]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - mm/page_alloc.c
mm/memcg: rename mem_cgroup_split_huge_fixup to split_page_memcg and add nr_pages...
[mirror_ubuntu-jammy-kernel.git] / mm / page_alloc.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/mm/page_alloc.c
4 *
5 * Manages the free list, the system allocates free pages here.
6 * Note that kmalloc() lives in slab.c
7 *
8 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
9 * Swap reorganised 29.12.95, Stephen Tweedie
10 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
11 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
12 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
13 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
14 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
15 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
16 */
17
18 #include <linux/stddef.h>
19 #include <linux/mm.h>
20 #include <linux/highmem.h>
21 #include <linux/swap.h>
22 #include <linux/interrupt.h>
23 #include <linux/pagemap.h>
24 #include <linux/jiffies.h>
25 #include <linux/memblock.h>
26 #include <linux/compiler.h>
27 #include <linux/kernel.h>
28 #include <linux/kasan.h>
29 #include <linux/module.h>
30 #include <linux/suspend.h>
31 #include <linux/pagevec.h>
32 #include <linux/blkdev.h>
33 #include <linux/slab.h>
34 #include <linux/ratelimit.h>
35 #include <linux/oom.h>
36 #include <linux/topology.h>
37 #include <linux/sysctl.h>
38 #include <linux/cpu.h>
39 #include <linux/cpuset.h>
40 #include <linux/memory_hotplug.h>
41 #include <linux/nodemask.h>
42 #include <linux/vmalloc.h>
43 #include <linux/vmstat.h>
44 #include <linux/mempolicy.h>
45 #include <linux/memremap.h>
46 #include <linux/stop_machine.h>
47 #include <linux/random.h>
48 #include <linux/sort.h>
49 #include <linux/pfn.h>
50 #include <linux/backing-dev.h>
51 #include <linux/fault-inject.h>
52 #include <linux/page-isolation.h>
53 #include <linux/debugobjects.h>
54 #include <linux/kmemleak.h>
55 #include <linux/compaction.h>
56 #include <trace/events/kmem.h>
57 #include <trace/events/oom.h>
58 #include <linux/prefetch.h>
59 #include <linux/mm_inline.h>
60 #include <linux/mmu_notifier.h>
61 #include <linux/migrate.h>
62 #include <linux/hugetlb.h>
63 #include <linux/sched/rt.h>
64 #include <linux/sched/mm.h>
65 #include <linux/page_owner.h>
66 #include <linux/kthread.h>
67 #include <linux/memcontrol.h>
68 #include <linux/ftrace.h>
69 #include <linux/lockdep.h>
70 #include <linux/nmi.h>
71 #include <linux/psi.h>
72 #include <linux/padata.h>
73 #include <linux/khugepaged.h>
74 #include <linux/buffer_head.h>
75
76 #include <asm/sections.h>
77 #include <asm/tlbflush.h>
78 #include <asm/div64.h>
79 #include "internal.h"
80 #include "shuffle.h"
81 #include "page_reporting.h"
82
83 /* Free Page Internal flags: for internal, non-pcp variants of free_pages(). */
84 typedef int __bitwise fpi_t;
85
86 /* No special request */
87 #define FPI_NONE ((__force fpi_t)0)
88
89 /*
90 * Skip free page reporting notification for the (possibly merged) page.
91 * This does not hinder free page reporting from grabbing the page,
92 * reporting it and marking it "reported" - it only skips notifying
93 * the free page reporting infrastructure about a newly freed page. For
94 * example, used when temporarily pulling a page from a freelist and
95 * putting it back unmodified.
96 */
97 #define FPI_SKIP_REPORT_NOTIFY ((__force fpi_t)BIT(0))
98
99 /*
100 * Place the (possibly merged) page to the tail of the freelist. Will ignore
101 * page shuffling (relevant code - e.g., memory onlining - is expected to
102 * shuffle the whole zone).
103 *
104 * Note: No code should rely on this flag for correctness - it's purely
105 * to allow for optimizations when handing back either fresh pages
106 * (memory onlining) or untouched pages (page isolation, free page
107 * reporting).
108 */
109 #define FPI_TO_TAIL ((__force fpi_t)BIT(1))
110
111 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
112 static DEFINE_MUTEX(pcp_batch_high_lock);
113 #define MIN_PERCPU_PAGELIST_FRACTION (8)
114
115 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
116 DEFINE_PER_CPU(int, numa_node);
117 EXPORT_PER_CPU_SYMBOL(numa_node);
118 #endif
119
120 DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key);
121
122 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
123 /*
124 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
125 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
126 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
127 * defined in <linux/topology.h>.
128 */
129 DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
130 EXPORT_PER_CPU_SYMBOL(_numa_mem_);
131 #endif
132
133 /* work_structs for global per-cpu drains */
134 struct pcpu_drain {
135 struct zone *zone;
136 struct work_struct work;
137 };
138 static DEFINE_MUTEX(pcpu_drain_mutex);
139 static DEFINE_PER_CPU(struct pcpu_drain, pcpu_drain);
140
141 #ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
142 volatile unsigned long latent_entropy __latent_entropy;
143 EXPORT_SYMBOL(latent_entropy);
144 #endif
145
146 /*
147 * Array of node states.
148 */
149 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
150 [N_POSSIBLE] = NODE_MASK_ALL,
151 [N_ONLINE] = { { [0] = 1UL } },
152 #ifndef CONFIG_NUMA
153 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
154 #ifdef CONFIG_HIGHMEM
155 [N_HIGH_MEMORY] = { { [0] = 1UL } },
156 #endif
157 [N_MEMORY] = { { [0] = 1UL } },
158 [N_CPU] = { { [0] = 1UL } },
159 #endif /* NUMA */
160 };
161 EXPORT_SYMBOL(node_states);
162
163 atomic_long_t _totalram_pages __read_mostly;
164 EXPORT_SYMBOL(_totalram_pages);
165 unsigned long totalreserve_pages __read_mostly;
166 unsigned long totalcma_pages __read_mostly;
167
168 int percpu_pagelist_fraction;
169 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
170 DEFINE_STATIC_KEY_FALSE(init_on_alloc);
171 EXPORT_SYMBOL(init_on_alloc);
172
173 DEFINE_STATIC_KEY_FALSE(init_on_free);
174 EXPORT_SYMBOL(init_on_free);
175
176 static bool _init_on_alloc_enabled_early __read_mostly
177 = IS_ENABLED(CONFIG_INIT_ON_ALLOC_DEFAULT_ON);
178 static int __init early_init_on_alloc(char *buf)
179 {
180
181 return kstrtobool(buf, &_init_on_alloc_enabled_early);
182 }
183 early_param("init_on_alloc", early_init_on_alloc);
184
185 static bool _init_on_free_enabled_early __read_mostly
186 = IS_ENABLED(CONFIG_INIT_ON_FREE_DEFAULT_ON);
187 static int __init early_init_on_free(char *buf)
188 {
189 return kstrtobool(buf, &_init_on_free_enabled_early);
190 }
191 early_param("init_on_free", early_init_on_free);
192
193 /*
194 * A cached value of the page's pageblock's migratetype, used when the page is
195 * put on a pcplist. Used to avoid the pageblock migratetype lookup when
196 * freeing from pcplists in most cases, at the cost of possibly becoming stale.
197 * Also the migratetype set in the page does not necessarily match the pcplist
198 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
199 * other index - this ensures that it will be put on the correct CMA freelist.
200 */
201 static inline int get_pcppage_migratetype(struct page *page)
202 {
203 return page->index;
204 }
205
206 static inline void set_pcppage_migratetype(struct page *page, int migratetype)
207 {
208 page->index = migratetype;
209 }
210
211 #ifdef CONFIG_PM_SLEEP
212 /*
213 * The following functions are used by the suspend/hibernate code to temporarily
214 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
215 * while devices are suspended. To avoid races with the suspend/hibernate code,
216 * they should always be called with system_transition_mutex held
217 * (gfp_allowed_mask also should only be modified with system_transition_mutex
218 * held, unless the suspend/hibernate code is guaranteed not to run in parallel
219 * with that modification).
220 */
221
222 static gfp_t saved_gfp_mask;
223
224 void pm_restore_gfp_mask(void)
225 {
226 WARN_ON(!mutex_is_locked(&system_transition_mutex));
227 if (saved_gfp_mask) {
228 gfp_allowed_mask = saved_gfp_mask;
229 saved_gfp_mask = 0;
230 }
231 }
232
233 void pm_restrict_gfp_mask(void)
234 {
235 WARN_ON(!mutex_is_locked(&system_transition_mutex));
236 WARN_ON(saved_gfp_mask);
237 saved_gfp_mask = gfp_allowed_mask;
238 gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
239 }
240
241 bool pm_suspended_storage(void)
242 {
243 if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
244 return false;
245 return true;
246 }
247 #endif /* CONFIG_PM_SLEEP */
248
249 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
250 unsigned int pageblock_order __read_mostly;
251 #endif
252
253 static void __free_pages_ok(struct page *page, unsigned int order,
254 fpi_t fpi_flags);
255
256 /*
257 * results with 256, 32 in the lowmem_reserve sysctl:
258 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
259 * 1G machine -> (16M dma, 784M normal, 224M high)
260 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
261 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
262 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
263 *
264 * TBD: should special case ZONE_DMA32 machines here - in those we normally
265 * don't need any ZONE_NORMAL reservation
266 */
267 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES] = {
268 #ifdef CONFIG_ZONE_DMA
269 [ZONE_DMA] = 256,
270 #endif
271 #ifdef CONFIG_ZONE_DMA32
272 [ZONE_DMA32] = 256,
273 #endif
274 [ZONE_NORMAL] = 32,
275 #ifdef CONFIG_HIGHMEM
276 [ZONE_HIGHMEM] = 0,
277 #endif
278 [ZONE_MOVABLE] = 0,
279 };
280
281 static char * const zone_names[MAX_NR_ZONES] = {
282 #ifdef CONFIG_ZONE_DMA
283 "DMA",
284 #endif
285 #ifdef CONFIG_ZONE_DMA32
286 "DMA32",
287 #endif
288 "Normal",
289 #ifdef CONFIG_HIGHMEM
290 "HighMem",
291 #endif
292 "Movable",
293 #ifdef CONFIG_ZONE_DEVICE
294 "Device",
295 #endif
296 };
297
298 const char * const migratetype_names[MIGRATE_TYPES] = {
299 "Unmovable",
300 "Movable",
301 "Reclaimable",
302 "HighAtomic",
303 #ifdef CONFIG_CMA
304 "CMA",
305 #endif
306 #ifdef CONFIG_MEMORY_ISOLATION
307 "Isolate",
308 #endif
309 };
310
311 compound_page_dtor * const compound_page_dtors[NR_COMPOUND_DTORS] = {
312 [NULL_COMPOUND_DTOR] = NULL,
313 [COMPOUND_PAGE_DTOR] = free_compound_page,
314 #ifdef CONFIG_HUGETLB_PAGE
315 [HUGETLB_PAGE_DTOR] = free_huge_page,
316 #endif
317 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
318 [TRANSHUGE_PAGE_DTOR] = free_transhuge_page,
319 #endif
320 };
321
322 int min_free_kbytes = 1024;
323 int user_min_free_kbytes = -1;
324 #ifdef CONFIG_DISCONTIGMEM
325 /*
326 * DiscontigMem defines memory ranges as separate pg_data_t even if the ranges
327 * are not on separate NUMA nodes. Functionally this works but with
328 * watermark_boost_factor, it can reclaim prematurely as the ranges can be
329 * quite small. By default, do not boost watermarks on discontigmem as in
330 * many cases very high-order allocations like THP are likely to be
331 * unsupported and the premature reclaim offsets the advantage of long-term
332 * fragmentation avoidance.
333 */
334 int watermark_boost_factor __read_mostly;
335 #else
336 int watermark_boost_factor __read_mostly = 15000;
337 #endif
338 int watermark_scale_factor = 10;
339
340 static unsigned long nr_kernel_pages __initdata;
341 static unsigned long nr_all_pages __initdata;
342 static unsigned long dma_reserve __initdata;
343
344 static unsigned long arch_zone_lowest_possible_pfn[MAX_NR_ZONES] __initdata;
345 static unsigned long arch_zone_highest_possible_pfn[MAX_NR_ZONES] __initdata;
346 static unsigned long required_kernelcore __initdata;
347 static unsigned long required_kernelcore_percent __initdata;
348 static unsigned long required_movablecore __initdata;
349 static unsigned long required_movablecore_percent __initdata;
350 static unsigned long zone_movable_pfn[MAX_NUMNODES] __initdata;
351 static bool mirrored_kernelcore __meminitdata;
352
353 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
354 int movable_zone;
355 EXPORT_SYMBOL(movable_zone);
356
357 #if MAX_NUMNODES > 1
358 unsigned int nr_node_ids __read_mostly = MAX_NUMNODES;
359 unsigned int nr_online_nodes __read_mostly = 1;
360 EXPORT_SYMBOL(nr_node_ids);
361 EXPORT_SYMBOL(nr_online_nodes);
362 #endif
363
364 int page_group_by_mobility_disabled __read_mostly;
365
366 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
367 /*
368 * During boot we initialize deferred pages on-demand, as needed, but once
369 * page_alloc_init_late() has finished, the deferred pages are all initialized,
370 * and we can permanently disable that path.
371 */
372 static DEFINE_STATIC_KEY_TRUE(deferred_pages);
373
374 /*
375 * Calling kasan_free_pages() only after deferred memory initialization
376 * has completed. Poisoning pages during deferred memory init will greatly
377 * lengthen the process and cause problem in large memory systems as the
378 * deferred pages initialization is done with interrupt disabled.
379 *
380 * Assuming that there will be no reference to those newly initialized
381 * pages before they are ever allocated, this should have no effect on
382 * KASAN memory tracking as the poison will be properly inserted at page
383 * allocation time. The only corner case is when pages are allocated by
384 * on-demand allocation and then freed again before the deferred pages
385 * initialization is done, but this is not likely to happen.
386 */
387 static inline void kasan_free_nondeferred_pages(struct page *page, int order)
388 {
389 if (!static_branch_unlikely(&deferred_pages))
390 kasan_free_pages(page, order);
391 }
392
393 /* Returns true if the struct page for the pfn is uninitialised */
394 static inline bool __meminit early_page_uninitialised(unsigned long pfn)
395 {
396 int nid = early_pfn_to_nid(pfn);
397
398 if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn)
399 return true;
400
401 return false;
402 }
403
404 /*
405 * Returns true when the remaining initialisation should be deferred until
406 * later in the boot cycle when it can be parallelised.
407 */
408 static bool __meminit
409 defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
410 {
411 static unsigned long prev_end_pfn, nr_initialised;
412
413 /*
414 * prev_end_pfn static that contains the end of previous zone
415 * No need to protect because called very early in boot before smp_init.
416 */
417 if (prev_end_pfn != end_pfn) {
418 prev_end_pfn = end_pfn;
419 nr_initialised = 0;
420 }
421
422 /* Always populate low zones for address-constrained allocations */
423 if (end_pfn < pgdat_end_pfn(NODE_DATA(nid)))
424 return false;
425
426 if (NODE_DATA(nid)->first_deferred_pfn != ULONG_MAX)
427 return true;
428 /*
429 * We start only with one section of pages, more pages are added as
430 * needed until the rest of deferred pages are initialized.
431 */
432 nr_initialised++;
433 if ((nr_initialised > PAGES_PER_SECTION) &&
434 (pfn & (PAGES_PER_SECTION - 1)) == 0) {
435 NODE_DATA(nid)->first_deferred_pfn = pfn;
436 return true;
437 }
438 return false;
439 }
440 #else
441 #define kasan_free_nondeferred_pages(p, o) kasan_free_pages(p, o)
442
443 static inline bool early_page_uninitialised(unsigned long pfn)
444 {
445 return false;
446 }
447
448 static inline bool defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
449 {
450 return false;
451 }
452 #endif
453
454 /* Return a pointer to the bitmap storing bits affecting a block of pages */
455 static inline unsigned long *get_pageblock_bitmap(struct page *page,
456 unsigned long pfn)
457 {
458 #ifdef CONFIG_SPARSEMEM
459 return section_to_usemap(__pfn_to_section(pfn));
460 #else
461 return page_zone(page)->pageblock_flags;
462 #endif /* CONFIG_SPARSEMEM */
463 }
464
465 static inline int pfn_to_bitidx(struct page *page, unsigned long pfn)
466 {
467 #ifdef CONFIG_SPARSEMEM
468 pfn &= (PAGES_PER_SECTION-1);
469 #else
470 pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages);
471 #endif /* CONFIG_SPARSEMEM */
472 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
473 }
474
475 static __always_inline
476 unsigned long __get_pfnblock_flags_mask(struct page *page,
477 unsigned long pfn,
478 unsigned long mask)
479 {
480 unsigned long *bitmap;
481 unsigned long bitidx, word_bitidx;
482 unsigned long word;
483
484 bitmap = get_pageblock_bitmap(page, pfn);
485 bitidx = pfn_to_bitidx(page, pfn);
486 word_bitidx = bitidx / BITS_PER_LONG;
487 bitidx &= (BITS_PER_LONG-1);
488
489 word = bitmap[word_bitidx];
490 return (word >> bitidx) & mask;
491 }
492
493 /**
494 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
495 * @page: The page within the block of interest
496 * @pfn: The target page frame number
497 * @mask: mask of bits that the caller is interested in
498 *
499 * Return: pageblock_bits flags
500 */
501 unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
502 unsigned long mask)
503 {
504 return __get_pfnblock_flags_mask(page, pfn, mask);
505 }
506
507 static __always_inline int get_pfnblock_migratetype(struct page *page, unsigned long pfn)
508 {
509 return __get_pfnblock_flags_mask(page, pfn, MIGRATETYPE_MASK);
510 }
511
512 /**
513 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
514 * @page: The page within the block of interest
515 * @flags: The flags to set
516 * @pfn: The target page frame number
517 * @mask: mask of bits that the caller is interested in
518 */
519 void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
520 unsigned long pfn,
521 unsigned long mask)
522 {
523 unsigned long *bitmap;
524 unsigned long bitidx, word_bitidx;
525 unsigned long old_word, word;
526
527 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
528 BUILD_BUG_ON(MIGRATE_TYPES > (1 << PB_migratetype_bits));
529
530 bitmap = get_pageblock_bitmap(page, pfn);
531 bitidx = pfn_to_bitidx(page, pfn);
532 word_bitidx = bitidx / BITS_PER_LONG;
533 bitidx &= (BITS_PER_LONG-1);
534
535 VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
536
537 mask <<= bitidx;
538 flags <<= bitidx;
539
540 word = READ_ONCE(bitmap[word_bitidx]);
541 for (;;) {
542 old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
543 if (word == old_word)
544 break;
545 word = old_word;
546 }
547 }
548
549 void set_pageblock_migratetype(struct page *page, int migratetype)
550 {
551 if (unlikely(page_group_by_mobility_disabled &&
552 migratetype < MIGRATE_PCPTYPES))
553 migratetype = MIGRATE_UNMOVABLE;
554
555 set_pfnblock_flags_mask(page, (unsigned long)migratetype,
556 page_to_pfn(page), MIGRATETYPE_MASK);
557 }
558
559 #ifdef CONFIG_DEBUG_VM
560 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
561 {
562 int ret = 0;
563 unsigned seq;
564 unsigned long pfn = page_to_pfn(page);
565 unsigned long sp, start_pfn;
566
567 do {
568 seq = zone_span_seqbegin(zone);
569 start_pfn = zone->zone_start_pfn;
570 sp = zone->spanned_pages;
571 if (!zone_spans_pfn(zone, pfn))
572 ret = 1;
573 } while (zone_span_seqretry(zone, seq));
574
575 if (ret)
576 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
577 pfn, zone_to_nid(zone), zone->name,
578 start_pfn, start_pfn + sp);
579
580 return ret;
581 }
582
583 static int page_is_consistent(struct zone *zone, struct page *page)
584 {
585 if (!pfn_valid_within(page_to_pfn(page)))
586 return 0;
587 if (zone != page_zone(page))
588 return 0;
589
590 return 1;
591 }
592 /*
593 * Temporary debugging check for pages not lying within a given zone.
594 */
595 static int __maybe_unused bad_range(struct zone *zone, struct page *page)
596 {
597 if (page_outside_zone_boundaries(zone, page))
598 return 1;
599 if (!page_is_consistent(zone, page))
600 return 1;
601
602 return 0;
603 }
604 #else
605 static inline int __maybe_unused bad_range(struct zone *zone, struct page *page)
606 {
607 return 0;
608 }
609 #endif
610
611 static void bad_page(struct page *page, const char *reason)
612 {
613 static unsigned long resume;
614 static unsigned long nr_shown;
615 static unsigned long nr_unshown;
616
617 /*
618 * Allow a burst of 60 reports, then keep quiet for that minute;
619 * or allow a steady drip of one report per second.
620 */
621 if (nr_shown == 60) {
622 if (time_before(jiffies, resume)) {
623 nr_unshown++;
624 goto out;
625 }
626 if (nr_unshown) {
627 pr_alert(
628 "BUG: Bad page state: %lu messages suppressed\n",
629 nr_unshown);
630 nr_unshown = 0;
631 }
632 nr_shown = 0;
633 }
634 if (nr_shown++ == 0)
635 resume = jiffies + 60 * HZ;
636
637 pr_alert("BUG: Bad page state in process %s pfn:%05lx\n",
638 current->comm, page_to_pfn(page));
639 __dump_page(page, reason);
640 dump_page_owner(page);
641
642 print_modules();
643 dump_stack();
644 out:
645 /* Leave bad fields for debug, except PageBuddy could make trouble */
646 page_mapcount_reset(page); /* remove PageBuddy */
647 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
648 }
649
650 /*
651 * Higher-order pages are called "compound pages". They are structured thusly:
652 *
653 * The first PAGE_SIZE page is called the "head page" and have PG_head set.
654 *
655 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
656 * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
657 *
658 * The first tail page's ->compound_dtor holds the offset in array of compound
659 * page destructors. See compound_page_dtors.
660 *
661 * The first tail page's ->compound_order holds the order of allocation.
662 * This usage means that zero-order pages may not be compound.
663 */
664
665 void free_compound_page(struct page *page)
666 {
667 mem_cgroup_uncharge(page);
668 __free_pages_ok(page, compound_order(page), FPI_NONE);
669 }
670
671 void prep_compound_page(struct page *page, unsigned int order)
672 {
673 int i;
674 int nr_pages = 1 << order;
675
676 __SetPageHead(page);
677 for (i = 1; i < nr_pages; i++) {
678 struct page *p = page + i;
679 set_page_count(p, 0);
680 p->mapping = TAIL_MAPPING;
681 set_compound_head(p, page);
682 }
683
684 set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
685 set_compound_order(page, order);
686 atomic_set(compound_mapcount_ptr(page), -1);
687 if (hpage_pincount_available(page))
688 atomic_set(compound_pincount_ptr(page), 0);
689 }
690
691 #ifdef CONFIG_DEBUG_PAGEALLOC
692 unsigned int _debug_guardpage_minorder;
693
694 bool _debug_pagealloc_enabled_early __read_mostly
695 = IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT);
696 EXPORT_SYMBOL(_debug_pagealloc_enabled_early);
697 DEFINE_STATIC_KEY_FALSE(_debug_pagealloc_enabled);
698 EXPORT_SYMBOL(_debug_pagealloc_enabled);
699
700 DEFINE_STATIC_KEY_FALSE(_debug_guardpage_enabled);
701
702 static int __init early_debug_pagealloc(char *buf)
703 {
704 return kstrtobool(buf, &_debug_pagealloc_enabled_early);
705 }
706 early_param("debug_pagealloc", early_debug_pagealloc);
707
708 static int __init debug_guardpage_minorder_setup(char *buf)
709 {
710 unsigned long res;
711
712 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
713 pr_err("Bad debug_guardpage_minorder value\n");
714 return 0;
715 }
716 _debug_guardpage_minorder = res;
717 pr_info("Setting debug_guardpage_minorder to %lu\n", res);
718 return 0;
719 }
720 early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup);
721
722 static inline bool set_page_guard(struct zone *zone, struct page *page,
723 unsigned int order, int migratetype)
724 {
725 if (!debug_guardpage_enabled())
726 return false;
727
728 if (order >= debug_guardpage_minorder())
729 return false;
730
731 __SetPageGuard(page);
732 INIT_LIST_HEAD(&page->lru);
733 set_page_private(page, order);
734 /* Guard pages are not available for any usage */
735 __mod_zone_freepage_state(zone, -(1 << order), migratetype);
736
737 return true;
738 }
739
740 static inline void clear_page_guard(struct zone *zone, struct page *page,
741 unsigned int order, int migratetype)
742 {
743 if (!debug_guardpage_enabled())
744 return;
745
746 __ClearPageGuard(page);
747
748 set_page_private(page, 0);
749 if (!is_migrate_isolate(migratetype))
750 __mod_zone_freepage_state(zone, (1 << order), migratetype);
751 }
752 #else
753 static inline bool set_page_guard(struct zone *zone, struct page *page,
754 unsigned int order, int migratetype) { return false; }
755 static inline void clear_page_guard(struct zone *zone, struct page *page,
756 unsigned int order, int migratetype) {}
757 #endif
758
759 /*
760 * Enable static keys related to various memory debugging and hardening options.
761 * Some override others, and depend on early params that are evaluated in the
762 * order of appearance. So we need to first gather the full picture of what was
763 * enabled, and then make decisions.
764 */
765 void init_mem_debugging_and_hardening(void)
766 {
767 if (_init_on_alloc_enabled_early) {
768 if (page_poisoning_enabled())
769 pr_info("mem auto-init: CONFIG_PAGE_POISONING is on, "
770 "will take precedence over init_on_alloc\n");
771 else
772 static_branch_enable(&init_on_alloc);
773 }
774 if (_init_on_free_enabled_early) {
775 if (page_poisoning_enabled())
776 pr_info("mem auto-init: CONFIG_PAGE_POISONING is on, "
777 "will take precedence over init_on_free\n");
778 else
779 static_branch_enable(&init_on_free);
780 }
781
782 #ifdef CONFIG_PAGE_POISONING
783 /*
784 * Page poisoning is debug page alloc for some arches. If
785 * either of those options are enabled, enable poisoning.
786 */
787 if (page_poisoning_enabled() ||
788 (!IS_ENABLED(CONFIG_ARCH_SUPPORTS_DEBUG_PAGEALLOC) &&
789 debug_pagealloc_enabled()))
790 static_branch_enable(&_page_poisoning_enabled);
791 #endif
792
793 #ifdef CONFIG_DEBUG_PAGEALLOC
794 if (!debug_pagealloc_enabled())
795 return;
796
797 static_branch_enable(&_debug_pagealloc_enabled);
798
799 if (!debug_guardpage_minorder())
800 return;
801
802 static_branch_enable(&_debug_guardpage_enabled);
803 #endif
804 }
805
806 static inline void set_buddy_order(struct page *page, unsigned int order)
807 {
808 set_page_private(page, order);
809 __SetPageBuddy(page);
810 }
811
812 /*
813 * This function checks whether a page is free && is the buddy
814 * we can coalesce a page and its buddy if
815 * (a) the buddy is not in a hole (check before calling!) &&
816 * (b) the buddy is in the buddy system &&
817 * (c) a page and its buddy have the same order &&
818 * (d) a page and its buddy are in the same zone.
819 *
820 * For recording whether a page is in the buddy system, we set PageBuddy.
821 * Setting, clearing, and testing PageBuddy is serialized by zone->lock.
822 *
823 * For recording page's order, we use page_private(page).
824 */
825 static inline bool page_is_buddy(struct page *page, struct page *buddy,
826 unsigned int order)
827 {
828 if (!page_is_guard(buddy) && !PageBuddy(buddy))
829 return false;
830
831 if (buddy_order(buddy) != order)
832 return false;
833
834 /*
835 * zone check is done late to avoid uselessly calculating
836 * zone/node ids for pages that could never merge.
837 */
838 if (page_zone_id(page) != page_zone_id(buddy))
839 return false;
840
841 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
842
843 return true;
844 }
845
846 #ifdef CONFIG_COMPACTION
847 static inline struct capture_control *task_capc(struct zone *zone)
848 {
849 struct capture_control *capc = current->capture_control;
850
851 return unlikely(capc) &&
852 !(current->flags & PF_KTHREAD) &&
853 !capc->page &&
854 capc->cc->zone == zone ? capc : NULL;
855 }
856
857 static inline bool
858 compaction_capture(struct capture_control *capc, struct page *page,
859 int order, int migratetype)
860 {
861 if (!capc || order != capc->cc->order)
862 return false;
863
864 /* Do not accidentally pollute CMA or isolated regions*/
865 if (is_migrate_cma(migratetype) ||
866 is_migrate_isolate(migratetype))
867 return false;
868
869 /*
870 * Do not let lower order allocations polluate a movable pageblock.
871 * This might let an unmovable request use a reclaimable pageblock
872 * and vice-versa but no more than normal fallback logic which can
873 * have trouble finding a high-order free page.
874 */
875 if (order < pageblock_order && migratetype == MIGRATE_MOVABLE)
876 return false;
877
878 capc->page = page;
879 return true;
880 }
881
882 #else
883 static inline struct capture_control *task_capc(struct zone *zone)
884 {
885 return NULL;
886 }
887
888 static inline bool
889 compaction_capture(struct capture_control *capc, struct page *page,
890 int order, int migratetype)
891 {
892 return false;
893 }
894 #endif /* CONFIG_COMPACTION */
895
896 /* Used for pages not on another list */
897 static inline void add_to_free_list(struct page *page, struct zone *zone,
898 unsigned int order, int migratetype)
899 {
900 struct free_area *area = &zone->free_area[order];
901
902 list_add(&page->lru, &area->free_list[migratetype]);
903 area->nr_free++;
904 }
905
906 /* Used for pages not on another list */
907 static inline void add_to_free_list_tail(struct page *page, struct zone *zone,
908 unsigned int order, int migratetype)
909 {
910 struct free_area *area = &zone->free_area[order];
911
912 list_add_tail(&page->lru, &area->free_list[migratetype]);
913 area->nr_free++;
914 }
915
916 /*
917 * Used for pages which are on another list. Move the pages to the tail
918 * of the list - so the moved pages won't immediately be considered for
919 * allocation again (e.g., optimization for memory onlining).
920 */
921 static inline void move_to_free_list(struct page *page, struct zone *zone,
922 unsigned int order, int migratetype)
923 {
924 struct free_area *area = &zone->free_area[order];
925
926 list_move_tail(&page->lru, &area->free_list[migratetype]);
927 }
928
929 static inline void del_page_from_free_list(struct page *page, struct zone *zone,
930 unsigned int order)
931 {
932 /* clear reported state and update reported page count */
933 if (page_reported(page))
934 __ClearPageReported(page);
935
936 list_del(&page->lru);
937 __ClearPageBuddy(page);
938 set_page_private(page, 0);
939 zone->free_area[order].nr_free--;
940 }
941
942 /*
943 * If this is not the largest possible page, check if the buddy
944 * of the next-highest order is free. If it is, it's possible
945 * that pages are being freed that will coalesce soon. In case,
946 * that is happening, add the free page to the tail of the list
947 * so it's less likely to be used soon and more likely to be merged
948 * as a higher order page
949 */
950 static inline bool
951 buddy_merge_likely(unsigned long pfn, unsigned long buddy_pfn,
952 struct page *page, unsigned int order)
953 {
954 struct page *higher_page, *higher_buddy;
955 unsigned long combined_pfn;
956
957 if (order >= MAX_ORDER - 2)
958 return false;
959
960 if (!pfn_valid_within(buddy_pfn))
961 return false;
962
963 combined_pfn = buddy_pfn & pfn;
964 higher_page = page + (combined_pfn - pfn);
965 buddy_pfn = __find_buddy_pfn(combined_pfn, order + 1);
966 higher_buddy = higher_page + (buddy_pfn - combined_pfn);
967
968 return pfn_valid_within(buddy_pfn) &&
969 page_is_buddy(higher_page, higher_buddy, order + 1);
970 }
971
972 /*
973 * Freeing function for a buddy system allocator.
974 *
975 * The concept of a buddy system is to maintain direct-mapped table
976 * (containing bit values) for memory blocks of various "orders".
977 * The bottom level table contains the map for the smallest allocatable
978 * units of memory (here, pages), and each level above it describes
979 * pairs of units from the levels below, hence, "buddies".
980 * At a high level, all that happens here is marking the table entry
981 * at the bottom level available, and propagating the changes upward
982 * as necessary, plus some accounting needed to play nicely with other
983 * parts of the VM system.
984 * At each level, we keep a list of pages, which are heads of continuous
985 * free pages of length of (1 << order) and marked with PageBuddy.
986 * Page's order is recorded in page_private(page) field.
987 * So when we are allocating or freeing one, we can derive the state of the
988 * other. That is, if we allocate a small block, and both were
989 * free, the remainder of the region must be split into blocks.
990 * If a block is freed, and its buddy is also free, then this
991 * triggers coalescing into a block of larger size.
992 *
993 * -- nyc
994 */
995
996 static inline void __free_one_page(struct page *page,
997 unsigned long pfn,
998 struct zone *zone, unsigned int order,
999 int migratetype, fpi_t fpi_flags)
1000 {
1001 struct capture_control *capc = task_capc(zone);
1002 unsigned long buddy_pfn;
1003 unsigned long combined_pfn;
1004 unsigned int max_order;
1005 struct page *buddy;
1006 bool to_tail;
1007
1008 max_order = min_t(unsigned int, MAX_ORDER - 1, pageblock_order);
1009
1010 VM_BUG_ON(!zone_is_initialized(zone));
1011 VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
1012
1013 VM_BUG_ON(migratetype == -1);
1014 if (likely(!is_migrate_isolate(migratetype)))
1015 __mod_zone_freepage_state(zone, 1 << order, migratetype);
1016
1017 VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page);
1018 VM_BUG_ON_PAGE(bad_range(zone, page), page);
1019
1020 continue_merging:
1021 while (order < max_order) {
1022 if (compaction_capture(capc, page, order, migratetype)) {
1023 __mod_zone_freepage_state(zone, -(1 << order),
1024 migratetype);
1025 return;
1026 }
1027 buddy_pfn = __find_buddy_pfn(pfn, order);
1028 buddy = page + (buddy_pfn - pfn);
1029
1030 if (!pfn_valid_within(buddy_pfn))
1031 goto done_merging;
1032 if (!page_is_buddy(page, buddy, order))
1033 goto done_merging;
1034 /*
1035 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
1036 * merge with it and move up one order.
1037 */
1038 if (page_is_guard(buddy))
1039 clear_page_guard(zone, buddy, order, migratetype);
1040 else
1041 del_page_from_free_list(buddy, zone, order);
1042 combined_pfn = buddy_pfn & pfn;
1043 page = page + (combined_pfn - pfn);
1044 pfn = combined_pfn;
1045 order++;
1046 }
1047 if (order < MAX_ORDER - 1) {
1048 /* If we are here, it means order is >= pageblock_order.
1049 * We want to prevent merge between freepages on isolate
1050 * pageblock and normal pageblock. Without this, pageblock
1051 * isolation could cause incorrect freepage or CMA accounting.
1052 *
1053 * We don't want to hit this code for the more frequent
1054 * low-order merging.
1055 */
1056 if (unlikely(has_isolate_pageblock(zone))) {
1057 int buddy_mt;
1058
1059 buddy_pfn = __find_buddy_pfn(pfn, order);
1060 buddy = page + (buddy_pfn - pfn);
1061 buddy_mt = get_pageblock_migratetype(buddy);
1062
1063 if (migratetype != buddy_mt
1064 && (is_migrate_isolate(migratetype) ||
1065 is_migrate_isolate(buddy_mt)))
1066 goto done_merging;
1067 }
1068 max_order = order + 1;
1069 goto continue_merging;
1070 }
1071
1072 done_merging:
1073 set_buddy_order(page, order);
1074
1075 if (fpi_flags & FPI_TO_TAIL)
1076 to_tail = true;
1077 else if (is_shuffle_order(order))
1078 to_tail = shuffle_pick_tail();
1079 else
1080 to_tail = buddy_merge_likely(pfn, buddy_pfn, page, order);
1081
1082 if (to_tail)
1083 add_to_free_list_tail(page, zone, order, migratetype);
1084 else
1085 add_to_free_list(page, zone, order, migratetype);
1086
1087 /* Notify page reporting subsystem of freed page */
1088 if (!(fpi_flags & FPI_SKIP_REPORT_NOTIFY))
1089 page_reporting_notify_free(order);
1090 }
1091
1092 /*
1093 * A bad page could be due to a number of fields. Instead of multiple branches,
1094 * try and check multiple fields with one check. The caller must do a detailed
1095 * check if necessary.
1096 */
1097 static inline bool page_expected_state(struct page *page,
1098 unsigned long check_flags)
1099 {
1100 if (unlikely(atomic_read(&page->_mapcount) != -1))
1101 return false;
1102
1103 if (unlikely((unsigned long)page->mapping |
1104 page_ref_count(page) |
1105 #ifdef CONFIG_MEMCG
1106 (unsigned long)page_memcg(page) |
1107 #endif
1108 (page->flags & check_flags)))
1109 return false;
1110
1111 return true;
1112 }
1113
1114 static const char *page_bad_reason(struct page *page, unsigned long flags)
1115 {
1116 const char *bad_reason = NULL;
1117
1118 if (unlikely(atomic_read(&page->_mapcount) != -1))
1119 bad_reason = "nonzero mapcount";
1120 if (unlikely(page->mapping != NULL))
1121 bad_reason = "non-NULL mapping";
1122 if (unlikely(page_ref_count(page) != 0))
1123 bad_reason = "nonzero _refcount";
1124 if (unlikely(page->flags & flags)) {
1125 if (flags == PAGE_FLAGS_CHECK_AT_PREP)
1126 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag(s) set";
1127 else
1128 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
1129 }
1130 #ifdef CONFIG_MEMCG
1131 if (unlikely(page_memcg(page)))
1132 bad_reason = "page still charged to cgroup";
1133 #endif
1134 return bad_reason;
1135 }
1136
1137 static void check_free_page_bad(struct page *page)
1138 {
1139 bad_page(page,
1140 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_FREE));
1141 }
1142
1143 static inline int check_free_page(struct page *page)
1144 {
1145 if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
1146 return 0;
1147
1148 /* Something has gone sideways, find it */
1149 check_free_page_bad(page);
1150 return 1;
1151 }
1152
1153 static int free_tail_pages_check(struct page *head_page, struct page *page)
1154 {
1155 int ret = 1;
1156
1157 /*
1158 * We rely page->lru.next never has bit 0 set, unless the page
1159 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
1160 */
1161 BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
1162
1163 if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
1164 ret = 0;
1165 goto out;
1166 }
1167 switch (page - head_page) {
1168 case 1:
1169 /* the first tail page: ->mapping may be compound_mapcount() */
1170 if (unlikely(compound_mapcount(page))) {
1171 bad_page(page, "nonzero compound_mapcount");
1172 goto out;
1173 }
1174 break;
1175 case 2:
1176 /*
1177 * the second tail page: ->mapping is
1178 * deferred_list.next -- ignore value.
1179 */
1180 break;
1181 default:
1182 if (page->mapping != TAIL_MAPPING) {
1183 bad_page(page, "corrupted mapping in tail page");
1184 goto out;
1185 }
1186 break;
1187 }
1188 if (unlikely(!PageTail(page))) {
1189 bad_page(page, "PageTail not set");
1190 goto out;
1191 }
1192 if (unlikely(compound_head(page) != head_page)) {
1193 bad_page(page, "compound_head not consistent");
1194 goto out;
1195 }
1196 ret = 0;
1197 out:
1198 page->mapping = NULL;
1199 clear_compound_head(page);
1200 return ret;
1201 }
1202
1203 static void kernel_init_free_pages(struct page *page, int numpages)
1204 {
1205 int i;
1206
1207 /* s390's use of memset() could override KASAN redzones. */
1208 kasan_disable_current();
1209 for (i = 0; i < numpages; i++) {
1210 u8 tag = page_kasan_tag(page + i);
1211 page_kasan_tag_reset(page + i);
1212 clear_highpage(page + i);
1213 page_kasan_tag_set(page + i, tag);
1214 }
1215 kasan_enable_current();
1216 }
1217
1218 static __always_inline bool free_pages_prepare(struct page *page,
1219 unsigned int order, bool check_free)
1220 {
1221 int bad = 0;
1222
1223 VM_BUG_ON_PAGE(PageTail(page), page);
1224
1225 trace_mm_page_free(page, order);
1226
1227 if (unlikely(PageHWPoison(page)) && !order) {
1228 /*
1229 * Do not let hwpoison pages hit pcplists/buddy
1230 * Untie memcg state and reset page's owner
1231 */
1232 if (memcg_kmem_enabled() && PageMemcgKmem(page))
1233 __memcg_kmem_uncharge_page(page, order);
1234 reset_page_owner(page, order);
1235 return false;
1236 }
1237
1238 /*
1239 * Check tail pages before head page information is cleared to
1240 * avoid checking PageCompound for order-0 pages.
1241 */
1242 if (unlikely(order)) {
1243 bool compound = PageCompound(page);
1244 int i;
1245
1246 VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
1247
1248 if (compound)
1249 ClearPageDoubleMap(page);
1250 for (i = 1; i < (1 << order); i++) {
1251 if (compound)
1252 bad += free_tail_pages_check(page, page + i);
1253 if (unlikely(check_free_page(page + i))) {
1254 bad++;
1255 continue;
1256 }
1257 (page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1258 }
1259 }
1260 if (PageMappingFlags(page))
1261 page->mapping = NULL;
1262 if (memcg_kmem_enabled() && PageMemcgKmem(page))
1263 __memcg_kmem_uncharge_page(page, order);
1264 if (check_free)
1265 bad += check_free_page(page);
1266 if (bad)
1267 return false;
1268
1269 page_cpupid_reset_last(page);
1270 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1271 reset_page_owner(page, order);
1272
1273 if (!PageHighMem(page)) {
1274 debug_check_no_locks_freed(page_address(page),
1275 PAGE_SIZE << order);
1276 debug_check_no_obj_freed(page_address(page),
1277 PAGE_SIZE << order);
1278 }
1279 if (want_init_on_free())
1280 kernel_init_free_pages(page, 1 << order);
1281
1282 kernel_poison_pages(page, 1 << order);
1283
1284 /*
1285 * With hardware tag-based KASAN, memory tags must be set before the
1286 * page becomes unavailable via debug_pagealloc or arch_free_page.
1287 */
1288 kasan_free_nondeferred_pages(page, order);
1289
1290 /*
1291 * arch_free_page() can make the page's contents inaccessible. s390
1292 * does this. So nothing which can access the page's contents should
1293 * happen after this.
1294 */
1295 arch_free_page(page, order);
1296
1297 debug_pagealloc_unmap_pages(page, 1 << order);
1298
1299 return true;
1300 }
1301
1302 #ifdef CONFIG_DEBUG_VM
1303 /*
1304 * With DEBUG_VM enabled, order-0 pages are checked immediately when being freed
1305 * to pcp lists. With debug_pagealloc also enabled, they are also rechecked when
1306 * moved from pcp lists to free lists.
1307 */
1308 static bool free_pcp_prepare(struct page *page)
1309 {
1310 return free_pages_prepare(page, 0, true);
1311 }
1312
1313 static bool bulkfree_pcp_prepare(struct page *page)
1314 {
1315 if (debug_pagealloc_enabled_static())
1316 return check_free_page(page);
1317 else
1318 return false;
1319 }
1320 #else
1321 /*
1322 * With DEBUG_VM disabled, order-0 pages being freed are checked only when
1323 * moving from pcp lists to free list in order to reduce overhead. With
1324 * debug_pagealloc enabled, they are checked also immediately when being freed
1325 * to the pcp lists.
1326 */
1327 static bool free_pcp_prepare(struct page *page)
1328 {
1329 if (debug_pagealloc_enabled_static())
1330 return free_pages_prepare(page, 0, true);
1331 else
1332 return free_pages_prepare(page, 0, false);
1333 }
1334
1335 static bool bulkfree_pcp_prepare(struct page *page)
1336 {
1337 return check_free_page(page);
1338 }
1339 #endif /* CONFIG_DEBUG_VM */
1340
1341 static inline void prefetch_buddy(struct page *page)
1342 {
1343 unsigned long pfn = page_to_pfn(page);
1344 unsigned long buddy_pfn = __find_buddy_pfn(pfn, 0);
1345 struct page *buddy = page + (buddy_pfn - pfn);
1346
1347 prefetch(buddy);
1348 }
1349
1350 /*
1351 * Frees a number of pages from the PCP lists
1352 * Assumes all pages on list are in same zone, and of same order.
1353 * count is the number of pages to free.
1354 *
1355 * If the zone was previously in an "all pages pinned" state then look to
1356 * see if this freeing clears that state.
1357 *
1358 * And clear the zone's pages_scanned counter, to hold off the "all pages are
1359 * pinned" detection logic.
1360 */
1361 static void free_pcppages_bulk(struct zone *zone, int count,
1362 struct per_cpu_pages *pcp)
1363 {
1364 int migratetype = 0;
1365 int batch_free = 0;
1366 int prefetch_nr = READ_ONCE(pcp->batch);
1367 bool isolated_pageblocks;
1368 struct page *page, *tmp;
1369 LIST_HEAD(head);
1370
1371 /*
1372 * Ensure proper count is passed which otherwise would stuck in the
1373 * below while (list_empty(list)) loop.
1374 */
1375 count = min(pcp->count, count);
1376 while (count) {
1377 struct list_head *list;
1378
1379 /*
1380 * Remove pages from lists in a round-robin fashion. A
1381 * batch_free count is maintained that is incremented when an
1382 * empty list is encountered. This is so more pages are freed
1383 * off fuller lists instead of spinning excessively around empty
1384 * lists
1385 */
1386 do {
1387 batch_free++;
1388 if (++migratetype == MIGRATE_PCPTYPES)
1389 migratetype = 0;
1390 list = &pcp->lists[migratetype];
1391 } while (list_empty(list));
1392
1393 /* This is the only non-empty list. Free them all. */
1394 if (batch_free == MIGRATE_PCPTYPES)
1395 batch_free = count;
1396
1397 do {
1398 page = list_last_entry(list, struct page, lru);
1399 /* must delete to avoid corrupting pcp list */
1400 list_del(&page->lru);
1401 pcp->count--;
1402
1403 if (bulkfree_pcp_prepare(page))
1404 continue;
1405
1406 list_add_tail(&page->lru, &head);
1407
1408 /*
1409 * We are going to put the page back to the global
1410 * pool, prefetch its buddy to speed up later access
1411 * under zone->lock. It is believed the overhead of
1412 * an additional test and calculating buddy_pfn here
1413 * can be offset by reduced memory latency later. To
1414 * avoid excessive prefetching due to large count, only
1415 * prefetch buddy for the first pcp->batch nr of pages.
1416 */
1417 if (prefetch_nr) {
1418 prefetch_buddy(page);
1419 prefetch_nr--;
1420 }
1421 } while (--count && --batch_free && !list_empty(list));
1422 }
1423
1424 spin_lock(&zone->lock);
1425 isolated_pageblocks = has_isolate_pageblock(zone);
1426
1427 /*
1428 * Use safe version since after __free_one_page(),
1429 * page->lru.next will not point to original list.
1430 */
1431 list_for_each_entry_safe(page, tmp, &head, lru) {
1432 int mt = get_pcppage_migratetype(page);
1433 /* MIGRATE_ISOLATE page should not go to pcplists */
1434 VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
1435 /* Pageblock could have been isolated meanwhile */
1436 if (unlikely(isolated_pageblocks))
1437 mt = get_pageblock_migratetype(page);
1438
1439 __free_one_page(page, page_to_pfn(page), zone, 0, mt, FPI_NONE);
1440 trace_mm_page_pcpu_drain(page, 0, mt);
1441 }
1442 spin_unlock(&zone->lock);
1443 }
1444
1445 static void free_one_page(struct zone *zone,
1446 struct page *page, unsigned long pfn,
1447 unsigned int order,
1448 int migratetype, fpi_t fpi_flags)
1449 {
1450 spin_lock(&zone->lock);
1451 if (unlikely(has_isolate_pageblock(zone) ||
1452 is_migrate_isolate(migratetype))) {
1453 migratetype = get_pfnblock_migratetype(page, pfn);
1454 }
1455 __free_one_page(page, pfn, zone, order, migratetype, fpi_flags);
1456 spin_unlock(&zone->lock);
1457 }
1458
1459 static void __meminit __init_single_page(struct page *page, unsigned long pfn,
1460 unsigned long zone, int nid)
1461 {
1462 mm_zero_struct_page(page);
1463 set_page_links(page, zone, nid, pfn);
1464 init_page_count(page);
1465 page_mapcount_reset(page);
1466 page_cpupid_reset_last(page);
1467 page_kasan_tag_reset(page);
1468
1469 INIT_LIST_HEAD(&page->lru);
1470 #ifdef WANT_PAGE_VIRTUAL
1471 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
1472 if (!is_highmem_idx(zone))
1473 set_page_address(page, __va(pfn << PAGE_SHIFT));
1474 #endif
1475 }
1476
1477 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1478 static void __meminit init_reserved_page(unsigned long pfn)
1479 {
1480 pg_data_t *pgdat;
1481 int nid, zid;
1482
1483 if (!early_page_uninitialised(pfn))
1484 return;
1485
1486 nid = early_pfn_to_nid(pfn);
1487 pgdat = NODE_DATA(nid);
1488
1489 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1490 struct zone *zone = &pgdat->node_zones[zid];
1491
1492 if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone))
1493 break;
1494 }
1495 __init_single_page(pfn_to_page(pfn), pfn, zid, nid);
1496 }
1497 #else
1498 static inline void init_reserved_page(unsigned long pfn)
1499 {
1500 }
1501 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1502
1503 /*
1504 * Initialised pages do not have PageReserved set. This function is
1505 * called for each range allocated by the bootmem allocator and
1506 * marks the pages PageReserved. The remaining valid pages are later
1507 * sent to the buddy page allocator.
1508 */
1509 void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end)
1510 {
1511 unsigned long start_pfn = PFN_DOWN(start);
1512 unsigned long end_pfn = PFN_UP(end);
1513
1514 for (; start_pfn < end_pfn; start_pfn++) {
1515 if (pfn_valid(start_pfn)) {
1516 struct page *page = pfn_to_page(start_pfn);
1517
1518 init_reserved_page(start_pfn);
1519
1520 /* Avoid false-positive PageTail() */
1521 INIT_LIST_HEAD(&page->lru);
1522
1523 /*
1524 * no need for atomic set_bit because the struct
1525 * page is not visible yet so nobody should
1526 * access it yet.
1527 */
1528 __SetPageReserved(page);
1529 }
1530 }
1531 }
1532
1533 static void __free_pages_ok(struct page *page, unsigned int order,
1534 fpi_t fpi_flags)
1535 {
1536 unsigned long flags;
1537 int migratetype;
1538 unsigned long pfn = page_to_pfn(page);
1539
1540 if (!free_pages_prepare(page, order, true))
1541 return;
1542
1543 migratetype = get_pfnblock_migratetype(page, pfn);
1544 local_irq_save(flags);
1545 __count_vm_events(PGFREE, 1 << order);
1546 free_one_page(page_zone(page), page, pfn, order, migratetype,
1547 fpi_flags);
1548 local_irq_restore(flags);
1549 }
1550
1551 void __free_pages_core(struct page *page, unsigned int order)
1552 {
1553 unsigned int nr_pages = 1 << order;
1554 struct page *p = page;
1555 unsigned int loop;
1556
1557 /*
1558 * When initializing the memmap, __init_single_page() sets the refcount
1559 * of all pages to 1 ("allocated"/"not free"). We have to set the
1560 * refcount of all involved pages to 0.
1561 */
1562 prefetchw(p);
1563 for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
1564 prefetchw(p + 1);
1565 __ClearPageReserved(p);
1566 set_page_count(p, 0);
1567 }
1568 __ClearPageReserved(p);
1569 set_page_count(p, 0);
1570
1571 atomic_long_add(nr_pages, &page_zone(page)->managed_pages);
1572
1573 /*
1574 * Bypass PCP and place fresh pages right to the tail, primarily
1575 * relevant for memory onlining.
1576 */
1577 __free_pages_ok(page, order, FPI_TO_TAIL);
1578 }
1579
1580 #ifdef CONFIG_NEED_MULTIPLE_NODES
1581
1582 /*
1583 * During memory init memblocks map pfns to nids. The search is expensive and
1584 * this caches recent lookups. The implementation of __early_pfn_to_nid
1585 * treats start/end as pfns.
1586 */
1587 struct mminit_pfnnid_cache {
1588 unsigned long last_start;
1589 unsigned long last_end;
1590 int last_nid;
1591 };
1592
1593 static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
1594
1595 /*
1596 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
1597 */
1598 static int __meminit __early_pfn_to_nid(unsigned long pfn,
1599 struct mminit_pfnnid_cache *state)
1600 {
1601 unsigned long start_pfn, end_pfn;
1602 int nid;
1603
1604 if (state->last_start <= pfn && pfn < state->last_end)
1605 return state->last_nid;
1606
1607 nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
1608 if (nid != NUMA_NO_NODE) {
1609 state->last_start = start_pfn;
1610 state->last_end = end_pfn;
1611 state->last_nid = nid;
1612 }
1613
1614 return nid;
1615 }
1616
1617 int __meminit early_pfn_to_nid(unsigned long pfn)
1618 {
1619 static DEFINE_SPINLOCK(early_pfn_lock);
1620 int nid;
1621
1622 spin_lock(&early_pfn_lock);
1623 nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
1624 if (nid < 0)
1625 nid = first_online_node;
1626 spin_unlock(&early_pfn_lock);
1627
1628 return nid;
1629 }
1630 #endif /* CONFIG_NEED_MULTIPLE_NODES */
1631
1632 void __init memblock_free_pages(struct page *page, unsigned long pfn,
1633 unsigned int order)
1634 {
1635 if (early_page_uninitialised(pfn))
1636 return;
1637 __free_pages_core(page, order);
1638 }
1639
1640 /*
1641 * Check that the whole (or subset of) a pageblock given by the interval of
1642 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1643 * with the migration of free compaction scanner. The scanners then need to
1644 * use only pfn_valid_within() check for arches that allow holes within
1645 * pageblocks.
1646 *
1647 * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1648 *
1649 * It's possible on some configurations to have a setup like node0 node1 node0
1650 * i.e. it's possible that all pages within a zones range of pages do not
1651 * belong to a single zone. We assume that a border between node0 and node1
1652 * can occur within a single pageblock, but not a node0 node1 node0
1653 * interleaving within a single pageblock. It is therefore sufficient to check
1654 * the first and last page of a pageblock and avoid checking each individual
1655 * page in a pageblock.
1656 */
1657 struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
1658 unsigned long end_pfn, struct zone *zone)
1659 {
1660 struct page *start_page;
1661 struct page *end_page;
1662
1663 /* end_pfn is one past the range we are checking */
1664 end_pfn--;
1665
1666 if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
1667 return NULL;
1668
1669 start_page = pfn_to_online_page(start_pfn);
1670 if (!start_page)
1671 return NULL;
1672
1673 if (page_zone(start_page) != zone)
1674 return NULL;
1675
1676 end_page = pfn_to_page(end_pfn);
1677
1678 /* This gives a shorter code than deriving page_zone(end_page) */
1679 if (page_zone_id(start_page) != page_zone_id(end_page))
1680 return NULL;
1681
1682 return start_page;
1683 }
1684
1685 void set_zone_contiguous(struct zone *zone)
1686 {
1687 unsigned long block_start_pfn = zone->zone_start_pfn;
1688 unsigned long block_end_pfn;
1689
1690 block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages);
1691 for (; block_start_pfn < zone_end_pfn(zone);
1692 block_start_pfn = block_end_pfn,
1693 block_end_pfn += pageblock_nr_pages) {
1694
1695 block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));
1696
1697 if (!__pageblock_pfn_to_page(block_start_pfn,
1698 block_end_pfn, zone))
1699 return;
1700 cond_resched();
1701 }
1702
1703 /* We confirm that there is no hole */
1704 zone->contiguous = true;
1705 }
1706
1707 void clear_zone_contiguous(struct zone *zone)
1708 {
1709 zone->contiguous = false;
1710 }
1711
1712 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1713 static void __init deferred_free_range(unsigned long pfn,
1714 unsigned long nr_pages)
1715 {
1716 struct page *page;
1717 unsigned long i;
1718
1719 if (!nr_pages)
1720 return;
1721
1722 page = pfn_to_page(pfn);
1723
1724 /* Free a large naturally-aligned chunk if possible */
1725 if (nr_pages == pageblock_nr_pages &&
1726 (pfn & (pageblock_nr_pages - 1)) == 0) {
1727 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1728 __free_pages_core(page, pageblock_order);
1729 return;
1730 }
1731
1732 for (i = 0; i < nr_pages; i++, page++, pfn++) {
1733 if ((pfn & (pageblock_nr_pages - 1)) == 0)
1734 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1735 __free_pages_core(page, 0);
1736 }
1737 }
1738
1739 /* Completion tracking for deferred_init_memmap() threads */
1740 static atomic_t pgdat_init_n_undone __initdata;
1741 static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);
1742
1743 static inline void __init pgdat_init_report_one_done(void)
1744 {
1745 if (atomic_dec_and_test(&pgdat_init_n_undone))
1746 complete(&pgdat_init_all_done_comp);
1747 }
1748
1749 /*
1750 * Returns true if page needs to be initialized or freed to buddy allocator.
1751 *
1752 * First we check if pfn is valid on architectures where it is possible to have
1753 * holes within pageblock_nr_pages. On systems where it is not possible, this
1754 * function is optimized out.
1755 *
1756 * Then, we check if a current large page is valid by only checking the validity
1757 * of the head pfn.
1758 */
1759 static inline bool __init deferred_pfn_valid(unsigned long pfn)
1760 {
1761 if (!pfn_valid_within(pfn))
1762 return false;
1763 if (!(pfn & (pageblock_nr_pages - 1)) && !pfn_valid(pfn))
1764 return false;
1765 return true;
1766 }
1767
1768 /*
1769 * Free pages to buddy allocator. Try to free aligned pages in
1770 * pageblock_nr_pages sizes.
1771 */
1772 static void __init deferred_free_pages(unsigned long pfn,
1773 unsigned long end_pfn)
1774 {
1775 unsigned long nr_pgmask = pageblock_nr_pages - 1;
1776 unsigned long nr_free = 0;
1777
1778 for (; pfn < end_pfn; pfn++) {
1779 if (!deferred_pfn_valid(pfn)) {
1780 deferred_free_range(pfn - nr_free, nr_free);
1781 nr_free = 0;
1782 } else if (!(pfn & nr_pgmask)) {
1783 deferred_free_range(pfn - nr_free, nr_free);
1784 nr_free = 1;
1785 } else {
1786 nr_free++;
1787 }
1788 }
1789 /* Free the last block of pages to allocator */
1790 deferred_free_range(pfn - nr_free, nr_free);
1791 }
1792
1793 /*
1794 * Initialize struct pages. We minimize pfn page lookups and scheduler checks
1795 * by performing it only once every pageblock_nr_pages.
1796 * Return number of pages initialized.
1797 */
1798 static unsigned long __init deferred_init_pages(struct zone *zone,
1799 unsigned long pfn,
1800 unsigned long end_pfn)
1801 {
1802 unsigned long nr_pgmask = pageblock_nr_pages - 1;
1803 int nid = zone_to_nid(zone);
1804 unsigned long nr_pages = 0;
1805 int zid = zone_idx(zone);
1806 struct page *page = NULL;
1807
1808 for (; pfn < end_pfn; pfn++) {
1809 if (!deferred_pfn_valid(pfn)) {
1810 page = NULL;
1811 continue;
1812 } else if (!page || !(pfn & nr_pgmask)) {
1813 page = pfn_to_page(pfn);
1814 } else {
1815 page++;
1816 }
1817 __init_single_page(page, pfn, zid, nid);
1818 nr_pages++;
1819 }
1820 return (nr_pages);
1821 }
1822
1823 /*
1824 * This function is meant to pre-load the iterator for the zone init.
1825 * Specifically it walks through the ranges until we are caught up to the
1826 * first_init_pfn value and exits there. If we never encounter the value we
1827 * return false indicating there are no valid ranges left.
1828 */
1829 static bool __init
1830 deferred_init_mem_pfn_range_in_zone(u64 *i, struct zone *zone,
1831 unsigned long *spfn, unsigned long *epfn,
1832 unsigned long first_init_pfn)
1833 {
1834 u64 j;
1835
1836 /*
1837 * Start out by walking through the ranges in this zone that have
1838 * already been initialized. We don't need to do anything with them
1839 * so we just need to flush them out of the system.
1840 */
1841 for_each_free_mem_pfn_range_in_zone(j, zone, spfn, epfn) {
1842 if (*epfn <= first_init_pfn)
1843 continue;
1844 if (*spfn < first_init_pfn)
1845 *spfn = first_init_pfn;
1846 *i = j;
1847 return true;
1848 }
1849
1850 return false;
1851 }
1852
1853 /*
1854 * Initialize and free pages. We do it in two loops: first we initialize
1855 * struct page, then free to buddy allocator, because while we are
1856 * freeing pages we can access pages that are ahead (computing buddy
1857 * page in __free_one_page()).
1858 *
1859 * In order to try and keep some memory in the cache we have the loop
1860 * broken along max page order boundaries. This way we will not cause
1861 * any issues with the buddy page computation.
1862 */
1863 static unsigned long __init
1864 deferred_init_maxorder(u64 *i, struct zone *zone, unsigned long *start_pfn,
1865 unsigned long *end_pfn)
1866 {
1867 unsigned long mo_pfn = ALIGN(*start_pfn + 1, MAX_ORDER_NR_PAGES);
1868 unsigned long spfn = *start_pfn, epfn = *end_pfn;
1869 unsigned long nr_pages = 0;
1870 u64 j = *i;
1871
1872 /* First we loop through and initialize the page values */
1873 for_each_free_mem_pfn_range_in_zone_from(j, zone, start_pfn, end_pfn) {
1874 unsigned long t;
1875
1876 if (mo_pfn <= *start_pfn)
1877 break;
1878
1879 t = min(mo_pfn, *end_pfn);
1880 nr_pages += deferred_init_pages(zone, *start_pfn, t);
1881
1882 if (mo_pfn < *end_pfn) {
1883 *start_pfn = mo_pfn;
1884 break;
1885 }
1886 }
1887
1888 /* Reset values and now loop through freeing pages as needed */
1889 swap(j, *i);
1890
1891 for_each_free_mem_pfn_range_in_zone_from(j, zone, &spfn, &epfn) {
1892 unsigned long t;
1893
1894 if (mo_pfn <= spfn)
1895 break;
1896
1897 t = min(mo_pfn, epfn);
1898 deferred_free_pages(spfn, t);
1899
1900 if (mo_pfn <= epfn)
1901 break;
1902 }
1903
1904 return nr_pages;
1905 }
1906
1907 static void __init
1908 deferred_init_memmap_chunk(unsigned long start_pfn, unsigned long end_pfn,
1909 void *arg)
1910 {
1911 unsigned long spfn, epfn;
1912 struct zone *zone = arg;
1913 u64 i;
1914
1915 deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn, start_pfn);
1916
1917 /*
1918 * Initialize and free pages in MAX_ORDER sized increments so that we
1919 * can avoid introducing any issues with the buddy allocator.
1920 */
1921 while (spfn < end_pfn) {
1922 deferred_init_maxorder(&i, zone, &spfn, &epfn);
1923 cond_resched();
1924 }
1925 }
1926
1927 /* An arch may override for more concurrency. */
1928 __weak int __init
1929 deferred_page_init_max_threads(const struct cpumask *node_cpumask)
1930 {
1931 return 1;
1932 }
1933
1934 /* Initialise remaining memory on a node */
1935 static int __init deferred_init_memmap(void *data)
1936 {
1937 pg_data_t *pgdat = data;
1938 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
1939 unsigned long spfn = 0, epfn = 0;
1940 unsigned long first_init_pfn, flags;
1941 unsigned long start = jiffies;
1942 struct zone *zone;
1943 int zid, max_threads;
1944 u64 i;
1945
1946 /* Bind memory initialisation thread to a local node if possible */
1947 if (!cpumask_empty(cpumask))
1948 set_cpus_allowed_ptr(current, cpumask);
1949
1950 pgdat_resize_lock(pgdat, &flags);
1951 first_init_pfn = pgdat->first_deferred_pfn;
1952 if (first_init_pfn == ULONG_MAX) {
1953 pgdat_resize_unlock(pgdat, &flags);
1954 pgdat_init_report_one_done();
1955 return 0;
1956 }
1957
1958 /* Sanity check boundaries */
1959 BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
1960 BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
1961 pgdat->first_deferred_pfn = ULONG_MAX;
1962
1963 /*
1964 * Once we unlock here, the zone cannot be grown anymore, thus if an
1965 * interrupt thread must allocate this early in boot, zone must be
1966 * pre-grown prior to start of deferred page initialization.
1967 */
1968 pgdat_resize_unlock(pgdat, &flags);
1969
1970 /* Only the highest zone is deferred so find it */
1971 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1972 zone = pgdat->node_zones + zid;
1973 if (first_init_pfn < zone_end_pfn(zone))
1974 break;
1975 }
1976
1977 /* If the zone is empty somebody else may have cleared out the zone */
1978 if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
1979 first_init_pfn))
1980 goto zone_empty;
1981
1982 max_threads = deferred_page_init_max_threads(cpumask);
1983
1984 while (spfn < epfn) {
1985 unsigned long epfn_align = ALIGN(epfn, PAGES_PER_SECTION);
1986 struct padata_mt_job job = {
1987 .thread_fn = deferred_init_memmap_chunk,
1988 .fn_arg = zone,
1989 .start = spfn,
1990 .size = epfn_align - spfn,
1991 .align = PAGES_PER_SECTION,
1992 .min_chunk = PAGES_PER_SECTION,
1993 .max_threads = max_threads,
1994 };
1995
1996 padata_do_multithreaded(&job);
1997 deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
1998 epfn_align);
1999 }
2000 zone_empty:
2001 /* Sanity check that the next zone really is unpopulated */
2002 WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));
2003
2004 pr_info("node %d deferred pages initialised in %ums\n",
2005 pgdat->node_id, jiffies_to_msecs(jiffies - start));
2006
2007 pgdat_init_report_one_done();
2008 return 0;
2009 }
2010
2011 /*
2012 * If this zone has deferred pages, try to grow it by initializing enough
2013 * deferred pages to satisfy the allocation specified by order, rounded up to
2014 * the nearest PAGES_PER_SECTION boundary. So we're adding memory in increments
2015 * of SECTION_SIZE bytes by initializing struct pages in increments of
2016 * PAGES_PER_SECTION * sizeof(struct page) bytes.
2017 *
2018 * Return true when zone was grown, otherwise return false. We return true even
2019 * when we grow less than requested, to let the caller decide if there are
2020 * enough pages to satisfy the allocation.
2021 *
2022 * Note: We use noinline because this function is needed only during boot, and
2023 * it is called from a __ref function _deferred_grow_zone. This way we are
2024 * making sure that it is not inlined into permanent text section.
2025 */
2026 static noinline bool __init
2027 deferred_grow_zone(struct zone *zone, unsigned int order)
2028 {
2029 unsigned long nr_pages_needed = ALIGN(1 << order, PAGES_PER_SECTION);
2030 pg_data_t *pgdat = zone->zone_pgdat;
2031 unsigned long first_deferred_pfn = pgdat->first_deferred_pfn;
2032 unsigned long spfn, epfn, flags;
2033 unsigned long nr_pages = 0;
2034 u64 i;
2035
2036 /* Only the last zone may have deferred pages */
2037 if (zone_end_pfn(zone) != pgdat_end_pfn(pgdat))
2038 return false;
2039
2040 pgdat_resize_lock(pgdat, &flags);
2041
2042 /*
2043 * If someone grew this zone while we were waiting for spinlock, return
2044 * true, as there might be enough pages already.
2045 */
2046 if (first_deferred_pfn != pgdat->first_deferred_pfn) {
2047 pgdat_resize_unlock(pgdat, &flags);
2048 return true;
2049 }
2050
2051 /* If the zone is empty somebody else may have cleared out the zone */
2052 if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
2053 first_deferred_pfn)) {
2054 pgdat->first_deferred_pfn = ULONG_MAX;
2055 pgdat_resize_unlock(pgdat, &flags);
2056 /* Retry only once. */
2057 return first_deferred_pfn != ULONG_MAX;
2058 }
2059
2060 /*
2061 * Initialize and free pages in MAX_ORDER sized increments so
2062 * that we can avoid introducing any issues with the buddy
2063 * allocator.
2064 */
2065 while (spfn < epfn) {
2066 /* update our first deferred PFN for this section */
2067 first_deferred_pfn = spfn;
2068
2069 nr_pages += deferred_init_maxorder(&i, zone, &spfn, &epfn);
2070 touch_nmi_watchdog();
2071
2072 /* We should only stop along section boundaries */
2073 if ((first_deferred_pfn ^ spfn) < PAGES_PER_SECTION)
2074 continue;
2075
2076 /* If our quota has been met we can stop here */
2077 if (nr_pages >= nr_pages_needed)
2078 break;
2079 }
2080
2081 pgdat->first_deferred_pfn = spfn;
2082 pgdat_resize_unlock(pgdat, &flags);
2083
2084 return nr_pages > 0;
2085 }
2086
2087 /*
2088 * deferred_grow_zone() is __init, but it is called from
2089 * get_page_from_freelist() during early boot until deferred_pages permanently
2090 * disables this call. This is why we have refdata wrapper to avoid warning,
2091 * and to ensure that the function body gets unloaded.
2092 */
2093 static bool __ref
2094 _deferred_grow_zone(struct zone *zone, unsigned int order)
2095 {
2096 return deferred_grow_zone(zone, order);
2097 }
2098
2099 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
2100
2101 void __init page_alloc_init_late(void)
2102 {
2103 struct zone *zone;
2104 int nid;
2105
2106 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
2107
2108 /* There will be num_node_state(N_MEMORY) threads */
2109 atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
2110 for_each_node_state(nid, N_MEMORY) {
2111 kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
2112 }
2113
2114 /* Block until all are initialised */
2115 wait_for_completion(&pgdat_init_all_done_comp);
2116
2117 /*
2118 * The number of managed pages has changed due to the initialisation
2119 * so the pcpu batch and high limits needs to be updated or the limits
2120 * will be artificially small.
2121 */
2122 for_each_populated_zone(zone)
2123 zone_pcp_update(zone);
2124
2125 /*
2126 * We initialized the rest of the deferred pages. Permanently disable
2127 * on-demand struct page initialization.
2128 */
2129 static_branch_disable(&deferred_pages);
2130
2131 /* Reinit limits that are based on free pages after the kernel is up */
2132 files_maxfiles_init();
2133 #endif
2134
2135 buffer_init();
2136
2137 /* Discard memblock private memory */
2138 memblock_discard();
2139
2140 for_each_node_state(nid, N_MEMORY)
2141 shuffle_free_memory(NODE_DATA(nid));
2142
2143 for_each_populated_zone(zone)
2144 set_zone_contiguous(zone);
2145 }
2146
2147 #ifdef CONFIG_CMA
2148 /* Free whole pageblock and set its migration type to MIGRATE_CMA. */
2149 void __init init_cma_reserved_pageblock(struct page *page)
2150 {
2151 unsigned i = pageblock_nr_pages;
2152 struct page *p = page;
2153
2154 do {
2155 __ClearPageReserved(p);
2156 set_page_count(p, 0);
2157 } while (++p, --i);
2158
2159 set_pageblock_migratetype(page, MIGRATE_CMA);
2160
2161 if (pageblock_order >= MAX_ORDER) {
2162 i = pageblock_nr_pages;
2163 p = page;
2164 do {
2165 set_page_refcounted(p);
2166 __free_pages(p, MAX_ORDER - 1);
2167 p += MAX_ORDER_NR_PAGES;
2168 } while (i -= MAX_ORDER_NR_PAGES);
2169 } else {
2170 set_page_refcounted(page);
2171 __free_pages(page, pageblock_order);
2172 }
2173
2174 adjust_managed_page_count(page, pageblock_nr_pages);
2175 page_zone(page)->cma_pages += pageblock_nr_pages;
2176 }
2177 #endif
2178
2179 /*
2180 * The order of subdivision here is critical for the IO subsystem.
2181 * Please do not alter this order without good reasons and regression
2182 * testing. Specifically, as large blocks of memory are subdivided,
2183 * the order in which smaller blocks are delivered depends on the order
2184 * they're subdivided in this function. This is the primary factor
2185 * influencing the order in which pages are delivered to the IO
2186 * subsystem according to empirical testing, and this is also justified
2187 * by considering the behavior of a buddy system containing a single
2188 * large block of memory acted on by a series of small allocations.
2189 * This behavior is a critical factor in sglist merging's success.
2190 *
2191 * -- nyc
2192 */
2193 static inline void expand(struct zone *zone, struct page *page,
2194 int low, int high, int migratetype)
2195 {
2196 unsigned long size = 1 << high;
2197
2198 while (high > low) {
2199 high--;
2200 size >>= 1;
2201 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
2202
2203 /*
2204 * Mark as guard pages (or page), that will allow to
2205 * merge back to allocator when buddy will be freed.
2206 * Corresponding page table entries will not be touched,
2207 * pages will stay not present in virtual address space
2208 */
2209 if (set_page_guard(zone, &page[size], high, migratetype))
2210 continue;
2211
2212 add_to_free_list(&page[size], zone, high, migratetype);
2213 set_buddy_order(&page[size], high);
2214 }
2215 }
2216
2217 static void check_new_page_bad(struct page *page)
2218 {
2219 if (unlikely(page->flags & __PG_HWPOISON)) {
2220 /* Don't complain about hwpoisoned pages */
2221 page_mapcount_reset(page); /* remove PageBuddy */
2222 return;
2223 }
2224
2225 bad_page(page,
2226 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_PREP));
2227 }
2228
2229 /*
2230 * This page is about to be returned from the page allocator
2231 */
2232 static inline int check_new_page(struct page *page)
2233 {
2234 if (likely(page_expected_state(page,
2235 PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
2236 return 0;
2237
2238 check_new_page_bad(page);
2239 return 1;
2240 }
2241
2242 #ifdef CONFIG_DEBUG_VM
2243 /*
2244 * With DEBUG_VM enabled, order-0 pages are checked for expected state when
2245 * being allocated from pcp lists. With debug_pagealloc also enabled, they are
2246 * also checked when pcp lists are refilled from the free lists.
2247 */
2248 static inline bool check_pcp_refill(struct page *page)
2249 {
2250 if (debug_pagealloc_enabled_static())
2251 return check_new_page(page);
2252 else
2253 return false;
2254 }
2255
2256 static inline bool check_new_pcp(struct page *page)
2257 {
2258 return check_new_page(page);
2259 }
2260 #else
2261 /*
2262 * With DEBUG_VM disabled, free order-0 pages are checked for expected state
2263 * when pcp lists are being refilled from the free lists. With debug_pagealloc
2264 * enabled, they are also checked when being allocated from the pcp lists.
2265 */
2266 static inline bool check_pcp_refill(struct page *page)
2267 {
2268 return check_new_page(page);
2269 }
2270 static inline bool check_new_pcp(struct page *page)
2271 {
2272 if (debug_pagealloc_enabled_static())
2273 return check_new_page(page);
2274 else
2275 return false;
2276 }
2277 #endif /* CONFIG_DEBUG_VM */
2278
2279 static bool check_new_pages(struct page *page, unsigned int order)
2280 {
2281 int i;
2282 for (i = 0; i < (1 << order); i++) {
2283 struct page *p = page + i;
2284
2285 if (unlikely(check_new_page(p)))
2286 return true;
2287 }
2288
2289 return false;
2290 }
2291
2292 inline void post_alloc_hook(struct page *page, unsigned int order,
2293 gfp_t gfp_flags)
2294 {
2295 set_page_private(page, 0);
2296 set_page_refcounted(page);
2297
2298 arch_alloc_page(page, order);
2299 debug_pagealloc_map_pages(page, 1 << order);
2300 kasan_alloc_pages(page, order);
2301 kernel_unpoison_pages(page, 1 << order);
2302 set_page_owner(page, order, gfp_flags);
2303
2304 if (!want_init_on_free() && want_init_on_alloc(gfp_flags))
2305 kernel_init_free_pages(page, 1 << order);
2306 }
2307
2308 static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
2309 unsigned int alloc_flags)
2310 {
2311 post_alloc_hook(page, order, gfp_flags);
2312
2313 if (order && (gfp_flags & __GFP_COMP))
2314 prep_compound_page(page, order);
2315
2316 /*
2317 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
2318 * allocate the page. The expectation is that the caller is taking
2319 * steps that will free more memory. The caller should avoid the page
2320 * being used for !PFMEMALLOC purposes.
2321 */
2322 if (alloc_flags & ALLOC_NO_WATERMARKS)
2323 set_page_pfmemalloc(page);
2324 else
2325 clear_page_pfmemalloc(page);
2326 }
2327
2328 /*
2329 * Go through the free lists for the given migratetype and remove
2330 * the smallest available page from the freelists
2331 */
2332 static __always_inline
2333 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
2334 int migratetype)
2335 {
2336 unsigned int current_order;
2337 struct free_area *area;
2338 struct page *page;
2339
2340 /* Find a page of the appropriate size in the preferred list */
2341 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
2342 area = &(zone->free_area[current_order]);
2343 page = get_page_from_free_area(area, migratetype);
2344 if (!page)
2345 continue;
2346 del_page_from_free_list(page, zone, current_order);
2347 expand(zone, page, order, current_order, migratetype);
2348 set_pcppage_migratetype(page, migratetype);
2349 return page;
2350 }
2351
2352 return NULL;
2353 }
2354
2355
2356 /*
2357 * This array describes the order lists are fallen back to when
2358 * the free lists for the desirable migrate type are depleted
2359 */
2360 static int fallbacks[MIGRATE_TYPES][3] = {
2361 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
2362 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES },
2363 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
2364 #ifdef CONFIG_CMA
2365 [MIGRATE_CMA] = { MIGRATE_TYPES }, /* Never used */
2366 #endif
2367 #ifdef CONFIG_MEMORY_ISOLATION
2368 [MIGRATE_ISOLATE] = { MIGRATE_TYPES }, /* Never used */
2369 #endif
2370 };
2371
2372 #ifdef CONFIG_CMA
2373 static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone,
2374 unsigned int order)
2375 {
2376 return __rmqueue_smallest(zone, order, MIGRATE_CMA);
2377 }
2378 #else
2379 static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
2380 unsigned int order) { return NULL; }
2381 #endif
2382
2383 /*
2384 * Move the free pages in a range to the freelist tail of the requested type.
2385 * Note that start_page and end_pages are not aligned on a pageblock
2386 * boundary. If alignment is required, use move_freepages_block()
2387 */
2388 static int move_freepages(struct zone *zone,
2389 struct page *start_page, struct page *end_page,
2390 int migratetype, int *num_movable)
2391 {
2392 struct page *page;
2393 unsigned int order;
2394 int pages_moved = 0;
2395
2396 for (page = start_page; page <= end_page;) {
2397 if (!pfn_valid_within(page_to_pfn(page))) {
2398 page++;
2399 continue;
2400 }
2401
2402 if (!PageBuddy(page)) {
2403 /*
2404 * We assume that pages that could be isolated for
2405 * migration are movable. But we don't actually try
2406 * isolating, as that would be expensive.
2407 */
2408 if (num_movable &&
2409 (PageLRU(page) || __PageMovable(page)))
2410 (*num_movable)++;
2411
2412 page++;
2413 continue;
2414 }
2415
2416 /* Make sure we are not inadvertently changing nodes */
2417 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
2418 VM_BUG_ON_PAGE(page_zone(page) != zone, page);
2419
2420 order = buddy_order(page);
2421 move_to_free_list(page, zone, order, migratetype);
2422 page += 1 << order;
2423 pages_moved += 1 << order;
2424 }
2425
2426 return pages_moved;
2427 }
2428
2429 int move_freepages_block(struct zone *zone, struct page *page,
2430 int migratetype, int *num_movable)
2431 {
2432 unsigned long start_pfn, end_pfn;
2433 struct page *start_page, *end_page;
2434
2435 if (num_movable)
2436 *num_movable = 0;
2437
2438 start_pfn = page_to_pfn(page);
2439 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
2440 start_page = pfn_to_page(start_pfn);
2441 end_page = start_page + pageblock_nr_pages - 1;
2442 end_pfn = start_pfn + pageblock_nr_pages - 1;
2443
2444 /* Do not cross zone boundaries */
2445 if (!zone_spans_pfn(zone, start_pfn))
2446 start_page = page;
2447 if (!zone_spans_pfn(zone, end_pfn))
2448 return 0;
2449
2450 return move_freepages(zone, start_page, end_page, migratetype,
2451 num_movable);
2452 }
2453
2454 static void change_pageblock_range(struct page *pageblock_page,
2455 int start_order, int migratetype)
2456 {
2457 int nr_pageblocks = 1 << (start_order - pageblock_order);
2458
2459 while (nr_pageblocks--) {
2460 set_pageblock_migratetype(pageblock_page, migratetype);
2461 pageblock_page += pageblock_nr_pages;
2462 }
2463 }
2464
2465 /*
2466 * When we are falling back to another migratetype during allocation, try to
2467 * steal extra free pages from the same pageblocks to satisfy further
2468 * allocations, instead of polluting multiple pageblocks.
2469 *
2470 * If we are stealing a relatively large buddy page, it is likely there will
2471 * be more free pages in the pageblock, so try to steal them all. For
2472 * reclaimable and unmovable allocations, we steal regardless of page size,
2473 * as fragmentation caused by those allocations polluting movable pageblocks
2474 * is worse than movable allocations stealing from unmovable and reclaimable
2475 * pageblocks.
2476 */
2477 static bool can_steal_fallback(unsigned int order, int start_mt)
2478 {
2479 /*
2480 * Leaving this order check is intended, although there is
2481 * relaxed order check in next check. The reason is that
2482 * we can actually steal whole pageblock if this condition met,
2483 * but, below check doesn't guarantee it and that is just heuristic
2484 * so could be changed anytime.
2485 */
2486 if (order >= pageblock_order)
2487 return true;
2488
2489 if (order >= pageblock_order / 2 ||
2490 start_mt == MIGRATE_RECLAIMABLE ||
2491 start_mt == MIGRATE_UNMOVABLE ||
2492 page_group_by_mobility_disabled)
2493 return true;
2494
2495 return false;
2496 }
2497
2498 static inline bool boost_watermark(struct zone *zone)
2499 {
2500 unsigned long max_boost;
2501
2502 if (!watermark_boost_factor)
2503 return false;
2504 /*
2505 * Don't bother in zones that are unlikely to produce results.
2506 * On small machines, including kdump capture kernels running
2507 * in a small area, boosting the watermark can cause an out of
2508 * memory situation immediately.
2509 */
2510 if ((pageblock_nr_pages * 4) > zone_managed_pages(zone))
2511 return false;
2512
2513 max_boost = mult_frac(zone->_watermark[WMARK_HIGH],
2514 watermark_boost_factor, 10000);
2515
2516 /*
2517 * high watermark may be uninitialised if fragmentation occurs
2518 * very early in boot so do not boost. We do not fall
2519 * through and boost by pageblock_nr_pages as failing
2520 * allocations that early means that reclaim is not going
2521 * to help and it may even be impossible to reclaim the
2522 * boosted watermark resulting in a hang.
2523 */
2524 if (!max_boost)
2525 return false;
2526
2527 max_boost = max(pageblock_nr_pages, max_boost);
2528
2529 zone->watermark_boost = min(zone->watermark_boost + pageblock_nr_pages,
2530 max_boost);
2531
2532 return true;
2533 }
2534
2535 /*
2536 * This function implements actual steal behaviour. If order is large enough,
2537 * we can steal whole pageblock. If not, we first move freepages in this
2538 * pageblock to our migratetype and determine how many already-allocated pages
2539 * are there in the pageblock with a compatible migratetype. If at least half
2540 * of pages are free or compatible, we can change migratetype of the pageblock
2541 * itself, so pages freed in the future will be put on the correct free list.
2542 */
2543 static void steal_suitable_fallback(struct zone *zone, struct page *page,
2544 unsigned int alloc_flags, int start_type, bool whole_block)
2545 {
2546 unsigned int current_order = buddy_order(page);
2547 int free_pages, movable_pages, alike_pages;
2548 int old_block_type;
2549
2550 old_block_type = get_pageblock_migratetype(page);
2551
2552 /*
2553 * This can happen due to races and we want to prevent broken
2554 * highatomic accounting.
2555 */
2556 if (is_migrate_highatomic(old_block_type))
2557 goto single_page;
2558
2559 /* Take ownership for orders >= pageblock_order */
2560 if (current_order >= pageblock_order) {
2561 change_pageblock_range(page, current_order, start_type);
2562 goto single_page;
2563 }
2564
2565 /*
2566 * Boost watermarks to increase reclaim pressure to reduce the
2567 * likelihood of future fallbacks. Wake kswapd now as the node
2568 * may be balanced overall and kswapd will not wake naturally.
2569 */
2570 if (boost_watermark(zone) && (alloc_flags & ALLOC_KSWAPD))
2571 set_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
2572
2573 /* We are not allowed to try stealing from the whole block */
2574 if (!whole_block)
2575 goto single_page;
2576
2577 free_pages = move_freepages_block(zone, page, start_type,
2578 &movable_pages);
2579 /*
2580 * Determine how many pages are compatible with our allocation.
2581 * For movable allocation, it's the number of movable pages which
2582 * we just obtained. For other types it's a bit more tricky.
2583 */
2584 if (start_type == MIGRATE_MOVABLE) {
2585 alike_pages = movable_pages;
2586 } else {
2587 /*
2588 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation
2589 * to MOVABLE pageblock, consider all non-movable pages as
2590 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or
2591 * vice versa, be conservative since we can't distinguish the
2592 * exact migratetype of non-movable pages.
2593 */
2594 if (old_block_type == MIGRATE_MOVABLE)
2595 alike_pages = pageblock_nr_pages
2596 - (free_pages + movable_pages);
2597 else
2598 alike_pages = 0;
2599 }
2600
2601 /* moving whole block can fail due to zone boundary conditions */
2602 if (!free_pages)
2603 goto single_page;
2604
2605 /*
2606 * If a sufficient number of pages in the block are either free or of
2607 * comparable migratability as our allocation, claim the whole block.
2608 */
2609 if (free_pages + alike_pages >= (1 << (pageblock_order-1)) ||
2610 page_group_by_mobility_disabled)
2611 set_pageblock_migratetype(page, start_type);
2612
2613 return;
2614
2615 single_page:
2616 move_to_free_list(page, zone, current_order, start_type);
2617 }
2618
2619 /*
2620 * Check whether there is a suitable fallback freepage with requested order.
2621 * If only_stealable is true, this function returns fallback_mt only if
2622 * we can steal other freepages all together. This would help to reduce
2623 * fragmentation due to mixed migratetype pages in one pageblock.
2624 */
2625 int find_suitable_fallback(struct free_area *area, unsigned int order,
2626 int migratetype, bool only_stealable, bool *can_steal)
2627 {
2628 int i;
2629 int fallback_mt;
2630
2631 if (area->nr_free == 0)
2632 return -1;
2633
2634 *can_steal = false;
2635 for (i = 0;; i++) {
2636 fallback_mt = fallbacks[migratetype][i];
2637 if (fallback_mt == MIGRATE_TYPES)
2638 break;
2639
2640 if (free_area_empty(area, fallback_mt))
2641 continue;
2642
2643 if (can_steal_fallback(order, migratetype))
2644 *can_steal = true;
2645
2646 if (!only_stealable)
2647 return fallback_mt;
2648
2649 if (*can_steal)
2650 return fallback_mt;
2651 }
2652
2653 return -1;
2654 }
2655
2656 /*
2657 * Reserve a pageblock for exclusive use of high-order atomic allocations if
2658 * there are no empty page blocks that contain a page with a suitable order
2659 */
2660 static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
2661 unsigned int alloc_order)
2662 {
2663 int mt;
2664 unsigned long max_managed, flags;
2665
2666 /*
2667 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
2668 * Check is race-prone but harmless.
2669 */
2670 max_managed = (zone_managed_pages(zone) / 100) + pageblock_nr_pages;
2671 if (zone->nr_reserved_highatomic >= max_managed)
2672 return;
2673
2674 spin_lock_irqsave(&zone->lock, flags);
2675
2676 /* Recheck the nr_reserved_highatomic limit under the lock */
2677 if (zone->nr_reserved_highatomic >= max_managed)
2678 goto out_unlock;
2679
2680 /* Yoink! */
2681 mt = get_pageblock_migratetype(page);
2682 if (!is_migrate_highatomic(mt) && !is_migrate_isolate(mt)
2683 && !is_migrate_cma(mt)) {
2684 zone->nr_reserved_highatomic += pageblock_nr_pages;
2685 set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
2686 move_freepages_block(zone, page, MIGRATE_HIGHATOMIC, NULL);
2687 }
2688
2689 out_unlock:
2690 spin_unlock_irqrestore(&zone->lock, flags);
2691 }
2692
2693 /*
2694 * Used when an allocation is about to fail under memory pressure. This
2695 * potentially hurts the reliability of high-order allocations when under
2696 * intense memory pressure but failed atomic allocations should be easier
2697 * to recover from than an OOM.
2698 *
2699 * If @force is true, try to unreserve a pageblock even though highatomic
2700 * pageblock is exhausted.
2701 */
2702 static bool unreserve_highatomic_pageblock(const struct alloc_context *ac,
2703 bool force)
2704 {
2705 struct zonelist *zonelist = ac->zonelist;
2706 unsigned long flags;
2707 struct zoneref *z;
2708 struct zone *zone;
2709 struct page *page;
2710 int order;
2711 bool ret;
2712
2713 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->highest_zoneidx,
2714 ac->nodemask) {
2715 /*
2716 * Preserve at least one pageblock unless memory pressure
2717 * is really high.
2718 */
2719 if (!force && zone->nr_reserved_highatomic <=
2720 pageblock_nr_pages)
2721 continue;
2722
2723 spin_lock_irqsave(&zone->lock, flags);
2724 for (order = 0; order < MAX_ORDER; order++) {
2725 struct free_area *area = &(zone->free_area[order]);
2726
2727 page = get_page_from_free_area(area, MIGRATE_HIGHATOMIC);
2728 if (!page)
2729 continue;
2730
2731 /*
2732 * In page freeing path, migratetype change is racy so
2733 * we can counter several free pages in a pageblock
2734 * in this loop althoug we changed the pageblock type
2735 * from highatomic to ac->migratetype. So we should
2736 * adjust the count once.
2737 */
2738 if (is_migrate_highatomic_page(page)) {
2739 /*
2740 * It should never happen but changes to
2741 * locking could inadvertently allow a per-cpu
2742 * drain to add pages to MIGRATE_HIGHATOMIC
2743 * while unreserving so be safe and watch for
2744 * underflows.
2745 */
2746 zone->nr_reserved_highatomic -= min(
2747 pageblock_nr_pages,
2748 zone->nr_reserved_highatomic);
2749 }
2750
2751 /*
2752 * Convert to ac->migratetype and avoid the normal
2753 * pageblock stealing heuristics. Minimally, the caller
2754 * is doing the work and needs the pages. More
2755 * importantly, if the block was always converted to
2756 * MIGRATE_UNMOVABLE or another type then the number
2757 * of pageblocks that cannot be completely freed
2758 * may increase.
2759 */
2760 set_pageblock_migratetype(page, ac->migratetype);
2761 ret = move_freepages_block(zone, page, ac->migratetype,
2762 NULL);
2763 if (ret) {
2764 spin_unlock_irqrestore(&zone->lock, flags);
2765 return ret;
2766 }
2767 }
2768 spin_unlock_irqrestore(&zone->lock, flags);
2769 }
2770
2771 return false;
2772 }
2773
2774 /*
2775 * Try finding a free buddy page on the fallback list and put it on the free
2776 * list of requested migratetype, possibly along with other pages from the same
2777 * block, depending on fragmentation avoidance heuristics. Returns true if
2778 * fallback was found so that __rmqueue_smallest() can grab it.
2779 *
2780 * The use of signed ints for order and current_order is a deliberate
2781 * deviation from the rest of this file, to make the for loop
2782 * condition simpler.
2783 */
2784 static __always_inline bool
2785 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype,
2786 unsigned int alloc_flags)
2787 {
2788 struct free_area *area;
2789 int current_order;
2790 int min_order = order;
2791 struct page *page;
2792 int fallback_mt;
2793 bool can_steal;
2794
2795 /*
2796 * Do not steal pages from freelists belonging to other pageblocks
2797 * i.e. orders < pageblock_order. If there are no local zones free,
2798 * the zonelists will be reiterated without ALLOC_NOFRAGMENT.
2799 */
2800 if (alloc_flags & ALLOC_NOFRAGMENT)
2801 min_order = pageblock_order;
2802
2803 /*
2804 * Find the largest available free page in the other list. This roughly
2805 * approximates finding the pageblock with the most free pages, which
2806 * would be too costly to do exactly.
2807 */
2808 for (current_order = MAX_ORDER - 1; current_order >= min_order;
2809 --current_order) {
2810 area = &(zone->free_area[current_order]);
2811 fallback_mt = find_suitable_fallback(area, current_order,
2812 start_migratetype, false, &can_steal);
2813 if (fallback_mt == -1)
2814 continue;
2815
2816 /*
2817 * We cannot steal all free pages from the pageblock and the
2818 * requested migratetype is movable. In that case it's better to
2819 * steal and split the smallest available page instead of the
2820 * largest available page, because even if the next movable
2821 * allocation falls back into a different pageblock than this
2822 * one, it won't cause permanent fragmentation.
2823 */
2824 if (!can_steal && start_migratetype == MIGRATE_MOVABLE
2825 && current_order > order)
2826 goto find_smallest;
2827
2828 goto do_steal;
2829 }
2830
2831 return false;
2832
2833 find_smallest:
2834 for (current_order = order; current_order < MAX_ORDER;
2835 current_order++) {
2836 area = &(zone->free_area[current_order]);
2837 fallback_mt = find_suitable_fallback(area, current_order,
2838 start_migratetype, false, &can_steal);
2839 if (fallback_mt != -1)
2840 break;
2841 }
2842
2843 /*
2844 * This should not happen - we already found a suitable fallback
2845 * when looking for the largest page.
2846 */
2847 VM_BUG_ON(current_order == MAX_ORDER);
2848
2849 do_steal:
2850 page = get_page_from_free_area(area, fallback_mt);
2851
2852 steal_suitable_fallback(zone, page, alloc_flags, start_migratetype,
2853 can_steal);
2854
2855 trace_mm_page_alloc_extfrag(page, order, current_order,
2856 start_migratetype, fallback_mt);
2857
2858 return true;
2859
2860 }
2861
2862 /*
2863 * Do the hard work of removing an element from the buddy allocator.
2864 * Call me with the zone->lock already held.
2865 */
2866 static __always_inline struct page *
2867 __rmqueue(struct zone *zone, unsigned int order, int migratetype,
2868 unsigned int alloc_flags)
2869 {
2870 struct page *page;
2871
2872 if (IS_ENABLED(CONFIG_CMA)) {
2873 /*
2874 * Balance movable allocations between regular and CMA areas by
2875 * allocating from CMA when over half of the zone's free memory
2876 * is in the CMA area.
2877 */
2878 if (alloc_flags & ALLOC_CMA &&
2879 zone_page_state(zone, NR_FREE_CMA_PAGES) >
2880 zone_page_state(zone, NR_FREE_PAGES) / 2) {
2881 page = __rmqueue_cma_fallback(zone, order);
2882 if (page)
2883 goto out;
2884 }
2885 }
2886 retry:
2887 page = __rmqueue_smallest(zone, order, migratetype);
2888 if (unlikely(!page)) {
2889 if (alloc_flags & ALLOC_CMA)
2890 page = __rmqueue_cma_fallback(zone, order);
2891
2892 if (!page && __rmqueue_fallback(zone, order, migratetype,
2893 alloc_flags))
2894 goto retry;
2895 }
2896 out:
2897 if (page)
2898 trace_mm_page_alloc_zone_locked(page, order, migratetype);
2899 return page;
2900 }
2901
2902 /*
2903 * Obtain a specified number of elements from the buddy allocator, all under
2904 * a single hold of the lock, for efficiency. Add them to the supplied list.
2905 * Returns the number of new pages which were placed at *list.
2906 */
2907 static int rmqueue_bulk(struct zone *zone, unsigned int order,
2908 unsigned long count, struct list_head *list,
2909 int migratetype, unsigned int alloc_flags)
2910 {
2911 int i, alloced = 0;
2912
2913 spin_lock(&zone->lock);
2914 for (i = 0; i < count; ++i) {
2915 struct page *page = __rmqueue(zone, order, migratetype,
2916 alloc_flags);
2917 if (unlikely(page == NULL))
2918 break;
2919
2920 if (unlikely(check_pcp_refill(page)))
2921 continue;
2922
2923 /*
2924 * Split buddy pages returned by expand() are received here in
2925 * physical page order. The page is added to the tail of
2926 * caller's list. From the callers perspective, the linked list
2927 * is ordered by page number under some conditions. This is
2928 * useful for IO devices that can forward direction from the
2929 * head, thus also in the physical page order. This is useful
2930 * for IO devices that can merge IO requests if the physical
2931 * pages are ordered properly.
2932 */
2933 list_add_tail(&page->lru, list);
2934 alloced++;
2935 if (is_migrate_cma(get_pcppage_migratetype(page)))
2936 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
2937 -(1 << order));
2938 }
2939
2940 /*
2941 * i pages were removed from the buddy list even if some leak due
2942 * to check_pcp_refill failing so adjust NR_FREE_PAGES based
2943 * on i. Do not confuse with 'alloced' which is the number of
2944 * pages added to the pcp list.
2945 */
2946 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
2947 spin_unlock(&zone->lock);
2948 return alloced;
2949 }
2950
2951 #ifdef CONFIG_NUMA
2952 /*
2953 * Called from the vmstat counter updater to drain pagesets of this
2954 * currently executing processor on remote nodes after they have
2955 * expired.
2956 *
2957 * Note that this function must be called with the thread pinned to
2958 * a single processor.
2959 */
2960 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
2961 {
2962 unsigned long flags;
2963 int to_drain, batch;
2964
2965 local_irq_save(flags);
2966 batch = READ_ONCE(pcp->batch);
2967 to_drain = min(pcp->count, batch);
2968 if (to_drain > 0)
2969 free_pcppages_bulk(zone, to_drain, pcp);
2970 local_irq_restore(flags);
2971 }
2972 #endif
2973
2974 /*
2975 * Drain pcplists of the indicated processor and zone.
2976 *
2977 * The processor must either be the current processor and the
2978 * thread pinned to the current processor or a processor that
2979 * is not online.
2980 */
2981 static void drain_pages_zone(unsigned int cpu, struct zone *zone)
2982 {
2983 unsigned long flags;
2984 struct per_cpu_pageset *pset;
2985 struct per_cpu_pages *pcp;
2986
2987 local_irq_save(flags);
2988 pset = per_cpu_ptr(zone->pageset, cpu);
2989
2990 pcp = &pset->pcp;
2991 if (pcp->count)
2992 free_pcppages_bulk(zone, pcp->count, pcp);
2993 local_irq_restore(flags);
2994 }
2995
2996 /*
2997 * Drain pcplists of all zones on the indicated processor.
2998 *
2999 * The processor must either be the current processor and the
3000 * thread pinned to the current processor or a processor that
3001 * is not online.
3002 */
3003 static void drain_pages(unsigned int cpu)
3004 {
3005 struct zone *zone;
3006
3007 for_each_populated_zone(zone) {
3008 drain_pages_zone(cpu, zone);
3009 }
3010 }
3011
3012 /*
3013 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
3014 *
3015 * The CPU has to be pinned. When zone parameter is non-NULL, spill just
3016 * the single zone's pages.
3017 */
3018 void drain_local_pages(struct zone *zone)
3019 {
3020 int cpu = smp_processor_id();
3021
3022 if (zone)
3023 drain_pages_zone(cpu, zone);
3024 else
3025 drain_pages(cpu);
3026 }
3027
3028 static void drain_local_pages_wq(struct work_struct *work)
3029 {
3030 struct pcpu_drain *drain;
3031
3032 drain = container_of(work, struct pcpu_drain, work);
3033
3034 /*
3035 * drain_all_pages doesn't use proper cpu hotplug protection so
3036 * we can race with cpu offline when the WQ can move this from
3037 * a cpu pinned worker to an unbound one. We can operate on a different
3038 * cpu which is allright but we also have to make sure to not move to
3039 * a different one.
3040 */
3041 preempt_disable();
3042 drain_local_pages(drain->zone);
3043 preempt_enable();
3044 }
3045
3046 /*
3047 * The implementation of drain_all_pages(), exposing an extra parameter to
3048 * drain on all cpus.
3049 *
3050 * drain_all_pages() is optimized to only execute on cpus where pcplists are
3051 * not empty. The check for non-emptiness can however race with a free to
3052 * pcplist that has not yet increased the pcp->count from 0 to 1. Callers
3053 * that need the guarantee that every CPU has drained can disable the
3054 * optimizing racy check.
3055 */
3056 static void __drain_all_pages(struct zone *zone, bool force_all_cpus)
3057 {
3058 int cpu;
3059
3060 /*
3061 * Allocate in the BSS so we wont require allocation in
3062 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
3063 */
3064 static cpumask_t cpus_with_pcps;
3065
3066 /*
3067 * Make sure nobody triggers this path before mm_percpu_wq is fully
3068 * initialized.
3069 */
3070 if (WARN_ON_ONCE(!mm_percpu_wq))
3071 return;
3072
3073 /*
3074 * Do not drain if one is already in progress unless it's specific to
3075 * a zone. Such callers are primarily CMA and memory hotplug and need
3076 * the drain to be complete when the call returns.
3077 */
3078 if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) {
3079 if (!zone)
3080 return;
3081 mutex_lock(&pcpu_drain_mutex);
3082 }
3083
3084 /*
3085 * We don't care about racing with CPU hotplug event
3086 * as offline notification will cause the notified
3087 * cpu to drain that CPU pcps and on_each_cpu_mask
3088 * disables preemption as part of its processing
3089 */
3090 for_each_online_cpu(cpu) {
3091 struct per_cpu_pageset *pcp;
3092 struct zone *z;
3093 bool has_pcps = false;
3094
3095 if (force_all_cpus) {
3096 /*
3097 * The pcp.count check is racy, some callers need a
3098 * guarantee that no cpu is missed.
3099 */
3100 has_pcps = true;
3101 } else if (zone) {
3102 pcp = per_cpu_ptr(zone->pageset, cpu);
3103 if (pcp->pcp.count)
3104 has_pcps = true;
3105 } else {
3106 for_each_populated_zone(z) {
3107 pcp = per_cpu_ptr(z->pageset, cpu);
3108 if (pcp->pcp.count) {
3109 has_pcps = true;
3110 break;
3111 }
3112 }
3113 }
3114
3115 if (has_pcps)
3116 cpumask_set_cpu(cpu, &cpus_with_pcps);
3117 else
3118 cpumask_clear_cpu(cpu, &cpus_with_pcps);
3119 }
3120
3121 for_each_cpu(cpu, &cpus_with_pcps) {
3122 struct pcpu_drain *drain = per_cpu_ptr(&pcpu_drain, cpu);
3123
3124 drain->zone = zone;
3125 INIT_WORK(&drain->work, drain_local_pages_wq);
3126 queue_work_on(cpu, mm_percpu_wq, &drain->work);
3127 }
3128 for_each_cpu(cpu, &cpus_with_pcps)
3129 flush_work(&per_cpu_ptr(&pcpu_drain, cpu)->work);
3130
3131 mutex_unlock(&pcpu_drain_mutex);
3132 }
3133
3134 /*
3135 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
3136 *
3137 * When zone parameter is non-NULL, spill just the single zone's pages.
3138 *
3139 * Note that this can be extremely slow as the draining happens in a workqueue.
3140 */
3141 void drain_all_pages(struct zone *zone)
3142 {
3143 __drain_all_pages(zone, false);
3144 }
3145
3146 #ifdef CONFIG_HIBERNATION
3147
3148 /*
3149 * Touch the watchdog for every WD_PAGE_COUNT pages.
3150 */
3151 #define WD_PAGE_COUNT (128*1024)
3152
3153 void mark_free_pages(struct zone *zone)
3154 {
3155 unsigned long pfn, max_zone_pfn, page_count = WD_PAGE_COUNT;
3156 unsigned long flags;
3157 unsigned int order, t;
3158 struct page *page;
3159
3160 if (zone_is_empty(zone))
3161 return;
3162
3163 spin_lock_irqsave(&zone->lock, flags);
3164
3165 max_zone_pfn = zone_end_pfn(zone);
3166 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
3167 if (pfn_valid(pfn)) {
3168 page = pfn_to_page(pfn);
3169
3170 if (!--page_count) {
3171 touch_nmi_watchdog();
3172 page_count = WD_PAGE_COUNT;
3173 }
3174
3175 if (page_zone(page) != zone)
3176 continue;
3177
3178 if (!swsusp_page_is_forbidden(page))
3179 swsusp_unset_page_free(page);
3180 }
3181
3182 for_each_migratetype_order(order, t) {
3183 list_for_each_entry(page,
3184 &zone->free_area[order].free_list[t], lru) {
3185 unsigned long i;
3186
3187 pfn = page_to_pfn(page);
3188 for (i = 0; i < (1UL << order); i++) {
3189 if (!--page_count) {
3190 touch_nmi_watchdog();
3191 page_count = WD_PAGE_COUNT;
3192 }
3193 swsusp_set_page_free(pfn_to_page(pfn + i));
3194 }
3195 }
3196 }
3197 spin_unlock_irqrestore(&zone->lock, flags);
3198 }
3199 #endif /* CONFIG_PM */
3200
3201 static bool free_unref_page_prepare(struct page *page, unsigned long pfn)
3202 {
3203 int migratetype;
3204
3205 if (!free_pcp_prepare(page))
3206 return false;
3207
3208 migratetype = get_pfnblock_migratetype(page, pfn);
3209 set_pcppage_migratetype(page, migratetype);
3210 return true;
3211 }
3212
3213 static void free_unref_page_commit(struct page *page, unsigned long pfn)
3214 {
3215 struct zone *zone = page_zone(page);
3216 struct per_cpu_pages *pcp;
3217 int migratetype;
3218
3219 migratetype = get_pcppage_migratetype(page);
3220 __count_vm_event(PGFREE);
3221
3222 /*
3223 * We only track unmovable, reclaimable and movable on pcp lists.
3224 * Free ISOLATE pages back to the allocator because they are being
3225 * offlined but treat HIGHATOMIC as movable pages so we can get those
3226 * areas back if necessary. Otherwise, we may have to free
3227 * excessively into the page allocator
3228 */
3229 if (migratetype >= MIGRATE_PCPTYPES) {
3230 if (unlikely(is_migrate_isolate(migratetype))) {
3231 free_one_page(zone, page, pfn, 0, migratetype,
3232 FPI_NONE);
3233 return;
3234 }
3235 migratetype = MIGRATE_MOVABLE;
3236 }
3237
3238 pcp = &this_cpu_ptr(zone->pageset)->pcp;
3239 list_add(&page->lru, &pcp->lists[migratetype]);
3240 pcp->count++;
3241 if (pcp->count >= READ_ONCE(pcp->high))
3242 free_pcppages_bulk(zone, READ_ONCE(pcp->batch), pcp);
3243 }
3244
3245 /*
3246 * Free a 0-order page
3247 */
3248 void free_unref_page(struct page *page)
3249 {
3250 unsigned long flags;
3251 unsigned long pfn = page_to_pfn(page);
3252
3253 if (!free_unref_page_prepare(page, pfn))
3254 return;
3255
3256 local_irq_save(flags);
3257 free_unref_page_commit(page, pfn);
3258 local_irq_restore(flags);
3259 }
3260
3261 /*
3262 * Free a list of 0-order pages
3263 */
3264 void free_unref_page_list(struct list_head *list)
3265 {
3266 struct page *page, *next;
3267 unsigned long flags, pfn;
3268 int batch_count = 0;
3269
3270 /* Prepare pages for freeing */
3271 list_for_each_entry_safe(page, next, list, lru) {
3272 pfn = page_to_pfn(page);
3273 if (!free_unref_page_prepare(page, pfn))
3274 list_del(&page->lru);
3275 set_page_private(page, pfn);
3276 }
3277
3278 local_irq_save(flags);
3279 list_for_each_entry_safe(page, next, list, lru) {
3280 unsigned long pfn = page_private(page);
3281
3282 set_page_private(page, 0);
3283 trace_mm_page_free_batched(page);
3284 free_unref_page_commit(page, pfn);
3285
3286 /*
3287 * Guard against excessive IRQ disabled times when we get
3288 * a large list of pages to free.
3289 */
3290 if (++batch_count == SWAP_CLUSTER_MAX) {
3291 local_irq_restore(flags);
3292 batch_count = 0;
3293 local_irq_save(flags);
3294 }
3295 }
3296 local_irq_restore(flags);
3297 }
3298
3299 /*
3300 * split_page takes a non-compound higher-order page, and splits it into
3301 * n (1<<order) sub-pages: page[0..n]
3302 * Each sub-page must be freed individually.
3303 *
3304 * Note: this is probably too low level an operation for use in drivers.
3305 * Please consult with lkml before using this in your driver.
3306 */
3307 void split_page(struct page *page, unsigned int order)
3308 {
3309 int i;
3310
3311 VM_BUG_ON_PAGE(PageCompound(page), page);
3312 VM_BUG_ON_PAGE(!page_count(page), page);
3313
3314 for (i = 1; i < (1 << order); i++)
3315 set_page_refcounted(page + i);
3316 split_page_owner(page, 1 << order);
3317 }
3318 EXPORT_SYMBOL_GPL(split_page);
3319
3320 int __isolate_free_page(struct page *page, unsigned int order)
3321 {
3322 unsigned long watermark;
3323 struct zone *zone;
3324 int mt;
3325
3326 BUG_ON(!PageBuddy(page));
3327
3328 zone = page_zone(page);
3329 mt = get_pageblock_migratetype(page);
3330
3331 if (!is_migrate_isolate(mt)) {
3332 /*
3333 * Obey watermarks as if the page was being allocated. We can
3334 * emulate a high-order watermark check with a raised order-0
3335 * watermark, because we already know our high-order page
3336 * exists.
3337 */
3338 watermark = zone->_watermark[WMARK_MIN] + (1UL << order);
3339 if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA))
3340 return 0;
3341
3342 __mod_zone_freepage_state(zone, -(1UL << order), mt);
3343 }
3344
3345 /* Remove page from free list */
3346
3347 del_page_from_free_list(page, zone, order);
3348
3349 /*
3350 * Set the pageblock if the isolated page is at least half of a
3351 * pageblock
3352 */
3353 if (order >= pageblock_order - 1) {
3354 struct page *endpage = page + (1 << order) - 1;
3355 for (; page < endpage; page += pageblock_nr_pages) {
3356 int mt = get_pageblock_migratetype(page);
3357 if (!is_migrate_isolate(mt) && !is_migrate_cma(mt)
3358 && !is_migrate_highatomic(mt))
3359 set_pageblock_migratetype(page,
3360 MIGRATE_MOVABLE);
3361 }
3362 }
3363
3364
3365 return 1UL << order;
3366 }
3367
3368 /**
3369 * __putback_isolated_page - Return a now-isolated page back where we got it
3370 * @page: Page that was isolated
3371 * @order: Order of the isolated page
3372 * @mt: The page's pageblock's migratetype
3373 *
3374 * This function is meant to return a page pulled from the free lists via
3375 * __isolate_free_page back to the free lists they were pulled from.
3376 */
3377 void __putback_isolated_page(struct page *page, unsigned int order, int mt)
3378 {
3379 struct zone *zone = page_zone(page);
3380
3381 /* zone lock should be held when this function is called */
3382 lockdep_assert_held(&zone->lock);
3383
3384 /* Return isolated page to tail of freelist. */
3385 __free_one_page(page, page_to_pfn(page), zone, order, mt,
3386 FPI_SKIP_REPORT_NOTIFY | FPI_TO_TAIL);
3387 }
3388
3389 /*
3390 * Update NUMA hit/miss statistics
3391 *
3392 * Must be called with interrupts disabled.
3393 */
3394 static inline void zone_statistics(struct zone *preferred_zone, struct zone *z)
3395 {
3396 #ifdef CONFIG_NUMA
3397 enum numa_stat_item local_stat = NUMA_LOCAL;
3398
3399 /* skip numa counters update if numa stats is disabled */
3400 if (!static_branch_likely(&vm_numa_stat_key))
3401 return;
3402
3403 if (zone_to_nid(z) != numa_node_id())
3404 local_stat = NUMA_OTHER;
3405
3406 if (zone_to_nid(z) == zone_to_nid(preferred_zone))
3407 __inc_numa_state(z, NUMA_HIT);
3408 else {
3409 __inc_numa_state(z, NUMA_MISS);
3410 __inc_numa_state(preferred_zone, NUMA_FOREIGN);
3411 }
3412 __inc_numa_state(z, local_stat);
3413 #endif
3414 }
3415
3416 /* Remove page from the per-cpu list, caller must protect the list */
3417 static struct page *__rmqueue_pcplist(struct zone *zone, int migratetype,
3418 unsigned int alloc_flags,
3419 struct per_cpu_pages *pcp,
3420 struct list_head *list)
3421 {
3422 struct page *page;
3423
3424 do {
3425 if (list_empty(list)) {
3426 pcp->count += rmqueue_bulk(zone, 0,
3427 READ_ONCE(pcp->batch), list,
3428 migratetype, alloc_flags);
3429 if (unlikely(list_empty(list)))
3430 return NULL;
3431 }
3432
3433 page = list_first_entry(list, struct page, lru);
3434 list_del(&page->lru);
3435 pcp->count--;
3436 } while (check_new_pcp(page));
3437
3438 return page;
3439 }
3440
3441 /* Lock and remove page from the per-cpu list */
3442 static struct page *rmqueue_pcplist(struct zone *preferred_zone,
3443 struct zone *zone, gfp_t gfp_flags,
3444 int migratetype, unsigned int alloc_flags)
3445 {
3446 struct per_cpu_pages *pcp;
3447 struct list_head *list;
3448 struct page *page;
3449 unsigned long flags;
3450
3451 local_irq_save(flags);
3452 pcp = &this_cpu_ptr(zone->pageset)->pcp;
3453 list = &pcp->lists[migratetype];
3454 page = __rmqueue_pcplist(zone, migratetype, alloc_flags, pcp, list);
3455 if (page) {
3456 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1);
3457 zone_statistics(preferred_zone, zone);
3458 }
3459 local_irq_restore(flags);
3460 return page;
3461 }
3462
3463 /*
3464 * Allocate a page from the given zone. Use pcplists for order-0 allocations.
3465 */
3466 static inline
3467 struct page *rmqueue(struct zone *preferred_zone,
3468 struct zone *zone, unsigned int order,
3469 gfp_t gfp_flags, unsigned int alloc_flags,
3470 int migratetype)
3471 {
3472 unsigned long flags;
3473 struct page *page;
3474
3475 if (likely(order == 0)) {
3476 /*
3477 * MIGRATE_MOVABLE pcplist could have the pages on CMA area and
3478 * we need to skip it when CMA area isn't allowed.
3479 */
3480 if (!IS_ENABLED(CONFIG_CMA) || alloc_flags & ALLOC_CMA ||
3481 migratetype != MIGRATE_MOVABLE) {
3482 page = rmqueue_pcplist(preferred_zone, zone, gfp_flags,
3483 migratetype, alloc_flags);
3484 goto out;
3485 }
3486 }
3487
3488 /*
3489 * We most definitely don't want callers attempting to
3490 * allocate greater than order-1 page units with __GFP_NOFAIL.
3491 */
3492 WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
3493 spin_lock_irqsave(&zone->lock, flags);
3494
3495 do {
3496 page = NULL;
3497 /*
3498 * order-0 request can reach here when the pcplist is skipped
3499 * due to non-CMA allocation context. HIGHATOMIC area is
3500 * reserved for high-order atomic allocation, so order-0
3501 * request should skip it.
3502 */
3503 if (order > 0 && alloc_flags & ALLOC_HARDER) {
3504 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
3505 if (page)
3506 trace_mm_page_alloc_zone_locked(page, order, migratetype);
3507 }
3508 if (!page)
3509 page = __rmqueue(zone, order, migratetype, alloc_flags);
3510 } while (page && check_new_pages(page, order));
3511 spin_unlock(&zone->lock);
3512 if (!page)
3513 goto failed;
3514 __mod_zone_freepage_state(zone, -(1 << order),
3515 get_pcppage_migratetype(page));
3516
3517 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
3518 zone_statistics(preferred_zone, zone);
3519 local_irq_restore(flags);
3520
3521 out:
3522 /* Separate test+clear to avoid unnecessary atomics */
3523 if (test_bit(ZONE_BOOSTED_WATERMARK, &zone->flags)) {
3524 clear_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
3525 wakeup_kswapd(zone, 0, 0, zone_idx(zone));
3526 }
3527
3528 VM_BUG_ON_PAGE(page && bad_range(zone, page), page);
3529 return page;
3530
3531 failed:
3532 local_irq_restore(flags);
3533 return NULL;
3534 }
3535
3536 #ifdef CONFIG_FAIL_PAGE_ALLOC
3537
3538 static struct {
3539 struct fault_attr attr;
3540
3541 bool ignore_gfp_highmem;
3542 bool ignore_gfp_reclaim;
3543 u32 min_order;
3544 } fail_page_alloc = {
3545 .attr = FAULT_ATTR_INITIALIZER,
3546 .ignore_gfp_reclaim = true,
3547 .ignore_gfp_highmem = true,
3548 .min_order = 1,
3549 };
3550
3551 static int __init setup_fail_page_alloc(char *str)
3552 {
3553 return setup_fault_attr(&fail_page_alloc.attr, str);
3554 }
3555 __setup("fail_page_alloc=", setup_fail_page_alloc);
3556
3557 static bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3558 {
3559 if (order < fail_page_alloc.min_order)
3560 return false;
3561 if (gfp_mask & __GFP_NOFAIL)
3562 return false;
3563 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
3564 return false;
3565 if (fail_page_alloc.ignore_gfp_reclaim &&
3566 (gfp_mask & __GFP_DIRECT_RECLAIM))
3567 return false;
3568
3569 return should_fail(&fail_page_alloc.attr, 1 << order);
3570 }
3571
3572 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
3573
3574 static int __init fail_page_alloc_debugfs(void)
3575 {
3576 umode_t mode = S_IFREG | 0600;
3577 struct dentry *dir;
3578
3579 dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
3580 &fail_page_alloc.attr);
3581
3582 debugfs_create_bool("ignore-gfp-wait", mode, dir,
3583 &fail_page_alloc.ignore_gfp_reclaim);
3584 debugfs_create_bool("ignore-gfp-highmem", mode, dir,
3585 &fail_page_alloc.ignore_gfp_highmem);
3586 debugfs_create_u32("min-order", mode, dir, &fail_page_alloc.min_order);
3587
3588 return 0;
3589 }
3590
3591 late_initcall(fail_page_alloc_debugfs);
3592
3593 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
3594
3595 #else /* CONFIG_FAIL_PAGE_ALLOC */
3596
3597 static inline bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3598 {
3599 return false;
3600 }
3601
3602 #endif /* CONFIG_FAIL_PAGE_ALLOC */
3603
3604 noinline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3605 {
3606 return __should_fail_alloc_page(gfp_mask, order);
3607 }
3608 ALLOW_ERROR_INJECTION(should_fail_alloc_page, TRUE);
3609
3610 static inline long __zone_watermark_unusable_free(struct zone *z,
3611 unsigned int order, unsigned int alloc_flags)
3612 {
3613 const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM));
3614 long unusable_free = (1 << order) - 1;
3615
3616 /*
3617 * If the caller does not have rights to ALLOC_HARDER then subtract
3618 * the high-atomic reserves. This will over-estimate the size of the
3619 * atomic reserve but it avoids a search.
3620 */
3621 if (likely(!alloc_harder))
3622 unusable_free += z->nr_reserved_highatomic;
3623
3624 #ifdef CONFIG_CMA
3625 /* If allocation can't use CMA areas don't use free CMA pages */
3626 if (!(alloc_flags & ALLOC_CMA))
3627 unusable_free += zone_page_state(z, NR_FREE_CMA_PAGES);
3628 #endif
3629
3630 return unusable_free;
3631 }
3632
3633 /*
3634 * Return true if free base pages are above 'mark'. For high-order checks it
3635 * will return true of the order-0 watermark is reached and there is at least
3636 * one free page of a suitable size. Checking now avoids taking the zone lock
3637 * to check in the allocation paths if no pages are free.
3638 */
3639 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3640 int highest_zoneidx, unsigned int alloc_flags,
3641 long free_pages)
3642 {
3643 long min = mark;
3644 int o;
3645 const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM));
3646
3647 /* free_pages may go negative - that's OK */
3648 free_pages -= __zone_watermark_unusable_free(z, order, alloc_flags);
3649
3650 if (alloc_flags & ALLOC_HIGH)
3651 min -= min / 2;
3652
3653 if (unlikely(alloc_harder)) {
3654 /*
3655 * OOM victims can try even harder than normal ALLOC_HARDER
3656 * users on the grounds that it's definitely going to be in
3657 * the exit path shortly and free memory. Any allocation it
3658 * makes during the free path will be small and short-lived.
3659 */
3660 if (alloc_flags & ALLOC_OOM)
3661 min -= min / 2;
3662 else
3663 min -= min / 4;
3664 }
3665
3666 /*
3667 * Check watermarks for an order-0 allocation request. If these
3668 * are not met, then a high-order request also cannot go ahead
3669 * even if a suitable page happened to be free.
3670 */
3671 if (free_pages <= min + z->lowmem_reserve[highest_zoneidx])
3672 return false;
3673
3674 /* If this is an order-0 request then the watermark is fine */
3675 if (!order)
3676 return true;
3677
3678 /* For a high-order request, check at least one suitable page is free */
3679 for (o = order; o < MAX_ORDER; o++) {
3680 struct free_area *area = &z->free_area[o];
3681 int mt;
3682
3683 if (!area->nr_free)
3684 continue;
3685
3686 for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
3687 if (!free_area_empty(area, mt))
3688 return true;
3689 }
3690
3691 #ifdef CONFIG_CMA
3692 if ((alloc_flags & ALLOC_CMA) &&
3693 !free_area_empty(area, MIGRATE_CMA)) {
3694 return true;
3695 }
3696 #endif
3697 if (alloc_harder && !free_area_empty(area, MIGRATE_HIGHATOMIC))
3698 return true;
3699 }
3700 return false;
3701 }
3702
3703 bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3704 int highest_zoneidx, unsigned int alloc_flags)
3705 {
3706 return __zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags,
3707 zone_page_state(z, NR_FREE_PAGES));
3708 }
3709
3710 static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
3711 unsigned long mark, int highest_zoneidx,
3712 unsigned int alloc_flags, gfp_t gfp_mask)
3713 {
3714 long free_pages;
3715
3716 free_pages = zone_page_state(z, NR_FREE_PAGES);
3717
3718 /*
3719 * Fast check for order-0 only. If this fails then the reserves
3720 * need to be calculated.
3721 */
3722 if (!order) {
3723 long fast_free;
3724
3725 fast_free = free_pages;
3726 fast_free -= __zone_watermark_unusable_free(z, 0, alloc_flags);
3727 if (fast_free > mark + z->lowmem_reserve[highest_zoneidx])
3728 return true;
3729 }
3730
3731 if (__zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags,
3732 free_pages))
3733 return true;
3734 /*
3735 * Ignore watermark boosting for GFP_ATOMIC order-0 allocations
3736 * when checking the min watermark. The min watermark is the
3737 * point where boosting is ignored so that kswapd is woken up
3738 * when below the low watermark.
3739 */
3740 if (unlikely(!order && (gfp_mask & __GFP_ATOMIC) && z->watermark_boost
3741 && ((alloc_flags & ALLOC_WMARK_MASK) == WMARK_MIN))) {
3742 mark = z->_watermark[WMARK_MIN];
3743 return __zone_watermark_ok(z, order, mark, highest_zoneidx,
3744 alloc_flags, free_pages);
3745 }
3746
3747 return false;
3748 }
3749
3750 bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
3751 unsigned long mark, int highest_zoneidx)
3752 {
3753 long free_pages = zone_page_state(z, NR_FREE_PAGES);
3754
3755 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
3756 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
3757
3758 return __zone_watermark_ok(z, order, mark, highest_zoneidx, 0,
3759 free_pages);
3760 }
3761
3762 #ifdef CONFIG_NUMA
3763 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3764 {
3765 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <=
3766 node_reclaim_distance;
3767 }
3768 #else /* CONFIG_NUMA */
3769 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3770 {
3771 return true;
3772 }
3773 #endif /* CONFIG_NUMA */
3774
3775 /*
3776 * The restriction on ZONE_DMA32 as being a suitable zone to use to avoid
3777 * fragmentation is subtle. If the preferred zone was HIGHMEM then
3778 * premature use of a lower zone may cause lowmem pressure problems that
3779 * are worse than fragmentation. If the next zone is ZONE_DMA then it is
3780 * probably too small. It only makes sense to spread allocations to avoid
3781 * fragmentation between the Normal and DMA32 zones.
3782 */
3783 static inline unsigned int
3784 alloc_flags_nofragment(struct zone *zone, gfp_t gfp_mask)
3785 {
3786 unsigned int alloc_flags;
3787
3788 /*
3789 * __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
3790 * to save a branch.
3791 */
3792 alloc_flags = (__force int) (gfp_mask & __GFP_KSWAPD_RECLAIM);
3793
3794 #ifdef CONFIG_ZONE_DMA32
3795 if (!zone)
3796 return alloc_flags;
3797
3798 if (zone_idx(zone) != ZONE_NORMAL)
3799 return alloc_flags;
3800
3801 /*
3802 * If ZONE_DMA32 exists, assume it is the one after ZONE_NORMAL and
3803 * the pointer is within zone->zone_pgdat->node_zones[]. Also assume
3804 * on UMA that if Normal is populated then so is DMA32.
3805 */
3806 BUILD_BUG_ON(ZONE_NORMAL - ZONE_DMA32 != 1);
3807 if (nr_online_nodes > 1 && !populated_zone(--zone))
3808 return alloc_flags;
3809
3810 alloc_flags |= ALLOC_NOFRAGMENT;
3811 #endif /* CONFIG_ZONE_DMA32 */
3812 return alloc_flags;
3813 }
3814
3815 static inline unsigned int current_alloc_flags(gfp_t gfp_mask,
3816 unsigned int alloc_flags)
3817 {
3818 #ifdef CONFIG_CMA
3819 unsigned int pflags = current->flags;
3820
3821 if (!(pflags & PF_MEMALLOC_NOCMA) &&
3822 gfp_migratetype(gfp_mask) == MIGRATE_MOVABLE)
3823 alloc_flags |= ALLOC_CMA;
3824
3825 #endif
3826 return alloc_flags;
3827 }
3828
3829 /*
3830 * get_page_from_freelist goes through the zonelist trying to allocate
3831 * a page.
3832 */
3833 static struct page *
3834 get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
3835 const struct alloc_context *ac)
3836 {
3837 struct zoneref *z;
3838 struct zone *zone;
3839 struct pglist_data *last_pgdat_dirty_limit = NULL;
3840 bool no_fallback;
3841
3842 retry:
3843 /*
3844 * Scan zonelist, looking for a zone with enough free.
3845 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
3846 */
3847 no_fallback = alloc_flags & ALLOC_NOFRAGMENT;
3848 z = ac->preferred_zoneref;
3849 for_next_zone_zonelist_nodemask(zone, z, ac->highest_zoneidx,
3850 ac->nodemask) {
3851 struct page *page;
3852 unsigned long mark;
3853
3854 if (cpusets_enabled() &&
3855 (alloc_flags & ALLOC_CPUSET) &&
3856 !__cpuset_zone_allowed(zone, gfp_mask))
3857 continue;
3858 /*
3859 * When allocating a page cache page for writing, we
3860 * want to get it from a node that is within its dirty
3861 * limit, such that no single node holds more than its
3862 * proportional share of globally allowed dirty pages.
3863 * The dirty limits take into account the node's
3864 * lowmem reserves and high watermark so that kswapd
3865 * should be able to balance it without having to
3866 * write pages from its LRU list.
3867 *
3868 * XXX: For now, allow allocations to potentially
3869 * exceed the per-node dirty limit in the slowpath
3870 * (spread_dirty_pages unset) before going into reclaim,
3871 * which is important when on a NUMA setup the allowed
3872 * nodes are together not big enough to reach the
3873 * global limit. The proper fix for these situations
3874 * will require awareness of nodes in the
3875 * dirty-throttling and the flusher threads.
3876 */
3877 if (ac->spread_dirty_pages) {
3878 if (last_pgdat_dirty_limit == zone->zone_pgdat)
3879 continue;
3880
3881 if (!node_dirty_ok(zone->zone_pgdat)) {
3882 last_pgdat_dirty_limit = zone->zone_pgdat;
3883 continue;
3884 }
3885 }
3886
3887 if (no_fallback && nr_online_nodes > 1 &&
3888 zone != ac->preferred_zoneref->zone) {
3889 int local_nid;
3890
3891 /*
3892 * If moving to a remote node, retry but allow
3893 * fragmenting fallbacks. Locality is more important
3894 * than fragmentation avoidance.
3895 */
3896 local_nid = zone_to_nid(ac->preferred_zoneref->zone);
3897 if (zone_to_nid(zone) != local_nid) {
3898 alloc_flags &= ~ALLOC_NOFRAGMENT;
3899 goto retry;
3900 }
3901 }
3902
3903 mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK);
3904 if (!zone_watermark_fast(zone, order, mark,
3905 ac->highest_zoneidx, alloc_flags,
3906 gfp_mask)) {
3907 int ret;
3908
3909 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
3910 /*
3911 * Watermark failed for this zone, but see if we can
3912 * grow this zone if it contains deferred pages.
3913 */
3914 if (static_branch_unlikely(&deferred_pages)) {
3915 if (_deferred_grow_zone(zone, order))
3916 goto try_this_zone;
3917 }
3918 #endif
3919 /* Checked here to keep the fast path fast */
3920 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
3921 if (alloc_flags & ALLOC_NO_WATERMARKS)
3922 goto try_this_zone;
3923
3924 if (node_reclaim_mode == 0 ||
3925 !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
3926 continue;
3927
3928 ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
3929 switch (ret) {
3930 case NODE_RECLAIM_NOSCAN:
3931 /* did not scan */
3932 continue;
3933 case NODE_RECLAIM_FULL:
3934 /* scanned but unreclaimable */
3935 continue;
3936 default:
3937 /* did we reclaim enough */
3938 if (zone_watermark_ok(zone, order, mark,
3939 ac->highest_zoneidx, alloc_flags))
3940 goto try_this_zone;
3941
3942 continue;
3943 }
3944 }
3945
3946 try_this_zone:
3947 page = rmqueue(ac->preferred_zoneref->zone, zone, order,
3948 gfp_mask, alloc_flags, ac->migratetype);
3949 if (page) {
3950 prep_new_page(page, order, gfp_mask, alloc_flags);
3951
3952 /*
3953 * If this is a high-order atomic allocation then check
3954 * if the pageblock should be reserved for the future
3955 */
3956 if (unlikely(order && (alloc_flags & ALLOC_HARDER)))
3957 reserve_highatomic_pageblock(page, zone, order);
3958
3959 return page;
3960 } else {
3961 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
3962 /* Try again if zone has deferred pages */
3963 if (static_branch_unlikely(&deferred_pages)) {
3964 if (_deferred_grow_zone(zone, order))
3965 goto try_this_zone;
3966 }
3967 #endif
3968 }
3969 }
3970
3971 /*
3972 * It's possible on a UMA machine to get through all zones that are
3973 * fragmented. If avoiding fragmentation, reset and try again.
3974 */
3975 if (no_fallback) {
3976 alloc_flags &= ~ALLOC_NOFRAGMENT;
3977 goto retry;
3978 }
3979
3980 return NULL;
3981 }
3982
3983 static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask)
3984 {
3985 unsigned int filter = SHOW_MEM_FILTER_NODES;
3986
3987 /*
3988 * This documents exceptions given to allocations in certain
3989 * contexts that are allowed to allocate outside current's set
3990 * of allowed nodes.
3991 */
3992 if (!(gfp_mask & __GFP_NOMEMALLOC))
3993 if (tsk_is_oom_victim(current) ||
3994 (current->flags & (PF_MEMALLOC | PF_EXITING)))
3995 filter &= ~SHOW_MEM_FILTER_NODES;
3996 if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
3997 filter &= ~SHOW_MEM_FILTER_NODES;
3998
3999 show_mem(filter, nodemask);
4000 }
4001
4002 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...)
4003 {
4004 struct va_format vaf;
4005 va_list args;
4006 static DEFINE_RATELIMIT_STATE(nopage_rs, 10*HZ, 1);
4007
4008 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs))
4009 return;
4010
4011 va_start(args, fmt);
4012 vaf.fmt = fmt;
4013 vaf.va = &args;
4014 pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl",
4015 current->comm, &vaf, gfp_mask, &gfp_mask,
4016 nodemask_pr_args(nodemask));
4017 va_end(args);
4018
4019 cpuset_print_current_mems_allowed();
4020 pr_cont("\n");
4021 dump_stack();
4022 warn_alloc_show_mem(gfp_mask, nodemask);
4023 }
4024
4025 static inline struct page *
4026 __alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order,
4027 unsigned int alloc_flags,
4028 const struct alloc_context *ac)
4029 {
4030 struct page *page;
4031
4032 page = get_page_from_freelist(gfp_mask, order,
4033 alloc_flags|ALLOC_CPUSET, ac);
4034 /*
4035 * fallback to ignore cpuset restriction if our nodes
4036 * are depleted
4037 */
4038 if (!page)
4039 page = get_page_from_freelist(gfp_mask, order,
4040 alloc_flags, ac);
4041
4042 return page;
4043 }
4044
4045 static inline struct page *
4046 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
4047 const struct alloc_context *ac, unsigned long *did_some_progress)
4048 {
4049 struct oom_control oc = {
4050 .zonelist = ac->zonelist,
4051 .nodemask = ac->nodemask,
4052 .memcg = NULL,
4053 .gfp_mask = gfp_mask,
4054 .order = order,
4055 };
4056 struct page *page;
4057
4058 *did_some_progress = 0;
4059
4060 /*
4061 * Acquire the oom lock. If that fails, somebody else is
4062 * making progress for us.
4063 */
4064 if (!mutex_trylock(&oom_lock)) {
4065 *did_some_progress = 1;
4066 schedule_timeout_uninterruptible(1);
4067 return NULL;
4068 }
4069
4070 /*
4071 * Go through the zonelist yet one more time, keep very high watermark
4072 * here, this is only to catch a parallel oom killing, we must fail if
4073 * we're still under heavy pressure. But make sure that this reclaim
4074 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY
4075 * allocation which will never fail due to oom_lock already held.
4076 */
4077 page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) &
4078 ~__GFP_DIRECT_RECLAIM, order,
4079 ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
4080 if (page)
4081 goto out;
4082
4083 /* Coredumps can quickly deplete all memory reserves */
4084 if (current->flags & PF_DUMPCORE)
4085 goto out;
4086 /* The OOM killer will not help higher order allocs */
4087 if (order > PAGE_ALLOC_COSTLY_ORDER)
4088 goto out;
4089 /*
4090 * We have already exhausted all our reclaim opportunities without any
4091 * success so it is time to admit defeat. We will skip the OOM killer
4092 * because it is very likely that the caller has a more reasonable
4093 * fallback than shooting a random task.
4094 *
4095 * The OOM killer may not free memory on a specific node.
4096 */
4097 if (gfp_mask & (__GFP_RETRY_MAYFAIL | __GFP_THISNODE))
4098 goto out;
4099 /* The OOM killer does not needlessly kill tasks for lowmem */
4100 if (ac->highest_zoneidx < ZONE_NORMAL)
4101 goto out;
4102 if (pm_suspended_storage())
4103 goto out;
4104 /*
4105 * XXX: GFP_NOFS allocations should rather fail than rely on
4106 * other request to make a forward progress.
4107 * We are in an unfortunate situation where out_of_memory cannot
4108 * do much for this context but let's try it to at least get
4109 * access to memory reserved if the current task is killed (see
4110 * out_of_memory). Once filesystems are ready to handle allocation
4111 * failures more gracefully we should just bail out here.
4112 */
4113
4114 /* Exhausted what can be done so it's blame time */
4115 if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
4116 *did_some_progress = 1;
4117
4118 /*
4119 * Help non-failing allocations by giving them access to memory
4120 * reserves
4121 */
4122 if (gfp_mask & __GFP_NOFAIL)
4123 page = __alloc_pages_cpuset_fallback(gfp_mask, order,
4124 ALLOC_NO_WATERMARKS, ac);
4125 }
4126 out:
4127 mutex_unlock(&oom_lock);
4128 return page;
4129 }
4130
4131 /*
4132 * Maximum number of compaction retries wit a progress before OOM
4133 * killer is consider as the only way to move forward.
4134 */
4135 #define MAX_COMPACT_RETRIES 16
4136
4137 #ifdef CONFIG_COMPACTION
4138 /* Try memory compaction for high-order allocations before reclaim */
4139 static struct page *
4140 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
4141 unsigned int alloc_flags, const struct alloc_context *ac,
4142 enum compact_priority prio, enum compact_result *compact_result)
4143 {
4144 struct page *page = NULL;
4145 unsigned long pflags;
4146 unsigned int noreclaim_flag;
4147
4148 if (!order)
4149 return NULL;
4150
4151 psi_memstall_enter(&pflags);
4152 noreclaim_flag = memalloc_noreclaim_save();
4153
4154 *compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
4155 prio, &page);
4156
4157 memalloc_noreclaim_restore(noreclaim_flag);
4158 psi_memstall_leave(&pflags);
4159
4160 /*
4161 * At least in one zone compaction wasn't deferred or skipped, so let's
4162 * count a compaction stall
4163 */
4164 count_vm_event(COMPACTSTALL);
4165
4166 /* Prep a captured page if available */
4167 if (page)
4168 prep_new_page(page, order, gfp_mask, alloc_flags);
4169
4170 /* Try get a page from the freelist if available */
4171 if (!page)
4172 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4173
4174 if (page) {
4175 struct zone *zone = page_zone(page);
4176
4177 zone->compact_blockskip_flush = false;
4178 compaction_defer_reset(zone, order, true);
4179 count_vm_event(COMPACTSUCCESS);
4180 return page;
4181 }
4182
4183 /*
4184 * It's bad if compaction run occurs and fails. The most likely reason
4185 * is that pages exist, but not enough to satisfy watermarks.
4186 */
4187 count_vm_event(COMPACTFAIL);
4188
4189 cond_resched();
4190
4191 return NULL;
4192 }
4193
4194 static inline bool
4195 should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
4196 enum compact_result compact_result,
4197 enum compact_priority *compact_priority,
4198 int *compaction_retries)
4199 {
4200 int max_retries = MAX_COMPACT_RETRIES;
4201 int min_priority;
4202 bool ret = false;
4203 int retries = *compaction_retries;
4204 enum compact_priority priority = *compact_priority;
4205
4206 if (!order)
4207 return false;
4208
4209 if (compaction_made_progress(compact_result))
4210 (*compaction_retries)++;
4211
4212 /*
4213 * compaction considers all the zone as desperately out of memory
4214 * so it doesn't really make much sense to retry except when the
4215 * failure could be caused by insufficient priority
4216 */
4217 if (compaction_failed(compact_result))
4218 goto check_priority;
4219
4220 /*
4221 * compaction was skipped because there are not enough order-0 pages
4222 * to work with, so we retry only if it looks like reclaim can help.
4223 */
4224 if (compaction_needs_reclaim(compact_result)) {
4225 ret = compaction_zonelist_suitable(ac, order, alloc_flags);
4226 goto out;
4227 }
4228
4229 /*
4230 * make sure the compaction wasn't deferred or didn't bail out early
4231 * due to locks contention before we declare that we should give up.
4232 * But the next retry should use a higher priority if allowed, so
4233 * we don't just keep bailing out endlessly.
4234 */
4235 if (compaction_withdrawn(compact_result)) {
4236 goto check_priority;
4237 }
4238
4239 /*
4240 * !costly requests are much more important than __GFP_RETRY_MAYFAIL
4241 * costly ones because they are de facto nofail and invoke OOM
4242 * killer to move on while costly can fail and users are ready
4243 * to cope with that. 1/4 retries is rather arbitrary but we
4244 * would need much more detailed feedback from compaction to
4245 * make a better decision.
4246 */
4247 if (order > PAGE_ALLOC_COSTLY_ORDER)
4248 max_retries /= 4;
4249 if (*compaction_retries <= max_retries) {
4250 ret = true;
4251 goto out;
4252 }
4253
4254 /*
4255 * Make sure there are attempts at the highest priority if we exhausted
4256 * all retries or failed at the lower priorities.
4257 */
4258 check_priority:
4259 min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ?
4260 MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY;
4261
4262 if (*compact_priority > min_priority) {
4263 (*compact_priority)--;
4264 *compaction_retries = 0;
4265 ret = true;
4266 }
4267 out:
4268 trace_compact_retry(order, priority, compact_result, retries, max_retries, ret);
4269 return ret;
4270 }
4271 #else
4272 static inline struct page *
4273 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
4274 unsigned int alloc_flags, const struct alloc_context *ac,
4275 enum compact_priority prio, enum compact_result *compact_result)
4276 {
4277 *compact_result = COMPACT_SKIPPED;
4278 return NULL;
4279 }
4280
4281 static inline bool
4282 should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
4283 enum compact_result compact_result,
4284 enum compact_priority *compact_priority,
4285 int *compaction_retries)
4286 {
4287 struct zone *zone;
4288 struct zoneref *z;
4289
4290 if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
4291 return false;
4292
4293 /*
4294 * There are setups with compaction disabled which would prefer to loop
4295 * inside the allocator rather than hit the oom killer prematurely.
4296 * Let's give them a good hope and keep retrying while the order-0
4297 * watermarks are OK.
4298 */
4299 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
4300 ac->highest_zoneidx, ac->nodemask) {
4301 if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
4302 ac->highest_zoneidx, alloc_flags))
4303 return true;
4304 }
4305 return false;
4306 }
4307 #endif /* CONFIG_COMPACTION */
4308
4309 #ifdef CONFIG_LOCKDEP
4310 static struct lockdep_map __fs_reclaim_map =
4311 STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map);
4312
4313 static bool __need_reclaim(gfp_t gfp_mask)
4314 {
4315 /* no reclaim without waiting on it */
4316 if (!(gfp_mask & __GFP_DIRECT_RECLAIM))
4317 return false;
4318
4319 /* this guy won't enter reclaim */
4320 if (current->flags & PF_MEMALLOC)
4321 return false;
4322
4323 if (gfp_mask & __GFP_NOLOCKDEP)
4324 return false;
4325
4326 return true;
4327 }
4328
4329 void __fs_reclaim_acquire(void)
4330 {
4331 lock_map_acquire(&__fs_reclaim_map);
4332 }
4333
4334 void __fs_reclaim_release(void)
4335 {
4336 lock_map_release(&__fs_reclaim_map);
4337 }
4338
4339 void fs_reclaim_acquire(gfp_t gfp_mask)
4340 {
4341 gfp_mask = current_gfp_context(gfp_mask);
4342
4343 if (__need_reclaim(gfp_mask)) {
4344 if (gfp_mask & __GFP_FS)
4345 __fs_reclaim_acquire();
4346
4347 #ifdef CONFIG_MMU_NOTIFIER
4348 lock_map_acquire(&__mmu_notifier_invalidate_range_start_map);
4349 lock_map_release(&__mmu_notifier_invalidate_range_start_map);
4350 #endif
4351
4352 }
4353 }
4354 EXPORT_SYMBOL_GPL(fs_reclaim_acquire);
4355
4356 void fs_reclaim_release(gfp_t gfp_mask)
4357 {
4358 gfp_mask = current_gfp_context(gfp_mask);
4359
4360 if (__need_reclaim(gfp_mask)) {
4361 if (gfp_mask & __GFP_FS)
4362 __fs_reclaim_release();
4363 }
4364 }
4365 EXPORT_SYMBOL_GPL(fs_reclaim_release);
4366 #endif
4367
4368 /* Perform direct synchronous page reclaim */
4369 static unsigned long
4370 __perform_reclaim(gfp_t gfp_mask, unsigned int order,
4371 const struct alloc_context *ac)
4372 {
4373 unsigned int noreclaim_flag;
4374 unsigned long pflags, progress;
4375
4376 cond_resched();
4377
4378 /* We now go into synchronous reclaim */
4379 cpuset_memory_pressure_bump();
4380 psi_memstall_enter(&pflags);
4381 fs_reclaim_acquire(gfp_mask);
4382 noreclaim_flag = memalloc_noreclaim_save();
4383
4384 progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
4385 ac->nodemask);
4386
4387 memalloc_noreclaim_restore(noreclaim_flag);
4388 fs_reclaim_release(gfp_mask);
4389 psi_memstall_leave(&pflags);
4390
4391 cond_resched();
4392
4393 return progress;
4394 }
4395
4396 /* The really slow allocator path where we enter direct reclaim */
4397 static inline struct page *
4398 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
4399 unsigned int alloc_flags, const struct alloc_context *ac,
4400 unsigned long *did_some_progress)
4401 {
4402 struct page *page = NULL;
4403 bool drained = false;
4404
4405 *did_some_progress = __perform_reclaim(gfp_mask, order, ac);
4406 if (unlikely(!(*did_some_progress)))
4407 return NULL;
4408
4409 retry:
4410 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4411
4412 /*
4413 * If an allocation failed after direct reclaim, it could be because
4414 * pages are pinned on the per-cpu lists or in high alloc reserves.
4415 * Shrink them and try again
4416 */
4417 if (!page && !drained) {
4418 unreserve_highatomic_pageblock(ac, false);
4419 drain_all_pages(NULL);
4420 drained = true;
4421 goto retry;
4422 }
4423
4424 return page;
4425 }
4426
4427 static void wake_all_kswapds(unsigned int order, gfp_t gfp_mask,
4428 const struct alloc_context *ac)
4429 {
4430 struct zoneref *z;
4431 struct zone *zone;
4432 pg_data_t *last_pgdat = NULL;
4433 enum zone_type highest_zoneidx = ac->highest_zoneidx;
4434
4435 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, highest_zoneidx,
4436 ac->nodemask) {
4437 if (last_pgdat != zone->zone_pgdat)
4438 wakeup_kswapd(zone, gfp_mask, order, highest_zoneidx);
4439 last_pgdat = zone->zone_pgdat;
4440 }
4441 }
4442
4443 static inline unsigned int
4444 gfp_to_alloc_flags(gfp_t gfp_mask)
4445 {
4446 unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
4447
4448 /*
4449 * __GFP_HIGH is assumed to be the same as ALLOC_HIGH
4450 * and __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
4451 * to save two branches.
4452 */
4453 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
4454 BUILD_BUG_ON(__GFP_KSWAPD_RECLAIM != (__force gfp_t) ALLOC_KSWAPD);
4455
4456 /*
4457 * The caller may dip into page reserves a bit more if the caller
4458 * cannot run direct reclaim, or if the caller has realtime scheduling
4459 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
4460 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
4461 */
4462 alloc_flags |= (__force int)
4463 (gfp_mask & (__GFP_HIGH | __GFP_KSWAPD_RECLAIM));
4464
4465 if (gfp_mask & __GFP_ATOMIC) {
4466 /*
4467 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
4468 * if it can't schedule.
4469 */
4470 if (!(gfp_mask & __GFP_NOMEMALLOC))
4471 alloc_flags |= ALLOC_HARDER;
4472 /*
4473 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
4474 * comment for __cpuset_node_allowed().
4475 */
4476 alloc_flags &= ~ALLOC_CPUSET;
4477 } else if (unlikely(rt_task(current)) && !in_interrupt())
4478 alloc_flags |= ALLOC_HARDER;
4479
4480 alloc_flags = current_alloc_flags(gfp_mask, alloc_flags);
4481
4482 return alloc_flags;
4483 }
4484
4485 static bool oom_reserves_allowed(struct task_struct *tsk)
4486 {
4487 if (!tsk_is_oom_victim(tsk))
4488 return false;
4489
4490 /*
4491 * !MMU doesn't have oom reaper so give access to memory reserves
4492 * only to the thread with TIF_MEMDIE set
4493 */
4494 if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE))
4495 return false;
4496
4497 return true;
4498 }
4499
4500 /*
4501 * Distinguish requests which really need access to full memory
4502 * reserves from oom victims which can live with a portion of it
4503 */
4504 static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask)
4505 {
4506 if (unlikely(gfp_mask & __GFP_NOMEMALLOC))
4507 return 0;
4508 if (gfp_mask & __GFP_MEMALLOC)
4509 return ALLOC_NO_WATERMARKS;
4510 if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
4511 return ALLOC_NO_WATERMARKS;
4512 if (!in_interrupt()) {
4513 if (current->flags & PF_MEMALLOC)
4514 return ALLOC_NO_WATERMARKS;
4515 else if (oom_reserves_allowed(current))
4516 return ALLOC_OOM;
4517 }
4518
4519 return 0;
4520 }
4521
4522 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
4523 {
4524 return !!__gfp_pfmemalloc_flags(gfp_mask);
4525 }
4526
4527 /*
4528 * Checks whether it makes sense to retry the reclaim to make a forward progress
4529 * for the given allocation request.
4530 *
4531 * We give up when we either have tried MAX_RECLAIM_RETRIES in a row
4532 * without success, or when we couldn't even meet the watermark if we
4533 * reclaimed all remaining pages on the LRU lists.
4534 *
4535 * Returns true if a retry is viable or false to enter the oom path.
4536 */
4537 static inline bool
4538 should_reclaim_retry(gfp_t gfp_mask, unsigned order,
4539 struct alloc_context *ac, int alloc_flags,
4540 bool did_some_progress, int *no_progress_loops)
4541 {
4542 struct zone *zone;
4543 struct zoneref *z;
4544 bool ret = false;
4545
4546 /*
4547 * Costly allocations might have made a progress but this doesn't mean
4548 * their order will become available due to high fragmentation so
4549 * always increment the no progress counter for them
4550 */
4551 if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
4552 *no_progress_loops = 0;
4553 else
4554 (*no_progress_loops)++;
4555
4556 /*
4557 * Make sure we converge to OOM if we cannot make any progress
4558 * several times in the row.
4559 */
4560 if (*no_progress_loops > MAX_RECLAIM_RETRIES) {
4561 /* Before OOM, exhaust highatomic_reserve */
4562 return unreserve_highatomic_pageblock(ac, true);
4563 }
4564
4565 /*
4566 * Keep reclaiming pages while there is a chance this will lead
4567 * somewhere. If none of the target zones can satisfy our allocation
4568 * request even if all reclaimable pages are considered then we are
4569 * screwed and have to go OOM.
4570 */
4571 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
4572 ac->highest_zoneidx, ac->nodemask) {
4573 unsigned long available;
4574 unsigned long reclaimable;
4575 unsigned long min_wmark = min_wmark_pages(zone);
4576 bool wmark;
4577
4578 available = reclaimable = zone_reclaimable_pages(zone);
4579 available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
4580
4581 /*
4582 * Would the allocation succeed if we reclaimed all
4583 * reclaimable pages?
4584 */
4585 wmark = __zone_watermark_ok(zone, order, min_wmark,
4586 ac->highest_zoneidx, alloc_flags, available);
4587 trace_reclaim_retry_zone(z, order, reclaimable,
4588 available, min_wmark, *no_progress_loops, wmark);
4589 if (wmark) {
4590 /*
4591 * If we didn't make any progress and have a lot of
4592 * dirty + writeback pages then we should wait for
4593 * an IO to complete to slow down the reclaim and
4594 * prevent from pre mature OOM
4595 */
4596 if (!did_some_progress) {
4597 unsigned long write_pending;
4598
4599 write_pending = zone_page_state_snapshot(zone,
4600 NR_ZONE_WRITE_PENDING);
4601
4602 if (2 * write_pending > reclaimable) {
4603 congestion_wait(BLK_RW_ASYNC, HZ/10);
4604 return true;
4605 }
4606 }
4607
4608 ret = true;
4609 goto out;
4610 }
4611 }
4612
4613 out:
4614 /*
4615 * Memory allocation/reclaim might be called from a WQ context and the
4616 * current implementation of the WQ concurrency control doesn't
4617 * recognize that a particular WQ is congested if the worker thread is
4618 * looping without ever sleeping. Therefore we have to do a short sleep
4619 * here rather than calling cond_resched().
4620 */
4621 if (current->flags & PF_WQ_WORKER)
4622 schedule_timeout_uninterruptible(1);
4623 else
4624 cond_resched();
4625 return ret;
4626 }
4627
4628 static inline bool
4629 check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac)
4630 {
4631 /*
4632 * It's possible that cpuset's mems_allowed and the nodemask from
4633 * mempolicy don't intersect. This should be normally dealt with by
4634 * policy_nodemask(), but it's possible to race with cpuset update in
4635 * such a way the check therein was true, and then it became false
4636 * before we got our cpuset_mems_cookie here.
4637 * This assumes that for all allocations, ac->nodemask can come only
4638 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored
4639 * when it does not intersect with the cpuset restrictions) or the
4640 * caller can deal with a violated nodemask.
4641 */
4642 if (cpusets_enabled() && ac->nodemask &&
4643 !cpuset_nodemask_valid_mems_allowed(ac->nodemask)) {
4644 ac->nodemask = NULL;
4645 return true;
4646 }
4647
4648 /*
4649 * When updating a task's mems_allowed or mempolicy nodemask, it is
4650 * possible to race with parallel threads in such a way that our
4651 * allocation can fail while the mask is being updated. If we are about
4652 * to fail, check if the cpuset changed during allocation and if so,
4653 * retry.
4654 */
4655 if (read_mems_allowed_retry(cpuset_mems_cookie))
4656 return true;
4657
4658 return false;
4659 }
4660
4661 static inline struct page *
4662 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
4663 struct alloc_context *ac)
4664 {
4665 bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
4666 const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER;
4667 struct page *page = NULL;
4668 unsigned int alloc_flags;
4669 unsigned long did_some_progress;
4670 enum compact_priority compact_priority;
4671 enum compact_result compact_result;
4672 int compaction_retries;
4673 int no_progress_loops;
4674 unsigned int cpuset_mems_cookie;
4675 int reserve_flags;
4676
4677 /*
4678 * We also sanity check to catch abuse of atomic reserves being used by
4679 * callers that are not in atomic context.
4680 */
4681 if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) ==
4682 (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)))
4683 gfp_mask &= ~__GFP_ATOMIC;
4684
4685 retry_cpuset:
4686 compaction_retries = 0;
4687 no_progress_loops = 0;
4688 compact_priority = DEF_COMPACT_PRIORITY;
4689 cpuset_mems_cookie = read_mems_allowed_begin();
4690
4691 /*
4692 * The fast path uses conservative alloc_flags to succeed only until
4693 * kswapd needs to be woken up, and to avoid the cost of setting up
4694 * alloc_flags precisely. So we do that now.
4695 */
4696 alloc_flags = gfp_to_alloc_flags(gfp_mask);
4697
4698 /*
4699 * We need to recalculate the starting point for the zonelist iterator
4700 * because we might have used different nodemask in the fast path, or
4701 * there was a cpuset modification and we are retrying - otherwise we
4702 * could end up iterating over non-eligible zones endlessly.
4703 */
4704 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4705 ac->highest_zoneidx, ac->nodemask);
4706 if (!ac->preferred_zoneref->zone)
4707 goto nopage;
4708
4709 if (alloc_flags & ALLOC_KSWAPD)
4710 wake_all_kswapds(order, gfp_mask, ac);
4711
4712 /*
4713 * The adjusted alloc_flags might result in immediate success, so try
4714 * that first
4715 */
4716 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4717 if (page)
4718 goto got_pg;
4719
4720 /*
4721 * For costly allocations, try direct compaction first, as it's likely
4722 * that we have enough base pages and don't need to reclaim. For non-
4723 * movable high-order allocations, do that as well, as compaction will
4724 * try prevent permanent fragmentation by migrating from blocks of the
4725 * same migratetype.
4726 * Don't try this for allocations that are allowed to ignore
4727 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen.
4728 */
4729 if (can_direct_reclaim &&
4730 (costly_order ||
4731 (order > 0 && ac->migratetype != MIGRATE_MOVABLE))
4732 && !gfp_pfmemalloc_allowed(gfp_mask)) {
4733 page = __alloc_pages_direct_compact(gfp_mask, order,
4734 alloc_flags, ac,
4735 INIT_COMPACT_PRIORITY,
4736 &compact_result);
4737 if (page)
4738 goto got_pg;
4739
4740 /*
4741 * Checks for costly allocations with __GFP_NORETRY, which
4742 * includes some THP page fault allocations
4743 */
4744 if (costly_order && (gfp_mask & __GFP_NORETRY)) {
4745 /*
4746 * If allocating entire pageblock(s) and compaction
4747 * failed because all zones are below low watermarks
4748 * or is prohibited because it recently failed at this
4749 * order, fail immediately unless the allocator has
4750 * requested compaction and reclaim retry.
4751 *
4752 * Reclaim is
4753 * - potentially very expensive because zones are far
4754 * below their low watermarks or this is part of very
4755 * bursty high order allocations,
4756 * - not guaranteed to help because isolate_freepages()
4757 * may not iterate over freed pages as part of its
4758 * linear scan, and
4759 * - unlikely to make entire pageblocks free on its
4760 * own.
4761 */
4762 if (compact_result == COMPACT_SKIPPED ||
4763 compact_result == COMPACT_DEFERRED)
4764 goto nopage;
4765
4766 /*
4767 * Looks like reclaim/compaction is worth trying, but
4768 * sync compaction could be very expensive, so keep
4769 * using async compaction.
4770 */
4771 compact_priority = INIT_COMPACT_PRIORITY;
4772 }
4773 }
4774
4775 retry:
4776 /* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
4777 if (alloc_flags & ALLOC_KSWAPD)
4778 wake_all_kswapds(order, gfp_mask, ac);
4779
4780 reserve_flags = __gfp_pfmemalloc_flags(gfp_mask);
4781 if (reserve_flags)
4782 alloc_flags = current_alloc_flags(gfp_mask, reserve_flags);
4783
4784 /*
4785 * Reset the nodemask and zonelist iterators if memory policies can be
4786 * ignored. These allocations are high priority and system rather than
4787 * user oriented.
4788 */
4789 if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) {
4790 ac->nodemask = NULL;
4791 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4792 ac->highest_zoneidx, ac->nodemask);
4793 }
4794
4795 /* Attempt with potentially adjusted zonelist and alloc_flags */
4796 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4797 if (page)
4798 goto got_pg;
4799
4800 /* Caller is not willing to reclaim, we can't balance anything */
4801 if (!can_direct_reclaim)
4802 goto nopage;
4803
4804 /* Avoid recursion of direct reclaim */
4805 if (current->flags & PF_MEMALLOC)
4806 goto nopage;
4807
4808 /* Try direct reclaim and then allocating */
4809 page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
4810 &did_some_progress);
4811 if (page)
4812 goto got_pg;
4813
4814 /* Try direct compaction and then allocating */
4815 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
4816 compact_priority, &compact_result);
4817 if (page)
4818 goto got_pg;
4819
4820 /* Do not loop if specifically requested */
4821 if (gfp_mask & __GFP_NORETRY)
4822 goto nopage;
4823
4824 /*
4825 * Do not retry costly high order allocations unless they are
4826 * __GFP_RETRY_MAYFAIL
4827 */
4828 if (costly_order && !(gfp_mask & __GFP_RETRY_MAYFAIL))
4829 goto nopage;
4830
4831 if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
4832 did_some_progress > 0, &no_progress_loops))
4833 goto retry;
4834
4835 /*
4836 * It doesn't make any sense to retry for the compaction if the order-0
4837 * reclaim is not able to make any progress because the current
4838 * implementation of the compaction depends on the sufficient amount
4839 * of free memory (see __compaction_suitable)
4840 */
4841 if (did_some_progress > 0 &&
4842 should_compact_retry(ac, order, alloc_flags,
4843 compact_result, &compact_priority,
4844 &compaction_retries))
4845 goto retry;
4846
4847
4848 /* Deal with possible cpuset update races before we start OOM killing */
4849 if (check_retry_cpuset(cpuset_mems_cookie, ac))
4850 goto retry_cpuset;
4851
4852 /* Reclaim has failed us, start killing things */
4853 page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
4854 if (page)
4855 goto got_pg;
4856
4857 /* Avoid allocations with no watermarks from looping endlessly */
4858 if (tsk_is_oom_victim(current) &&
4859 (alloc_flags & ALLOC_OOM ||
4860 (gfp_mask & __GFP_NOMEMALLOC)))
4861 goto nopage;
4862
4863 /* Retry as long as the OOM killer is making progress */
4864 if (did_some_progress) {
4865 no_progress_loops = 0;
4866 goto retry;
4867 }
4868
4869 nopage:
4870 /* Deal with possible cpuset update races before we fail */
4871 if (check_retry_cpuset(cpuset_mems_cookie, ac))
4872 goto retry_cpuset;
4873
4874 /*
4875 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure
4876 * we always retry
4877 */
4878 if (gfp_mask & __GFP_NOFAIL) {
4879 /*
4880 * All existing users of the __GFP_NOFAIL are blockable, so warn
4881 * of any new users that actually require GFP_NOWAIT
4882 */
4883 if (WARN_ON_ONCE(!can_direct_reclaim))
4884 goto fail;
4885
4886 /*
4887 * PF_MEMALLOC request from this context is rather bizarre
4888 * because we cannot reclaim anything and only can loop waiting
4889 * for somebody to do a work for us
4890 */
4891 WARN_ON_ONCE(current->flags & PF_MEMALLOC);
4892
4893 /*
4894 * non failing costly orders are a hard requirement which we
4895 * are not prepared for much so let's warn about these users
4896 * so that we can identify them and convert them to something
4897 * else.
4898 */
4899 WARN_ON_ONCE(order > PAGE_ALLOC_COSTLY_ORDER);
4900
4901 /*
4902 * Help non-failing allocations by giving them access to memory
4903 * reserves but do not use ALLOC_NO_WATERMARKS because this
4904 * could deplete whole memory reserves which would just make
4905 * the situation worse
4906 */
4907 page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_HARDER, ac);
4908 if (page)
4909 goto got_pg;
4910
4911 cond_resched();
4912 goto retry;
4913 }
4914 fail:
4915 warn_alloc(gfp_mask, ac->nodemask,
4916 "page allocation failure: order:%u", order);
4917 got_pg:
4918 return page;
4919 }
4920
4921 static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order,
4922 int preferred_nid, nodemask_t *nodemask,
4923 struct alloc_context *ac, gfp_t *alloc_mask,
4924 unsigned int *alloc_flags)
4925 {
4926 ac->highest_zoneidx = gfp_zone(gfp_mask);
4927 ac->zonelist = node_zonelist(preferred_nid, gfp_mask);
4928 ac->nodemask = nodemask;
4929 ac->migratetype = gfp_migratetype(gfp_mask);
4930
4931 if (cpusets_enabled()) {
4932 *alloc_mask |= __GFP_HARDWALL;
4933 /*
4934 * When we are in the interrupt context, it is irrelevant
4935 * to the current task context. It means that any node ok.
4936 */
4937 if (!in_interrupt() && !ac->nodemask)
4938 ac->nodemask = &cpuset_current_mems_allowed;
4939 else
4940 *alloc_flags |= ALLOC_CPUSET;
4941 }
4942
4943 fs_reclaim_acquire(gfp_mask);
4944 fs_reclaim_release(gfp_mask);
4945
4946 might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM);
4947
4948 if (should_fail_alloc_page(gfp_mask, order))
4949 return false;
4950
4951 *alloc_flags = current_alloc_flags(gfp_mask, *alloc_flags);
4952
4953 /* Dirty zone balancing only done in the fast path */
4954 ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE);
4955
4956 /*
4957 * The preferred zone is used for statistics but crucially it is
4958 * also used as the starting point for the zonelist iterator. It
4959 * may get reset for allocations that ignore memory policies.
4960 */
4961 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4962 ac->highest_zoneidx, ac->nodemask);
4963
4964 return true;
4965 }
4966
4967 /*
4968 * This is the 'heart' of the zoned buddy allocator.
4969 */
4970 struct page *
4971 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order, int preferred_nid,
4972 nodemask_t *nodemask)
4973 {
4974 struct page *page;
4975 unsigned int alloc_flags = ALLOC_WMARK_LOW;
4976 gfp_t alloc_mask; /* The gfp_t that was actually used for allocation */
4977 struct alloc_context ac = { };
4978
4979 /*
4980 * There are several places where we assume that the order value is sane
4981 * so bail out early if the request is out of bound.
4982 */
4983 if (unlikely(order >= MAX_ORDER)) {
4984 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
4985 return NULL;
4986 }
4987
4988 gfp_mask &= gfp_allowed_mask;
4989 alloc_mask = gfp_mask;
4990 if (!prepare_alloc_pages(gfp_mask, order, preferred_nid, nodemask, &ac, &alloc_mask, &alloc_flags))
4991 return NULL;
4992
4993 /*
4994 * Forbid the first pass from falling back to types that fragment
4995 * memory until all local zones are considered.
4996 */
4997 alloc_flags |= alloc_flags_nofragment(ac.preferred_zoneref->zone, gfp_mask);
4998
4999 /* First allocation attempt */
5000 page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac);
5001 if (likely(page))
5002 goto out;
5003
5004 /*
5005 * Apply scoped allocation constraints. This is mainly about GFP_NOFS
5006 * resp. GFP_NOIO which has to be inherited for all allocation requests
5007 * from a particular context which has been marked by
5008 * memalloc_no{fs,io}_{save,restore}.
5009 */
5010 alloc_mask = current_gfp_context(gfp_mask);
5011 ac.spread_dirty_pages = false;
5012
5013 /*
5014 * Restore the original nodemask if it was potentially replaced with
5015 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
5016 */
5017 ac.nodemask = nodemask;
5018
5019 page = __alloc_pages_slowpath(alloc_mask, order, &ac);
5020
5021 out:
5022 if (memcg_kmem_enabled() && (gfp_mask & __GFP_ACCOUNT) && page &&
5023 unlikely(__memcg_kmem_charge_page(page, gfp_mask, order) != 0)) {
5024 __free_pages(page, order);
5025 page = NULL;
5026 }
5027
5028 trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype);
5029
5030 return page;
5031 }
5032 EXPORT_SYMBOL(__alloc_pages_nodemask);
5033
5034 /*
5035 * Common helper functions. Never use with __GFP_HIGHMEM because the returned
5036 * address cannot represent highmem pages. Use alloc_pages and then kmap if
5037 * you need to access high mem.
5038 */
5039 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
5040 {
5041 struct page *page;
5042
5043 page = alloc_pages(gfp_mask & ~__GFP_HIGHMEM, order);
5044 if (!page)
5045 return 0;
5046 return (unsigned long) page_address(page);
5047 }
5048 EXPORT_SYMBOL(__get_free_pages);
5049
5050 unsigned long get_zeroed_page(gfp_t gfp_mask)
5051 {
5052 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
5053 }
5054 EXPORT_SYMBOL(get_zeroed_page);
5055
5056 static inline void free_the_page(struct page *page, unsigned int order)
5057 {
5058 if (order == 0) /* Via pcp? */
5059 free_unref_page(page);
5060 else
5061 __free_pages_ok(page, order, FPI_NONE);
5062 }
5063
5064 /**
5065 * __free_pages - Free pages allocated with alloc_pages().
5066 * @page: The page pointer returned from alloc_pages().
5067 * @order: The order of the allocation.
5068 *
5069 * This function can free multi-page allocations that are not compound
5070 * pages. It does not check that the @order passed in matches that of
5071 * the allocation, so it is easy to leak memory. Freeing more memory
5072 * than was allocated will probably emit a warning.
5073 *
5074 * If the last reference to this page is speculative, it will be released
5075 * by put_page() which only frees the first page of a non-compound
5076 * allocation. To prevent the remaining pages from being leaked, we free
5077 * the subsequent pages here. If you want to use the page's reference
5078 * count to decide when to free the allocation, you should allocate a
5079 * compound page, and use put_page() instead of __free_pages().
5080 *
5081 * Context: May be called in interrupt context or while holding a normal
5082 * spinlock, but not in NMI context or while holding a raw spinlock.
5083 */
5084 void __free_pages(struct page *page, unsigned int order)
5085 {
5086 if (put_page_testzero(page))
5087 free_the_page(page, order);
5088 else if (!PageHead(page))
5089 while (order-- > 0)
5090 free_the_page(page + (1 << order), order);
5091 }
5092 EXPORT_SYMBOL(__free_pages);
5093
5094 void free_pages(unsigned long addr, unsigned int order)
5095 {
5096 if (addr != 0) {
5097 VM_BUG_ON(!virt_addr_valid((void *)addr));
5098 __free_pages(virt_to_page((void *)addr), order);
5099 }
5100 }
5101
5102 EXPORT_SYMBOL(free_pages);
5103
5104 /*
5105 * Page Fragment:
5106 * An arbitrary-length arbitrary-offset area of memory which resides
5107 * within a 0 or higher order page. Multiple fragments within that page
5108 * are individually refcounted, in the page's reference counter.
5109 *
5110 * The page_frag functions below provide a simple allocation framework for
5111 * page fragments. This is used by the network stack and network device
5112 * drivers to provide a backing region of memory for use as either an
5113 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
5114 */
5115 static struct page *__page_frag_cache_refill(struct page_frag_cache *nc,
5116 gfp_t gfp_mask)
5117 {
5118 struct page *page = NULL;
5119 gfp_t gfp = gfp_mask;
5120
5121 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
5122 gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
5123 __GFP_NOMEMALLOC;
5124 page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
5125 PAGE_FRAG_CACHE_MAX_ORDER);
5126 nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
5127 #endif
5128 if (unlikely(!page))
5129 page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
5130
5131 nc->va = page ? page_address(page) : NULL;
5132
5133 return page;
5134 }
5135
5136 void __page_frag_cache_drain(struct page *page, unsigned int count)
5137 {
5138 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
5139
5140 if (page_ref_sub_and_test(page, count))
5141 free_the_page(page, compound_order(page));
5142 }
5143 EXPORT_SYMBOL(__page_frag_cache_drain);
5144
5145 void *page_frag_alloc_align(struct page_frag_cache *nc,
5146 unsigned int fragsz, gfp_t gfp_mask,
5147 unsigned int align_mask)
5148 {
5149 unsigned int size = PAGE_SIZE;
5150 struct page *page;
5151 int offset;
5152
5153 if (unlikely(!nc->va)) {
5154 refill:
5155 page = __page_frag_cache_refill(nc, gfp_mask);
5156 if (!page)
5157 return NULL;
5158
5159 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
5160 /* if size can vary use size else just use PAGE_SIZE */
5161 size = nc->size;
5162 #endif
5163 /* Even if we own the page, we do not use atomic_set().
5164 * This would break get_page_unless_zero() users.
5165 */
5166 page_ref_add(page, PAGE_FRAG_CACHE_MAX_SIZE);
5167
5168 /* reset page count bias and offset to start of new frag */
5169 nc->pfmemalloc = page_is_pfmemalloc(page);
5170 nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
5171 nc->offset = size;
5172 }
5173
5174 offset = nc->offset - fragsz;
5175 if (unlikely(offset < 0)) {
5176 page = virt_to_page(nc->va);
5177
5178 if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
5179 goto refill;
5180
5181 if (unlikely(nc->pfmemalloc)) {
5182 free_the_page(page, compound_order(page));
5183 goto refill;
5184 }
5185
5186 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
5187 /* if size can vary use size else just use PAGE_SIZE */
5188 size = nc->size;
5189 #endif
5190 /* OK, page count is 0, we can safely set it */
5191 set_page_count(page, PAGE_FRAG_CACHE_MAX_SIZE + 1);
5192
5193 /* reset page count bias and offset to start of new frag */
5194 nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
5195 offset = size - fragsz;
5196 }
5197
5198 nc->pagecnt_bias--;
5199 offset &= align_mask;
5200 nc->offset = offset;
5201
5202 return nc->va + offset;
5203 }
5204 EXPORT_SYMBOL(page_frag_alloc_align);
5205
5206 /*
5207 * Frees a page fragment allocated out of either a compound or order 0 page.
5208 */
5209 void page_frag_free(void *addr)
5210 {
5211 struct page *page = virt_to_head_page(addr);
5212
5213 if (unlikely(put_page_testzero(page)))
5214 free_the_page(page, compound_order(page));
5215 }
5216 EXPORT_SYMBOL(page_frag_free);
5217
5218 static void *make_alloc_exact(unsigned long addr, unsigned int order,
5219 size_t size)
5220 {
5221 if (addr) {
5222 unsigned long alloc_end = addr + (PAGE_SIZE << order);
5223 unsigned long used = addr + PAGE_ALIGN(size);
5224
5225 split_page(virt_to_page((void *)addr), order);
5226 while (used < alloc_end) {
5227 free_page(used);
5228 used += PAGE_SIZE;
5229 }
5230 }
5231 return (void *)addr;
5232 }
5233
5234 /**
5235 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
5236 * @size: the number of bytes to allocate
5237 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
5238 *
5239 * This function is similar to alloc_pages(), except that it allocates the
5240 * minimum number of pages to satisfy the request. alloc_pages() can only
5241 * allocate memory in power-of-two pages.
5242 *
5243 * This function is also limited by MAX_ORDER.
5244 *
5245 * Memory allocated by this function must be released by free_pages_exact().
5246 *
5247 * Return: pointer to the allocated area or %NULL in case of error.
5248 */
5249 void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
5250 {
5251 unsigned int order = get_order(size);
5252 unsigned long addr;
5253
5254 if (WARN_ON_ONCE(gfp_mask & __GFP_COMP))
5255 gfp_mask &= ~__GFP_COMP;
5256
5257 addr = __get_free_pages(gfp_mask, order);
5258 return make_alloc_exact(addr, order, size);
5259 }
5260 EXPORT_SYMBOL(alloc_pages_exact);
5261
5262 /**
5263 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
5264 * pages on a node.
5265 * @nid: the preferred node ID where memory should be allocated
5266 * @size: the number of bytes to allocate
5267 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
5268 *
5269 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
5270 * back.
5271 *
5272 * Return: pointer to the allocated area or %NULL in case of error.
5273 */
5274 void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
5275 {
5276 unsigned int order = get_order(size);
5277 struct page *p;
5278
5279 if (WARN_ON_ONCE(gfp_mask & __GFP_COMP))
5280 gfp_mask &= ~__GFP_COMP;
5281
5282 p = alloc_pages_node(nid, gfp_mask, order);
5283 if (!p)
5284 return NULL;
5285 return make_alloc_exact((unsigned long)page_address(p), order, size);
5286 }
5287
5288 /**
5289 * free_pages_exact - release memory allocated via alloc_pages_exact()
5290 * @virt: the value returned by alloc_pages_exact.
5291 * @size: size of allocation, same value as passed to alloc_pages_exact().
5292 *
5293 * Release the memory allocated by a previous call to alloc_pages_exact.
5294 */
5295 void free_pages_exact(void *virt, size_t size)
5296 {
5297 unsigned long addr = (unsigned long)virt;
5298 unsigned long end = addr + PAGE_ALIGN(size);
5299
5300 while (addr < end) {
5301 free_page(addr);
5302 addr += PAGE_SIZE;
5303 }
5304 }
5305 EXPORT_SYMBOL(free_pages_exact);
5306
5307 /**
5308 * nr_free_zone_pages - count number of pages beyond high watermark
5309 * @offset: The zone index of the highest zone
5310 *
5311 * nr_free_zone_pages() counts the number of pages which are beyond the
5312 * high watermark within all zones at or below a given zone index. For each
5313 * zone, the number of pages is calculated as:
5314 *
5315 * nr_free_zone_pages = managed_pages - high_pages
5316 *
5317 * Return: number of pages beyond high watermark.
5318 */
5319 static unsigned long nr_free_zone_pages(int offset)
5320 {
5321 struct zoneref *z;
5322 struct zone *zone;
5323
5324 /* Just pick one node, since fallback list is circular */
5325 unsigned long sum = 0;
5326
5327 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
5328
5329 for_each_zone_zonelist(zone, z, zonelist, offset) {
5330 unsigned long size = zone_managed_pages(zone);
5331 unsigned long high = high_wmark_pages(zone);
5332 if (size > high)
5333 sum += size - high;
5334 }
5335
5336 return sum;
5337 }
5338
5339 /**
5340 * nr_free_buffer_pages - count number of pages beyond high watermark
5341 *
5342 * nr_free_buffer_pages() counts the number of pages which are beyond the high
5343 * watermark within ZONE_DMA and ZONE_NORMAL.
5344 *
5345 * Return: number of pages beyond high watermark within ZONE_DMA and
5346 * ZONE_NORMAL.
5347 */
5348 unsigned long nr_free_buffer_pages(void)
5349 {
5350 return nr_free_zone_pages(gfp_zone(GFP_USER));
5351 }
5352 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
5353
5354 static inline void show_node(struct zone *zone)
5355 {
5356 if (IS_ENABLED(CONFIG_NUMA))
5357 printk("Node %d ", zone_to_nid(zone));
5358 }
5359
5360 long si_mem_available(void)
5361 {
5362 long available;
5363 unsigned long pagecache;
5364 unsigned long wmark_low = 0;
5365 unsigned long pages[NR_LRU_LISTS];
5366 unsigned long reclaimable;
5367 struct zone *zone;
5368 int lru;
5369
5370 for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++)
5371 pages[lru] = global_node_page_state(NR_LRU_BASE + lru);
5372
5373 for_each_zone(zone)
5374 wmark_low += low_wmark_pages(zone);
5375
5376 /*
5377 * Estimate the amount of memory available for userspace allocations,
5378 * without causing swapping.
5379 */
5380 available = global_zone_page_state(NR_FREE_PAGES) - totalreserve_pages;
5381
5382 /*
5383 * Not all the page cache can be freed, otherwise the system will
5384 * start swapping. Assume at least half of the page cache, or the
5385 * low watermark worth of cache, needs to stay.
5386 */
5387 pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE];
5388 pagecache -= min(pagecache / 2, wmark_low);
5389 available += pagecache;
5390
5391 /*
5392 * Part of the reclaimable slab and other kernel memory consists of
5393 * items that are in use, and cannot be freed. Cap this estimate at the
5394 * low watermark.
5395 */
5396 reclaimable = global_node_page_state_pages(NR_SLAB_RECLAIMABLE_B) +
5397 global_node_page_state(NR_KERNEL_MISC_RECLAIMABLE);
5398 available += reclaimable - min(reclaimable / 2, wmark_low);
5399
5400 if (available < 0)
5401 available = 0;
5402 return available;
5403 }
5404 EXPORT_SYMBOL_GPL(si_mem_available);
5405
5406 void si_meminfo(struct sysinfo *val)
5407 {
5408 val->totalram = totalram_pages();
5409 val->sharedram = global_node_page_state(NR_SHMEM);
5410 val->freeram = global_zone_page_state(NR_FREE_PAGES);
5411 val->bufferram = nr_blockdev_pages();
5412 val->totalhigh = totalhigh_pages();
5413 val->freehigh = nr_free_highpages();
5414 val->mem_unit = PAGE_SIZE;
5415 }
5416
5417 EXPORT_SYMBOL(si_meminfo);
5418
5419 #ifdef CONFIG_NUMA
5420 void si_meminfo_node(struct sysinfo *val, int nid)
5421 {
5422 int zone_type; /* needs to be signed */
5423 unsigned long managed_pages = 0;
5424 unsigned long managed_highpages = 0;
5425 unsigned long free_highpages = 0;
5426 pg_data_t *pgdat = NODE_DATA(nid);
5427
5428 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
5429 managed_pages += zone_managed_pages(&pgdat->node_zones[zone_type]);
5430 val->totalram = managed_pages;
5431 val->sharedram = node_page_state(pgdat, NR_SHMEM);
5432 val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES);
5433 #ifdef CONFIG_HIGHMEM
5434 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
5435 struct zone *zone = &pgdat->node_zones[zone_type];
5436
5437 if (is_highmem(zone)) {
5438 managed_highpages += zone_managed_pages(zone);
5439 free_highpages += zone_page_state(zone, NR_FREE_PAGES);
5440 }
5441 }
5442 val->totalhigh = managed_highpages;
5443 val->freehigh = free_highpages;
5444 #else
5445 val->totalhigh = managed_highpages;
5446 val->freehigh = free_highpages;
5447 #endif
5448 val->mem_unit = PAGE_SIZE;
5449 }
5450 #endif
5451
5452 /*
5453 * Determine whether the node should be displayed or not, depending on whether
5454 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
5455 */
5456 static bool show_mem_node_skip(unsigned int flags, int nid, nodemask_t *nodemask)
5457 {
5458 if (!(flags & SHOW_MEM_FILTER_NODES))
5459 return false;
5460
5461 /*
5462 * no node mask - aka implicit memory numa policy. Do not bother with
5463 * the synchronization - read_mems_allowed_begin - because we do not
5464 * have to be precise here.
5465 */
5466 if (!nodemask)
5467 nodemask = &cpuset_current_mems_allowed;
5468
5469 return !node_isset(nid, *nodemask);
5470 }
5471
5472 #define K(x) ((x) << (PAGE_SHIFT-10))
5473
5474 static void show_migration_types(unsigned char type)
5475 {
5476 static const char types[MIGRATE_TYPES] = {
5477 [MIGRATE_UNMOVABLE] = 'U',
5478 [MIGRATE_MOVABLE] = 'M',
5479 [MIGRATE_RECLAIMABLE] = 'E',
5480 [MIGRATE_HIGHATOMIC] = 'H',
5481 #ifdef CONFIG_CMA
5482 [MIGRATE_CMA] = 'C',
5483 #endif
5484 #ifdef CONFIG_MEMORY_ISOLATION
5485 [MIGRATE_ISOLATE] = 'I',
5486 #endif
5487 };
5488 char tmp[MIGRATE_TYPES + 1];
5489 char *p = tmp;
5490 int i;
5491
5492 for (i = 0; i < MIGRATE_TYPES; i++) {
5493 if (type & (1 << i))
5494 *p++ = types[i];
5495 }
5496
5497 *p = '\0';
5498 printk(KERN_CONT "(%s) ", tmp);
5499 }
5500
5501 /*
5502 * Show free area list (used inside shift_scroll-lock stuff)
5503 * We also calculate the percentage fragmentation. We do this by counting the
5504 * memory on each free list with the exception of the first item on the list.
5505 *
5506 * Bits in @filter:
5507 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
5508 * cpuset.
5509 */
5510 void show_free_areas(unsigned int filter, nodemask_t *nodemask)
5511 {
5512 unsigned long free_pcp = 0;
5513 int cpu;
5514 struct zone *zone;
5515 pg_data_t *pgdat;
5516
5517 for_each_populated_zone(zone) {
5518 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
5519 continue;
5520
5521 for_each_online_cpu(cpu)
5522 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
5523 }
5524
5525 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
5526 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
5527 " unevictable:%lu dirty:%lu writeback:%lu\n"
5528 " slab_reclaimable:%lu slab_unreclaimable:%lu\n"
5529 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
5530 " free:%lu free_pcp:%lu free_cma:%lu\n",
5531 global_node_page_state(NR_ACTIVE_ANON),
5532 global_node_page_state(NR_INACTIVE_ANON),
5533 global_node_page_state(NR_ISOLATED_ANON),
5534 global_node_page_state(NR_ACTIVE_FILE),
5535 global_node_page_state(NR_INACTIVE_FILE),
5536 global_node_page_state(NR_ISOLATED_FILE),
5537 global_node_page_state(NR_UNEVICTABLE),
5538 global_node_page_state(NR_FILE_DIRTY),
5539 global_node_page_state(NR_WRITEBACK),
5540 global_node_page_state_pages(NR_SLAB_RECLAIMABLE_B),
5541 global_node_page_state_pages(NR_SLAB_UNRECLAIMABLE_B),
5542 global_node_page_state(NR_FILE_MAPPED),
5543 global_node_page_state(NR_SHMEM),
5544 global_node_page_state(NR_PAGETABLE),
5545 global_zone_page_state(NR_BOUNCE),
5546 global_zone_page_state(NR_FREE_PAGES),
5547 free_pcp,
5548 global_zone_page_state(NR_FREE_CMA_PAGES));
5549
5550 for_each_online_pgdat(pgdat) {
5551 if (show_mem_node_skip(filter, pgdat->node_id, nodemask))
5552 continue;
5553
5554 printk("Node %d"
5555 " active_anon:%lukB"
5556 " inactive_anon:%lukB"
5557 " active_file:%lukB"
5558 " inactive_file:%lukB"
5559 " unevictable:%lukB"
5560 " isolated(anon):%lukB"
5561 " isolated(file):%lukB"
5562 " mapped:%lukB"
5563 " dirty:%lukB"
5564 " writeback:%lukB"
5565 " shmem:%lukB"
5566 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5567 " shmem_thp: %lukB"
5568 " shmem_pmdmapped: %lukB"
5569 " anon_thp: %lukB"
5570 #endif
5571 " writeback_tmp:%lukB"
5572 " kernel_stack:%lukB"
5573 #ifdef CONFIG_SHADOW_CALL_STACK
5574 " shadow_call_stack:%lukB"
5575 #endif
5576 " pagetables:%lukB"
5577 " all_unreclaimable? %s"
5578 "\n",
5579 pgdat->node_id,
5580 K(node_page_state(pgdat, NR_ACTIVE_ANON)),
5581 K(node_page_state(pgdat, NR_INACTIVE_ANON)),
5582 K(node_page_state(pgdat, NR_ACTIVE_FILE)),
5583 K(node_page_state(pgdat, NR_INACTIVE_FILE)),
5584 K(node_page_state(pgdat, NR_UNEVICTABLE)),
5585 K(node_page_state(pgdat, NR_ISOLATED_ANON)),
5586 K(node_page_state(pgdat, NR_ISOLATED_FILE)),
5587 K(node_page_state(pgdat, NR_FILE_MAPPED)),
5588 K(node_page_state(pgdat, NR_FILE_DIRTY)),
5589 K(node_page_state(pgdat, NR_WRITEBACK)),
5590 K(node_page_state(pgdat, NR_SHMEM)),
5591 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5592 K(node_page_state(pgdat, NR_SHMEM_THPS)),
5593 K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED)),
5594 K(node_page_state(pgdat, NR_ANON_THPS)),
5595 #endif
5596 K(node_page_state(pgdat, NR_WRITEBACK_TEMP)),
5597 node_page_state(pgdat, NR_KERNEL_STACK_KB),
5598 #ifdef CONFIG_SHADOW_CALL_STACK
5599 node_page_state(pgdat, NR_KERNEL_SCS_KB),
5600 #endif
5601 K(node_page_state(pgdat, NR_PAGETABLE)),
5602 pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ?
5603 "yes" : "no");
5604 }
5605
5606 for_each_populated_zone(zone) {
5607 int i;
5608
5609 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
5610 continue;
5611
5612 free_pcp = 0;
5613 for_each_online_cpu(cpu)
5614 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
5615
5616 show_node(zone);
5617 printk(KERN_CONT
5618 "%s"
5619 " free:%lukB"
5620 " min:%lukB"
5621 " low:%lukB"
5622 " high:%lukB"
5623 " reserved_highatomic:%luKB"
5624 " active_anon:%lukB"
5625 " inactive_anon:%lukB"
5626 " active_file:%lukB"
5627 " inactive_file:%lukB"
5628 " unevictable:%lukB"
5629 " writepending:%lukB"
5630 " present:%lukB"
5631 " managed:%lukB"
5632 " mlocked:%lukB"
5633 " bounce:%lukB"
5634 " free_pcp:%lukB"
5635 " local_pcp:%ukB"
5636 " free_cma:%lukB"
5637 "\n",
5638 zone->name,
5639 K(zone_page_state(zone, NR_FREE_PAGES)),
5640 K(min_wmark_pages(zone)),
5641 K(low_wmark_pages(zone)),
5642 K(high_wmark_pages(zone)),
5643 K(zone->nr_reserved_highatomic),
5644 K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)),
5645 K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)),
5646 K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)),
5647 K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)),
5648 K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)),
5649 K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)),
5650 K(zone->present_pages),
5651 K(zone_managed_pages(zone)),
5652 K(zone_page_state(zone, NR_MLOCK)),
5653 K(zone_page_state(zone, NR_BOUNCE)),
5654 K(free_pcp),
5655 K(this_cpu_read(zone->pageset->pcp.count)),
5656 K(zone_page_state(zone, NR_FREE_CMA_PAGES)));
5657 printk("lowmem_reserve[]:");
5658 for (i = 0; i < MAX_NR_ZONES; i++)
5659 printk(KERN_CONT " %ld", zone->lowmem_reserve[i]);
5660 printk(KERN_CONT "\n");
5661 }
5662
5663 for_each_populated_zone(zone) {
5664 unsigned int order;
5665 unsigned long nr[MAX_ORDER], flags, total = 0;
5666 unsigned char types[MAX_ORDER];
5667
5668 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
5669 continue;
5670 show_node(zone);
5671 printk(KERN_CONT "%s: ", zone->name);
5672
5673 spin_lock_irqsave(&zone->lock, flags);
5674 for (order = 0; order < MAX_ORDER; order++) {
5675 struct free_area *area = &zone->free_area[order];
5676 int type;
5677
5678 nr[order] = area->nr_free;
5679 total += nr[order] << order;
5680
5681 types[order] = 0;
5682 for (type = 0; type < MIGRATE_TYPES; type++) {
5683 if (!free_area_empty(area, type))
5684 types[order] |= 1 << type;
5685 }
5686 }
5687 spin_unlock_irqrestore(&zone->lock, flags);
5688 for (order = 0; order < MAX_ORDER; order++) {
5689 printk(KERN_CONT "%lu*%lukB ",
5690 nr[order], K(1UL) << order);
5691 if (nr[order])
5692 show_migration_types(types[order]);
5693 }
5694 printk(KERN_CONT "= %lukB\n", K(total));
5695 }
5696
5697 hugetlb_show_meminfo();
5698
5699 printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES));
5700
5701 show_swap_cache_info();
5702 }
5703
5704 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
5705 {
5706 zoneref->zone = zone;
5707 zoneref->zone_idx = zone_idx(zone);
5708 }
5709
5710 /*
5711 * Builds allocation fallback zone lists.
5712 *
5713 * Add all populated zones of a node to the zonelist.
5714 */
5715 static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs)
5716 {
5717 struct zone *zone;
5718 enum zone_type zone_type = MAX_NR_ZONES;
5719 int nr_zones = 0;
5720
5721 do {
5722 zone_type--;
5723 zone = pgdat->node_zones + zone_type;
5724 if (managed_zone(zone)) {
5725 zoneref_set_zone(zone, &zonerefs[nr_zones++]);
5726 check_highest_zone(zone_type);
5727 }
5728 } while (zone_type);
5729
5730 return nr_zones;
5731 }
5732
5733 #ifdef CONFIG_NUMA
5734
5735 static int __parse_numa_zonelist_order(char *s)
5736 {
5737 /*
5738 * We used to support different zonlists modes but they turned
5739 * out to be just not useful. Let's keep the warning in place
5740 * if somebody still use the cmd line parameter so that we do
5741 * not fail it silently
5742 */
5743 if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) {
5744 pr_warn("Ignoring unsupported numa_zonelist_order value: %s\n", s);
5745 return -EINVAL;
5746 }
5747 return 0;
5748 }
5749
5750 char numa_zonelist_order[] = "Node";
5751
5752 /*
5753 * sysctl handler for numa_zonelist_order
5754 */
5755 int numa_zonelist_order_handler(struct ctl_table *table, int write,
5756 void *buffer, size_t *length, loff_t *ppos)
5757 {
5758 if (write)
5759 return __parse_numa_zonelist_order(buffer);
5760 return proc_dostring(table, write, buffer, length, ppos);
5761 }
5762
5763
5764 #define MAX_NODE_LOAD (nr_online_nodes)
5765 static int node_load[MAX_NUMNODES];
5766
5767 /**
5768 * find_next_best_node - find the next node that should appear in a given node's fallback list
5769 * @node: node whose fallback list we're appending
5770 * @used_node_mask: nodemask_t of already used nodes
5771 *
5772 * We use a number of factors to determine which is the next node that should
5773 * appear on a given node's fallback list. The node should not have appeared
5774 * already in @node's fallback list, and it should be the next closest node
5775 * according to the distance array (which contains arbitrary distance values
5776 * from each node to each node in the system), and should also prefer nodes
5777 * with no CPUs, since presumably they'll have very little allocation pressure
5778 * on them otherwise.
5779 *
5780 * Return: node id of the found node or %NUMA_NO_NODE if no node is found.
5781 */
5782 static int find_next_best_node(int node, nodemask_t *used_node_mask)
5783 {
5784 int n, val;
5785 int min_val = INT_MAX;
5786 int best_node = NUMA_NO_NODE;
5787
5788 /* Use the local node if we haven't already */
5789 if (!node_isset(node, *used_node_mask)) {
5790 node_set(node, *used_node_mask);
5791 return node;
5792 }
5793
5794 for_each_node_state(n, N_MEMORY) {
5795
5796 /* Don't want a node to appear more than once */
5797 if (node_isset(n, *used_node_mask))
5798 continue;
5799
5800 /* Use the distance array to find the distance */
5801 val = node_distance(node, n);
5802
5803 /* Penalize nodes under us ("prefer the next node") */
5804 val += (n < node);
5805
5806 /* Give preference to headless and unused nodes */
5807 if (!cpumask_empty(cpumask_of_node(n)))
5808 val += PENALTY_FOR_NODE_WITH_CPUS;
5809
5810 /* Slight preference for less loaded node */
5811 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
5812 val += node_load[n];
5813
5814 if (val < min_val) {
5815 min_val = val;
5816 best_node = n;
5817 }
5818 }
5819
5820 if (best_node >= 0)
5821 node_set(best_node, *used_node_mask);
5822
5823 return best_node;
5824 }
5825
5826
5827 /*
5828 * Build zonelists ordered by node and zones within node.
5829 * This results in maximum locality--normal zone overflows into local
5830 * DMA zone, if any--but risks exhausting DMA zone.
5831 */
5832 static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order,
5833 unsigned nr_nodes)
5834 {
5835 struct zoneref *zonerefs;
5836 int i;
5837
5838 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
5839
5840 for (i = 0; i < nr_nodes; i++) {
5841 int nr_zones;
5842
5843 pg_data_t *node = NODE_DATA(node_order[i]);
5844
5845 nr_zones = build_zonerefs_node(node, zonerefs);
5846 zonerefs += nr_zones;
5847 }
5848 zonerefs->zone = NULL;
5849 zonerefs->zone_idx = 0;
5850 }
5851
5852 /*
5853 * Build gfp_thisnode zonelists
5854 */
5855 static void build_thisnode_zonelists(pg_data_t *pgdat)
5856 {
5857 struct zoneref *zonerefs;
5858 int nr_zones;
5859
5860 zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs;
5861 nr_zones = build_zonerefs_node(pgdat, zonerefs);
5862 zonerefs += nr_zones;
5863 zonerefs->zone = NULL;
5864 zonerefs->zone_idx = 0;
5865 }
5866
5867 /*
5868 * Build zonelists ordered by zone and nodes within zones.
5869 * This results in conserving DMA zone[s] until all Normal memory is
5870 * exhausted, but results in overflowing to remote node while memory
5871 * may still exist in local DMA zone.
5872 */
5873
5874 static void build_zonelists(pg_data_t *pgdat)
5875 {
5876 static int node_order[MAX_NUMNODES];
5877 int node, load, nr_nodes = 0;
5878 nodemask_t used_mask = NODE_MASK_NONE;
5879 int local_node, prev_node;
5880
5881 /* NUMA-aware ordering of nodes */
5882 local_node = pgdat->node_id;
5883 load = nr_online_nodes;
5884 prev_node = local_node;
5885
5886 memset(node_order, 0, sizeof(node_order));
5887 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
5888 /*
5889 * We don't want to pressure a particular node.
5890 * So adding penalty to the first node in same
5891 * distance group to make it round-robin.
5892 */
5893 if (node_distance(local_node, node) !=
5894 node_distance(local_node, prev_node))
5895 node_load[node] = load;
5896
5897 node_order[nr_nodes++] = node;
5898 prev_node = node;
5899 load--;
5900 }
5901
5902 build_zonelists_in_node_order(pgdat, node_order, nr_nodes);
5903 build_thisnode_zonelists(pgdat);
5904 }
5905
5906 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
5907 /*
5908 * Return node id of node used for "local" allocations.
5909 * I.e., first node id of first zone in arg node's generic zonelist.
5910 * Used for initializing percpu 'numa_mem', which is used primarily
5911 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
5912 */
5913 int local_memory_node(int node)
5914 {
5915 struct zoneref *z;
5916
5917 z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
5918 gfp_zone(GFP_KERNEL),
5919 NULL);
5920 return zone_to_nid(z->zone);
5921 }
5922 #endif
5923
5924 static void setup_min_unmapped_ratio(void);
5925 static void setup_min_slab_ratio(void);
5926 #else /* CONFIG_NUMA */
5927
5928 static void build_zonelists(pg_data_t *pgdat)
5929 {
5930 int node, local_node;
5931 struct zoneref *zonerefs;
5932 int nr_zones;
5933
5934 local_node = pgdat->node_id;
5935
5936 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
5937 nr_zones = build_zonerefs_node(pgdat, zonerefs);
5938 zonerefs += nr_zones;
5939
5940 /*
5941 * Now we build the zonelist so that it contains the zones
5942 * of all the other nodes.
5943 * We don't want to pressure a particular node, so when
5944 * building the zones for node N, we make sure that the
5945 * zones coming right after the local ones are those from
5946 * node N+1 (modulo N)
5947 */
5948 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
5949 if (!node_online(node))
5950 continue;
5951 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
5952 zonerefs += nr_zones;
5953 }
5954 for (node = 0; node < local_node; node++) {
5955 if (!node_online(node))
5956 continue;
5957 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
5958 zonerefs += nr_zones;
5959 }
5960
5961 zonerefs->zone = NULL;
5962 zonerefs->zone_idx = 0;
5963 }
5964
5965 #endif /* CONFIG_NUMA */
5966
5967 /*
5968 * Boot pageset table. One per cpu which is going to be used for all
5969 * zones and all nodes. The parameters will be set in such a way
5970 * that an item put on a list will immediately be handed over to
5971 * the buddy list. This is safe since pageset manipulation is done
5972 * with interrupts disabled.
5973 *
5974 * The boot_pagesets must be kept even after bootup is complete for
5975 * unused processors and/or zones. They do play a role for bootstrapping
5976 * hotplugged processors.
5977 *
5978 * zoneinfo_show() and maybe other functions do
5979 * not check if the processor is online before following the pageset pointer.
5980 * Other parts of the kernel may not check if the zone is available.
5981 */
5982 static void pageset_init(struct per_cpu_pageset *p);
5983 /* These effectively disable the pcplists in the boot pageset completely */
5984 #define BOOT_PAGESET_HIGH 0
5985 #define BOOT_PAGESET_BATCH 1
5986 static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
5987 static DEFINE_PER_CPU(struct per_cpu_nodestat, boot_nodestats);
5988
5989 static void __build_all_zonelists(void *data)
5990 {
5991 int nid;
5992 int __maybe_unused cpu;
5993 pg_data_t *self = data;
5994 static DEFINE_SPINLOCK(lock);
5995
5996 spin_lock(&lock);
5997
5998 #ifdef CONFIG_NUMA
5999 memset(node_load, 0, sizeof(node_load));
6000 #endif
6001
6002 /*
6003 * This node is hotadded and no memory is yet present. So just
6004 * building zonelists is fine - no need to touch other nodes.
6005 */
6006 if (self && !node_online(self->node_id)) {
6007 build_zonelists(self);
6008 } else {
6009 for_each_online_node(nid) {
6010 pg_data_t *pgdat = NODE_DATA(nid);
6011
6012 build_zonelists(pgdat);
6013 }
6014
6015 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
6016 /*
6017 * We now know the "local memory node" for each node--
6018 * i.e., the node of the first zone in the generic zonelist.
6019 * Set up numa_mem percpu variable for on-line cpus. During
6020 * boot, only the boot cpu should be on-line; we'll init the
6021 * secondary cpus' numa_mem as they come on-line. During
6022 * node/memory hotplug, we'll fixup all on-line cpus.
6023 */
6024 for_each_online_cpu(cpu)
6025 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
6026 #endif
6027 }
6028
6029 spin_unlock(&lock);
6030 }
6031
6032 static noinline void __init
6033 build_all_zonelists_init(void)
6034 {
6035 int cpu;
6036
6037 __build_all_zonelists(NULL);
6038
6039 /*
6040 * Initialize the boot_pagesets that are going to be used
6041 * for bootstrapping processors. The real pagesets for
6042 * each zone will be allocated later when the per cpu
6043 * allocator is available.
6044 *
6045 * boot_pagesets are used also for bootstrapping offline
6046 * cpus if the system is already booted because the pagesets
6047 * are needed to initialize allocators on a specific cpu too.
6048 * F.e. the percpu allocator needs the page allocator which
6049 * needs the percpu allocator in order to allocate its pagesets
6050 * (a chicken-egg dilemma).
6051 */
6052 for_each_possible_cpu(cpu)
6053 pageset_init(&per_cpu(boot_pageset, cpu));
6054
6055 mminit_verify_zonelist();
6056 cpuset_init_current_mems_allowed();
6057 }
6058
6059 /*
6060 * unless system_state == SYSTEM_BOOTING.
6061 *
6062 * __ref due to call of __init annotated helper build_all_zonelists_init
6063 * [protected by SYSTEM_BOOTING].
6064 */
6065 void __ref build_all_zonelists(pg_data_t *pgdat)
6066 {
6067 unsigned long vm_total_pages;
6068
6069 if (system_state == SYSTEM_BOOTING) {
6070 build_all_zonelists_init();
6071 } else {
6072 __build_all_zonelists(pgdat);
6073 /* cpuset refresh routine should be here */
6074 }
6075 /* Get the number of free pages beyond high watermark in all zones. */
6076 vm_total_pages = nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
6077 /*
6078 * Disable grouping by mobility if the number of pages in the
6079 * system is too low to allow the mechanism to work. It would be
6080 * more accurate, but expensive to check per-zone. This check is
6081 * made on memory-hotadd so a system can start with mobility
6082 * disabled and enable it later
6083 */
6084 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
6085 page_group_by_mobility_disabled = 1;
6086 else
6087 page_group_by_mobility_disabled = 0;
6088
6089 pr_info("Built %u zonelists, mobility grouping %s. Total pages: %ld\n",
6090 nr_online_nodes,
6091 page_group_by_mobility_disabled ? "off" : "on",
6092 vm_total_pages);
6093 #ifdef CONFIG_NUMA
6094 pr_info("Policy zone: %s\n", zone_names[policy_zone]);
6095 #endif
6096 }
6097
6098 /* If zone is ZONE_MOVABLE but memory is mirrored, it is an overlapped init */
6099 static bool __meminit
6100 overlap_memmap_init(unsigned long zone, unsigned long *pfn)
6101 {
6102 static struct memblock_region *r;
6103
6104 if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
6105 if (!r || *pfn >= memblock_region_memory_end_pfn(r)) {
6106 for_each_mem_region(r) {
6107 if (*pfn < memblock_region_memory_end_pfn(r))
6108 break;
6109 }
6110 }
6111 if (*pfn >= memblock_region_memory_base_pfn(r) &&
6112 memblock_is_mirror(r)) {
6113 *pfn = memblock_region_memory_end_pfn(r);
6114 return true;
6115 }
6116 }
6117 return false;
6118 }
6119
6120 /*
6121 * Initially all pages are reserved - free ones are freed
6122 * up by memblock_free_all() once the early boot process is
6123 * done. Non-atomic initialization, single-pass.
6124 *
6125 * All aligned pageblocks are initialized to the specified migratetype
6126 * (usually MIGRATE_MOVABLE). Besides setting the migratetype, no related
6127 * zone stats (e.g., nr_isolate_pageblock) are touched.
6128 */
6129 void __meminit memmap_init_range(unsigned long size, int nid, unsigned long zone,
6130 unsigned long start_pfn, unsigned long zone_end_pfn,
6131 enum meminit_context context,
6132 struct vmem_altmap *altmap, int migratetype)
6133 {
6134 unsigned long pfn, end_pfn = start_pfn + size;
6135 struct page *page;
6136
6137 if (highest_memmap_pfn < end_pfn - 1)
6138 highest_memmap_pfn = end_pfn - 1;
6139
6140 #ifdef CONFIG_ZONE_DEVICE
6141 /*
6142 * Honor reservation requested by the driver for this ZONE_DEVICE
6143 * memory. We limit the total number of pages to initialize to just
6144 * those that might contain the memory mapping. We will defer the
6145 * ZONE_DEVICE page initialization until after we have released
6146 * the hotplug lock.
6147 */
6148 if (zone == ZONE_DEVICE) {
6149 if (!altmap)
6150 return;
6151
6152 if (start_pfn == altmap->base_pfn)
6153 start_pfn += altmap->reserve;
6154 end_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
6155 }
6156 #endif
6157
6158 for (pfn = start_pfn; pfn < end_pfn; ) {
6159 /*
6160 * There can be holes in boot-time mem_map[]s handed to this
6161 * function. They do not exist on hotplugged memory.
6162 */
6163 if (context == MEMINIT_EARLY) {
6164 if (overlap_memmap_init(zone, &pfn))
6165 continue;
6166 if (defer_init(nid, pfn, zone_end_pfn))
6167 break;
6168 }
6169
6170 page = pfn_to_page(pfn);
6171 __init_single_page(page, pfn, zone, nid);
6172 if (context == MEMINIT_HOTPLUG)
6173 __SetPageReserved(page);
6174
6175 /*
6176 * Usually, we want to mark the pageblock MIGRATE_MOVABLE,
6177 * such that unmovable allocations won't be scattered all
6178 * over the place during system boot.
6179 */
6180 if (IS_ALIGNED(pfn, pageblock_nr_pages)) {
6181 set_pageblock_migratetype(page, migratetype);
6182 cond_resched();
6183 }
6184 pfn++;
6185 }
6186 }
6187
6188 #ifdef CONFIG_ZONE_DEVICE
6189 void __ref memmap_init_zone_device(struct zone *zone,
6190 unsigned long start_pfn,
6191 unsigned long nr_pages,
6192 struct dev_pagemap *pgmap)
6193 {
6194 unsigned long pfn, end_pfn = start_pfn + nr_pages;
6195 struct pglist_data *pgdat = zone->zone_pgdat;
6196 struct vmem_altmap *altmap = pgmap_altmap(pgmap);
6197 unsigned long zone_idx = zone_idx(zone);
6198 unsigned long start = jiffies;
6199 int nid = pgdat->node_id;
6200
6201 if (WARN_ON_ONCE(!pgmap || zone_idx(zone) != ZONE_DEVICE))
6202 return;
6203
6204 /*
6205 * The call to memmap_init_zone should have already taken care
6206 * of the pages reserved for the memmap, so we can just jump to
6207 * the end of that region and start processing the device pages.
6208 */
6209 if (altmap) {
6210 start_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
6211 nr_pages = end_pfn - start_pfn;
6212 }
6213
6214 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
6215 struct page *page = pfn_to_page(pfn);
6216
6217 __init_single_page(page, pfn, zone_idx, nid);
6218
6219 /*
6220 * Mark page reserved as it will need to wait for onlining
6221 * phase for it to be fully associated with a zone.
6222 *
6223 * We can use the non-atomic __set_bit operation for setting
6224 * the flag as we are still initializing the pages.
6225 */
6226 __SetPageReserved(page);
6227
6228 /*
6229 * ZONE_DEVICE pages union ->lru with a ->pgmap back pointer
6230 * and zone_device_data. It is a bug if a ZONE_DEVICE page is
6231 * ever freed or placed on a driver-private list.
6232 */
6233 page->pgmap = pgmap;
6234 page->zone_device_data = NULL;
6235
6236 /*
6237 * Mark the block movable so that blocks are reserved for
6238 * movable at startup. This will force kernel allocations
6239 * to reserve their blocks rather than leaking throughout
6240 * the address space during boot when many long-lived
6241 * kernel allocations are made.
6242 *
6243 * Please note that MEMINIT_HOTPLUG path doesn't clear memmap
6244 * because this is done early in section_activate()
6245 */
6246 if (IS_ALIGNED(pfn, pageblock_nr_pages)) {
6247 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
6248 cond_resched();
6249 }
6250 }
6251
6252 pr_info("%s initialised %lu pages in %ums\n", __func__,
6253 nr_pages, jiffies_to_msecs(jiffies - start));
6254 }
6255
6256 #endif
6257 static void __meminit zone_init_free_lists(struct zone *zone)
6258 {
6259 unsigned int order, t;
6260 for_each_migratetype_order(order, t) {
6261 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
6262 zone->free_area[order].nr_free = 0;
6263 }
6264 }
6265
6266 #if !defined(CONFIG_FLAT_NODE_MEM_MAP)
6267 /*
6268 * Only struct pages that correspond to ranges defined by memblock.memory
6269 * are zeroed and initialized by going through __init_single_page() during
6270 * memmap_init_zone().
6271 *
6272 * But, there could be struct pages that correspond to holes in
6273 * memblock.memory. This can happen because of the following reasons:
6274 * - physical memory bank size is not necessarily the exact multiple of the
6275 * arbitrary section size
6276 * - early reserved memory may not be listed in memblock.memory
6277 * - memory layouts defined with memmap= kernel parameter may not align
6278 * nicely with memmap sections
6279 *
6280 * Explicitly initialize those struct pages so that:
6281 * - PG_Reserved is set
6282 * - zone and node links point to zone and node that span the page if the
6283 * hole is in the middle of a zone
6284 * - zone and node links point to adjacent zone/node if the hole falls on
6285 * the zone boundary; the pages in such holes will be prepended to the
6286 * zone/node above the hole except for the trailing pages in the last
6287 * section that will be appended to the zone/node below.
6288 */
6289 static u64 __meminit init_unavailable_range(unsigned long spfn,
6290 unsigned long epfn,
6291 int zone, int node)
6292 {
6293 unsigned long pfn;
6294 u64 pgcnt = 0;
6295
6296 for (pfn = spfn; pfn < epfn; pfn++) {
6297 if (!pfn_valid(ALIGN_DOWN(pfn, pageblock_nr_pages))) {
6298 pfn = ALIGN_DOWN(pfn, pageblock_nr_pages)
6299 + pageblock_nr_pages - 1;
6300 continue;
6301 }
6302 __init_single_page(pfn_to_page(pfn), pfn, zone, node);
6303 __SetPageReserved(pfn_to_page(pfn));
6304 pgcnt++;
6305 }
6306
6307 return pgcnt;
6308 }
6309 #else
6310 static inline u64 init_unavailable_range(unsigned long spfn, unsigned long epfn,
6311 int zone, int node)
6312 {
6313 return 0;
6314 }
6315 #endif
6316
6317 void __meminit __weak memmap_init_zone(struct zone *zone)
6318 {
6319 unsigned long zone_start_pfn = zone->zone_start_pfn;
6320 unsigned long zone_end_pfn = zone_start_pfn + zone->spanned_pages;
6321 int i, nid = zone_to_nid(zone), zone_id = zone_idx(zone);
6322 static unsigned long hole_pfn;
6323 unsigned long start_pfn, end_pfn;
6324 u64 pgcnt = 0;
6325
6326 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
6327 start_pfn = clamp(start_pfn, zone_start_pfn, zone_end_pfn);
6328 end_pfn = clamp(end_pfn, zone_start_pfn, zone_end_pfn);
6329
6330 if (end_pfn > start_pfn)
6331 memmap_init_range(end_pfn - start_pfn, nid,
6332 zone_id, start_pfn, zone_end_pfn,
6333 MEMINIT_EARLY, NULL, MIGRATE_MOVABLE);
6334
6335 if (hole_pfn < start_pfn)
6336 pgcnt += init_unavailable_range(hole_pfn, start_pfn,
6337 zone_id, nid);
6338 hole_pfn = end_pfn;
6339 }
6340
6341 #ifdef CONFIG_SPARSEMEM
6342 /*
6343 * Initialize the hole in the range [zone_end_pfn, section_end].
6344 * If zone boundary falls in the middle of a section, this hole
6345 * will be re-initialized during the call to this function for the
6346 * higher zone.
6347 */
6348 end_pfn = round_up(zone_end_pfn, PAGES_PER_SECTION);
6349 if (hole_pfn < end_pfn)
6350 pgcnt += init_unavailable_range(hole_pfn, end_pfn,
6351 zone_id, nid);
6352 #endif
6353
6354 if (pgcnt)
6355 pr_info(" %s zone: %llu pages in unavailable ranges\n",
6356 zone->name, pgcnt);
6357 }
6358
6359 static int zone_batchsize(struct zone *zone)
6360 {
6361 #ifdef CONFIG_MMU
6362 int batch;
6363
6364 /*
6365 * The per-cpu-pages pools are set to around 1000th of the
6366 * size of the zone.
6367 */
6368 batch = zone_managed_pages(zone) / 1024;
6369 /* But no more than a meg. */
6370 if (batch * PAGE_SIZE > 1024 * 1024)
6371 batch = (1024 * 1024) / PAGE_SIZE;
6372 batch /= 4; /* We effectively *= 4 below */
6373 if (batch < 1)
6374 batch = 1;
6375
6376 /*
6377 * Clamp the batch to a 2^n - 1 value. Having a power
6378 * of 2 value was found to be more likely to have
6379 * suboptimal cache aliasing properties in some cases.
6380 *
6381 * For example if 2 tasks are alternately allocating
6382 * batches of pages, one task can end up with a lot
6383 * of pages of one half of the possible page colors
6384 * and the other with pages of the other colors.
6385 */
6386 batch = rounddown_pow_of_two(batch + batch/2) - 1;
6387
6388 return batch;
6389
6390 #else
6391 /* The deferral and batching of frees should be suppressed under NOMMU
6392 * conditions.
6393 *
6394 * The problem is that NOMMU needs to be able to allocate large chunks
6395 * of contiguous memory as there's no hardware page translation to
6396 * assemble apparent contiguous memory from discontiguous pages.
6397 *
6398 * Queueing large contiguous runs of pages for batching, however,
6399 * causes the pages to actually be freed in smaller chunks. As there
6400 * can be a significant delay between the individual batches being
6401 * recycled, this leads to the once large chunks of space being
6402 * fragmented and becoming unavailable for high-order allocations.
6403 */
6404 return 0;
6405 #endif
6406 }
6407
6408 /*
6409 * pcp->high and pcp->batch values are related and generally batch is lower
6410 * than high. They are also related to pcp->count such that count is lower
6411 * than high, and as soon as it reaches high, the pcplist is flushed.
6412 *
6413 * However, guaranteeing these relations at all times would require e.g. write
6414 * barriers here but also careful usage of read barriers at the read side, and
6415 * thus be prone to error and bad for performance. Thus the update only prevents
6416 * store tearing. Any new users of pcp->batch and pcp->high should ensure they
6417 * can cope with those fields changing asynchronously, and fully trust only the
6418 * pcp->count field on the local CPU with interrupts disabled.
6419 *
6420 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
6421 * outside of boot time (or some other assurance that no concurrent updaters
6422 * exist).
6423 */
6424 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
6425 unsigned long batch)
6426 {
6427 WRITE_ONCE(pcp->batch, batch);
6428 WRITE_ONCE(pcp->high, high);
6429 }
6430
6431 static void pageset_init(struct per_cpu_pageset *p)
6432 {
6433 struct per_cpu_pages *pcp;
6434 int migratetype;
6435
6436 memset(p, 0, sizeof(*p));
6437
6438 pcp = &p->pcp;
6439 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
6440 INIT_LIST_HEAD(&pcp->lists[migratetype]);
6441
6442 /*
6443 * Set batch and high values safe for a boot pageset. A true percpu
6444 * pageset's initialization will update them subsequently. Here we don't
6445 * need to be as careful as pageset_update() as nobody can access the
6446 * pageset yet.
6447 */
6448 pcp->high = BOOT_PAGESET_HIGH;
6449 pcp->batch = BOOT_PAGESET_BATCH;
6450 }
6451
6452 static void __zone_set_pageset_high_and_batch(struct zone *zone, unsigned long high,
6453 unsigned long batch)
6454 {
6455 struct per_cpu_pageset *p;
6456 int cpu;
6457
6458 for_each_possible_cpu(cpu) {
6459 p = per_cpu_ptr(zone->pageset, cpu);
6460 pageset_update(&p->pcp, high, batch);
6461 }
6462 }
6463
6464 /*
6465 * Calculate and set new high and batch values for all per-cpu pagesets of a
6466 * zone, based on the zone's size and the percpu_pagelist_fraction sysctl.
6467 */
6468 static void zone_set_pageset_high_and_batch(struct zone *zone)
6469 {
6470 unsigned long new_high, new_batch;
6471
6472 if (percpu_pagelist_fraction) {
6473 new_high = zone_managed_pages(zone) / percpu_pagelist_fraction;
6474 new_batch = max(1UL, new_high / 4);
6475 if ((new_high / 4) > (PAGE_SHIFT * 8))
6476 new_batch = PAGE_SHIFT * 8;
6477 } else {
6478 new_batch = zone_batchsize(zone);
6479 new_high = 6 * new_batch;
6480 new_batch = max(1UL, 1 * new_batch);
6481 }
6482
6483 if (zone->pageset_high == new_high &&
6484 zone->pageset_batch == new_batch)
6485 return;
6486
6487 zone->pageset_high = new_high;
6488 zone->pageset_batch = new_batch;
6489
6490 __zone_set_pageset_high_and_batch(zone, new_high, new_batch);
6491 }
6492
6493 void __meminit setup_zone_pageset(struct zone *zone)
6494 {
6495 struct per_cpu_pageset *p;
6496 int cpu;
6497
6498 zone->pageset = alloc_percpu(struct per_cpu_pageset);
6499 for_each_possible_cpu(cpu) {
6500 p = per_cpu_ptr(zone->pageset, cpu);
6501 pageset_init(p);
6502 }
6503
6504 zone_set_pageset_high_and_batch(zone);
6505 }
6506
6507 /*
6508 * Allocate per cpu pagesets and initialize them.
6509 * Before this call only boot pagesets were available.
6510 */
6511 void __init setup_per_cpu_pageset(void)
6512 {
6513 struct pglist_data *pgdat;
6514 struct zone *zone;
6515 int __maybe_unused cpu;
6516
6517 for_each_populated_zone(zone)
6518 setup_zone_pageset(zone);
6519
6520 #ifdef CONFIG_NUMA
6521 /*
6522 * Unpopulated zones continue using the boot pagesets.
6523 * The numa stats for these pagesets need to be reset.
6524 * Otherwise, they will end up skewing the stats of
6525 * the nodes these zones are associated with.
6526 */
6527 for_each_possible_cpu(cpu) {
6528 struct per_cpu_pageset *pcp = &per_cpu(boot_pageset, cpu);
6529 memset(pcp->vm_numa_stat_diff, 0,
6530 sizeof(pcp->vm_numa_stat_diff));
6531 }
6532 #endif
6533
6534 for_each_online_pgdat(pgdat)
6535 pgdat->per_cpu_nodestats =
6536 alloc_percpu(struct per_cpu_nodestat);
6537 }
6538
6539 static __meminit void zone_pcp_init(struct zone *zone)
6540 {
6541 /*
6542 * per cpu subsystem is not up at this point. The following code
6543 * relies on the ability of the linker to provide the
6544 * offset of a (static) per cpu variable into the per cpu area.
6545 */
6546 zone->pageset = &boot_pageset;
6547 zone->pageset_high = BOOT_PAGESET_HIGH;
6548 zone->pageset_batch = BOOT_PAGESET_BATCH;
6549
6550 if (populated_zone(zone))
6551 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
6552 zone->name, zone->present_pages,
6553 zone_batchsize(zone));
6554 }
6555
6556 void __meminit init_currently_empty_zone(struct zone *zone,
6557 unsigned long zone_start_pfn,
6558 unsigned long size)
6559 {
6560 struct pglist_data *pgdat = zone->zone_pgdat;
6561 int zone_idx = zone_idx(zone) + 1;
6562
6563 if (zone_idx > pgdat->nr_zones)
6564 pgdat->nr_zones = zone_idx;
6565
6566 zone->zone_start_pfn = zone_start_pfn;
6567
6568 mminit_dprintk(MMINIT_TRACE, "memmap_init",
6569 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
6570 pgdat->node_id,
6571 (unsigned long)zone_idx(zone),
6572 zone_start_pfn, (zone_start_pfn + size));
6573
6574 zone_init_free_lists(zone);
6575 zone->initialized = 1;
6576 }
6577
6578 /**
6579 * get_pfn_range_for_nid - Return the start and end page frames for a node
6580 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
6581 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
6582 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
6583 *
6584 * It returns the start and end page frame of a node based on information
6585 * provided by memblock_set_node(). If called for a node
6586 * with no available memory, a warning is printed and the start and end
6587 * PFNs will be 0.
6588 */
6589 void __init get_pfn_range_for_nid(unsigned int nid,
6590 unsigned long *start_pfn, unsigned long *end_pfn)
6591 {
6592 unsigned long this_start_pfn, this_end_pfn;
6593 int i;
6594
6595 *start_pfn = -1UL;
6596 *end_pfn = 0;
6597
6598 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
6599 *start_pfn = min(*start_pfn, this_start_pfn);
6600 *end_pfn = max(*end_pfn, this_end_pfn);
6601 }
6602
6603 if (*start_pfn == -1UL)
6604 *start_pfn = 0;
6605 }
6606
6607 /*
6608 * This finds a zone that can be used for ZONE_MOVABLE pages. The
6609 * assumption is made that zones within a node are ordered in monotonic
6610 * increasing memory addresses so that the "highest" populated zone is used
6611 */
6612 static void __init find_usable_zone_for_movable(void)
6613 {
6614 int zone_index;
6615 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
6616 if (zone_index == ZONE_MOVABLE)
6617 continue;
6618
6619 if (arch_zone_highest_possible_pfn[zone_index] >
6620 arch_zone_lowest_possible_pfn[zone_index])
6621 break;
6622 }
6623
6624 VM_BUG_ON(zone_index == -1);
6625 movable_zone = zone_index;
6626 }
6627
6628 /*
6629 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
6630 * because it is sized independent of architecture. Unlike the other zones,
6631 * the starting point for ZONE_MOVABLE is not fixed. It may be different
6632 * in each node depending on the size of each node and how evenly kernelcore
6633 * is distributed. This helper function adjusts the zone ranges
6634 * provided by the architecture for a given node by using the end of the
6635 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
6636 * zones within a node are in order of monotonic increases memory addresses
6637 */
6638 static void __init adjust_zone_range_for_zone_movable(int nid,
6639 unsigned long zone_type,
6640 unsigned long node_start_pfn,
6641 unsigned long node_end_pfn,
6642 unsigned long *zone_start_pfn,
6643 unsigned long *zone_end_pfn)
6644 {
6645 /* Only adjust if ZONE_MOVABLE is on this node */
6646 if (zone_movable_pfn[nid]) {
6647 /* Size ZONE_MOVABLE */
6648 if (zone_type == ZONE_MOVABLE) {
6649 *zone_start_pfn = zone_movable_pfn[nid];
6650 *zone_end_pfn = min(node_end_pfn,
6651 arch_zone_highest_possible_pfn[movable_zone]);
6652
6653 /* Adjust for ZONE_MOVABLE starting within this range */
6654 } else if (!mirrored_kernelcore &&
6655 *zone_start_pfn < zone_movable_pfn[nid] &&
6656 *zone_end_pfn > zone_movable_pfn[nid]) {
6657 *zone_end_pfn = zone_movable_pfn[nid];
6658
6659 /* Check if this whole range is within ZONE_MOVABLE */
6660 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
6661 *zone_start_pfn = *zone_end_pfn;
6662 }
6663 }
6664
6665 /*
6666 * Return the number of pages a zone spans in a node, including holes
6667 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
6668 */
6669 static unsigned long __init zone_spanned_pages_in_node(int nid,
6670 unsigned long zone_type,
6671 unsigned long node_start_pfn,
6672 unsigned long node_end_pfn,
6673 unsigned long *zone_start_pfn,
6674 unsigned long *zone_end_pfn)
6675 {
6676 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
6677 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
6678 /* When hotadd a new node from cpu_up(), the node should be empty */
6679 if (!node_start_pfn && !node_end_pfn)
6680 return 0;
6681
6682 /* Get the start and end of the zone */
6683 *zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
6684 *zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
6685 adjust_zone_range_for_zone_movable(nid, zone_type,
6686 node_start_pfn, node_end_pfn,
6687 zone_start_pfn, zone_end_pfn);
6688
6689 /* Check that this node has pages within the zone's required range */
6690 if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
6691 return 0;
6692
6693 /* Move the zone boundaries inside the node if necessary */
6694 *zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
6695 *zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
6696
6697 /* Return the spanned pages */
6698 return *zone_end_pfn - *zone_start_pfn;
6699 }
6700
6701 /*
6702 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
6703 * then all holes in the requested range will be accounted for.
6704 */
6705 unsigned long __init __absent_pages_in_range(int nid,
6706 unsigned long range_start_pfn,
6707 unsigned long range_end_pfn)
6708 {
6709 unsigned long nr_absent = range_end_pfn - range_start_pfn;
6710 unsigned long start_pfn, end_pfn;
6711 int i;
6712
6713 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
6714 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
6715 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
6716 nr_absent -= end_pfn - start_pfn;
6717 }
6718 return nr_absent;
6719 }
6720
6721 /**
6722 * absent_pages_in_range - Return number of page frames in holes within a range
6723 * @start_pfn: The start PFN to start searching for holes
6724 * @end_pfn: The end PFN to stop searching for holes
6725 *
6726 * Return: the number of pages frames in memory holes within a range.
6727 */
6728 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
6729 unsigned long end_pfn)
6730 {
6731 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
6732 }
6733
6734 /* Return the number of page frames in holes in a zone on a node */
6735 static unsigned long __init zone_absent_pages_in_node(int nid,
6736 unsigned long zone_type,
6737 unsigned long node_start_pfn,
6738 unsigned long node_end_pfn)
6739 {
6740 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
6741 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
6742 unsigned long zone_start_pfn, zone_end_pfn;
6743 unsigned long nr_absent;
6744
6745 /* When hotadd a new node from cpu_up(), the node should be empty */
6746 if (!node_start_pfn && !node_end_pfn)
6747 return 0;
6748
6749 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
6750 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
6751
6752 adjust_zone_range_for_zone_movable(nid, zone_type,
6753 node_start_pfn, node_end_pfn,
6754 &zone_start_pfn, &zone_end_pfn);
6755 nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
6756
6757 /*
6758 * ZONE_MOVABLE handling.
6759 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
6760 * and vice versa.
6761 */
6762 if (mirrored_kernelcore && zone_movable_pfn[nid]) {
6763 unsigned long start_pfn, end_pfn;
6764 struct memblock_region *r;
6765
6766 for_each_mem_region(r) {
6767 start_pfn = clamp(memblock_region_memory_base_pfn(r),
6768 zone_start_pfn, zone_end_pfn);
6769 end_pfn = clamp(memblock_region_memory_end_pfn(r),
6770 zone_start_pfn, zone_end_pfn);
6771
6772 if (zone_type == ZONE_MOVABLE &&
6773 memblock_is_mirror(r))
6774 nr_absent += end_pfn - start_pfn;
6775
6776 if (zone_type == ZONE_NORMAL &&
6777 !memblock_is_mirror(r))
6778 nr_absent += end_pfn - start_pfn;
6779 }
6780 }
6781
6782 return nr_absent;
6783 }
6784
6785 static void __init calculate_node_totalpages(struct pglist_data *pgdat,
6786 unsigned long node_start_pfn,
6787 unsigned long node_end_pfn)
6788 {
6789 unsigned long realtotalpages = 0, totalpages = 0;
6790 enum zone_type i;
6791
6792 for (i = 0; i < MAX_NR_ZONES; i++) {
6793 struct zone *zone = pgdat->node_zones + i;
6794 unsigned long zone_start_pfn, zone_end_pfn;
6795 unsigned long spanned, absent;
6796 unsigned long size, real_size;
6797
6798 spanned = zone_spanned_pages_in_node(pgdat->node_id, i,
6799 node_start_pfn,
6800 node_end_pfn,
6801 &zone_start_pfn,
6802 &zone_end_pfn);
6803 absent = zone_absent_pages_in_node(pgdat->node_id, i,
6804 node_start_pfn,
6805 node_end_pfn);
6806
6807 size = spanned;
6808 real_size = size - absent;
6809
6810 if (size)
6811 zone->zone_start_pfn = zone_start_pfn;
6812 else
6813 zone->zone_start_pfn = 0;
6814 zone->spanned_pages = size;
6815 zone->present_pages = real_size;
6816
6817 totalpages += size;
6818 realtotalpages += real_size;
6819 }
6820
6821 pgdat->node_spanned_pages = totalpages;
6822 pgdat->node_present_pages = realtotalpages;
6823 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
6824 realtotalpages);
6825 }
6826
6827 #ifndef CONFIG_SPARSEMEM
6828 /*
6829 * Calculate the size of the zone->blockflags rounded to an unsigned long
6830 * Start by making sure zonesize is a multiple of pageblock_order by rounding
6831 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
6832 * round what is now in bits to nearest long in bits, then return it in
6833 * bytes.
6834 */
6835 static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
6836 {
6837 unsigned long usemapsize;
6838
6839 zonesize += zone_start_pfn & (pageblock_nr_pages-1);
6840 usemapsize = roundup(zonesize, pageblock_nr_pages);
6841 usemapsize = usemapsize >> pageblock_order;
6842 usemapsize *= NR_PAGEBLOCK_BITS;
6843 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
6844
6845 return usemapsize / 8;
6846 }
6847
6848 static void __ref setup_usemap(struct zone *zone)
6849 {
6850 unsigned long usemapsize = usemap_size(zone->zone_start_pfn,
6851 zone->spanned_pages);
6852 zone->pageblock_flags = NULL;
6853 if (usemapsize) {
6854 zone->pageblock_flags =
6855 memblock_alloc_node(usemapsize, SMP_CACHE_BYTES,
6856 zone_to_nid(zone));
6857 if (!zone->pageblock_flags)
6858 panic("Failed to allocate %ld bytes for zone %s pageblock flags on node %d\n",
6859 usemapsize, zone->name, zone_to_nid(zone));
6860 }
6861 }
6862 #else
6863 static inline void setup_usemap(struct zone *zone) {}
6864 #endif /* CONFIG_SPARSEMEM */
6865
6866 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
6867
6868 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
6869 void __init set_pageblock_order(void)
6870 {
6871 unsigned int order;
6872
6873 /* Check that pageblock_nr_pages has not already been setup */
6874 if (pageblock_order)
6875 return;
6876
6877 if (HPAGE_SHIFT > PAGE_SHIFT)
6878 order = HUGETLB_PAGE_ORDER;
6879 else
6880 order = MAX_ORDER - 1;
6881
6882 /*
6883 * Assume the largest contiguous order of interest is a huge page.
6884 * This value may be variable depending on boot parameters on IA64 and
6885 * powerpc.
6886 */
6887 pageblock_order = order;
6888 }
6889 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
6890
6891 /*
6892 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
6893 * is unused as pageblock_order is set at compile-time. See
6894 * include/linux/pageblock-flags.h for the values of pageblock_order based on
6895 * the kernel config
6896 */
6897 void __init set_pageblock_order(void)
6898 {
6899 }
6900
6901 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
6902
6903 static unsigned long __init calc_memmap_size(unsigned long spanned_pages,
6904 unsigned long present_pages)
6905 {
6906 unsigned long pages = spanned_pages;
6907
6908 /*
6909 * Provide a more accurate estimation if there are holes within
6910 * the zone and SPARSEMEM is in use. If there are holes within the
6911 * zone, each populated memory region may cost us one or two extra
6912 * memmap pages due to alignment because memmap pages for each
6913 * populated regions may not be naturally aligned on page boundary.
6914 * So the (present_pages >> 4) heuristic is a tradeoff for that.
6915 */
6916 if (spanned_pages > present_pages + (present_pages >> 4) &&
6917 IS_ENABLED(CONFIG_SPARSEMEM))
6918 pages = present_pages;
6919
6920 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
6921 }
6922
6923 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
6924 static void pgdat_init_split_queue(struct pglist_data *pgdat)
6925 {
6926 struct deferred_split *ds_queue = &pgdat->deferred_split_queue;
6927
6928 spin_lock_init(&ds_queue->split_queue_lock);
6929 INIT_LIST_HEAD(&ds_queue->split_queue);
6930 ds_queue->split_queue_len = 0;
6931 }
6932 #else
6933 static void pgdat_init_split_queue(struct pglist_data *pgdat) {}
6934 #endif
6935
6936 #ifdef CONFIG_COMPACTION
6937 static void pgdat_init_kcompactd(struct pglist_data *pgdat)
6938 {
6939 init_waitqueue_head(&pgdat->kcompactd_wait);
6940 }
6941 #else
6942 static void pgdat_init_kcompactd(struct pglist_data *pgdat) {}
6943 #endif
6944
6945 static void __meminit pgdat_init_internals(struct pglist_data *pgdat)
6946 {
6947 pgdat_resize_init(pgdat);
6948
6949 pgdat_init_split_queue(pgdat);
6950 pgdat_init_kcompactd(pgdat);
6951
6952 init_waitqueue_head(&pgdat->kswapd_wait);
6953 init_waitqueue_head(&pgdat->pfmemalloc_wait);
6954
6955 pgdat_page_ext_init(pgdat);
6956 lruvec_init(&pgdat->__lruvec);
6957 }
6958
6959 static void __meminit zone_init_internals(struct zone *zone, enum zone_type idx, int nid,
6960 unsigned long remaining_pages)
6961 {
6962 atomic_long_set(&zone->managed_pages, remaining_pages);
6963 zone_set_nid(zone, nid);
6964 zone->name = zone_names[idx];
6965 zone->zone_pgdat = NODE_DATA(nid);
6966 spin_lock_init(&zone->lock);
6967 zone_seqlock_init(zone);
6968 zone_pcp_init(zone);
6969 }
6970
6971 /*
6972 * Set up the zone data structures
6973 * - init pgdat internals
6974 * - init all zones belonging to this node
6975 *
6976 * NOTE: this function is only called during memory hotplug
6977 */
6978 #ifdef CONFIG_MEMORY_HOTPLUG
6979 void __ref free_area_init_core_hotplug(int nid)
6980 {
6981 enum zone_type z;
6982 pg_data_t *pgdat = NODE_DATA(nid);
6983
6984 pgdat_init_internals(pgdat);
6985 for (z = 0; z < MAX_NR_ZONES; z++)
6986 zone_init_internals(&pgdat->node_zones[z], z, nid, 0);
6987 }
6988 #endif
6989
6990 /*
6991 * Set up the zone data structures:
6992 * - mark all pages reserved
6993 * - mark all memory queues empty
6994 * - clear the memory bitmaps
6995 *
6996 * NOTE: pgdat should get zeroed by caller.
6997 * NOTE: this function is only called during early init.
6998 */
6999 static void __init free_area_init_core(struct pglist_data *pgdat)
7000 {
7001 enum zone_type j;
7002 int nid = pgdat->node_id;
7003
7004 pgdat_init_internals(pgdat);
7005 pgdat->per_cpu_nodestats = &boot_nodestats;
7006
7007 for (j = 0; j < MAX_NR_ZONES; j++) {
7008 struct zone *zone = pgdat->node_zones + j;
7009 unsigned long size, freesize, memmap_pages;
7010
7011 size = zone->spanned_pages;
7012 freesize = zone->present_pages;
7013
7014 /*
7015 * Adjust freesize so that it accounts for how much memory
7016 * is used by this zone for memmap. This affects the watermark
7017 * and per-cpu initialisations
7018 */
7019 memmap_pages = calc_memmap_size(size, freesize);
7020 if (!is_highmem_idx(j)) {
7021 if (freesize >= memmap_pages) {
7022 freesize -= memmap_pages;
7023 if (memmap_pages)
7024 printk(KERN_DEBUG
7025 " %s zone: %lu pages used for memmap\n",
7026 zone_names[j], memmap_pages);
7027 } else
7028 pr_warn(" %s zone: %lu pages exceeds freesize %lu\n",
7029 zone_names[j], memmap_pages, freesize);
7030 }
7031
7032 /* Account for reserved pages */
7033 if (j == 0 && freesize > dma_reserve) {
7034 freesize -= dma_reserve;
7035 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
7036 zone_names[0], dma_reserve);
7037 }
7038
7039 if (!is_highmem_idx(j))
7040 nr_kernel_pages += freesize;
7041 /* Charge for highmem memmap if there are enough kernel pages */
7042 else if (nr_kernel_pages > memmap_pages * 2)
7043 nr_kernel_pages -= memmap_pages;
7044 nr_all_pages += freesize;
7045
7046 /*
7047 * Set an approximate value for lowmem here, it will be adjusted
7048 * when the bootmem allocator frees pages into the buddy system.
7049 * And all highmem pages will be managed by the buddy system.
7050 */
7051 zone_init_internals(zone, j, nid, freesize);
7052
7053 if (!size)
7054 continue;
7055
7056 set_pageblock_order();
7057 setup_usemap(zone);
7058 init_currently_empty_zone(zone, zone->zone_start_pfn, size);
7059 memmap_init_zone(zone);
7060 }
7061 }
7062
7063 #ifdef CONFIG_FLAT_NODE_MEM_MAP
7064 static void __ref alloc_node_mem_map(struct pglist_data *pgdat)
7065 {
7066 unsigned long __maybe_unused start = 0;
7067 unsigned long __maybe_unused offset = 0;
7068
7069 /* Skip empty nodes */
7070 if (!pgdat->node_spanned_pages)
7071 return;
7072
7073 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
7074 offset = pgdat->node_start_pfn - start;
7075 /* ia64 gets its own node_mem_map, before this, without bootmem */
7076 if (!pgdat->node_mem_map) {
7077 unsigned long size, end;
7078 struct page *map;
7079
7080 /*
7081 * The zone's endpoints aren't required to be MAX_ORDER
7082 * aligned but the node_mem_map endpoints must be in order
7083 * for the buddy allocator to function correctly.
7084 */
7085 end = pgdat_end_pfn(pgdat);
7086 end = ALIGN(end, MAX_ORDER_NR_PAGES);
7087 size = (end - start) * sizeof(struct page);
7088 map = memblock_alloc_node(size, SMP_CACHE_BYTES,
7089 pgdat->node_id);
7090 if (!map)
7091 panic("Failed to allocate %ld bytes for node %d memory map\n",
7092 size, pgdat->node_id);
7093 pgdat->node_mem_map = map + offset;
7094 }
7095 pr_debug("%s: node %d, pgdat %08lx, node_mem_map %08lx\n",
7096 __func__, pgdat->node_id, (unsigned long)pgdat,
7097 (unsigned long)pgdat->node_mem_map);
7098 #ifndef CONFIG_NEED_MULTIPLE_NODES
7099 /*
7100 * With no DISCONTIG, the global mem_map is just set as node 0's
7101 */
7102 if (pgdat == NODE_DATA(0)) {
7103 mem_map = NODE_DATA(0)->node_mem_map;
7104 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
7105 mem_map -= offset;
7106 }
7107 #endif
7108 }
7109 #else
7110 static void __ref alloc_node_mem_map(struct pglist_data *pgdat) { }
7111 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
7112
7113 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
7114 static inline void pgdat_set_deferred_range(pg_data_t *pgdat)
7115 {
7116 pgdat->first_deferred_pfn = ULONG_MAX;
7117 }
7118 #else
7119 static inline void pgdat_set_deferred_range(pg_data_t *pgdat) {}
7120 #endif
7121
7122 static void __init free_area_init_node(int nid)
7123 {
7124 pg_data_t *pgdat = NODE_DATA(nid);
7125 unsigned long start_pfn = 0;
7126 unsigned long end_pfn = 0;
7127
7128 /* pg_data_t should be reset to zero when it's allocated */
7129 WARN_ON(pgdat->nr_zones || pgdat->kswapd_highest_zoneidx);
7130
7131 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
7132
7133 pgdat->node_id = nid;
7134 pgdat->node_start_pfn = start_pfn;
7135 pgdat->per_cpu_nodestats = NULL;
7136
7137 pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
7138 (u64)start_pfn << PAGE_SHIFT,
7139 end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
7140 calculate_node_totalpages(pgdat, start_pfn, end_pfn);
7141
7142 alloc_node_mem_map(pgdat);
7143 pgdat_set_deferred_range(pgdat);
7144
7145 free_area_init_core(pgdat);
7146 }
7147
7148 void __init free_area_init_memoryless_node(int nid)
7149 {
7150 free_area_init_node(nid);
7151 }
7152
7153 #if MAX_NUMNODES > 1
7154 /*
7155 * Figure out the number of possible node ids.
7156 */
7157 void __init setup_nr_node_ids(void)
7158 {
7159 unsigned int highest;
7160
7161 highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
7162 nr_node_ids = highest + 1;
7163 }
7164 #endif
7165
7166 /**
7167 * node_map_pfn_alignment - determine the maximum internode alignment
7168 *
7169 * This function should be called after node map is populated and sorted.
7170 * It calculates the maximum power of two alignment which can distinguish
7171 * all the nodes.
7172 *
7173 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
7174 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
7175 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
7176 * shifted, 1GiB is enough and this function will indicate so.
7177 *
7178 * This is used to test whether pfn -> nid mapping of the chosen memory
7179 * model has fine enough granularity to avoid incorrect mapping for the
7180 * populated node map.
7181 *
7182 * Return: the determined alignment in pfn's. 0 if there is no alignment
7183 * requirement (single node).
7184 */
7185 unsigned long __init node_map_pfn_alignment(void)
7186 {
7187 unsigned long accl_mask = 0, last_end = 0;
7188 unsigned long start, end, mask;
7189 int last_nid = NUMA_NO_NODE;
7190 int i, nid;
7191
7192 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
7193 if (!start || last_nid < 0 || last_nid == nid) {
7194 last_nid = nid;
7195 last_end = end;
7196 continue;
7197 }
7198
7199 /*
7200 * Start with a mask granular enough to pin-point to the
7201 * start pfn and tick off bits one-by-one until it becomes
7202 * too coarse to separate the current node from the last.
7203 */
7204 mask = ~((1 << __ffs(start)) - 1);
7205 while (mask && last_end <= (start & (mask << 1)))
7206 mask <<= 1;
7207
7208 /* accumulate all internode masks */
7209 accl_mask |= mask;
7210 }
7211
7212 /* convert mask to number of pages */
7213 return ~accl_mask + 1;
7214 }
7215
7216 /**
7217 * find_min_pfn_with_active_regions - Find the minimum PFN registered
7218 *
7219 * Return: the minimum PFN based on information provided via
7220 * memblock_set_node().
7221 */
7222 unsigned long __init find_min_pfn_with_active_regions(void)
7223 {
7224 return PHYS_PFN(memblock_start_of_DRAM());
7225 }
7226
7227 /*
7228 * early_calculate_totalpages()
7229 * Sum pages in active regions for movable zone.
7230 * Populate N_MEMORY for calculating usable_nodes.
7231 */
7232 static unsigned long __init early_calculate_totalpages(void)
7233 {
7234 unsigned long totalpages = 0;
7235 unsigned long start_pfn, end_pfn;
7236 int i, nid;
7237
7238 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
7239 unsigned long pages = end_pfn - start_pfn;
7240
7241 totalpages += pages;
7242 if (pages)
7243 node_set_state(nid, N_MEMORY);
7244 }
7245 return totalpages;
7246 }
7247
7248 /*
7249 * Find the PFN the Movable zone begins in each node. Kernel memory
7250 * is spread evenly between nodes as long as the nodes have enough
7251 * memory. When they don't, some nodes will have more kernelcore than
7252 * others
7253 */
7254 static void __init find_zone_movable_pfns_for_nodes(void)
7255 {
7256 int i, nid;
7257 unsigned long usable_startpfn;
7258 unsigned long kernelcore_node, kernelcore_remaining;
7259 /* save the state before borrow the nodemask */
7260 nodemask_t saved_node_state = node_states[N_MEMORY];
7261 unsigned long totalpages = early_calculate_totalpages();
7262 int usable_nodes = nodes_weight(node_states[N_MEMORY]);
7263 struct memblock_region *r;
7264
7265 /* Need to find movable_zone earlier when movable_node is specified. */
7266 find_usable_zone_for_movable();
7267
7268 /*
7269 * If movable_node is specified, ignore kernelcore and movablecore
7270 * options.
7271 */
7272 if (movable_node_is_enabled()) {
7273 for_each_mem_region(r) {
7274 if (!memblock_is_hotpluggable(r))
7275 continue;
7276
7277 nid = memblock_get_region_node(r);
7278
7279 usable_startpfn = PFN_DOWN(r->base);
7280 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
7281 min(usable_startpfn, zone_movable_pfn[nid]) :
7282 usable_startpfn;
7283 }
7284
7285 goto out2;
7286 }
7287
7288 /*
7289 * If kernelcore=mirror is specified, ignore movablecore option
7290 */
7291 if (mirrored_kernelcore) {
7292 bool mem_below_4gb_not_mirrored = false;
7293
7294 for_each_mem_region(r) {
7295 if (memblock_is_mirror(r))
7296 continue;
7297
7298 nid = memblock_get_region_node(r);
7299
7300 usable_startpfn = memblock_region_memory_base_pfn(r);
7301
7302 if (usable_startpfn < 0x100000) {
7303 mem_below_4gb_not_mirrored = true;
7304 continue;
7305 }
7306
7307 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
7308 min(usable_startpfn, zone_movable_pfn[nid]) :
7309 usable_startpfn;
7310 }
7311
7312 if (mem_below_4gb_not_mirrored)
7313 pr_warn("This configuration results in unmirrored kernel memory.\n");
7314
7315 goto out2;
7316 }
7317
7318 /*
7319 * If kernelcore=nn% or movablecore=nn% was specified, calculate the
7320 * amount of necessary memory.
7321 */
7322 if (required_kernelcore_percent)
7323 required_kernelcore = (totalpages * 100 * required_kernelcore_percent) /
7324 10000UL;
7325 if (required_movablecore_percent)
7326 required_movablecore = (totalpages * 100 * required_movablecore_percent) /
7327 10000UL;
7328
7329 /*
7330 * If movablecore= was specified, calculate what size of
7331 * kernelcore that corresponds so that memory usable for
7332 * any allocation type is evenly spread. If both kernelcore
7333 * and movablecore are specified, then the value of kernelcore
7334 * will be used for required_kernelcore if it's greater than
7335 * what movablecore would have allowed.
7336 */
7337 if (required_movablecore) {
7338 unsigned long corepages;
7339
7340 /*
7341 * Round-up so that ZONE_MOVABLE is at least as large as what
7342 * was requested by the user
7343 */
7344 required_movablecore =
7345 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
7346 required_movablecore = min(totalpages, required_movablecore);
7347 corepages = totalpages - required_movablecore;
7348
7349 required_kernelcore = max(required_kernelcore, corepages);
7350 }
7351
7352 /*
7353 * If kernelcore was not specified or kernelcore size is larger
7354 * than totalpages, there is no ZONE_MOVABLE.
7355 */
7356 if (!required_kernelcore || required_kernelcore >= totalpages)
7357 goto out;
7358
7359 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
7360 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
7361
7362 restart:
7363 /* Spread kernelcore memory as evenly as possible throughout nodes */
7364 kernelcore_node = required_kernelcore / usable_nodes;
7365 for_each_node_state(nid, N_MEMORY) {
7366 unsigned long start_pfn, end_pfn;
7367
7368 /*
7369 * Recalculate kernelcore_node if the division per node
7370 * now exceeds what is necessary to satisfy the requested
7371 * amount of memory for the kernel
7372 */
7373 if (required_kernelcore < kernelcore_node)
7374 kernelcore_node = required_kernelcore / usable_nodes;
7375
7376 /*
7377 * As the map is walked, we track how much memory is usable
7378 * by the kernel using kernelcore_remaining. When it is
7379 * 0, the rest of the node is usable by ZONE_MOVABLE
7380 */
7381 kernelcore_remaining = kernelcore_node;
7382
7383 /* Go through each range of PFNs within this node */
7384 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
7385 unsigned long size_pages;
7386
7387 start_pfn = max(start_pfn, zone_movable_pfn[nid]);
7388 if (start_pfn >= end_pfn)
7389 continue;
7390
7391 /* Account for what is only usable for kernelcore */
7392 if (start_pfn < usable_startpfn) {
7393 unsigned long kernel_pages;
7394 kernel_pages = min(end_pfn, usable_startpfn)
7395 - start_pfn;
7396
7397 kernelcore_remaining -= min(kernel_pages,
7398 kernelcore_remaining);
7399 required_kernelcore -= min(kernel_pages,
7400 required_kernelcore);
7401
7402 /* Continue if range is now fully accounted */
7403 if (end_pfn <= usable_startpfn) {
7404
7405 /*
7406 * Push zone_movable_pfn to the end so
7407 * that if we have to rebalance
7408 * kernelcore across nodes, we will
7409 * not double account here
7410 */
7411 zone_movable_pfn[nid] = end_pfn;
7412 continue;
7413 }
7414 start_pfn = usable_startpfn;
7415 }
7416
7417 /*
7418 * The usable PFN range for ZONE_MOVABLE is from
7419 * start_pfn->end_pfn. Calculate size_pages as the
7420 * number of pages used as kernelcore
7421 */
7422 size_pages = end_pfn - start_pfn;
7423 if (size_pages > kernelcore_remaining)
7424 size_pages = kernelcore_remaining;
7425 zone_movable_pfn[nid] = start_pfn + size_pages;
7426
7427 /*
7428 * Some kernelcore has been met, update counts and
7429 * break if the kernelcore for this node has been
7430 * satisfied
7431 */
7432 required_kernelcore -= min(required_kernelcore,
7433 size_pages);
7434 kernelcore_remaining -= size_pages;
7435 if (!kernelcore_remaining)
7436 break;
7437 }
7438 }
7439
7440 /*
7441 * If there is still required_kernelcore, we do another pass with one
7442 * less node in the count. This will push zone_movable_pfn[nid] further
7443 * along on the nodes that still have memory until kernelcore is
7444 * satisfied
7445 */
7446 usable_nodes--;
7447 if (usable_nodes && required_kernelcore > usable_nodes)
7448 goto restart;
7449
7450 out2:
7451 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
7452 for (nid = 0; nid < MAX_NUMNODES; nid++)
7453 zone_movable_pfn[nid] =
7454 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
7455
7456 out:
7457 /* restore the node_state */
7458 node_states[N_MEMORY] = saved_node_state;
7459 }
7460
7461 /* Any regular or high memory on that node ? */
7462 static void check_for_memory(pg_data_t *pgdat, int nid)
7463 {
7464 enum zone_type zone_type;
7465
7466 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
7467 struct zone *zone = &pgdat->node_zones[zone_type];
7468 if (populated_zone(zone)) {
7469 if (IS_ENABLED(CONFIG_HIGHMEM))
7470 node_set_state(nid, N_HIGH_MEMORY);
7471 if (zone_type <= ZONE_NORMAL)
7472 node_set_state(nid, N_NORMAL_MEMORY);
7473 break;
7474 }
7475 }
7476 }
7477
7478 /*
7479 * Some architecturs, e.g. ARC may have ZONE_HIGHMEM below ZONE_NORMAL. For
7480 * such cases we allow max_zone_pfn sorted in the descending order
7481 */
7482 bool __weak arch_has_descending_max_zone_pfns(void)
7483 {
7484 return false;
7485 }
7486
7487 /**
7488 * free_area_init - Initialise all pg_data_t and zone data
7489 * @max_zone_pfn: an array of max PFNs for each zone
7490 *
7491 * This will call free_area_init_node() for each active node in the system.
7492 * Using the page ranges provided by memblock_set_node(), the size of each
7493 * zone in each node and their holes is calculated. If the maximum PFN
7494 * between two adjacent zones match, it is assumed that the zone is empty.
7495 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
7496 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
7497 * starts where the previous one ended. For example, ZONE_DMA32 starts
7498 * at arch_max_dma_pfn.
7499 */
7500 void __init free_area_init(unsigned long *max_zone_pfn)
7501 {
7502 unsigned long start_pfn, end_pfn;
7503 int i, nid, zone;
7504 bool descending;
7505
7506 /* Record where the zone boundaries are */
7507 memset(arch_zone_lowest_possible_pfn, 0,
7508 sizeof(arch_zone_lowest_possible_pfn));
7509 memset(arch_zone_highest_possible_pfn, 0,
7510 sizeof(arch_zone_highest_possible_pfn));
7511
7512 start_pfn = find_min_pfn_with_active_regions();
7513 descending = arch_has_descending_max_zone_pfns();
7514
7515 for (i = 0; i < MAX_NR_ZONES; i++) {
7516 if (descending)
7517 zone = MAX_NR_ZONES - i - 1;
7518 else
7519 zone = i;
7520
7521 if (zone == ZONE_MOVABLE)
7522 continue;
7523
7524 end_pfn = max(max_zone_pfn[zone], start_pfn);
7525 arch_zone_lowest_possible_pfn[zone] = start_pfn;
7526 arch_zone_highest_possible_pfn[zone] = end_pfn;
7527
7528 start_pfn = end_pfn;
7529 }
7530
7531 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
7532 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
7533 find_zone_movable_pfns_for_nodes();
7534
7535 /* Print out the zone ranges */
7536 pr_info("Zone ranges:\n");
7537 for (i = 0; i < MAX_NR_ZONES; i++) {
7538 if (i == ZONE_MOVABLE)
7539 continue;
7540 pr_info(" %-8s ", zone_names[i]);
7541 if (arch_zone_lowest_possible_pfn[i] ==
7542 arch_zone_highest_possible_pfn[i])
7543 pr_cont("empty\n");
7544 else
7545 pr_cont("[mem %#018Lx-%#018Lx]\n",
7546 (u64)arch_zone_lowest_possible_pfn[i]
7547 << PAGE_SHIFT,
7548 ((u64)arch_zone_highest_possible_pfn[i]
7549 << PAGE_SHIFT) - 1);
7550 }
7551
7552 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
7553 pr_info("Movable zone start for each node\n");
7554 for (i = 0; i < MAX_NUMNODES; i++) {
7555 if (zone_movable_pfn[i])
7556 pr_info(" Node %d: %#018Lx\n", i,
7557 (u64)zone_movable_pfn[i] << PAGE_SHIFT);
7558 }
7559
7560 /*
7561 * Print out the early node map, and initialize the
7562 * subsection-map relative to active online memory ranges to
7563 * enable future "sub-section" extensions of the memory map.
7564 */
7565 pr_info("Early memory node ranges\n");
7566 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
7567 pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid,
7568 (u64)start_pfn << PAGE_SHIFT,
7569 ((u64)end_pfn << PAGE_SHIFT) - 1);
7570 subsection_map_init(start_pfn, end_pfn - start_pfn);
7571 }
7572
7573 /* Initialise every node */
7574 mminit_verify_pageflags_layout();
7575 setup_nr_node_ids();
7576 for_each_online_node(nid) {
7577 pg_data_t *pgdat = NODE_DATA(nid);
7578 free_area_init_node(nid);
7579
7580 /* Any memory on that node */
7581 if (pgdat->node_present_pages)
7582 node_set_state(nid, N_MEMORY);
7583 check_for_memory(pgdat, nid);
7584 }
7585 }
7586
7587 static int __init cmdline_parse_core(char *p, unsigned long *core,
7588 unsigned long *percent)
7589 {
7590 unsigned long long coremem;
7591 char *endptr;
7592
7593 if (!p)
7594 return -EINVAL;
7595
7596 /* Value may be a percentage of total memory, otherwise bytes */
7597 coremem = simple_strtoull(p, &endptr, 0);
7598 if (*endptr == '%') {
7599 /* Paranoid check for percent values greater than 100 */
7600 WARN_ON(coremem > 100);
7601
7602 *percent = coremem;
7603 } else {
7604 coremem = memparse(p, &p);
7605 /* Paranoid check that UL is enough for the coremem value */
7606 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
7607
7608 *core = coremem >> PAGE_SHIFT;
7609 *percent = 0UL;
7610 }
7611 return 0;
7612 }
7613
7614 /*
7615 * kernelcore=size sets the amount of memory for use for allocations that
7616 * cannot be reclaimed or migrated.
7617 */
7618 static int __init cmdline_parse_kernelcore(char *p)
7619 {
7620 /* parse kernelcore=mirror */
7621 if (parse_option_str(p, "mirror")) {
7622 mirrored_kernelcore = true;
7623 return 0;
7624 }
7625
7626 return cmdline_parse_core(p, &required_kernelcore,
7627 &required_kernelcore_percent);
7628 }
7629
7630 /*
7631 * movablecore=size sets the amount of memory for use for allocations that
7632 * can be reclaimed or migrated.
7633 */
7634 static int __init cmdline_parse_movablecore(char *p)
7635 {
7636 return cmdline_parse_core(p, &required_movablecore,
7637 &required_movablecore_percent);
7638 }
7639
7640 early_param("kernelcore", cmdline_parse_kernelcore);
7641 early_param("movablecore", cmdline_parse_movablecore);
7642
7643 void adjust_managed_page_count(struct page *page, long count)
7644 {
7645 atomic_long_add(count, &page_zone(page)->managed_pages);
7646 totalram_pages_add(count);
7647 #ifdef CONFIG_HIGHMEM
7648 if (PageHighMem(page))
7649 totalhigh_pages_add(count);
7650 #endif
7651 }
7652 EXPORT_SYMBOL(adjust_managed_page_count);
7653
7654 unsigned long free_reserved_area(void *start, void *end, int poison, const char *s)
7655 {
7656 void *pos;
7657 unsigned long pages = 0;
7658
7659 start = (void *)PAGE_ALIGN((unsigned long)start);
7660 end = (void *)((unsigned long)end & PAGE_MASK);
7661 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
7662 struct page *page = virt_to_page(pos);
7663 void *direct_map_addr;
7664
7665 /*
7666 * 'direct_map_addr' might be different from 'pos'
7667 * because some architectures' virt_to_page()
7668 * work with aliases. Getting the direct map
7669 * address ensures that we get a _writeable_
7670 * alias for the memset().
7671 */
7672 direct_map_addr = page_address(page);
7673 /*
7674 * Perform a kasan-unchecked memset() since this memory
7675 * has not been initialized.
7676 */
7677 direct_map_addr = kasan_reset_tag(direct_map_addr);
7678 if ((unsigned int)poison <= 0xFF)
7679 memset(direct_map_addr, poison, PAGE_SIZE);
7680
7681 free_reserved_page(page);
7682 }
7683
7684 if (pages && s)
7685 pr_info("Freeing %s memory: %ldK\n",
7686 s, pages << (PAGE_SHIFT - 10));
7687
7688 return pages;
7689 }
7690
7691 void __init mem_init_print_info(const char *str)
7692 {
7693 unsigned long physpages, codesize, datasize, rosize, bss_size;
7694 unsigned long init_code_size, init_data_size;
7695
7696 physpages = get_num_physpages();
7697 codesize = _etext - _stext;
7698 datasize = _edata - _sdata;
7699 rosize = __end_rodata - __start_rodata;
7700 bss_size = __bss_stop - __bss_start;
7701 init_data_size = __init_end - __init_begin;
7702 init_code_size = _einittext - _sinittext;
7703
7704 /*
7705 * Detect special cases and adjust section sizes accordingly:
7706 * 1) .init.* may be embedded into .data sections
7707 * 2) .init.text.* may be out of [__init_begin, __init_end],
7708 * please refer to arch/tile/kernel/vmlinux.lds.S.
7709 * 3) .rodata.* may be embedded into .text or .data sections.
7710 */
7711 #define adj_init_size(start, end, size, pos, adj) \
7712 do { \
7713 if (start <= pos && pos < end && size > adj) \
7714 size -= adj; \
7715 } while (0)
7716
7717 adj_init_size(__init_begin, __init_end, init_data_size,
7718 _sinittext, init_code_size);
7719 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
7720 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
7721 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
7722 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
7723
7724 #undef adj_init_size
7725
7726 pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
7727 #ifdef CONFIG_HIGHMEM
7728 ", %luK highmem"
7729 #endif
7730 "%s%s)\n",
7731 nr_free_pages() << (PAGE_SHIFT - 10),
7732 physpages << (PAGE_SHIFT - 10),
7733 codesize >> 10, datasize >> 10, rosize >> 10,
7734 (init_data_size + init_code_size) >> 10, bss_size >> 10,
7735 (physpages - totalram_pages() - totalcma_pages) << (PAGE_SHIFT - 10),
7736 totalcma_pages << (PAGE_SHIFT - 10),
7737 #ifdef CONFIG_HIGHMEM
7738 totalhigh_pages() << (PAGE_SHIFT - 10),
7739 #endif
7740 str ? ", " : "", str ? str : "");
7741 }
7742
7743 /**
7744 * set_dma_reserve - set the specified number of pages reserved in the first zone
7745 * @new_dma_reserve: The number of pages to mark reserved
7746 *
7747 * The per-cpu batchsize and zone watermarks are determined by managed_pages.
7748 * In the DMA zone, a significant percentage may be consumed by kernel image
7749 * and other unfreeable allocations which can skew the watermarks badly. This
7750 * function may optionally be used to account for unfreeable pages in the
7751 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
7752 * smaller per-cpu batchsize.
7753 */
7754 void __init set_dma_reserve(unsigned long new_dma_reserve)
7755 {
7756 dma_reserve = new_dma_reserve;
7757 }
7758
7759 static int page_alloc_cpu_dead(unsigned int cpu)
7760 {
7761
7762 lru_add_drain_cpu(cpu);
7763 drain_pages(cpu);
7764
7765 /*
7766 * Spill the event counters of the dead processor
7767 * into the current processors event counters.
7768 * This artificially elevates the count of the current
7769 * processor.
7770 */
7771 vm_events_fold_cpu(cpu);
7772
7773 /*
7774 * Zero the differential counters of the dead processor
7775 * so that the vm statistics are consistent.
7776 *
7777 * This is only okay since the processor is dead and cannot
7778 * race with what we are doing.
7779 */
7780 cpu_vm_stats_fold(cpu);
7781 return 0;
7782 }
7783
7784 #ifdef CONFIG_NUMA
7785 int hashdist = HASHDIST_DEFAULT;
7786
7787 static int __init set_hashdist(char *str)
7788 {
7789 if (!str)
7790 return 0;
7791 hashdist = simple_strtoul(str, &str, 0);
7792 return 1;
7793 }
7794 __setup("hashdist=", set_hashdist);
7795 #endif
7796
7797 void __init page_alloc_init(void)
7798 {
7799 int ret;
7800
7801 #ifdef CONFIG_NUMA
7802 if (num_node_state(N_MEMORY) == 1)
7803 hashdist = 0;
7804 #endif
7805
7806 ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC_DEAD,
7807 "mm/page_alloc:dead", NULL,
7808 page_alloc_cpu_dead);
7809 WARN_ON(ret < 0);
7810 }
7811
7812 /*
7813 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
7814 * or min_free_kbytes changes.
7815 */
7816 static void calculate_totalreserve_pages(void)
7817 {
7818 struct pglist_data *pgdat;
7819 unsigned long reserve_pages = 0;
7820 enum zone_type i, j;
7821
7822 for_each_online_pgdat(pgdat) {
7823
7824 pgdat->totalreserve_pages = 0;
7825
7826 for (i = 0; i < MAX_NR_ZONES; i++) {
7827 struct zone *zone = pgdat->node_zones + i;
7828 long max = 0;
7829 unsigned long managed_pages = zone_managed_pages(zone);
7830
7831 /* Find valid and maximum lowmem_reserve in the zone */
7832 for (j = i; j < MAX_NR_ZONES; j++) {
7833 if (zone->lowmem_reserve[j] > max)
7834 max = zone->lowmem_reserve[j];
7835 }
7836
7837 /* we treat the high watermark as reserved pages. */
7838 max += high_wmark_pages(zone);
7839
7840 if (max > managed_pages)
7841 max = managed_pages;
7842
7843 pgdat->totalreserve_pages += max;
7844
7845 reserve_pages += max;
7846 }
7847 }
7848 totalreserve_pages = reserve_pages;
7849 }
7850
7851 /*
7852 * setup_per_zone_lowmem_reserve - called whenever
7853 * sysctl_lowmem_reserve_ratio changes. Ensures that each zone
7854 * has a correct pages reserved value, so an adequate number of
7855 * pages are left in the zone after a successful __alloc_pages().
7856 */
7857 static void setup_per_zone_lowmem_reserve(void)
7858 {
7859 struct pglist_data *pgdat;
7860 enum zone_type i, j;
7861
7862 for_each_online_pgdat(pgdat) {
7863 for (i = 0; i < MAX_NR_ZONES - 1; i++) {
7864 struct zone *zone = &pgdat->node_zones[i];
7865 int ratio = sysctl_lowmem_reserve_ratio[i];
7866 bool clear = !ratio || !zone_managed_pages(zone);
7867 unsigned long managed_pages = 0;
7868
7869 for (j = i + 1; j < MAX_NR_ZONES; j++) {
7870 if (clear) {
7871 zone->lowmem_reserve[j] = 0;
7872 } else {
7873 struct zone *upper_zone = &pgdat->node_zones[j];
7874
7875 managed_pages += zone_managed_pages(upper_zone);
7876 zone->lowmem_reserve[j] = managed_pages / ratio;
7877 }
7878 }
7879 }
7880 }
7881
7882 /* update totalreserve_pages */
7883 calculate_totalreserve_pages();
7884 }
7885
7886 static void __setup_per_zone_wmarks(void)
7887 {
7888 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
7889 unsigned long lowmem_pages = 0;
7890 struct zone *zone;
7891 unsigned long flags;
7892
7893 /* Calculate total number of !ZONE_HIGHMEM pages */
7894 for_each_zone(zone) {
7895 if (!is_highmem(zone))
7896 lowmem_pages += zone_managed_pages(zone);
7897 }
7898
7899 for_each_zone(zone) {
7900 u64 tmp;
7901
7902 spin_lock_irqsave(&zone->lock, flags);
7903 tmp = (u64)pages_min * zone_managed_pages(zone);
7904 do_div(tmp, lowmem_pages);
7905 if (is_highmem(zone)) {
7906 /*
7907 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
7908 * need highmem pages, so cap pages_min to a small
7909 * value here.
7910 *
7911 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
7912 * deltas control async page reclaim, and so should
7913 * not be capped for highmem.
7914 */
7915 unsigned long min_pages;
7916
7917 min_pages = zone_managed_pages(zone) / 1024;
7918 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
7919 zone->_watermark[WMARK_MIN] = min_pages;
7920 } else {
7921 /*
7922 * If it's a lowmem zone, reserve a number of pages
7923 * proportionate to the zone's size.
7924 */
7925 zone->_watermark[WMARK_MIN] = tmp;
7926 }
7927
7928 /*
7929 * Set the kswapd watermarks distance according to the
7930 * scale factor in proportion to available memory, but
7931 * ensure a minimum size on small systems.
7932 */
7933 tmp = max_t(u64, tmp >> 2,
7934 mult_frac(zone_managed_pages(zone),
7935 watermark_scale_factor, 10000));
7936
7937 zone->watermark_boost = 0;
7938 zone->_watermark[WMARK_LOW] = min_wmark_pages(zone) + tmp;
7939 zone->_watermark[WMARK_HIGH] = min_wmark_pages(zone) + tmp * 2;
7940
7941 spin_unlock_irqrestore(&zone->lock, flags);
7942 }
7943
7944 /* update totalreserve_pages */
7945 calculate_totalreserve_pages();
7946 }
7947
7948 /**
7949 * setup_per_zone_wmarks - called when min_free_kbytes changes
7950 * or when memory is hot-{added|removed}
7951 *
7952 * Ensures that the watermark[min,low,high] values for each zone are set
7953 * correctly with respect to min_free_kbytes.
7954 */
7955 void setup_per_zone_wmarks(void)
7956 {
7957 static DEFINE_SPINLOCK(lock);
7958
7959 spin_lock(&lock);
7960 __setup_per_zone_wmarks();
7961 spin_unlock(&lock);
7962 }
7963
7964 /*
7965 * Initialise min_free_kbytes.
7966 *
7967 * For small machines we want it small (128k min). For large machines
7968 * we want it large (256MB max). But it is not linear, because network
7969 * bandwidth does not increase linearly with machine size. We use
7970 *
7971 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
7972 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
7973 *
7974 * which yields
7975 *
7976 * 16MB: 512k
7977 * 32MB: 724k
7978 * 64MB: 1024k
7979 * 128MB: 1448k
7980 * 256MB: 2048k
7981 * 512MB: 2896k
7982 * 1024MB: 4096k
7983 * 2048MB: 5792k
7984 * 4096MB: 8192k
7985 * 8192MB: 11584k
7986 * 16384MB: 16384k
7987 */
7988 int __meminit init_per_zone_wmark_min(void)
7989 {
7990 unsigned long lowmem_kbytes;
7991 int new_min_free_kbytes;
7992
7993 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
7994 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
7995
7996 if (new_min_free_kbytes > user_min_free_kbytes) {
7997 min_free_kbytes = new_min_free_kbytes;
7998 if (min_free_kbytes < 128)
7999 min_free_kbytes = 128;
8000 if (min_free_kbytes > 262144)
8001 min_free_kbytes = 262144;
8002 } else {
8003 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
8004 new_min_free_kbytes, user_min_free_kbytes);
8005 }
8006 setup_per_zone_wmarks();
8007 refresh_zone_stat_thresholds();
8008 setup_per_zone_lowmem_reserve();
8009
8010 #ifdef CONFIG_NUMA
8011 setup_min_unmapped_ratio();
8012 setup_min_slab_ratio();
8013 #endif
8014
8015 khugepaged_min_free_kbytes_update();
8016
8017 return 0;
8018 }
8019 postcore_initcall(init_per_zone_wmark_min)
8020
8021 /*
8022 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
8023 * that we can call two helper functions whenever min_free_kbytes
8024 * changes.
8025 */
8026 int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
8027 void *buffer, size_t *length, loff_t *ppos)
8028 {
8029 int rc;
8030
8031 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
8032 if (rc)
8033 return rc;
8034
8035 if (write) {
8036 user_min_free_kbytes = min_free_kbytes;
8037 setup_per_zone_wmarks();
8038 }
8039 return 0;
8040 }
8041
8042 int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
8043 void *buffer, size_t *length, loff_t *ppos)
8044 {
8045 int rc;
8046
8047 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
8048 if (rc)
8049 return rc;
8050
8051 if (write)
8052 setup_per_zone_wmarks();
8053
8054 return 0;
8055 }
8056
8057 #ifdef CONFIG_NUMA
8058 static void setup_min_unmapped_ratio(void)
8059 {
8060 pg_data_t *pgdat;
8061 struct zone *zone;
8062
8063 for_each_online_pgdat(pgdat)
8064 pgdat->min_unmapped_pages = 0;
8065
8066 for_each_zone(zone)
8067 zone->zone_pgdat->min_unmapped_pages += (zone_managed_pages(zone) *
8068 sysctl_min_unmapped_ratio) / 100;
8069 }
8070
8071
8072 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
8073 void *buffer, size_t *length, loff_t *ppos)
8074 {
8075 int rc;
8076
8077 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
8078 if (rc)
8079 return rc;
8080
8081 setup_min_unmapped_ratio();
8082
8083 return 0;
8084 }
8085
8086 static void setup_min_slab_ratio(void)
8087 {
8088 pg_data_t *pgdat;
8089 struct zone *zone;
8090
8091 for_each_online_pgdat(pgdat)
8092 pgdat->min_slab_pages = 0;
8093
8094 for_each_zone(zone)
8095 zone->zone_pgdat->min_slab_pages += (zone_managed_pages(zone) *
8096 sysctl_min_slab_ratio) / 100;
8097 }
8098
8099 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
8100 void *buffer, size_t *length, loff_t *ppos)
8101 {
8102 int rc;
8103
8104 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
8105 if (rc)
8106 return rc;
8107
8108 setup_min_slab_ratio();
8109
8110 return 0;
8111 }
8112 #endif
8113
8114 /*
8115 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
8116 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
8117 * whenever sysctl_lowmem_reserve_ratio changes.
8118 *
8119 * The reserve ratio obviously has absolutely no relation with the
8120 * minimum watermarks. The lowmem reserve ratio can only make sense
8121 * if in function of the boot time zone sizes.
8122 */
8123 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
8124 void *buffer, size_t *length, loff_t *ppos)
8125 {
8126 int i;
8127
8128 proc_dointvec_minmax(table, write, buffer, length, ppos);
8129
8130 for (i = 0; i < MAX_NR_ZONES; i++) {
8131 if (sysctl_lowmem_reserve_ratio[i] < 1)
8132 sysctl_lowmem_reserve_ratio[i] = 0;
8133 }
8134
8135 setup_per_zone_lowmem_reserve();
8136 return 0;
8137 }
8138
8139 /*
8140 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
8141 * cpu. It is the fraction of total pages in each zone that a hot per cpu
8142 * pagelist can have before it gets flushed back to buddy allocator.
8143 */
8144 int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write,
8145 void *buffer, size_t *length, loff_t *ppos)
8146 {
8147 struct zone *zone;
8148 int old_percpu_pagelist_fraction;
8149 int ret;
8150
8151 mutex_lock(&pcp_batch_high_lock);
8152 old_percpu_pagelist_fraction = percpu_pagelist_fraction;
8153
8154 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
8155 if (!write || ret < 0)
8156 goto out;
8157
8158 /* Sanity checking to avoid pcp imbalance */
8159 if (percpu_pagelist_fraction &&
8160 percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) {
8161 percpu_pagelist_fraction = old_percpu_pagelist_fraction;
8162 ret = -EINVAL;
8163 goto out;
8164 }
8165
8166 /* No change? */
8167 if (percpu_pagelist_fraction == old_percpu_pagelist_fraction)
8168 goto out;
8169
8170 for_each_populated_zone(zone)
8171 zone_set_pageset_high_and_batch(zone);
8172 out:
8173 mutex_unlock(&pcp_batch_high_lock);
8174 return ret;
8175 }
8176
8177 #ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES
8178 /*
8179 * Returns the number of pages that arch has reserved but
8180 * is not known to alloc_large_system_hash().
8181 */
8182 static unsigned long __init arch_reserved_kernel_pages(void)
8183 {
8184 return 0;
8185 }
8186 #endif
8187
8188 /*
8189 * Adaptive scale is meant to reduce sizes of hash tables on large memory
8190 * machines. As memory size is increased the scale is also increased but at
8191 * slower pace. Starting from ADAPT_SCALE_BASE (64G), every time memory
8192 * quadruples the scale is increased by one, which means the size of hash table
8193 * only doubles, instead of quadrupling as well.
8194 * Because 32-bit systems cannot have large physical memory, where this scaling
8195 * makes sense, it is disabled on such platforms.
8196 */
8197 #if __BITS_PER_LONG > 32
8198 #define ADAPT_SCALE_BASE (64ul << 30)
8199 #define ADAPT_SCALE_SHIFT 2
8200 #define ADAPT_SCALE_NPAGES (ADAPT_SCALE_BASE >> PAGE_SHIFT)
8201 #endif
8202
8203 /*
8204 * allocate a large system hash table from bootmem
8205 * - it is assumed that the hash table must contain an exact power-of-2
8206 * quantity of entries
8207 * - limit is the number of hash buckets, not the total allocation size
8208 */
8209 void *__init alloc_large_system_hash(const char *tablename,
8210 unsigned long bucketsize,
8211 unsigned long numentries,
8212 int scale,
8213 int flags,
8214 unsigned int *_hash_shift,
8215 unsigned int *_hash_mask,
8216 unsigned long low_limit,
8217 unsigned long high_limit)
8218 {
8219 unsigned long long max = high_limit;
8220 unsigned long log2qty, size;
8221 void *table = NULL;
8222 gfp_t gfp_flags;
8223 bool virt;
8224
8225 /* allow the kernel cmdline to have a say */
8226 if (!numentries) {
8227 /* round applicable memory size up to nearest megabyte */
8228 numentries = nr_kernel_pages;
8229 numentries -= arch_reserved_kernel_pages();
8230
8231 /* It isn't necessary when PAGE_SIZE >= 1MB */
8232 if (PAGE_SHIFT < 20)
8233 numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
8234
8235 #if __BITS_PER_LONG > 32
8236 if (!high_limit) {
8237 unsigned long adapt;
8238
8239 for (adapt = ADAPT_SCALE_NPAGES; adapt < numentries;
8240 adapt <<= ADAPT_SCALE_SHIFT)
8241 scale++;
8242 }
8243 #endif
8244
8245 /* limit to 1 bucket per 2^scale bytes of low memory */
8246 if (scale > PAGE_SHIFT)
8247 numentries >>= (scale - PAGE_SHIFT);
8248 else
8249 numentries <<= (PAGE_SHIFT - scale);
8250
8251 /* Make sure we've got at least a 0-order allocation.. */
8252 if (unlikely(flags & HASH_SMALL)) {
8253 /* Makes no sense without HASH_EARLY */
8254 WARN_ON(!(flags & HASH_EARLY));
8255 if (!(numentries >> *_hash_shift)) {
8256 numentries = 1UL << *_hash_shift;
8257 BUG_ON(!numentries);
8258 }
8259 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
8260 numentries = PAGE_SIZE / bucketsize;
8261 }
8262 numentries = roundup_pow_of_two(numentries);
8263
8264 /* limit allocation size to 1/16 total memory by default */
8265 if (max == 0) {
8266 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
8267 do_div(max, bucketsize);
8268 }
8269 max = min(max, 0x80000000ULL);
8270
8271 if (numentries < low_limit)
8272 numentries = low_limit;
8273 if (numentries > max)
8274 numentries = max;
8275
8276 log2qty = ilog2(numentries);
8277
8278 gfp_flags = (flags & HASH_ZERO) ? GFP_ATOMIC | __GFP_ZERO : GFP_ATOMIC;
8279 do {
8280 virt = false;
8281 size = bucketsize << log2qty;
8282 if (flags & HASH_EARLY) {
8283 if (flags & HASH_ZERO)
8284 table = memblock_alloc(size, SMP_CACHE_BYTES);
8285 else
8286 table = memblock_alloc_raw(size,
8287 SMP_CACHE_BYTES);
8288 } else if (get_order(size) >= MAX_ORDER || hashdist) {
8289 table = __vmalloc(size, gfp_flags);
8290 virt = true;
8291 } else {
8292 /*
8293 * If bucketsize is not a power-of-two, we may free
8294 * some pages at the end of hash table which
8295 * alloc_pages_exact() automatically does
8296 */
8297 table = alloc_pages_exact(size, gfp_flags);
8298 kmemleak_alloc(table, size, 1, gfp_flags);
8299 }
8300 } while (!table && size > PAGE_SIZE && --log2qty);
8301
8302 if (!table)
8303 panic("Failed to allocate %s hash table\n", tablename);
8304
8305 pr_info("%s hash table entries: %ld (order: %d, %lu bytes, %s)\n",
8306 tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size,
8307 virt ? "vmalloc" : "linear");
8308
8309 if (_hash_shift)
8310 *_hash_shift = log2qty;
8311 if (_hash_mask)
8312 *_hash_mask = (1 << log2qty) - 1;
8313
8314 return table;
8315 }
8316
8317 /*
8318 * This function checks whether pageblock includes unmovable pages or not.
8319 *
8320 * PageLRU check without isolation or lru_lock could race so that
8321 * MIGRATE_MOVABLE block might include unmovable pages. And __PageMovable
8322 * check without lock_page also may miss some movable non-lru pages at
8323 * race condition. So you can't expect this function should be exact.
8324 *
8325 * Returns a page without holding a reference. If the caller wants to
8326 * dereference that page (e.g., dumping), it has to make sure that it
8327 * cannot get removed (e.g., via memory unplug) concurrently.
8328 *
8329 */
8330 struct page *has_unmovable_pages(struct zone *zone, struct page *page,
8331 int migratetype, int flags)
8332 {
8333 unsigned long iter = 0;
8334 unsigned long pfn = page_to_pfn(page);
8335 unsigned long offset = pfn % pageblock_nr_pages;
8336
8337 if (is_migrate_cma_page(page)) {
8338 /*
8339 * CMA allocations (alloc_contig_range) really need to mark
8340 * isolate CMA pageblocks even when they are not movable in fact
8341 * so consider them movable here.
8342 */
8343 if (is_migrate_cma(migratetype))
8344 return NULL;
8345
8346 return page;
8347 }
8348
8349 for (; iter < pageblock_nr_pages - offset; iter++) {
8350 if (!pfn_valid_within(pfn + iter))
8351 continue;
8352
8353 page = pfn_to_page(pfn + iter);
8354
8355 /*
8356 * Both, bootmem allocations and memory holes are marked
8357 * PG_reserved and are unmovable. We can even have unmovable
8358 * allocations inside ZONE_MOVABLE, for example when
8359 * specifying "movablecore".
8360 */
8361 if (PageReserved(page))
8362 return page;
8363
8364 /*
8365 * If the zone is movable and we have ruled out all reserved
8366 * pages then it should be reasonably safe to assume the rest
8367 * is movable.
8368 */
8369 if (zone_idx(zone) == ZONE_MOVABLE)
8370 continue;
8371
8372 /*
8373 * Hugepages are not in LRU lists, but they're movable.
8374 * THPs are on the LRU, but need to be counted as #small pages.
8375 * We need not scan over tail pages because we don't
8376 * handle each tail page individually in migration.
8377 */
8378 if (PageHuge(page) || PageTransCompound(page)) {
8379 struct page *head = compound_head(page);
8380 unsigned int skip_pages;
8381
8382 if (PageHuge(page)) {
8383 if (!hugepage_migration_supported(page_hstate(head)))
8384 return page;
8385 } else if (!PageLRU(head) && !__PageMovable(head)) {
8386 return page;
8387 }
8388
8389 skip_pages = compound_nr(head) - (page - head);
8390 iter += skip_pages - 1;
8391 continue;
8392 }
8393
8394 /*
8395 * We can't use page_count without pin a page
8396 * because another CPU can free compound page.
8397 * This check already skips compound tails of THP
8398 * because their page->_refcount is zero at all time.
8399 */
8400 if (!page_ref_count(page)) {
8401 if (PageBuddy(page))
8402 iter += (1 << buddy_order(page)) - 1;
8403 continue;
8404 }
8405
8406 /*
8407 * The HWPoisoned page may be not in buddy system, and
8408 * page_count() is not 0.
8409 */
8410 if ((flags & MEMORY_OFFLINE) && PageHWPoison(page))
8411 continue;
8412
8413 /*
8414 * We treat all PageOffline() pages as movable when offlining
8415 * to give drivers a chance to decrement their reference count
8416 * in MEM_GOING_OFFLINE in order to indicate that these pages
8417 * can be offlined as there are no direct references anymore.
8418 * For actually unmovable PageOffline() where the driver does
8419 * not support this, we will fail later when trying to actually
8420 * move these pages that still have a reference count > 0.
8421 * (false negatives in this function only)
8422 */
8423 if ((flags & MEMORY_OFFLINE) && PageOffline(page))
8424 continue;
8425
8426 if (__PageMovable(page) || PageLRU(page))
8427 continue;
8428
8429 /*
8430 * If there are RECLAIMABLE pages, we need to check
8431 * it. But now, memory offline itself doesn't call
8432 * shrink_node_slabs() and it still to be fixed.
8433 */
8434 return page;
8435 }
8436 return NULL;
8437 }
8438
8439 #ifdef CONFIG_CONTIG_ALLOC
8440 static unsigned long pfn_max_align_down(unsigned long pfn)
8441 {
8442 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
8443 pageblock_nr_pages) - 1);
8444 }
8445
8446 static unsigned long pfn_max_align_up(unsigned long pfn)
8447 {
8448 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
8449 pageblock_nr_pages));
8450 }
8451
8452 /* [start, end) must belong to a single zone. */
8453 static int __alloc_contig_migrate_range(struct compact_control *cc,
8454 unsigned long start, unsigned long end)
8455 {
8456 /* This function is based on compact_zone() from compaction.c. */
8457 unsigned int nr_reclaimed;
8458 unsigned long pfn = start;
8459 unsigned int tries = 0;
8460 int ret = 0;
8461 struct migration_target_control mtc = {
8462 .nid = zone_to_nid(cc->zone),
8463 .gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL,
8464 };
8465
8466 migrate_prep();
8467
8468 while (pfn < end || !list_empty(&cc->migratepages)) {
8469 if (fatal_signal_pending(current)) {
8470 ret = -EINTR;
8471 break;
8472 }
8473
8474 if (list_empty(&cc->migratepages)) {
8475 cc->nr_migratepages = 0;
8476 pfn = isolate_migratepages_range(cc, pfn, end);
8477 if (!pfn) {
8478 ret = -EINTR;
8479 break;
8480 }
8481 tries = 0;
8482 } else if (++tries == 5) {
8483 ret = ret < 0 ? ret : -EBUSY;
8484 break;
8485 }
8486
8487 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
8488 &cc->migratepages);
8489 cc->nr_migratepages -= nr_reclaimed;
8490
8491 ret = migrate_pages(&cc->migratepages, alloc_migration_target,
8492 NULL, (unsigned long)&mtc, cc->mode, MR_CONTIG_RANGE);
8493 }
8494 if (ret < 0) {
8495 putback_movable_pages(&cc->migratepages);
8496 return ret;
8497 }
8498 return 0;
8499 }
8500
8501 /**
8502 * alloc_contig_range() -- tries to allocate given range of pages
8503 * @start: start PFN to allocate
8504 * @end: one-past-the-last PFN to allocate
8505 * @migratetype: migratetype of the underlaying pageblocks (either
8506 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
8507 * in range must have the same migratetype and it must
8508 * be either of the two.
8509 * @gfp_mask: GFP mask to use during compaction
8510 *
8511 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
8512 * aligned. The PFN range must belong to a single zone.
8513 *
8514 * The first thing this routine does is attempt to MIGRATE_ISOLATE all
8515 * pageblocks in the range. Once isolated, the pageblocks should not
8516 * be modified by others.
8517 *
8518 * Return: zero on success or negative error code. On success all
8519 * pages which PFN is in [start, end) are allocated for the caller and
8520 * need to be freed with free_contig_range().
8521 */
8522 int alloc_contig_range(unsigned long start, unsigned long end,
8523 unsigned migratetype, gfp_t gfp_mask)
8524 {
8525 unsigned long outer_start, outer_end;
8526 unsigned int order;
8527 int ret = 0;
8528
8529 struct compact_control cc = {
8530 .nr_migratepages = 0,
8531 .order = -1,
8532 .zone = page_zone(pfn_to_page(start)),
8533 .mode = MIGRATE_SYNC,
8534 .ignore_skip_hint = true,
8535 .no_set_skip_hint = true,
8536 .gfp_mask = current_gfp_context(gfp_mask),
8537 .alloc_contig = true,
8538 };
8539 INIT_LIST_HEAD(&cc.migratepages);
8540
8541 /*
8542 * What we do here is we mark all pageblocks in range as
8543 * MIGRATE_ISOLATE. Because pageblock and max order pages may
8544 * have different sizes, and due to the way page allocator
8545 * work, we align the range to biggest of the two pages so
8546 * that page allocator won't try to merge buddies from
8547 * different pageblocks and change MIGRATE_ISOLATE to some
8548 * other migration type.
8549 *
8550 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
8551 * migrate the pages from an unaligned range (ie. pages that
8552 * we are interested in). This will put all the pages in
8553 * range back to page allocator as MIGRATE_ISOLATE.
8554 *
8555 * When this is done, we take the pages in range from page
8556 * allocator removing them from the buddy system. This way
8557 * page allocator will never consider using them.
8558 *
8559 * This lets us mark the pageblocks back as
8560 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
8561 * aligned range but not in the unaligned, original range are
8562 * put back to page allocator so that buddy can use them.
8563 */
8564
8565 ret = start_isolate_page_range(pfn_max_align_down(start),
8566 pfn_max_align_up(end), migratetype, 0);
8567 if (ret)
8568 return ret;
8569
8570 drain_all_pages(cc.zone);
8571
8572 /*
8573 * In case of -EBUSY, we'd like to know which page causes problem.
8574 * So, just fall through. test_pages_isolated() has a tracepoint
8575 * which will report the busy page.
8576 *
8577 * It is possible that busy pages could become available before
8578 * the call to test_pages_isolated, and the range will actually be
8579 * allocated. So, if we fall through be sure to clear ret so that
8580 * -EBUSY is not accidentally used or returned to caller.
8581 */
8582 ret = __alloc_contig_migrate_range(&cc, start, end);
8583 if (ret && ret != -EBUSY)
8584 goto done;
8585 ret =0;
8586
8587 /*
8588 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
8589 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
8590 * more, all pages in [start, end) are free in page allocator.
8591 * What we are going to do is to allocate all pages from
8592 * [start, end) (that is remove them from page allocator).
8593 *
8594 * The only problem is that pages at the beginning and at the
8595 * end of interesting range may be not aligned with pages that
8596 * page allocator holds, ie. they can be part of higher order
8597 * pages. Because of this, we reserve the bigger range and
8598 * once this is done free the pages we are not interested in.
8599 *
8600 * We don't have to hold zone->lock here because the pages are
8601 * isolated thus they won't get removed from buddy.
8602 */
8603
8604 lru_add_drain_all();
8605
8606 order = 0;
8607 outer_start = start;
8608 while (!PageBuddy(pfn_to_page(outer_start))) {
8609 if (++order >= MAX_ORDER) {
8610 outer_start = start;
8611 break;
8612 }
8613 outer_start &= ~0UL << order;
8614 }
8615
8616 if (outer_start != start) {
8617 order = buddy_order(pfn_to_page(outer_start));
8618
8619 /*
8620 * outer_start page could be small order buddy page and
8621 * it doesn't include start page. Adjust outer_start
8622 * in this case to report failed page properly
8623 * on tracepoint in test_pages_isolated()
8624 */
8625 if (outer_start + (1UL << order) <= start)
8626 outer_start = start;
8627 }
8628
8629 /* Make sure the range is really isolated. */
8630 if (test_pages_isolated(outer_start, end, 0)) {
8631 pr_info_ratelimited("%s: [%lx, %lx) PFNs busy\n",
8632 __func__, outer_start, end);
8633 ret = -EBUSY;
8634 goto done;
8635 }
8636
8637 /* Grab isolated pages from freelists. */
8638 outer_end = isolate_freepages_range(&cc, outer_start, end);
8639 if (!outer_end) {
8640 ret = -EBUSY;
8641 goto done;
8642 }
8643
8644 /* Free head and tail (if any) */
8645 if (start != outer_start)
8646 free_contig_range(outer_start, start - outer_start);
8647 if (end != outer_end)
8648 free_contig_range(end, outer_end - end);
8649
8650 done:
8651 undo_isolate_page_range(pfn_max_align_down(start),
8652 pfn_max_align_up(end), migratetype);
8653 return ret;
8654 }
8655 EXPORT_SYMBOL(alloc_contig_range);
8656
8657 static int __alloc_contig_pages(unsigned long start_pfn,
8658 unsigned long nr_pages, gfp_t gfp_mask)
8659 {
8660 unsigned long end_pfn = start_pfn + nr_pages;
8661
8662 return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE,
8663 gfp_mask);
8664 }
8665
8666 static bool pfn_range_valid_contig(struct zone *z, unsigned long start_pfn,
8667 unsigned long nr_pages)
8668 {
8669 unsigned long i, end_pfn = start_pfn + nr_pages;
8670 struct page *page;
8671
8672 for (i = start_pfn; i < end_pfn; i++) {
8673 page = pfn_to_online_page(i);
8674 if (!page)
8675 return false;
8676
8677 if (page_zone(page) != z)
8678 return false;
8679
8680 if (PageReserved(page))
8681 return false;
8682
8683 if (page_count(page) > 0)
8684 return false;
8685
8686 if (PageHuge(page))
8687 return false;
8688 }
8689 return true;
8690 }
8691
8692 static bool zone_spans_last_pfn(const struct zone *zone,
8693 unsigned long start_pfn, unsigned long nr_pages)
8694 {
8695 unsigned long last_pfn = start_pfn + nr_pages - 1;
8696
8697 return zone_spans_pfn(zone, last_pfn);
8698 }
8699
8700 /**
8701 * alloc_contig_pages() -- tries to find and allocate contiguous range of pages
8702 * @nr_pages: Number of contiguous pages to allocate
8703 * @gfp_mask: GFP mask to limit search and used during compaction
8704 * @nid: Target node
8705 * @nodemask: Mask for other possible nodes
8706 *
8707 * This routine is a wrapper around alloc_contig_range(). It scans over zones
8708 * on an applicable zonelist to find a contiguous pfn range which can then be
8709 * tried for allocation with alloc_contig_range(). This routine is intended
8710 * for allocation requests which can not be fulfilled with the buddy allocator.
8711 *
8712 * The allocated memory is always aligned to a page boundary. If nr_pages is a
8713 * power of two then the alignment is guaranteed to be to the given nr_pages
8714 * (e.g. 1GB request would be aligned to 1GB).
8715 *
8716 * Allocated pages can be freed with free_contig_range() or by manually calling
8717 * __free_page() on each allocated page.
8718 *
8719 * Return: pointer to contiguous pages on success, or NULL if not successful.
8720 */
8721 struct page *alloc_contig_pages(unsigned long nr_pages, gfp_t gfp_mask,
8722 int nid, nodemask_t *nodemask)
8723 {
8724 unsigned long ret, pfn, flags;
8725 struct zonelist *zonelist;
8726 struct zone *zone;
8727 struct zoneref *z;
8728
8729 zonelist = node_zonelist(nid, gfp_mask);
8730 for_each_zone_zonelist_nodemask(zone, z, zonelist,
8731 gfp_zone(gfp_mask), nodemask) {
8732 spin_lock_irqsave(&zone->lock, flags);
8733
8734 pfn = ALIGN(zone->zone_start_pfn, nr_pages);
8735 while (zone_spans_last_pfn(zone, pfn, nr_pages)) {
8736 if (pfn_range_valid_contig(zone, pfn, nr_pages)) {
8737 /*
8738 * We release the zone lock here because
8739 * alloc_contig_range() will also lock the zone
8740 * at some point. If there's an allocation
8741 * spinning on this lock, it may win the race
8742 * and cause alloc_contig_range() to fail...
8743 */
8744 spin_unlock_irqrestore(&zone->lock, flags);
8745 ret = __alloc_contig_pages(pfn, nr_pages,
8746 gfp_mask);
8747 if (!ret)
8748 return pfn_to_page(pfn);
8749 spin_lock_irqsave(&zone->lock, flags);
8750 }
8751 pfn += nr_pages;
8752 }
8753 spin_unlock_irqrestore(&zone->lock, flags);
8754 }
8755 return NULL;
8756 }
8757 #endif /* CONFIG_CONTIG_ALLOC */
8758
8759 void free_contig_range(unsigned long pfn, unsigned int nr_pages)
8760 {
8761 unsigned int count = 0;
8762
8763 for (; nr_pages--; pfn++) {
8764 struct page *page = pfn_to_page(pfn);
8765
8766 count += page_count(page) != 1;
8767 __free_page(page);
8768 }
8769 WARN(count != 0, "%d pages are still in use!\n", count);
8770 }
8771 EXPORT_SYMBOL(free_contig_range);
8772
8773 /*
8774 * The zone indicated has a new number of managed_pages; batch sizes and percpu
8775 * page high values need to be recalulated.
8776 */
8777 void __meminit zone_pcp_update(struct zone *zone)
8778 {
8779 mutex_lock(&pcp_batch_high_lock);
8780 zone_set_pageset_high_and_batch(zone);
8781 mutex_unlock(&pcp_batch_high_lock);
8782 }
8783
8784 /*
8785 * Effectively disable pcplists for the zone by setting the high limit to 0
8786 * and draining all cpus. A concurrent page freeing on another CPU that's about
8787 * to put the page on pcplist will either finish before the drain and the page
8788 * will be drained, or observe the new high limit and skip the pcplist.
8789 *
8790 * Must be paired with a call to zone_pcp_enable().
8791 */
8792 void zone_pcp_disable(struct zone *zone)
8793 {
8794 mutex_lock(&pcp_batch_high_lock);
8795 __zone_set_pageset_high_and_batch(zone, 0, 1);
8796 __drain_all_pages(zone, true);
8797 }
8798
8799 void zone_pcp_enable(struct zone *zone)
8800 {
8801 __zone_set_pageset_high_and_batch(zone, zone->pageset_high, zone->pageset_batch);
8802 mutex_unlock(&pcp_batch_high_lock);
8803 }
8804
8805 void zone_pcp_reset(struct zone *zone)
8806 {
8807 unsigned long flags;
8808 int cpu;
8809 struct per_cpu_pageset *pset;
8810
8811 /* avoid races with drain_pages() */
8812 local_irq_save(flags);
8813 if (zone->pageset != &boot_pageset) {
8814 for_each_online_cpu(cpu) {
8815 pset = per_cpu_ptr(zone->pageset, cpu);
8816 drain_zonestat(zone, pset);
8817 }
8818 free_percpu(zone->pageset);
8819 zone->pageset = &boot_pageset;
8820 }
8821 local_irq_restore(flags);
8822 }
8823
8824 #ifdef CONFIG_MEMORY_HOTREMOVE
8825 /*
8826 * All pages in the range must be in a single zone, must not contain holes,
8827 * must span full sections, and must be isolated before calling this function.
8828 */
8829 void __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
8830 {
8831 unsigned long pfn = start_pfn;
8832 struct page *page;
8833 struct zone *zone;
8834 unsigned int order;
8835 unsigned long flags;
8836
8837 offline_mem_sections(pfn, end_pfn);
8838 zone = page_zone(pfn_to_page(pfn));
8839 spin_lock_irqsave(&zone->lock, flags);
8840 while (pfn < end_pfn) {
8841 page = pfn_to_page(pfn);
8842 /*
8843 * The HWPoisoned page may be not in buddy system, and
8844 * page_count() is not 0.
8845 */
8846 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
8847 pfn++;
8848 continue;
8849 }
8850 /*
8851 * At this point all remaining PageOffline() pages have a
8852 * reference count of 0 and can simply be skipped.
8853 */
8854 if (PageOffline(page)) {
8855 BUG_ON(page_count(page));
8856 BUG_ON(PageBuddy(page));
8857 pfn++;
8858 continue;
8859 }
8860
8861 BUG_ON(page_count(page));
8862 BUG_ON(!PageBuddy(page));
8863 order = buddy_order(page);
8864 del_page_from_free_list(page, zone, order);
8865 pfn += (1 << order);
8866 }
8867 spin_unlock_irqrestore(&zone->lock, flags);
8868 }
8869 #endif
8870
8871 bool is_free_buddy_page(struct page *page)
8872 {
8873 struct zone *zone = page_zone(page);
8874 unsigned long pfn = page_to_pfn(page);
8875 unsigned long flags;
8876 unsigned int order;
8877
8878 spin_lock_irqsave(&zone->lock, flags);
8879 for (order = 0; order < MAX_ORDER; order++) {
8880 struct page *page_head = page - (pfn & ((1 << order) - 1));
8881
8882 if (PageBuddy(page_head) && buddy_order(page_head) >= order)
8883 break;
8884 }
8885 spin_unlock_irqrestore(&zone->lock, flags);
8886
8887 return order < MAX_ORDER;
8888 }
8889
8890 #ifdef CONFIG_MEMORY_FAILURE
8891 /*
8892 * Break down a higher-order page in sub-pages, and keep our target out of
8893 * buddy allocator.
8894 */
8895 static void break_down_buddy_pages(struct zone *zone, struct page *page,
8896 struct page *target, int low, int high,
8897 int migratetype)
8898 {
8899 unsigned long size = 1 << high;
8900 struct page *current_buddy, *next_page;
8901
8902 while (high > low) {
8903 high--;
8904 size >>= 1;
8905
8906 if (target >= &page[size]) {
8907 next_page = page + size;
8908 current_buddy = page;
8909 } else {
8910 next_page = page;
8911 current_buddy = page + size;
8912 }
8913
8914 if (set_page_guard(zone, current_buddy, high, migratetype))
8915 continue;
8916
8917 if (current_buddy != target) {
8918 add_to_free_list(current_buddy, zone, high, migratetype);
8919 set_buddy_order(current_buddy, high);
8920 page = next_page;
8921 }
8922 }
8923 }
8924
8925 /*
8926 * Take a page that will be marked as poisoned off the buddy allocator.
8927 */
8928 bool take_page_off_buddy(struct page *page)
8929 {
8930 struct zone *zone = page_zone(page);
8931 unsigned long pfn = page_to_pfn(page);
8932 unsigned long flags;
8933 unsigned int order;
8934 bool ret = false;
8935
8936 spin_lock_irqsave(&zone->lock, flags);
8937 for (order = 0; order < MAX_ORDER; order++) {
8938 struct page *page_head = page - (pfn & ((1 << order) - 1));
8939 int page_order = buddy_order(page_head);
8940
8941 if (PageBuddy(page_head) && page_order >= order) {
8942 unsigned long pfn_head = page_to_pfn(page_head);
8943 int migratetype = get_pfnblock_migratetype(page_head,
8944 pfn_head);
8945
8946 del_page_from_free_list(page_head, zone, page_order);
8947 break_down_buddy_pages(zone, page_head, page, 0,
8948 page_order, migratetype);
8949 ret = true;
8950 break;
8951 }
8952 if (page_count(page_head) > 0)
8953 break;
8954 }
8955 spin_unlock_irqrestore(&zone->lock, flags);
8956 return ret;
8957 }
8958 #endif