(&page->lru);
1212 }
1213
1214 /*
1215 * If migration is successful, releases reference grabbed during
1216 * isolation. Otherwise, restore the page to right list unless
1217 * we want to retry.
1218 */
1219 if (rc == MIGRATEPAGE_SUCCESS) {
1220 /*
1221 * Compaction can migrate also non-LRU pages which are
1222 * not accounted to NR_ISOLATED_*. They can be recognized
1223 * as __PageMovable
1224 */
1225 if (likely(!__PageMovable(page)))
1226 mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON +
1227 page_is_file_lru(page), -thp_nr_pages(page));
1228
1229 if (reason != MR_MEMORY_FAILURE)
1230 /*
1231 * We release the page in page_handle_poison.
1232 */
1233 put_page(page);
1234 } else {
1235 if (rc != -EAGAIN)
1236 list_add_tail(&page->lru, ret);
1237
1238 if (put_new_page)
1239 put_new_page(newpage, private);
1240 else
1241 put_page(newpage);
1242 }
1243
1244 return rc;
1245 }
1246
1247 /*
1248 * Counterpart of unmap_and_move_page() for hugepage migration.
1249 *
1250 * This function doesn't wait the completion of hugepage I/O
1251 * because there is no race between I/O and migration for hugepage.
1252 * Note that currently hugepage I/O occurs only in direct I/O
1253 * where no lock is held and PG_writeback is irrelevant,
1254 * and writeback status of all subpages are counted in the reference
1255 * count of the head page (i.e. if all subpages of a 2MB hugepage are
1256 * under direct I/O, the reference of the head page is 512 and a bit more.)
1257 * This means that when we try to migrate hugepage whose subpages are
1258 * doing direct I/O, some references remain after try_to_unmap() and
1259 * hugepage migration fails without data corruption.
1260 *
1261 * There is also no race when direct I/O is issued on the page under migration,
1262 * because then pte is replaced with migration swap entry and direct I/O code
1263 * will wait in the page fault for migration to complete.
1264 */
1265 static int unmap_and_move_huge_page(new_page_t get_new_page,
1266 free_page_t put_new_page, unsigned long private,
1267 struct page *hpage, int force,
1268 enum migrate_mode mode, int reason,
1269 struct list_head *ret)
1270 {
1271 int rc = -EAGAIN;
1272 int page_was_mapped = 0;
1273 struct page *new_hpage;
1274 struct anon_vma *anon_vma = NULL;
1275 struct address_space *mapping = NULL;
1276
1277 /*
1278 * Migratability of hugepages depends on architectures and their size.
1279 * This check is necessary because some callers of hugepage migration
1280 * like soft offline and memory hotremove don't walk through page
1281 * tables or check whether the hugepage is pmd-based or not before
1282 * kicking migration.
1283 */
1284 if (!hugepage_migration_supported(page_hstate(hpage))) {
1285 list_move_tail(&hpage->lru, ret);
1286 return -ENOSYS;
1287 }
1288
1289 if (page_count(hpage) == 1) {
1290 /* page was freed from under us. So we are done. */
1291 putback_active_hugepage(hpage);
1292 return MIGRATEPAGE_SUCCESS;
1293 }
1294
1295 new_hpage = get_new_page(hpage, private);
1296 if (!new_hpage)
1297 return -ENOMEM;
1298
1299 if (!trylock_page(hpage)) {
1300 if (!force)
1301 goto out;
1302 switch (mode) {
1303 case MIGRATE_SYNC:
1304 case MIGRATE_SYNC_NO_COPY:
1305 break;
1306 default:
1307 goto out;
1308 }
1309 lock_page(hpage);
1310 }
1311
1312 /*
1313 * Check for pages which are in the process of being freed. Without
1314 * page_mapping() set, hugetlbfs specific move page routine will not
1315 * be called and we could leak usage counts for subpools.
1316 */
1317 if (page_private(hpage) && !page_mapping(hpage)) {
1318 rc = -EBUSY;
1319 goto out_unlock;
1320 }
1321
1322 if (PageAnon(hpage))
1323 anon_vma = page_get_anon_vma(hpage);
1324
1325 if (unlikely(!trylock_page(new_hpage)))
1326 goto put_anon;
1327
1328 if (page_mapped(hpage)) {
1329 bool mapping_locked = false;
1330 enum ttu_flags ttu = TTU_MIGRATION|TTU_IGNORE_MLOCK;
1331
1332 if (!PageAnon(hpage)) {
1333 /*
1334 * In shared mappings, try_to_unmap could potentially
1335 * call huge_pmd_unshare. Because of this, take
1336 * semaphore in write mode here and set TTU_RMAP_LOCKED
1337 * to let lower levels know we have taken the lock.
1338 */
1339 mapping = hugetlb_page_mapping_lock_write(hpage);
1340 if (unlikely(!mapping))
1341 goto unlock_put_anon;
1342
1343 mapping_locked = true;
1344 ttu |= TTU_RMAP_LOCKED;
1345 }
1346
1347 try_to_unmap(hpage, ttu);
1348 page_was_mapped = 1;
1349
1350 if (mapping_locked)
1351 i_mmap_unlock_write(mapping);
1352 }
1353
1354 if (!page_mapped(hpage))
1355 rc = move_to_new_page(new_hpage, hpage, mode);
1356
1357 if (page_was_mapped)
1358 remove_migration_ptes(hpage,
1359 rc == MIGRATEPAGE_SUCCESS ? new_hpage : hpage, false);
1360
1361 unlock_put_anon:
1362 unlock_page(new_hpage);
1363
1364 put_anon:
1365 if (anon_vma)
1366 put_anon_vma(anon_vma);
1367
1368 if (rc == MIGRATEPAGE_SUCCESS) {
1369 move_hugetlb_state(hpage, new_hpage, reason);
1370 put_new_page = NULL;
1371 }
1372
1373 out_unlock:
1374 unlock_page(hpage);
1375 out:
1376 if (rc == MIGRATEPAGE_SUCCESS)
1377 putback_active_hugepage(hpage);
1378 else if (rc != -EAGAIN && rc != MIGRATEPAGE_SUCCESS)
1379 list_move_tail(&hpage->lru, ret);
1380
1381 /*
1382 * If migration was not successful and there's a freeing callback, use
1383 * it. Otherwise, put_page() will drop the reference grabbed during
1384 * isolation.
1385 */
1386 if (put_new_page)
1387 put_new_page(new_hpage, private);
1388 else
1389 putback_active_hugepage(new_hpage);
1390
1391 return rc;
1392 }
1393
1394 static inline int try_split_thp(struct page *page, struct page **page2,
1395 struct list_head *from)
1396 {
1397 int rc = 0;
1398
1399 lock_page(page);
1400 rc = split_huge_page_to_list(page, from);
1401 unlock_page(page);
1402 if (!rc)
1403 list_safe_reset_next(page, *page2, lru);
1404
1405 return rc;
1406 }
1407
1408 /*
1409 * migrate_pages - migrate the pages specified in a list, to the free pages
1410 * supplied as the target for the page migration
1411 *
1412 * @from: The list of pages to be migrated.
1413 * @get_new_page: The function used to allocate free pages to be used
1414 * as the target of the page migration.
1415 * @put_new_page: The function used to free target pages if migration
1416 * fails, or NULL if no special handling is necessary.
1417 * @private: Private data to be passed on to get_new_page()
1418 * @mode: The migration mode that specifies the constraints for
1419 * page migration, if any.
1420 * @reason: The reason for page migration.
1421 *
1422 * The function returns after 10 attempts or if no pages are movable any more
1423 * because the list has become empty or no retryable pages exist any more.
1424 * It is caller's responsibility to call putback_movable_pages() to return pages
1425 * to the LRU or free list only if ret != 0.
1426 *
1427 * Returns the number of pages that were not migrated, or an error code.
1428 */
1429 int migrate_pages(struct list_head *from, new_page_t get_new_page,
1430 free_page_t put_new_page, unsigned long private,
1431 enum migrate_mode mode, int reason)
1432 {
1433 int retry = 1;
1434 int thp_retry = 1;
1435 int nr_failed = 0;
1436 int nr_succeeded = 0;
1437 int nr_thp_succeeded = 0;
1438 int nr_thp_failed = 0;
1439 int nr_thp_split = 0;
1440 int pass = 0;
1441 bool is_thp = false;
1442 struct page *page;
1443 struct page *page2;
1444 int swapwrite = current->flags & PF_SWAPWRITE;
1445 int rc, nr_subpages;
1446 LIST_HEAD(ret_pages);
1447
1448 if (!swapwrite)
1449 current->flags |= PF_SWAPWRITE;
1450
1451 for (pass = 0; pass < 10 && (retry || thp_retry); pass++) {
1452 retry = 0;
1453 thp_retry = 0;
1454
1455 list_for_each_entry_safe(page, page2, from, lru) {
1456 retry:
1457 /*
1458 * THP statistics is based on the source huge page.
1459 * Capture required information that might get lost
1460 * during migration.
1461 */
1462 is_thp = PageTransHuge(page) && !PageHuge(page);
1463 nr_subpages = thp_nr_pages(page);
1464 cond_resched();
1465
1466 if (PageHuge(page))
1467 rc = unmap_and_move_huge_page(get_new_page,
1468 put_new_page, private, page,
1469 pass > 2, mode, reason,
1470 &ret_pages);
1471 else
1472 rc = unmap_and_move(get_new_page, put_new_page,
1473 private, page, pass > 2, mode,
1474 reason, &ret_pages);
1475 /*
1476 * The rules are:
1477 * Success: non hugetlb page will be freed, hugetlb
1478 * page will be put back
1479 * -EAGAIN: stay on the from list
1480 * -ENOMEM: stay on the from list
1481 * Other errno: put on ret_pages list then splice to
1482 * from list
1483 */
1484 switch(rc) {
1485 /*
1486 * THP migration might be unsupported or the
1487 * allocation could've failed so we should
1488 * retry on the same page with the THP split
1489 * to base pages.
1490 *
1491 * Head page is retried immediately and tail
1492 * pages are added to the tail of the list so
1493 * we encounter them after the rest of the list
1494 * is processed.
1495 */
1496 case -ENOSYS:
1497 /* THP migration is unsupported */
1498 if (is_thp) {
1499 if (!try_split_thp(page, &page2, from)) {
1500 nr_thp_split++;
1501 goto retry;
1502 }
1503
1504 nr_thp_failed++;
1505 nr_failed += nr_subpages;
1506 break;
1507 }
1508
1509 /* Hugetlb migration is unsupported */
1510 nr_failed++;
1511 break;
1512 case -ENOMEM:
1513 /*
1514 * When memory is low, don't bother to try to migrate
1515 * other pages, just exit.
1516 */
1517 if (is_thp) {
1518 if (!try_split_thp(page, &page2, from)) {
1519 nr_thp_split++;
1520 goto retry;
1521 }
1522
1523 nr_thp_failed++;
1524 nr_failed += nr_subpages;
1525 goto out;
1526 }
1527 nr_failed++;
1528 goto out;
1529 case -EAGAIN:
1530 if (is_thp) {
1531 thp_retry++;
1532 break;
1533 }
1534 retry++;
1535 break;
1536 case MIGRATEPAGE_SUCCESS:
1537 if (is_thp) {
1538 nr_thp_succeeded++;
1539 nr_succeeded += nr_subpages;
1540 break;
1541 }
1542 nr_succeeded++;
1543 break;
1544 default:
1545 /*
1546 * Permanent failure (-EBUSY, etc.):
1547 * unlike -EAGAIN case, the failed page is
1548 * removed from migration page list and not
1549 * retried in the next outer loop.
1550 */
1551 if (is_thp) {
1552 nr_thp_failed++;
1553 nr_failed += nr_subpages;
1554 break;
1555 }
1556 nr_failed++;
1557 break;
1558 }
1559 }
1560 }
1561 nr_failed += retry + thp_retry;
1562 nr_thp_failed += thp_retry;
1563 rc = nr_failed;
1564 out:
1565 /*
1566 * Put the permanent failure page back to migration list, they
1567 * will be put back to the right list by the caller.
1568 */
1569 list_splice(&ret_pages, from);
1570
1571 count_vm_events(PGMIGRATE_SUCCESS, nr_succeeded);
1572 count_vm_events(PGMIGRATE_FAIL, nr_failed);
1573 count_vm_events(THP_MIGRATION_SUCCESS, nr_thp_succeeded);
1574 count_vm_events(THP_MIGRATION_FAIL, nr_thp_failed);
1575 count_vm_events(THP_MIGRATION_SPLIT, nr_thp_split);
1576 trace_mm_migrate_pages(nr_succeeded, nr_failed, nr_thp_succeeded,
1577 nr_thp_failed, nr_thp_split, mode, reason);
1578
1579 if (!swapwrite)
1580 current->flags &= ~PF_SWAPWRITE;
1581
1582 return rc;
1583 }
1584
1585 struct page *alloc_migration_target(struct page *page, unsigned long private)
1586 {
1587 struct migration_target_control *mtc;
1588 gfp_t gfp_mask;
1589 unsigned int order = 0;
1590 struct page *new_page = NULL;
1591 int nid;
1592 int zidx;
1593
1594 mtc = (struct migration_target_control *)private;
1595 gfp_mask = mtc->gfp_mask;
1596 nid = mtc->nid;
1597 if (nid == NUMA_NO_NODE)
1598 nid = page_to_nid(page);
1599
1600 if (PageHuge(page)) {
1601 struct hstate *h = page_hstate(compound_head(page));
1602
1603 gfp_mask = htlb_modify_alloc_mask(h, gfp_mask);
1604 return alloc_huge_page_nodemask(h, nid, mtc->nmask, gfp_mask);
1605 }
1606
1607 if (PageTransHuge(page)) {
1608 /*
1609 * clear __GFP_RECLAIM to make the migration callback
1610 * consistent with regular THP allocations.
1611 */
1612 gfp_mask &= ~__GFP_RECLAIM;
1613 gfp_mask |= GFP_TRANSHUGE;
1614 order = HPAGE_PMD_ORDER;
1615 }
1616 zidx = zone_idx(page_zone(page));
1617 if (is_highmem_idx(zidx) || zidx == ZONE_MOVABLE)
1618 gfp_mask |= __GFP_HIGHMEM;
1619
1620 new_page = __alloc_pages_nodemask(gfp_mask, order, nid, mtc->nmask);
1621
1622 if (new_page && PageTransHuge(new_page))
1623 prep_transhuge_page(new_page);
1624
1625 return new_page;
1626 }
1627
1628 #ifdef CONFIG_NUMA
1629
1630 static int store_status(int __user *status, int start, int value, int nr)
1631 {
1632 while (nr-- > 0) {
1633 if (put_user(value, status + start))
1634 return -EFAULT;
1635 start++;
1636 }
1637
1638 return 0;
1639 }
1640
1641 static int do_move_pages_to_node(struct mm_struct *mm,
1642 struct list_head *pagelist, int node)
1643 {
1644 int err;
1645 struct migration_target_control mtc = {
1646 .nid = node,
1647 .gfp_mask = GFP_HIGHUSER_MOVABLE | __GFP_THISNODE,
1648 };
1649
1650 err = migrate_pages(pagelist, alloc_migration_target, NULL,
1651 (unsigned long)&mtc, MIGRATE_SYNC, MR_SYSCALL);
1652 if (err)
1653 putback_movable_pages(pagelist);
1654 return err;
1655 }
1656
1657 /*
1658 * Resolves the given address to a struct page, isolates it from the LRU and
1659 * puts it to the given pagelist.
1660 * Returns:
1661 * errno - if the page cannot be found/isolated
1662 * 0 - when it doesn't have to be migrated because it is already on the
1663 * target node
1664 * 1 - when it has been queued
1665 */
1666 static int add_page_for_migration(struct mm_struct *mm, unsigned long addr,
1667 int node, struct list_head *pagelist, bool migrate_all)
1668 {
1669 struct vm_area_struct *vma;
1670 struct page *page;
1671 unsigned int follflags;
1672 int err;
1673
1674 mmap_read_lock(mm);
1675 err = -EFAULT;
1676 vma = find_vma(mm, addr);
1677 if (!vma || addr < vma->vm_start || !vma_migratable(vma))
1678 goto out;
1679
1680 /* FOLL_DUMP to ignore special (like zero) pages */
1681 follflags = FOLL_GET | FOLL_DUMP;
1682 page = follow_page(vma, addr, follflags);
1683
1684 err = PTR_ERR(page);
1685 if (IS_ERR(page))
1686 goto out;
1687
1688 err = -ENOENT;
1689 if (!page)
1690 goto out;
1691
1692 err = 0;
1693 if (page_to_nid(page) == node)
1694 goto out_putpage;
1695
1696 err = -EACCES;
1697 if (page_mapcount(page) > 1 && !migrate_all)
1698 goto out_putpage;
1699
1700 if (PageHuge(page)) {
1701 if (PageHead(page)) {
1702 isolate_huge_page(page, pagelist);
1703 err = 1;
1704 }
1705 } else {
1706 struct page *head;
1707
1708 head = compound_head(page);
1709 err = isolate_lru_page(head);
1710 if (err)
1711 goto out_putpage;
1712
1713 err = 1;
1714 list_add_tail(&head->lru, pagelist);
1715 mod_node_page_state(page_pgdat(head),
1716 NR_ISOLATED_ANON + page_is_file_lru(head),
1717 thp_nr_pages(head));
1718 }
1719 out_putpage:
1720 /*
1721 * Either remove the duplicate refcount from
1722 * isolate_lru_page() or drop the page ref if it was
1723 * not isolated.
1724 */
1725 put_page(page);
1726 out:
1727 mmap_read_unlock(mm);
1728 return err;
1729 }
1730
1731 static int move_pages_and_store_status(struct mm_struct *mm, int node,
1732 struct list_head *pagelist, int __user *status,
1733 int start, int i, unsigned long nr_pages)
1734 {
1735 int err;
1736
1737 if (list_empty(pagelist))
1738 return 0;
1739
1740 err = do_move_pages_to_node(mm, pagelist, node);
1741 if (err) {
1742 /*
1743 * Positive err means the number of failed
1744 * pages to migrate. Since we are going to
1745 * abort and return the number of non-migrated
1746 * pages, so need to include the rest of the
1747 * nr_pages that have not been attempted as
1748 * well.
1749 */
1750 if (err > 0)
1751 err += nr_pages - i - 1;
1752 return err;
1753 }
1754 return store_status(status, start, node, i - start);
1755 }
1756
1757 /*
1758 * Migrate an array of page address onto an array of nodes and fill
1759 * the corresponding array of status.
1760 */
1761 static int do_pages_move(struct mm_struct *mm, nodemask_t task_nodes,
1762 unsigned long nr_pages,
1763 const void __user * __user *pages,
1764 const int __user *nodes,
1765 int __user *status, int flags)
1766 {
1767 int current_node = NUMA_NO_NODE;
1768 LIST_HEAD(pagelist);
1769 int start, i;
1770 int err = 0, err1;
1771
1772 migrate_prep();
1773
1774 for (i = start = 0; i < nr_pages; i++) {
1775 const void __user *p;
1776 unsigned long addr;
1777 int node;
1778
1779 err = -EFAULT;
1780 if (get_user(p, pages + i))
1781 goto out_flush;
1782 if (get_user(node, nodes + i))
1783 goto out_flush;
1784 addr = (unsigned long)untagged_addr(p);
1785
1786 err = -ENODEV;
1787 if (node < 0 || node >= MAX_NUMNODES)
1788 goto out_flush;
1789 if (!node_state(node, N_MEMORY))
1790 goto out_flush;
1791
1792 err = -EACCES;
1793 if (!node_isset(node, task_nodes))
1794 goto out_flush;
1795
1796 if (current_node == NUMA_NO_NODE) {
1797 current_node = node;
1798 start = i;
1799 } else if (node != current_node) {
1800 err = move_pages_and_store_status(mm, current_node,
1801 &pagelist, status, start, i, nr_pages);
1802 if (err)
1803 goto out;
1804 start = i;
1805 current_node = node;
1806 }
1807
1808 /*
1809 * Errors in the page lookup or isolation are not fatal and we simply
1810 * report them via status
1811 */
1812 err = add_page_for_migration(mm, addr, current_node,
1813 &pagelist, flags & MPOL_MF_MOVE_ALL);
1814
1815 if (err > 0) {
1816 /* The page is successfully queued for migration */
1817 continue;
1818 }
1819
1820 /*
1821 * If the page is already on the target node (!err), store the
1822 * node, otherwise, store the err.
1823 */
1824 err = store_status(status, i, err ? : current_node, 1);
1825 if (err)
1826 goto out_flush;
1827
1828 err = move_pages_and_store_status(mm, current_node, &pagelist,
1829 status, start, i, nr_pages);
1830 if (err)
1831 goto out;
1832 current_node = NUMA_NO_NODE;
1833 }
1834 out_flush:
1835 /* Make sure we do not overwrite the existing error */
1836 err1 = move_pages_and_store_status(mm, current_node, &pagelist,
1837 status, start, i, nr_pages);
1838 if (err >= 0)
1839 err = err1;
1840 out:
1841 return err;
1842 }
1843
1844 /*
1845 * Determine the nodes of an array of pages and store it in an array of status.
1846 */
1847 static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages,
1848 const void __user **pages, int *status)
1849 {
1850 unsigned long i;
1851
1852 mmap_read_lock(mm);
1853
1854 for (i = 0; i < nr_pages; i++) {
1855 unsigned long addr = (unsigned long)(*pages);
1856 struct vm_area_struct *vma;
1857 struct page *page;
1858 int err = -EFAULT;
1859
1860 vma = find_vma(mm, addr);
1861 if (!vma || addr < vma->vm_start)
1862 goto set_status;
1863
1864 /* FOLL_DUMP to ignore special (like zero) pages */
1865 page = follow_page(vma, addr, FOLL_DUMP);
1866
1867 err = PTR_ERR(page);
1868 if (IS_ERR(page))
1869 goto set_status;
1870
1871 err = page ? page_to_nid(page) : -ENOENT;
1872 set_status:
1873 *status = err;
1874
1875 pages++;
1876 status++;
1877 }
1878
1879 mmap_read_unlock(mm);
1880 }
1881
1882 /*
1883 * Determine the nodes of a user array of pages and store it in
1884 * a user array of status.
1885 */
1886 static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages,
1887 const void __user * __user *pages,
1888 int __user *status)
1889 {
1890 #define DO_PAGES_STAT_CHUNK_NR 16
1891 const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR];
1892 int chunk_status[DO_PAGES_STAT_CHUNK_NR];
1893
1894 while (nr_pages) {
1895 unsigned long chunk_nr;
1896
1897 chunk_nr = nr_pages;
1898 if (chunk_nr > DO_PAGES_STAT_CHUNK_NR)
1899 chunk_nr = DO_PAGES_STAT_CHUNK_NR;
1900
1901 if (copy_from_user(chunk_pages, pages, chunk_nr * sizeof(*chunk_pages)))
1902 break;
1903
1904 do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status);
1905
1906 if (copy_to_user(status, chunk_status, chunk_nr * sizeof(*status)))
1907 break;
1908
1909 pages += chunk_nr;
1910 status += chunk_nr;
1911 nr_pages -= chunk_nr;
1912 }
1913 return nr_pages ? -EFAULT : 0;
1914 }
1915
1916 static struct mm_struct *find_mm_struct(pid_t pid, nodemask_t *mem_nodes)
1917 {
1918 struct task_struct *task;
1919 struct mm_struct *mm;
1920
1921 /*
1922 * There is no need to check if current process has the right to modify
1923 * the specified process when they are same.
1924 */
1925 if (!pid) {
1926 mmget(current->mm);
1927 *mem_nodes = cpuset_mems_allowed(current);
1928 return current->mm;
1929 }
1930
1931 /* Find the mm_struct */
1932 rcu_read_lock();
1933 task = find_task_by_vpid(pid);
1934 if (!task) {
1935 rcu_read_unlock();
1936 return ERR_PTR(-ESRCH);
1937 }
1938 get_task_struct(task);
1939
1940 /*
1941 * Check if this process has the right to modify the specified
1942 * process. Use the regular "ptrace_may_access()" checks.
1943 */
1944 if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) {
1945 rcu_read_unlock();
1946 mm = ERR_PTR(-EPERM);
1947 goto out;
1948 }
1949 rcu_read_unlock();
1950
1951 mm = ERR_PTR(security_task_movememory(task));
1952 if (IS_ERR(mm))
1953 goto out;
1954 *mem_nodes = cpuset_mems_allowed(task);
1955 mm = get_task_mm(task);
1956 out:
1957 put_task_struct(task);
1958 if (!mm)
1959 mm = ERR_PTR(-EINVAL);
1960 return mm;
1961 }
1962
1963 /*
1964 * Move a list of pages in the address space of the currently executing
1965 * process.
1966 */
1967 static int kernel_move_pages(pid_t pid, unsigned long nr_pages,
1968 const void __user * __user *pages,
1969 const int __user *nodes,
1970 int __user *status, int flags)
1971 {
1972 struct mm_struct *mm;
1973 int err;
1974 nodemask_t task_nodes;
1975
1976 /* Check flags */
1977 if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL))
1978 return -EINVAL;
1979
1980 if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1981 return -EPERM;
1982
1983 mm = find_mm_struct(pid, &task_nodes);
1984 if (IS_ERR(mm))
1985 return PTR_ERR(mm);
1986
1987 if (nodes)
1988 err = do_pages_move(mm, task_nodes, nr_pages, pages,
1989 nodes, status, flags);
1990 else
1991 err = do_pages_stat(mm, nr_pages, pages, status);
1992
1993 mmput(mm);
1994 return err;
1995 }
1996
1997 SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages,
1998 const void __user * __user *, pages,
1999 const int __user *, nodes,
2000 int __user *, status, int, flags)
2001 {
2002 return kernel_move_pages(pid, nr_pages, pages, nodes, status, flags);
2003 }
2004
2005 #ifdef CONFIG_COMPAT
2006 COMPAT_SYSCALL_DEFINE6(move_pages, pid_t, pid, compat_ulong_t, nr_pages,
2007 compat_uptr_t __user *, pages32,
2008 const int __user *, nodes,
2009 int __user *, status,
2010 int, flags)
2011 {
2012 const void __user * __user *pages;
2013 int i;
2014
2015 pages = compat_alloc_user_space(nr_pages * sizeof(void *));
2016 for (i = 0; i < nr_pages; i++) {
2017 compat_uptr_t p;
2018
2019 if (get_user(p, pages32 + i) ||
2020 put_user(compat_ptr(p), pages + i))
2021 return -EFAULT;
2022 }
2023 return kernel_move_pages(pid, nr_pages, pages, nodes, status, flags);
2024 }
2025 #endif /* CONFIG_COMPAT */
2026
2027 #ifdef CONFIG_NUMA_BALANCING
2028 /*
2029 * Returns true if this is a safe migration target node for misplaced NUMA
2030 * pages. Currently it only checks the watermarks which crude
2031 */
2032 static bool migrate_balanced_pgdat(struct pglist_data *pgdat,
2033 unsigned long nr_migrate_pages)
2034 {
2035 int z;
2036
2037 for (z = pgdat->nr_zones - 1; z >= 0; z--) {
2038 struct zone *zone = pgdat->node_zones + z;
2039
2040 if (!populated_zone(zone))
2041 continue;
2042
2043 /* Avoid waking kswapd by allocating pages_to_migrate pages. */
2044 if (!zone_watermark_ok(zone, 0,
2045 high_wmark_pages(zone) +
2046 nr_migrate_pages,
2047 ZONE_MOVABLE, 0))
2048 continue;
2049 return true;
2050 }
2051 return false;
2052 }
2053
2054 static struct page *alloc_misplaced_dst_page(struct page *page,
2055 unsigned long data)
2056 {
2057 int nid = (int) data;
2058 struct page *newpage;
2059
2060 newpage = __alloc_pages_node(nid,
2061 (GFP_HIGHUSER_MOVABLE |
2062 __GFP_THISNODE | __GFP_NOMEMALLOC |
2063 __GFP_NORETRY | __GFP_NOWARN) &
2064 ~__GFP_RECLAIM, 0);
2065
2066 return newpage;
2067 }
2068
2069 static int numamigrate_isolate_page(pg_data_t *pgdat, struct page *page)
2070 {
2071 int page_lru;
2072
2073 VM_BUG_ON_PAGE(compound_order(page) && !PageTransHuge(page), page);
2074
2075 /* Avoid migrating to a node that is nearly full */
2076 if (!migrate_balanced_pgdat(pgdat, compound_nr(page)))
2077 return 0;
2078
2079 if (isolate_lru_page(page))
2080 return 0;
2081
2082 /*
2083 * migrate_misplaced_transhuge_page() skips page migration's usual
2084 * check on page_count(), so we must do it here, now that the page
2085 * has been isolated: a GUP pin, or any other pin, prevents migration.
2086 * The expected page count is 3: 1 for page's mapcount and 1 for the
2087 * caller's pin and 1 for the reference taken by isolate_lru_page().
2088 */
2089 if (PageTransHuge(page) && page_count(page) != 3) {
2090 putback_lru_page(page);
2091 return 0;
2092 }
2093
2094 page_lru = page_is_file_lru(page);
2095 mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON + page_lru,
2096 thp_nr_pages(page));
2097
2098 /*
2099 * Isolating the page has taken another reference, so the
2100 * caller's reference can be safely dropped without the page
2101 * disappearing underneath us during migration.
2102 */
2103 put_page(page);
2104 return 1;
2105 }
2106
2107 bool pmd_trans_migrating(pmd_t pmd)
2108 {
2109 struct page *page = pmd_page(pmd);
2110 return PageLocked(page);
2111 }
2112
2113 static inline bool is_shared_exec_page(struct vm_area_struct *vma,
2114 struct page *page)
2115 {
2116 if (page_mapcount(page) != 1 &&
2117 (page_is_file_lru(page) || vma_is_shmem(vma)) &&
2118 (vma->vm_flags & VM_EXEC))
2119 return true;
2120
2121 return false;
2122 }
2123
2124 /*
2125 * Attempt to migrate a misplaced page to the specified destination
2126 * node. Caller is expected to have an elevated reference count on
2127 * the page that will be dropped by this function before returning.
2128 */
2129 int migrate_misplaced_page(struct page *page, struct vm_area_struct *vma,
2130 int node)
2131 {
2132 pg_data_t *pgdat = NODE_DATA(node);
2133 int isolated;
2134 int nr_remaining;
2135 LIST_HEAD(migratepages);
2136
2137 /*
2138 * Don't migrate file pages that are mapped in multiple processes
2139 * with execute permissions as they are probably shared libraries.
2140 */
2141 if (is_shared_exec_page(vma, page))
2142 goto out;
2143
2144 /*
2145 * Also do not migrate dirty pages as not all filesystems can move
2146 * dirty pages in MIGRATE_ASYNC mode which is a waste of cycles.
2147 */
2148 if (page_is_file_lru(page) && PageDirty(page))
2149 goto out;
2150
2151 isolated = numamigrate_isolate_page(pgdat, page);
2152 if (!isolated)
2153 goto out;
2154
2155 list_add(&page->lru, &migratepages);
2156 nr_remaining = migrate_pages(&migratepages, alloc_misplaced_dst_page,
2157 NULL, node, MIGRATE_ASYNC,
2158 MR_NUMA_MISPLACED);
2159 if (nr_remaining) {
2160 if (!list_empty(&migratepages)) {
2161 list_del(&page->lru);
2162 dec_node_page_state(page, NR_ISOLATED_ANON +
2163 page_is_file_lru(page));
2164 putback_lru_page(page);
2165 }
2166 isolated = 0;
2167 } else
2168 count_vm_numa_event(NUMA_PAGE_MIGRATE);
2169 BUG_ON(!list_empty(&migratepages));
2170 return isolated;
2171
2172 out:
2173 put_page(page);
2174 return 0;
2175 }
2176 #endif /* CONFIG_NUMA_BALANCING */
2177
2178 #if defined(CONFIG_NUMA_BALANCING) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
2179 /*
2180 * Migrates a THP to a given target node. page must be locked and is unlocked
2181 * before returning.
2182 */
2183 int migrate_misplaced_transhuge_page(struct mm_struct *mm,
2184 struct vm_area_struct *vma,
2185 pmd_t *pmd, pmd_t entry,
2186 unsigned long address,
2187 struct page *page, int node)
2188 {
2189 spinlock_t *ptl;
2190 pg_data_t *pgdat = NODE_DATA(node);
2191 int isolated = 0;
2192 struct page *new_page = NULL;
2193 int page_lru = page_is_file_lru(page);
2194 unsigned long start = address & HPAGE_PMD_MASK;
2195
2196 if (is_shared_exec_page(vma, page))
2197 goto out;
2198
2199 new_page = alloc_pages_node(node,
2200 (GFP_TRANSHUGE_LIGHT | __GFP_THISNODE),
2201 HPAGE_PMD_ORDER);
2202 if (!new_page)
2203 goto out_fail;
2204 prep_transhuge_page(new_page);
2205
2206 isolated = numamigrate_isolate_page(pgdat, page);
2207 if (!isolated) {
2208 put_page(new_page);
2209 goto out_fail;
2210 }
2211
2212 /* Prepare a page as a migration target */
2213 __SetPageLocked(new_page);
2214 if (PageSwapBacked(page))
2215 __SetPageSwapBacked(new_page);
2216
2217 /* anon mapping, we can simply copy page->mapping to the new page: */
2218 new_page->mapping = page->mapping;
2219 new_page->index = page->index;
2220 /* flush the cache before copying using the kernel virtual address */
2221 flush_cache_range(vma, start, start + HPAGE_PMD_SIZE);
2222 migrate_page_copy(new_page, page);
2223 WARN_ON(PageLRU(new_page));
2224
2225 /* Recheck the target PMD */
2226 ptl = pmd_lock(mm, pmd);
2227 if (unlikely(!pmd_same(*pmd, entry) || !page_ref_freeze(page, 2))) {
2228 spin_unlock(ptl);
2229
2230 /* Reverse changes made by migrate_page_copy() */
2231 if (TestClearPageActive(new_page))
2232 SetPageActive(page);
2233 if (TestClearPageUnevictable(new_page))
2234 SetPageUnevictable(page);
2235
2236 unlock_page(new_page);
2237 put_page(new_page); /* Free it */
2238
2239 /* Retake the callers reference and putback on LRU */
2240 get_page(page);
2241 putback_lru_page(page);
2242 mod_node_page_state(page_pgdat(page),
2243 NR_ISOLATED_ANON + page_lru, -HPAGE_PMD_NR);
2244
2245 goto out_unlock;
2246 }
2247
2248 entry = mk_huge_pmd(new_page, vma->vm_page_prot);
2249 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
2250
2251 /*
2252 * Overwrite the old entry under pagetable lock and establish
2253 * the new PTE. Any parallel GUP will either observe the old
2254 * page blocking on the page lock, block on the page table
2255 * lock or observe the new page. The SetPageUptodate on the
2256 * new page and page_add_new_anon_rmap guarantee the copy is
2257 * visible before the pagetable update.
2258 */
2259 page_add_anon_rmap(new_page, vma, start, true);
2260 /*
2261 * At this point the pmd is numa/protnone (i.e. non present) and the TLB
2262 * has already been flushed globally. So no TLB can be currently
2263 * caching this non present pmd mapping. There's no need to clear the
2264 * pmd before doing set_pmd_at(), nor to flush the TLB after
2265 * set_pmd_at(). Clearing the pmd here would introduce a race
2266 * condition against MADV_DONTNEED, because MADV_DONTNEED only holds the
2267 * mmap_lock for reading. If the pmd is set to NULL at any given time,
2268 * MADV_DONTNEED won't wait on the pmd lock and it'll skip clearing this
2269 * pmd.
2270 */
2271 set_pmd_at(mm, start, pmd, entry);
2272 update_mmu_cache_pmd(vma, address, &entry);
2273
2274 page_ref_unfreeze(page, 2);
2275 mlock_migrate_page(new_page, page);
2276 page_remove_rmap(page, true);
2277 set_page_owner_migrate_reason(new_page, MR_NUMA_MISPLACED);
2278
2279 spin_unlock(ptl);
2280
2281 /* Take an "isolate" reference and put new page on the LRU. */
2282 get_page(new_page);
2283 putback_lru_page(new_page);
2284
2285 unlock_page(new_page);
2286 unlock_page(page);
2287 put_page(page); /* Drop the rmap reference */
2288 put_page(page); /* Drop the LRU isolation reference */
2289
2290 count_vm_events(PGMIGRATE_SUCCESS, HPAGE_PMD_NR);
2291 count_vm_numa_events(NUMA_PAGE_MIGRATE, HPAGE_PMD_NR);
2292
2293 mod_node_page_state(page_pgdat(page),
2294 NR_ISOLATED_ANON + page_lru,
2295 -HPAGE_PMD_NR);
2296 return isolated;
2297
2298 out_fail:
2299 count_vm_events(PGMIGRATE_FAIL, HPAGE_PMD_NR);
2300 ptl = pmd_lock(mm, pmd);
2301 if (pmd_same(*pmd, entry)) {
2302 entry = pmd_modify(entry, vma->vm_page_prot);
2303 set_pmd_at(mm, start, pmd, entry);
2304 update_mmu_cache_pmd(vma, address, &entry);
2305 }
2306 spin_unlock(ptl);
2307
2308 out_unlock:
2309 unlock_page(page);
2310 out:
2311 put_page(page);
2312 return 0;
2313 }
2314 #endif /* CONFIG_NUMA_BALANCING */
2315
2316 #endif /* CONFIG_NUMA */
2317
2318 #ifdef CONFIG_DEVICE_PRIVATE
2319 static int migrate_vma_collect_hole(unsigned long start,
2320 unsigned long end,
2321 __always_unused int depth,
2322 struct mm_walk *walk)
2323 {
2324 struct migrate_vma *migrate = walk->private;
2325 unsigned long addr;
2326
2327 /* Only allow populating anonymous memory. */
2328 if (!vma_is_anonymous(walk->vma)) {
2329 for (addr = start; addr < end; addr += PAGE_SIZE) {
2330 migrate->src[migrate->npages] = 0;
2331 migrate->dst[migrate->npages] = 0;
2332 migrate->npages++;
2333 }
2334 return 0;
2335 }
2336
2337 for (addr = start; addr < end; addr += PAGE_SIZE) {
2338 migrate->src[migrate->npages] = MIGRATE_PFN_MIGRATE;
2339 migrate->dst[migrate->npages] = 0;
2340 migrate->npages++;
2341 migrate->cpages++;
2342 }
2343
2344 return 0;
2345 }
2346
2347 static int migrate_vma_collect_skip(unsigned long start,
2348 unsigned long end,
2349 struct mm_walk *walk)
2350 {
2351 struct migrate_vma *migrate = walk->private;
2352 unsigned long addr;
2353
2354 for (addr = start; addr < end; addr += PAGE_SIZE) {
2355 migrate->dst[migrate->npages] = 0;
2356 migrate->src[migrate->npages++] = 0;
2357 }
2358
2359 return 0;
2360 }
2361
2362 static int migrate_vma_collect_pmd(pmd_t *pmdp,
2363 unsigned long start,
2364 unsigned long end,
2365 struct mm_walk *walk)
2366 {
2367 struct migrate_vma *migrate = walk->private;
2368 struct vm_area_struct *vma = walk->vma;
2369 struct mm_struct *mm = vma->vm_mm;
2370 unsigned long addr = start, unmapped = 0;
2371 spinlock_t *ptl;
2372 pte_t *ptep;
2373
2374 again:
2375 if (pmd_none(*pmdp))
2376 return migrate_vma_collect_hole(start, end, -1, walk);
2377
2378 if (pmd_trans_huge(*pmdp)) {
2379 struct page *page;
2380
2381 ptl = pmd_lock(mm, pmdp);
2382 if (unlikely(!pmd_trans_huge(*pmdp))) {
2383 spin_unlock(ptl);
2384 goto again;
2385 }
2386
2387 page = pmd_page(*pmdp);
2388 if (is_huge_zero_page(page)) {
2389 spin_unlock(ptl);
2390 split_huge_pmd(vma, pmdp, addr);
2391 if (pmd_trans_unstable(pmdp))
2392 return migrate_vma_collect_skip(start, end,
2393 walk);
2394 } else {
2395 int ret;
2396
2397 get_page(page);
2398 spin_unlock(ptl);
2399 if (unlikely(!trylock_page(page)))
2400 return migrate_vma_collect_skip(start, end,
2401 walk);
2402 ret = split_huge_page(page);
2403 unlock_page(page);
2404 put_page(page);
2405 if (ret)
2406 return migrate_vma_collect_skip(start, end,
2407 walk);
2408 if (pmd_none(*pmdp))
2409 return migrate_vma_collect_hole(start, end, -1,
2410 walk);
2411 }
2412 }
2413
2414 if (unlikely(pmd_bad(*pmdp)))
2415 return migrate_vma_collect_skip(start, end, walk);
2416
2417 ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl);
2418 arch_enter_lazy_mmu_mode();
2419
2420 for (; addr < end; addr += PAGE_SIZE, ptep++) {
2421 unsigned long mpfn = 0, pfn;
2422 struct page *page;
2423 swp_entry_t entry;
2424 pte_t pte;
2425
2426 pte = *ptep;
2427
2428 if (pte_none(pte)) {
2429 if (vma_is_anonymous(vma)) {
2430 mpfn = MIGRATE_PFN_MIGRATE;
2431 migrate->cpages++;
2432 }
2433 goto next;
2434 }
2435
2436 if (!pte_present(pte)) {
2437 /*
2438 * Only care about unaddressable device page special
2439 * page table entry. Other special swap entries are not
2440 * migratable, and we ignore regular swapped page.
2441 */
2442 entry = pte_to_swp_entry(pte);
2443 if (!is_device_private_entry(entry))
2444 goto next;
2445
2446 page = device_private_entry_to_page(entry);
2447 if (!(migrate->flags &
2448 MIGRATE_VMA_SELECT_DEVICE_PRIVATE) ||
2449 page->pgmap->owner != migrate->pgmap_owner)
2450 goto next;
2451
2452 mpfn = migrate_pfn(page_to_pfn(page)) |
2453 MIGRATE_PFN_MIGRATE;
2454 if (is_write_device_private_entry(entry))
2455 mpfn |= MIGRATE_PFN_WRITE;
2456 } else {
2457 if (!(migrate->flags & MIGRATE_VMA_SELECT_SYSTEM))
2458 goto next;
2459 pfn = pte_pfn(pte);
2460 if (is_zero_pfn(pfn)) {
2461 mpfn = MIGRATE_PFN_MIGRATE;
2462 migrate->cpages++;
2463 goto next;
2464 }
2465 page = vm_normal_page(migrate->vma, addr, pte);
2466 mpfn = migrate_pfn(pfn) | MIGRATE_PFN_MIGRATE;
2467 mpfn |= pte_write(pte) ? MIGRATE_PFN_WRITE : 0;
2468 }
2469
2470 /* FIXME support THP */
2471 if (!page || !page->mapping || PageTransCompound(page)) {
2472 mpfn = 0;
2473 goto next;
2474 }
2475
2476 /*
2477 * By getting a reference on the page we pin it and that blocks
2478 * any kind of migration. Side effect is that it "freezes" the
2479 * pte.
2480 *
2481 * We drop this reference after isolating the page from the lru
2482 * for non device page (device page are not on the lru and thus
2483 * can't be dropped from it).
2484 */
2485 get_page(page);
2486 migrate->cpages++;
2487
2488 /*
2489 * Optimize for the common case where page is only mapped once
2490 * in one process. If we can lock the page, then we can safely
2491 * set up a special migration page table entry now.
2492 */
2493 if (trylock_page(page)) {
2494 pte_t swp_pte;
2495
2496 mpfn |= MIGRATE_PFN_LOCKED;
2497 ptep_get_and_clear(mm, addr, ptep);
2498
2499 /* Setup special migration page table entry */
2500 entry = make_migration_entry(page, mpfn &
2501 MIGRATE_PFN_WRITE);
2502 swp_pte = swp_entry_to_pte(entry);
2503 if (pte_present(pte)) {
2504 if (pte_soft_dirty(pte))
2505 swp_pte = pte_swp_mksoft_dirty(swp_pte);
2506 if (pte_uffd_wp(pte))
2507 swp_pte = pte_swp_mkuffd_wp(swp_pte);
2508 } else {
2509 if (pte_swp_soft_dirty(pte))
2510 swp_pte = pte_swp_mksoft_dirty(swp_pte);
2511 if (pte_swp_uffd_wp(pte))
2512 swp_pte = pte_swp_mkuffd_wp(swp_pte);
2513 }
2514 set_pte_at(mm, addr, ptep, swp_pte);
2515
2516 /*
2517 * This is like regular unmap: we remove the rmap and
2518 * drop page refcount. Page won't be freed, as we took
2519 * a reference just above.
2520 */
2521 page_remove_rmap(page, false);
2522 put_page(page);
2523
2524 if (pte_present(pte))
2525 unmapped++;
2526 }
2527
2528 next:
2529 migrate->dst[migrate->npages] = 0;
2530 migrate->src[migrate->npages++] = mpfn;
2531 }
2532 arch_leave_lazy_mmu_mode();
2533 pte_unmap_unlock(ptep - 1, ptl);
2534
2535 /* Only flush the TLB if we actually modified any entries */
2536 if (unmapped)
2537 flush_tlb_range(walk->vma, start, end);
2538
2539 return 0;
2540 }
2541
2542 static const struct mm_walk_ops migrate_vma_walk_ops = {
2543 .pmd_entry = migrate_vma_collect_pmd,
2544 .pte_hole = migrate_vma_collect_hole,
2545 };
2546
2547 /*
2548 * migrate_vma_collect() - collect pages over a range of virtual addresses
2549 * @migrate: migrate struct containing all migration information
2550 *
2551 * This will walk the CPU page table. For each virtual address backed by a
2552 * valid page, it updates the src array and takes a reference on the page, in
2553 * order to pin the page until we lock it and unmap it.
2554 */
2555 static void migrate_vma_collect(struct migrate_vma *migrate)
2556 {
2557 struct mmu_notifier_range range;
2558
2559 /*
2560 * Note that the pgmap_owner is passed to the mmu notifier callback so
2561 * that the registered device driver can skip invalidating device
2562 * private page mappings that won't be migrated.
2563 */
2564 mmu_notifier_range_init_migrate(&range, 0, migrate->vma,
2565 migrate->vma->vm_mm, migrate->start, migrate->end,
2566 migrate->pgmap_owner);
2567 mmu_notifier_invalidate_range_start(&range);
2568
2569 walk_page_range(migrate->vma->vm_mm, migrate->start, migrate->end,
2570 &migrate_vma_walk_ops, migrate);
2571
2572 mmu_notifier_invalidate_range_end(&range);
2573 migrate->end = migrate->start + (migrate->npages << PAGE_SHIFT);
2574 }
2575
2576 /*
2577 * migrate_vma_check_page() - check if page is pinned or not
2578 * @page: struct page to check
2579 *
2580 * Pinned pages cannot be migrated. This is the same test as in
2581 * migrate_page_move_mapping(), except that here we allow migration of a
2582 * ZONE_DEVICE page.
2583 */
2584 static bool migrate_vma_check_page(struct page *page)
2585 {
2586 /*
2587 * One extra ref because caller holds an extra reference, either from
2588 * isolate_lru_page() for a regular page, or migrate_vma_collect() for
2589 * a device page.
2590 */
2591 int extra = 1;
2592
2593 /*
2594 * FIXME support THP (transparent huge page), it is bit more complex to
2595 * check them than regular pages, because they can be mapped with a pmd
2596 * or with a pte (split pte mapping).
2597 */
2598 if (PageCompound(page))
2599 return false;
2600
2601 /* Page from ZONE_DEVICE have one extra reference */
2602 if (is_zone_device_page(page)) {
2603 /*
2604 * Private page can never be pin as they have no valid pte and
2605 * GUP will fail for those. Yet if there is a pending migration
2606 * a thread might try to wait on the pte migration entry and
2607 * will bump the page reference count. Sadly there is no way to
2608 * differentiate a regular pin from migration wait. Hence to
2609 * avoid 2 racing thread trying to migrate back to CPU to enter
2610 * infinite loop (one stopping migration because the other is
2611 * waiting on pte migration entry). We always return true here.
2612 *
2613 * FIXME proper solution is to rework migration_entry_wait() so
2614 * it does not need to take a reference on page.
2615 */
2616 return is_device_private_page(page);
2617 }
2618
2619 /* For file back page */
2620 if (page_mapping(page))
2621 extra += 1 + page_has_private(page);
2622
2623 if ((page_count(page) - extra) > page_mapcount(page))
2624 return false;
2625
2626 return true;
2627 }
2628
2629 /*
2630 * migrate_vma_prepare() - lock pages and isolate them from the lru
2631 * @migrate: migrate struct containing all migration information
2632 *
2633 * This locks pages that have been collected by migrate_vma_collect(). Once each
2634 * page is locked it is isolated from the lru (for non-device pages). Finally,
2635 * the ref taken by migrate_vma_collect() is dropped, as locked pages cannot be
2636 * migrated by concurrent kernel threads.
2637 */
2638 static void migrate_vma_prepare(struct migrate_vma *migrate)
2639 {
2640 const unsigned long npages = migrate->npages;
2641 const unsigned long start = migrate->start;
2642 unsigned long addr, i, restore = 0;
2643 bool allow_drain = true;
2644
2645 lru_add_drain();
2646
2647 for (i = 0; (i < npages) && migrate->cpages; i++) {
2648 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2649 bool remap = true;
2650
2651 if (!page)
2652 continue;
2653
2654 if (!(migrate->src[i] & MIGRATE_PFN_LOCKED)) {
2655 /*
2656 * Because we are migrating several pages there can be
2657 * a deadlock between 2 concurrent migration where each
2658 * are waiting on each other page lock.
2659 *
2660 * Make migrate_vma() a best effort thing and backoff
2661 * for any page we can not lock right away.
2662 */
2663 if (!trylock_page(page)) {
2664 migrate->src[i] = 0;
2665 migrate->cpages--;
2666 put_page(page);
2667 continue;
2668 }
2669 remap = false;
2670 migrate->src[i] |= MIGRATE_PFN_LOCKED;
2671 }
2672
2673 /* ZONE_DEVICE pages are not on LRU */
2674 if (!is_zone_device_page(page)) {
2675 if (!PageLRU(page) && allow_drain) {
2676 /* Drain CPU's pagevec */
2677 lru_add_drain_all();
2678 allow_drain = false;
2679 }
2680
2681 if (isolate_lru_page(page)) {
2682 if (remap) {
2683 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2684 migrate->cpages--;
2685 restore++;
2686 } else {
2687 migrate->src[i] = 0;
2688 unlock_page(page);
2689 migrate->cpages--;
2690 put_page(page);
2691 }
2692 continue;
2693 }
2694
2695 /* Drop the reference we took in collect */
2696 put_page(page);
2697 }
2698
2699 if (!migrate_vma_check_page(page)) {
2700 if (remap) {
2701 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2702 migrate->cpages--;
2703 restore++;
2704
2705 if (!is_zone_device_page(page)) {
2706 get_page(page);
2707 putback_lru_page(page);
2708 }
2709 } else {
2710 migrate->src[i] = 0;
2711 unlock_page(page);
2712 migrate->cpages--;
2713
2714 if (!is_zone_device_page(page))
2715 putback_lru_page(page);
2716 else
2717 put_page(page);
2718 }
2719 }
2720 }
2721
2722 for (i = 0, addr = start; i < npages && restore; i++, addr += PAGE_SIZE) {
2723 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2724
2725 if (!page || (migrate->src[i] & MIGRATE_PFN_MIGRATE))
2726 continue;
2727
2728 remove_migration_pte(page, migrate->vma, addr, page);
2729
2730 migrate->src[i] = 0;
2731 unlock_page(page);
2732 put_page(page);
2733 restore--;
2734 }
2735 }
2736
2737 /*
2738 * migrate_vma_unmap() - replace page mapping with special migration pte entry
2739 * @migrate: migrate struct containing all migration information
2740 *
2741 * Replace page mapping (CPU page table pte) with a special migration pte entry
2742 * and check again if it has been pinned. Pinned pages are restored because we
2743 * cannot migrate them.
2744 *
2745 * This is the last step before we call the device driver callback to allocate
2746 * destination memory and copy contents of original page over to new page.
2747 */
2748 static void migrate_vma_unmap(struct migrate_vma *migrate)
2749 {
2750 int flags = TTU_MIGRATION | TTU_IGNORE_MLOCK;
2751 const unsigned long npages = migrate->npages;
2752 const unsigned long start = migrate->start;
2753 unsigned long addr, i, restore = 0;
2754
2755 for (i = 0; i < npages; i++) {
2756 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2757
2758 if (!page || !(migrate->src[i] & MIGRATE_PFN_MIGRATE))
2759 continue;
2760
2761 if (page_mapped(page)) {
2762 try_to_unmap(page, flags);
2763 if (page_mapped(page))
2764 goto restore;
2765 }
2766
2767 if (migrate_vma_check_page(page))
2768 continue;
2769
2770 restore:
2771 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2772 migrate->cpages--;
2773 restore++;
2774 }
2775
2776 for (addr = start, i = 0; i < npages && restore; addr += PAGE_SIZE, i++) {
2777 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2778
2779 if (!page || (migrate->src[i] & MIGRATE_PFN_MIGRATE))
2780 continue;
2781
2782 remove_migration_ptes(page, page, false);
2783
2784 migrate->src[i] = 0;
2785 unlock_page(page);
2786 restore--;
2787
2788 if (is_zone_device_page(page))
2789 put_page(page);
2790 else
2791 putback_lru_page(page);
2792 }
2793 }
2794
2795 /**
2796 * migrate_vma_setup() - prepare to migrate a range of memory
2797 * @args: contains the vma, start, and pfns arrays for the migration
2798 *
2799 * Returns: negative errno on failures, 0 when 0 or more pages were migrated
2800 * without an error.
2801 *
2802 * Prepare to migrate a range of memory virtual address range by collecting all
2803 * the pages backing each virtual address in the range, saving them inside the
2804 * src array. Then lock those pages and unmap them. Once the pages are locked
2805 * and unmapped, check whether each page is pinned or not. Pages that aren't
2806 * pinned have the MIGRATE_PFN_MIGRATE flag set (by this function) in the
2807 * corresponding src array entry. Then restores any pages that are pinned, by
2808 * remapping and unlocking those pages.
2809 *
2810 * The caller should then allocate destination memory and copy source memory to
2811 * it for all those entries (ie with MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE
2812 * flag set). Once these are allocated and copied, the caller must update each
2813 * corresponding entry in the dst array with the pfn value of the destination
2814 * page and with the MIGRATE_PFN_VALID and MIGRATE_PFN_LOCKED flags set
2815 * (destination pages must have their struct pages locked, via lock_page()).
2816 *
2817 * Note that the caller does not have to migrate all the pages that are marked
2818 * with MIGRATE_PFN_MIGRATE flag in src array unless this is a migration from
2819 * device memory to system memory. If the caller cannot migrate a device page
2820 * back to system memory, then it must return VM_FAULT_SIGBUS, which has severe
2821 * consequences for the userspace process, so it must be avoided if at all
2822 * possible.
2823 *
2824 * For empty entries inside CPU page table (pte_none() or pmd_none() is true) we
2825 * do set MIGRATE_PFN_MIGRATE flag inside the corresponding source array thus
2826 * allowing the caller to allocate device memory for those unback virtual
2827 * address. For this the caller simply has to allocate device memory and
2828 * properly set the destination entry like for regular migration. Note that
2829 * this can still fails and thus inside the device driver must check if the
2830 * migration was successful for those entries after calling migrate_vma_pages()
2831 * just like for regular migration.
2832 *
2833 * After that, the callers must call migrate_vma_pages() to go over each entry
2834 * in the src array that has the MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag
2835 * set. If the corresponding entry in dst array has MIGRATE_PFN_VALID flag set,
2836 * then migrate_vma_pages() to migrate struct page information from the source
2837 * struct page to the destination struct page. If it fails to migrate the
2838 * struct page information, then it clears the MIGRATE_PFN_MIGRATE flag in the
2839 * src array.
2840 *
2841 * At this point all successfully migrated pages have an entry in the src
2842 * array with MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag set and the dst
2843 * array entry with MIGRATE_PFN_VALID flag set.
2844 *
2845 * Once migrate_vma_pages() returns the caller may inspect which pages were
2846 * successfully migrated, and which were not. Successfully migrated pages will
2847 * have the MIGRATE_PFN_MIGRATE flag set for their src array entry.
2848 *
2849 * It is safe to update device page table after migrate_vma_pages() because
2850 * both destination and source page are still locked, and the mmap_lock is held
2851 * in read mode (hence no one can unmap the range being migrated).
2852 *
2853 * Once the caller is done cleaning up things and updating its page table (if it
2854 * chose to do so, this is not an obligation) it finally calls
2855 * migrate_vma_finalize() to update the CPU page table to point to new pages
2856 * for successfully migrated pages or otherwise restore the CPU page table to
2857 * point to the original source pages.
2858 */
2859 int migrate_vma_setup(struct migrate_vma *args)
2860 {
2861 long nr_pages = (args->end - args->start) >> PAGE_SHIFT;
2862
2863 args->start &= PAGE_MASK;
2864 args->end &= PAGE_MASK;
2865 if (!args->vma || is_vm_hugetlb_page(args->vma) ||
2866 (args->vma->vm_flags & VM_SPECIAL) || vma_is_dax(args->vma))
2867 return -EINVAL;
2868 if (nr_pages <= 0)
2869 return -EINVAL;
2870 if (args->start < args->vma->vm_start ||
2871 args->start >= args->vma->vm_end)
2872 return -EINVAL;
2873 if (args->end <= args->vma->vm_start || args->end > args->vma->vm_end)
2874 return -EINVAL;
2875 if (!args->src || !args->dst)
2876 return -EINVAL;
2877
2878 memset(args->src, 0, sizeof(*args->src) * nr_pages);
2879 args->cpages = 0;
2880 args->npages = 0;
2881
2882 migrate_vma_collect(args);
2883
2884 if (args->cpages)
2885 migrate_vma_prepare(args);
2886 if (args->cpages)
2887 migrate_vma_unmap(args);
2888
2889 /*
2890 * At this point pages are locked and unmapped, and thus they have
2891 * stable content and can safely be copied to destination memory that
2892 * is allocated by the drivers.
2893 */
2894 return 0;
2895
2896 }
2897 EXPORT_SYMBOL(migrate_vma_setup);
2898
2899 /*
2900 * This code closely matches the code in:
2901 * __handle_mm_fault()
2902 * handle_pte_fault()
2903 * do_anonymous_page()
2904 * to map in an anonymous zero page but the struct page will be a ZONE_DEVICE
2905 * private page.
2906 */
2907 static void migrate_vma_insert_page(struct migrate_vma *migrate,
2908 unsigned long addr,
2909 struct page *page,
2910 unsigned long *src)
2911 {
2912 struct vm_area_struct *vma = migrate->vma;
2913 struct mm_struct *mm = vma->vm_mm;
2914 bool flush = false;
2915 spinlock_t *ptl;
2916 pte_t entry;
2917 pgd_t *pgdp;
2918 p4d_t *p4dp;
2919 pud_t *pudp;
2920 pmd_t *pmdp;
2921 pte_t *ptep;
2922
2923 /* Only allow populating anonymous memory */
2924 if (!vma_is_anonymous(vma))
2925 goto abort;
2926
2927 pgdp = pgd_offset(mm, addr);
2928 p4dp = p4d_alloc(mm, pgdp, addr);
2929 if (!p4dp)
2930 goto abort;
2931 pudp = pud_alloc(mm, p4dp, addr);
2932 if (!pudp)
2933 goto abort;
2934 pmdp = pmd_alloc(mm, pudp, addr);
2935 if (!pmdp)
2936 goto abort;
2937
2938 if (pmd_trans_huge(*pmdp) || pmd_devmap(*pmdp))
2939 goto abort;
2940
2941 /*
2942 * Use pte_alloc() instead of pte_alloc_map(). We can't run
2943 * pte_offset_map() on pmds where a huge pmd might be created
2944 * from a different thread.
2945 *
2946 * pte_alloc_map() is safe to use under mmap_write_lock(mm) or when
2947 * parallel threads are excluded by other means.
2948 *
2949 * Here we only have mmap_read_lock(mm).
2950 */
2951 if (pte_alloc(mm, pmdp))
2952 goto abort;
2953
2954 /* See the comment in pte_alloc_one_map() */
2955 if (unlikely(pmd_trans_unstable(pmdp)))
2956 goto abort;
2957
2958 if (unlikely(anon_vma_prepare(vma)))
2959 goto abort;
2960 if (mem_cgroup_charge(page, vma->vm_mm, GFP_KERNEL))
2961 goto abort;
2962
2963 /*
2964 * The memory barrier inside __SetPageUptodate makes sure that
2965 * preceding stores to the page contents become visible before
2966 * the set_pte_at() write.
2967 */
2968 __SetPageUptodate(page);
2969
2970 if (is_zone_device_page(page)) {
2971 if (is_device_private_page(page)) {
2972 swp_entry_t swp_entry;
2973
2974 swp_entry = make_device_private_entry(page, vma->vm_flags & VM_WRITE);
2975 entry = swp_entry_to_pte(swp_entry);
2976 }
2977 } else {
2978 entry = mk_pte(page, vma->vm_page_prot);
2979 if (vma->vm_flags & VM_WRITE)
2980 entry = pte_mkwrite(pte_mkdirty(entry));
2981 }
2982
2983 ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl);
2984
2985 if (check_stable_address_space(mm))
2986 goto unlock_abort;
2987
2988 if (pte_present(*ptep)) {
2989 unsigned long pfn = pte_pfn(*ptep);
2990
2991 if (!is_zero_pfn(pfn))
2992 goto unlock_abort;
2993 flush = true;
2994 } else if (!pte_none(*ptep))
2995 goto unlock_abort;
2996
2997 /*
2998 * Check for userfaultfd but do not deliver the fault. Instead,
2999 * just back off.
3000 */
3001 if (userfaultfd_missing(vma))
3002 goto unlock_abort;
3003
3004 inc_mm_counter(mm, MM_ANONPAGES);
3005 page_add_new_anon_rmap(page, vma, addr, false);
3006 if (!is_zone_device_page(page))
3007 lru_cache_add_inactive_or_unevictable(page, vma);
3008 get_page(page);
3009
3010 if (flush) {
3011 flush_cache_page(vma, addr, pte_pfn(*ptep));
3012 ptep_clear_flush_notify(vma, addr, ptep);
3013 set_pte_at_notify(mm, addr, ptep, entry);
3014 update_mmu_cache(vma, addr, ptep);
3015 } else {
3016 /* No need to invalidate - it was non-present before */
3017 set_pte_at(mm, addr, ptep, entry);
3018 update_mmu_cache(vma, addr, ptep);
3019 }
3020
3021 pte_unmap_unlock(ptep, ptl);
3022 *src = MIGRATE_PFN_MIGRATE;
3023 return;
3024
3025 unlock_abort:
3026 pte_unmap_unlock(ptep, ptl);
3027 abort:
3028 *src &= ~MIGRATE_PFN_MIGRATE;
3029 }
3030
3031 /**
3032 * migrate_vma_pages() - migrate meta-data from src page to dst page
3033 * @migrate: migrate struct containing all migration information
3034 *
3035 * This migrates struct page meta-data from source struct page to destination
3036 * struct page. This effectively finishes the migration from source page to the
3037 * destination page.
3038 */
3039 void migrate_vma_pages(struct migrate_vma *migrate)
3040 {
3041 const unsigned long npages = migrate->npages;
3042 const unsigned long start = migrate->start;
3043 struct mmu_notifier_range range;
3044 unsigned long addr, i;
3045 bool notified = false;
3046
3047 for (i = 0, addr = start; i < npages; addr += PAGE_SIZE, i++) {
3048 struct page *newpage = migrate_pfn_to_page(migrate->dst[i]);
3049 struct page *page = migrate_pfn_to_page(migrate->src[i]);
3050 struct address_space *mapping;
3051 int r;
3052
3053 if (!newpage) {
3054 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
3055 continue;
3056 }
3057
3058 if (!page) {
3059 if (!(migrate->src[i] & MIGRATE_PFN_MIGRATE))
3060 continue;
3061 if (!notified) {
3062 notified = true;
3063
3064 mmu_notifier_range_init_migrate(&range, 0,
3065 migrate->vma, migrate->vma->vm_mm,
3066 addr, migrate->end,
3067 migrate->pgmap_owner);
3068 mmu_notifier_invalidate_range_start(&range);
3069 }
3070 migrate_vma_insert_page(migrate, addr, newpage,
3071 &migrate->src[i]);
3072 continue;
3073 }
3074
3075 mapping = page_mapping(page);
3076
3077 if (is_zone_device_page(newpage)) {
3078 if (is_device_private_page(newpage)) {
3079 /*
3080 * For now only support private anonymous when
3081 * migrating to un-addressable device memory.
3082 */
3083 if (mapping) {
3084 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
3085 continue;
3086 }
3087 } else {
3088 /*
3089 * Other types of ZONE_DEVICE page are not
3090 * supported.
3091 */
3092 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
3093 continue;
3094 }
3095 }
3096
3097 r = migrate_page(mapping, newpage, page, MIGRATE_SYNC_NO_COPY);
3098 if (r != MIGRATEPAGE_SUCCESS)
3099 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
3100 }
3101
3102 /*
3103 * No need to double call mmu_notifier->invalidate_range() callback as
3104 * the above ptep_clear_flush_notify() inside migrate_vma_insert_page()
3105 * did already call it.
3106 */
3107 if (notified)
3108 mmu_notifier_invalidate_range_only_end(&range);
3109 }
3110 EXPORT_SYMBOL(migrate_vma_pages);
3111
3112 /**
3113 * migrate_vma_finalize() - restore CPU page table entry
3114 * @migrate: migrate struct containing all migration information
3115 *
3116 * This replaces the special migration pte entry with either a mapping to the
3117 * new page if migration was successful for that page, or to the original page
3118 * otherwise.
3119 *
3120 * This also unlocks the pages and puts them back on the lru, or drops the extra
3121 * refcount, for device pages.
3122 */
3123 void migrate_vma_finalize(struct migrate_vma *migrate)
3124 {
3125 const unsigned long npages = migrate->npages;
3126 unsigned long i;
3127
3128 for (i = 0; i < npages; i++) {
3129 struct page *newpage = migrate_pfn_to_page(migrate->dst[i]);
3130 struct page *page = migrate_pfn_to_page(migrate->src[i]);
3131
3132 if (!page) {
3133 if (newpage) {
3134 unlock_page(newpage);
3135 put_page(newpage);
3136 }
3137 continue;
3138 }
3139
3140 if (!(migrate->src[i] & MIGRATE_PFN_MIGRATE) || !newpage) {
3141 if (newpage) {
3142 unlock_page(newpage);
3143 put_page(newpage);
3144 }
3145 newpage = page;
3146 }
3147
3148 remove_migration_ptes(page, newpage, false);
3149 unlock_page(page);
3150
3151 if (is_zone_device_page(page))
3152 put_page(page);
3153 else
3154 putback_lru_page(page);
3155
3156 if (newpage != page) {
3157 unlock_page(newpage);
3158 if (is_zone_device_page(newpage))
3159 put_page(newpage);
3160 else
3161 putback_lru_page(newpage);
3162 }
3163 }
3164 }
3165 EXPORT_SYMBOL(migrate_vma_finalize);
3166 #endif /* CONFIG_DEVICE_PRIVATE */