]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - mm/page_alloc.c
net/mlx5e: More generic netdev management API
[mirror_ubuntu-bionic-kernel.git] / mm / page_alloc.c
1 /*
2 * linux/mm/page_alloc.c
3 *
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
6 *
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
17 #include <linux/stddef.h>
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/interrupt.h>
21 #include <linux/pagemap.h>
22 #include <linux/jiffies.h>
23 #include <linux/bootmem.h>
24 #include <linux/memblock.h>
25 #include <linux/compiler.h>
26 #include <linux/kernel.h>
27 #include <linux/kmemcheck.h>
28 #include <linux/kasan.h>
29 #include <linux/module.h>
30 #include <linux/suspend.h>
31 #include <linux/pagevec.h>
32 #include <linux/blkdev.h>
33 #include <linux/slab.h>
34 #include <linux/ratelimit.h>
35 #include <linux/oom.h>
36 #include <linux/notifier.h>
37 #include <linux/topology.h>
38 #include <linux/sysctl.h>
39 #include <linux/cpu.h>
40 #include <linux/cpuset.h>
41 #include <linux/memory_hotplug.h>
42 #include <linux/nodemask.h>
43 #include <linux/vmalloc.h>
44 #include <linux/vmstat.h>
45 #include <linux/mempolicy.h>
46 #include <linux/memremap.h>
47 #include <linux/stop_machine.h>
48 #include <linux/sort.h>
49 #include <linux/pfn.h>
50 #include <linux/backing-dev.h>
51 #include <linux/fault-inject.h>
52 #include <linux/page-isolation.h>
53 #include <linux/page_ext.h>
54 #include <linux/debugobjects.h>
55 #include <linux/kmemleak.h>
56 #include <linux/compaction.h>
57 #include <trace/events/kmem.h>
58 #include <trace/events/oom.h>
59 #include <linux/prefetch.h>
60 #include <linux/mm_inline.h>
61 #include <linux/migrate.h>
62 #include <linux/hugetlb.h>
63 #include <linux/sched/rt.h>
64 #include <linux/sched/mm.h>
65 #include <linux/page_owner.h>
66 #include <linux/kthread.h>
67 #include <linux/memcontrol.h>
68
69 #include <asm/sections.h>
70 #include <asm/tlbflush.h>
71 #include <asm/div64.h>
72 #include "internal.h"
73
74 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
75 static DEFINE_MUTEX(pcp_batch_high_lock);
76 #define MIN_PERCPU_PAGELIST_FRACTION (8)
77
78 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
79 DEFINE_PER_CPU(int, numa_node);
80 EXPORT_PER_CPU_SYMBOL(numa_node);
81 #endif
82
83 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
84 /*
85 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
86 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
87 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
88 * defined in <linux/topology.h>.
89 */
90 DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
91 EXPORT_PER_CPU_SYMBOL(_numa_mem_);
92 int _node_numa_mem_[MAX_NUMNODES];
93 #endif
94
95 /* work_structs for global per-cpu drains */
96 DEFINE_MUTEX(pcpu_drain_mutex);
97 DEFINE_PER_CPU(struct work_struct, pcpu_drain);
98
99 #ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
100 volatile unsigned long latent_entropy __latent_entropy;
101 EXPORT_SYMBOL(latent_entropy);
102 #endif
103
104 /*
105 * Array of node states.
106 */
107 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
108 [N_POSSIBLE] = NODE_MASK_ALL,
109 [N_ONLINE] = { { [0] = 1UL } },
110 #ifndef CONFIG_NUMA
111 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
112 #ifdef CONFIG_HIGHMEM
113 [N_HIGH_MEMORY] = { { [0] = 1UL } },
114 #endif
115 #ifdef CONFIG_MOVABLE_NODE
116 [N_MEMORY] = { { [0] = 1UL } },
117 #endif
118 [N_CPU] = { { [0] = 1UL } },
119 #endif /* NUMA */
120 };
121 EXPORT_SYMBOL(node_states);
122
123 /* Protect totalram_pages and zone->managed_pages */
124 static DEFINE_SPINLOCK(managed_page_count_lock);
125
126 unsigned long totalram_pages __read_mostly;
127 unsigned long totalreserve_pages __read_mostly;
128 unsigned long totalcma_pages __read_mostly;
129
130 int percpu_pagelist_fraction;
131 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
132
133 /*
134 * A cached value of the page's pageblock's migratetype, used when the page is
135 * put on a pcplist. Used to avoid the pageblock migratetype lookup when
136 * freeing from pcplists in most cases, at the cost of possibly becoming stale.
137 * Also the migratetype set in the page does not necessarily match the pcplist
138 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
139 * other index - this ensures that it will be put on the correct CMA freelist.
140 */
141 static inline int get_pcppage_migratetype(struct page *page)
142 {
143 return page->index;
144 }
145
146 static inline void set_pcppage_migratetype(struct page *page, int migratetype)
147 {
148 page->index = migratetype;
149 }
150
151 #ifdef CONFIG_PM_SLEEP
152 /*
153 * The following functions are used by the suspend/hibernate code to temporarily
154 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
155 * while devices are suspended. To avoid races with the suspend/hibernate code,
156 * they should always be called with pm_mutex held (gfp_allowed_mask also should
157 * only be modified with pm_mutex held, unless the suspend/hibernate code is
158 * guaranteed not to run in parallel with that modification).
159 */
160
161 static gfp_t saved_gfp_mask;
162
163 void pm_restore_gfp_mask(void)
164 {
165 WARN_ON(!mutex_is_locked(&pm_mutex));
166 if (saved_gfp_mask) {
167 gfp_allowed_mask = saved_gfp_mask;
168 saved_gfp_mask = 0;
169 }
170 }
171
172 void pm_restrict_gfp_mask(void)
173 {
174 WARN_ON(!mutex_is_locked(&pm_mutex));
175 WARN_ON(saved_gfp_mask);
176 saved_gfp_mask = gfp_allowed_mask;
177 gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
178 }
179
180 bool pm_suspended_storage(void)
181 {
182 if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
183 return false;
184 return true;
185 }
186 #endif /* CONFIG_PM_SLEEP */
187
188 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
189 unsigned int pageblock_order __read_mostly;
190 #endif
191
192 static void __free_pages_ok(struct page *page, unsigned int order);
193
194 /*
195 * results with 256, 32 in the lowmem_reserve sysctl:
196 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
197 * 1G machine -> (16M dma, 784M normal, 224M high)
198 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
199 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
200 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
201 *
202 * TBD: should special case ZONE_DMA32 machines here - in those we normally
203 * don't need any ZONE_NORMAL reservation
204 */
205 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
206 #ifdef CONFIG_ZONE_DMA
207 256,
208 #endif
209 #ifdef CONFIG_ZONE_DMA32
210 256,
211 #endif
212 #ifdef CONFIG_HIGHMEM
213 32,
214 #endif
215 32,
216 };
217
218 EXPORT_SYMBOL(totalram_pages);
219
220 static char * const zone_names[MAX_NR_ZONES] = {
221 #ifdef CONFIG_ZONE_DMA
222 "DMA",
223 #endif
224 #ifdef CONFIG_ZONE_DMA32
225 "DMA32",
226 #endif
227 "Normal",
228 #ifdef CONFIG_HIGHMEM
229 "HighMem",
230 #endif
231 "Movable",
232 #ifdef CONFIG_ZONE_DEVICE
233 "Device",
234 #endif
235 };
236
237 char * const migratetype_names[MIGRATE_TYPES] = {
238 "Unmovable",
239 "Movable",
240 "Reclaimable",
241 "HighAtomic",
242 #ifdef CONFIG_CMA
243 "CMA",
244 #endif
245 #ifdef CONFIG_MEMORY_ISOLATION
246 "Isolate",
247 #endif
248 };
249
250 compound_page_dtor * const compound_page_dtors[] = {
251 NULL,
252 free_compound_page,
253 #ifdef CONFIG_HUGETLB_PAGE
254 free_huge_page,
255 #endif
256 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
257 free_transhuge_page,
258 #endif
259 };
260
261 int min_free_kbytes = 1024;
262 int user_min_free_kbytes = -1;
263 int watermark_scale_factor = 10;
264
265 static unsigned long __meminitdata nr_kernel_pages;
266 static unsigned long __meminitdata nr_all_pages;
267 static unsigned long __meminitdata dma_reserve;
268
269 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
270 static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
271 static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
272 static unsigned long __initdata required_kernelcore;
273 static unsigned long __initdata required_movablecore;
274 static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
275 static bool mirrored_kernelcore;
276
277 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
278 int movable_zone;
279 EXPORT_SYMBOL(movable_zone);
280 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
281
282 #if MAX_NUMNODES > 1
283 int nr_node_ids __read_mostly = MAX_NUMNODES;
284 int nr_online_nodes __read_mostly = 1;
285 EXPORT_SYMBOL(nr_node_ids);
286 EXPORT_SYMBOL(nr_online_nodes);
287 #endif
288
289 int page_group_by_mobility_disabled __read_mostly;
290
291 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
292 static inline void reset_deferred_meminit(pg_data_t *pgdat)
293 {
294 pgdat->first_deferred_pfn = ULONG_MAX;
295 }
296
297 /* Returns true if the struct page for the pfn is uninitialised */
298 static inline bool __meminit early_page_uninitialised(unsigned long pfn)
299 {
300 int nid = early_pfn_to_nid(pfn);
301
302 if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn)
303 return true;
304
305 return false;
306 }
307
308 /*
309 * Returns false when the remaining initialisation should be deferred until
310 * later in the boot cycle when it can be parallelised.
311 */
312 static inline bool update_defer_init(pg_data_t *pgdat,
313 unsigned long pfn, unsigned long zone_end,
314 unsigned long *nr_initialised)
315 {
316 unsigned long max_initialise;
317
318 /* Always populate low zones for address-contrained allocations */
319 if (zone_end < pgdat_end_pfn(pgdat))
320 return true;
321 /*
322 * Initialise at least 2G of a node but also take into account that
323 * two large system hashes that can take up 1GB for 0.25TB/node.
324 */
325 max_initialise = max(2UL << (30 - PAGE_SHIFT),
326 (pgdat->node_spanned_pages >> 8));
327
328 (*nr_initialised)++;
329 if ((*nr_initialised > max_initialise) &&
330 (pfn & (PAGES_PER_SECTION - 1)) == 0) {
331 pgdat->first_deferred_pfn = pfn;
332 return false;
333 }
334
335 return true;
336 }
337 #else
338 static inline void reset_deferred_meminit(pg_data_t *pgdat)
339 {
340 }
341
342 static inline bool early_page_uninitialised(unsigned long pfn)
343 {
344 return false;
345 }
346
347 static inline bool update_defer_init(pg_data_t *pgdat,
348 unsigned long pfn, unsigned long zone_end,
349 unsigned long *nr_initialised)
350 {
351 return true;
352 }
353 #endif
354
355 /* Return a pointer to the bitmap storing bits affecting a block of pages */
356 static inline unsigned long *get_pageblock_bitmap(struct page *page,
357 unsigned long pfn)
358 {
359 #ifdef CONFIG_SPARSEMEM
360 return __pfn_to_section(pfn)->pageblock_flags;
361 #else
362 return page_zone(page)->pageblock_flags;
363 #endif /* CONFIG_SPARSEMEM */
364 }
365
366 static inline int pfn_to_bitidx(struct page *page, unsigned long pfn)
367 {
368 #ifdef CONFIG_SPARSEMEM
369 pfn &= (PAGES_PER_SECTION-1);
370 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
371 #else
372 pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages);
373 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
374 #endif /* CONFIG_SPARSEMEM */
375 }
376
377 /**
378 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
379 * @page: The page within the block of interest
380 * @pfn: The target page frame number
381 * @end_bitidx: The last bit of interest to retrieve
382 * @mask: mask of bits that the caller is interested in
383 *
384 * Return: pageblock_bits flags
385 */
386 static __always_inline unsigned long __get_pfnblock_flags_mask(struct page *page,
387 unsigned long pfn,
388 unsigned long end_bitidx,
389 unsigned long mask)
390 {
391 unsigned long *bitmap;
392 unsigned long bitidx, word_bitidx;
393 unsigned long word;
394
395 bitmap = get_pageblock_bitmap(page, pfn);
396 bitidx = pfn_to_bitidx(page, pfn);
397 word_bitidx = bitidx / BITS_PER_LONG;
398 bitidx &= (BITS_PER_LONG-1);
399
400 word = bitmap[word_bitidx];
401 bitidx += end_bitidx;
402 return (word >> (BITS_PER_LONG - bitidx - 1)) & mask;
403 }
404
405 unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
406 unsigned long end_bitidx,
407 unsigned long mask)
408 {
409 return __get_pfnblock_flags_mask(page, pfn, end_bitidx, mask);
410 }
411
412 static __always_inline int get_pfnblock_migratetype(struct page *page, unsigned long pfn)
413 {
414 return __get_pfnblock_flags_mask(page, pfn, PB_migrate_end, MIGRATETYPE_MASK);
415 }
416
417 /**
418 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
419 * @page: The page within the block of interest
420 * @flags: The flags to set
421 * @pfn: The target page frame number
422 * @end_bitidx: The last bit of interest
423 * @mask: mask of bits that the caller is interested in
424 */
425 void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
426 unsigned long pfn,
427 unsigned long end_bitidx,
428 unsigned long mask)
429 {
430 unsigned long *bitmap;
431 unsigned long bitidx, word_bitidx;
432 unsigned long old_word, word;
433
434 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
435
436 bitmap = get_pageblock_bitmap(page, pfn);
437 bitidx = pfn_to_bitidx(page, pfn);
438 word_bitidx = bitidx / BITS_PER_LONG;
439 bitidx &= (BITS_PER_LONG-1);
440
441 VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
442
443 bitidx += end_bitidx;
444 mask <<= (BITS_PER_LONG - bitidx - 1);
445 flags <<= (BITS_PER_LONG - bitidx - 1);
446
447 word = READ_ONCE(bitmap[word_bitidx]);
448 for (;;) {
449 old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
450 if (word == old_word)
451 break;
452 word = old_word;
453 }
454 }
455
456 void set_pageblock_migratetype(struct page *page, int migratetype)
457 {
458 if (unlikely(page_group_by_mobility_disabled &&
459 migratetype < MIGRATE_PCPTYPES))
460 migratetype = MIGRATE_UNMOVABLE;
461
462 set_pageblock_flags_group(page, (unsigned long)migratetype,
463 PB_migrate, PB_migrate_end);
464 }
465
466 #ifdef CONFIG_DEBUG_VM
467 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
468 {
469 int ret = 0;
470 unsigned seq;
471 unsigned long pfn = page_to_pfn(page);
472 unsigned long sp, start_pfn;
473
474 do {
475 seq = zone_span_seqbegin(zone);
476 start_pfn = zone->zone_start_pfn;
477 sp = zone->spanned_pages;
478 if (!zone_spans_pfn(zone, pfn))
479 ret = 1;
480 } while (zone_span_seqretry(zone, seq));
481
482 if (ret)
483 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
484 pfn, zone_to_nid(zone), zone->name,
485 start_pfn, start_pfn + sp);
486
487 return ret;
488 }
489
490 static int page_is_consistent(struct zone *zone, struct page *page)
491 {
492 if (!pfn_valid_within(page_to_pfn(page)))
493 return 0;
494 if (zone != page_zone(page))
495 return 0;
496
497 return 1;
498 }
499 /*
500 * Temporary debugging check for pages not lying within a given zone.
501 */
502 static int bad_range(struct zone *zone, struct page *page)
503 {
504 if (page_outside_zone_boundaries(zone, page))
505 return 1;
506 if (!page_is_consistent(zone, page))
507 return 1;
508
509 return 0;
510 }
511 #else
512 static inline int bad_range(struct zone *zone, struct page *page)
513 {
514 return 0;
515 }
516 #endif
517
518 static void bad_page(struct page *page, const char *reason,
519 unsigned long bad_flags)
520 {
521 static unsigned long resume;
522 static unsigned long nr_shown;
523 static unsigned long nr_unshown;
524
525 /*
526 * Allow a burst of 60 reports, then keep quiet for that minute;
527 * or allow a steady drip of one report per second.
528 */
529 if (nr_shown == 60) {
530 if (time_before(jiffies, resume)) {
531 nr_unshown++;
532 goto out;
533 }
534 if (nr_unshown) {
535 pr_alert(
536 "BUG: Bad page state: %lu messages suppressed\n",
537 nr_unshown);
538 nr_unshown = 0;
539 }
540 nr_shown = 0;
541 }
542 if (nr_shown++ == 0)
543 resume = jiffies + 60 * HZ;
544
545 pr_alert("BUG: Bad page state in process %s pfn:%05lx\n",
546 current->comm, page_to_pfn(page));
547 __dump_page(page, reason);
548 bad_flags &= page->flags;
549 if (bad_flags)
550 pr_alert("bad because of flags: %#lx(%pGp)\n",
551 bad_flags, &bad_flags);
552 dump_page_owner(page);
553
554 print_modules();
555 dump_stack();
556 out:
557 /* Leave bad fields for debug, except PageBuddy could make trouble */
558 page_mapcount_reset(page); /* remove PageBuddy */
559 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
560 }
561
562 /*
563 * Higher-order pages are called "compound pages". They are structured thusly:
564 *
565 * The first PAGE_SIZE page is called the "head page" and have PG_head set.
566 *
567 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
568 * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
569 *
570 * The first tail page's ->compound_dtor holds the offset in array of compound
571 * page destructors. See compound_page_dtors.
572 *
573 * The first tail page's ->compound_order holds the order of allocation.
574 * This usage means that zero-order pages may not be compound.
575 */
576
577 void free_compound_page(struct page *page)
578 {
579 __free_pages_ok(page, compound_order(page));
580 }
581
582 void prep_compound_page(struct page *page, unsigned int order)
583 {
584 int i;
585 int nr_pages = 1 << order;
586
587 set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
588 set_compound_order(page, order);
589 __SetPageHead(page);
590 for (i = 1; i < nr_pages; i++) {
591 struct page *p = page + i;
592 set_page_count(p, 0);
593 p->mapping = TAIL_MAPPING;
594 set_compound_head(p, page);
595 }
596 atomic_set(compound_mapcount_ptr(page), -1);
597 }
598
599 #ifdef CONFIG_DEBUG_PAGEALLOC
600 unsigned int _debug_guardpage_minorder;
601 bool _debug_pagealloc_enabled __read_mostly
602 = IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT);
603 EXPORT_SYMBOL(_debug_pagealloc_enabled);
604 bool _debug_guardpage_enabled __read_mostly;
605
606 static int __init early_debug_pagealloc(char *buf)
607 {
608 if (!buf)
609 return -EINVAL;
610 return kstrtobool(buf, &_debug_pagealloc_enabled);
611 }
612 early_param("debug_pagealloc", early_debug_pagealloc);
613
614 static bool need_debug_guardpage(void)
615 {
616 /* If we don't use debug_pagealloc, we don't need guard page */
617 if (!debug_pagealloc_enabled())
618 return false;
619
620 if (!debug_guardpage_minorder())
621 return false;
622
623 return true;
624 }
625
626 static void init_debug_guardpage(void)
627 {
628 if (!debug_pagealloc_enabled())
629 return;
630
631 if (!debug_guardpage_minorder())
632 return;
633
634 _debug_guardpage_enabled = true;
635 }
636
637 struct page_ext_operations debug_guardpage_ops = {
638 .need = need_debug_guardpage,
639 .init = init_debug_guardpage,
640 };
641
642 static int __init debug_guardpage_minorder_setup(char *buf)
643 {
644 unsigned long res;
645
646 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
647 pr_err("Bad debug_guardpage_minorder value\n");
648 return 0;
649 }
650 _debug_guardpage_minorder = res;
651 pr_info("Setting debug_guardpage_minorder to %lu\n", res);
652 return 0;
653 }
654 early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup);
655
656 static inline bool set_page_guard(struct zone *zone, struct page *page,
657 unsigned int order, int migratetype)
658 {
659 struct page_ext *page_ext;
660
661 if (!debug_guardpage_enabled())
662 return false;
663
664 if (order >= debug_guardpage_minorder())
665 return false;
666
667 page_ext = lookup_page_ext(page);
668 if (unlikely(!page_ext))
669 return false;
670
671 __set_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
672
673 INIT_LIST_HEAD(&page->lru);
674 set_page_private(page, order);
675 /* Guard pages are not available for any usage */
676 __mod_zone_freepage_state(zone, -(1 << order), migratetype);
677
678 return true;
679 }
680
681 static inline void clear_page_guard(struct zone *zone, struct page *page,
682 unsigned int order, int migratetype)
683 {
684 struct page_ext *page_ext;
685
686 if (!debug_guardpage_enabled())
687 return;
688
689 page_ext = lookup_page_ext(page);
690 if (unlikely(!page_ext))
691 return;
692
693 __clear_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
694
695 set_page_private(page, 0);
696 if (!is_migrate_isolate(migratetype))
697 __mod_zone_freepage_state(zone, (1 << order), migratetype);
698 }
699 #else
700 struct page_ext_operations debug_guardpage_ops;
701 static inline bool set_page_guard(struct zone *zone, struct page *page,
702 unsigned int order, int migratetype) { return false; }
703 static inline void clear_page_guard(struct zone *zone, struct page *page,
704 unsigned int order, int migratetype) {}
705 #endif
706
707 static inline void set_page_order(struct page *page, unsigned int order)
708 {
709 set_page_private(page, order);
710 __SetPageBuddy(page);
711 }
712
713 static inline void rmv_page_order(struct page *page)
714 {
715 __ClearPageBuddy(page);
716 set_page_private(page, 0);
717 }
718
719 /*
720 * This function checks whether a page is free && is the buddy
721 * we can do coalesce a page and its buddy if
722 * (a) the buddy is not in a hole (check before calling!) &&
723 * (b) the buddy is in the buddy system &&
724 * (c) a page and its buddy have the same order &&
725 * (d) a page and its buddy are in the same zone.
726 *
727 * For recording whether a page is in the buddy system, we set ->_mapcount
728 * PAGE_BUDDY_MAPCOUNT_VALUE.
729 * Setting, clearing, and testing _mapcount PAGE_BUDDY_MAPCOUNT_VALUE is
730 * serialized by zone->lock.
731 *
732 * For recording page's order, we use page_private(page).
733 */
734 static inline int page_is_buddy(struct page *page, struct page *buddy,
735 unsigned int order)
736 {
737 if (page_is_guard(buddy) && page_order(buddy) == order) {
738 if (page_zone_id(page) != page_zone_id(buddy))
739 return 0;
740
741 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
742
743 return 1;
744 }
745
746 if (PageBuddy(buddy) && page_order(buddy) == order) {
747 /*
748 * zone check is done late to avoid uselessly
749 * calculating zone/node ids for pages that could
750 * never merge.
751 */
752 if (page_zone_id(page) != page_zone_id(buddy))
753 return 0;
754
755 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
756
757 return 1;
758 }
759 return 0;
760 }
761
762 /*
763 * Freeing function for a buddy system allocator.
764 *
765 * The concept of a buddy system is to maintain direct-mapped table
766 * (containing bit values) for memory blocks of various "orders".
767 * The bottom level table contains the map for the smallest allocatable
768 * units of memory (here, pages), and each level above it describes
769 * pairs of units from the levels below, hence, "buddies".
770 * At a high level, all that happens here is marking the table entry
771 * at the bottom level available, and propagating the changes upward
772 * as necessary, plus some accounting needed to play nicely with other
773 * parts of the VM system.
774 * At each level, we keep a list of pages, which are heads of continuous
775 * free pages of length of (1 << order) and marked with _mapcount
776 * PAGE_BUDDY_MAPCOUNT_VALUE. Page's order is recorded in page_private(page)
777 * field.
778 * So when we are allocating or freeing one, we can derive the state of the
779 * other. That is, if we allocate a small block, and both were
780 * free, the remainder of the region must be split into blocks.
781 * If a block is freed, and its buddy is also free, then this
782 * triggers coalescing into a block of larger size.
783 *
784 * -- nyc
785 */
786
787 static inline void __free_one_page(struct page *page,
788 unsigned long pfn,
789 struct zone *zone, unsigned int order,
790 int migratetype)
791 {
792 unsigned long combined_pfn;
793 unsigned long uninitialized_var(buddy_pfn);
794 struct page *buddy;
795 unsigned int max_order;
796
797 max_order = min_t(unsigned int, MAX_ORDER, pageblock_order + 1);
798
799 VM_BUG_ON(!zone_is_initialized(zone));
800 VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
801
802 VM_BUG_ON(migratetype == -1);
803 if (likely(!is_migrate_isolate(migratetype)))
804 __mod_zone_freepage_state(zone, 1 << order, migratetype);
805
806 VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page);
807 VM_BUG_ON_PAGE(bad_range(zone, page), page);
808
809 continue_merging:
810 while (order < max_order - 1) {
811 buddy_pfn = __find_buddy_pfn(pfn, order);
812 buddy = page + (buddy_pfn - pfn);
813
814 if (!pfn_valid_within(buddy_pfn))
815 goto done_merging;
816 if (!page_is_buddy(page, buddy, order))
817 goto done_merging;
818 /*
819 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
820 * merge with it and move up one order.
821 */
822 if (page_is_guard(buddy)) {
823 clear_page_guard(zone, buddy, order, migratetype);
824 } else {
825 list_del(&buddy->lru);
826 zone->free_area[order].nr_free--;
827 rmv_page_order(buddy);
828 }
829 combined_pfn = buddy_pfn & pfn;
830 page = page + (combined_pfn - pfn);
831 pfn = combined_pfn;
832 order++;
833 }
834 if (max_order < MAX_ORDER) {
835 /* If we are here, it means order is >= pageblock_order.
836 * We want to prevent merge between freepages on isolate
837 * pageblock and normal pageblock. Without this, pageblock
838 * isolation could cause incorrect freepage or CMA accounting.
839 *
840 * We don't want to hit this code for the more frequent
841 * low-order merging.
842 */
843 if (unlikely(has_isolate_pageblock(zone))) {
844 int buddy_mt;
845
846 buddy_pfn = __find_buddy_pfn(pfn, order);
847 buddy = page + (buddy_pfn - pfn);
848 buddy_mt = get_pageblock_migratetype(buddy);
849
850 if (migratetype != buddy_mt
851 && (is_migrate_isolate(migratetype) ||
852 is_migrate_isolate(buddy_mt)))
853 goto done_merging;
854 }
855 max_order++;
856 goto continue_merging;
857 }
858
859 done_merging:
860 set_page_order(page, order);
861
862 /*
863 * If this is not the largest possible page, check if the buddy
864 * of the next-highest order is free. If it is, it's possible
865 * that pages are being freed that will coalesce soon. In case,
866 * that is happening, add the free page to the tail of the list
867 * so it's less likely to be used soon and more likely to be merged
868 * as a higher order page
869 */
870 if ((order < MAX_ORDER-2) && pfn_valid_within(buddy_pfn)) {
871 struct page *higher_page, *higher_buddy;
872 combined_pfn = buddy_pfn & pfn;
873 higher_page = page + (combined_pfn - pfn);
874 buddy_pfn = __find_buddy_pfn(combined_pfn, order + 1);
875 higher_buddy = higher_page + (buddy_pfn - combined_pfn);
876 if (pfn_valid_within(buddy_pfn) &&
877 page_is_buddy(higher_page, higher_buddy, order + 1)) {
878 list_add_tail(&page->lru,
879 &zone->free_area[order].free_list[migratetype]);
880 goto out;
881 }
882 }
883
884 list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
885 out:
886 zone->free_area[order].nr_free++;
887 }
888
889 /*
890 * A bad page could be due to a number of fields. Instead of multiple branches,
891 * try and check multiple fields with one check. The caller must do a detailed
892 * check if necessary.
893 */
894 static inline bool page_expected_state(struct page *page,
895 unsigned long check_flags)
896 {
897 if (unlikely(atomic_read(&page->_mapcount) != -1))
898 return false;
899
900 if (unlikely((unsigned long)page->mapping |
901 page_ref_count(page) |
902 #ifdef CONFIG_MEMCG
903 (unsigned long)page->mem_cgroup |
904 #endif
905 (page->flags & check_flags)))
906 return false;
907
908 return true;
909 }
910
911 static void free_pages_check_bad(struct page *page)
912 {
913 const char *bad_reason;
914 unsigned long bad_flags;
915
916 bad_reason = NULL;
917 bad_flags = 0;
918
919 if (unlikely(atomic_read(&page->_mapcount) != -1))
920 bad_reason = "nonzero mapcount";
921 if (unlikely(page->mapping != NULL))
922 bad_reason = "non-NULL mapping";
923 if (unlikely(page_ref_count(page) != 0))
924 bad_reason = "nonzero _refcount";
925 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) {
926 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
927 bad_flags = PAGE_FLAGS_CHECK_AT_FREE;
928 }
929 #ifdef CONFIG_MEMCG
930 if (unlikely(page->mem_cgroup))
931 bad_reason = "page still charged to cgroup";
932 #endif
933 bad_page(page, bad_reason, bad_flags);
934 }
935
936 static inline int free_pages_check(struct page *page)
937 {
938 if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
939 return 0;
940
941 /* Something has gone sideways, find it */
942 free_pages_check_bad(page);
943 return 1;
944 }
945
946 static int free_tail_pages_check(struct page *head_page, struct page *page)
947 {
948 int ret = 1;
949
950 /*
951 * We rely page->lru.next never has bit 0 set, unless the page
952 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
953 */
954 BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
955
956 if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
957 ret = 0;
958 goto out;
959 }
960 switch (page - head_page) {
961 case 1:
962 /* the first tail page: ->mapping is compound_mapcount() */
963 if (unlikely(compound_mapcount(page))) {
964 bad_page(page, "nonzero compound_mapcount", 0);
965 goto out;
966 }
967 break;
968 case 2:
969 /*
970 * the second tail page: ->mapping is
971 * page_deferred_list().next -- ignore value.
972 */
973 break;
974 default:
975 if (page->mapping != TAIL_MAPPING) {
976 bad_page(page, "corrupted mapping in tail page", 0);
977 goto out;
978 }
979 break;
980 }
981 if (unlikely(!PageTail(page))) {
982 bad_page(page, "PageTail not set", 0);
983 goto out;
984 }
985 if (unlikely(compound_head(page) != head_page)) {
986 bad_page(page, "compound_head not consistent", 0);
987 goto out;
988 }
989 ret = 0;
990 out:
991 page->mapping = NULL;
992 clear_compound_head(page);
993 return ret;
994 }
995
996 static __always_inline bool free_pages_prepare(struct page *page,
997 unsigned int order, bool check_free)
998 {
999 int bad = 0;
1000
1001 VM_BUG_ON_PAGE(PageTail(page), page);
1002
1003 trace_mm_page_free(page, order);
1004 kmemcheck_free_shadow(page, order);
1005
1006 /*
1007 * Check tail pages before head page information is cleared to
1008 * avoid checking PageCompound for order-0 pages.
1009 */
1010 if (unlikely(order)) {
1011 bool compound = PageCompound(page);
1012 int i;
1013
1014 VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
1015
1016 if (compound)
1017 ClearPageDoubleMap(page);
1018 for (i = 1; i < (1 << order); i++) {
1019 if (compound)
1020 bad += free_tail_pages_check(page, page + i);
1021 if (unlikely(free_pages_check(page + i))) {
1022 bad++;
1023 continue;
1024 }
1025 (page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1026 }
1027 }
1028 if (PageMappingFlags(page))
1029 page->mapping = NULL;
1030 if (memcg_kmem_enabled() && PageKmemcg(page))
1031 memcg_kmem_uncharge(page, order);
1032 if (check_free)
1033 bad += free_pages_check(page);
1034 if (bad)
1035 return false;
1036
1037 page_cpupid_reset_last(page);
1038 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1039 reset_page_owner(page, order);
1040
1041 if (!PageHighMem(page)) {
1042 debug_check_no_locks_freed(page_address(page),
1043 PAGE_SIZE << order);
1044 debug_check_no_obj_freed(page_address(page),
1045 PAGE_SIZE << order);
1046 }
1047 arch_free_page(page, order);
1048 kernel_poison_pages(page, 1 << order, 0);
1049 kernel_map_pages(page, 1 << order, 0);
1050 kasan_free_pages(page, order);
1051
1052 return true;
1053 }
1054
1055 #ifdef CONFIG_DEBUG_VM
1056 static inline bool free_pcp_prepare(struct page *page)
1057 {
1058 return free_pages_prepare(page, 0, true);
1059 }
1060
1061 static inline bool bulkfree_pcp_prepare(struct page *page)
1062 {
1063 return false;
1064 }
1065 #else
1066 static bool free_pcp_prepare(struct page *page)
1067 {
1068 return free_pages_prepare(page, 0, false);
1069 }
1070
1071 static bool bulkfree_pcp_prepare(struct page *page)
1072 {
1073 return free_pages_check(page);
1074 }
1075 #endif /* CONFIG_DEBUG_VM */
1076
1077 /*
1078 * Frees a number of pages from the PCP lists
1079 * Assumes all pages on list are in same zone, and of same order.
1080 * count is the number of pages to free.
1081 *
1082 * If the zone was previously in an "all pages pinned" state then look to
1083 * see if this freeing clears that state.
1084 *
1085 * And clear the zone's pages_scanned counter, to hold off the "all pages are
1086 * pinned" detection logic.
1087 */
1088 static void free_pcppages_bulk(struct zone *zone, int count,
1089 struct per_cpu_pages *pcp)
1090 {
1091 int migratetype = 0;
1092 int batch_free = 0;
1093 unsigned long nr_scanned, flags;
1094 bool isolated_pageblocks;
1095
1096 spin_lock_irqsave(&zone->lock, flags);
1097 isolated_pageblocks = has_isolate_pageblock(zone);
1098 nr_scanned = node_page_state(zone->zone_pgdat, NR_PAGES_SCANNED);
1099 if (nr_scanned)
1100 __mod_node_page_state(zone->zone_pgdat, NR_PAGES_SCANNED, -nr_scanned);
1101
1102 while (count) {
1103 struct page *page;
1104 struct list_head *list;
1105
1106 /*
1107 * Remove pages from lists in a round-robin fashion. A
1108 * batch_free count is maintained that is incremented when an
1109 * empty list is encountered. This is so more pages are freed
1110 * off fuller lists instead of spinning excessively around empty
1111 * lists
1112 */
1113 do {
1114 batch_free++;
1115 if (++migratetype == MIGRATE_PCPTYPES)
1116 migratetype = 0;
1117 list = &pcp->lists[migratetype];
1118 } while (list_empty(list));
1119
1120 /* This is the only non-empty list. Free them all. */
1121 if (batch_free == MIGRATE_PCPTYPES)
1122 batch_free = count;
1123
1124 do {
1125 int mt; /* migratetype of the to-be-freed page */
1126
1127 page = list_last_entry(list, struct page, lru);
1128 /* must delete as __free_one_page list manipulates */
1129 list_del(&page->lru);
1130
1131 mt = get_pcppage_migratetype(page);
1132 /* MIGRATE_ISOLATE page should not go to pcplists */
1133 VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
1134 /* Pageblock could have been isolated meanwhile */
1135 if (unlikely(isolated_pageblocks))
1136 mt = get_pageblock_migratetype(page);
1137
1138 if (bulkfree_pcp_prepare(page))
1139 continue;
1140
1141 __free_one_page(page, page_to_pfn(page), zone, 0, mt);
1142 trace_mm_page_pcpu_drain(page, 0, mt);
1143 } while (--count && --batch_free && !list_empty(list));
1144 }
1145 spin_unlock_irqrestore(&zone->lock, flags);
1146 }
1147
1148 static void free_one_page(struct zone *zone,
1149 struct page *page, unsigned long pfn,
1150 unsigned int order,
1151 int migratetype)
1152 {
1153 unsigned long nr_scanned, flags;
1154 spin_lock_irqsave(&zone->lock, flags);
1155 __count_vm_events(PGFREE, 1 << order);
1156 nr_scanned = node_page_state(zone->zone_pgdat, NR_PAGES_SCANNED);
1157 if (nr_scanned)
1158 __mod_node_page_state(zone->zone_pgdat, NR_PAGES_SCANNED, -nr_scanned);
1159
1160 if (unlikely(has_isolate_pageblock(zone) ||
1161 is_migrate_isolate(migratetype))) {
1162 migratetype = get_pfnblock_migratetype(page, pfn);
1163 }
1164 __free_one_page(page, pfn, zone, order, migratetype);
1165 spin_unlock_irqrestore(&zone->lock, flags);
1166 }
1167
1168 static void __meminit __init_single_page(struct page *page, unsigned long pfn,
1169 unsigned long zone, int nid)
1170 {
1171 set_page_links(page, zone, nid, pfn);
1172 init_page_count(page);
1173 page_mapcount_reset(page);
1174 page_cpupid_reset_last(page);
1175
1176 INIT_LIST_HEAD(&page->lru);
1177 #ifdef WANT_PAGE_VIRTUAL
1178 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
1179 if (!is_highmem_idx(zone))
1180 set_page_address(page, __va(pfn << PAGE_SHIFT));
1181 #endif
1182 }
1183
1184 static void __meminit __init_single_pfn(unsigned long pfn, unsigned long zone,
1185 int nid)
1186 {
1187 return __init_single_page(pfn_to_page(pfn), pfn, zone, nid);
1188 }
1189
1190 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1191 static void init_reserved_page(unsigned long pfn)
1192 {
1193 pg_data_t *pgdat;
1194 int nid, zid;
1195
1196 if (!early_page_uninitialised(pfn))
1197 return;
1198
1199 nid = early_pfn_to_nid(pfn);
1200 pgdat = NODE_DATA(nid);
1201
1202 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1203 struct zone *zone = &pgdat->node_zones[zid];
1204
1205 if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone))
1206 break;
1207 }
1208 __init_single_pfn(pfn, zid, nid);
1209 }
1210 #else
1211 static inline void init_reserved_page(unsigned long pfn)
1212 {
1213 }
1214 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1215
1216 /*
1217 * Initialised pages do not have PageReserved set. This function is
1218 * called for each range allocated by the bootmem allocator and
1219 * marks the pages PageReserved. The remaining valid pages are later
1220 * sent to the buddy page allocator.
1221 */
1222 void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end)
1223 {
1224 unsigned long start_pfn = PFN_DOWN(start);
1225 unsigned long end_pfn = PFN_UP(end);
1226
1227 for (; start_pfn < end_pfn; start_pfn++) {
1228 if (pfn_valid(start_pfn)) {
1229 struct page *page = pfn_to_page(start_pfn);
1230
1231 init_reserved_page(start_pfn);
1232
1233 /* Avoid false-positive PageTail() */
1234 INIT_LIST_HEAD(&page->lru);
1235
1236 SetPageReserved(page);
1237 }
1238 }
1239 }
1240
1241 static void __free_pages_ok(struct page *page, unsigned int order)
1242 {
1243 int migratetype;
1244 unsigned long pfn = page_to_pfn(page);
1245
1246 if (!free_pages_prepare(page, order, true))
1247 return;
1248
1249 migratetype = get_pfnblock_migratetype(page, pfn);
1250 free_one_page(page_zone(page), page, pfn, order, migratetype);
1251 }
1252
1253 static void __init __free_pages_boot_core(struct page *page, unsigned int order)
1254 {
1255 unsigned int nr_pages = 1 << order;
1256 struct page *p = page;
1257 unsigned int loop;
1258
1259 prefetchw(p);
1260 for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
1261 prefetchw(p + 1);
1262 __ClearPageReserved(p);
1263 set_page_count(p, 0);
1264 }
1265 __ClearPageReserved(p);
1266 set_page_count(p, 0);
1267
1268 page_zone(page)->managed_pages += nr_pages;
1269 set_page_refcounted(page);
1270 __free_pages(page, order);
1271 }
1272
1273 #if defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) || \
1274 defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
1275
1276 static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
1277
1278 int __meminit early_pfn_to_nid(unsigned long pfn)
1279 {
1280 static DEFINE_SPINLOCK(early_pfn_lock);
1281 int nid;
1282
1283 spin_lock(&early_pfn_lock);
1284 nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
1285 if (nid < 0)
1286 nid = first_online_node;
1287 spin_unlock(&early_pfn_lock);
1288
1289 return nid;
1290 }
1291 #endif
1292
1293 #ifdef CONFIG_NODES_SPAN_OTHER_NODES
1294 static inline bool __meminit meminit_pfn_in_nid(unsigned long pfn, int node,
1295 struct mminit_pfnnid_cache *state)
1296 {
1297 int nid;
1298
1299 nid = __early_pfn_to_nid(pfn, state);
1300 if (nid >= 0 && nid != node)
1301 return false;
1302 return true;
1303 }
1304
1305 /* Only safe to use early in boot when initialisation is single-threaded */
1306 static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1307 {
1308 return meminit_pfn_in_nid(pfn, node, &early_pfnnid_cache);
1309 }
1310
1311 #else
1312
1313 static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1314 {
1315 return true;
1316 }
1317 static inline bool __meminit meminit_pfn_in_nid(unsigned long pfn, int node,
1318 struct mminit_pfnnid_cache *state)
1319 {
1320 return true;
1321 }
1322 #endif
1323
1324
1325 void __init __free_pages_bootmem(struct page *page, unsigned long pfn,
1326 unsigned int order)
1327 {
1328 if (early_page_uninitialised(pfn))
1329 return;
1330 return __free_pages_boot_core(page, order);
1331 }
1332
1333 /*
1334 * Check that the whole (or subset of) a pageblock given by the interval of
1335 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1336 * with the migration of free compaction scanner. The scanners then need to
1337 * use only pfn_valid_within() check for arches that allow holes within
1338 * pageblocks.
1339 *
1340 * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1341 *
1342 * It's possible on some configurations to have a setup like node0 node1 node0
1343 * i.e. it's possible that all pages within a zones range of pages do not
1344 * belong to a single zone. We assume that a border between node0 and node1
1345 * can occur within a single pageblock, but not a node0 node1 node0
1346 * interleaving within a single pageblock. It is therefore sufficient to check
1347 * the first and last page of a pageblock and avoid checking each individual
1348 * page in a pageblock.
1349 */
1350 struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
1351 unsigned long end_pfn, struct zone *zone)
1352 {
1353 struct page *start_page;
1354 struct page *end_page;
1355
1356 /* end_pfn is one past the range we are checking */
1357 end_pfn--;
1358
1359 if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
1360 return NULL;
1361
1362 start_page = pfn_to_page(start_pfn);
1363
1364 if (page_zone(start_page) != zone)
1365 return NULL;
1366
1367 end_page = pfn_to_page(end_pfn);
1368
1369 /* This gives a shorter code than deriving page_zone(end_page) */
1370 if (page_zone_id(start_page) != page_zone_id(end_page))
1371 return NULL;
1372
1373 return start_page;
1374 }
1375
1376 void set_zone_contiguous(struct zone *zone)
1377 {
1378 unsigned long block_start_pfn = zone->zone_start_pfn;
1379 unsigned long block_end_pfn;
1380
1381 block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages);
1382 for (; block_start_pfn < zone_end_pfn(zone);
1383 block_start_pfn = block_end_pfn,
1384 block_end_pfn += pageblock_nr_pages) {
1385
1386 block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));
1387
1388 if (!__pageblock_pfn_to_page(block_start_pfn,
1389 block_end_pfn, zone))
1390 return;
1391 }
1392
1393 /* We confirm that there is no hole */
1394 zone->contiguous = true;
1395 }
1396
1397 void clear_zone_contiguous(struct zone *zone)
1398 {
1399 zone->contiguous = false;
1400 }
1401
1402 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1403 static void __init deferred_free_range(struct page *page,
1404 unsigned long pfn, int nr_pages)
1405 {
1406 int i;
1407
1408 if (!page)
1409 return;
1410
1411 /* Free a large naturally-aligned chunk if possible */
1412 if (nr_pages == pageblock_nr_pages &&
1413 (pfn & (pageblock_nr_pages - 1)) == 0) {
1414 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1415 __free_pages_boot_core(page, pageblock_order);
1416 return;
1417 }
1418
1419 for (i = 0; i < nr_pages; i++, page++, pfn++) {
1420 if ((pfn & (pageblock_nr_pages - 1)) == 0)
1421 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1422 __free_pages_boot_core(page, 0);
1423 }
1424 }
1425
1426 /* Completion tracking for deferred_init_memmap() threads */
1427 static atomic_t pgdat_init_n_undone __initdata;
1428 static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);
1429
1430 static inline void __init pgdat_init_report_one_done(void)
1431 {
1432 if (atomic_dec_and_test(&pgdat_init_n_undone))
1433 complete(&pgdat_init_all_done_comp);
1434 }
1435
1436 /* Initialise remaining memory on a node */
1437 static int __init deferred_init_memmap(void *data)
1438 {
1439 pg_data_t *pgdat = data;
1440 int nid = pgdat->node_id;
1441 struct mminit_pfnnid_cache nid_init_state = { };
1442 unsigned long start = jiffies;
1443 unsigned long nr_pages = 0;
1444 unsigned long walk_start, walk_end;
1445 int i, zid;
1446 struct zone *zone;
1447 unsigned long first_init_pfn = pgdat->first_deferred_pfn;
1448 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
1449
1450 if (first_init_pfn == ULONG_MAX) {
1451 pgdat_init_report_one_done();
1452 return 0;
1453 }
1454
1455 /* Bind memory initialisation thread to a local node if possible */
1456 if (!cpumask_empty(cpumask))
1457 set_cpus_allowed_ptr(current, cpumask);
1458
1459 /* Sanity check boundaries */
1460 BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
1461 BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
1462 pgdat->first_deferred_pfn = ULONG_MAX;
1463
1464 /* Only the highest zone is deferred so find it */
1465 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1466 zone = pgdat->node_zones + zid;
1467 if (first_init_pfn < zone_end_pfn(zone))
1468 break;
1469 }
1470
1471 for_each_mem_pfn_range(i, nid, &walk_start, &walk_end, NULL) {
1472 unsigned long pfn, end_pfn;
1473 struct page *page = NULL;
1474 struct page *free_base_page = NULL;
1475 unsigned long free_base_pfn = 0;
1476 int nr_to_free = 0;
1477
1478 end_pfn = min(walk_end, zone_end_pfn(zone));
1479 pfn = first_init_pfn;
1480 if (pfn < walk_start)
1481 pfn = walk_start;
1482 if (pfn < zone->zone_start_pfn)
1483 pfn = zone->zone_start_pfn;
1484
1485 for (; pfn < end_pfn; pfn++) {
1486 if (!pfn_valid_within(pfn))
1487 goto free_range;
1488
1489 /*
1490 * Ensure pfn_valid is checked every
1491 * pageblock_nr_pages for memory holes
1492 */
1493 if ((pfn & (pageblock_nr_pages - 1)) == 0) {
1494 if (!pfn_valid(pfn)) {
1495 page = NULL;
1496 goto free_range;
1497 }
1498 }
1499
1500 if (!meminit_pfn_in_nid(pfn, nid, &nid_init_state)) {
1501 page = NULL;
1502 goto free_range;
1503 }
1504
1505 /* Minimise pfn page lookups and scheduler checks */
1506 if (page && (pfn & (pageblock_nr_pages - 1)) != 0) {
1507 page++;
1508 } else {
1509 nr_pages += nr_to_free;
1510 deferred_free_range(free_base_page,
1511 free_base_pfn, nr_to_free);
1512 free_base_page = NULL;
1513 free_base_pfn = nr_to_free = 0;
1514
1515 page = pfn_to_page(pfn);
1516 cond_resched();
1517 }
1518
1519 if (page->flags) {
1520 VM_BUG_ON(page_zone(page) != zone);
1521 goto free_range;
1522 }
1523
1524 __init_single_page(page, pfn, zid, nid);
1525 if (!free_base_page) {
1526 free_base_page = page;
1527 free_base_pfn = pfn;
1528 nr_to_free = 0;
1529 }
1530 nr_to_free++;
1531
1532 /* Where possible, batch up pages for a single free */
1533 continue;
1534 free_range:
1535 /* Free the current block of pages to allocator */
1536 nr_pages += nr_to_free;
1537 deferred_free_range(free_base_page, free_base_pfn,
1538 nr_to_free);
1539 free_base_page = NULL;
1540 free_base_pfn = nr_to_free = 0;
1541 }
1542 /* Free the last block of pages to allocator */
1543 nr_pages += nr_to_free;
1544 deferred_free_range(free_base_page, free_base_pfn, nr_to_free);
1545
1546 first_init_pfn = max(end_pfn, first_init_pfn);
1547 }
1548
1549 /* Sanity check that the next zone really is unpopulated */
1550 WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));
1551
1552 pr_info("node %d initialised, %lu pages in %ums\n", nid, nr_pages,
1553 jiffies_to_msecs(jiffies - start));
1554
1555 pgdat_init_report_one_done();
1556 return 0;
1557 }
1558 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1559
1560 void __init page_alloc_init_late(void)
1561 {
1562 struct zone *zone;
1563
1564 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1565 int nid;
1566
1567 /* There will be num_node_state(N_MEMORY) threads */
1568 atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
1569 for_each_node_state(nid, N_MEMORY) {
1570 kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
1571 }
1572
1573 /* Block until all are initialised */
1574 wait_for_completion(&pgdat_init_all_done_comp);
1575
1576 /* Reinit limits that are based on free pages after the kernel is up */
1577 files_maxfiles_init();
1578 #endif
1579
1580 for_each_populated_zone(zone)
1581 set_zone_contiguous(zone);
1582 }
1583
1584 #ifdef CONFIG_CMA
1585 /* Free whole pageblock and set its migration type to MIGRATE_CMA. */
1586 void __init init_cma_reserved_pageblock(struct page *page)
1587 {
1588 unsigned i = pageblock_nr_pages;
1589 struct page *p = page;
1590
1591 do {
1592 __ClearPageReserved(p);
1593 set_page_count(p, 0);
1594 } while (++p, --i);
1595
1596 set_pageblock_migratetype(page, MIGRATE_CMA);
1597
1598 if (pageblock_order >= MAX_ORDER) {
1599 i = pageblock_nr_pages;
1600 p = page;
1601 do {
1602 set_page_refcounted(p);
1603 __free_pages(p, MAX_ORDER - 1);
1604 p += MAX_ORDER_NR_PAGES;
1605 } while (i -= MAX_ORDER_NR_PAGES);
1606 } else {
1607 set_page_refcounted(page);
1608 __free_pages(page, pageblock_order);
1609 }
1610
1611 adjust_managed_page_count(page, pageblock_nr_pages);
1612 }
1613 #endif
1614
1615 /*
1616 * The order of subdivision here is critical for the IO subsystem.
1617 * Please do not alter this order without good reasons and regression
1618 * testing. Specifically, as large blocks of memory are subdivided,
1619 * the order in which smaller blocks are delivered depends on the order
1620 * they're subdivided in this function. This is the primary factor
1621 * influencing the order in which pages are delivered to the IO
1622 * subsystem according to empirical testing, and this is also justified
1623 * by considering the behavior of a buddy system containing a single
1624 * large block of memory acted on by a series of small allocations.
1625 * This behavior is a critical factor in sglist merging's success.
1626 *
1627 * -- nyc
1628 */
1629 static inline void expand(struct zone *zone, struct page *page,
1630 int low, int high, struct free_area *area,
1631 int migratetype)
1632 {
1633 unsigned long size = 1 << high;
1634
1635 while (high > low) {
1636 area--;
1637 high--;
1638 size >>= 1;
1639 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
1640
1641 /*
1642 * Mark as guard pages (or page), that will allow to
1643 * merge back to allocator when buddy will be freed.
1644 * Corresponding page table entries will not be touched,
1645 * pages will stay not present in virtual address space
1646 */
1647 if (set_page_guard(zone, &page[size], high, migratetype))
1648 continue;
1649
1650 list_add(&page[size].lru, &area->free_list[migratetype]);
1651 area->nr_free++;
1652 set_page_order(&page[size], high);
1653 }
1654 }
1655
1656 static void check_new_page_bad(struct page *page)
1657 {
1658 const char *bad_reason = NULL;
1659 unsigned long bad_flags = 0;
1660
1661 if (unlikely(atomic_read(&page->_mapcount) != -1))
1662 bad_reason = "nonzero mapcount";
1663 if (unlikely(page->mapping != NULL))
1664 bad_reason = "non-NULL mapping";
1665 if (unlikely(page_ref_count(page) != 0))
1666 bad_reason = "nonzero _count";
1667 if (unlikely(page->flags & __PG_HWPOISON)) {
1668 bad_reason = "HWPoisoned (hardware-corrupted)";
1669 bad_flags = __PG_HWPOISON;
1670 /* Don't complain about hwpoisoned pages */
1671 page_mapcount_reset(page); /* remove PageBuddy */
1672 return;
1673 }
1674 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) {
1675 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set";
1676 bad_flags = PAGE_FLAGS_CHECK_AT_PREP;
1677 }
1678 #ifdef CONFIG_MEMCG
1679 if (unlikely(page->mem_cgroup))
1680 bad_reason = "page still charged to cgroup";
1681 #endif
1682 bad_page(page, bad_reason, bad_flags);
1683 }
1684
1685 /*
1686 * This page is about to be returned from the page allocator
1687 */
1688 static inline int check_new_page(struct page *page)
1689 {
1690 if (likely(page_expected_state(page,
1691 PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
1692 return 0;
1693
1694 check_new_page_bad(page);
1695 return 1;
1696 }
1697
1698 static inline bool free_pages_prezeroed(bool poisoned)
1699 {
1700 return IS_ENABLED(CONFIG_PAGE_POISONING_ZERO) &&
1701 page_poisoning_enabled() && poisoned;
1702 }
1703
1704 #ifdef CONFIG_DEBUG_VM
1705 static bool check_pcp_refill(struct page *page)
1706 {
1707 return false;
1708 }
1709
1710 static bool check_new_pcp(struct page *page)
1711 {
1712 return check_new_page(page);
1713 }
1714 #else
1715 static bool check_pcp_refill(struct page *page)
1716 {
1717 return check_new_page(page);
1718 }
1719 static bool check_new_pcp(struct page *page)
1720 {
1721 return false;
1722 }
1723 #endif /* CONFIG_DEBUG_VM */
1724
1725 static bool check_new_pages(struct page *page, unsigned int order)
1726 {
1727 int i;
1728 for (i = 0; i < (1 << order); i++) {
1729 struct page *p = page + i;
1730
1731 if (unlikely(check_new_page(p)))
1732 return true;
1733 }
1734
1735 return false;
1736 }
1737
1738 inline void post_alloc_hook(struct page *page, unsigned int order,
1739 gfp_t gfp_flags)
1740 {
1741 set_page_private(page, 0);
1742 set_page_refcounted(page);
1743
1744 arch_alloc_page(page, order);
1745 kernel_map_pages(page, 1 << order, 1);
1746 kernel_poison_pages(page, 1 << order, 1);
1747 kasan_alloc_pages(page, order);
1748 set_page_owner(page, order, gfp_flags);
1749 }
1750
1751 static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
1752 unsigned int alloc_flags)
1753 {
1754 int i;
1755 bool poisoned = true;
1756
1757 for (i = 0; i < (1 << order); i++) {
1758 struct page *p = page + i;
1759 if (poisoned)
1760 poisoned &= page_is_poisoned(p);
1761 }
1762
1763 post_alloc_hook(page, order, gfp_flags);
1764
1765 if (!free_pages_prezeroed(poisoned) && (gfp_flags & __GFP_ZERO))
1766 for (i = 0; i < (1 << order); i++)
1767 clear_highpage(page + i);
1768
1769 if (order && (gfp_flags & __GFP_COMP))
1770 prep_compound_page(page, order);
1771
1772 /*
1773 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
1774 * allocate the page. The expectation is that the caller is taking
1775 * steps that will free more memory. The caller should avoid the page
1776 * being used for !PFMEMALLOC purposes.
1777 */
1778 if (alloc_flags & ALLOC_NO_WATERMARKS)
1779 set_page_pfmemalloc(page);
1780 else
1781 clear_page_pfmemalloc(page);
1782 }
1783
1784 /*
1785 * Go through the free lists for the given migratetype and remove
1786 * the smallest available page from the freelists
1787 */
1788 static inline
1789 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
1790 int migratetype)
1791 {
1792 unsigned int current_order;
1793 struct free_area *area;
1794 struct page *page;
1795
1796 /* Find a page of the appropriate size in the preferred list */
1797 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
1798 area = &(zone->free_area[current_order]);
1799 page = list_first_entry_or_null(&area->free_list[migratetype],
1800 struct page, lru);
1801 if (!page)
1802 continue;
1803 list_del(&page->lru);
1804 rmv_page_order(page);
1805 area->nr_free--;
1806 expand(zone, page, order, current_order, area, migratetype);
1807 set_pcppage_migratetype(page, migratetype);
1808 return page;
1809 }
1810
1811 return NULL;
1812 }
1813
1814
1815 /*
1816 * This array describes the order lists are fallen back to when
1817 * the free lists for the desirable migrate type are depleted
1818 */
1819 static int fallbacks[MIGRATE_TYPES][4] = {
1820 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
1821 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
1822 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES },
1823 #ifdef CONFIG_CMA
1824 [MIGRATE_CMA] = { MIGRATE_TYPES }, /* Never used */
1825 #endif
1826 #ifdef CONFIG_MEMORY_ISOLATION
1827 [MIGRATE_ISOLATE] = { MIGRATE_TYPES }, /* Never used */
1828 #endif
1829 };
1830
1831 #ifdef CONFIG_CMA
1832 static struct page *__rmqueue_cma_fallback(struct zone *zone,
1833 unsigned int order)
1834 {
1835 return __rmqueue_smallest(zone, order, MIGRATE_CMA);
1836 }
1837 #else
1838 static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
1839 unsigned int order) { return NULL; }
1840 #endif
1841
1842 /*
1843 * Move the free pages in a range to the free lists of the requested type.
1844 * Note that start_page and end_pages are not aligned on a pageblock
1845 * boundary. If alignment is required, use move_freepages_block()
1846 */
1847 int move_freepages(struct zone *zone,
1848 struct page *start_page, struct page *end_page,
1849 int migratetype)
1850 {
1851 struct page *page;
1852 unsigned int order;
1853 int pages_moved = 0;
1854
1855 #ifndef CONFIG_HOLES_IN_ZONE
1856 /*
1857 * page_zone is not safe to call in this context when
1858 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
1859 * anyway as we check zone boundaries in move_freepages_block().
1860 * Remove at a later date when no bug reports exist related to
1861 * grouping pages by mobility
1862 */
1863 VM_BUG_ON(page_zone(start_page) != page_zone(end_page));
1864 #endif
1865
1866 for (page = start_page; page <= end_page;) {
1867 if (!pfn_valid_within(page_to_pfn(page))) {
1868 page++;
1869 continue;
1870 }
1871
1872 /* Make sure we are not inadvertently changing nodes */
1873 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
1874
1875 if (!PageBuddy(page)) {
1876 page++;
1877 continue;
1878 }
1879
1880 order = page_order(page);
1881 list_move(&page->lru,
1882 &zone->free_area[order].free_list[migratetype]);
1883 page += 1 << order;
1884 pages_moved += 1 << order;
1885 }
1886
1887 return pages_moved;
1888 }
1889
1890 int move_freepages_block(struct zone *zone, struct page *page,
1891 int migratetype)
1892 {
1893 unsigned long start_pfn, end_pfn;
1894 struct page *start_page, *end_page;
1895
1896 start_pfn = page_to_pfn(page);
1897 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
1898 start_page = pfn_to_page(start_pfn);
1899 end_page = start_page + pageblock_nr_pages - 1;
1900 end_pfn = start_pfn + pageblock_nr_pages - 1;
1901
1902 /* Do not cross zone boundaries */
1903 if (!zone_spans_pfn(zone, start_pfn))
1904 start_page = page;
1905 if (!zone_spans_pfn(zone, end_pfn))
1906 return 0;
1907
1908 return move_freepages(zone, start_page, end_page, migratetype);
1909 }
1910
1911 static void change_pageblock_range(struct page *pageblock_page,
1912 int start_order, int migratetype)
1913 {
1914 int nr_pageblocks = 1 << (start_order - pageblock_order);
1915
1916 while (nr_pageblocks--) {
1917 set_pageblock_migratetype(pageblock_page, migratetype);
1918 pageblock_page += pageblock_nr_pages;
1919 }
1920 }
1921
1922 /*
1923 * When we are falling back to another migratetype during allocation, try to
1924 * steal extra free pages from the same pageblocks to satisfy further
1925 * allocations, instead of polluting multiple pageblocks.
1926 *
1927 * If we are stealing a relatively large buddy page, it is likely there will
1928 * be more free pages in the pageblock, so try to steal them all. For
1929 * reclaimable and unmovable allocations, we steal regardless of page size,
1930 * as fragmentation caused by those allocations polluting movable pageblocks
1931 * is worse than movable allocations stealing from unmovable and reclaimable
1932 * pageblocks.
1933 */
1934 static bool can_steal_fallback(unsigned int order, int start_mt)
1935 {
1936 /*
1937 * Leaving this order check is intended, although there is
1938 * relaxed order check in next check. The reason is that
1939 * we can actually steal whole pageblock if this condition met,
1940 * but, below check doesn't guarantee it and that is just heuristic
1941 * so could be changed anytime.
1942 */
1943 if (order >= pageblock_order)
1944 return true;
1945
1946 if (order >= pageblock_order / 2 ||
1947 start_mt == MIGRATE_RECLAIMABLE ||
1948 start_mt == MIGRATE_UNMOVABLE ||
1949 page_group_by_mobility_disabled)
1950 return true;
1951
1952 return false;
1953 }
1954
1955 /*
1956 * This function implements actual steal behaviour. If order is large enough,
1957 * we can steal whole pageblock. If not, we first move freepages in this
1958 * pageblock and check whether half of pages are moved or not. If half of
1959 * pages are moved, we can change migratetype of pageblock and permanently
1960 * use it's pages as requested migratetype in the future.
1961 */
1962 static void steal_suitable_fallback(struct zone *zone, struct page *page,
1963 int start_type)
1964 {
1965 unsigned int current_order = page_order(page);
1966 int pages;
1967
1968 /* Take ownership for orders >= pageblock_order */
1969 if (current_order >= pageblock_order) {
1970 change_pageblock_range(page, current_order, start_type);
1971 return;
1972 }
1973
1974 pages = move_freepages_block(zone, page, start_type);
1975
1976 /* Claim the whole block if over half of it is free */
1977 if (pages >= (1 << (pageblock_order-1)) ||
1978 page_group_by_mobility_disabled)
1979 set_pageblock_migratetype(page, start_type);
1980 }
1981
1982 /*
1983 * Check whether there is a suitable fallback freepage with requested order.
1984 * If only_stealable is true, this function returns fallback_mt only if
1985 * we can steal other freepages all together. This would help to reduce
1986 * fragmentation due to mixed migratetype pages in one pageblock.
1987 */
1988 int find_suitable_fallback(struct free_area *area, unsigned int order,
1989 int migratetype, bool only_stealable, bool *can_steal)
1990 {
1991 int i;
1992 int fallback_mt;
1993
1994 if (area->nr_free == 0)
1995 return -1;
1996
1997 *can_steal = false;
1998 for (i = 0;; i++) {
1999 fallback_mt = fallbacks[migratetype][i];
2000 if (fallback_mt == MIGRATE_TYPES)
2001 break;
2002
2003 if (list_empty(&area->free_list[fallback_mt]))
2004 continue;
2005
2006 if (can_steal_fallback(order, migratetype))
2007 *can_steal = true;
2008
2009 if (!only_stealable)
2010 return fallback_mt;
2011
2012 if (*can_steal)
2013 return fallback_mt;
2014 }
2015
2016 return -1;
2017 }
2018
2019 /*
2020 * Reserve a pageblock for exclusive use of high-order atomic allocations if
2021 * there are no empty page blocks that contain a page with a suitable order
2022 */
2023 static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
2024 unsigned int alloc_order)
2025 {
2026 int mt;
2027 unsigned long max_managed, flags;
2028
2029 /*
2030 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
2031 * Check is race-prone but harmless.
2032 */
2033 max_managed = (zone->managed_pages / 100) + pageblock_nr_pages;
2034 if (zone->nr_reserved_highatomic >= max_managed)
2035 return;
2036
2037 spin_lock_irqsave(&zone->lock, flags);
2038
2039 /* Recheck the nr_reserved_highatomic limit under the lock */
2040 if (zone->nr_reserved_highatomic >= max_managed)
2041 goto out_unlock;
2042
2043 /* Yoink! */
2044 mt = get_pageblock_migratetype(page);
2045 if (mt != MIGRATE_HIGHATOMIC &&
2046 !is_migrate_isolate(mt) && !is_migrate_cma(mt)) {
2047 zone->nr_reserved_highatomic += pageblock_nr_pages;
2048 set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
2049 move_freepages_block(zone, page, MIGRATE_HIGHATOMIC);
2050 }
2051
2052 out_unlock:
2053 spin_unlock_irqrestore(&zone->lock, flags);
2054 }
2055
2056 /*
2057 * Used when an allocation is about to fail under memory pressure. This
2058 * potentially hurts the reliability of high-order allocations when under
2059 * intense memory pressure but failed atomic allocations should be easier
2060 * to recover from than an OOM.
2061 *
2062 * If @force is true, try to unreserve a pageblock even though highatomic
2063 * pageblock is exhausted.
2064 */
2065 static bool unreserve_highatomic_pageblock(const struct alloc_context *ac,
2066 bool force)
2067 {
2068 struct zonelist *zonelist = ac->zonelist;
2069 unsigned long flags;
2070 struct zoneref *z;
2071 struct zone *zone;
2072 struct page *page;
2073 int order;
2074 bool ret;
2075
2076 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx,
2077 ac->nodemask) {
2078 /*
2079 * Preserve at least one pageblock unless memory pressure
2080 * is really high.
2081 */
2082 if (!force && zone->nr_reserved_highatomic <=
2083 pageblock_nr_pages)
2084 continue;
2085
2086 spin_lock_irqsave(&zone->lock, flags);
2087 for (order = 0; order < MAX_ORDER; order++) {
2088 struct free_area *area = &(zone->free_area[order]);
2089
2090 page = list_first_entry_or_null(
2091 &area->free_list[MIGRATE_HIGHATOMIC],
2092 struct page, lru);
2093 if (!page)
2094 continue;
2095
2096 /*
2097 * In page freeing path, migratetype change is racy so
2098 * we can counter several free pages in a pageblock
2099 * in this loop althoug we changed the pageblock type
2100 * from highatomic to ac->migratetype. So we should
2101 * adjust the count once.
2102 */
2103 if (get_pageblock_migratetype(page) ==
2104 MIGRATE_HIGHATOMIC) {
2105 /*
2106 * It should never happen but changes to
2107 * locking could inadvertently allow a per-cpu
2108 * drain to add pages to MIGRATE_HIGHATOMIC
2109 * while unreserving so be safe and watch for
2110 * underflows.
2111 */
2112 zone->nr_reserved_highatomic -= min(
2113 pageblock_nr_pages,
2114 zone->nr_reserved_highatomic);
2115 }
2116
2117 /*
2118 * Convert to ac->migratetype and avoid the normal
2119 * pageblock stealing heuristics. Minimally, the caller
2120 * is doing the work and needs the pages. More
2121 * importantly, if the block was always converted to
2122 * MIGRATE_UNMOVABLE or another type then the number
2123 * of pageblocks that cannot be completely freed
2124 * may increase.
2125 */
2126 set_pageblock_migratetype(page, ac->migratetype);
2127 ret = move_freepages_block(zone, page, ac->migratetype);
2128 if (ret) {
2129 spin_unlock_irqrestore(&zone->lock, flags);
2130 return ret;
2131 }
2132 }
2133 spin_unlock_irqrestore(&zone->lock, flags);
2134 }
2135
2136 return false;
2137 }
2138
2139 /* Remove an element from the buddy allocator from the fallback list */
2140 static inline struct page *
2141 __rmqueue_fallback(struct zone *zone, unsigned int order, int start_migratetype)
2142 {
2143 struct free_area *area;
2144 unsigned int current_order;
2145 struct page *page;
2146 int fallback_mt;
2147 bool can_steal;
2148
2149 /* Find the largest possible block of pages in the other list */
2150 for (current_order = MAX_ORDER-1;
2151 current_order >= order && current_order <= MAX_ORDER-1;
2152 --current_order) {
2153 area = &(zone->free_area[current_order]);
2154 fallback_mt = find_suitable_fallback(area, current_order,
2155 start_migratetype, false, &can_steal);
2156 if (fallback_mt == -1)
2157 continue;
2158
2159 page = list_first_entry(&area->free_list[fallback_mt],
2160 struct page, lru);
2161 if (can_steal &&
2162 get_pageblock_migratetype(page) != MIGRATE_HIGHATOMIC)
2163 steal_suitable_fallback(zone, page, start_migratetype);
2164
2165 /* Remove the page from the freelists */
2166 area->nr_free--;
2167 list_del(&page->lru);
2168 rmv_page_order(page);
2169
2170 expand(zone, page, order, current_order, area,
2171 start_migratetype);
2172 /*
2173 * The pcppage_migratetype may differ from pageblock's
2174 * migratetype depending on the decisions in
2175 * find_suitable_fallback(). This is OK as long as it does not
2176 * differ for MIGRATE_CMA pageblocks. Those can be used as
2177 * fallback only via special __rmqueue_cma_fallback() function
2178 */
2179 set_pcppage_migratetype(page, start_migratetype);
2180
2181 trace_mm_page_alloc_extfrag(page, order, current_order,
2182 start_migratetype, fallback_mt);
2183
2184 return page;
2185 }
2186
2187 return NULL;
2188 }
2189
2190 /*
2191 * Do the hard work of removing an element from the buddy allocator.
2192 * Call me with the zone->lock already held.
2193 */
2194 static struct page *__rmqueue(struct zone *zone, unsigned int order,
2195 int migratetype)
2196 {
2197 struct page *page;
2198
2199 page = __rmqueue_smallest(zone, order, migratetype);
2200 if (unlikely(!page)) {
2201 if (migratetype == MIGRATE_MOVABLE)
2202 page = __rmqueue_cma_fallback(zone, order);
2203
2204 if (!page)
2205 page = __rmqueue_fallback(zone, order, migratetype);
2206 }
2207
2208 trace_mm_page_alloc_zone_locked(page, order, migratetype);
2209 return page;
2210 }
2211
2212 /*
2213 * Obtain a specified number of elements from the buddy allocator, all under
2214 * a single hold of the lock, for efficiency. Add them to the supplied list.
2215 * Returns the number of new pages which were placed at *list.
2216 */
2217 static int rmqueue_bulk(struct zone *zone, unsigned int order,
2218 unsigned long count, struct list_head *list,
2219 int migratetype, bool cold)
2220 {
2221 int i, alloced = 0;
2222 unsigned long flags;
2223
2224 spin_lock_irqsave(&zone->lock, flags);
2225 for (i = 0; i < count; ++i) {
2226 struct page *page = __rmqueue(zone, order, migratetype);
2227 if (unlikely(page == NULL))
2228 break;
2229
2230 if (unlikely(check_pcp_refill(page)))
2231 continue;
2232
2233 /*
2234 * Split buddy pages returned by expand() are received here
2235 * in physical page order. The page is added to the callers and
2236 * list and the list head then moves forward. From the callers
2237 * perspective, the linked list is ordered by page number in
2238 * some conditions. This is useful for IO devices that can
2239 * merge IO requests if the physical pages are ordered
2240 * properly.
2241 */
2242 if (likely(!cold))
2243 list_add(&page->lru, list);
2244 else
2245 list_add_tail(&page->lru, list);
2246 list = &page->lru;
2247 alloced++;
2248 if (is_migrate_cma(get_pcppage_migratetype(page)))
2249 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
2250 -(1 << order));
2251 }
2252
2253 /*
2254 * i pages were removed from the buddy list even if some leak due
2255 * to check_pcp_refill failing so adjust NR_FREE_PAGES based
2256 * on i. Do not confuse with 'alloced' which is the number of
2257 * pages added to the pcp list.
2258 */
2259 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
2260 spin_unlock_irqrestore(&zone->lock, flags);
2261 return alloced;
2262 }
2263
2264 #ifdef CONFIG_NUMA
2265 /*
2266 * Called from the vmstat counter updater to drain pagesets of this
2267 * currently executing processor on remote nodes after they have
2268 * expired.
2269 *
2270 * Note that this function must be called with the thread pinned to
2271 * a single processor.
2272 */
2273 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
2274 {
2275 unsigned long flags;
2276 int to_drain, batch;
2277
2278 local_irq_save(flags);
2279 batch = READ_ONCE(pcp->batch);
2280 to_drain = min(pcp->count, batch);
2281 if (to_drain > 0) {
2282 free_pcppages_bulk(zone, to_drain, pcp);
2283 pcp->count -= to_drain;
2284 }
2285 local_irq_restore(flags);
2286 }
2287 #endif
2288
2289 /*
2290 * Drain pcplists of the indicated processor and zone.
2291 *
2292 * The processor must either be the current processor and the
2293 * thread pinned to the current processor or a processor that
2294 * is not online.
2295 */
2296 static void drain_pages_zone(unsigned int cpu, struct zone *zone)
2297 {
2298 unsigned long flags;
2299 struct per_cpu_pageset *pset;
2300 struct per_cpu_pages *pcp;
2301
2302 local_irq_save(flags);
2303 pset = per_cpu_ptr(zone->pageset, cpu);
2304
2305 pcp = &pset->pcp;
2306 if (pcp->count) {
2307 free_pcppages_bulk(zone, pcp->count, pcp);
2308 pcp->count = 0;
2309 }
2310 local_irq_restore(flags);
2311 }
2312
2313 /*
2314 * Drain pcplists of all zones on the indicated processor.
2315 *
2316 * The processor must either be the current processor and the
2317 * thread pinned to the current processor or a processor that
2318 * is not online.
2319 */
2320 static void drain_pages(unsigned int cpu)
2321 {
2322 struct zone *zone;
2323
2324 for_each_populated_zone(zone) {
2325 drain_pages_zone(cpu, zone);
2326 }
2327 }
2328
2329 /*
2330 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
2331 *
2332 * The CPU has to be pinned. When zone parameter is non-NULL, spill just
2333 * the single zone's pages.
2334 */
2335 void drain_local_pages(struct zone *zone)
2336 {
2337 int cpu = smp_processor_id();
2338
2339 if (zone)
2340 drain_pages_zone(cpu, zone);
2341 else
2342 drain_pages(cpu);
2343 }
2344
2345 static void drain_local_pages_wq(struct work_struct *work)
2346 {
2347 /*
2348 * drain_all_pages doesn't use proper cpu hotplug protection so
2349 * we can race with cpu offline when the WQ can move this from
2350 * a cpu pinned worker to an unbound one. We can operate on a different
2351 * cpu which is allright but we also have to make sure to not move to
2352 * a different one.
2353 */
2354 preempt_disable();
2355 drain_local_pages(NULL);
2356 preempt_enable();
2357 }
2358
2359 /*
2360 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
2361 *
2362 * When zone parameter is non-NULL, spill just the single zone's pages.
2363 *
2364 * Note that this can be extremely slow as the draining happens in a workqueue.
2365 */
2366 void drain_all_pages(struct zone *zone)
2367 {
2368 int cpu;
2369
2370 /*
2371 * Allocate in the BSS so we wont require allocation in
2372 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
2373 */
2374 static cpumask_t cpus_with_pcps;
2375
2376 /*
2377 * Make sure nobody triggers this path before mm_percpu_wq is fully
2378 * initialized.
2379 */
2380 if (WARN_ON_ONCE(!mm_percpu_wq))
2381 return;
2382
2383 /* Workqueues cannot recurse */
2384 if (current->flags & PF_WQ_WORKER)
2385 return;
2386
2387 /*
2388 * Do not drain if one is already in progress unless it's specific to
2389 * a zone. Such callers are primarily CMA and memory hotplug and need
2390 * the drain to be complete when the call returns.
2391 */
2392 if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) {
2393 if (!zone)
2394 return;
2395 mutex_lock(&pcpu_drain_mutex);
2396 }
2397
2398 /*
2399 * We don't care about racing with CPU hotplug event
2400 * as offline notification will cause the notified
2401 * cpu to drain that CPU pcps and on_each_cpu_mask
2402 * disables preemption as part of its processing
2403 */
2404 for_each_online_cpu(cpu) {
2405 struct per_cpu_pageset *pcp;
2406 struct zone *z;
2407 bool has_pcps = false;
2408
2409 if (zone) {
2410 pcp = per_cpu_ptr(zone->pageset, cpu);
2411 if (pcp->pcp.count)
2412 has_pcps = true;
2413 } else {
2414 for_each_populated_zone(z) {
2415 pcp = per_cpu_ptr(z->pageset, cpu);
2416 if (pcp->pcp.count) {
2417 has_pcps = true;
2418 break;
2419 }
2420 }
2421 }
2422
2423 if (has_pcps)
2424 cpumask_set_cpu(cpu, &cpus_with_pcps);
2425 else
2426 cpumask_clear_cpu(cpu, &cpus_with_pcps);
2427 }
2428
2429 for_each_cpu(cpu, &cpus_with_pcps) {
2430 struct work_struct *work = per_cpu_ptr(&pcpu_drain, cpu);
2431 INIT_WORK(work, drain_local_pages_wq);
2432 queue_work_on(cpu, mm_percpu_wq, work);
2433 }
2434 for_each_cpu(cpu, &cpus_with_pcps)
2435 flush_work(per_cpu_ptr(&pcpu_drain, cpu));
2436
2437 mutex_unlock(&pcpu_drain_mutex);
2438 }
2439
2440 #ifdef CONFIG_HIBERNATION
2441
2442 void mark_free_pages(struct zone *zone)
2443 {
2444 unsigned long pfn, max_zone_pfn;
2445 unsigned long flags;
2446 unsigned int order, t;
2447 struct page *page;
2448
2449 if (zone_is_empty(zone))
2450 return;
2451
2452 spin_lock_irqsave(&zone->lock, flags);
2453
2454 max_zone_pfn = zone_end_pfn(zone);
2455 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
2456 if (pfn_valid(pfn)) {
2457 page = pfn_to_page(pfn);
2458
2459 if (page_zone(page) != zone)
2460 continue;
2461
2462 if (!swsusp_page_is_forbidden(page))
2463 swsusp_unset_page_free(page);
2464 }
2465
2466 for_each_migratetype_order(order, t) {
2467 list_for_each_entry(page,
2468 &zone->free_area[order].free_list[t], lru) {
2469 unsigned long i;
2470
2471 pfn = page_to_pfn(page);
2472 for (i = 0; i < (1UL << order); i++)
2473 swsusp_set_page_free(pfn_to_page(pfn + i));
2474 }
2475 }
2476 spin_unlock_irqrestore(&zone->lock, flags);
2477 }
2478 #endif /* CONFIG_PM */
2479
2480 /*
2481 * Free a 0-order page
2482 * cold == true ? free a cold page : free a hot page
2483 */
2484 void free_hot_cold_page(struct page *page, bool cold)
2485 {
2486 struct zone *zone = page_zone(page);
2487 struct per_cpu_pages *pcp;
2488 unsigned long pfn = page_to_pfn(page);
2489 int migratetype;
2490
2491 if (in_interrupt()) {
2492 __free_pages_ok(page, 0);
2493 return;
2494 }
2495
2496 if (!free_pcp_prepare(page))
2497 return;
2498
2499 migratetype = get_pfnblock_migratetype(page, pfn);
2500 set_pcppage_migratetype(page, migratetype);
2501 preempt_disable();
2502
2503 /*
2504 * We only track unmovable, reclaimable and movable on pcp lists.
2505 * Free ISOLATE pages back to the allocator because they are being
2506 * offlined but treat RESERVE as movable pages so we can get those
2507 * areas back if necessary. Otherwise, we may have to free
2508 * excessively into the page allocator
2509 */
2510 if (migratetype >= MIGRATE_PCPTYPES) {
2511 if (unlikely(is_migrate_isolate(migratetype))) {
2512 free_one_page(zone, page, pfn, 0, migratetype);
2513 goto out;
2514 }
2515 migratetype = MIGRATE_MOVABLE;
2516 }
2517
2518 __count_vm_event(PGFREE);
2519 pcp = &this_cpu_ptr(zone->pageset)->pcp;
2520 if (!cold)
2521 list_add(&page->lru, &pcp->lists[migratetype]);
2522 else
2523 list_add_tail(&page->lru, &pcp->lists[migratetype]);
2524 pcp->count++;
2525 if (pcp->count >= pcp->high) {
2526 unsigned long batch = READ_ONCE(pcp->batch);
2527 free_pcppages_bulk(zone, batch, pcp);
2528 pcp->count -= batch;
2529 }
2530
2531 out:
2532 preempt_enable();
2533 }
2534
2535 /*
2536 * Free a list of 0-order pages
2537 */
2538 void free_hot_cold_page_list(struct list_head *list, bool cold)
2539 {
2540 struct page *page, *next;
2541
2542 list_for_each_entry_safe(page, next, list, lru) {
2543 trace_mm_page_free_batched(page, cold);
2544 free_hot_cold_page(page, cold);
2545 }
2546 }
2547
2548 /*
2549 * split_page takes a non-compound higher-order page, and splits it into
2550 * n (1<<order) sub-pages: page[0..n]
2551 * Each sub-page must be freed individually.
2552 *
2553 * Note: this is probably too low level an operation for use in drivers.
2554 * Please consult with lkml before using this in your driver.
2555 */
2556 void split_page(struct page *page, unsigned int order)
2557 {
2558 int i;
2559
2560 VM_BUG_ON_PAGE(PageCompound(page), page);
2561 VM_BUG_ON_PAGE(!page_count(page), page);
2562
2563 #ifdef CONFIG_KMEMCHECK
2564 /*
2565 * Split shadow pages too, because free(page[0]) would
2566 * otherwise free the whole shadow.
2567 */
2568 if (kmemcheck_page_is_tracked(page))
2569 split_page(virt_to_page(page[0].shadow), order);
2570 #endif
2571
2572 for (i = 1; i < (1 << order); i++)
2573 set_page_refcounted(page + i);
2574 split_page_owner(page, order);
2575 }
2576 EXPORT_SYMBOL_GPL(split_page);
2577
2578 int __isolate_free_page(struct page *page, unsigned int order)
2579 {
2580 unsigned long watermark;
2581 struct zone *zone;
2582 int mt;
2583
2584 BUG_ON(!PageBuddy(page));
2585
2586 zone = page_zone(page);
2587 mt = get_pageblock_migratetype(page);
2588
2589 if (!is_migrate_isolate(mt)) {
2590 /*
2591 * Obey watermarks as if the page was being allocated. We can
2592 * emulate a high-order watermark check with a raised order-0
2593 * watermark, because we already know our high-order page
2594 * exists.
2595 */
2596 watermark = min_wmark_pages(zone) + (1UL << order);
2597 if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA))
2598 return 0;
2599
2600 __mod_zone_freepage_state(zone, -(1UL << order), mt);
2601 }
2602
2603 /* Remove page from free list */
2604 list_del(&page->lru);
2605 zone->free_area[order].nr_free--;
2606 rmv_page_order(page);
2607
2608 /*
2609 * Set the pageblock if the isolated page is at least half of a
2610 * pageblock
2611 */
2612 if (order >= pageblock_order - 1) {
2613 struct page *endpage = page + (1 << order) - 1;
2614 for (; page < endpage; page += pageblock_nr_pages) {
2615 int mt = get_pageblock_migratetype(page);
2616 if (!is_migrate_isolate(mt) && !is_migrate_cma(mt)
2617 && mt != MIGRATE_HIGHATOMIC)
2618 set_pageblock_migratetype(page,
2619 MIGRATE_MOVABLE);
2620 }
2621 }
2622
2623
2624 return 1UL << order;
2625 }
2626
2627 /*
2628 * Update NUMA hit/miss statistics
2629 *
2630 * Must be called with interrupts disabled.
2631 */
2632 static inline void zone_statistics(struct zone *preferred_zone, struct zone *z)
2633 {
2634 #ifdef CONFIG_NUMA
2635 enum zone_stat_item local_stat = NUMA_LOCAL;
2636
2637 if (z->node != numa_node_id())
2638 local_stat = NUMA_OTHER;
2639
2640 if (z->node == preferred_zone->node)
2641 __inc_zone_state(z, NUMA_HIT);
2642 else {
2643 __inc_zone_state(z, NUMA_MISS);
2644 __inc_zone_state(preferred_zone, NUMA_FOREIGN);
2645 }
2646 __inc_zone_state(z, local_stat);
2647 #endif
2648 }
2649
2650 /* Remove page from the per-cpu list, caller must protect the list */
2651 static struct page *__rmqueue_pcplist(struct zone *zone, int migratetype,
2652 bool cold, struct per_cpu_pages *pcp,
2653 struct list_head *list)
2654 {
2655 struct page *page;
2656
2657 VM_BUG_ON(in_interrupt());
2658
2659 do {
2660 if (list_empty(list)) {
2661 pcp->count += rmqueue_bulk(zone, 0,
2662 pcp->batch, list,
2663 migratetype, cold);
2664 if (unlikely(list_empty(list)))
2665 return NULL;
2666 }
2667
2668 if (cold)
2669 page = list_last_entry(list, struct page, lru);
2670 else
2671 page = list_first_entry(list, struct page, lru);
2672
2673 list_del(&page->lru);
2674 pcp->count--;
2675 } while (check_new_pcp(page));
2676
2677 return page;
2678 }
2679
2680 /* Lock and remove page from the per-cpu list */
2681 static struct page *rmqueue_pcplist(struct zone *preferred_zone,
2682 struct zone *zone, unsigned int order,
2683 gfp_t gfp_flags, int migratetype)
2684 {
2685 struct per_cpu_pages *pcp;
2686 struct list_head *list;
2687 bool cold = ((gfp_flags & __GFP_COLD) != 0);
2688 struct page *page;
2689
2690 preempt_disable();
2691 pcp = &this_cpu_ptr(zone->pageset)->pcp;
2692 list = &pcp->lists[migratetype];
2693 page = __rmqueue_pcplist(zone, migratetype, cold, pcp, list);
2694 if (page) {
2695 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
2696 zone_statistics(preferred_zone, zone);
2697 }
2698 preempt_enable();
2699 return page;
2700 }
2701
2702 /*
2703 * Allocate a page from the given zone. Use pcplists for order-0 allocations.
2704 */
2705 static inline
2706 struct page *rmqueue(struct zone *preferred_zone,
2707 struct zone *zone, unsigned int order,
2708 gfp_t gfp_flags, unsigned int alloc_flags,
2709 int migratetype)
2710 {
2711 unsigned long flags;
2712 struct page *page;
2713
2714 if (likely(order == 0) && !in_interrupt()) {
2715 page = rmqueue_pcplist(preferred_zone, zone, order,
2716 gfp_flags, migratetype);
2717 goto out;
2718 }
2719
2720 /*
2721 * We most definitely don't want callers attempting to
2722 * allocate greater than order-1 page units with __GFP_NOFAIL.
2723 */
2724 WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
2725 spin_lock_irqsave(&zone->lock, flags);
2726
2727 do {
2728 page = NULL;
2729 if (alloc_flags & ALLOC_HARDER) {
2730 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
2731 if (page)
2732 trace_mm_page_alloc_zone_locked(page, order, migratetype);
2733 }
2734 if (!page)
2735 page = __rmqueue(zone, order, migratetype);
2736 } while (page && check_new_pages(page, order));
2737 spin_unlock(&zone->lock);
2738 if (!page)
2739 goto failed;
2740 __mod_zone_freepage_state(zone, -(1 << order),
2741 get_pcppage_migratetype(page));
2742
2743 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
2744 zone_statistics(preferred_zone, zone);
2745 local_irq_restore(flags);
2746
2747 out:
2748 VM_BUG_ON_PAGE(page && bad_range(zone, page), page);
2749 return page;
2750
2751 failed:
2752 local_irq_restore(flags);
2753 return NULL;
2754 }
2755
2756 #ifdef CONFIG_FAIL_PAGE_ALLOC
2757
2758 static struct {
2759 struct fault_attr attr;
2760
2761 bool ignore_gfp_highmem;
2762 bool ignore_gfp_reclaim;
2763 u32 min_order;
2764 } fail_page_alloc = {
2765 .attr = FAULT_ATTR_INITIALIZER,
2766 .ignore_gfp_reclaim = true,
2767 .ignore_gfp_highmem = true,
2768 .min_order = 1,
2769 };
2770
2771 static int __init setup_fail_page_alloc(char *str)
2772 {
2773 return setup_fault_attr(&fail_page_alloc.attr, str);
2774 }
2775 __setup("fail_page_alloc=", setup_fail_page_alloc);
2776
2777 static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
2778 {
2779 if (order < fail_page_alloc.min_order)
2780 return false;
2781 if (gfp_mask & __GFP_NOFAIL)
2782 return false;
2783 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
2784 return false;
2785 if (fail_page_alloc.ignore_gfp_reclaim &&
2786 (gfp_mask & __GFP_DIRECT_RECLAIM))
2787 return false;
2788
2789 return should_fail(&fail_page_alloc.attr, 1 << order);
2790 }
2791
2792 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
2793
2794 static int __init fail_page_alloc_debugfs(void)
2795 {
2796 umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
2797 struct dentry *dir;
2798
2799 dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
2800 &fail_page_alloc.attr);
2801 if (IS_ERR(dir))
2802 return PTR_ERR(dir);
2803
2804 if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
2805 &fail_page_alloc.ignore_gfp_reclaim))
2806 goto fail;
2807 if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
2808 &fail_page_alloc.ignore_gfp_highmem))
2809 goto fail;
2810 if (!debugfs_create_u32("min-order", mode, dir,
2811 &fail_page_alloc.min_order))
2812 goto fail;
2813
2814 return 0;
2815 fail:
2816 debugfs_remove_recursive(dir);
2817
2818 return -ENOMEM;
2819 }
2820
2821 late_initcall(fail_page_alloc_debugfs);
2822
2823 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
2824
2825 #else /* CONFIG_FAIL_PAGE_ALLOC */
2826
2827 static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
2828 {
2829 return false;
2830 }
2831
2832 #endif /* CONFIG_FAIL_PAGE_ALLOC */
2833
2834 /*
2835 * Return true if free base pages are above 'mark'. For high-order checks it
2836 * will return true of the order-0 watermark is reached and there is at least
2837 * one free page of a suitable size. Checking now avoids taking the zone lock
2838 * to check in the allocation paths if no pages are free.
2839 */
2840 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
2841 int classzone_idx, unsigned int alloc_flags,
2842 long free_pages)
2843 {
2844 long min = mark;
2845 int o;
2846 const bool alloc_harder = (alloc_flags & ALLOC_HARDER);
2847
2848 /* free_pages may go negative - that's OK */
2849 free_pages -= (1 << order) - 1;
2850
2851 if (alloc_flags & ALLOC_HIGH)
2852 min -= min / 2;
2853
2854 /*
2855 * If the caller does not have rights to ALLOC_HARDER then subtract
2856 * the high-atomic reserves. This will over-estimate the size of the
2857 * atomic reserve but it avoids a search.
2858 */
2859 if (likely(!alloc_harder))
2860 free_pages -= z->nr_reserved_highatomic;
2861 else
2862 min -= min / 4;
2863
2864 #ifdef CONFIG_CMA
2865 /* If allocation can't use CMA areas don't use free CMA pages */
2866 if (!(alloc_flags & ALLOC_CMA))
2867 free_pages -= zone_page_state(z, NR_FREE_CMA_PAGES);
2868 #endif
2869
2870 /*
2871 * Check watermarks for an order-0 allocation request. If these
2872 * are not met, then a high-order request also cannot go ahead
2873 * even if a suitable page happened to be free.
2874 */
2875 if (free_pages <= min + z->lowmem_reserve[classzone_idx])
2876 return false;
2877
2878 /* If this is an order-0 request then the watermark is fine */
2879 if (!order)
2880 return true;
2881
2882 /* For a high-order request, check at least one suitable page is free */
2883 for (o = order; o < MAX_ORDER; o++) {
2884 struct free_area *area = &z->free_area[o];
2885 int mt;
2886
2887 if (!area->nr_free)
2888 continue;
2889
2890 if (alloc_harder)
2891 return true;
2892
2893 for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
2894 if (!list_empty(&area->free_list[mt]))
2895 return true;
2896 }
2897
2898 #ifdef CONFIG_CMA
2899 if ((alloc_flags & ALLOC_CMA) &&
2900 !list_empty(&area->free_list[MIGRATE_CMA])) {
2901 return true;
2902 }
2903 #endif
2904 }
2905 return false;
2906 }
2907
2908 bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
2909 int classzone_idx, unsigned int alloc_flags)
2910 {
2911 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
2912 zone_page_state(z, NR_FREE_PAGES));
2913 }
2914
2915 static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
2916 unsigned long mark, int classzone_idx, unsigned int alloc_flags)
2917 {
2918 long free_pages = zone_page_state(z, NR_FREE_PAGES);
2919 long cma_pages = 0;
2920
2921 #ifdef CONFIG_CMA
2922 /* If allocation can't use CMA areas don't use free CMA pages */
2923 if (!(alloc_flags & ALLOC_CMA))
2924 cma_pages = zone_page_state(z, NR_FREE_CMA_PAGES);
2925 #endif
2926
2927 /*
2928 * Fast check for order-0 only. If this fails then the reserves
2929 * need to be calculated. There is a corner case where the check
2930 * passes but only the high-order atomic reserve are free. If
2931 * the caller is !atomic then it'll uselessly search the free
2932 * list. That corner case is then slower but it is harmless.
2933 */
2934 if (!order && (free_pages - cma_pages) > mark + z->lowmem_reserve[classzone_idx])
2935 return true;
2936
2937 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
2938 free_pages);
2939 }
2940
2941 bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
2942 unsigned long mark, int classzone_idx)
2943 {
2944 long free_pages = zone_page_state(z, NR_FREE_PAGES);
2945
2946 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
2947 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
2948
2949 return __zone_watermark_ok(z, order, mark, classzone_idx, 0,
2950 free_pages);
2951 }
2952
2953 #ifdef CONFIG_NUMA
2954 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
2955 {
2956 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <=
2957 RECLAIM_DISTANCE;
2958 }
2959 #else /* CONFIG_NUMA */
2960 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
2961 {
2962 return true;
2963 }
2964 #endif /* CONFIG_NUMA */
2965
2966 /*
2967 * get_page_from_freelist goes through the zonelist trying to allocate
2968 * a page.
2969 */
2970 static struct page *
2971 get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
2972 const struct alloc_context *ac)
2973 {
2974 struct zoneref *z = ac->preferred_zoneref;
2975 struct zone *zone;
2976 struct pglist_data *last_pgdat_dirty_limit = NULL;
2977
2978 /*
2979 * Scan zonelist, looking for a zone with enough free.
2980 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
2981 */
2982 for_next_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
2983 ac->nodemask) {
2984 struct page *page;
2985 unsigned long mark;
2986
2987 if (cpusets_enabled() &&
2988 (alloc_flags & ALLOC_CPUSET) &&
2989 !__cpuset_zone_allowed(zone, gfp_mask))
2990 continue;
2991 /*
2992 * When allocating a page cache page for writing, we
2993 * want to get it from a node that is within its dirty
2994 * limit, such that no single node holds more than its
2995 * proportional share of globally allowed dirty pages.
2996 * The dirty limits take into account the node's
2997 * lowmem reserves and high watermark so that kswapd
2998 * should be able to balance it without having to
2999 * write pages from its LRU list.
3000 *
3001 * XXX: For now, allow allocations to potentially
3002 * exceed the per-node dirty limit in the slowpath
3003 * (spread_dirty_pages unset) before going into reclaim,
3004 * which is important when on a NUMA setup the allowed
3005 * nodes are together not big enough to reach the
3006 * global limit. The proper fix for these situations
3007 * will require awareness of nodes in the
3008 * dirty-throttling and the flusher threads.
3009 */
3010 if (ac->spread_dirty_pages) {
3011 if (last_pgdat_dirty_limit == zone->zone_pgdat)
3012 continue;
3013
3014 if (!node_dirty_ok(zone->zone_pgdat)) {
3015 last_pgdat_dirty_limit = zone->zone_pgdat;
3016 continue;
3017 }
3018 }
3019
3020 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
3021 if (!zone_watermark_fast(zone, order, mark,
3022 ac_classzone_idx(ac), alloc_flags)) {
3023 int ret;
3024
3025 /* Checked here to keep the fast path fast */
3026 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
3027 if (alloc_flags & ALLOC_NO_WATERMARKS)
3028 goto try_this_zone;
3029
3030 if (node_reclaim_mode == 0 ||
3031 !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
3032 continue;
3033
3034 ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
3035 switch (ret) {
3036 case NODE_RECLAIM_NOSCAN:
3037 /* did not scan */
3038 continue;
3039 case NODE_RECLAIM_FULL:
3040 /* scanned but unreclaimable */
3041 continue;
3042 default:
3043 /* did we reclaim enough */
3044 if (zone_watermark_ok(zone, order, mark,
3045 ac_classzone_idx(ac), alloc_flags))
3046 goto try_this_zone;
3047
3048 continue;
3049 }
3050 }
3051
3052 try_this_zone:
3053 page = rmqueue(ac->preferred_zoneref->zone, zone, order,
3054 gfp_mask, alloc_flags, ac->migratetype);
3055 if (page) {
3056 prep_new_page(page, order, gfp_mask, alloc_flags);
3057
3058 /*
3059 * If this is a high-order atomic allocation then check
3060 * if the pageblock should be reserved for the future
3061 */
3062 if (unlikely(order && (alloc_flags & ALLOC_HARDER)))
3063 reserve_highatomic_pageblock(page, zone, order);
3064
3065 return page;
3066 }
3067 }
3068
3069 return NULL;
3070 }
3071
3072 /*
3073 * Large machines with many possible nodes should not always dump per-node
3074 * meminfo in irq context.
3075 */
3076 static inline bool should_suppress_show_mem(void)
3077 {
3078 bool ret = false;
3079
3080 #if NODES_SHIFT > 8
3081 ret = in_interrupt();
3082 #endif
3083 return ret;
3084 }
3085
3086 static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask)
3087 {
3088 unsigned int filter = SHOW_MEM_FILTER_NODES;
3089 static DEFINE_RATELIMIT_STATE(show_mem_rs, HZ, 1);
3090
3091 if (should_suppress_show_mem() || !__ratelimit(&show_mem_rs))
3092 return;
3093
3094 /*
3095 * This documents exceptions given to allocations in certain
3096 * contexts that are allowed to allocate outside current's set
3097 * of allowed nodes.
3098 */
3099 if (!(gfp_mask & __GFP_NOMEMALLOC))
3100 if (test_thread_flag(TIF_MEMDIE) ||
3101 (current->flags & (PF_MEMALLOC | PF_EXITING)))
3102 filter &= ~SHOW_MEM_FILTER_NODES;
3103 if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
3104 filter &= ~SHOW_MEM_FILTER_NODES;
3105
3106 show_mem(filter, nodemask);
3107 }
3108
3109 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...)
3110 {
3111 struct va_format vaf;
3112 va_list args;
3113 static DEFINE_RATELIMIT_STATE(nopage_rs, DEFAULT_RATELIMIT_INTERVAL,
3114 DEFAULT_RATELIMIT_BURST);
3115
3116 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs) ||
3117 debug_guardpage_minorder() > 0)
3118 return;
3119
3120 pr_warn("%s: ", current->comm);
3121
3122 va_start(args, fmt);
3123 vaf.fmt = fmt;
3124 vaf.va = &args;
3125 pr_cont("%pV", &vaf);
3126 va_end(args);
3127
3128 pr_cont(", mode:%#x(%pGg), nodemask=", gfp_mask, &gfp_mask);
3129 if (nodemask)
3130 pr_cont("%*pbl\n", nodemask_pr_args(nodemask));
3131 else
3132 pr_cont("(null)\n");
3133
3134 cpuset_print_current_mems_allowed();
3135
3136 dump_stack();
3137 warn_alloc_show_mem(gfp_mask, nodemask);
3138 }
3139
3140 static inline struct page *
3141 __alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order,
3142 unsigned int alloc_flags,
3143 const struct alloc_context *ac)
3144 {
3145 struct page *page;
3146
3147 page = get_page_from_freelist(gfp_mask, order,
3148 alloc_flags|ALLOC_CPUSET, ac);
3149 /*
3150 * fallback to ignore cpuset restriction if our nodes
3151 * are depleted
3152 */
3153 if (!page)
3154 page = get_page_from_freelist(gfp_mask, order,
3155 alloc_flags, ac);
3156
3157 return page;
3158 }
3159
3160 static inline struct page *
3161 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
3162 const struct alloc_context *ac, unsigned long *did_some_progress)
3163 {
3164 struct oom_control oc = {
3165 .zonelist = ac->zonelist,
3166 .nodemask = ac->nodemask,
3167 .memcg = NULL,
3168 .gfp_mask = gfp_mask,
3169 .order = order,
3170 };
3171 struct page *page;
3172
3173 *did_some_progress = 0;
3174
3175 /*
3176 * Acquire the oom lock. If that fails, somebody else is
3177 * making progress for us.
3178 */
3179 if (!mutex_trylock(&oom_lock)) {
3180 *did_some_progress = 1;
3181 schedule_timeout_uninterruptible(1);
3182 return NULL;
3183 }
3184
3185 /*
3186 * Go through the zonelist yet one more time, keep very high watermark
3187 * here, this is only to catch a parallel oom killing, we must fail if
3188 * we're still under heavy pressure.
3189 */
3190 page = get_page_from_freelist(gfp_mask | __GFP_HARDWALL, order,
3191 ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
3192 if (page)
3193 goto out;
3194
3195 /* Coredumps can quickly deplete all memory reserves */
3196 if (current->flags & PF_DUMPCORE)
3197 goto out;
3198 /* The OOM killer will not help higher order allocs */
3199 if (order > PAGE_ALLOC_COSTLY_ORDER)
3200 goto out;
3201 /* The OOM killer does not needlessly kill tasks for lowmem */
3202 if (ac->high_zoneidx < ZONE_NORMAL)
3203 goto out;
3204 if (pm_suspended_storage())
3205 goto out;
3206 /*
3207 * XXX: GFP_NOFS allocations should rather fail than rely on
3208 * other request to make a forward progress.
3209 * We are in an unfortunate situation where out_of_memory cannot
3210 * do much for this context but let's try it to at least get
3211 * access to memory reserved if the current task is killed (see
3212 * out_of_memory). Once filesystems are ready to handle allocation
3213 * failures more gracefully we should just bail out here.
3214 */
3215
3216 /* The OOM killer may not free memory on a specific node */
3217 if (gfp_mask & __GFP_THISNODE)
3218 goto out;
3219
3220 /* Exhausted what can be done so it's blamo time */
3221 if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
3222 *did_some_progress = 1;
3223
3224 /*
3225 * Help non-failing allocations by giving them access to memory
3226 * reserves
3227 */
3228 if (gfp_mask & __GFP_NOFAIL)
3229 page = __alloc_pages_cpuset_fallback(gfp_mask, order,
3230 ALLOC_NO_WATERMARKS, ac);
3231 }
3232 out:
3233 mutex_unlock(&oom_lock);
3234 return page;
3235 }
3236
3237 /*
3238 * Maximum number of compaction retries wit a progress before OOM
3239 * killer is consider as the only way to move forward.
3240 */
3241 #define MAX_COMPACT_RETRIES 16
3242
3243 #ifdef CONFIG_COMPACTION
3244 /* Try memory compaction for high-order allocations before reclaim */
3245 static struct page *
3246 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3247 unsigned int alloc_flags, const struct alloc_context *ac,
3248 enum compact_priority prio, enum compact_result *compact_result)
3249 {
3250 struct page *page;
3251
3252 if (!order)
3253 return NULL;
3254
3255 current->flags |= PF_MEMALLOC;
3256 *compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
3257 prio);
3258 current->flags &= ~PF_MEMALLOC;
3259
3260 if (*compact_result <= COMPACT_INACTIVE)
3261 return NULL;
3262
3263 /*
3264 * At least in one zone compaction wasn't deferred or skipped, so let's
3265 * count a compaction stall
3266 */
3267 count_vm_event(COMPACTSTALL);
3268
3269 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3270
3271 if (page) {
3272 struct zone *zone = page_zone(page);
3273
3274 zone->compact_blockskip_flush = false;
3275 compaction_defer_reset(zone, order, true);
3276 count_vm_event(COMPACTSUCCESS);
3277 return page;
3278 }
3279
3280 /*
3281 * It's bad if compaction run occurs and fails. The most likely reason
3282 * is that pages exist, but not enough to satisfy watermarks.
3283 */
3284 count_vm_event(COMPACTFAIL);
3285
3286 cond_resched();
3287
3288 return NULL;
3289 }
3290
3291 static inline bool
3292 should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
3293 enum compact_result compact_result,
3294 enum compact_priority *compact_priority,
3295 int *compaction_retries)
3296 {
3297 int max_retries = MAX_COMPACT_RETRIES;
3298 int min_priority;
3299 bool ret = false;
3300 int retries = *compaction_retries;
3301 enum compact_priority priority = *compact_priority;
3302
3303 if (!order)
3304 return false;
3305
3306 if (compaction_made_progress(compact_result))
3307 (*compaction_retries)++;
3308
3309 /*
3310 * compaction considers all the zone as desperately out of memory
3311 * so it doesn't really make much sense to retry except when the
3312 * failure could be caused by insufficient priority
3313 */
3314 if (compaction_failed(compact_result))
3315 goto check_priority;
3316
3317 /*
3318 * make sure the compaction wasn't deferred or didn't bail out early
3319 * due to locks contention before we declare that we should give up.
3320 * But do not retry if the given zonelist is not suitable for
3321 * compaction.
3322 */
3323 if (compaction_withdrawn(compact_result)) {
3324 ret = compaction_zonelist_suitable(ac, order, alloc_flags);
3325 goto out;
3326 }
3327
3328 /*
3329 * !costly requests are much more important than __GFP_REPEAT
3330 * costly ones because they are de facto nofail and invoke OOM
3331 * killer to move on while costly can fail and users are ready
3332 * to cope with that. 1/4 retries is rather arbitrary but we
3333 * would need much more detailed feedback from compaction to
3334 * make a better decision.
3335 */
3336 if (order > PAGE_ALLOC_COSTLY_ORDER)
3337 max_retries /= 4;
3338 if (*compaction_retries <= max_retries) {
3339 ret = true;
3340 goto out;
3341 }
3342
3343 /*
3344 * Make sure there are attempts at the highest priority if we exhausted
3345 * all retries or failed at the lower priorities.
3346 */
3347 check_priority:
3348 min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ?
3349 MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY;
3350
3351 if (*compact_priority > min_priority) {
3352 (*compact_priority)--;
3353 *compaction_retries = 0;
3354 ret = true;
3355 }
3356 out:
3357 trace_compact_retry(order, priority, compact_result, retries, max_retries, ret);
3358 return ret;
3359 }
3360 #else
3361 static inline struct page *
3362 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3363 unsigned int alloc_flags, const struct alloc_context *ac,
3364 enum compact_priority prio, enum compact_result *compact_result)
3365 {
3366 *compact_result = COMPACT_SKIPPED;
3367 return NULL;
3368 }
3369
3370 static inline bool
3371 should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
3372 enum compact_result compact_result,
3373 enum compact_priority *compact_priority,
3374 int *compaction_retries)
3375 {
3376 struct zone *zone;
3377 struct zoneref *z;
3378
3379 if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
3380 return false;
3381
3382 /*
3383 * There are setups with compaction disabled which would prefer to loop
3384 * inside the allocator rather than hit the oom killer prematurely.
3385 * Let's give them a good hope and keep retrying while the order-0
3386 * watermarks are OK.
3387 */
3388 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
3389 ac->nodemask) {
3390 if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
3391 ac_classzone_idx(ac), alloc_flags))
3392 return true;
3393 }
3394 return false;
3395 }
3396 #endif /* CONFIG_COMPACTION */
3397
3398 /* Perform direct synchronous page reclaim */
3399 static int
3400 __perform_reclaim(gfp_t gfp_mask, unsigned int order,
3401 const struct alloc_context *ac)
3402 {
3403 struct reclaim_state reclaim_state;
3404 int progress;
3405
3406 cond_resched();
3407
3408 /* We now go into synchronous reclaim */
3409 cpuset_memory_pressure_bump();
3410 current->flags |= PF_MEMALLOC;
3411 lockdep_set_current_reclaim_state(gfp_mask);
3412 reclaim_state.reclaimed_slab = 0;
3413 current->reclaim_state = &reclaim_state;
3414
3415 progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
3416 ac->nodemask);
3417
3418 current->reclaim_state = NULL;
3419 lockdep_clear_current_reclaim_state();
3420 current->flags &= ~PF_MEMALLOC;
3421
3422 cond_resched();
3423
3424 return progress;
3425 }
3426
3427 /* The really slow allocator path where we enter direct reclaim */
3428 static inline struct page *
3429 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
3430 unsigned int alloc_flags, const struct alloc_context *ac,
3431 unsigned long *did_some_progress)
3432 {
3433 struct page *page = NULL;
3434 bool drained = false;
3435
3436 *did_some_progress = __perform_reclaim(gfp_mask, order, ac);
3437 if (unlikely(!(*did_some_progress)))
3438 return NULL;
3439
3440 retry:
3441 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3442
3443 /*
3444 * If an allocation failed after direct reclaim, it could be because
3445 * pages are pinned on the per-cpu lists or in high alloc reserves.
3446 * Shrink them them and try again
3447 */
3448 if (!page && !drained) {
3449 unreserve_highatomic_pageblock(ac, false);
3450 drain_all_pages(NULL);
3451 drained = true;
3452 goto retry;
3453 }
3454
3455 return page;
3456 }
3457
3458 static void wake_all_kswapds(unsigned int order, const struct alloc_context *ac)
3459 {
3460 struct zoneref *z;
3461 struct zone *zone;
3462 pg_data_t *last_pgdat = NULL;
3463
3464 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
3465 ac->high_zoneidx, ac->nodemask) {
3466 if (last_pgdat != zone->zone_pgdat)
3467 wakeup_kswapd(zone, order, ac->high_zoneidx);
3468 last_pgdat = zone->zone_pgdat;
3469 }
3470 }
3471
3472 static inline unsigned int
3473 gfp_to_alloc_flags(gfp_t gfp_mask)
3474 {
3475 unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
3476
3477 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
3478 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
3479
3480 /*
3481 * The caller may dip into page reserves a bit more if the caller
3482 * cannot run direct reclaim, or if the caller has realtime scheduling
3483 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
3484 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
3485 */
3486 alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
3487
3488 if (gfp_mask & __GFP_ATOMIC) {
3489 /*
3490 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
3491 * if it can't schedule.
3492 */
3493 if (!(gfp_mask & __GFP_NOMEMALLOC))
3494 alloc_flags |= ALLOC_HARDER;
3495 /*
3496 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
3497 * comment for __cpuset_node_allowed().
3498 */
3499 alloc_flags &= ~ALLOC_CPUSET;
3500 } else if (unlikely(rt_task(current)) && !in_interrupt())
3501 alloc_flags |= ALLOC_HARDER;
3502
3503 #ifdef CONFIG_CMA
3504 if (gfpflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
3505 alloc_flags |= ALLOC_CMA;
3506 #endif
3507 return alloc_flags;
3508 }
3509
3510 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
3511 {
3512 if (unlikely(gfp_mask & __GFP_NOMEMALLOC))
3513 return false;
3514
3515 if (gfp_mask & __GFP_MEMALLOC)
3516 return true;
3517 if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
3518 return true;
3519 if (!in_interrupt() &&
3520 ((current->flags & PF_MEMALLOC) ||
3521 unlikely(test_thread_flag(TIF_MEMDIE))))
3522 return true;
3523
3524 return false;
3525 }
3526
3527 /*
3528 * Maximum number of reclaim retries without any progress before OOM killer
3529 * is consider as the only way to move forward.
3530 */
3531 #define MAX_RECLAIM_RETRIES 16
3532
3533 /*
3534 * Checks whether it makes sense to retry the reclaim to make a forward progress
3535 * for the given allocation request.
3536 * The reclaim feedback represented by did_some_progress (any progress during
3537 * the last reclaim round) and no_progress_loops (number of reclaim rounds without
3538 * any progress in a row) is considered as well as the reclaimable pages on the
3539 * applicable zone list (with a backoff mechanism which is a function of
3540 * no_progress_loops).
3541 *
3542 * Returns true if a retry is viable or false to enter the oom path.
3543 */
3544 static inline bool
3545 should_reclaim_retry(gfp_t gfp_mask, unsigned order,
3546 struct alloc_context *ac, int alloc_flags,
3547 bool did_some_progress, int *no_progress_loops)
3548 {
3549 struct zone *zone;
3550 struct zoneref *z;
3551
3552 /*
3553 * Costly allocations might have made a progress but this doesn't mean
3554 * their order will become available due to high fragmentation so
3555 * always increment the no progress counter for them
3556 */
3557 if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
3558 *no_progress_loops = 0;
3559 else
3560 (*no_progress_loops)++;
3561
3562 /*
3563 * Make sure we converge to OOM if we cannot make any progress
3564 * several times in the row.
3565 */
3566 if (*no_progress_loops > MAX_RECLAIM_RETRIES) {
3567 /* Before OOM, exhaust highatomic_reserve */
3568 return unreserve_highatomic_pageblock(ac, true);
3569 }
3570
3571 /*
3572 * Keep reclaiming pages while there is a chance this will lead
3573 * somewhere. If none of the target zones can satisfy our allocation
3574 * request even if all reclaimable pages are considered then we are
3575 * screwed and have to go OOM.
3576 */
3577 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
3578 ac->nodemask) {
3579 unsigned long available;
3580 unsigned long reclaimable;
3581 unsigned long min_wmark = min_wmark_pages(zone);
3582 bool wmark;
3583
3584 available = reclaimable = zone_reclaimable_pages(zone);
3585 available -= DIV_ROUND_UP((*no_progress_loops) * available,
3586 MAX_RECLAIM_RETRIES);
3587 available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
3588
3589 /*
3590 * Would the allocation succeed if we reclaimed the whole
3591 * available?
3592 */
3593 wmark = __zone_watermark_ok(zone, order, min_wmark,
3594 ac_classzone_idx(ac), alloc_flags, available);
3595 trace_reclaim_retry_zone(z, order, reclaimable,
3596 available, min_wmark, *no_progress_loops, wmark);
3597 if (wmark) {
3598 /*
3599 * If we didn't make any progress and have a lot of
3600 * dirty + writeback pages then we should wait for
3601 * an IO to complete to slow down the reclaim and
3602 * prevent from pre mature OOM
3603 */
3604 if (!did_some_progress) {
3605 unsigned long write_pending;
3606
3607 write_pending = zone_page_state_snapshot(zone,
3608 NR_ZONE_WRITE_PENDING);
3609
3610 if (2 * write_pending > reclaimable) {
3611 congestion_wait(BLK_RW_ASYNC, HZ/10);
3612 return true;
3613 }
3614 }
3615
3616 /*
3617 * Memory allocation/reclaim might be called from a WQ
3618 * context and the current implementation of the WQ
3619 * concurrency control doesn't recognize that
3620 * a particular WQ is congested if the worker thread is
3621 * looping without ever sleeping. Therefore we have to
3622 * do a short sleep here rather than calling
3623 * cond_resched().
3624 */
3625 if (current->flags & PF_WQ_WORKER)
3626 schedule_timeout_uninterruptible(1);
3627 else
3628 cond_resched();
3629
3630 return true;
3631 }
3632 }
3633
3634 return false;
3635 }
3636
3637 static inline struct page *
3638 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
3639 struct alloc_context *ac)
3640 {
3641 bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
3642 struct page *page = NULL;
3643 unsigned int alloc_flags;
3644 unsigned long did_some_progress;
3645 enum compact_priority compact_priority;
3646 enum compact_result compact_result;
3647 int compaction_retries;
3648 int no_progress_loops;
3649 unsigned long alloc_start = jiffies;
3650 unsigned int stall_timeout = 10 * HZ;
3651 unsigned int cpuset_mems_cookie;
3652
3653 /*
3654 * In the slowpath, we sanity check order to avoid ever trying to
3655 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
3656 * be using allocators in order of preference for an area that is
3657 * too large.
3658 */
3659 if (order >= MAX_ORDER) {
3660 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
3661 return NULL;
3662 }
3663
3664 /*
3665 * We also sanity check to catch abuse of atomic reserves being used by
3666 * callers that are not in atomic context.
3667 */
3668 if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) ==
3669 (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)))
3670 gfp_mask &= ~__GFP_ATOMIC;
3671
3672 retry_cpuset:
3673 compaction_retries = 0;
3674 no_progress_loops = 0;
3675 compact_priority = DEF_COMPACT_PRIORITY;
3676 cpuset_mems_cookie = read_mems_allowed_begin();
3677
3678 /*
3679 * The fast path uses conservative alloc_flags to succeed only until
3680 * kswapd needs to be woken up, and to avoid the cost of setting up
3681 * alloc_flags precisely. So we do that now.
3682 */
3683 alloc_flags = gfp_to_alloc_flags(gfp_mask);
3684
3685 /*
3686 * We need to recalculate the starting point for the zonelist iterator
3687 * because we might have used different nodemask in the fast path, or
3688 * there was a cpuset modification and we are retrying - otherwise we
3689 * could end up iterating over non-eligible zones endlessly.
3690 */
3691 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
3692 ac->high_zoneidx, ac->nodemask);
3693 if (!ac->preferred_zoneref->zone)
3694 goto nopage;
3695
3696 if (gfp_mask & __GFP_KSWAPD_RECLAIM)
3697 wake_all_kswapds(order, ac);
3698
3699 /*
3700 * The adjusted alloc_flags might result in immediate success, so try
3701 * that first
3702 */
3703 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3704 if (page)
3705 goto got_pg;
3706
3707 /*
3708 * For costly allocations, try direct compaction first, as it's likely
3709 * that we have enough base pages and don't need to reclaim. Don't try
3710 * that for allocations that are allowed to ignore watermarks, as the
3711 * ALLOC_NO_WATERMARKS attempt didn't yet happen.
3712 */
3713 if (can_direct_reclaim && order > PAGE_ALLOC_COSTLY_ORDER &&
3714 !gfp_pfmemalloc_allowed(gfp_mask)) {
3715 page = __alloc_pages_direct_compact(gfp_mask, order,
3716 alloc_flags, ac,
3717 INIT_COMPACT_PRIORITY,
3718 &compact_result);
3719 if (page)
3720 goto got_pg;
3721
3722 /*
3723 * Checks for costly allocations with __GFP_NORETRY, which
3724 * includes THP page fault allocations
3725 */
3726 if (gfp_mask & __GFP_NORETRY) {
3727 /*
3728 * If compaction is deferred for high-order allocations,
3729 * it is because sync compaction recently failed. If
3730 * this is the case and the caller requested a THP
3731 * allocation, we do not want to heavily disrupt the
3732 * system, so we fail the allocation instead of entering
3733 * direct reclaim.
3734 */
3735 if (compact_result == COMPACT_DEFERRED)
3736 goto nopage;
3737
3738 /*
3739 * Looks like reclaim/compaction is worth trying, but
3740 * sync compaction could be very expensive, so keep
3741 * using async compaction.
3742 */
3743 compact_priority = INIT_COMPACT_PRIORITY;
3744 }
3745 }
3746
3747 retry:
3748 /* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
3749 if (gfp_mask & __GFP_KSWAPD_RECLAIM)
3750 wake_all_kswapds(order, ac);
3751
3752 if (gfp_pfmemalloc_allowed(gfp_mask))
3753 alloc_flags = ALLOC_NO_WATERMARKS;
3754
3755 /*
3756 * Reset the zonelist iterators if memory policies can be ignored.
3757 * These allocations are high priority and system rather than user
3758 * orientated.
3759 */
3760 if (!(alloc_flags & ALLOC_CPUSET) || (alloc_flags & ALLOC_NO_WATERMARKS)) {
3761 ac->zonelist = node_zonelist(numa_node_id(), gfp_mask);
3762 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
3763 ac->high_zoneidx, ac->nodemask);
3764 }
3765
3766 /* Attempt with potentially adjusted zonelist and alloc_flags */
3767 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3768 if (page)
3769 goto got_pg;
3770
3771 /* Caller is not willing to reclaim, we can't balance anything */
3772 if (!can_direct_reclaim)
3773 goto nopage;
3774
3775 /* Make sure we know about allocations which stall for too long */
3776 if (time_after(jiffies, alloc_start + stall_timeout)) {
3777 warn_alloc(gfp_mask, ac->nodemask,
3778 "page allocation stalls for %ums, order:%u",
3779 jiffies_to_msecs(jiffies-alloc_start), order);
3780 stall_timeout += 10 * HZ;
3781 }
3782
3783 /* Avoid recursion of direct reclaim */
3784 if (current->flags & PF_MEMALLOC)
3785 goto nopage;
3786
3787 /* Try direct reclaim and then allocating */
3788 page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
3789 &did_some_progress);
3790 if (page)
3791 goto got_pg;
3792
3793 /* Try direct compaction and then allocating */
3794 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
3795 compact_priority, &compact_result);
3796 if (page)
3797 goto got_pg;
3798
3799 /* Do not loop if specifically requested */
3800 if (gfp_mask & __GFP_NORETRY)
3801 goto nopage;
3802
3803 /*
3804 * Do not retry costly high order allocations unless they are
3805 * __GFP_REPEAT
3806 */
3807 if (order > PAGE_ALLOC_COSTLY_ORDER && !(gfp_mask & __GFP_REPEAT))
3808 goto nopage;
3809
3810 if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
3811 did_some_progress > 0, &no_progress_loops))
3812 goto retry;
3813
3814 /*
3815 * It doesn't make any sense to retry for the compaction if the order-0
3816 * reclaim is not able to make any progress because the current
3817 * implementation of the compaction depends on the sufficient amount
3818 * of free memory (see __compaction_suitable)
3819 */
3820 if (did_some_progress > 0 &&
3821 should_compact_retry(ac, order, alloc_flags,
3822 compact_result, &compact_priority,
3823 &compaction_retries))
3824 goto retry;
3825
3826 /*
3827 * It's possible we raced with cpuset update so the OOM would be
3828 * premature (see below the nopage: label for full explanation).
3829 */
3830 if (read_mems_allowed_retry(cpuset_mems_cookie))
3831 goto retry_cpuset;
3832
3833 /* Reclaim has failed us, start killing things */
3834 page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
3835 if (page)
3836 goto got_pg;
3837
3838 /* Avoid allocations with no watermarks from looping endlessly */
3839 if (test_thread_flag(TIF_MEMDIE))
3840 goto nopage;
3841
3842 /* Retry as long as the OOM killer is making progress */
3843 if (did_some_progress) {
3844 no_progress_loops = 0;
3845 goto retry;
3846 }
3847
3848 nopage:
3849 /*
3850 * When updating a task's mems_allowed or mempolicy nodemask, it is
3851 * possible to race with parallel threads in such a way that our
3852 * allocation can fail while the mask is being updated. If we are about
3853 * to fail, check if the cpuset changed during allocation and if so,
3854 * retry.
3855 */
3856 if (read_mems_allowed_retry(cpuset_mems_cookie))
3857 goto retry_cpuset;
3858
3859 /*
3860 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure
3861 * we always retry
3862 */
3863 if (gfp_mask & __GFP_NOFAIL) {
3864 /*
3865 * All existing users of the __GFP_NOFAIL are blockable, so warn
3866 * of any new users that actually require GFP_NOWAIT
3867 */
3868 if (WARN_ON_ONCE(!can_direct_reclaim))
3869 goto fail;
3870
3871 /*
3872 * PF_MEMALLOC request from this context is rather bizarre
3873 * because we cannot reclaim anything and only can loop waiting
3874 * for somebody to do a work for us
3875 */
3876 WARN_ON_ONCE(current->flags & PF_MEMALLOC);
3877
3878 /*
3879 * non failing costly orders are a hard requirement which we
3880 * are not prepared for much so let's warn about these users
3881 * so that we can identify them and convert them to something
3882 * else.
3883 */
3884 WARN_ON_ONCE(order > PAGE_ALLOC_COSTLY_ORDER);
3885
3886 /*
3887 * Help non-failing allocations by giving them access to memory
3888 * reserves but do not use ALLOC_NO_WATERMARKS because this
3889 * could deplete whole memory reserves which would just make
3890 * the situation worse
3891 */
3892 page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_HARDER, ac);
3893 if (page)
3894 goto got_pg;
3895
3896 cond_resched();
3897 goto retry;
3898 }
3899 fail:
3900 warn_alloc(gfp_mask, ac->nodemask,
3901 "page allocation failure: order:%u", order);
3902 got_pg:
3903 return page;
3904 }
3905
3906 static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order,
3907 struct zonelist *zonelist, nodemask_t *nodemask,
3908 struct alloc_context *ac, gfp_t *alloc_mask,
3909 unsigned int *alloc_flags)
3910 {
3911 ac->high_zoneidx = gfp_zone(gfp_mask);
3912 ac->zonelist = zonelist;
3913 ac->nodemask = nodemask;
3914 ac->migratetype = gfpflags_to_migratetype(gfp_mask);
3915
3916 if (cpusets_enabled()) {
3917 *alloc_mask |= __GFP_HARDWALL;
3918 if (!ac->nodemask)
3919 ac->nodemask = &cpuset_current_mems_allowed;
3920 else
3921 *alloc_flags |= ALLOC_CPUSET;
3922 }
3923
3924 lockdep_trace_alloc(gfp_mask);
3925
3926 might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM);
3927
3928 if (should_fail_alloc_page(gfp_mask, order))
3929 return false;
3930
3931 if (IS_ENABLED(CONFIG_CMA) && ac->migratetype == MIGRATE_MOVABLE)
3932 *alloc_flags |= ALLOC_CMA;
3933
3934 return true;
3935 }
3936
3937 /* Determine whether to spread dirty pages and what the first usable zone */
3938 static inline void finalise_ac(gfp_t gfp_mask,
3939 unsigned int order, struct alloc_context *ac)
3940 {
3941 /* Dirty zone balancing only done in the fast path */
3942 ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE);
3943
3944 /*
3945 * The preferred zone is used for statistics but crucially it is
3946 * also used as the starting point for the zonelist iterator. It
3947 * may get reset for allocations that ignore memory policies.
3948 */
3949 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
3950 ac->high_zoneidx, ac->nodemask);
3951 }
3952
3953 /*
3954 * This is the 'heart' of the zoned buddy allocator.
3955 */
3956 struct page *
3957 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
3958 struct zonelist *zonelist, nodemask_t *nodemask)
3959 {
3960 struct page *page;
3961 unsigned int alloc_flags = ALLOC_WMARK_LOW;
3962 gfp_t alloc_mask = gfp_mask; /* The gfp_t that was actually used for allocation */
3963 struct alloc_context ac = { };
3964
3965 gfp_mask &= gfp_allowed_mask;
3966 if (!prepare_alloc_pages(gfp_mask, order, zonelist, nodemask, &ac, &alloc_mask, &alloc_flags))
3967 return NULL;
3968
3969 finalise_ac(gfp_mask, order, &ac);
3970
3971 /* First allocation attempt */
3972 page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac);
3973 if (likely(page))
3974 goto out;
3975
3976 /*
3977 * Runtime PM, block IO and its error handling path can deadlock
3978 * because I/O on the device might not complete.
3979 */
3980 alloc_mask = memalloc_noio_flags(gfp_mask);
3981 ac.spread_dirty_pages = false;
3982
3983 /*
3984 * Restore the original nodemask if it was potentially replaced with
3985 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
3986 */
3987 if (unlikely(ac.nodemask != nodemask))
3988 ac.nodemask = nodemask;
3989
3990 page = __alloc_pages_slowpath(alloc_mask, order, &ac);
3991
3992 out:
3993 if (memcg_kmem_enabled() && (gfp_mask & __GFP_ACCOUNT) && page &&
3994 unlikely(memcg_kmem_charge(page, gfp_mask, order) != 0)) {
3995 __free_pages(page, order);
3996 page = NULL;
3997 }
3998
3999 if (kmemcheck_enabled && page)
4000 kmemcheck_pagealloc_alloc(page, order, gfp_mask);
4001
4002 trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype);
4003
4004 return page;
4005 }
4006 EXPORT_SYMBOL(__alloc_pages_nodemask);
4007
4008 /*
4009 * Common helper functions.
4010 */
4011 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
4012 {
4013 struct page *page;
4014
4015 /*
4016 * __get_free_pages() returns a 32-bit address, which cannot represent
4017 * a highmem page
4018 */
4019 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
4020
4021 page = alloc_pages(gfp_mask, order);
4022 if (!page)
4023 return 0;
4024 return (unsigned long) page_address(page);
4025 }
4026 EXPORT_SYMBOL(__get_free_pages);
4027
4028 unsigned long get_zeroed_page(gfp_t gfp_mask)
4029 {
4030 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
4031 }
4032 EXPORT_SYMBOL(get_zeroed_page);
4033
4034 void __free_pages(struct page *page, unsigned int order)
4035 {
4036 if (put_page_testzero(page)) {
4037 if (order == 0)
4038 free_hot_cold_page(page, false);
4039 else
4040 __free_pages_ok(page, order);
4041 }
4042 }
4043
4044 EXPORT_SYMBOL(__free_pages);
4045
4046 void free_pages(unsigned long addr, unsigned int order)
4047 {
4048 if (addr != 0) {
4049 VM_BUG_ON(!virt_addr_valid((void *)addr));
4050 __free_pages(virt_to_page((void *)addr), order);
4051 }
4052 }
4053
4054 EXPORT_SYMBOL(free_pages);
4055
4056 /*
4057 * Page Fragment:
4058 * An arbitrary-length arbitrary-offset area of memory which resides
4059 * within a 0 or higher order page. Multiple fragments within that page
4060 * are individually refcounted, in the page's reference counter.
4061 *
4062 * The page_frag functions below provide a simple allocation framework for
4063 * page fragments. This is used by the network stack and network device
4064 * drivers to provide a backing region of memory for use as either an
4065 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
4066 */
4067 static struct page *__page_frag_cache_refill(struct page_frag_cache *nc,
4068 gfp_t gfp_mask)
4069 {
4070 struct page *page = NULL;
4071 gfp_t gfp = gfp_mask;
4072
4073 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4074 gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
4075 __GFP_NOMEMALLOC;
4076 page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
4077 PAGE_FRAG_CACHE_MAX_ORDER);
4078 nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
4079 #endif
4080 if (unlikely(!page))
4081 page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
4082
4083 nc->va = page ? page_address(page) : NULL;
4084
4085 return page;
4086 }
4087
4088 void __page_frag_cache_drain(struct page *page, unsigned int count)
4089 {
4090 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
4091
4092 if (page_ref_sub_and_test(page, count)) {
4093 unsigned int order = compound_order(page);
4094
4095 if (order == 0)
4096 free_hot_cold_page(page, false);
4097 else
4098 __free_pages_ok(page, order);
4099 }
4100 }
4101 EXPORT_SYMBOL(__page_frag_cache_drain);
4102
4103 void *page_frag_alloc(struct page_frag_cache *nc,
4104 unsigned int fragsz, gfp_t gfp_mask)
4105 {
4106 unsigned int size = PAGE_SIZE;
4107 struct page *page;
4108 int offset;
4109
4110 if (unlikely(!nc->va)) {
4111 refill:
4112 page = __page_frag_cache_refill(nc, gfp_mask);
4113 if (!page)
4114 return NULL;
4115
4116 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4117 /* if size can vary use size else just use PAGE_SIZE */
4118 size = nc->size;
4119 #endif
4120 /* Even if we own the page, we do not use atomic_set().
4121 * This would break get_page_unless_zero() users.
4122 */
4123 page_ref_add(page, size - 1);
4124
4125 /* reset page count bias and offset to start of new frag */
4126 nc->pfmemalloc = page_is_pfmemalloc(page);
4127 nc->pagecnt_bias = size;
4128 nc->offset = size;
4129 }
4130
4131 offset = nc->offset - fragsz;
4132 if (unlikely(offset < 0)) {
4133 page = virt_to_page(nc->va);
4134
4135 if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
4136 goto refill;
4137
4138 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4139 /* if size can vary use size else just use PAGE_SIZE */
4140 size = nc->size;
4141 #endif
4142 /* OK, page count is 0, we can safely set it */
4143 set_page_count(page, size);
4144
4145 /* reset page count bias and offset to start of new frag */
4146 nc->pagecnt_bias = size;
4147 offset = size - fragsz;
4148 }
4149
4150 nc->pagecnt_bias--;
4151 nc->offset = offset;
4152
4153 return nc->va + offset;
4154 }
4155 EXPORT_SYMBOL(page_frag_alloc);
4156
4157 /*
4158 * Frees a page fragment allocated out of either a compound or order 0 page.
4159 */
4160 void page_frag_free(void *addr)
4161 {
4162 struct page *page = virt_to_head_page(addr);
4163
4164 if (unlikely(put_page_testzero(page)))
4165 __free_pages_ok(page, compound_order(page));
4166 }
4167 EXPORT_SYMBOL(page_frag_free);
4168
4169 static void *make_alloc_exact(unsigned long addr, unsigned int order,
4170 size_t size)
4171 {
4172 if (addr) {
4173 unsigned long alloc_end = addr + (PAGE_SIZE << order);
4174 unsigned long used = addr + PAGE_ALIGN(size);
4175
4176 split_page(virt_to_page((void *)addr), order);
4177 while (used < alloc_end) {
4178 free_page(used);
4179 used += PAGE_SIZE;
4180 }
4181 }
4182 return (void *)addr;
4183 }
4184
4185 /**
4186 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
4187 * @size: the number of bytes to allocate
4188 * @gfp_mask: GFP flags for the allocation
4189 *
4190 * This function is similar to alloc_pages(), except that it allocates the
4191 * minimum number of pages to satisfy the request. alloc_pages() can only
4192 * allocate memory in power-of-two pages.
4193 *
4194 * This function is also limited by MAX_ORDER.
4195 *
4196 * Memory allocated by this function must be released by free_pages_exact().
4197 */
4198 void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
4199 {
4200 unsigned int order = get_order(size);
4201 unsigned long addr;
4202
4203 addr = __get_free_pages(gfp_mask, order);
4204 return make_alloc_exact(addr, order, size);
4205 }
4206 EXPORT_SYMBOL(alloc_pages_exact);
4207
4208 /**
4209 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
4210 * pages on a node.
4211 * @nid: the preferred node ID where memory should be allocated
4212 * @size: the number of bytes to allocate
4213 * @gfp_mask: GFP flags for the allocation
4214 *
4215 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
4216 * back.
4217 */
4218 void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
4219 {
4220 unsigned int order = get_order(size);
4221 struct page *p = alloc_pages_node(nid, gfp_mask, order);
4222 if (!p)
4223 return NULL;
4224 return make_alloc_exact((unsigned long)page_address(p), order, size);
4225 }
4226
4227 /**
4228 * free_pages_exact - release memory allocated via alloc_pages_exact()
4229 * @virt: the value returned by alloc_pages_exact.
4230 * @size: size of allocation, same value as passed to alloc_pages_exact().
4231 *
4232 * Release the memory allocated by a previous call to alloc_pages_exact.
4233 */
4234 void free_pages_exact(void *virt, size_t size)
4235 {
4236 unsigned long addr = (unsigned long)virt;
4237 unsigned long end = addr + PAGE_ALIGN(size);
4238
4239 while (addr < end) {
4240 free_page(addr);
4241 addr += PAGE_SIZE;
4242 }
4243 }
4244 EXPORT_SYMBOL(free_pages_exact);
4245
4246 /**
4247 * nr_free_zone_pages - count number of pages beyond high watermark
4248 * @offset: The zone index of the highest zone
4249 *
4250 * nr_free_zone_pages() counts the number of counts pages which are beyond the
4251 * high watermark within all zones at or below a given zone index. For each
4252 * zone, the number of pages is calculated as:
4253 * managed_pages - high_pages
4254 */
4255 static unsigned long nr_free_zone_pages(int offset)
4256 {
4257 struct zoneref *z;
4258 struct zone *zone;
4259
4260 /* Just pick one node, since fallback list is circular */
4261 unsigned long sum = 0;
4262
4263 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
4264
4265 for_each_zone_zonelist(zone, z, zonelist, offset) {
4266 unsigned long size = zone->managed_pages;
4267 unsigned long high = high_wmark_pages(zone);
4268 if (size > high)
4269 sum += size - high;
4270 }
4271
4272 return sum;
4273 }
4274
4275 /**
4276 * nr_free_buffer_pages - count number of pages beyond high watermark
4277 *
4278 * nr_free_buffer_pages() counts the number of pages which are beyond the high
4279 * watermark within ZONE_DMA and ZONE_NORMAL.
4280 */
4281 unsigned long nr_free_buffer_pages(void)
4282 {
4283 return nr_free_zone_pages(gfp_zone(GFP_USER));
4284 }
4285 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
4286
4287 /**
4288 * nr_free_pagecache_pages - count number of pages beyond high watermark
4289 *
4290 * nr_free_pagecache_pages() counts the number of pages which are beyond the
4291 * high watermark within all zones.
4292 */
4293 unsigned long nr_free_pagecache_pages(void)
4294 {
4295 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
4296 }
4297
4298 static inline void show_node(struct zone *zone)
4299 {
4300 if (IS_ENABLED(CONFIG_NUMA))
4301 printk("Node %d ", zone_to_nid(zone));
4302 }
4303
4304 long si_mem_available(void)
4305 {
4306 long available;
4307 unsigned long pagecache;
4308 unsigned long wmark_low = 0;
4309 unsigned long pages[NR_LRU_LISTS];
4310 struct zone *zone;
4311 int lru;
4312
4313 for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++)
4314 pages[lru] = global_node_page_state(NR_LRU_BASE + lru);
4315
4316 for_each_zone(zone)
4317 wmark_low += zone->watermark[WMARK_LOW];
4318
4319 /*
4320 * Estimate the amount of memory available for userspace allocations,
4321 * without causing swapping.
4322 */
4323 available = global_page_state(NR_FREE_PAGES) - totalreserve_pages;
4324
4325 /*
4326 * Not all the page cache can be freed, otherwise the system will
4327 * start swapping. Assume at least half of the page cache, or the
4328 * low watermark worth of cache, needs to stay.
4329 */
4330 pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE];
4331 pagecache -= min(pagecache / 2, wmark_low);
4332 available += pagecache;
4333
4334 /*
4335 * Part of the reclaimable slab consists of items that are in use,
4336 * and cannot be freed. Cap this estimate at the low watermark.
4337 */
4338 available += global_page_state(NR_SLAB_RECLAIMABLE) -
4339 min(global_page_state(NR_SLAB_RECLAIMABLE) / 2, wmark_low);
4340
4341 if (available < 0)
4342 available = 0;
4343 return available;
4344 }
4345 EXPORT_SYMBOL_GPL(si_mem_available);
4346
4347 void si_meminfo(struct sysinfo *val)
4348 {
4349 val->totalram = totalram_pages;
4350 val->sharedram = global_node_page_state(NR_SHMEM);
4351 val->freeram = global_page_state(NR_FREE_PAGES);
4352 val->bufferram = nr_blockdev_pages();
4353 val->totalhigh = totalhigh_pages;
4354 val->freehigh = nr_free_highpages();
4355 val->mem_unit = PAGE_SIZE;
4356 }
4357
4358 EXPORT_SYMBOL(si_meminfo);
4359
4360 #ifdef CONFIG_NUMA
4361 void si_meminfo_node(struct sysinfo *val, int nid)
4362 {
4363 int zone_type; /* needs to be signed */
4364 unsigned long managed_pages = 0;
4365 unsigned long managed_highpages = 0;
4366 unsigned long free_highpages = 0;
4367 pg_data_t *pgdat = NODE_DATA(nid);
4368
4369 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
4370 managed_pages += pgdat->node_zones[zone_type].managed_pages;
4371 val->totalram = managed_pages;
4372 val->sharedram = node_page_state(pgdat, NR_SHMEM);
4373 val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES);
4374 #ifdef CONFIG_HIGHMEM
4375 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
4376 struct zone *zone = &pgdat->node_zones[zone_type];
4377
4378 if (is_highmem(zone)) {
4379 managed_highpages += zone->managed_pages;
4380 free_highpages += zone_page_state(zone, NR_FREE_PAGES);
4381 }
4382 }
4383 val->totalhigh = managed_highpages;
4384 val->freehigh = free_highpages;
4385 #else
4386 val->totalhigh = managed_highpages;
4387 val->freehigh = free_highpages;
4388 #endif
4389 val->mem_unit = PAGE_SIZE;
4390 }
4391 #endif
4392
4393 /*
4394 * Determine whether the node should be displayed or not, depending on whether
4395 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
4396 */
4397 static bool show_mem_node_skip(unsigned int flags, int nid, nodemask_t *nodemask)
4398 {
4399 if (!(flags & SHOW_MEM_FILTER_NODES))
4400 return false;
4401
4402 /*
4403 * no node mask - aka implicit memory numa policy. Do not bother with
4404 * the synchronization - read_mems_allowed_begin - because we do not
4405 * have to be precise here.
4406 */
4407 if (!nodemask)
4408 nodemask = &cpuset_current_mems_allowed;
4409
4410 return !node_isset(nid, *nodemask);
4411 }
4412
4413 #define K(x) ((x) << (PAGE_SHIFT-10))
4414
4415 static void show_migration_types(unsigned char type)
4416 {
4417 static const char types[MIGRATE_TYPES] = {
4418 [MIGRATE_UNMOVABLE] = 'U',
4419 [MIGRATE_MOVABLE] = 'M',
4420 [MIGRATE_RECLAIMABLE] = 'E',
4421 [MIGRATE_HIGHATOMIC] = 'H',
4422 #ifdef CONFIG_CMA
4423 [MIGRATE_CMA] = 'C',
4424 #endif
4425 #ifdef CONFIG_MEMORY_ISOLATION
4426 [MIGRATE_ISOLATE] = 'I',
4427 #endif
4428 };
4429 char tmp[MIGRATE_TYPES + 1];
4430 char *p = tmp;
4431 int i;
4432
4433 for (i = 0; i < MIGRATE_TYPES; i++) {
4434 if (type & (1 << i))
4435 *p++ = types[i];
4436 }
4437
4438 *p = '\0';
4439 printk(KERN_CONT "(%s) ", tmp);
4440 }
4441
4442 /*
4443 * Show free area list (used inside shift_scroll-lock stuff)
4444 * We also calculate the percentage fragmentation. We do this by counting the
4445 * memory on each free list with the exception of the first item on the list.
4446 *
4447 * Bits in @filter:
4448 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
4449 * cpuset.
4450 */
4451 void show_free_areas(unsigned int filter, nodemask_t *nodemask)
4452 {
4453 unsigned long free_pcp = 0;
4454 int cpu;
4455 struct zone *zone;
4456 pg_data_t *pgdat;
4457
4458 for_each_populated_zone(zone) {
4459 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
4460 continue;
4461
4462 for_each_online_cpu(cpu)
4463 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
4464 }
4465
4466 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
4467 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
4468 " unevictable:%lu dirty:%lu writeback:%lu unstable:%lu\n"
4469 " slab_reclaimable:%lu slab_unreclaimable:%lu\n"
4470 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
4471 " free:%lu free_pcp:%lu free_cma:%lu\n",
4472 global_node_page_state(NR_ACTIVE_ANON),
4473 global_node_page_state(NR_INACTIVE_ANON),
4474 global_node_page_state(NR_ISOLATED_ANON),
4475 global_node_page_state(NR_ACTIVE_FILE),
4476 global_node_page_state(NR_INACTIVE_FILE),
4477 global_node_page_state(NR_ISOLATED_FILE),
4478 global_node_page_state(NR_UNEVICTABLE),
4479 global_node_page_state(NR_FILE_DIRTY),
4480 global_node_page_state(NR_WRITEBACK),
4481 global_node_page_state(NR_UNSTABLE_NFS),
4482 global_page_state(NR_SLAB_RECLAIMABLE),
4483 global_page_state(NR_SLAB_UNRECLAIMABLE),
4484 global_node_page_state(NR_FILE_MAPPED),
4485 global_node_page_state(NR_SHMEM),
4486 global_page_state(NR_PAGETABLE),
4487 global_page_state(NR_BOUNCE),
4488 global_page_state(NR_FREE_PAGES),
4489 free_pcp,
4490 global_page_state(NR_FREE_CMA_PAGES));
4491
4492 for_each_online_pgdat(pgdat) {
4493 if (show_mem_node_skip(filter, pgdat->node_id, nodemask))
4494 continue;
4495
4496 printk("Node %d"
4497 " active_anon:%lukB"
4498 " inactive_anon:%lukB"
4499 " active_file:%lukB"
4500 " inactive_file:%lukB"
4501 " unevictable:%lukB"
4502 " isolated(anon):%lukB"
4503 " isolated(file):%lukB"
4504 " mapped:%lukB"
4505 " dirty:%lukB"
4506 " writeback:%lukB"
4507 " shmem:%lukB"
4508 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4509 " shmem_thp: %lukB"
4510 " shmem_pmdmapped: %lukB"
4511 " anon_thp: %lukB"
4512 #endif
4513 " writeback_tmp:%lukB"
4514 " unstable:%lukB"
4515 " pages_scanned:%lu"
4516 " all_unreclaimable? %s"
4517 "\n",
4518 pgdat->node_id,
4519 K(node_page_state(pgdat, NR_ACTIVE_ANON)),
4520 K(node_page_state(pgdat, NR_INACTIVE_ANON)),
4521 K(node_page_state(pgdat, NR_ACTIVE_FILE)),
4522 K(node_page_state(pgdat, NR_INACTIVE_FILE)),
4523 K(node_page_state(pgdat, NR_UNEVICTABLE)),
4524 K(node_page_state(pgdat, NR_ISOLATED_ANON)),
4525 K(node_page_state(pgdat, NR_ISOLATED_FILE)),
4526 K(node_page_state(pgdat, NR_FILE_MAPPED)),
4527 K(node_page_state(pgdat, NR_FILE_DIRTY)),
4528 K(node_page_state(pgdat, NR_WRITEBACK)),
4529 K(node_page_state(pgdat, NR_SHMEM)),
4530 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4531 K(node_page_state(pgdat, NR_SHMEM_THPS) * HPAGE_PMD_NR),
4532 K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED)
4533 * HPAGE_PMD_NR),
4534 K(node_page_state(pgdat, NR_ANON_THPS) * HPAGE_PMD_NR),
4535 #endif
4536 K(node_page_state(pgdat, NR_WRITEBACK_TEMP)),
4537 K(node_page_state(pgdat, NR_UNSTABLE_NFS)),
4538 node_page_state(pgdat, NR_PAGES_SCANNED),
4539 !pgdat_reclaimable(pgdat) ? "yes" : "no");
4540 }
4541
4542 for_each_populated_zone(zone) {
4543 int i;
4544
4545 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
4546 continue;
4547
4548 free_pcp = 0;
4549 for_each_online_cpu(cpu)
4550 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
4551
4552 show_node(zone);
4553 printk(KERN_CONT
4554 "%s"
4555 " free:%lukB"
4556 " min:%lukB"
4557 " low:%lukB"
4558 " high:%lukB"
4559 " active_anon:%lukB"
4560 " inactive_anon:%lukB"
4561 " active_file:%lukB"
4562 " inactive_file:%lukB"
4563 " unevictable:%lukB"
4564 " writepending:%lukB"
4565 " present:%lukB"
4566 " managed:%lukB"
4567 " mlocked:%lukB"
4568 " slab_reclaimable:%lukB"
4569 " slab_unreclaimable:%lukB"
4570 " kernel_stack:%lukB"
4571 " pagetables:%lukB"
4572 " bounce:%lukB"
4573 " free_pcp:%lukB"
4574 " local_pcp:%ukB"
4575 " free_cma:%lukB"
4576 "\n",
4577 zone->name,
4578 K(zone_page_state(zone, NR_FREE_PAGES)),
4579 K(min_wmark_pages(zone)),
4580 K(low_wmark_pages(zone)),
4581 K(high_wmark_pages(zone)),
4582 K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)),
4583 K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)),
4584 K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)),
4585 K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)),
4586 K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)),
4587 K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)),
4588 K(zone->present_pages),
4589 K(zone->managed_pages),
4590 K(zone_page_state(zone, NR_MLOCK)),
4591 K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
4592 K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
4593 zone_page_state(zone, NR_KERNEL_STACK_KB),
4594 K(zone_page_state(zone, NR_PAGETABLE)),
4595 K(zone_page_state(zone, NR_BOUNCE)),
4596 K(free_pcp),
4597 K(this_cpu_read(zone->pageset->pcp.count)),
4598 K(zone_page_state(zone, NR_FREE_CMA_PAGES)));
4599 printk("lowmem_reserve[]:");
4600 for (i = 0; i < MAX_NR_ZONES; i++)
4601 printk(KERN_CONT " %ld", zone->lowmem_reserve[i]);
4602 printk(KERN_CONT "\n");
4603 }
4604
4605 for_each_populated_zone(zone) {
4606 unsigned int order;
4607 unsigned long nr[MAX_ORDER], flags, total = 0;
4608 unsigned char types[MAX_ORDER];
4609
4610 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
4611 continue;
4612 show_node(zone);
4613 printk(KERN_CONT "%s: ", zone->name);
4614
4615 spin_lock_irqsave(&zone->lock, flags);
4616 for (order = 0; order < MAX_ORDER; order++) {
4617 struct free_area *area = &zone->free_area[order];
4618 int type;
4619
4620 nr[order] = area->nr_free;
4621 total += nr[order] << order;
4622
4623 types[order] = 0;
4624 for (type = 0; type < MIGRATE_TYPES; type++) {
4625 if (!list_empty(&area->free_list[type]))
4626 types[order] |= 1 << type;
4627 }
4628 }
4629 spin_unlock_irqrestore(&zone->lock, flags);
4630 for (order = 0; order < MAX_ORDER; order++) {
4631 printk(KERN_CONT "%lu*%lukB ",
4632 nr[order], K(1UL) << order);
4633 if (nr[order])
4634 show_migration_types(types[order]);
4635 }
4636 printk(KERN_CONT "= %lukB\n", K(total));
4637 }
4638
4639 hugetlb_show_meminfo();
4640
4641 printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES));
4642
4643 show_swap_cache_info();
4644 }
4645
4646 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
4647 {
4648 zoneref->zone = zone;
4649 zoneref->zone_idx = zone_idx(zone);
4650 }
4651
4652 /*
4653 * Builds allocation fallback zone lists.
4654 *
4655 * Add all populated zones of a node to the zonelist.
4656 */
4657 static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
4658 int nr_zones)
4659 {
4660 struct zone *zone;
4661 enum zone_type zone_type = MAX_NR_ZONES;
4662
4663 do {
4664 zone_type--;
4665 zone = pgdat->node_zones + zone_type;
4666 if (managed_zone(zone)) {
4667 zoneref_set_zone(zone,
4668 &zonelist->_zonerefs[nr_zones++]);
4669 check_highest_zone(zone_type);
4670 }
4671 } while (zone_type);
4672
4673 return nr_zones;
4674 }
4675
4676
4677 /*
4678 * zonelist_order:
4679 * 0 = automatic detection of better ordering.
4680 * 1 = order by ([node] distance, -zonetype)
4681 * 2 = order by (-zonetype, [node] distance)
4682 *
4683 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
4684 * the same zonelist. So only NUMA can configure this param.
4685 */
4686 #define ZONELIST_ORDER_DEFAULT 0
4687 #define ZONELIST_ORDER_NODE 1
4688 #define ZONELIST_ORDER_ZONE 2
4689
4690 /* zonelist order in the kernel.
4691 * set_zonelist_order() will set this to NODE or ZONE.
4692 */
4693 static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
4694 static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
4695
4696
4697 #ifdef CONFIG_NUMA
4698 /* The value user specified ....changed by config */
4699 static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
4700 /* string for sysctl */
4701 #define NUMA_ZONELIST_ORDER_LEN 16
4702 char numa_zonelist_order[16] = "default";
4703
4704 /*
4705 * interface for configure zonelist ordering.
4706 * command line option "numa_zonelist_order"
4707 * = "[dD]efault - default, automatic configuration.
4708 * = "[nN]ode - order by node locality, then by zone within node
4709 * = "[zZ]one - order by zone, then by locality within zone
4710 */
4711
4712 static int __parse_numa_zonelist_order(char *s)
4713 {
4714 if (*s == 'd' || *s == 'D') {
4715 user_zonelist_order = ZONELIST_ORDER_DEFAULT;
4716 } else if (*s == 'n' || *s == 'N') {
4717 user_zonelist_order = ZONELIST_ORDER_NODE;
4718 } else if (*s == 'z' || *s == 'Z') {
4719 user_zonelist_order = ZONELIST_ORDER_ZONE;
4720 } else {
4721 pr_warn("Ignoring invalid numa_zonelist_order value: %s\n", s);
4722 return -EINVAL;
4723 }
4724 return 0;
4725 }
4726
4727 static __init int setup_numa_zonelist_order(char *s)
4728 {
4729 int ret;
4730
4731 if (!s)
4732 return 0;
4733
4734 ret = __parse_numa_zonelist_order(s);
4735 if (ret == 0)
4736 strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN);
4737
4738 return ret;
4739 }
4740 early_param("numa_zonelist_order", setup_numa_zonelist_order);
4741
4742 /*
4743 * sysctl handler for numa_zonelist_order
4744 */
4745 int numa_zonelist_order_handler(struct ctl_table *table, int write,
4746 void __user *buffer, size_t *length,
4747 loff_t *ppos)
4748 {
4749 char saved_string[NUMA_ZONELIST_ORDER_LEN];
4750 int ret;
4751 static DEFINE_MUTEX(zl_order_mutex);
4752
4753 mutex_lock(&zl_order_mutex);
4754 if (write) {
4755 if (strlen((char *)table->data) >= NUMA_ZONELIST_ORDER_LEN) {
4756 ret = -EINVAL;
4757 goto out;
4758 }
4759 strcpy(saved_string, (char *)table->data);
4760 }
4761 ret = proc_dostring(table, write, buffer, length, ppos);
4762 if (ret)
4763 goto out;
4764 if (write) {
4765 int oldval = user_zonelist_order;
4766
4767 ret = __parse_numa_zonelist_order((char *)table->data);
4768 if (ret) {
4769 /*
4770 * bogus value. restore saved string
4771 */
4772 strncpy((char *)table->data, saved_string,
4773 NUMA_ZONELIST_ORDER_LEN);
4774 user_zonelist_order = oldval;
4775 } else if (oldval != user_zonelist_order) {
4776 mutex_lock(&zonelists_mutex);
4777 build_all_zonelists(NULL, NULL);
4778 mutex_unlock(&zonelists_mutex);
4779 }
4780 }
4781 out:
4782 mutex_unlock(&zl_order_mutex);
4783 return ret;
4784 }
4785
4786
4787 #define MAX_NODE_LOAD (nr_online_nodes)
4788 static int node_load[MAX_NUMNODES];
4789
4790 /**
4791 * find_next_best_node - find the next node that should appear in a given node's fallback list
4792 * @node: node whose fallback list we're appending
4793 * @used_node_mask: nodemask_t of already used nodes
4794 *
4795 * We use a number of factors to determine which is the next node that should
4796 * appear on a given node's fallback list. The node should not have appeared
4797 * already in @node's fallback list, and it should be the next closest node
4798 * according to the distance array (which contains arbitrary distance values
4799 * from each node to each node in the system), and should also prefer nodes
4800 * with no CPUs, since presumably they'll have very little allocation pressure
4801 * on them otherwise.
4802 * It returns -1 if no node is found.
4803 */
4804 static int find_next_best_node(int node, nodemask_t *used_node_mask)
4805 {
4806 int n, val;
4807 int min_val = INT_MAX;
4808 int best_node = NUMA_NO_NODE;
4809 const struct cpumask *tmp = cpumask_of_node(0);
4810
4811 /* Use the local node if we haven't already */
4812 if (!node_isset(node, *used_node_mask)) {
4813 node_set(node, *used_node_mask);
4814 return node;
4815 }
4816
4817 for_each_node_state(n, N_MEMORY) {
4818
4819 /* Don't want a node to appear more than once */
4820 if (node_isset(n, *used_node_mask))
4821 continue;
4822
4823 /* Use the distance array to find the distance */
4824 val = node_distance(node, n);
4825
4826 /* Penalize nodes under us ("prefer the next node") */
4827 val += (n < node);
4828
4829 /* Give preference to headless and unused nodes */
4830 tmp = cpumask_of_node(n);
4831 if (!cpumask_empty(tmp))
4832 val += PENALTY_FOR_NODE_WITH_CPUS;
4833
4834 /* Slight preference for less loaded node */
4835 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
4836 val += node_load[n];
4837
4838 if (val < min_val) {
4839 min_val = val;
4840 best_node = n;
4841 }
4842 }
4843
4844 if (best_node >= 0)
4845 node_set(best_node, *used_node_mask);
4846
4847 return best_node;
4848 }
4849
4850
4851 /*
4852 * Build zonelists ordered by node and zones within node.
4853 * This results in maximum locality--normal zone overflows into local
4854 * DMA zone, if any--but risks exhausting DMA zone.
4855 */
4856 static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
4857 {
4858 int j;
4859 struct zonelist *zonelist;
4860
4861 zonelist = &pgdat->node_zonelists[ZONELIST_FALLBACK];
4862 for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
4863 ;
4864 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
4865 zonelist->_zonerefs[j].zone = NULL;
4866 zonelist->_zonerefs[j].zone_idx = 0;
4867 }
4868
4869 /*
4870 * Build gfp_thisnode zonelists
4871 */
4872 static void build_thisnode_zonelists(pg_data_t *pgdat)
4873 {
4874 int j;
4875 struct zonelist *zonelist;
4876
4877 zonelist = &pgdat->node_zonelists[ZONELIST_NOFALLBACK];
4878 j = build_zonelists_node(pgdat, zonelist, 0);
4879 zonelist->_zonerefs[j].zone = NULL;
4880 zonelist->_zonerefs[j].zone_idx = 0;
4881 }
4882
4883 /*
4884 * Build zonelists ordered by zone and nodes within zones.
4885 * This results in conserving DMA zone[s] until all Normal memory is
4886 * exhausted, but results in overflowing to remote node while memory
4887 * may still exist in local DMA zone.
4888 */
4889 static int node_order[MAX_NUMNODES];
4890
4891 static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
4892 {
4893 int pos, j, node;
4894 int zone_type; /* needs to be signed */
4895 struct zone *z;
4896 struct zonelist *zonelist;
4897
4898 zonelist = &pgdat->node_zonelists[ZONELIST_FALLBACK];
4899 pos = 0;
4900 for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
4901 for (j = 0; j < nr_nodes; j++) {
4902 node = node_order[j];
4903 z = &NODE_DATA(node)->node_zones[zone_type];
4904 if (managed_zone(z)) {
4905 zoneref_set_zone(z,
4906 &zonelist->_zonerefs[pos++]);
4907 check_highest_zone(zone_type);
4908 }
4909 }
4910 }
4911 zonelist->_zonerefs[pos].zone = NULL;
4912 zonelist->_zonerefs[pos].zone_idx = 0;
4913 }
4914
4915 #if defined(CONFIG_64BIT)
4916 /*
4917 * Devices that require DMA32/DMA are relatively rare and do not justify a
4918 * penalty to every machine in case the specialised case applies. Default
4919 * to Node-ordering on 64-bit NUMA machines
4920 */
4921 static int default_zonelist_order(void)
4922 {
4923 return ZONELIST_ORDER_NODE;
4924 }
4925 #else
4926 /*
4927 * On 32-bit, the Normal zone needs to be preserved for allocations accessible
4928 * by the kernel. If processes running on node 0 deplete the low memory zone
4929 * then reclaim will occur more frequency increasing stalls and potentially
4930 * be easier to OOM if a large percentage of the zone is under writeback or
4931 * dirty. The problem is significantly worse if CONFIG_HIGHPTE is not set.
4932 * Hence, default to zone ordering on 32-bit.
4933 */
4934 static int default_zonelist_order(void)
4935 {
4936 return ZONELIST_ORDER_ZONE;
4937 }
4938 #endif /* CONFIG_64BIT */
4939
4940 static void set_zonelist_order(void)
4941 {
4942 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
4943 current_zonelist_order = default_zonelist_order();
4944 else
4945 current_zonelist_order = user_zonelist_order;
4946 }
4947
4948 static void build_zonelists(pg_data_t *pgdat)
4949 {
4950 int i, node, load;
4951 nodemask_t used_mask;
4952 int local_node, prev_node;
4953 struct zonelist *zonelist;
4954 unsigned int order = current_zonelist_order;
4955
4956 /* initialize zonelists */
4957 for (i = 0; i < MAX_ZONELISTS; i++) {
4958 zonelist = pgdat->node_zonelists + i;
4959 zonelist->_zonerefs[0].zone = NULL;
4960 zonelist->_zonerefs[0].zone_idx = 0;
4961 }
4962
4963 /* NUMA-aware ordering of nodes */
4964 local_node = pgdat->node_id;
4965 load = nr_online_nodes;
4966 prev_node = local_node;
4967 nodes_clear(used_mask);
4968
4969 memset(node_order, 0, sizeof(node_order));
4970 i = 0;
4971
4972 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
4973 /*
4974 * We don't want to pressure a particular node.
4975 * So adding penalty to the first node in same
4976 * distance group to make it round-robin.
4977 */
4978 if (node_distance(local_node, node) !=
4979 node_distance(local_node, prev_node))
4980 node_load[node] = load;
4981
4982 prev_node = node;
4983 load--;
4984 if (order == ZONELIST_ORDER_NODE)
4985 build_zonelists_in_node_order(pgdat, node);
4986 else
4987 node_order[i++] = node; /* remember order */
4988 }
4989
4990 if (order == ZONELIST_ORDER_ZONE) {
4991 /* calculate node order -- i.e., DMA last! */
4992 build_zonelists_in_zone_order(pgdat, i);
4993 }
4994
4995 build_thisnode_zonelists(pgdat);
4996 }
4997
4998 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
4999 /*
5000 * Return node id of node used for "local" allocations.
5001 * I.e., first node id of first zone in arg node's generic zonelist.
5002 * Used for initializing percpu 'numa_mem', which is used primarily
5003 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
5004 */
5005 int local_memory_node(int node)
5006 {
5007 struct zoneref *z;
5008
5009 z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
5010 gfp_zone(GFP_KERNEL),
5011 NULL);
5012 return z->zone->node;
5013 }
5014 #endif
5015
5016 static void setup_min_unmapped_ratio(void);
5017 static void setup_min_slab_ratio(void);
5018 #else /* CONFIG_NUMA */
5019
5020 static void set_zonelist_order(void)
5021 {
5022 current_zonelist_order = ZONELIST_ORDER_ZONE;
5023 }
5024
5025 static void build_zonelists(pg_data_t *pgdat)
5026 {
5027 int node, local_node;
5028 enum zone_type j;
5029 struct zonelist *zonelist;
5030
5031 local_node = pgdat->node_id;
5032
5033 zonelist = &pgdat->node_zonelists[ZONELIST_FALLBACK];
5034 j = build_zonelists_node(pgdat, zonelist, 0);
5035
5036 /*
5037 * Now we build the zonelist so that it contains the zones
5038 * of all the other nodes.
5039 * We don't want to pressure a particular node, so when
5040 * building the zones for node N, we make sure that the
5041 * zones coming right after the local ones are those from
5042 * node N+1 (modulo N)
5043 */
5044 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
5045 if (!node_online(node))
5046 continue;
5047 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
5048 }
5049 for (node = 0; node < local_node; node++) {
5050 if (!node_online(node))
5051 continue;
5052 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
5053 }
5054
5055 zonelist->_zonerefs[j].zone = NULL;
5056 zonelist->_zonerefs[j].zone_idx = 0;
5057 }
5058
5059 #endif /* CONFIG_NUMA */
5060
5061 /*
5062 * Boot pageset table. One per cpu which is going to be used for all
5063 * zones and all nodes. The parameters will be set in such a way
5064 * that an item put on a list will immediately be handed over to
5065 * the buddy list. This is safe since pageset manipulation is done
5066 * with interrupts disabled.
5067 *
5068 * The boot_pagesets must be kept even after bootup is complete for
5069 * unused processors and/or zones. They do play a role for bootstrapping
5070 * hotplugged processors.
5071 *
5072 * zoneinfo_show() and maybe other functions do
5073 * not check if the processor is online before following the pageset pointer.
5074 * Other parts of the kernel may not check if the zone is available.
5075 */
5076 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
5077 static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
5078 static void setup_zone_pageset(struct zone *zone);
5079
5080 /*
5081 * Global mutex to protect against size modification of zonelists
5082 * as well as to serialize pageset setup for the new populated zone.
5083 */
5084 DEFINE_MUTEX(zonelists_mutex);
5085
5086 /* return values int ....just for stop_machine() */
5087 static int __build_all_zonelists(void *data)
5088 {
5089 int nid;
5090 int cpu;
5091 pg_data_t *self = data;
5092
5093 #ifdef CONFIG_NUMA
5094 memset(node_load, 0, sizeof(node_load));
5095 #endif
5096
5097 if (self && !node_online(self->node_id)) {
5098 build_zonelists(self);
5099 }
5100
5101 for_each_online_node(nid) {
5102 pg_data_t *pgdat = NODE_DATA(nid);
5103
5104 build_zonelists(pgdat);
5105 }
5106
5107 /*
5108 * Initialize the boot_pagesets that are going to be used
5109 * for bootstrapping processors. The real pagesets for
5110 * each zone will be allocated later when the per cpu
5111 * allocator is available.
5112 *
5113 * boot_pagesets are used also for bootstrapping offline
5114 * cpus if the system is already booted because the pagesets
5115 * are needed to initialize allocators on a specific cpu too.
5116 * F.e. the percpu allocator needs the page allocator which
5117 * needs the percpu allocator in order to allocate its pagesets
5118 * (a chicken-egg dilemma).
5119 */
5120 for_each_possible_cpu(cpu) {
5121 setup_pageset(&per_cpu(boot_pageset, cpu), 0);
5122
5123 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
5124 /*
5125 * We now know the "local memory node" for each node--
5126 * i.e., the node of the first zone in the generic zonelist.
5127 * Set up numa_mem percpu variable for on-line cpus. During
5128 * boot, only the boot cpu should be on-line; we'll init the
5129 * secondary cpus' numa_mem as they come on-line. During
5130 * node/memory hotplug, we'll fixup all on-line cpus.
5131 */
5132 if (cpu_online(cpu))
5133 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
5134 #endif
5135 }
5136
5137 return 0;
5138 }
5139
5140 static noinline void __init
5141 build_all_zonelists_init(void)
5142 {
5143 __build_all_zonelists(NULL);
5144 mminit_verify_zonelist();
5145 cpuset_init_current_mems_allowed();
5146 }
5147
5148 /*
5149 * Called with zonelists_mutex held always
5150 * unless system_state == SYSTEM_BOOTING.
5151 *
5152 * __ref due to (1) call of __meminit annotated setup_zone_pageset
5153 * [we're only called with non-NULL zone through __meminit paths] and
5154 * (2) call of __init annotated helper build_all_zonelists_init
5155 * [protected by SYSTEM_BOOTING].
5156 */
5157 void __ref build_all_zonelists(pg_data_t *pgdat, struct zone *zone)
5158 {
5159 set_zonelist_order();
5160
5161 if (system_state == SYSTEM_BOOTING) {
5162 build_all_zonelists_init();
5163 } else {
5164 #ifdef CONFIG_MEMORY_HOTPLUG
5165 if (zone)
5166 setup_zone_pageset(zone);
5167 #endif
5168 /* we have to stop all cpus to guarantee there is no user
5169 of zonelist */
5170 stop_machine(__build_all_zonelists, pgdat, NULL);
5171 /* cpuset refresh routine should be here */
5172 }
5173 vm_total_pages = nr_free_pagecache_pages();
5174 /*
5175 * Disable grouping by mobility if the number of pages in the
5176 * system is too low to allow the mechanism to work. It would be
5177 * more accurate, but expensive to check per-zone. This check is
5178 * made on memory-hotadd so a system can start with mobility
5179 * disabled and enable it later
5180 */
5181 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
5182 page_group_by_mobility_disabled = 1;
5183 else
5184 page_group_by_mobility_disabled = 0;
5185
5186 pr_info("Built %i zonelists in %s order, mobility grouping %s. Total pages: %ld\n",
5187 nr_online_nodes,
5188 zonelist_order_name[current_zonelist_order],
5189 page_group_by_mobility_disabled ? "off" : "on",
5190 vm_total_pages);
5191 #ifdef CONFIG_NUMA
5192 pr_info("Policy zone: %s\n", zone_names[policy_zone]);
5193 #endif
5194 }
5195
5196 /*
5197 * Initially all pages are reserved - free ones are freed
5198 * up by free_all_bootmem() once the early boot process is
5199 * done. Non-atomic initialization, single-pass.
5200 */
5201 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
5202 unsigned long start_pfn, enum memmap_context context)
5203 {
5204 struct vmem_altmap *altmap = to_vmem_altmap(__pfn_to_phys(start_pfn));
5205 unsigned long end_pfn = start_pfn + size;
5206 pg_data_t *pgdat = NODE_DATA(nid);
5207 unsigned long pfn;
5208 unsigned long nr_initialised = 0;
5209 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5210 struct memblock_region *r = NULL, *tmp;
5211 #endif
5212
5213 if (highest_memmap_pfn < end_pfn - 1)
5214 highest_memmap_pfn = end_pfn - 1;
5215
5216 /*
5217 * Honor reservation requested by the driver for this ZONE_DEVICE
5218 * memory
5219 */
5220 if (altmap && start_pfn == altmap->base_pfn)
5221 start_pfn += altmap->reserve;
5222
5223 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
5224 /*
5225 * There can be holes in boot-time mem_map[]s handed to this
5226 * function. They do not exist on hotplugged memory.
5227 */
5228 if (context != MEMMAP_EARLY)
5229 goto not_early;
5230
5231 if (!early_pfn_valid(pfn)) {
5232 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5233 /*
5234 * Skip to the pfn preceding the next valid one (or
5235 * end_pfn), such that we hit a valid pfn (or end_pfn)
5236 * on our next iteration of the loop.
5237 */
5238 pfn = memblock_next_valid_pfn(pfn, end_pfn) - 1;
5239 #endif
5240 continue;
5241 }
5242 if (!early_pfn_in_nid(pfn, nid))
5243 continue;
5244 if (!update_defer_init(pgdat, pfn, end_pfn, &nr_initialised))
5245 break;
5246
5247 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5248 /*
5249 * Check given memblock attribute by firmware which can affect
5250 * kernel memory layout. If zone==ZONE_MOVABLE but memory is
5251 * mirrored, it's an overlapped memmap init. skip it.
5252 */
5253 if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
5254 if (!r || pfn >= memblock_region_memory_end_pfn(r)) {
5255 for_each_memblock(memory, tmp)
5256 if (pfn < memblock_region_memory_end_pfn(tmp))
5257 break;
5258 r = tmp;
5259 }
5260 if (pfn >= memblock_region_memory_base_pfn(r) &&
5261 memblock_is_mirror(r)) {
5262 /* already initialized as NORMAL */
5263 pfn = memblock_region_memory_end_pfn(r);
5264 continue;
5265 }
5266 }
5267 #endif
5268
5269 not_early:
5270 /*
5271 * Mark the block movable so that blocks are reserved for
5272 * movable at startup. This will force kernel allocations
5273 * to reserve their blocks rather than leaking throughout
5274 * the address space during boot when many long-lived
5275 * kernel allocations are made.
5276 *
5277 * bitmap is created for zone's valid pfn range. but memmap
5278 * can be created for invalid pages (for alignment)
5279 * check here not to call set_pageblock_migratetype() against
5280 * pfn out of zone.
5281 */
5282 if (!(pfn & (pageblock_nr_pages - 1))) {
5283 struct page *page = pfn_to_page(pfn);
5284
5285 __init_single_page(page, pfn, zone, nid);
5286 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
5287 } else {
5288 __init_single_pfn(pfn, zone, nid);
5289 }
5290 }
5291 }
5292
5293 static void __meminit zone_init_free_lists(struct zone *zone)
5294 {
5295 unsigned int order, t;
5296 for_each_migratetype_order(order, t) {
5297 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
5298 zone->free_area[order].nr_free = 0;
5299 }
5300 }
5301
5302 #ifndef __HAVE_ARCH_MEMMAP_INIT
5303 #define memmap_init(size, nid, zone, start_pfn) \
5304 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
5305 #endif
5306
5307 static int zone_batchsize(struct zone *zone)
5308 {
5309 #ifdef CONFIG_MMU
5310 int batch;
5311
5312 /*
5313 * The per-cpu-pages pools are set to around 1000th of the
5314 * size of the zone. But no more than 1/2 of a meg.
5315 *
5316 * OK, so we don't know how big the cache is. So guess.
5317 */
5318 batch = zone->managed_pages / 1024;
5319 if (batch * PAGE_SIZE > 512 * 1024)
5320 batch = (512 * 1024) / PAGE_SIZE;
5321 batch /= 4; /* We effectively *= 4 below */
5322 if (batch < 1)
5323 batch = 1;
5324
5325 /*
5326 * Clamp the batch to a 2^n - 1 value. Having a power
5327 * of 2 value was found to be more likely to have
5328 * suboptimal cache aliasing properties in some cases.
5329 *
5330 * For example if 2 tasks are alternately allocating
5331 * batches of pages, one task can end up with a lot
5332 * of pages of one half of the possible page colors
5333 * and the other with pages of the other colors.
5334 */
5335 batch = rounddown_pow_of_two(batch + batch/2) - 1;
5336
5337 return batch;
5338
5339 #else
5340 /* The deferral and batching of frees should be suppressed under NOMMU
5341 * conditions.
5342 *
5343 * The problem is that NOMMU needs to be able to allocate large chunks
5344 * of contiguous memory as there's no hardware page translation to
5345 * assemble apparent contiguous memory from discontiguous pages.
5346 *
5347 * Queueing large contiguous runs of pages for batching, however,
5348 * causes the pages to actually be freed in smaller chunks. As there
5349 * can be a significant delay between the individual batches being
5350 * recycled, this leads to the once large chunks of space being
5351 * fragmented and becoming unavailable for high-order allocations.
5352 */
5353 return 0;
5354 #endif
5355 }
5356
5357 /*
5358 * pcp->high and pcp->batch values are related and dependent on one another:
5359 * ->batch must never be higher then ->high.
5360 * The following function updates them in a safe manner without read side
5361 * locking.
5362 *
5363 * Any new users of pcp->batch and pcp->high should ensure they can cope with
5364 * those fields changing asynchronously (acording the the above rule).
5365 *
5366 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
5367 * outside of boot time (or some other assurance that no concurrent updaters
5368 * exist).
5369 */
5370 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
5371 unsigned long batch)
5372 {
5373 /* start with a fail safe value for batch */
5374 pcp->batch = 1;
5375 smp_wmb();
5376
5377 /* Update high, then batch, in order */
5378 pcp->high = high;
5379 smp_wmb();
5380
5381 pcp->batch = batch;
5382 }
5383
5384 /* a companion to pageset_set_high() */
5385 static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
5386 {
5387 pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
5388 }
5389
5390 static void pageset_init(struct per_cpu_pageset *p)
5391 {
5392 struct per_cpu_pages *pcp;
5393 int migratetype;
5394
5395 memset(p, 0, sizeof(*p));
5396
5397 pcp = &p->pcp;
5398 pcp->count = 0;
5399 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
5400 INIT_LIST_HEAD(&pcp->lists[migratetype]);
5401 }
5402
5403 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
5404 {
5405 pageset_init(p);
5406 pageset_set_batch(p, batch);
5407 }
5408
5409 /*
5410 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
5411 * to the value high for the pageset p.
5412 */
5413 static void pageset_set_high(struct per_cpu_pageset *p,
5414 unsigned long high)
5415 {
5416 unsigned long batch = max(1UL, high / 4);
5417 if ((high / 4) > (PAGE_SHIFT * 8))
5418 batch = PAGE_SHIFT * 8;
5419
5420 pageset_update(&p->pcp, high, batch);
5421 }
5422
5423 static void pageset_set_high_and_batch(struct zone *zone,
5424 struct per_cpu_pageset *pcp)
5425 {
5426 if (percpu_pagelist_fraction)
5427 pageset_set_high(pcp,
5428 (zone->managed_pages /
5429 percpu_pagelist_fraction));
5430 else
5431 pageset_set_batch(pcp, zone_batchsize(zone));
5432 }
5433
5434 static void __meminit zone_pageset_init(struct zone *zone, int cpu)
5435 {
5436 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
5437
5438 pageset_init(pcp);
5439 pageset_set_high_and_batch(zone, pcp);
5440 }
5441
5442 static void __meminit setup_zone_pageset(struct zone *zone)
5443 {
5444 int cpu;
5445 zone->pageset = alloc_percpu(struct per_cpu_pageset);
5446 for_each_possible_cpu(cpu)
5447 zone_pageset_init(zone, cpu);
5448 }
5449
5450 /*
5451 * Allocate per cpu pagesets and initialize them.
5452 * Before this call only boot pagesets were available.
5453 */
5454 void __init setup_per_cpu_pageset(void)
5455 {
5456 struct pglist_data *pgdat;
5457 struct zone *zone;
5458
5459 for_each_populated_zone(zone)
5460 setup_zone_pageset(zone);
5461
5462 for_each_online_pgdat(pgdat)
5463 pgdat->per_cpu_nodestats =
5464 alloc_percpu(struct per_cpu_nodestat);
5465 }
5466
5467 static __meminit void zone_pcp_init(struct zone *zone)
5468 {
5469 /*
5470 * per cpu subsystem is not up at this point. The following code
5471 * relies on the ability of the linker to provide the
5472 * offset of a (static) per cpu variable into the per cpu area.
5473 */
5474 zone->pageset = &boot_pageset;
5475
5476 if (populated_zone(zone))
5477 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
5478 zone->name, zone->present_pages,
5479 zone_batchsize(zone));
5480 }
5481
5482 int __meminit init_currently_empty_zone(struct zone *zone,
5483 unsigned long zone_start_pfn,
5484 unsigned long size)
5485 {
5486 struct pglist_data *pgdat = zone->zone_pgdat;
5487
5488 pgdat->nr_zones = zone_idx(zone) + 1;
5489
5490 zone->zone_start_pfn = zone_start_pfn;
5491
5492 mminit_dprintk(MMINIT_TRACE, "memmap_init",
5493 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
5494 pgdat->node_id,
5495 (unsigned long)zone_idx(zone),
5496 zone_start_pfn, (zone_start_pfn + size));
5497
5498 zone_init_free_lists(zone);
5499 zone->initialized = 1;
5500
5501 return 0;
5502 }
5503
5504 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5505 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
5506
5507 /*
5508 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
5509 */
5510 int __meminit __early_pfn_to_nid(unsigned long pfn,
5511 struct mminit_pfnnid_cache *state)
5512 {
5513 unsigned long start_pfn, end_pfn;
5514 int nid;
5515
5516 if (state->last_start <= pfn && pfn < state->last_end)
5517 return state->last_nid;
5518
5519 nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
5520 if (nid != -1) {
5521 state->last_start = start_pfn;
5522 state->last_end = end_pfn;
5523 state->last_nid = nid;
5524 }
5525
5526 return nid;
5527 }
5528 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
5529
5530 /**
5531 * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range
5532 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
5533 * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid
5534 *
5535 * If an architecture guarantees that all ranges registered contain no holes
5536 * and may be freed, this this function may be used instead of calling
5537 * memblock_free_early_nid() manually.
5538 */
5539 void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
5540 {
5541 unsigned long start_pfn, end_pfn;
5542 int i, this_nid;
5543
5544 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
5545 start_pfn = min(start_pfn, max_low_pfn);
5546 end_pfn = min(end_pfn, max_low_pfn);
5547
5548 if (start_pfn < end_pfn)
5549 memblock_free_early_nid(PFN_PHYS(start_pfn),
5550 (end_pfn - start_pfn) << PAGE_SHIFT,
5551 this_nid);
5552 }
5553 }
5554
5555 /**
5556 * sparse_memory_present_with_active_regions - Call memory_present for each active range
5557 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
5558 *
5559 * If an architecture guarantees that all ranges registered contain no holes and may
5560 * be freed, this function may be used instead of calling memory_present() manually.
5561 */
5562 void __init sparse_memory_present_with_active_regions(int nid)
5563 {
5564 unsigned long start_pfn, end_pfn;
5565 int i, this_nid;
5566
5567 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
5568 memory_present(this_nid, start_pfn, end_pfn);
5569 }
5570
5571 /**
5572 * get_pfn_range_for_nid - Return the start and end page frames for a node
5573 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
5574 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
5575 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
5576 *
5577 * It returns the start and end page frame of a node based on information
5578 * provided by memblock_set_node(). If called for a node
5579 * with no available memory, a warning is printed and the start and end
5580 * PFNs will be 0.
5581 */
5582 void __meminit get_pfn_range_for_nid(unsigned int nid,
5583 unsigned long *start_pfn, unsigned long *end_pfn)
5584 {
5585 unsigned long this_start_pfn, this_end_pfn;
5586 int i;
5587
5588 *start_pfn = -1UL;
5589 *end_pfn = 0;
5590
5591 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
5592 *start_pfn = min(*start_pfn, this_start_pfn);
5593 *end_pfn = max(*end_pfn, this_end_pfn);
5594 }
5595
5596 if (*start_pfn == -1UL)
5597 *start_pfn = 0;
5598 }
5599
5600 /*
5601 * This finds a zone that can be used for ZONE_MOVABLE pages. The
5602 * assumption is made that zones within a node are ordered in monotonic
5603 * increasing memory addresses so that the "highest" populated zone is used
5604 */
5605 static void __init find_usable_zone_for_movable(void)
5606 {
5607 int zone_index;
5608 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
5609 if (zone_index == ZONE_MOVABLE)
5610 continue;
5611
5612 if (arch_zone_highest_possible_pfn[zone_index] >
5613 arch_zone_lowest_possible_pfn[zone_index])
5614 break;
5615 }
5616
5617 VM_BUG_ON(zone_index == -1);
5618 movable_zone = zone_index;
5619 }
5620
5621 /*
5622 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
5623 * because it is sized independent of architecture. Unlike the other zones,
5624 * the starting point for ZONE_MOVABLE is not fixed. It may be different
5625 * in each node depending on the size of each node and how evenly kernelcore
5626 * is distributed. This helper function adjusts the zone ranges
5627 * provided by the architecture for a given node by using the end of the
5628 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
5629 * zones within a node are in order of monotonic increases memory addresses
5630 */
5631 static void __meminit adjust_zone_range_for_zone_movable(int nid,
5632 unsigned long zone_type,
5633 unsigned long node_start_pfn,
5634 unsigned long node_end_pfn,
5635 unsigned long *zone_start_pfn,
5636 unsigned long *zone_end_pfn)
5637 {
5638 /* Only adjust if ZONE_MOVABLE is on this node */
5639 if (zone_movable_pfn[nid]) {
5640 /* Size ZONE_MOVABLE */
5641 if (zone_type == ZONE_MOVABLE) {
5642 *zone_start_pfn = zone_movable_pfn[nid];
5643 *zone_end_pfn = min(node_end_pfn,
5644 arch_zone_highest_possible_pfn[movable_zone]);
5645
5646 /* Adjust for ZONE_MOVABLE starting within this range */
5647 } else if (!mirrored_kernelcore &&
5648 *zone_start_pfn < zone_movable_pfn[nid] &&
5649 *zone_end_pfn > zone_movable_pfn[nid]) {
5650 *zone_end_pfn = zone_movable_pfn[nid];
5651
5652 /* Check if this whole range is within ZONE_MOVABLE */
5653 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
5654 *zone_start_pfn = *zone_end_pfn;
5655 }
5656 }
5657
5658 /*
5659 * Return the number of pages a zone spans in a node, including holes
5660 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
5661 */
5662 static unsigned long __meminit zone_spanned_pages_in_node(int nid,
5663 unsigned long zone_type,
5664 unsigned long node_start_pfn,
5665 unsigned long node_end_pfn,
5666 unsigned long *zone_start_pfn,
5667 unsigned long *zone_end_pfn,
5668 unsigned long *ignored)
5669 {
5670 /* When hotadd a new node from cpu_up(), the node should be empty */
5671 if (!node_start_pfn && !node_end_pfn)
5672 return 0;
5673
5674 /* Get the start and end of the zone */
5675 *zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
5676 *zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
5677 adjust_zone_range_for_zone_movable(nid, zone_type,
5678 node_start_pfn, node_end_pfn,
5679 zone_start_pfn, zone_end_pfn);
5680
5681 /* Check that this node has pages within the zone's required range */
5682 if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
5683 return 0;
5684
5685 /* Move the zone boundaries inside the node if necessary */
5686 *zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
5687 *zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
5688
5689 /* Return the spanned pages */
5690 return *zone_end_pfn - *zone_start_pfn;
5691 }
5692
5693 /*
5694 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
5695 * then all holes in the requested range will be accounted for.
5696 */
5697 unsigned long __meminit __absent_pages_in_range(int nid,
5698 unsigned long range_start_pfn,
5699 unsigned long range_end_pfn)
5700 {
5701 unsigned long nr_absent = range_end_pfn - range_start_pfn;
5702 unsigned long start_pfn, end_pfn;
5703 int i;
5704
5705 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
5706 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
5707 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
5708 nr_absent -= end_pfn - start_pfn;
5709 }
5710 return nr_absent;
5711 }
5712
5713 /**
5714 * absent_pages_in_range - Return number of page frames in holes within a range
5715 * @start_pfn: The start PFN to start searching for holes
5716 * @end_pfn: The end PFN to stop searching for holes
5717 *
5718 * It returns the number of pages frames in memory holes within a range.
5719 */
5720 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
5721 unsigned long end_pfn)
5722 {
5723 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
5724 }
5725
5726 /* Return the number of page frames in holes in a zone on a node */
5727 static unsigned long __meminit zone_absent_pages_in_node(int nid,
5728 unsigned long zone_type,
5729 unsigned long node_start_pfn,
5730 unsigned long node_end_pfn,
5731 unsigned long *ignored)
5732 {
5733 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
5734 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
5735 unsigned long zone_start_pfn, zone_end_pfn;
5736 unsigned long nr_absent;
5737
5738 /* When hotadd a new node from cpu_up(), the node should be empty */
5739 if (!node_start_pfn && !node_end_pfn)
5740 return 0;
5741
5742 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
5743 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
5744
5745 adjust_zone_range_for_zone_movable(nid, zone_type,
5746 node_start_pfn, node_end_pfn,
5747 &zone_start_pfn, &zone_end_pfn);
5748 nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
5749
5750 /*
5751 * ZONE_MOVABLE handling.
5752 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
5753 * and vice versa.
5754 */
5755 if (mirrored_kernelcore && zone_movable_pfn[nid]) {
5756 unsigned long start_pfn, end_pfn;
5757 struct memblock_region *r;
5758
5759 for_each_memblock(memory, r) {
5760 start_pfn = clamp(memblock_region_memory_base_pfn(r),
5761 zone_start_pfn, zone_end_pfn);
5762 end_pfn = clamp(memblock_region_memory_end_pfn(r),
5763 zone_start_pfn, zone_end_pfn);
5764
5765 if (zone_type == ZONE_MOVABLE &&
5766 memblock_is_mirror(r))
5767 nr_absent += end_pfn - start_pfn;
5768
5769 if (zone_type == ZONE_NORMAL &&
5770 !memblock_is_mirror(r))
5771 nr_absent += end_pfn - start_pfn;
5772 }
5773 }
5774
5775 return nr_absent;
5776 }
5777
5778 #else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5779 static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
5780 unsigned long zone_type,
5781 unsigned long node_start_pfn,
5782 unsigned long node_end_pfn,
5783 unsigned long *zone_start_pfn,
5784 unsigned long *zone_end_pfn,
5785 unsigned long *zones_size)
5786 {
5787 unsigned int zone;
5788
5789 *zone_start_pfn = node_start_pfn;
5790 for (zone = 0; zone < zone_type; zone++)
5791 *zone_start_pfn += zones_size[zone];
5792
5793 *zone_end_pfn = *zone_start_pfn + zones_size[zone_type];
5794
5795 return zones_size[zone_type];
5796 }
5797
5798 static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
5799 unsigned long zone_type,
5800 unsigned long node_start_pfn,
5801 unsigned long node_end_pfn,
5802 unsigned long *zholes_size)
5803 {
5804 if (!zholes_size)
5805 return 0;
5806
5807 return zholes_size[zone_type];
5808 }
5809
5810 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5811
5812 static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
5813 unsigned long node_start_pfn,
5814 unsigned long node_end_pfn,
5815 unsigned long *zones_size,
5816 unsigned long *zholes_size)
5817 {
5818 unsigned long realtotalpages = 0, totalpages = 0;
5819 enum zone_type i;
5820
5821 for (i = 0; i < MAX_NR_ZONES; i++) {
5822 struct zone *zone = pgdat->node_zones + i;
5823 unsigned long zone_start_pfn, zone_end_pfn;
5824 unsigned long size, real_size;
5825
5826 size = zone_spanned_pages_in_node(pgdat->node_id, i,
5827 node_start_pfn,
5828 node_end_pfn,
5829 &zone_start_pfn,
5830 &zone_end_pfn,
5831 zones_size);
5832 real_size = size - zone_absent_pages_in_node(pgdat->node_id, i,
5833 node_start_pfn, node_end_pfn,
5834 zholes_size);
5835 if (size)
5836 zone->zone_start_pfn = zone_start_pfn;
5837 else
5838 zone->zone_start_pfn = 0;
5839 zone->spanned_pages = size;
5840 zone->present_pages = real_size;
5841
5842 totalpages += size;
5843 realtotalpages += real_size;
5844 }
5845
5846 pgdat->node_spanned_pages = totalpages;
5847 pgdat->node_present_pages = realtotalpages;
5848 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
5849 realtotalpages);
5850 }
5851
5852 #ifndef CONFIG_SPARSEMEM
5853 /*
5854 * Calculate the size of the zone->blockflags rounded to an unsigned long
5855 * Start by making sure zonesize is a multiple of pageblock_order by rounding
5856 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
5857 * round what is now in bits to nearest long in bits, then return it in
5858 * bytes.
5859 */
5860 static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
5861 {
5862 unsigned long usemapsize;
5863
5864 zonesize += zone_start_pfn & (pageblock_nr_pages-1);
5865 usemapsize = roundup(zonesize, pageblock_nr_pages);
5866 usemapsize = usemapsize >> pageblock_order;
5867 usemapsize *= NR_PAGEBLOCK_BITS;
5868 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
5869
5870 return usemapsize / 8;
5871 }
5872
5873 static void __init setup_usemap(struct pglist_data *pgdat,
5874 struct zone *zone,
5875 unsigned long zone_start_pfn,
5876 unsigned long zonesize)
5877 {
5878 unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
5879 zone->pageblock_flags = NULL;
5880 if (usemapsize)
5881 zone->pageblock_flags =
5882 memblock_virt_alloc_node_nopanic(usemapsize,
5883 pgdat->node_id);
5884 }
5885 #else
5886 static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
5887 unsigned long zone_start_pfn, unsigned long zonesize) {}
5888 #endif /* CONFIG_SPARSEMEM */
5889
5890 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
5891
5892 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
5893 void __paginginit set_pageblock_order(void)
5894 {
5895 unsigned int order;
5896
5897 /* Check that pageblock_nr_pages has not already been setup */
5898 if (pageblock_order)
5899 return;
5900
5901 if (HPAGE_SHIFT > PAGE_SHIFT)
5902 order = HUGETLB_PAGE_ORDER;
5903 else
5904 order = MAX_ORDER - 1;
5905
5906 /*
5907 * Assume the largest contiguous order of interest is a huge page.
5908 * This value may be variable depending on boot parameters on IA64 and
5909 * powerpc.
5910 */
5911 pageblock_order = order;
5912 }
5913 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
5914
5915 /*
5916 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
5917 * is unused as pageblock_order is set at compile-time. See
5918 * include/linux/pageblock-flags.h for the values of pageblock_order based on
5919 * the kernel config
5920 */
5921 void __paginginit set_pageblock_order(void)
5922 {
5923 }
5924
5925 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
5926
5927 static unsigned long __paginginit calc_memmap_size(unsigned long spanned_pages,
5928 unsigned long present_pages)
5929 {
5930 unsigned long pages = spanned_pages;
5931
5932 /*
5933 * Provide a more accurate estimation if there are holes within
5934 * the zone and SPARSEMEM is in use. If there are holes within the
5935 * zone, each populated memory region may cost us one or two extra
5936 * memmap pages due to alignment because memmap pages for each
5937 * populated regions may not be naturally aligned on page boundary.
5938 * So the (present_pages >> 4) heuristic is a tradeoff for that.
5939 */
5940 if (spanned_pages > present_pages + (present_pages >> 4) &&
5941 IS_ENABLED(CONFIG_SPARSEMEM))
5942 pages = present_pages;
5943
5944 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
5945 }
5946
5947 /*
5948 * Set up the zone data structures:
5949 * - mark all pages reserved
5950 * - mark all memory queues empty
5951 * - clear the memory bitmaps
5952 *
5953 * NOTE: pgdat should get zeroed by caller.
5954 */
5955 static void __paginginit free_area_init_core(struct pglist_data *pgdat)
5956 {
5957 enum zone_type j;
5958 int nid = pgdat->node_id;
5959 int ret;
5960
5961 pgdat_resize_init(pgdat);
5962 #ifdef CONFIG_NUMA_BALANCING
5963 spin_lock_init(&pgdat->numabalancing_migrate_lock);
5964 pgdat->numabalancing_migrate_nr_pages = 0;
5965 pgdat->numabalancing_migrate_next_window = jiffies;
5966 #endif
5967 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5968 spin_lock_init(&pgdat->split_queue_lock);
5969 INIT_LIST_HEAD(&pgdat->split_queue);
5970 pgdat->split_queue_len = 0;
5971 #endif
5972 init_waitqueue_head(&pgdat->kswapd_wait);
5973 init_waitqueue_head(&pgdat->pfmemalloc_wait);
5974 #ifdef CONFIG_COMPACTION
5975 init_waitqueue_head(&pgdat->kcompactd_wait);
5976 #endif
5977 pgdat_page_ext_init(pgdat);
5978 spin_lock_init(&pgdat->lru_lock);
5979 lruvec_init(node_lruvec(pgdat));
5980
5981 for (j = 0; j < MAX_NR_ZONES; j++) {
5982 struct zone *zone = pgdat->node_zones + j;
5983 unsigned long size, realsize, freesize, memmap_pages;
5984 unsigned long zone_start_pfn = zone->zone_start_pfn;
5985
5986 size = zone->spanned_pages;
5987 realsize = freesize = zone->present_pages;
5988
5989 /*
5990 * Adjust freesize so that it accounts for how much memory
5991 * is used by this zone for memmap. This affects the watermark
5992 * and per-cpu initialisations
5993 */
5994 memmap_pages = calc_memmap_size(size, realsize);
5995 if (!is_highmem_idx(j)) {
5996 if (freesize >= memmap_pages) {
5997 freesize -= memmap_pages;
5998 if (memmap_pages)
5999 printk(KERN_DEBUG
6000 " %s zone: %lu pages used for memmap\n",
6001 zone_names[j], memmap_pages);
6002 } else
6003 pr_warn(" %s zone: %lu pages exceeds freesize %lu\n",
6004 zone_names[j], memmap_pages, freesize);
6005 }
6006
6007 /* Account for reserved pages */
6008 if (j == 0 && freesize > dma_reserve) {
6009 freesize -= dma_reserve;
6010 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
6011 zone_names[0], dma_reserve);
6012 }
6013
6014 if (!is_highmem_idx(j))
6015 nr_kernel_pages += freesize;
6016 /* Charge for highmem memmap if there are enough kernel pages */
6017 else if (nr_kernel_pages > memmap_pages * 2)
6018 nr_kernel_pages -= memmap_pages;
6019 nr_all_pages += freesize;
6020
6021 /*
6022 * Set an approximate value for lowmem here, it will be adjusted
6023 * when the bootmem allocator frees pages into the buddy system.
6024 * And all highmem pages will be managed by the buddy system.
6025 */
6026 zone->managed_pages = is_highmem_idx(j) ? realsize : freesize;
6027 #ifdef CONFIG_NUMA
6028 zone->node = nid;
6029 #endif
6030 zone->name = zone_names[j];
6031 zone->zone_pgdat = pgdat;
6032 spin_lock_init(&zone->lock);
6033 zone_seqlock_init(zone);
6034 zone_pcp_init(zone);
6035
6036 if (!size)
6037 continue;
6038
6039 set_pageblock_order();
6040 setup_usemap(pgdat, zone, zone_start_pfn, size);
6041 ret = init_currently_empty_zone(zone, zone_start_pfn, size);
6042 BUG_ON(ret);
6043 memmap_init(size, nid, j, zone_start_pfn);
6044 }
6045 }
6046
6047 static void __ref alloc_node_mem_map(struct pglist_data *pgdat)
6048 {
6049 unsigned long __maybe_unused start = 0;
6050 unsigned long __maybe_unused offset = 0;
6051
6052 /* Skip empty nodes */
6053 if (!pgdat->node_spanned_pages)
6054 return;
6055
6056 #ifdef CONFIG_FLAT_NODE_MEM_MAP
6057 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
6058 offset = pgdat->node_start_pfn - start;
6059 /* ia64 gets its own node_mem_map, before this, without bootmem */
6060 if (!pgdat->node_mem_map) {
6061 unsigned long size, end;
6062 struct page *map;
6063
6064 /*
6065 * The zone's endpoints aren't required to be MAX_ORDER
6066 * aligned but the node_mem_map endpoints must be in order
6067 * for the buddy allocator to function correctly.
6068 */
6069 end = pgdat_end_pfn(pgdat);
6070 end = ALIGN(end, MAX_ORDER_NR_PAGES);
6071 size = (end - start) * sizeof(struct page);
6072 map = alloc_remap(pgdat->node_id, size);
6073 if (!map)
6074 map = memblock_virt_alloc_node_nopanic(size,
6075 pgdat->node_id);
6076 pgdat->node_mem_map = map + offset;
6077 }
6078 #ifndef CONFIG_NEED_MULTIPLE_NODES
6079 /*
6080 * With no DISCONTIG, the global mem_map is just set as node 0's
6081 */
6082 if (pgdat == NODE_DATA(0)) {
6083 mem_map = NODE_DATA(0)->node_mem_map;
6084 #if defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) || defined(CONFIG_FLATMEM)
6085 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
6086 mem_map -= offset;
6087 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6088 }
6089 #endif
6090 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
6091 }
6092
6093 void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
6094 unsigned long node_start_pfn, unsigned long *zholes_size)
6095 {
6096 pg_data_t *pgdat = NODE_DATA(nid);
6097 unsigned long start_pfn = 0;
6098 unsigned long end_pfn = 0;
6099
6100 /* pg_data_t should be reset to zero when it's allocated */
6101 WARN_ON(pgdat->nr_zones || pgdat->kswapd_classzone_idx);
6102
6103 reset_deferred_meminit(pgdat);
6104 pgdat->node_id = nid;
6105 pgdat->node_start_pfn = node_start_pfn;
6106 pgdat->per_cpu_nodestats = NULL;
6107 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
6108 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
6109 pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
6110 (u64)start_pfn << PAGE_SHIFT,
6111 end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
6112 #else
6113 start_pfn = node_start_pfn;
6114 #endif
6115 calculate_node_totalpages(pgdat, start_pfn, end_pfn,
6116 zones_size, zholes_size);
6117
6118 alloc_node_mem_map(pgdat);
6119 #ifdef CONFIG_FLAT_NODE_MEM_MAP
6120 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
6121 nid, (unsigned long)pgdat,
6122 (unsigned long)pgdat->node_mem_map);
6123 #endif
6124
6125 free_area_init_core(pgdat);
6126 }
6127
6128 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
6129
6130 #if MAX_NUMNODES > 1
6131 /*
6132 * Figure out the number of possible node ids.
6133 */
6134 void __init setup_nr_node_ids(void)
6135 {
6136 unsigned int highest;
6137
6138 highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
6139 nr_node_ids = highest + 1;
6140 }
6141 #endif
6142
6143 /**
6144 * node_map_pfn_alignment - determine the maximum internode alignment
6145 *
6146 * This function should be called after node map is populated and sorted.
6147 * It calculates the maximum power of two alignment which can distinguish
6148 * all the nodes.
6149 *
6150 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
6151 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
6152 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
6153 * shifted, 1GiB is enough and this function will indicate so.
6154 *
6155 * This is used to test whether pfn -> nid mapping of the chosen memory
6156 * model has fine enough granularity to avoid incorrect mapping for the
6157 * populated node map.
6158 *
6159 * Returns the determined alignment in pfn's. 0 if there is no alignment
6160 * requirement (single node).
6161 */
6162 unsigned long __init node_map_pfn_alignment(void)
6163 {
6164 unsigned long accl_mask = 0, last_end = 0;
6165 unsigned long start, end, mask;
6166 int last_nid = -1;
6167 int i, nid;
6168
6169 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
6170 if (!start || last_nid < 0 || last_nid == nid) {
6171 last_nid = nid;
6172 last_end = end;
6173 continue;
6174 }
6175
6176 /*
6177 * Start with a mask granular enough to pin-point to the
6178 * start pfn and tick off bits one-by-one until it becomes
6179 * too coarse to separate the current node from the last.
6180 */
6181 mask = ~((1 << __ffs(start)) - 1);
6182 while (mask && last_end <= (start & (mask << 1)))
6183 mask <<= 1;
6184
6185 /* accumulate all internode masks */
6186 accl_mask |= mask;
6187 }
6188
6189 /* convert mask to number of pages */
6190 return ~accl_mask + 1;
6191 }
6192
6193 /* Find the lowest pfn for a node */
6194 static unsigned long __init find_min_pfn_for_node(int nid)
6195 {
6196 unsigned long min_pfn = ULONG_MAX;
6197 unsigned long start_pfn;
6198 int i;
6199
6200 for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
6201 min_pfn = min(min_pfn, start_pfn);
6202
6203 if (min_pfn == ULONG_MAX) {
6204 pr_warn("Could not find start_pfn for node %d\n", nid);
6205 return 0;
6206 }
6207
6208 return min_pfn;
6209 }
6210
6211 /**
6212 * find_min_pfn_with_active_regions - Find the minimum PFN registered
6213 *
6214 * It returns the minimum PFN based on information provided via
6215 * memblock_set_node().
6216 */
6217 unsigned long __init find_min_pfn_with_active_regions(void)
6218 {
6219 return find_min_pfn_for_node(MAX_NUMNODES);
6220 }
6221
6222 /*
6223 * early_calculate_totalpages()
6224 * Sum pages in active regions for movable zone.
6225 * Populate N_MEMORY for calculating usable_nodes.
6226 */
6227 static unsigned long __init early_calculate_totalpages(void)
6228 {
6229 unsigned long totalpages = 0;
6230 unsigned long start_pfn, end_pfn;
6231 int i, nid;
6232
6233 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
6234 unsigned long pages = end_pfn - start_pfn;
6235
6236 totalpages += pages;
6237 if (pages)
6238 node_set_state(nid, N_MEMORY);
6239 }
6240 return totalpages;
6241 }
6242
6243 /*
6244 * Find the PFN the Movable zone begins in each node. Kernel memory
6245 * is spread evenly between nodes as long as the nodes have enough
6246 * memory. When they don't, some nodes will have more kernelcore than
6247 * others
6248 */
6249 static void __init find_zone_movable_pfns_for_nodes(void)
6250 {
6251 int i, nid;
6252 unsigned long usable_startpfn;
6253 unsigned long kernelcore_node, kernelcore_remaining;
6254 /* save the state before borrow the nodemask */
6255 nodemask_t saved_node_state = node_states[N_MEMORY];
6256 unsigned long totalpages = early_calculate_totalpages();
6257 int usable_nodes = nodes_weight(node_states[N_MEMORY]);
6258 struct memblock_region *r;
6259
6260 /* Need to find movable_zone earlier when movable_node is specified. */
6261 find_usable_zone_for_movable();
6262
6263 /*
6264 * If movable_node is specified, ignore kernelcore and movablecore
6265 * options.
6266 */
6267 if (movable_node_is_enabled()) {
6268 for_each_memblock(memory, r) {
6269 if (!memblock_is_hotpluggable(r))
6270 continue;
6271
6272 nid = r->nid;
6273
6274 usable_startpfn = PFN_DOWN(r->base);
6275 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
6276 min(usable_startpfn, zone_movable_pfn[nid]) :
6277 usable_startpfn;
6278 }
6279
6280 goto out2;
6281 }
6282
6283 /*
6284 * If kernelcore=mirror is specified, ignore movablecore option
6285 */
6286 if (mirrored_kernelcore) {
6287 bool mem_below_4gb_not_mirrored = false;
6288
6289 for_each_memblock(memory, r) {
6290 if (memblock_is_mirror(r))
6291 continue;
6292
6293 nid = r->nid;
6294
6295 usable_startpfn = memblock_region_memory_base_pfn(r);
6296
6297 if (usable_startpfn < 0x100000) {
6298 mem_below_4gb_not_mirrored = true;
6299 continue;
6300 }
6301
6302 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
6303 min(usable_startpfn, zone_movable_pfn[nid]) :
6304 usable_startpfn;
6305 }
6306
6307 if (mem_below_4gb_not_mirrored)
6308 pr_warn("This configuration results in unmirrored kernel memory.");
6309
6310 goto out2;
6311 }
6312
6313 /*
6314 * If movablecore=nn[KMG] was specified, calculate what size of
6315 * kernelcore that corresponds so that memory usable for
6316 * any allocation type is evenly spread. If both kernelcore
6317 * and movablecore are specified, then the value of kernelcore
6318 * will be used for required_kernelcore if it's greater than
6319 * what movablecore would have allowed.
6320 */
6321 if (required_movablecore) {
6322 unsigned long corepages;
6323
6324 /*
6325 * Round-up so that ZONE_MOVABLE is at least as large as what
6326 * was requested by the user
6327 */
6328 required_movablecore =
6329 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
6330 required_movablecore = min(totalpages, required_movablecore);
6331 corepages = totalpages - required_movablecore;
6332
6333 required_kernelcore = max(required_kernelcore, corepages);
6334 }
6335
6336 /*
6337 * If kernelcore was not specified or kernelcore size is larger
6338 * than totalpages, there is no ZONE_MOVABLE.
6339 */
6340 if (!required_kernelcore || required_kernelcore >= totalpages)
6341 goto out;
6342
6343 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
6344 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
6345
6346 restart:
6347 /* Spread kernelcore memory as evenly as possible throughout nodes */
6348 kernelcore_node = required_kernelcore / usable_nodes;
6349 for_each_node_state(nid, N_MEMORY) {
6350 unsigned long start_pfn, end_pfn;
6351
6352 /*
6353 * Recalculate kernelcore_node if the division per node
6354 * now exceeds what is necessary to satisfy the requested
6355 * amount of memory for the kernel
6356 */
6357 if (required_kernelcore < kernelcore_node)
6358 kernelcore_node = required_kernelcore / usable_nodes;
6359
6360 /*
6361 * As the map is walked, we track how much memory is usable
6362 * by the kernel using kernelcore_remaining. When it is
6363 * 0, the rest of the node is usable by ZONE_MOVABLE
6364 */
6365 kernelcore_remaining = kernelcore_node;
6366
6367 /* Go through each range of PFNs within this node */
6368 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
6369 unsigned long size_pages;
6370
6371 start_pfn = max(start_pfn, zone_movable_pfn[nid]);
6372 if (start_pfn >= end_pfn)
6373 continue;
6374
6375 /* Account for what is only usable for kernelcore */
6376 if (start_pfn < usable_startpfn) {
6377 unsigned long kernel_pages;
6378 kernel_pages = min(end_pfn, usable_startpfn)
6379 - start_pfn;
6380
6381 kernelcore_remaining -= min(kernel_pages,
6382 kernelcore_remaining);
6383 required_kernelcore -= min(kernel_pages,
6384 required_kernelcore);
6385
6386 /* Continue if range is now fully accounted */
6387 if (end_pfn <= usable_startpfn) {
6388
6389 /*
6390 * Push zone_movable_pfn to the end so
6391 * that if we have to rebalance
6392 * kernelcore across nodes, we will
6393 * not double account here
6394 */
6395 zone_movable_pfn[nid] = end_pfn;
6396 continue;
6397 }
6398 start_pfn = usable_startpfn;
6399 }
6400
6401 /*
6402 * The usable PFN range for ZONE_MOVABLE is from
6403 * start_pfn->end_pfn. Calculate size_pages as the
6404 * number of pages used as kernelcore
6405 */
6406 size_pages = end_pfn - start_pfn;
6407 if (size_pages > kernelcore_remaining)
6408 size_pages = kernelcore_remaining;
6409 zone_movable_pfn[nid] = start_pfn + size_pages;
6410
6411 /*
6412 * Some kernelcore has been met, update counts and
6413 * break if the kernelcore for this node has been
6414 * satisfied
6415 */
6416 required_kernelcore -= min(required_kernelcore,
6417 size_pages);
6418 kernelcore_remaining -= size_pages;
6419 if (!kernelcore_remaining)
6420 break;
6421 }
6422 }
6423
6424 /*
6425 * If there is still required_kernelcore, we do another pass with one
6426 * less node in the count. This will push zone_movable_pfn[nid] further
6427 * along on the nodes that still have memory until kernelcore is
6428 * satisfied
6429 */
6430 usable_nodes--;
6431 if (usable_nodes && required_kernelcore > usable_nodes)
6432 goto restart;
6433
6434 out2:
6435 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
6436 for (nid = 0; nid < MAX_NUMNODES; nid++)
6437 zone_movable_pfn[nid] =
6438 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
6439
6440 out:
6441 /* restore the node_state */
6442 node_states[N_MEMORY] = saved_node_state;
6443 }
6444
6445 /* Any regular or high memory on that node ? */
6446 static void check_for_memory(pg_data_t *pgdat, int nid)
6447 {
6448 enum zone_type zone_type;
6449
6450 if (N_MEMORY == N_NORMAL_MEMORY)
6451 return;
6452
6453 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
6454 struct zone *zone = &pgdat->node_zones[zone_type];
6455 if (populated_zone(zone)) {
6456 node_set_state(nid, N_HIGH_MEMORY);
6457 if (N_NORMAL_MEMORY != N_HIGH_MEMORY &&
6458 zone_type <= ZONE_NORMAL)
6459 node_set_state(nid, N_NORMAL_MEMORY);
6460 break;
6461 }
6462 }
6463 }
6464
6465 /**
6466 * free_area_init_nodes - Initialise all pg_data_t and zone data
6467 * @max_zone_pfn: an array of max PFNs for each zone
6468 *
6469 * This will call free_area_init_node() for each active node in the system.
6470 * Using the page ranges provided by memblock_set_node(), the size of each
6471 * zone in each node and their holes is calculated. If the maximum PFN
6472 * between two adjacent zones match, it is assumed that the zone is empty.
6473 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
6474 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
6475 * starts where the previous one ended. For example, ZONE_DMA32 starts
6476 * at arch_max_dma_pfn.
6477 */
6478 void __init free_area_init_nodes(unsigned long *max_zone_pfn)
6479 {
6480 unsigned long start_pfn, end_pfn;
6481 int i, nid;
6482
6483 /* Record where the zone boundaries are */
6484 memset(arch_zone_lowest_possible_pfn, 0,
6485 sizeof(arch_zone_lowest_possible_pfn));
6486 memset(arch_zone_highest_possible_pfn, 0,
6487 sizeof(arch_zone_highest_possible_pfn));
6488
6489 start_pfn = find_min_pfn_with_active_regions();
6490
6491 for (i = 0; i < MAX_NR_ZONES; i++) {
6492 if (i == ZONE_MOVABLE)
6493 continue;
6494
6495 end_pfn = max(max_zone_pfn[i], start_pfn);
6496 arch_zone_lowest_possible_pfn[i] = start_pfn;
6497 arch_zone_highest_possible_pfn[i] = end_pfn;
6498
6499 start_pfn = end_pfn;
6500 }
6501
6502 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
6503 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
6504 find_zone_movable_pfns_for_nodes();
6505
6506 /* Print out the zone ranges */
6507 pr_info("Zone ranges:\n");
6508 for (i = 0; i < MAX_NR_ZONES; i++) {
6509 if (i == ZONE_MOVABLE)
6510 continue;
6511 pr_info(" %-8s ", zone_names[i]);
6512 if (arch_zone_lowest_possible_pfn[i] ==
6513 arch_zone_highest_possible_pfn[i])
6514 pr_cont("empty\n");
6515 else
6516 pr_cont("[mem %#018Lx-%#018Lx]\n",
6517 (u64)arch_zone_lowest_possible_pfn[i]
6518 << PAGE_SHIFT,
6519 ((u64)arch_zone_highest_possible_pfn[i]
6520 << PAGE_SHIFT) - 1);
6521 }
6522
6523 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
6524 pr_info("Movable zone start for each node\n");
6525 for (i = 0; i < MAX_NUMNODES; i++) {
6526 if (zone_movable_pfn[i])
6527 pr_info(" Node %d: %#018Lx\n", i,
6528 (u64)zone_movable_pfn[i] << PAGE_SHIFT);
6529 }
6530
6531 /* Print out the early node map */
6532 pr_info("Early memory node ranges\n");
6533 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
6534 pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid,
6535 (u64)start_pfn << PAGE_SHIFT,
6536 ((u64)end_pfn << PAGE_SHIFT) - 1);
6537
6538 /* Initialise every node */
6539 mminit_verify_pageflags_layout();
6540 setup_nr_node_ids();
6541 for_each_online_node(nid) {
6542 pg_data_t *pgdat = NODE_DATA(nid);
6543 free_area_init_node(nid, NULL,
6544 find_min_pfn_for_node(nid), NULL);
6545
6546 /* Any memory on that node */
6547 if (pgdat->node_present_pages)
6548 node_set_state(nid, N_MEMORY);
6549 check_for_memory(pgdat, nid);
6550 }
6551 }
6552
6553 static int __init cmdline_parse_core(char *p, unsigned long *core)
6554 {
6555 unsigned long long coremem;
6556 if (!p)
6557 return -EINVAL;
6558
6559 coremem = memparse(p, &p);
6560 *core = coremem >> PAGE_SHIFT;
6561
6562 /* Paranoid check that UL is enough for the coremem value */
6563 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
6564
6565 return 0;
6566 }
6567
6568 /*
6569 * kernelcore=size sets the amount of memory for use for allocations that
6570 * cannot be reclaimed or migrated.
6571 */
6572 static int __init cmdline_parse_kernelcore(char *p)
6573 {
6574 /* parse kernelcore=mirror */
6575 if (parse_option_str(p, "mirror")) {
6576 mirrored_kernelcore = true;
6577 return 0;
6578 }
6579
6580 return cmdline_parse_core(p, &required_kernelcore);
6581 }
6582
6583 /*
6584 * movablecore=size sets the amount of memory for use for allocations that
6585 * can be reclaimed or migrated.
6586 */
6587 static int __init cmdline_parse_movablecore(char *p)
6588 {
6589 return cmdline_parse_core(p, &required_movablecore);
6590 }
6591
6592 early_param("kernelcore", cmdline_parse_kernelcore);
6593 early_param("movablecore", cmdline_parse_movablecore);
6594
6595 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6596
6597 void adjust_managed_page_count(struct page *page, long count)
6598 {
6599 spin_lock(&managed_page_count_lock);
6600 page_zone(page)->managed_pages += count;
6601 totalram_pages += count;
6602 #ifdef CONFIG_HIGHMEM
6603 if (PageHighMem(page))
6604 totalhigh_pages += count;
6605 #endif
6606 spin_unlock(&managed_page_count_lock);
6607 }
6608 EXPORT_SYMBOL(adjust_managed_page_count);
6609
6610 unsigned long free_reserved_area(void *start, void *end, int poison, char *s)
6611 {
6612 void *pos;
6613 unsigned long pages = 0;
6614
6615 start = (void *)PAGE_ALIGN((unsigned long)start);
6616 end = (void *)((unsigned long)end & PAGE_MASK);
6617 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
6618 if ((unsigned int)poison <= 0xFF)
6619 memset(pos, poison, PAGE_SIZE);
6620 free_reserved_page(virt_to_page(pos));
6621 }
6622
6623 if (pages && s)
6624 pr_info("Freeing %s memory: %ldK\n",
6625 s, pages << (PAGE_SHIFT - 10));
6626
6627 return pages;
6628 }
6629 EXPORT_SYMBOL(free_reserved_area);
6630
6631 #ifdef CONFIG_HIGHMEM
6632 void free_highmem_page(struct page *page)
6633 {
6634 __free_reserved_page(page);
6635 totalram_pages++;
6636 page_zone(page)->managed_pages++;
6637 totalhigh_pages++;
6638 }
6639 #endif
6640
6641
6642 void __init mem_init_print_info(const char *str)
6643 {
6644 unsigned long physpages, codesize, datasize, rosize, bss_size;
6645 unsigned long init_code_size, init_data_size;
6646
6647 physpages = get_num_physpages();
6648 codesize = _etext - _stext;
6649 datasize = _edata - _sdata;
6650 rosize = __end_rodata - __start_rodata;
6651 bss_size = __bss_stop - __bss_start;
6652 init_data_size = __init_end - __init_begin;
6653 init_code_size = _einittext - _sinittext;
6654
6655 /*
6656 * Detect special cases and adjust section sizes accordingly:
6657 * 1) .init.* may be embedded into .data sections
6658 * 2) .init.text.* may be out of [__init_begin, __init_end],
6659 * please refer to arch/tile/kernel/vmlinux.lds.S.
6660 * 3) .rodata.* may be embedded into .text or .data sections.
6661 */
6662 #define adj_init_size(start, end, size, pos, adj) \
6663 do { \
6664 if (start <= pos && pos < end && size > adj) \
6665 size -= adj; \
6666 } while (0)
6667
6668 adj_init_size(__init_begin, __init_end, init_data_size,
6669 _sinittext, init_code_size);
6670 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
6671 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
6672 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
6673 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
6674
6675 #undef adj_init_size
6676
6677 pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
6678 #ifdef CONFIG_HIGHMEM
6679 ", %luK highmem"
6680 #endif
6681 "%s%s)\n",
6682 nr_free_pages() << (PAGE_SHIFT - 10),
6683 physpages << (PAGE_SHIFT - 10),
6684 codesize >> 10, datasize >> 10, rosize >> 10,
6685 (init_data_size + init_code_size) >> 10, bss_size >> 10,
6686 (physpages - totalram_pages - totalcma_pages) << (PAGE_SHIFT - 10),
6687 totalcma_pages << (PAGE_SHIFT - 10),
6688 #ifdef CONFIG_HIGHMEM
6689 totalhigh_pages << (PAGE_SHIFT - 10),
6690 #endif
6691 str ? ", " : "", str ? str : "");
6692 }
6693
6694 /**
6695 * set_dma_reserve - set the specified number of pages reserved in the first zone
6696 * @new_dma_reserve: The number of pages to mark reserved
6697 *
6698 * The per-cpu batchsize and zone watermarks are determined by managed_pages.
6699 * In the DMA zone, a significant percentage may be consumed by kernel image
6700 * and other unfreeable allocations which can skew the watermarks badly. This
6701 * function may optionally be used to account for unfreeable pages in the
6702 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
6703 * smaller per-cpu batchsize.
6704 */
6705 void __init set_dma_reserve(unsigned long new_dma_reserve)
6706 {
6707 dma_reserve = new_dma_reserve;
6708 }
6709
6710 void __init free_area_init(unsigned long *zones_size)
6711 {
6712 free_area_init_node(0, zones_size,
6713 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
6714 }
6715
6716 static int page_alloc_cpu_dead(unsigned int cpu)
6717 {
6718
6719 lru_add_drain_cpu(cpu);
6720 drain_pages(cpu);
6721
6722 /*
6723 * Spill the event counters of the dead processor
6724 * into the current processors event counters.
6725 * This artificially elevates the count of the current
6726 * processor.
6727 */
6728 vm_events_fold_cpu(cpu);
6729
6730 /*
6731 * Zero the differential counters of the dead processor
6732 * so that the vm statistics are consistent.
6733 *
6734 * This is only okay since the processor is dead and cannot
6735 * race with what we are doing.
6736 */
6737 cpu_vm_stats_fold(cpu);
6738 return 0;
6739 }
6740
6741 void __init page_alloc_init(void)
6742 {
6743 int ret;
6744
6745 ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC_DEAD,
6746 "mm/page_alloc:dead", NULL,
6747 page_alloc_cpu_dead);
6748 WARN_ON(ret < 0);
6749 }
6750
6751 /*
6752 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
6753 * or min_free_kbytes changes.
6754 */
6755 static void calculate_totalreserve_pages(void)
6756 {
6757 struct pglist_data *pgdat;
6758 unsigned long reserve_pages = 0;
6759 enum zone_type i, j;
6760
6761 for_each_online_pgdat(pgdat) {
6762
6763 pgdat->totalreserve_pages = 0;
6764
6765 for (i = 0; i < MAX_NR_ZONES; i++) {
6766 struct zone *zone = pgdat->node_zones + i;
6767 long max = 0;
6768
6769 /* Find valid and maximum lowmem_reserve in the zone */
6770 for (j = i; j < MAX_NR_ZONES; j++) {
6771 if (zone->lowmem_reserve[j] > max)
6772 max = zone->lowmem_reserve[j];
6773 }
6774
6775 /* we treat the high watermark as reserved pages. */
6776 max += high_wmark_pages(zone);
6777
6778 if (max > zone->managed_pages)
6779 max = zone->managed_pages;
6780
6781 pgdat->totalreserve_pages += max;
6782
6783 reserve_pages += max;
6784 }
6785 }
6786 totalreserve_pages = reserve_pages;
6787 }
6788
6789 /*
6790 * setup_per_zone_lowmem_reserve - called whenever
6791 * sysctl_lowmem_reserve_ratio changes. Ensures that each zone
6792 * has a correct pages reserved value, so an adequate number of
6793 * pages are left in the zone after a successful __alloc_pages().
6794 */
6795 static void setup_per_zone_lowmem_reserve(void)
6796 {
6797 struct pglist_data *pgdat;
6798 enum zone_type j, idx;
6799
6800 for_each_online_pgdat(pgdat) {
6801 for (j = 0; j < MAX_NR_ZONES; j++) {
6802 struct zone *zone = pgdat->node_zones + j;
6803 unsigned long managed_pages = zone->managed_pages;
6804
6805 zone->lowmem_reserve[j] = 0;
6806
6807 idx = j;
6808 while (idx) {
6809 struct zone *lower_zone;
6810
6811 idx--;
6812
6813 if (sysctl_lowmem_reserve_ratio[idx] < 1)
6814 sysctl_lowmem_reserve_ratio[idx] = 1;
6815
6816 lower_zone = pgdat->node_zones + idx;
6817 lower_zone->lowmem_reserve[j] = managed_pages /
6818 sysctl_lowmem_reserve_ratio[idx];
6819 managed_pages += lower_zone->managed_pages;
6820 }
6821 }
6822 }
6823
6824 /* update totalreserve_pages */
6825 calculate_totalreserve_pages();
6826 }
6827
6828 static void __setup_per_zone_wmarks(void)
6829 {
6830 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
6831 unsigned long lowmem_pages = 0;
6832 struct zone *zone;
6833 unsigned long flags;
6834
6835 /* Calculate total number of !ZONE_HIGHMEM pages */
6836 for_each_zone(zone) {
6837 if (!is_highmem(zone))
6838 lowmem_pages += zone->managed_pages;
6839 }
6840
6841 for_each_zone(zone) {
6842 u64 tmp;
6843
6844 spin_lock_irqsave(&zone->lock, flags);
6845 tmp = (u64)pages_min * zone->managed_pages;
6846 do_div(tmp, lowmem_pages);
6847 if (is_highmem(zone)) {
6848 /*
6849 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
6850 * need highmem pages, so cap pages_min to a small
6851 * value here.
6852 *
6853 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
6854 * deltas control asynch page reclaim, and so should
6855 * not be capped for highmem.
6856 */
6857 unsigned long min_pages;
6858
6859 min_pages = zone->managed_pages / 1024;
6860 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
6861 zone->watermark[WMARK_MIN] = min_pages;
6862 } else {
6863 /*
6864 * If it's a lowmem zone, reserve a number of pages
6865 * proportionate to the zone's size.
6866 */
6867 zone->watermark[WMARK_MIN] = tmp;
6868 }
6869
6870 /*
6871 * Set the kswapd watermarks distance according to the
6872 * scale factor in proportion to available memory, but
6873 * ensure a minimum size on small systems.
6874 */
6875 tmp = max_t(u64, tmp >> 2,
6876 mult_frac(zone->managed_pages,
6877 watermark_scale_factor, 10000));
6878
6879 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + tmp;
6880 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + tmp * 2;
6881
6882 spin_unlock_irqrestore(&zone->lock, flags);
6883 }
6884
6885 /* update totalreserve_pages */
6886 calculate_totalreserve_pages();
6887 }
6888
6889 /**
6890 * setup_per_zone_wmarks - called when min_free_kbytes changes
6891 * or when memory is hot-{added|removed}
6892 *
6893 * Ensures that the watermark[min,low,high] values for each zone are set
6894 * correctly with respect to min_free_kbytes.
6895 */
6896 void setup_per_zone_wmarks(void)
6897 {
6898 mutex_lock(&zonelists_mutex);
6899 __setup_per_zone_wmarks();
6900 mutex_unlock(&zonelists_mutex);
6901 }
6902
6903 /*
6904 * Initialise min_free_kbytes.
6905 *
6906 * For small machines we want it small (128k min). For large machines
6907 * we want it large (64MB max). But it is not linear, because network
6908 * bandwidth does not increase linearly with machine size. We use
6909 *
6910 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
6911 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
6912 *
6913 * which yields
6914 *
6915 * 16MB: 512k
6916 * 32MB: 724k
6917 * 64MB: 1024k
6918 * 128MB: 1448k
6919 * 256MB: 2048k
6920 * 512MB: 2896k
6921 * 1024MB: 4096k
6922 * 2048MB: 5792k
6923 * 4096MB: 8192k
6924 * 8192MB: 11584k
6925 * 16384MB: 16384k
6926 */
6927 int __meminit init_per_zone_wmark_min(void)
6928 {
6929 unsigned long lowmem_kbytes;
6930 int new_min_free_kbytes;
6931
6932 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
6933 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
6934
6935 if (new_min_free_kbytes > user_min_free_kbytes) {
6936 min_free_kbytes = new_min_free_kbytes;
6937 if (min_free_kbytes < 128)
6938 min_free_kbytes = 128;
6939 if (min_free_kbytes > 65536)
6940 min_free_kbytes = 65536;
6941 } else {
6942 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
6943 new_min_free_kbytes, user_min_free_kbytes);
6944 }
6945 setup_per_zone_wmarks();
6946 refresh_zone_stat_thresholds();
6947 setup_per_zone_lowmem_reserve();
6948
6949 #ifdef CONFIG_NUMA
6950 setup_min_unmapped_ratio();
6951 setup_min_slab_ratio();
6952 #endif
6953
6954 return 0;
6955 }
6956 core_initcall(init_per_zone_wmark_min)
6957
6958 /*
6959 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
6960 * that we can call two helper functions whenever min_free_kbytes
6961 * changes.
6962 */
6963 int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
6964 void __user *buffer, size_t *length, loff_t *ppos)
6965 {
6966 int rc;
6967
6968 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6969 if (rc)
6970 return rc;
6971
6972 if (write) {
6973 user_min_free_kbytes = min_free_kbytes;
6974 setup_per_zone_wmarks();
6975 }
6976 return 0;
6977 }
6978
6979 int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
6980 void __user *buffer, size_t *length, loff_t *ppos)
6981 {
6982 int rc;
6983
6984 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6985 if (rc)
6986 return rc;
6987
6988 if (write)
6989 setup_per_zone_wmarks();
6990
6991 return 0;
6992 }
6993
6994 #ifdef CONFIG_NUMA
6995 static void setup_min_unmapped_ratio(void)
6996 {
6997 pg_data_t *pgdat;
6998 struct zone *zone;
6999
7000 for_each_online_pgdat(pgdat)
7001 pgdat->min_unmapped_pages = 0;
7002
7003 for_each_zone(zone)
7004 zone->zone_pgdat->min_unmapped_pages += (zone->managed_pages *
7005 sysctl_min_unmapped_ratio) / 100;
7006 }
7007
7008
7009 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
7010 void __user *buffer, size_t *length, loff_t *ppos)
7011 {
7012 int rc;
7013
7014 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7015 if (rc)
7016 return rc;
7017
7018 setup_min_unmapped_ratio();
7019
7020 return 0;
7021 }
7022
7023 static void setup_min_slab_ratio(void)
7024 {
7025 pg_data_t *pgdat;
7026 struct zone *zone;
7027
7028 for_each_online_pgdat(pgdat)
7029 pgdat->min_slab_pages = 0;
7030
7031 for_each_zone(zone)
7032 zone->zone_pgdat->min_slab_pages += (zone->managed_pages *
7033 sysctl_min_slab_ratio) / 100;
7034 }
7035
7036 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
7037 void __user *buffer, size_t *length, loff_t *ppos)
7038 {
7039 int rc;
7040
7041 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7042 if (rc)
7043 return rc;
7044
7045 setup_min_slab_ratio();
7046
7047 return 0;
7048 }
7049 #endif
7050
7051 /*
7052 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
7053 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
7054 * whenever sysctl_lowmem_reserve_ratio changes.
7055 *
7056 * The reserve ratio obviously has absolutely no relation with the
7057 * minimum watermarks. The lowmem reserve ratio can only make sense
7058 * if in function of the boot time zone sizes.
7059 */
7060 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
7061 void __user *buffer, size_t *length, loff_t *ppos)
7062 {
7063 proc_dointvec_minmax(table, write, buffer, length, ppos);
7064 setup_per_zone_lowmem_reserve();
7065 return 0;
7066 }
7067
7068 /*
7069 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
7070 * cpu. It is the fraction of total pages in each zone that a hot per cpu
7071 * pagelist can have before it gets flushed back to buddy allocator.
7072 */
7073 int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write,
7074 void __user *buffer, size_t *length, loff_t *ppos)
7075 {
7076 struct zone *zone;
7077 int old_percpu_pagelist_fraction;
7078 int ret;
7079
7080 mutex_lock(&pcp_batch_high_lock);
7081 old_percpu_pagelist_fraction = percpu_pagelist_fraction;
7082
7083 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
7084 if (!write || ret < 0)
7085 goto out;
7086
7087 /* Sanity checking to avoid pcp imbalance */
7088 if (percpu_pagelist_fraction &&
7089 percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) {
7090 percpu_pagelist_fraction = old_percpu_pagelist_fraction;
7091 ret = -EINVAL;
7092 goto out;
7093 }
7094
7095 /* No change? */
7096 if (percpu_pagelist_fraction == old_percpu_pagelist_fraction)
7097 goto out;
7098
7099 for_each_populated_zone(zone) {
7100 unsigned int cpu;
7101
7102 for_each_possible_cpu(cpu)
7103 pageset_set_high_and_batch(zone,
7104 per_cpu_ptr(zone->pageset, cpu));
7105 }
7106 out:
7107 mutex_unlock(&pcp_batch_high_lock);
7108 return ret;
7109 }
7110
7111 #ifdef CONFIG_NUMA
7112 int hashdist = HASHDIST_DEFAULT;
7113
7114 static int __init set_hashdist(char *str)
7115 {
7116 if (!str)
7117 return 0;
7118 hashdist = simple_strtoul(str, &str, 0);
7119 return 1;
7120 }
7121 __setup("hashdist=", set_hashdist);
7122 #endif
7123
7124 #ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES
7125 /*
7126 * Returns the number of pages that arch has reserved but
7127 * is not known to alloc_large_system_hash().
7128 */
7129 static unsigned long __init arch_reserved_kernel_pages(void)
7130 {
7131 return 0;
7132 }
7133 #endif
7134
7135 /*
7136 * allocate a large system hash table from bootmem
7137 * - it is assumed that the hash table must contain an exact power-of-2
7138 * quantity of entries
7139 * - limit is the number of hash buckets, not the total allocation size
7140 */
7141 void *__init alloc_large_system_hash(const char *tablename,
7142 unsigned long bucketsize,
7143 unsigned long numentries,
7144 int scale,
7145 int flags,
7146 unsigned int *_hash_shift,
7147 unsigned int *_hash_mask,
7148 unsigned long low_limit,
7149 unsigned long high_limit)
7150 {
7151 unsigned long long max = high_limit;
7152 unsigned long log2qty, size;
7153 void *table = NULL;
7154
7155 /* allow the kernel cmdline to have a say */
7156 if (!numentries) {
7157 /* round applicable memory size up to nearest megabyte */
7158 numentries = nr_kernel_pages;
7159 numentries -= arch_reserved_kernel_pages();
7160
7161 /* It isn't necessary when PAGE_SIZE >= 1MB */
7162 if (PAGE_SHIFT < 20)
7163 numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
7164
7165 /* limit to 1 bucket per 2^scale bytes of low memory */
7166 if (scale > PAGE_SHIFT)
7167 numentries >>= (scale - PAGE_SHIFT);
7168 else
7169 numentries <<= (PAGE_SHIFT - scale);
7170
7171 /* Make sure we've got at least a 0-order allocation.. */
7172 if (unlikely(flags & HASH_SMALL)) {
7173 /* Makes no sense without HASH_EARLY */
7174 WARN_ON(!(flags & HASH_EARLY));
7175 if (!(numentries >> *_hash_shift)) {
7176 numentries = 1UL << *_hash_shift;
7177 BUG_ON(!numentries);
7178 }
7179 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
7180 numentries = PAGE_SIZE / bucketsize;
7181 }
7182 numentries = roundup_pow_of_two(numentries);
7183
7184 /* limit allocation size to 1/16 total memory by default */
7185 if (max == 0) {
7186 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
7187 do_div(max, bucketsize);
7188 }
7189 max = min(max, 0x80000000ULL);
7190
7191 if (numentries < low_limit)
7192 numentries = low_limit;
7193 if (numentries > max)
7194 numentries = max;
7195
7196 log2qty = ilog2(numentries);
7197
7198 do {
7199 size = bucketsize << log2qty;
7200 if (flags & HASH_EARLY)
7201 table = memblock_virt_alloc_nopanic(size, 0);
7202 else if (hashdist)
7203 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
7204 else {
7205 /*
7206 * If bucketsize is not a power-of-two, we may free
7207 * some pages at the end of hash table which
7208 * alloc_pages_exact() automatically does
7209 */
7210 if (get_order(size) < MAX_ORDER) {
7211 table = alloc_pages_exact(size, GFP_ATOMIC);
7212 kmemleak_alloc(table, size, 1, GFP_ATOMIC);
7213 }
7214 }
7215 } while (!table && size > PAGE_SIZE && --log2qty);
7216
7217 if (!table)
7218 panic("Failed to allocate %s hash table\n", tablename);
7219
7220 pr_info("%s hash table entries: %ld (order: %d, %lu bytes)\n",
7221 tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size);
7222
7223 if (_hash_shift)
7224 *_hash_shift = log2qty;
7225 if (_hash_mask)
7226 *_hash_mask = (1 << log2qty) - 1;
7227
7228 return table;
7229 }
7230
7231 /*
7232 * This function checks whether pageblock includes unmovable pages or not.
7233 * If @count is not zero, it is okay to include less @count unmovable pages
7234 *
7235 * PageLRU check without isolation or lru_lock could race so that
7236 * MIGRATE_MOVABLE block might include unmovable pages. And __PageMovable
7237 * check without lock_page also may miss some movable non-lru pages at
7238 * race condition. So you can't expect this function should be exact.
7239 */
7240 bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
7241 bool skip_hwpoisoned_pages)
7242 {
7243 unsigned long pfn, iter, found;
7244 int mt;
7245
7246 /*
7247 * For avoiding noise data, lru_add_drain_all() should be called
7248 * If ZONE_MOVABLE, the zone never contains unmovable pages
7249 */
7250 if (zone_idx(zone) == ZONE_MOVABLE)
7251 return false;
7252 mt = get_pageblock_migratetype(page);
7253 if (mt == MIGRATE_MOVABLE || is_migrate_cma(mt))
7254 return false;
7255
7256 pfn = page_to_pfn(page);
7257 for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
7258 unsigned long check = pfn + iter;
7259
7260 if (!pfn_valid_within(check))
7261 continue;
7262
7263 page = pfn_to_page(check);
7264
7265 /*
7266 * Hugepages are not in LRU lists, but they're movable.
7267 * We need not scan over tail pages bacause we don't
7268 * handle each tail page individually in migration.
7269 */
7270 if (PageHuge(page)) {
7271 iter = round_up(iter + 1, 1<<compound_order(page)) - 1;
7272 continue;
7273 }
7274
7275 /*
7276 * We can't use page_count without pin a page
7277 * because another CPU can free compound page.
7278 * This check already skips compound tails of THP
7279 * because their page->_refcount is zero at all time.
7280 */
7281 if (!page_ref_count(page)) {
7282 if (PageBuddy(page))
7283 iter += (1 << page_order(page)) - 1;
7284 continue;
7285 }
7286
7287 /*
7288 * The HWPoisoned page may be not in buddy system, and
7289 * page_count() is not 0.
7290 */
7291 if (skip_hwpoisoned_pages && PageHWPoison(page))
7292 continue;
7293
7294 if (__PageMovable(page))
7295 continue;
7296
7297 if (!PageLRU(page))
7298 found++;
7299 /*
7300 * If there are RECLAIMABLE pages, we need to check
7301 * it. But now, memory offline itself doesn't call
7302 * shrink_node_slabs() and it still to be fixed.
7303 */
7304 /*
7305 * If the page is not RAM, page_count()should be 0.
7306 * we don't need more check. This is an _used_ not-movable page.
7307 *
7308 * The problematic thing here is PG_reserved pages. PG_reserved
7309 * is set to both of a memory hole page and a _used_ kernel
7310 * page at boot.
7311 */
7312 if (found > count)
7313 return true;
7314 }
7315 return false;
7316 }
7317
7318 bool is_pageblock_removable_nolock(struct page *page)
7319 {
7320 struct zone *zone;
7321 unsigned long pfn;
7322
7323 /*
7324 * We have to be careful here because we are iterating over memory
7325 * sections which are not zone aware so we might end up outside of
7326 * the zone but still within the section.
7327 * We have to take care about the node as well. If the node is offline
7328 * its NODE_DATA will be NULL - see page_zone.
7329 */
7330 if (!node_online(page_to_nid(page)))
7331 return false;
7332
7333 zone = page_zone(page);
7334 pfn = page_to_pfn(page);
7335 if (!zone_spans_pfn(zone, pfn))
7336 return false;
7337
7338 return !has_unmovable_pages(zone, page, 0, true);
7339 }
7340
7341 #if (defined(CONFIG_MEMORY_ISOLATION) && defined(CONFIG_COMPACTION)) || defined(CONFIG_CMA)
7342
7343 static unsigned long pfn_max_align_down(unsigned long pfn)
7344 {
7345 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
7346 pageblock_nr_pages) - 1);
7347 }
7348
7349 static unsigned long pfn_max_align_up(unsigned long pfn)
7350 {
7351 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
7352 pageblock_nr_pages));
7353 }
7354
7355 /* [start, end) must belong to a single zone. */
7356 static int __alloc_contig_migrate_range(struct compact_control *cc,
7357 unsigned long start, unsigned long end)
7358 {
7359 /* This function is based on compact_zone() from compaction.c. */
7360 unsigned long nr_reclaimed;
7361 unsigned long pfn = start;
7362 unsigned int tries = 0;
7363 int ret = 0;
7364
7365 migrate_prep();
7366
7367 while (pfn < end || !list_empty(&cc->migratepages)) {
7368 if (fatal_signal_pending(current)) {
7369 ret = -EINTR;
7370 break;
7371 }
7372
7373 if (list_empty(&cc->migratepages)) {
7374 cc->nr_migratepages = 0;
7375 pfn = isolate_migratepages_range(cc, pfn, end);
7376 if (!pfn) {
7377 ret = -EINTR;
7378 break;
7379 }
7380 tries = 0;
7381 } else if (++tries == 5) {
7382 ret = ret < 0 ? ret : -EBUSY;
7383 break;
7384 }
7385
7386 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
7387 &cc->migratepages);
7388 cc->nr_migratepages -= nr_reclaimed;
7389
7390 ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
7391 NULL, 0, cc->mode, MR_CMA);
7392 }
7393 if (ret < 0) {
7394 putback_movable_pages(&cc->migratepages);
7395 return ret;
7396 }
7397 return 0;
7398 }
7399
7400 /**
7401 * alloc_contig_range() -- tries to allocate given range of pages
7402 * @start: start PFN to allocate
7403 * @end: one-past-the-last PFN to allocate
7404 * @migratetype: migratetype of the underlaying pageblocks (either
7405 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
7406 * in range must have the same migratetype and it must
7407 * be either of the two.
7408 * @gfp_mask: GFP mask to use during compaction
7409 *
7410 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
7411 * aligned, however it's the caller's responsibility to guarantee that
7412 * we are the only thread that changes migrate type of pageblocks the
7413 * pages fall in.
7414 *
7415 * The PFN range must belong to a single zone.
7416 *
7417 * Returns zero on success or negative error code. On success all
7418 * pages which PFN is in [start, end) are allocated for the caller and
7419 * need to be freed with free_contig_range().
7420 */
7421 int alloc_contig_range(unsigned long start, unsigned long end,
7422 unsigned migratetype, gfp_t gfp_mask)
7423 {
7424 unsigned long outer_start, outer_end;
7425 unsigned int order;
7426 int ret = 0;
7427
7428 struct compact_control cc = {
7429 .nr_migratepages = 0,
7430 .order = -1,
7431 .zone = page_zone(pfn_to_page(start)),
7432 .mode = MIGRATE_SYNC,
7433 .ignore_skip_hint = true,
7434 .gfp_mask = memalloc_noio_flags(gfp_mask),
7435 };
7436 INIT_LIST_HEAD(&cc.migratepages);
7437
7438 /*
7439 * What we do here is we mark all pageblocks in range as
7440 * MIGRATE_ISOLATE. Because pageblock and max order pages may
7441 * have different sizes, and due to the way page allocator
7442 * work, we align the range to biggest of the two pages so
7443 * that page allocator won't try to merge buddies from
7444 * different pageblocks and change MIGRATE_ISOLATE to some
7445 * other migration type.
7446 *
7447 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
7448 * migrate the pages from an unaligned range (ie. pages that
7449 * we are interested in). This will put all the pages in
7450 * range back to page allocator as MIGRATE_ISOLATE.
7451 *
7452 * When this is done, we take the pages in range from page
7453 * allocator removing them from the buddy system. This way
7454 * page allocator will never consider using them.
7455 *
7456 * This lets us mark the pageblocks back as
7457 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
7458 * aligned range but not in the unaligned, original range are
7459 * put back to page allocator so that buddy can use them.
7460 */
7461
7462 ret = start_isolate_page_range(pfn_max_align_down(start),
7463 pfn_max_align_up(end), migratetype,
7464 false);
7465 if (ret)
7466 return ret;
7467
7468 /*
7469 * In case of -EBUSY, we'd like to know which page causes problem.
7470 * So, just fall through. We will check it in test_pages_isolated().
7471 */
7472 ret = __alloc_contig_migrate_range(&cc, start, end);
7473 if (ret && ret != -EBUSY)
7474 goto done;
7475
7476 /*
7477 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
7478 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
7479 * more, all pages in [start, end) are free in page allocator.
7480 * What we are going to do is to allocate all pages from
7481 * [start, end) (that is remove them from page allocator).
7482 *
7483 * The only problem is that pages at the beginning and at the
7484 * end of interesting range may be not aligned with pages that
7485 * page allocator holds, ie. they can be part of higher order
7486 * pages. Because of this, we reserve the bigger range and
7487 * once this is done free the pages we are not interested in.
7488 *
7489 * We don't have to hold zone->lock here because the pages are
7490 * isolated thus they won't get removed from buddy.
7491 */
7492
7493 lru_add_drain_all();
7494 drain_all_pages(cc.zone);
7495
7496 order = 0;
7497 outer_start = start;
7498 while (!PageBuddy(pfn_to_page(outer_start))) {
7499 if (++order >= MAX_ORDER) {
7500 outer_start = start;
7501 break;
7502 }
7503 outer_start &= ~0UL << order;
7504 }
7505
7506 if (outer_start != start) {
7507 order = page_order(pfn_to_page(outer_start));
7508
7509 /*
7510 * outer_start page could be small order buddy page and
7511 * it doesn't include start page. Adjust outer_start
7512 * in this case to report failed page properly
7513 * on tracepoint in test_pages_isolated()
7514 */
7515 if (outer_start + (1UL << order) <= start)
7516 outer_start = start;
7517 }
7518
7519 /* Make sure the range is really isolated. */
7520 if (test_pages_isolated(outer_start, end, false)) {
7521 pr_info("%s: [%lx, %lx) PFNs busy\n",
7522 __func__, outer_start, end);
7523 ret = -EBUSY;
7524 goto done;
7525 }
7526
7527 /* Grab isolated pages from freelists. */
7528 outer_end = isolate_freepages_range(&cc, outer_start, end);
7529 if (!outer_end) {
7530 ret = -EBUSY;
7531 goto done;
7532 }
7533
7534 /* Free head and tail (if any) */
7535 if (start != outer_start)
7536 free_contig_range(outer_start, start - outer_start);
7537 if (end != outer_end)
7538 free_contig_range(end, outer_end - end);
7539
7540 done:
7541 undo_isolate_page_range(pfn_max_align_down(start),
7542 pfn_max_align_up(end), migratetype);
7543 return ret;
7544 }
7545
7546 void free_contig_range(unsigned long pfn, unsigned nr_pages)
7547 {
7548 unsigned int count = 0;
7549
7550 for (; nr_pages--; pfn++) {
7551 struct page *page = pfn_to_page(pfn);
7552
7553 count += page_count(page) != 1;
7554 __free_page(page);
7555 }
7556 WARN(count != 0, "%d pages are still in use!\n", count);
7557 }
7558 #endif
7559
7560 #ifdef CONFIG_MEMORY_HOTPLUG
7561 /*
7562 * The zone indicated has a new number of managed_pages; batch sizes and percpu
7563 * page high values need to be recalulated.
7564 */
7565 void __meminit zone_pcp_update(struct zone *zone)
7566 {
7567 unsigned cpu;
7568 mutex_lock(&pcp_batch_high_lock);
7569 for_each_possible_cpu(cpu)
7570 pageset_set_high_and_batch(zone,
7571 per_cpu_ptr(zone->pageset, cpu));
7572 mutex_unlock(&pcp_batch_high_lock);
7573 }
7574 #endif
7575
7576 void zone_pcp_reset(struct zone *zone)
7577 {
7578 unsigned long flags;
7579 int cpu;
7580 struct per_cpu_pageset *pset;
7581
7582 /* avoid races with drain_pages() */
7583 local_irq_save(flags);
7584 if (zone->pageset != &boot_pageset) {
7585 for_each_online_cpu(cpu) {
7586 pset = per_cpu_ptr(zone->pageset, cpu);
7587 drain_zonestat(zone, pset);
7588 }
7589 free_percpu(zone->pageset);
7590 zone->pageset = &boot_pageset;
7591 }
7592 local_irq_restore(flags);
7593 }
7594
7595 #ifdef CONFIG_MEMORY_HOTREMOVE
7596 /*
7597 * All pages in the range must be in a single zone and isolated
7598 * before calling this.
7599 */
7600 void
7601 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
7602 {
7603 struct page *page;
7604 struct zone *zone;
7605 unsigned int order, i;
7606 unsigned long pfn;
7607 unsigned long flags;
7608 /* find the first valid pfn */
7609 for (pfn = start_pfn; pfn < end_pfn; pfn++)
7610 if (pfn_valid(pfn))
7611 break;
7612 if (pfn == end_pfn)
7613 return;
7614 zone = page_zone(pfn_to_page(pfn));
7615 spin_lock_irqsave(&zone->lock, flags);
7616 pfn = start_pfn;
7617 while (pfn < end_pfn) {
7618 if (!pfn_valid(pfn)) {
7619 pfn++;
7620 continue;
7621 }
7622 page = pfn_to_page(pfn);
7623 /*
7624 * The HWPoisoned page may be not in buddy system, and
7625 * page_count() is not 0.
7626 */
7627 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
7628 pfn++;
7629 SetPageReserved(page);
7630 continue;
7631 }
7632
7633 BUG_ON(page_count(page));
7634 BUG_ON(!PageBuddy(page));
7635 order = page_order(page);
7636 #ifdef CONFIG_DEBUG_VM
7637 pr_info("remove from free list %lx %d %lx\n",
7638 pfn, 1 << order, end_pfn);
7639 #endif
7640 list_del(&page->lru);
7641 rmv_page_order(page);
7642 zone->free_area[order].nr_free--;
7643 for (i = 0; i < (1 << order); i++)
7644 SetPageReserved((page+i));
7645 pfn += (1 << order);
7646 }
7647 spin_unlock_irqrestore(&zone->lock, flags);
7648 }
7649 #endif
7650
7651 bool is_free_buddy_page(struct page *page)
7652 {
7653 struct zone *zone = page_zone(page);
7654 unsigned long pfn = page_to_pfn(page);
7655 unsigned long flags;
7656 unsigned int order;
7657
7658 spin_lock_irqsave(&zone->lock, flags);
7659 for (order = 0; order < MAX_ORDER; order++) {
7660 struct page *page_head = page - (pfn & ((1 << order) - 1));
7661
7662 if (PageBuddy(page_head) && page_order(page_head) >= order)
7663 break;
7664 }
7665 spin_unlock_irqrestore(&zone->lock, flags);
7666
7667 return order < MAX_ORDER;
7668 }