]> git.proxmox.com Git - mirror_ubuntu-focal-kernel.git/blob - mm/shmem.c
mm/memory_hotplug: use "unsigned long" for PFN in zone_for_pfn_range()
[mirror_ubuntu-focal-kernel.git] / mm / shmem.c
1 /*
2 * Resizable virtual memory filesystem for Linux.
3 *
4 * Copyright (C) 2000 Linus Torvalds.
5 * 2000 Transmeta Corp.
6 * 2000-2001 Christoph Rohland
7 * 2000-2001 SAP AG
8 * 2002 Red Hat Inc.
9 * Copyright (C) 2002-2011 Hugh Dickins.
10 * Copyright (C) 2011 Google Inc.
11 * Copyright (C) 2002-2005 VERITAS Software Corporation.
12 * Copyright (C) 2004 Andi Kleen, SuSE Labs
13 *
14 * Extended attribute support for tmpfs:
15 * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
16 * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
17 *
18 * tiny-shmem:
19 * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
20 *
21 * This file is released under the GPL.
22 */
23
24 #include <linux/fs.h>
25 #include <linux/init.h>
26 #include <linux/vfs.h>
27 #include <linux/mount.h>
28 #include <linux/ramfs.h>
29 #include <linux/pagemap.h>
30 #include <linux/file.h>
31 #include <linux/mm.h>
32 #include <linux/random.h>
33 #include <linux/sched/signal.h>
34 #include <linux/export.h>
35 #include <linux/swap.h>
36 #include <linux/uio.h>
37 #include <linux/khugepaged.h>
38 #include <linux/hugetlb.h>
39 #include <linux/frontswap.h>
40 #include <linux/fs_parser.h>
41
42 #include <asm/tlbflush.h> /* for arch/microblaze update_mmu_cache() */
43
44 static struct vfsmount *shm_mnt;
45
46 #ifdef CONFIG_SHMEM
47 /*
48 * This virtual memory filesystem is heavily based on the ramfs. It
49 * extends ramfs by the ability to use swap and honor resource limits
50 * which makes it a completely usable filesystem.
51 */
52
53 #include <linux/xattr.h>
54 #include <linux/exportfs.h>
55 #include <linux/posix_acl.h>
56 #include <linux/posix_acl_xattr.h>
57 #include <linux/mman.h>
58 #include <linux/string.h>
59 #include <linux/slab.h>
60 #include <linux/backing-dev.h>
61 #include <linux/shmem_fs.h>
62 #include <linux/writeback.h>
63 #include <linux/blkdev.h>
64 #include <linux/pagevec.h>
65 #include <linux/percpu_counter.h>
66 #include <linux/falloc.h>
67 #include <linux/splice.h>
68 #include <linux/security.h>
69 #include <linux/swapops.h>
70 #include <linux/mempolicy.h>
71 #include <linux/namei.h>
72 #include <linux/ctype.h>
73 #include <linux/migrate.h>
74 #include <linux/highmem.h>
75 #include <linux/seq_file.h>
76 #include <linux/magic.h>
77 #include <linux/syscalls.h>
78 #include <linux/fcntl.h>
79 #include <uapi/linux/memfd.h>
80 #include <linux/userfaultfd_k.h>
81 #include <linux/rmap.h>
82 #include <linux/uuid.h>
83
84 #include <linux/uaccess.h>
85 #include <asm/pgtable.h>
86
87 #include "internal.h"
88
89 #define BLOCKS_PER_PAGE (PAGE_SIZE/512)
90 #define VM_ACCT(size) (PAGE_ALIGN(size) >> PAGE_SHIFT)
91
92 /* Pretend that each entry is of this size in directory's i_size */
93 #define BOGO_DIRENT_SIZE 20
94
95 /* Symlink up to this size is kmalloc'ed instead of using a swappable page */
96 #define SHORT_SYMLINK_LEN 128
97
98 /*
99 * shmem_fallocate communicates with shmem_fault or shmem_writepage via
100 * inode->i_private (with i_mutex making sure that it has only one user at
101 * a time): we would prefer not to enlarge the shmem inode just for that.
102 */
103 struct shmem_falloc {
104 wait_queue_head_t *waitq; /* faults into hole wait for punch to end */
105 pgoff_t start; /* start of range currently being fallocated */
106 pgoff_t next; /* the next page offset to be fallocated */
107 pgoff_t nr_falloced; /* how many new pages have been fallocated */
108 pgoff_t nr_unswapped; /* how often writepage refused to swap out */
109 };
110
111 struct shmem_options {
112 unsigned long long blocks;
113 int inodes;
114 struct mempolicy *mpol;
115 kuid_t uid;
116 kgid_t gid;
117 umode_t mode;
118 int huge;
119 int seen;
120 #define SHMEM_SEEN_BLOCKS 1
121 #define SHMEM_SEEN_INODES 2
122 #define SHMEM_SEEN_HUGE 4
123 };
124
125 #ifdef CONFIG_TMPFS
126 static unsigned long shmem_default_max_blocks(void)
127 {
128 return totalram_pages() / 2;
129 }
130
131 static int shmem_default_max_inodes(void)
132 {
133 unsigned long nr_pages = totalram_pages();
134 unsigned long ul;
135
136 ul = INT_MAX;
137 ul = min3(ul, nr_pages - totalhigh_pages(), nr_pages / 2);
138 return ul;
139 }
140 #endif
141
142 static bool shmem_should_replace_page(struct page *page, gfp_t gfp);
143 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
144 struct shmem_inode_info *info, pgoff_t index);
145 static int shmem_swapin_page(struct inode *inode, pgoff_t index,
146 struct page **pagep, enum sgp_type sgp,
147 gfp_t gfp, struct vm_area_struct *vma,
148 vm_fault_t *fault_type);
149 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
150 struct page **pagep, enum sgp_type sgp,
151 gfp_t gfp, struct vm_area_struct *vma,
152 struct vm_fault *vmf, vm_fault_t *fault_type);
153
154 int shmem_getpage(struct inode *inode, pgoff_t index,
155 struct page **pagep, enum sgp_type sgp)
156 {
157 return shmem_getpage_gfp(inode, index, pagep, sgp,
158 mapping_gfp_mask(inode->i_mapping), NULL, NULL, NULL);
159 }
160
161 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
162 {
163 return sb->s_fs_info;
164 }
165
166 /*
167 * shmem_file_setup pre-accounts the whole fixed size of a VM object,
168 * for shared memory and for shared anonymous (/dev/zero) mappings
169 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
170 * consistent with the pre-accounting of private mappings ...
171 */
172 static inline int shmem_acct_size(unsigned long flags, loff_t size)
173 {
174 return (flags & VM_NORESERVE) ?
175 0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size));
176 }
177
178 static inline void shmem_unacct_size(unsigned long flags, loff_t size)
179 {
180 if (!(flags & VM_NORESERVE))
181 vm_unacct_memory(VM_ACCT(size));
182 }
183
184 static inline int shmem_reacct_size(unsigned long flags,
185 loff_t oldsize, loff_t newsize)
186 {
187 if (!(flags & VM_NORESERVE)) {
188 if (VM_ACCT(newsize) > VM_ACCT(oldsize))
189 return security_vm_enough_memory_mm(current->mm,
190 VM_ACCT(newsize) - VM_ACCT(oldsize));
191 else if (VM_ACCT(newsize) < VM_ACCT(oldsize))
192 vm_unacct_memory(VM_ACCT(oldsize) - VM_ACCT(newsize));
193 }
194 return 0;
195 }
196
197 /*
198 * ... whereas tmpfs objects are accounted incrementally as
199 * pages are allocated, in order to allow large sparse files.
200 * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
201 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
202 */
203 static inline int shmem_acct_block(unsigned long flags, long pages)
204 {
205 if (!(flags & VM_NORESERVE))
206 return 0;
207
208 return security_vm_enough_memory_mm(current->mm,
209 pages * VM_ACCT(PAGE_SIZE));
210 }
211
212 static inline void shmem_unacct_blocks(unsigned long flags, long pages)
213 {
214 if (flags & VM_NORESERVE)
215 vm_unacct_memory(pages * VM_ACCT(PAGE_SIZE));
216 }
217
218 static inline bool shmem_inode_acct_block(struct inode *inode, long pages)
219 {
220 struct shmem_inode_info *info = SHMEM_I(inode);
221 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
222
223 if (shmem_acct_block(info->flags, pages))
224 return false;
225
226 if (sbinfo->max_blocks) {
227 if (percpu_counter_compare(&sbinfo->used_blocks,
228 sbinfo->max_blocks - pages) > 0)
229 goto unacct;
230 percpu_counter_add(&sbinfo->used_blocks, pages);
231 }
232
233 return true;
234
235 unacct:
236 shmem_unacct_blocks(info->flags, pages);
237 return false;
238 }
239
240 static inline void shmem_inode_unacct_blocks(struct inode *inode, long pages)
241 {
242 struct shmem_inode_info *info = SHMEM_I(inode);
243 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
244
245 if (sbinfo->max_blocks)
246 percpu_counter_sub(&sbinfo->used_blocks, pages);
247 shmem_unacct_blocks(info->flags, pages);
248 }
249
250 static const struct super_operations shmem_ops;
251 static const struct address_space_operations shmem_aops;
252 static const struct file_operations shmem_file_operations;
253 static const struct inode_operations shmem_inode_operations;
254 static const struct inode_operations shmem_dir_inode_operations;
255 static const struct inode_operations shmem_special_inode_operations;
256 static const struct vm_operations_struct shmem_vm_ops;
257 static struct file_system_type shmem_fs_type;
258
259 bool vma_is_shmem(struct vm_area_struct *vma)
260 {
261 return vma->vm_ops == &shmem_vm_ops;
262 }
263
264 static LIST_HEAD(shmem_swaplist);
265 static DEFINE_MUTEX(shmem_swaplist_mutex);
266
267 static int shmem_reserve_inode(struct super_block *sb)
268 {
269 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
270 if (sbinfo->max_inodes) {
271 spin_lock(&sbinfo->stat_lock);
272 if (!sbinfo->free_inodes) {
273 spin_unlock(&sbinfo->stat_lock);
274 return -ENOSPC;
275 }
276 sbinfo->free_inodes--;
277 spin_unlock(&sbinfo->stat_lock);
278 }
279 return 0;
280 }
281
282 static void shmem_free_inode(struct super_block *sb)
283 {
284 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
285 if (sbinfo->max_inodes) {
286 spin_lock(&sbinfo->stat_lock);
287 sbinfo->free_inodes++;
288 spin_unlock(&sbinfo->stat_lock);
289 }
290 }
291
292 /**
293 * shmem_recalc_inode - recalculate the block usage of an inode
294 * @inode: inode to recalc
295 *
296 * We have to calculate the free blocks since the mm can drop
297 * undirtied hole pages behind our back.
298 *
299 * But normally info->alloced == inode->i_mapping->nrpages + info->swapped
300 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
301 *
302 * It has to be called with the spinlock held.
303 */
304 static void shmem_recalc_inode(struct inode *inode)
305 {
306 struct shmem_inode_info *info = SHMEM_I(inode);
307 long freed;
308
309 freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
310 if (freed > 0) {
311 info->alloced -= freed;
312 inode->i_blocks -= freed * BLOCKS_PER_PAGE;
313 shmem_inode_unacct_blocks(inode, freed);
314 }
315 }
316
317 bool shmem_charge(struct inode *inode, long pages)
318 {
319 struct shmem_inode_info *info = SHMEM_I(inode);
320 unsigned long flags;
321
322 if (!shmem_inode_acct_block(inode, pages))
323 return false;
324
325 /* nrpages adjustment first, then shmem_recalc_inode() when balanced */
326 inode->i_mapping->nrpages += pages;
327
328 spin_lock_irqsave(&info->lock, flags);
329 info->alloced += pages;
330 inode->i_blocks += pages * BLOCKS_PER_PAGE;
331 shmem_recalc_inode(inode);
332 spin_unlock_irqrestore(&info->lock, flags);
333
334 return true;
335 }
336
337 void shmem_uncharge(struct inode *inode, long pages)
338 {
339 struct shmem_inode_info *info = SHMEM_I(inode);
340 unsigned long flags;
341
342 /* nrpages adjustment done by __delete_from_page_cache() or caller */
343
344 spin_lock_irqsave(&info->lock, flags);
345 info->alloced -= pages;
346 inode->i_blocks -= pages * BLOCKS_PER_PAGE;
347 shmem_recalc_inode(inode);
348 spin_unlock_irqrestore(&info->lock, flags);
349
350 shmem_inode_unacct_blocks(inode, pages);
351 }
352
353 /*
354 * Replace item expected in xarray by a new item, while holding xa_lock.
355 */
356 static int shmem_replace_entry(struct address_space *mapping,
357 pgoff_t index, void *expected, void *replacement)
358 {
359 XA_STATE(xas, &mapping->i_pages, index);
360 void *item;
361
362 VM_BUG_ON(!expected);
363 VM_BUG_ON(!replacement);
364 item = xas_load(&xas);
365 if (item != expected)
366 return -ENOENT;
367 xas_store(&xas, replacement);
368 return 0;
369 }
370
371 /*
372 * Sometimes, before we decide whether to proceed or to fail, we must check
373 * that an entry was not already brought back from swap by a racing thread.
374 *
375 * Checking page is not enough: by the time a SwapCache page is locked, it
376 * might be reused, and again be SwapCache, using the same swap as before.
377 */
378 static bool shmem_confirm_swap(struct address_space *mapping,
379 pgoff_t index, swp_entry_t swap)
380 {
381 return xa_load(&mapping->i_pages, index) == swp_to_radix_entry(swap);
382 }
383
384 /*
385 * Definitions for "huge tmpfs": tmpfs mounted with the huge= option
386 *
387 * SHMEM_HUGE_NEVER:
388 * disables huge pages for the mount;
389 * SHMEM_HUGE_ALWAYS:
390 * enables huge pages for the mount;
391 * SHMEM_HUGE_WITHIN_SIZE:
392 * only allocate huge pages if the page will be fully within i_size,
393 * also respect fadvise()/madvise() hints;
394 * SHMEM_HUGE_ADVISE:
395 * only allocate huge pages if requested with fadvise()/madvise();
396 */
397
398 #define SHMEM_HUGE_NEVER 0
399 #define SHMEM_HUGE_ALWAYS 1
400 #define SHMEM_HUGE_WITHIN_SIZE 2
401 #define SHMEM_HUGE_ADVISE 3
402
403 /*
404 * Special values.
405 * Only can be set via /sys/kernel/mm/transparent_hugepage/shmem_enabled:
406 *
407 * SHMEM_HUGE_DENY:
408 * disables huge on shm_mnt and all mounts, for emergency use;
409 * SHMEM_HUGE_FORCE:
410 * enables huge on shm_mnt and all mounts, w/o needing option, for testing;
411 *
412 */
413 #define SHMEM_HUGE_DENY (-1)
414 #define SHMEM_HUGE_FORCE (-2)
415
416 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
417 /* ifdef here to avoid bloating shmem.o when not necessary */
418
419 static int shmem_huge __read_mostly;
420
421 #if defined(CONFIG_SYSFS)
422 static int shmem_parse_huge(const char *str)
423 {
424 if (!strcmp(str, "never"))
425 return SHMEM_HUGE_NEVER;
426 if (!strcmp(str, "always"))
427 return SHMEM_HUGE_ALWAYS;
428 if (!strcmp(str, "within_size"))
429 return SHMEM_HUGE_WITHIN_SIZE;
430 if (!strcmp(str, "advise"))
431 return SHMEM_HUGE_ADVISE;
432 if (!strcmp(str, "deny"))
433 return SHMEM_HUGE_DENY;
434 if (!strcmp(str, "force"))
435 return SHMEM_HUGE_FORCE;
436 return -EINVAL;
437 }
438 #endif
439
440 #if defined(CONFIG_SYSFS) || defined(CONFIG_TMPFS)
441 static const char *shmem_format_huge(int huge)
442 {
443 switch (huge) {
444 case SHMEM_HUGE_NEVER:
445 return "never";
446 case SHMEM_HUGE_ALWAYS:
447 return "always";
448 case SHMEM_HUGE_WITHIN_SIZE:
449 return "within_size";
450 case SHMEM_HUGE_ADVISE:
451 return "advise";
452 case SHMEM_HUGE_DENY:
453 return "deny";
454 case SHMEM_HUGE_FORCE:
455 return "force";
456 default:
457 VM_BUG_ON(1);
458 return "bad_val";
459 }
460 }
461 #endif
462
463 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
464 struct shrink_control *sc, unsigned long nr_to_split)
465 {
466 LIST_HEAD(list), *pos, *next;
467 LIST_HEAD(to_remove);
468 struct inode *inode;
469 struct shmem_inode_info *info;
470 struct page *page;
471 unsigned long batch = sc ? sc->nr_to_scan : 128;
472 int removed = 0, split = 0;
473
474 if (list_empty(&sbinfo->shrinklist))
475 return SHRINK_STOP;
476
477 spin_lock(&sbinfo->shrinklist_lock);
478 list_for_each_safe(pos, next, &sbinfo->shrinklist) {
479 info = list_entry(pos, struct shmem_inode_info, shrinklist);
480
481 /* pin the inode */
482 inode = igrab(&info->vfs_inode);
483
484 /* inode is about to be evicted */
485 if (!inode) {
486 list_del_init(&info->shrinklist);
487 removed++;
488 goto next;
489 }
490
491 /* Check if there's anything to gain */
492 if (round_up(inode->i_size, PAGE_SIZE) ==
493 round_up(inode->i_size, HPAGE_PMD_SIZE)) {
494 list_move(&info->shrinklist, &to_remove);
495 removed++;
496 goto next;
497 }
498
499 list_move(&info->shrinklist, &list);
500 next:
501 if (!--batch)
502 break;
503 }
504 spin_unlock(&sbinfo->shrinklist_lock);
505
506 list_for_each_safe(pos, next, &to_remove) {
507 info = list_entry(pos, struct shmem_inode_info, shrinklist);
508 inode = &info->vfs_inode;
509 list_del_init(&info->shrinklist);
510 iput(inode);
511 }
512
513 list_for_each_safe(pos, next, &list) {
514 int ret;
515
516 info = list_entry(pos, struct shmem_inode_info, shrinklist);
517 inode = &info->vfs_inode;
518
519 if (nr_to_split && split >= nr_to_split)
520 goto leave;
521
522 page = find_get_page(inode->i_mapping,
523 (inode->i_size & HPAGE_PMD_MASK) >> PAGE_SHIFT);
524 if (!page)
525 goto drop;
526
527 /* No huge page at the end of the file: nothing to split */
528 if (!PageTransHuge(page)) {
529 put_page(page);
530 goto drop;
531 }
532
533 /*
534 * Leave the inode on the list if we failed to lock
535 * the page at this time.
536 *
537 * Waiting for the lock may lead to deadlock in the
538 * reclaim path.
539 */
540 if (!trylock_page(page)) {
541 put_page(page);
542 goto leave;
543 }
544
545 ret = split_huge_page(page);
546 unlock_page(page);
547 put_page(page);
548
549 /* If split failed leave the inode on the list */
550 if (ret)
551 goto leave;
552
553 split++;
554 drop:
555 list_del_init(&info->shrinklist);
556 removed++;
557 leave:
558 iput(inode);
559 }
560
561 spin_lock(&sbinfo->shrinklist_lock);
562 list_splice_tail(&list, &sbinfo->shrinklist);
563 sbinfo->shrinklist_len -= removed;
564 spin_unlock(&sbinfo->shrinklist_lock);
565
566 return split;
567 }
568
569 static long shmem_unused_huge_scan(struct super_block *sb,
570 struct shrink_control *sc)
571 {
572 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
573
574 if (!READ_ONCE(sbinfo->shrinklist_len))
575 return SHRINK_STOP;
576
577 return shmem_unused_huge_shrink(sbinfo, sc, 0);
578 }
579
580 static long shmem_unused_huge_count(struct super_block *sb,
581 struct shrink_control *sc)
582 {
583 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
584 return READ_ONCE(sbinfo->shrinklist_len);
585 }
586 #else /* !CONFIG_TRANSPARENT_HUGE_PAGECACHE */
587
588 #define shmem_huge SHMEM_HUGE_DENY
589
590 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
591 struct shrink_control *sc, unsigned long nr_to_split)
592 {
593 return 0;
594 }
595 #endif /* CONFIG_TRANSPARENT_HUGE_PAGECACHE */
596
597 static inline bool is_huge_enabled(struct shmem_sb_info *sbinfo)
598 {
599 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE) &&
600 (shmem_huge == SHMEM_HUGE_FORCE || sbinfo->huge) &&
601 shmem_huge != SHMEM_HUGE_DENY)
602 return true;
603 return false;
604 }
605
606 /*
607 * Like add_to_page_cache_locked, but error if expected item has gone.
608 */
609 static int shmem_add_to_page_cache(struct page *page,
610 struct address_space *mapping,
611 pgoff_t index, void *expected, gfp_t gfp)
612 {
613 XA_STATE_ORDER(xas, &mapping->i_pages, index, compound_order(page));
614 unsigned long i = 0;
615 unsigned long nr = compound_nr(page);
616
617 VM_BUG_ON_PAGE(PageTail(page), page);
618 VM_BUG_ON_PAGE(index != round_down(index, nr), page);
619 VM_BUG_ON_PAGE(!PageLocked(page), page);
620 VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
621 VM_BUG_ON(expected && PageTransHuge(page));
622
623 page_ref_add(page, nr);
624 page->mapping = mapping;
625 page->index = index;
626
627 do {
628 void *entry;
629 xas_lock_irq(&xas);
630 entry = xas_find_conflict(&xas);
631 if (entry != expected)
632 xas_set_err(&xas, -EEXIST);
633 xas_create_range(&xas);
634 if (xas_error(&xas))
635 goto unlock;
636 next:
637 xas_store(&xas, page);
638 if (++i < nr) {
639 xas_next(&xas);
640 goto next;
641 }
642 if (PageTransHuge(page)) {
643 count_vm_event(THP_FILE_ALLOC);
644 __inc_node_page_state(page, NR_SHMEM_THPS);
645 }
646 mapping->nrpages += nr;
647 __mod_node_page_state(page_pgdat(page), NR_FILE_PAGES, nr);
648 __mod_node_page_state(page_pgdat(page), NR_SHMEM, nr);
649 unlock:
650 xas_unlock_irq(&xas);
651 } while (xas_nomem(&xas, gfp));
652
653 if (xas_error(&xas)) {
654 page->mapping = NULL;
655 page_ref_sub(page, nr);
656 return xas_error(&xas);
657 }
658
659 return 0;
660 }
661
662 /*
663 * Like delete_from_page_cache, but substitutes swap for page.
664 */
665 static void shmem_delete_from_page_cache(struct page *page, void *radswap)
666 {
667 struct address_space *mapping = page->mapping;
668 int error;
669
670 VM_BUG_ON_PAGE(PageCompound(page), page);
671
672 xa_lock_irq(&mapping->i_pages);
673 error = shmem_replace_entry(mapping, page->index, page, radswap);
674 page->mapping = NULL;
675 mapping->nrpages--;
676 __dec_node_page_state(page, NR_FILE_PAGES);
677 __dec_node_page_state(page, NR_SHMEM);
678 xa_unlock_irq(&mapping->i_pages);
679 put_page(page);
680 BUG_ON(error);
681 }
682
683 /*
684 * Remove swap entry from page cache, free the swap and its page cache.
685 */
686 static int shmem_free_swap(struct address_space *mapping,
687 pgoff_t index, void *radswap)
688 {
689 void *old;
690
691 old = xa_cmpxchg_irq(&mapping->i_pages, index, radswap, NULL, 0);
692 if (old != radswap)
693 return -ENOENT;
694 free_swap_and_cache(radix_to_swp_entry(radswap));
695 return 0;
696 }
697
698 /*
699 * Determine (in bytes) how many of the shmem object's pages mapped by the
700 * given offsets are swapped out.
701 *
702 * This is safe to call without i_mutex or the i_pages lock thanks to RCU,
703 * as long as the inode doesn't go away and racy results are not a problem.
704 */
705 unsigned long shmem_partial_swap_usage(struct address_space *mapping,
706 pgoff_t start, pgoff_t end)
707 {
708 XA_STATE(xas, &mapping->i_pages, start);
709 struct page *page;
710 unsigned long swapped = 0;
711
712 rcu_read_lock();
713 xas_for_each(&xas, page, end - 1) {
714 if (xas_retry(&xas, page))
715 continue;
716 if (xa_is_value(page))
717 swapped++;
718
719 if (need_resched()) {
720 xas_pause(&xas);
721 cond_resched_rcu();
722 }
723 }
724
725 rcu_read_unlock();
726
727 return swapped << PAGE_SHIFT;
728 }
729
730 /*
731 * Determine (in bytes) how many of the shmem object's pages mapped by the
732 * given vma is swapped out.
733 *
734 * This is safe to call without i_mutex or the i_pages lock thanks to RCU,
735 * as long as the inode doesn't go away and racy results are not a problem.
736 */
737 unsigned long shmem_swap_usage(struct vm_area_struct *vma)
738 {
739 struct inode *inode = file_inode(vma->vm_file);
740 struct shmem_inode_info *info = SHMEM_I(inode);
741 struct address_space *mapping = inode->i_mapping;
742 unsigned long swapped;
743
744 /* Be careful as we don't hold info->lock */
745 swapped = READ_ONCE(info->swapped);
746
747 /*
748 * The easier cases are when the shmem object has nothing in swap, or
749 * the vma maps it whole. Then we can simply use the stats that we
750 * already track.
751 */
752 if (!swapped)
753 return 0;
754
755 if (!vma->vm_pgoff && vma->vm_end - vma->vm_start >= inode->i_size)
756 return swapped << PAGE_SHIFT;
757
758 /* Here comes the more involved part */
759 return shmem_partial_swap_usage(mapping,
760 linear_page_index(vma, vma->vm_start),
761 linear_page_index(vma, vma->vm_end));
762 }
763
764 /*
765 * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists.
766 */
767 void shmem_unlock_mapping(struct address_space *mapping)
768 {
769 struct pagevec pvec;
770 pgoff_t indices[PAGEVEC_SIZE];
771 pgoff_t index = 0;
772
773 pagevec_init(&pvec);
774 /*
775 * Minor point, but we might as well stop if someone else SHM_LOCKs it.
776 */
777 while (!mapping_unevictable(mapping)) {
778 /*
779 * Avoid pagevec_lookup(): find_get_pages() returns 0 as if it
780 * has finished, if it hits a row of PAGEVEC_SIZE swap entries.
781 */
782 pvec.nr = find_get_entries(mapping, index,
783 PAGEVEC_SIZE, pvec.pages, indices);
784 if (!pvec.nr)
785 break;
786 index = indices[pvec.nr - 1] + 1;
787 pagevec_remove_exceptionals(&pvec);
788 check_move_unevictable_pages(&pvec);
789 pagevec_release(&pvec);
790 cond_resched();
791 }
792 }
793
794 /*
795 * Remove range of pages and swap entries from page cache, and free them.
796 * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate.
797 */
798 static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend,
799 bool unfalloc)
800 {
801 struct address_space *mapping = inode->i_mapping;
802 struct shmem_inode_info *info = SHMEM_I(inode);
803 pgoff_t start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT;
804 pgoff_t end = (lend + 1) >> PAGE_SHIFT;
805 unsigned int partial_start = lstart & (PAGE_SIZE - 1);
806 unsigned int partial_end = (lend + 1) & (PAGE_SIZE - 1);
807 struct pagevec pvec;
808 pgoff_t indices[PAGEVEC_SIZE];
809 long nr_swaps_freed = 0;
810 pgoff_t index;
811 int i;
812
813 if (lend == -1)
814 end = -1; /* unsigned, so actually very big */
815
816 pagevec_init(&pvec);
817 index = start;
818 while (index < end) {
819 pvec.nr = find_get_entries(mapping, index,
820 min(end - index, (pgoff_t)PAGEVEC_SIZE),
821 pvec.pages, indices);
822 if (!pvec.nr)
823 break;
824 for (i = 0; i < pagevec_count(&pvec); i++) {
825 struct page *page = pvec.pages[i];
826
827 index = indices[i];
828 if (index >= end)
829 break;
830
831 if (xa_is_value(page)) {
832 if (unfalloc)
833 continue;
834 nr_swaps_freed += !shmem_free_swap(mapping,
835 index, page);
836 continue;
837 }
838
839 VM_BUG_ON_PAGE(page_to_pgoff(page) != index, page);
840
841 if (!trylock_page(page))
842 continue;
843
844 if (PageTransTail(page)) {
845 /* Middle of THP: zero out the page */
846 clear_highpage(page);
847 unlock_page(page);
848 continue;
849 } else if (PageTransHuge(page)) {
850 if (index == round_down(end, HPAGE_PMD_NR)) {
851 /*
852 * Range ends in the middle of THP:
853 * zero out the page
854 */
855 clear_highpage(page);
856 unlock_page(page);
857 continue;
858 }
859 index += HPAGE_PMD_NR - 1;
860 i += HPAGE_PMD_NR - 1;
861 }
862
863 if (!unfalloc || !PageUptodate(page)) {
864 VM_BUG_ON_PAGE(PageTail(page), page);
865 if (page_mapping(page) == mapping) {
866 VM_BUG_ON_PAGE(PageWriteback(page), page);
867 truncate_inode_page(mapping, page);
868 }
869 }
870 unlock_page(page);
871 }
872 pagevec_remove_exceptionals(&pvec);
873 pagevec_release(&pvec);
874 cond_resched();
875 index++;
876 }
877
878 if (partial_start) {
879 struct page *page = NULL;
880 shmem_getpage(inode, start - 1, &page, SGP_READ);
881 if (page) {
882 unsigned int top = PAGE_SIZE;
883 if (start > end) {
884 top = partial_end;
885 partial_end = 0;
886 }
887 zero_user_segment(page, partial_start, top);
888 set_page_dirty(page);
889 unlock_page(page);
890 put_page(page);
891 }
892 }
893 if (partial_end) {
894 struct page *page = NULL;
895 shmem_getpage(inode, end, &page, SGP_READ);
896 if (page) {
897 zero_user_segment(page, 0, partial_end);
898 set_page_dirty(page);
899 unlock_page(page);
900 put_page(page);
901 }
902 }
903 if (start >= end)
904 return;
905
906 index = start;
907 while (index < end) {
908 cond_resched();
909
910 pvec.nr = find_get_entries(mapping, index,
911 min(end - index, (pgoff_t)PAGEVEC_SIZE),
912 pvec.pages, indices);
913 if (!pvec.nr) {
914 /* If all gone or hole-punch or unfalloc, we're done */
915 if (index == start || end != -1)
916 break;
917 /* But if truncating, restart to make sure all gone */
918 index = start;
919 continue;
920 }
921 for (i = 0; i < pagevec_count(&pvec); i++) {
922 struct page *page = pvec.pages[i];
923
924 index = indices[i];
925 if (index >= end)
926 break;
927
928 if (xa_is_value(page)) {
929 if (unfalloc)
930 continue;
931 if (shmem_free_swap(mapping, index, page)) {
932 /* Swap was replaced by page: retry */
933 index--;
934 break;
935 }
936 nr_swaps_freed++;
937 continue;
938 }
939
940 lock_page(page);
941
942 if (PageTransTail(page)) {
943 /* Middle of THP: zero out the page */
944 clear_highpage(page);
945 unlock_page(page);
946 /*
947 * Partial thp truncate due 'start' in middle
948 * of THP: don't need to look on these pages
949 * again on !pvec.nr restart.
950 */
951 if (index != round_down(end, HPAGE_PMD_NR))
952 start++;
953 continue;
954 } else if (PageTransHuge(page)) {
955 if (index == round_down(end, HPAGE_PMD_NR)) {
956 /*
957 * Range ends in the middle of THP:
958 * zero out the page
959 */
960 clear_highpage(page);
961 unlock_page(page);
962 continue;
963 }
964 index += HPAGE_PMD_NR - 1;
965 i += HPAGE_PMD_NR - 1;
966 }
967
968 if (!unfalloc || !PageUptodate(page)) {
969 VM_BUG_ON_PAGE(PageTail(page), page);
970 if (page_mapping(page) == mapping) {
971 VM_BUG_ON_PAGE(PageWriteback(page), page);
972 truncate_inode_page(mapping, page);
973 } else {
974 /* Page was replaced by swap: retry */
975 unlock_page(page);
976 index--;
977 break;
978 }
979 }
980 unlock_page(page);
981 }
982 pagevec_remove_exceptionals(&pvec);
983 pagevec_release(&pvec);
984 index++;
985 }
986
987 spin_lock_irq(&info->lock);
988 info->swapped -= nr_swaps_freed;
989 shmem_recalc_inode(inode);
990 spin_unlock_irq(&info->lock);
991 }
992
993 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
994 {
995 shmem_undo_range(inode, lstart, lend, false);
996 inode->i_ctime = inode->i_mtime = current_time(inode);
997 }
998 EXPORT_SYMBOL_GPL(shmem_truncate_range);
999
1000 static int shmem_getattr(const struct path *path, struct kstat *stat,
1001 u32 request_mask, unsigned int query_flags)
1002 {
1003 struct inode *inode = path->dentry->d_inode;
1004 struct shmem_inode_info *info = SHMEM_I(inode);
1005 struct shmem_sb_info *sb_info = SHMEM_SB(inode->i_sb);
1006
1007 if (info->alloced - info->swapped != inode->i_mapping->nrpages) {
1008 spin_lock_irq(&info->lock);
1009 shmem_recalc_inode(inode);
1010 spin_unlock_irq(&info->lock);
1011 }
1012 generic_fillattr(inode, stat);
1013
1014 if (is_huge_enabled(sb_info))
1015 stat->blksize = HPAGE_PMD_SIZE;
1016
1017 return 0;
1018 }
1019
1020 static int shmem_setattr(struct dentry *dentry, struct iattr *attr)
1021 {
1022 struct inode *inode = d_inode(dentry);
1023 struct shmem_inode_info *info = SHMEM_I(inode);
1024 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1025 int error;
1026
1027 error = setattr_prepare(dentry, attr);
1028 if (error)
1029 return error;
1030
1031 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
1032 loff_t oldsize = inode->i_size;
1033 loff_t newsize = attr->ia_size;
1034
1035 /* protected by i_mutex */
1036 if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) ||
1037 (newsize > oldsize && (info->seals & F_SEAL_GROW)))
1038 return -EPERM;
1039
1040 if (newsize != oldsize) {
1041 error = shmem_reacct_size(SHMEM_I(inode)->flags,
1042 oldsize, newsize);
1043 if (error)
1044 return error;
1045 i_size_write(inode, newsize);
1046 inode->i_ctime = inode->i_mtime = current_time(inode);
1047 }
1048 if (newsize <= oldsize) {
1049 loff_t holebegin = round_up(newsize, PAGE_SIZE);
1050 if (oldsize > holebegin)
1051 unmap_mapping_range(inode->i_mapping,
1052 holebegin, 0, 1);
1053 if (info->alloced)
1054 shmem_truncate_range(inode,
1055 newsize, (loff_t)-1);
1056 /* unmap again to remove racily COWed private pages */
1057 if (oldsize > holebegin)
1058 unmap_mapping_range(inode->i_mapping,
1059 holebegin, 0, 1);
1060
1061 /*
1062 * Part of the huge page can be beyond i_size: subject
1063 * to shrink under memory pressure.
1064 */
1065 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE)) {
1066 spin_lock(&sbinfo->shrinklist_lock);
1067 /*
1068 * _careful to defend against unlocked access to
1069 * ->shrink_list in shmem_unused_huge_shrink()
1070 */
1071 if (list_empty_careful(&info->shrinklist)) {
1072 list_add_tail(&info->shrinklist,
1073 &sbinfo->shrinklist);
1074 sbinfo->shrinklist_len++;
1075 }
1076 spin_unlock(&sbinfo->shrinklist_lock);
1077 }
1078 }
1079 }
1080
1081 setattr_copy(inode, attr);
1082 if (attr->ia_valid & ATTR_MODE)
1083 error = posix_acl_chmod(inode, inode->i_mode);
1084 return error;
1085 }
1086
1087 static void shmem_evict_inode(struct inode *inode)
1088 {
1089 struct shmem_inode_info *info = SHMEM_I(inode);
1090 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1091
1092 if (inode->i_mapping->a_ops == &shmem_aops) {
1093 shmem_unacct_size(info->flags, inode->i_size);
1094 inode->i_size = 0;
1095 shmem_truncate_range(inode, 0, (loff_t)-1);
1096 if (!list_empty(&info->shrinklist)) {
1097 spin_lock(&sbinfo->shrinklist_lock);
1098 if (!list_empty(&info->shrinklist)) {
1099 list_del_init(&info->shrinklist);
1100 sbinfo->shrinklist_len--;
1101 }
1102 spin_unlock(&sbinfo->shrinklist_lock);
1103 }
1104 while (!list_empty(&info->swaplist)) {
1105 /* Wait while shmem_unuse() is scanning this inode... */
1106 wait_var_event(&info->stop_eviction,
1107 !atomic_read(&info->stop_eviction));
1108 mutex_lock(&shmem_swaplist_mutex);
1109 /* ...but beware of the race if we peeked too early */
1110 if (!atomic_read(&info->stop_eviction))
1111 list_del_init(&info->swaplist);
1112 mutex_unlock(&shmem_swaplist_mutex);
1113 }
1114 }
1115
1116 simple_xattrs_free(&info->xattrs);
1117 WARN_ON(inode->i_blocks);
1118 if (!sbinfo->idr_nouse && inode->i_ino) {
1119 mutex_lock(&sbinfo->idr_lock);
1120 idr_remove(&sbinfo->idr, inode->i_ino);
1121 mutex_unlock(&sbinfo->idr_lock);
1122 }
1123 shmem_free_inode(inode->i_sb);
1124 clear_inode(inode);
1125 }
1126
1127 extern struct swap_info_struct *swap_info[];
1128
1129 static int shmem_find_swap_entries(struct address_space *mapping,
1130 pgoff_t start, unsigned int nr_entries,
1131 struct page **entries, pgoff_t *indices,
1132 unsigned int type, bool frontswap)
1133 {
1134 XA_STATE(xas, &mapping->i_pages, start);
1135 struct page *page;
1136 swp_entry_t entry;
1137 unsigned int ret = 0;
1138
1139 if (!nr_entries)
1140 return 0;
1141
1142 rcu_read_lock();
1143 xas_for_each(&xas, page, ULONG_MAX) {
1144 if (xas_retry(&xas, page))
1145 continue;
1146
1147 if (!xa_is_value(page))
1148 continue;
1149
1150 entry = radix_to_swp_entry(page);
1151 if (swp_type(entry) != type)
1152 continue;
1153 if (frontswap &&
1154 !frontswap_test(swap_info[type], swp_offset(entry)))
1155 continue;
1156
1157 indices[ret] = xas.xa_index;
1158 entries[ret] = page;
1159
1160 if (need_resched()) {
1161 xas_pause(&xas);
1162 cond_resched_rcu();
1163 }
1164 if (++ret == nr_entries)
1165 break;
1166 }
1167 rcu_read_unlock();
1168
1169 return ret;
1170 }
1171
1172 /*
1173 * Move the swapped pages for an inode to page cache. Returns the count
1174 * of pages swapped in, or the error in case of failure.
1175 */
1176 static int shmem_unuse_swap_entries(struct inode *inode, struct pagevec pvec,
1177 pgoff_t *indices)
1178 {
1179 int i = 0;
1180 int ret = 0;
1181 int error = 0;
1182 struct address_space *mapping = inode->i_mapping;
1183
1184 for (i = 0; i < pvec.nr; i++) {
1185 struct page *page = pvec.pages[i];
1186
1187 if (!xa_is_value(page))
1188 continue;
1189 error = shmem_swapin_page(inode, indices[i],
1190 &page, SGP_CACHE,
1191 mapping_gfp_mask(mapping),
1192 NULL, NULL);
1193 if (error == 0) {
1194 unlock_page(page);
1195 put_page(page);
1196 ret++;
1197 }
1198 if (error == -ENOMEM)
1199 break;
1200 error = 0;
1201 }
1202 return error ? error : ret;
1203 }
1204
1205 /*
1206 * If swap found in inode, free it and move page from swapcache to filecache.
1207 */
1208 static int shmem_unuse_inode(struct inode *inode, unsigned int type,
1209 bool frontswap, unsigned long *fs_pages_to_unuse)
1210 {
1211 struct address_space *mapping = inode->i_mapping;
1212 pgoff_t start = 0;
1213 struct pagevec pvec;
1214 pgoff_t indices[PAGEVEC_SIZE];
1215 bool frontswap_partial = (frontswap && *fs_pages_to_unuse > 0);
1216 int ret = 0;
1217
1218 pagevec_init(&pvec);
1219 do {
1220 unsigned int nr_entries = PAGEVEC_SIZE;
1221
1222 if (frontswap_partial && *fs_pages_to_unuse < PAGEVEC_SIZE)
1223 nr_entries = *fs_pages_to_unuse;
1224
1225 pvec.nr = shmem_find_swap_entries(mapping, start, nr_entries,
1226 pvec.pages, indices,
1227 type, frontswap);
1228 if (pvec.nr == 0) {
1229 ret = 0;
1230 break;
1231 }
1232
1233 ret = shmem_unuse_swap_entries(inode, pvec, indices);
1234 if (ret < 0)
1235 break;
1236
1237 if (frontswap_partial) {
1238 *fs_pages_to_unuse -= ret;
1239 if (*fs_pages_to_unuse == 0) {
1240 ret = FRONTSWAP_PAGES_UNUSED;
1241 break;
1242 }
1243 }
1244
1245 start = indices[pvec.nr - 1];
1246 } while (true);
1247
1248 return ret;
1249 }
1250
1251 /*
1252 * Read all the shared memory data that resides in the swap
1253 * device 'type' back into memory, so the swap device can be
1254 * unused.
1255 */
1256 int shmem_unuse(unsigned int type, bool frontswap,
1257 unsigned long *fs_pages_to_unuse)
1258 {
1259 struct shmem_inode_info *info, *next;
1260 int error = 0;
1261
1262 if (list_empty(&shmem_swaplist))
1263 return 0;
1264
1265 mutex_lock(&shmem_swaplist_mutex);
1266 list_for_each_entry_safe(info, next, &shmem_swaplist, swaplist) {
1267 if (!info->swapped) {
1268 list_del_init(&info->swaplist);
1269 continue;
1270 }
1271 /*
1272 * Drop the swaplist mutex while searching the inode for swap;
1273 * but before doing so, make sure shmem_evict_inode() will not
1274 * remove placeholder inode from swaplist, nor let it be freed
1275 * (igrab() would protect from unlink, but not from unmount).
1276 */
1277 atomic_inc(&info->stop_eviction);
1278 mutex_unlock(&shmem_swaplist_mutex);
1279
1280 error = shmem_unuse_inode(&info->vfs_inode, type, frontswap,
1281 fs_pages_to_unuse);
1282 cond_resched();
1283
1284 mutex_lock(&shmem_swaplist_mutex);
1285 next = list_next_entry(info, swaplist);
1286 if (!info->swapped)
1287 list_del_init(&info->swaplist);
1288 if (atomic_dec_and_test(&info->stop_eviction))
1289 wake_up_var(&info->stop_eviction);
1290 if (error)
1291 break;
1292 }
1293 mutex_unlock(&shmem_swaplist_mutex);
1294
1295 return error;
1296 }
1297
1298 /*
1299 * Move the page from the page cache to the swap cache.
1300 */
1301 static int shmem_writepage(struct page *page, struct writeback_control *wbc)
1302 {
1303 struct shmem_inode_info *info;
1304 struct address_space *mapping;
1305 struct inode *inode;
1306 swp_entry_t swap;
1307 pgoff_t index;
1308
1309 VM_BUG_ON_PAGE(PageCompound(page), page);
1310 BUG_ON(!PageLocked(page));
1311 mapping = page->mapping;
1312 index = page->index;
1313 inode = mapping->host;
1314 info = SHMEM_I(inode);
1315 if (info->flags & VM_LOCKED)
1316 goto redirty;
1317 if (!total_swap_pages)
1318 goto redirty;
1319
1320 /*
1321 * Our capabilities prevent regular writeback or sync from ever calling
1322 * shmem_writepage; but a stacking filesystem might use ->writepage of
1323 * its underlying filesystem, in which case tmpfs should write out to
1324 * swap only in response to memory pressure, and not for the writeback
1325 * threads or sync.
1326 */
1327 if (!wbc->for_reclaim) {
1328 WARN_ON_ONCE(1); /* Still happens? Tell us about it! */
1329 goto redirty;
1330 }
1331
1332 /*
1333 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC
1334 * value into swapfile.c, the only way we can correctly account for a
1335 * fallocated page arriving here is now to initialize it and write it.
1336 *
1337 * That's okay for a page already fallocated earlier, but if we have
1338 * not yet completed the fallocation, then (a) we want to keep track
1339 * of this page in case we have to undo it, and (b) it may not be a
1340 * good idea to continue anyway, once we're pushing into swap. So
1341 * reactivate the page, and let shmem_fallocate() quit when too many.
1342 */
1343 if (!PageUptodate(page)) {
1344 if (inode->i_private) {
1345 struct shmem_falloc *shmem_falloc;
1346 spin_lock(&inode->i_lock);
1347 shmem_falloc = inode->i_private;
1348 if (shmem_falloc &&
1349 !shmem_falloc->waitq &&
1350 index >= shmem_falloc->start &&
1351 index < shmem_falloc->next)
1352 shmem_falloc->nr_unswapped++;
1353 else
1354 shmem_falloc = NULL;
1355 spin_unlock(&inode->i_lock);
1356 if (shmem_falloc)
1357 goto redirty;
1358 }
1359 clear_highpage(page);
1360 flush_dcache_page(page);
1361 SetPageUptodate(page);
1362 }
1363
1364 swap = get_swap_page(page);
1365 if (!swap.val)
1366 goto redirty;
1367
1368 /*
1369 * Add inode to shmem_unuse()'s list of swapped-out inodes,
1370 * if it's not already there. Do it now before the page is
1371 * moved to swap cache, when its pagelock no longer protects
1372 * the inode from eviction. But don't unlock the mutex until
1373 * we've incremented swapped, because shmem_unuse_inode() will
1374 * prune a !swapped inode from the swaplist under this mutex.
1375 */
1376 mutex_lock(&shmem_swaplist_mutex);
1377 if (list_empty(&info->swaplist))
1378 list_add(&info->swaplist, &shmem_swaplist);
1379
1380 if (add_to_swap_cache(page, swap, GFP_ATOMIC) == 0) {
1381 spin_lock_irq(&info->lock);
1382 shmem_recalc_inode(inode);
1383 info->swapped++;
1384 spin_unlock_irq(&info->lock);
1385
1386 swap_shmem_alloc(swap);
1387 shmem_delete_from_page_cache(page, swp_to_radix_entry(swap));
1388
1389 mutex_unlock(&shmem_swaplist_mutex);
1390 BUG_ON(page_mapped(page));
1391 swap_writepage(page, wbc);
1392 return 0;
1393 }
1394
1395 mutex_unlock(&shmem_swaplist_mutex);
1396 put_swap_page(page, swap);
1397 redirty:
1398 set_page_dirty(page);
1399 if (wbc->for_reclaim)
1400 return AOP_WRITEPAGE_ACTIVATE; /* Return with page locked */
1401 unlock_page(page);
1402 return 0;
1403 }
1404
1405 #if defined(CONFIG_NUMA) && defined(CONFIG_TMPFS)
1406 static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1407 {
1408 char buffer[64];
1409
1410 if (!mpol || mpol->mode == MPOL_DEFAULT)
1411 return; /* show nothing */
1412
1413 mpol_to_str(buffer, sizeof(buffer), mpol);
1414
1415 seq_printf(seq, ",mpol=%s", buffer);
1416 }
1417
1418 static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1419 {
1420 struct mempolicy *mpol = NULL;
1421 if (sbinfo->mpol) {
1422 spin_lock(&sbinfo->stat_lock); /* prevent replace/use races */
1423 mpol = sbinfo->mpol;
1424 mpol_get(mpol);
1425 spin_unlock(&sbinfo->stat_lock);
1426 }
1427 return mpol;
1428 }
1429 #else /* !CONFIG_NUMA || !CONFIG_TMPFS */
1430 static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1431 {
1432 }
1433 static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1434 {
1435 return NULL;
1436 }
1437 #endif /* CONFIG_NUMA && CONFIG_TMPFS */
1438 #ifndef CONFIG_NUMA
1439 #define vm_policy vm_private_data
1440 #endif
1441
1442 static void shmem_pseudo_vma_init(struct vm_area_struct *vma,
1443 struct shmem_inode_info *info, pgoff_t index)
1444 {
1445 /* Create a pseudo vma that just contains the policy */
1446 vma_init(vma, NULL);
1447 /* Bias interleave by inode number to distribute better across nodes */
1448 vma->vm_pgoff = index + info->vfs_inode.i_ino;
1449 vma->vm_policy = mpol_shared_policy_lookup(&info->policy, index);
1450 }
1451
1452 static void shmem_pseudo_vma_destroy(struct vm_area_struct *vma)
1453 {
1454 /* Drop reference taken by mpol_shared_policy_lookup() */
1455 mpol_cond_put(vma->vm_policy);
1456 }
1457
1458 static struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
1459 struct shmem_inode_info *info, pgoff_t index)
1460 {
1461 struct vm_area_struct pvma;
1462 struct page *page;
1463 struct vm_fault vmf;
1464
1465 shmem_pseudo_vma_init(&pvma, info, index);
1466 vmf.vma = &pvma;
1467 vmf.address = 0;
1468 page = swap_cluster_readahead(swap, gfp, &vmf);
1469 shmem_pseudo_vma_destroy(&pvma);
1470
1471 return page;
1472 }
1473
1474 static struct page *shmem_alloc_hugepage(gfp_t gfp,
1475 struct shmem_inode_info *info, pgoff_t index)
1476 {
1477 struct vm_area_struct pvma;
1478 struct address_space *mapping = info->vfs_inode.i_mapping;
1479 pgoff_t hindex;
1480 struct page *page;
1481
1482 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE))
1483 return NULL;
1484
1485 hindex = round_down(index, HPAGE_PMD_NR);
1486 if (xa_find(&mapping->i_pages, &hindex, hindex + HPAGE_PMD_NR - 1,
1487 XA_PRESENT))
1488 return NULL;
1489
1490 shmem_pseudo_vma_init(&pvma, info, hindex);
1491 page = alloc_pages_vma(gfp | __GFP_COMP | __GFP_NORETRY | __GFP_NOWARN,
1492 HPAGE_PMD_ORDER, &pvma, 0, numa_node_id(), true);
1493 shmem_pseudo_vma_destroy(&pvma);
1494 if (page)
1495 prep_transhuge_page(page);
1496 return page;
1497 }
1498
1499 static struct page *shmem_alloc_page(gfp_t gfp,
1500 struct shmem_inode_info *info, pgoff_t index)
1501 {
1502 struct vm_area_struct pvma;
1503 struct page *page;
1504
1505 shmem_pseudo_vma_init(&pvma, info, index);
1506 page = alloc_page_vma(gfp, &pvma, 0);
1507 shmem_pseudo_vma_destroy(&pvma);
1508
1509 return page;
1510 }
1511
1512 static struct page *shmem_alloc_and_acct_page(gfp_t gfp,
1513 struct inode *inode,
1514 pgoff_t index, bool huge)
1515 {
1516 struct shmem_inode_info *info = SHMEM_I(inode);
1517 struct page *page;
1518 int nr;
1519 int err = -ENOSPC;
1520
1521 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE))
1522 huge = false;
1523 nr = huge ? HPAGE_PMD_NR : 1;
1524
1525 if (!shmem_inode_acct_block(inode, nr))
1526 goto failed;
1527
1528 if (huge)
1529 page = shmem_alloc_hugepage(gfp, info, index);
1530 else
1531 page = shmem_alloc_page(gfp, info, index);
1532 if (page) {
1533 __SetPageLocked(page);
1534 __SetPageSwapBacked(page);
1535 return page;
1536 }
1537
1538 err = -ENOMEM;
1539 shmem_inode_unacct_blocks(inode, nr);
1540 failed:
1541 return ERR_PTR(err);
1542 }
1543
1544 /*
1545 * When a page is moved from swapcache to shmem filecache (either by the
1546 * usual swapin of shmem_getpage_gfp(), or by the less common swapoff of
1547 * shmem_unuse_inode()), it may have been read in earlier from swap, in
1548 * ignorance of the mapping it belongs to. If that mapping has special
1549 * constraints (like the gma500 GEM driver, which requires RAM below 4GB),
1550 * we may need to copy to a suitable page before moving to filecache.
1551 *
1552 * In a future release, this may well be extended to respect cpuset and
1553 * NUMA mempolicy, and applied also to anonymous pages in do_swap_page();
1554 * but for now it is a simple matter of zone.
1555 */
1556 static bool shmem_should_replace_page(struct page *page, gfp_t gfp)
1557 {
1558 return page_zonenum(page) > gfp_zone(gfp);
1559 }
1560
1561 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
1562 struct shmem_inode_info *info, pgoff_t index)
1563 {
1564 struct page *oldpage, *newpage;
1565 struct address_space *swap_mapping;
1566 swp_entry_t entry;
1567 pgoff_t swap_index;
1568 int error;
1569
1570 oldpage = *pagep;
1571 entry.val = page_private(oldpage);
1572 swap_index = swp_offset(entry);
1573 swap_mapping = page_mapping(oldpage);
1574
1575 /*
1576 * We have arrived here because our zones are constrained, so don't
1577 * limit chance of success by further cpuset and node constraints.
1578 */
1579 gfp &= ~GFP_CONSTRAINT_MASK;
1580 newpage = shmem_alloc_page(gfp, info, index);
1581 if (!newpage)
1582 return -ENOMEM;
1583
1584 get_page(newpage);
1585 copy_highpage(newpage, oldpage);
1586 flush_dcache_page(newpage);
1587
1588 __SetPageLocked(newpage);
1589 __SetPageSwapBacked(newpage);
1590 SetPageUptodate(newpage);
1591 set_page_private(newpage, entry.val);
1592 SetPageSwapCache(newpage);
1593
1594 /*
1595 * Our caller will very soon move newpage out of swapcache, but it's
1596 * a nice clean interface for us to replace oldpage by newpage there.
1597 */
1598 xa_lock_irq(&swap_mapping->i_pages);
1599 error = shmem_replace_entry(swap_mapping, swap_index, oldpage, newpage);
1600 if (!error) {
1601 __inc_node_page_state(newpage, NR_FILE_PAGES);
1602 __dec_node_page_state(oldpage, NR_FILE_PAGES);
1603 }
1604 xa_unlock_irq(&swap_mapping->i_pages);
1605
1606 if (unlikely(error)) {
1607 /*
1608 * Is this possible? I think not, now that our callers check
1609 * both PageSwapCache and page_private after getting page lock;
1610 * but be defensive. Reverse old to newpage for clear and free.
1611 */
1612 oldpage = newpage;
1613 } else {
1614 mem_cgroup_migrate(oldpage, newpage);
1615 lru_cache_add_anon(newpage);
1616 *pagep = newpage;
1617 }
1618
1619 ClearPageSwapCache(oldpage);
1620 set_page_private(oldpage, 0);
1621
1622 unlock_page(oldpage);
1623 put_page(oldpage);
1624 put_page(oldpage);
1625 return error;
1626 }
1627
1628 /*
1629 * Swap in the page pointed to by *pagep.
1630 * Caller has to make sure that *pagep contains a valid swapped page.
1631 * Returns 0 and the page in pagep if success. On failure, returns the
1632 * the error code and NULL in *pagep.
1633 */
1634 static int shmem_swapin_page(struct inode *inode, pgoff_t index,
1635 struct page **pagep, enum sgp_type sgp,
1636 gfp_t gfp, struct vm_area_struct *vma,
1637 vm_fault_t *fault_type)
1638 {
1639 struct address_space *mapping = inode->i_mapping;
1640 struct shmem_inode_info *info = SHMEM_I(inode);
1641 struct mm_struct *charge_mm = vma ? vma->vm_mm : current->mm;
1642 struct mem_cgroup *memcg;
1643 struct page *page;
1644 swp_entry_t swap;
1645 int error;
1646
1647 VM_BUG_ON(!*pagep || !xa_is_value(*pagep));
1648 swap = radix_to_swp_entry(*pagep);
1649 *pagep = NULL;
1650
1651 /* Look it up and read it in.. */
1652 page = lookup_swap_cache(swap, NULL, 0);
1653 if (!page) {
1654 /* Or update major stats only when swapin succeeds?? */
1655 if (fault_type) {
1656 *fault_type |= VM_FAULT_MAJOR;
1657 count_vm_event(PGMAJFAULT);
1658 count_memcg_event_mm(charge_mm, PGMAJFAULT);
1659 }
1660 /* Here we actually start the io */
1661 page = shmem_swapin(swap, gfp, info, index);
1662 if (!page) {
1663 error = -ENOMEM;
1664 goto failed;
1665 }
1666 }
1667
1668 /* We have to do this with page locked to prevent races */
1669 lock_page(page);
1670 if (!PageSwapCache(page) || page_private(page) != swap.val ||
1671 !shmem_confirm_swap(mapping, index, swap)) {
1672 error = -EEXIST;
1673 goto unlock;
1674 }
1675 if (!PageUptodate(page)) {
1676 error = -EIO;
1677 goto failed;
1678 }
1679 wait_on_page_writeback(page);
1680
1681 if (shmem_should_replace_page(page, gfp)) {
1682 error = shmem_replace_page(&page, gfp, info, index);
1683 if (error)
1684 goto failed;
1685 }
1686
1687 error = mem_cgroup_try_charge_delay(page, charge_mm, gfp, &memcg,
1688 false);
1689 if (!error) {
1690 error = shmem_add_to_page_cache(page, mapping, index,
1691 swp_to_radix_entry(swap), gfp);
1692 /*
1693 * We already confirmed swap under page lock, and make
1694 * no memory allocation here, so usually no possibility
1695 * of error; but free_swap_and_cache() only trylocks a
1696 * page, so it is just possible that the entry has been
1697 * truncated or holepunched since swap was confirmed.
1698 * shmem_undo_range() will have done some of the
1699 * unaccounting, now delete_from_swap_cache() will do
1700 * the rest.
1701 */
1702 if (error) {
1703 mem_cgroup_cancel_charge(page, memcg, false);
1704 delete_from_swap_cache(page);
1705 }
1706 }
1707 if (error)
1708 goto failed;
1709
1710 mem_cgroup_commit_charge(page, memcg, true, false);
1711
1712 spin_lock_irq(&info->lock);
1713 info->swapped--;
1714 shmem_recalc_inode(inode);
1715 spin_unlock_irq(&info->lock);
1716
1717 if (sgp == SGP_WRITE)
1718 mark_page_accessed(page);
1719
1720 delete_from_swap_cache(page);
1721 set_page_dirty(page);
1722 swap_free(swap);
1723
1724 *pagep = page;
1725 return 0;
1726 failed:
1727 if (!shmem_confirm_swap(mapping, index, swap))
1728 error = -EEXIST;
1729 unlock:
1730 if (page) {
1731 unlock_page(page);
1732 put_page(page);
1733 }
1734
1735 return error;
1736 }
1737
1738 /*
1739 * shmem_getpage_gfp - find page in cache, or get from swap, or allocate
1740 *
1741 * If we allocate a new one we do not mark it dirty. That's up to the
1742 * vm. If we swap it in we mark it dirty since we also free the swap
1743 * entry since a page cannot live in both the swap and page cache.
1744 *
1745 * vmf and fault_type are only supplied by shmem_fault:
1746 * otherwise they are NULL.
1747 */
1748 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
1749 struct page **pagep, enum sgp_type sgp, gfp_t gfp,
1750 struct vm_area_struct *vma, struct vm_fault *vmf,
1751 vm_fault_t *fault_type)
1752 {
1753 struct address_space *mapping = inode->i_mapping;
1754 struct shmem_inode_info *info = SHMEM_I(inode);
1755 struct shmem_sb_info *sbinfo;
1756 struct mm_struct *charge_mm;
1757 struct mem_cgroup *memcg;
1758 struct page *page;
1759 enum sgp_type sgp_huge = sgp;
1760 pgoff_t hindex = index;
1761 int error;
1762 int once = 0;
1763 int alloced = 0;
1764
1765 if (index > (MAX_LFS_FILESIZE >> PAGE_SHIFT))
1766 return -EFBIG;
1767 if (sgp == SGP_NOHUGE || sgp == SGP_HUGE)
1768 sgp = SGP_CACHE;
1769 repeat:
1770 if (sgp <= SGP_CACHE &&
1771 ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
1772 return -EINVAL;
1773 }
1774
1775 sbinfo = SHMEM_SB(inode->i_sb);
1776 charge_mm = vma ? vma->vm_mm : current->mm;
1777
1778 page = find_lock_entry(mapping, index);
1779 if (xa_is_value(page)) {
1780 error = shmem_swapin_page(inode, index, &page,
1781 sgp, gfp, vma, fault_type);
1782 if (error == -EEXIST)
1783 goto repeat;
1784
1785 *pagep = page;
1786 return error;
1787 }
1788
1789 if (page && sgp == SGP_WRITE)
1790 mark_page_accessed(page);
1791
1792 /* fallocated page? */
1793 if (page && !PageUptodate(page)) {
1794 if (sgp != SGP_READ)
1795 goto clear;
1796 unlock_page(page);
1797 put_page(page);
1798 page = NULL;
1799 }
1800 if (page || sgp == SGP_READ) {
1801 *pagep = page;
1802 return 0;
1803 }
1804
1805 /*
1806 * Fast cache lookup did not find it:
1807 * bring it back from swap or allocate.
1808 */
1809
1810 if (vma && userfaultfd_missing(vma)) {
1811 *fault_type = handle_userfault(vmf, VM_UFFD_MISSING);
1812 return 0;
1813 }
1814
1815 /* shmem_symlink() */
1816 if (mapping->a_ops != &shmem_aops)
1817 goto alloc_nohuge;
1818 if (shmem_huge == SHMEM_HUGE_DENY || sgp_huge == SGP_NOHUGE)
1819 goto alloc_nohuge;
1820 if (shmem_huge == SHMEM_HUGE_FORCE)
1821 goto alloc_huge;
1822 switch (sbinfo->huge) {
1823 loff_t i_size;
1824 pgoff_t off;
1825 case SHMEM_HUGE_NEVER:
1826 goto alloc_nohuge;
1827 case SHMEM_HUGE_WITHIN_SIZE:
1828 off = round_up(index, HPAGE_PMD_NR);
1829 i_size = round_up(i_size_read(inode), PAGE_SIZE);
1830 if (i_size >= HPAGE_PMD_SIZE &&
1831 i_size >> PAGE_SHIFT >= off)
1832 goto alloc_huge;
1833 /* fallthrough */
1834 case SHMEM_HUGE_ADVISE:
1835 if (sgp_huge == SGP_HUGE)
1836 goto alloc_huge;
1837 /* TODO: implement fadvise() hints */
1838 goto alloc_nohuge;
1839 }
1840
1841 alloc_huge:
1842 page = shmem_alloc_and_acct_page(gfp, inode, index, true);
1843 if (IS_ERR(page)) {
1844 alloc_nohuge:
1845 page = shmem_alloc_and_acct_page(gfp, inode,
1846 index, false);
1847 }
1848 if (IS_ERR(page)) {
1849 int retry = 5;
1850
1851 error = PTR_ERR(page);
1852 page = NULL;
1853 if (error != -ENOSPC)
1854 goto unlock;
1855 /*
1856 * Try to reclaim some space by splitting a huge page
1857 * beyond i_size on the filesystem.
1858 */
1859 while (retry--) {
1860 int ret;
1861
1862 ret = shmem_unused_huge_shrink(sbinfo, NULL, 1);
1863 if (ret == SHRINK_STOP)
1864 break;
1865 if (ret)
1866 goto alloc_nohuge;
1867 }
1868 goto unlock;
1869 }
1870
1871 if (PageTransHuge(page))
1872 hindex = round_down(index, HPAGE_PMD_NR);
1873 else
1874 hindex = index;
1875
1876 if (sgp == SGP_WRITE)
1877 __SetPageReferenced(page);
1878
1879 error = mem_cgroup_try_charge_delay(page, charge_mm, gfp, &memcg,
1880 PageTransHuge(page));
1881 if (error)
1882 goto unacct;
1883 error = shmem_add_to_page_cache(page, mapping, hindex,
1884 NULL, gfp & GFP_RECLAIM_MASK);
1885 if (error) {
1886 mem_cgroup_cancel_charge(page, memcg,
1887 PageTransHuge(page));
1888 goto unacct;
1889 }
1890 mem_cgroup_commit_charge(page, memcg, false,
1891 PageTransHuge(page));
1892 lru_cache_add_anon(page);
1893
1894 spin_lock_irq(&info->lock);
1895 info->alloced += compound_nr(page);
1896 inode->i_blocks += BLOCKS_PER_PAGE << compound_order(page);
1897 shmem_recalc_inode(inode);
1898 spin_unlock_irq(&info->lock);
1899 alloced = true;
1900
1901 if (PageTransHuge(page) &&
1902 DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE) <
1903 hindex + HPAGE_PMD_NR - 1) {
1904 /*
1905 * Part of the huge page is beyond i_size: subject
1906 * to shrink under memory pressure.
1907 */
1908 spin_lock(&sbinfo->shrinklist_lock);
1909 /*
1910 * _careful to defend against unlocked access to
1911 * ->shrink_list in shmem_unused_huge_shrink()
1912 */
1913 if (list_empty_careful(&info->shrinklist)) {
1914 list_add_tail(&info->shrinklist,
1915 &sbinfo->shrinklist);
1916 sbinfo->shrinklist_len++;
1917 }
1918 spin_unlock(&sbinfo->shrinklist_lock);
1919 }
1920
1921 /*
1922 * Let SGP_FALLOC use the SGP_WRITE optimization on a new page.
1923 */
1924 if (sgp == SGP_FALLOC)
1925 sgp = SGP_WRITE;
1926 clear:
1927 /*
1928 * Let SGP_WRITE caller clear ends if write does not fill page;
1929 * but SGP_FALLOC on a page fallocated earlier must initialize
1930 * it now, lest undo on failure cancel our earlier guarantee.
1931 */
1932 if (sgp != SGP_WRITE && !PageUptodate(page)) {
1933 struct page *head = compound_head(page);
1934 int i;
1935
1936 for (i = 0; i < compound_nr(head); i++) {
1937 clear_highpage(head + i);
1938 flush_dcache_page(head + i);
1939 }
1940 SetPageUptodate(head);
1941 }
1942
1943 /* Perhaps the file has been truncated since we checked */
1944 if (sgp <= SGP_CACHE &&
1945 ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
1946 if (alloced) {
1947 ClearPageDirty(page);
1948 delete_from_page_cache(page);
1949 spin_lock_irq(&info->lock);
1950 shmem_recalc_inode(inode);
1951 spin_unlock_irq(&info->lock);
1952 }
1953 error = -EINVAL;
1954 goto unlock;
1955 }
1956 *pagep = page + index - hindex;
1957 return 0;
1958
1959 /*
1960 * Error recovery.
1961 */
1962 unacct:
1963 shmem_inode_unacct_blocks(inode, compound_nr(page));
1964
1965 if (PageTransHuge(page)) {
1966 unlock_page(page);
1967 put_page(page);
1968 goto alloc_nohuge;
1969 }
1970 unlock:
1971 if (page) {
1972 unlock_page(page);
1973 put_page(page);
1974 }
1975 if (error == -ENOSPC && !once++) {
1976 spin_lock_irq(&info->lock);
1977 shmem_recalc_inode(inode);
1978 spin_unlock_irq(&info->lock);
1979 goto repeat;
1980 }
1981 if (error == -EEXIST)
1982 goto repeat;
1983 return error;
1984 }
1985
1986 /*
1987 * This is like autoremove_wake_function, but it removes the wait queue
1988 * entry unconditionally - even if something else had already woken the
1989 * target.
1990 */
1991 static int synchronous_wake_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *key)
1992 {
1993 int ret = default_wake_function(wait, mode, sync, key);
1994 list_del_init(&wait->entry);
1995 return ret;
1996 }
1997
1998 static vm_fault_t shmem_fault(struct vm_fault *vmf)
1999 {
2000 struct vm_area_struct *vma = vmf->vma;
2001 struct inode *inode = file_inode(vma->vm_file);
2002 gfp_t gfp = mapping_gfp_mask(inode->i_mapping);
2003 enum sgp_type sgp;
2004 int err;
2005 vm_fault_t ret = VM_FAULT_LOCKED;
2006
2007 /*
2008 * Trinity finds that probing a hole which tmpfs is punching can
2009 * prevent the hole-punch from ever completing: which in turn
2010 * locks writers out with its hold on i_mutex. So refrain from
2011 * faulting pages into the hole while it's being punched. Although
2012 * shmem_undo_range() does remove the additions, it may be unable to
2013 * keep up, as each new page needs its own unmap_mapping_range() call,
2014 * and the i_mmap tree grows ever slower to scan if new vmas are added.
2015 *
2016 * It does not matter if we sometimes reach this check just before the
2017 * hole-punch begins, so that one fault then races with the punch:
2018 * we just need to make racing faults a rare case.
2019 *
2020 * The implementation below would be much simpler if we just used a
2021 * standard mutex or completion: but we cannot take i_mutex in fault,
2022 * and bloating every shmem inode for this unlikely case would be sad.
2023 */
2024 if (unlikely(inode->i_private)) {
2025 struct shmem_falloc *shmem_falloc;
2026
2027 spin_lock(&inode->i_lock);
2028 shmem_falloc = inode->i_private;
2029 if (shmem_falloc &&
2030 shmem_falloc->waitq &&
2031 vmf->pgoff >= shmem_falloc->start &&
2032 vmf->pgoff < shmem_falloc->next) {
2033 struct file *fpin;
2034 wait_queue_head_t *shmem_falloc_waitq;
2035 DEFINE_WAIT_FUNC(shmem_fault_wait, synchronous_wake_function);
2036
2037 ret = VM_FAULT_NOPAGE;
2038 fpin = maybe_unlock_mmap_for_io(vmf, NULL);
2039 if (fpin)
2040 ret = VM_FAULT_RETRY;
2041
2042 shmem_falloc_waitq = shmem_falloc->waitq;
2043 prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait,
2044 TASK_UNINTERRUPTIBLE);
2045 spin_unlock(&inode->i_lock);
2046 schedule();
2047
2048 /*
2049 * shmem_falloc_waitq points into the shmem_fallocate()
2050 * stack of the hole-punching task: shmem_falloc_waitq
2051 * is usually invalid by the time we reach here, but
2052 * finish_wait() does not dereference it in that case;
2053 * though i_lock needed lest racing with wake_up_all().
2054 */
2055 spin_lock(&inode->i_lock);
2056 finish_wait(shmem_falloc_waitq, &shmem_fault_wait);
2057 spin_unlock(&inode->i_lock);
2058
2059 if (fpin)
2060 fput(fpin);
2061 return ret;
2062 }
2063 spin_unlock(&inode->i_lock);
2064 }
2065
2066 sgp = SGP_CACHE;
2067
2068 if ((vma->vm_flags & VM_NOHUGEPAGE) ||
2069 test_bit(MMF_DISABLE_THP, &vma->vm_mm->flags))
2070 sgp = SGP_NOHUGE;
2071 else if (vma->vm_flags & VM_HUGEPAGE)
2072 sgp = SGP_HUGE;
2073
2074 err = shmem_getpage_gfp(inode, vmf->pgoff, &vmf->page, sgp,
2075 gfp, vma, vmf, &ret);
2076 if (err)
2077 return vmf_error(err);
2078 return ret;
2079 }
2080
2081 unsigned long shmem_get_unmapped_area(struct file *file,
2082 unsigned long uaddr, unsigned long len,
2083 unsigned long pgoff, unsigned long flags)
2084 {
2085 unsigned long (*get_area)(struct file *,
2086 unsigned long, unsigned long, unsigned long, unsigned long);
2087 unsigned long addr;
2088 unsigned long offset;
2089 unsigned long inflated_len;
2090 unsigned long inflated_addr;
2091 unsigned long inflated_offset;
2092
2093 if (len > TASK_SIZE)
2094 return -ENOMEM;
2095
2096 get_area = current->mm->get_unmapped_area;
2097 addr = get_area(file, uaddr, len, pgoff, flags);
2098
2099 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE))
2100 return addr;
2101 if (IS_ERR_VALUE(addr))
2102 return addr;
2103 if (addr & ~PAGE_MASK)
2104 return addr;
2105 if (addr > TASK_SIZE - len)
2106 return addr;
2107
2108 if (shmem_huge == SHMEM_HUGE_DENY)
2109 return addr;
2110 if (len < HPAGE_PMD_SIZE)
2111 return addr;
2112 if (flags & MAP_FIXED)
2113 return addr;
2114 /*
2115 * Our priority is to support MAP_SHARED mapped hugely;
2116 * and support MAP_PRIVATE mapped hugely too, until it is COWed.
2117 * But if caller specified an address hint and we allocated area there
2118 * successfully, respect that as before.
2119 */
2120 if (uaddr == addr)
2121 return addr;
2122
2123 if (shmem_huge != SHMEM_HUGE_FORCE) {
2124 struct super_block *sb;
2125
2126 if (file) {
2127 VM_BUG_ON(file->f_op != &shmem_file_operations);
2128 sb = file_inode(file)->i_sb;
2129 } else {
2130 /*
2131 * Called directly from mm/mmap.c, or drivers/char/mem.c
2132 * for "/dev/zero", to create a shared anonymous object.
2133 */
2134 if (IS_ERR(shm_mnt))
2135 return addr;
2136 sb = shm_mnt->mnt_sb;
2137 }
2138 if (SHMEM_SB(sb)->huge == SHMEM_HUGE_NEVER)
2139 return addr;
2140 }
2141
2142 offset = (pgoff << PAGE_SHIFT) & (HPAGE_PMD_SIZE-1);
2143 if (offset && offset + len < 2 * HPAGE_PMD_SIZE)
2144 return addr;
2145 if ((addr & (HPAGE_PMD_SIZE-1)) == offset)
2146 return addr;
2147
2148 inflated_len = len + HPAGE_PMD_SIZE - PAGE_SIZE;
2149 if (inflated_len > TASK_SIZE)
2150 return addr;
2151 if (inflated_len < len)
2152 return addr;
2153
2154 inflated_addr = get_area(NULL, uaddr, inflated_len, 0, flags);
2155 if (IS_ERR_VALUE(inflated_addr))
2156 return addr;
2157 if (inflated_addr & ~PAGE_MASK)
2158 return addr;
2159
2160 inflated_offset = inflated_addr & (HPAGE_PMD_SIZE-1);
2161 inflated_addr += offset - inflated_offset;
2162 if (inflated_offset > offset)
2163 inflated_addr += HPAGE_PMD_SIZE;
2164
2165 if (inflated_addr > TASK_SIZE - len)
2166 return addr;
2167 return inflated_addr;
2168 }
2169
2170 #ifdef CONFIG_NUMA
2171 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol)
2172 {
2173 struct inode *inode = file_inode(vma->vm_file);
2174 return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol);
2175 }
2176
2177 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
2178 unsigned long addr)
2179 {
2180 struct inode *inode = file_inode(vma->vm_file);
2181 pgoff_t index;
2182
2183 index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
2184 return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index);
2185 }
2186 #endif
2187
2188 int shmem_lock(struct file *file, int lock, struct user_struct *user)
2189 {
2190 struct inode *inode = file_inode(file);
2191 struct shmem_inode_info *info = SHMEM_I(inode);
2192 int retval = -ENOMEM;
2193
2194 /*
2195 * What serializes the accesses to info->flags?
2196 * ipc_lock_object() when called from shmctl_do_lock(),
2197 * no serialization needed when called from shm_destroy().
2198 */
2199 if (lock && !(info->flags & VM_LOCKED)) {
2200 if (!user_shm_lock(inode->i_size, user))
2201 goto out_nomem;
2202 info->flags |= VM_LOCKED;
2203 mapping_set_unevictable(file->f_mapping);
2204 }
2205 if (!lock && (info->flags & VM_LOCKED) && user) {
2206 user_shm_unlock(inode->i_size, user);
2207 info->flags &= ~VM_LOCKED;
2208 mapping_clear_unevictable(file->f_mapping);
2209 }
2210 retval = 0;
2211
2212 out_nomem:
2213 return retval;
2214 }
2215
2216 static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
2217 {
2218 struct shmem_inode_info *info = SHMEM_I(file_inode(file));
2219 int ret;
2220
2221 ret = seal_check_future_write(info->seals, vma);
2222 if (ret)
2223 return ret;
2224
2225 file_accessed(file);
2226 vma->vm_ops = &shmem_vm_ops;
2227 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE) &&
2228 ((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) <
2229 (vma->vm_end & HPAGE_PMD_MASK)) {
2230 khugepaged_enter(vma, vma->vm_flags);
2231 }
2232 return 0;
2233 }
2234
2235 static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir,
2236 umode_t mode, dev_t dev, unsigned long flags)
2237 {
2238 struct inode *inode;
2239 struct shmem_inode_info *info;
2240 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2241 int ino;
2242
2243 if (shmem_reserve_inode(sb))
2244 return NULL;
2245
2246 inode = new_inode(sb);
2247 if (inode) {
2248 inode_init_owner(inode, dir, mode);
2249 inode->i_blocks = 0;
2250 inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
2251 inode->i_generation = prandom_u32();
2252 info = SHMEM_I(inode);
2253 memset(info, 0, (char *)inode - (char *)info);
2254 spin_lock_init(&info->lock);
2255 atomic_set(&info->stop_eviction, 0);
2256 info->seals = F_SEAL_SEAL;
2257 info->flags = flags & VM_NORESERVE;
2258 INIT_LIST_HEAD(&info->shrinklist);
2259 INIT_LIST_HEAD(&info->swaplist);
2260 simple_xattrs_init(&info->xattrs);
2261 cache_no_acl(inode);
2262
2263 switch (mode & S_IFMT) {
2264 default:
2265 inode->i_op = &shmem_special_inode_operations;
2266 init_special_inode(inode, mode, dev);
2267 break;
2268 case S_IFREG:
2269 inode->i_mapping->a_ops = &shmem_aops;
2270 inode->i_op = &shmem_inode_operations;
2271 inode->i_fop = &shmem_file_operations;
2272 mpol_shared_policy_init(&info->policy,
2273 shmem_get_sbmpol(sbinfo));
2274 break;
2275 case S_IFDIR:
2276 inc_nlink(inode);
2277 /* Some things misbehave if size == 0 on a directory */
2278 inode->i_size = 2 * BOGO_DIRENT_SIZE;
2279 inode->i_op = &shmem_dir_inode_operations;
2280 inode->i_fop = &simple_dir_operations;
2281 break;
2282 case S_IFLNK:
2283 /*
2284 * Must not load anything in the rbtree,
2285 * mpol_free_shared_policy will not be called.
2286 */
2287 mpol_shared_policy_init(&info->policy, NULL);
2288 break;
2289 }
2290
2291 if (!sbinfo->idr_nouse) {
2292 /* inum 0 and 1 are unused */
2293 mutex_lock(&sbinfo->idr_lock);
2294 ino = idr_alloc(&sbinfo->idr, inode, 2, INT_MAX,
2295 GFP_NOFS);
2296 if (ino > 0) {
2297 inode->i_ino = ino;
2298 mutex_unlock(&sbinfo->idr_lock);
2299 __insert_inode_hash(inode, inode->i_ino);
2300 } else {
2301 inode->i_ino = 0;
2302 mutex_unlock(&sbinfo->idr_lock);
2303 iput(inode);
2304 /* shmem_free_inode() will be called */
2305 inode = NULL;
2306 }
2307 } else
2308 inode->i_ino = get_next_ino();
2309
2310 lockdep_annotate_inode_mutex_key(inode);
2311 } else
2312 shmem_free_inode(sb);
2313 return inode;
2314 }
2315
2316 bool shmem_mapping(struct address_space *mapping)
2317 {
2318 return mapping->a_ops == &shmem_aops;
2319 }
2320
2321 static int shmem_mfill_atomic_pte(struct mm_struct *dst_mm,
2322 pmd_t *dst_pmd,
2323 struct vm_area_struct *dst_vma,
2324 unsigned long dst_addr,
2325 unsigned long src_addr,
2326 bool zeropage,
2327 struct page **pagep)
2328 {
2329 struct inode *inode = file_inode(dst_vma->vm_file);
2330 struct shmem_inode_info *info = SHMEM_I(inode);
2331 struct address_space *mapping = inode->i_mapping;
2332 gfp_t gfp = mapping_gfp_mask(mapping);
2333 pgoff_t pgoff = linear_page_index(dst_vma, dst_addr);
2334 struct mem_cgroup *memcg;
2335 spinlock_t *ptl;
2336 void *page_kaddr;
2337 struct page *page;
2338 pte_t _dst_pte, *dst_pte;
2339 int ret;
2340 pgoff_t offset, max_off;
2341
2342 ret = -ENOMEM;
2343 if (!shmem_inode_acct_block(inode, 1)) {
2344 /*
2345 * We may have got a page, returned -ENOENT triggering a retry,
2346 * and now we find ourselves with -ENOMEM. Release the page, to
2347 * avoid a BUG_ON in our caller.
2348 */
2349 if (unlikely(*pagep)) {
2350 put_page(*pagep);
2351 *pagep = NULL;
2352 }
2353 goto out;
2354 }
2355
2356 if (!*pagep) {
2357 page = shmem_alloc_page(gfp, info, pgoff);
2358 if (!page)
2359 goto out_unacct_blocks;
2360
2361 if (!zeropage) { /* mcopy_atomic */
2362 page_kaddr = kmap_atomic(page);
2363 ret = copy_from_user(page_kaddr,
2364 (const void __user *)src_addr,
2365 PAGE_SIZE);
2366 kunmap_atomic(page_kaddr);
2367
2368 /* fallback to copy_from_user outside mmap_sem */
2369 if (unlikely(ret)) {
2370 *pagep = page;
2371 shmem_inode_unacct_blocks(inode, 1);
2372 /* don't free the page */
2373 return -ENOENT;
2374 }
2375 } else { /* mfill_zeropage_atomic */
2376 clear_highpage(page);
2377 }
2378 } else {
2379 page = *pagep;
2380 *pagep = NULL;
2381 }
2382
2383 VM_BUG_ON(PageLocked(page) || PageSwapBacked(page));
2384 __SetPageLocked(page);
2385 __SetPageSwapBacked(page);
2386 __SetPageUptodate(page);
2387
2388 ret = -EFAULT;
2389 offset = linear_page_index(dst_vma, dst_addr);
2390 max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2391 if (unlikely(offset >= max_off))
2392 goto out_release;
2393
2394 ret = mem_cgroup_try_charge_delay(page, dst_mm, gfp, &memcg, false);
2395 if (ret)
2396 goto out_release;
2397
2398 ret = shmem_add_to_page_cache(page, mapping, pgoff, NULL,
2399 gfp & GFP_RECLAIM_MASK);
2400 if (ret)
2401 goto out_release_uncharge;
2402
2403 mem_cgroup_commit_charge(page, memcg, false, false);
2404
2405 _dst_pte = mk_pte(page, dst_vma->vm_page_prot);
2406 if (dst_vma->vm_flags & VM_WRITE)
2407 _dst_pte = pte_mkwrite(pte_mkdirty(_dst_pte));
2408 else {
2409 /*
2410 * We don't set the pte dirty if the vma has no
2411 * VM_WRITE permission, so mark the page dirty or it
2412 * could be freed from under us. We could do it
2413 * unconditionally before unlock_page(), but doing it
2414 * only if VM_WRITE is not set is faster.
2415 */
2416 set_page_dirty(page);
2417 }
2418
2419 dst_pte = pte_offset_map_lock(dst_mm, dst_pmd, dst_addr, &ptl);
2420
2421 ret = -EFAULT;
2422 max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2423 if (unlikely(offset >= max_off))
2424 goto out_release_uncharge_unlock;
2425
2426 ret = -EEXIST;
2427 if (!pte_none(*dst_pte))
2428 goto out_release_uncharge_unlock;
2429
2430 lru_cache_add_anon(page);
2431
2432 spin_lock_irq(&info->lock);
2433 info->alloced++;
2434 inode->i_blocks += BLOCKS_PER_PAGE;
2435 shmem_recalc_inode(inode);
2436 spin_unlock_irq(&info->lock);
2437
2438 inc_mm_counter(dst_mm, mm_counter_file(page));
2439 page_add_file_rmap(page, false);
2440 set_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte);
2441
2442 /* No need to invalidate - it was non-present before */
2443 update_mmu_cache(dst_vma, dst_addr, dst_pte);
2444 pte_unmap_unlock(dst_pte, ptl);
2445 unlock_page(page);
2446 ret = 0;
2447 out:
2448 return ret;
2449 out_release_uncharge_unlock:
2450 pte_unmap_unlock(dst_pte, ptl);
2451 ClearPageDirty(page);
2452 delete_from_page_cache(page);
2453 out_release_uncharge:
2454 mem_cgroup_cancel_charge(page, memcg, false);
2455 out_release:
2456 unlock_page(page);
2457 put_page(page);
2458 out_unacct_blocks:
2459 shmem_inode_unacct_blocks(inode, 1);
2460 goto out;
2461 }
2462
2463 int shmem_mcopy_atomic_pte(struct mm_struct *dst_mm,
2464 pmd_t *dst_pmd,
2465 struct vm_area_struct *dst_vma,
2466 unsigned long dst_addr,
2467 unsigned long src_addr,
2468 struct page **pagep)
2469 {
2470 return shmem_mfill_atomic_pte(dst_mm, dst_pmd, dst_vma,
2471 dst_addr, src_addr, false, pagep);
2472 }
2473
2474 int shmem_mfill_zeropage_pte(struct mm_struct *dst_mm,
2475 pmd_t *dst_pmd,
2476 struct vm_area_struct *dst_vma,
2477 unsigned long dst_addr)
2478 {
2479 struct page *page = NULL;
2480
2481 return shmem_mfill_atomic_pte(dst_mm, dst_pmd, dst_vma,
2482 dst_addr, 0, true, &page);
2483 }
2484
2485 #ifdef CONFIG_TMPFS
2486 static const struct inode_operations shmem_symlink_inode_operations;
2487 static const struct inode_operations shmem_short_symlink_operations;
2488
2489 #ifdef CONFIG_TMPFS_XATTR
2490 static int shmem_initxattrs(struct inode *, const struct xattr *, void *);
2491 #else
2492 #define shmem_initxattrs NULL
2493 #endif
2494
2495 static int
2496 shmem_write_begin(struct file *file, struct address_space *mapping,
2497 loff_t pos, unsigned len, unsigned flags,
2498 struct page **pagep, void **fsdata)
2499 {
2500 struct inode *inode = mapping->host;
2501 struct shmem_inode_info *info = SHMEM_I(inode);
2502 pgoff_t index = pos >> PAGE_SHIFT;
2503
2504 /* i_mutex is held by caller */
2505 if (unlikely(info->seals & (F_SEAL_GROW |
2506 F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))) {
2507 if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))
2508 return -EPERM;
2509 if ((info->seals & F_SEAL_GROW) && pos + len > inode->i_size)
2510 return -EPERM;
2511 }
2512
2513 return shmem_getpage(inode, index, pagep, SGP_WRITE);
2514 }
2515
2516 static int
2517 shmem_write_end(struct file *file, struct address_space *mapping,
2518 loff_t pos, unsigned len, unsigned copied,
2519 struct page *page, void *fsdata)
2520 {
2521 struct inode *inode = mapping->host;
2522
2523 if (pos + copied > inode->i_size)
2524 i_size_write(inode, pos + copied);
2525
2526 if (!PageUptodate(page)) {
2527 struct page *head = compound_head(page);
2528 if (PageTransCompound(page)) {
2529 int i;
2530
2531 for (i = 0; i < HPAGE_PMD_NR; i++) {
2532 if (head + i == page)
2533 continue;
2534 clear_highpage(head + i);
2535 flush_dcache_page(head + i);
2536 }
2537 }
2538 if (copied < PAGE_SIZE) {
2539 unsigned from = pos & (PAGE_SIZE - 1);
2540 zero_user_segments(page, 0, from,
2541 from + copied, PAGE_SIZE);
2542 }
2543 SetPageUptodate(head);
2544 }
2545 set_page_dirty(page);
2546 unlock_page(page);
2547 put_page(page);
2548
2549 return copied;
2550 }
2551
2552 static ssize_t shmem_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
2553 {
2554 struct file *file = iocb->ki_filp;
2555 struct inode *inode = file_inode(file);
2556 struct address_space *mapping = inode->i_mapping;
2557 pgoff_t index;
2558 unsigned long offset;
2559 enum sgp_type sgp = SGP_READ;
2560 int error = 0;
2561 ssize_t retval = 0;
2562 loff_t *ppos = &iocb->ki_pos;
2563
2564 /*
2565 * Might this read be for a stacking filesystem? Then when reading
2566 * holes of a sparse file, we actually need to allocate those pages,
2567 * and even mark them dirty, so it cannot exceed the max_blocks limit.
2568 */
2569 if (!iter_is_iovec(to))
2570 sgp = SGP_CACHE;
2571
2572 index = *ppos >> PAGE_SHIFT;
2573 offset = *ppos & ~PAGE_MASK;
2574
2575 for (;;) {
2576 struct page *page = NULL;
2577 pgoff_t end_index;
2578 unsigned long nr, ret;
2579 loff_t i_size = i_size_read(inode);
2580
2581 end_index = i_size >> PAGE_SHIFT;
2582 if (index > end_index)
2583 break;
2584 if (index == end_index) {
2585 nr = i_size & ~PAGE_MASK;
2586 if (nr <= offset)
2587 break;
2588 }
2589
2590 error = shmem_getpage(inode, index, &page, sgp);
2591 if (error) {
2592 if (error == -EINVAL)
2593 error = 0;
2594 break;
2595 }
2596 if (page) {
2597 if (sgp == SGP_CACHE)
2598 set_page_dirty(page);
2599 unlock_page(page);
2600 }
2601
2602 /*
2603 * We must evaluate after, since reads (unlike writes)
2604 * are called without i_mutex protection against truncate
2605 */
2606 nr = PAGE_SIZE;
2607 i_size = i_size_read(inode);
2608 end_index = i_size >> PAGE_SHIFT;
2609 if (index == end_index) {
2610 nr = i_size & ~PAGE_MASK;
2611 if (nr <= offset) {
2612 if (page)
2613 put_page(page);
2614 break;
2615 }
2616 }
2617 nr -= offset;
2618
2619 if (page) {
2620 /*
2621 * If users can be writing to this page using arbitrary
2622 * virtual addresses, take care about potential aliasing
2623 * before reading the page on the kernel side.
2624 */
2625 if (mapping_writably_mapped(mapping))
2626 flush_dcache_page(page);
2627 /*
2628 * Mark the page accessed if we read the beginning.
2629 */
2630 if (!offset)
2631 mark_page_accessed(page);
2632 } else {
2633 page = ZERO_PAGE(0);
2634 get_page(page);
2635 }
2636
2637 /*
2638 * Ok, we have the page, and it's up-to-date, so
2639 * now we can copy it to user space...
2640 */
2641 ret = copy_page_to_iter(page, offset, nr, to);
2642 retval += ret;
2643 offset += ret;
2644 index += offset >> PAGE_SHIFT;
2645 offset &= ~PAGE_MASK;
2646
2647 put_page(page);
2648 if (!iov_iter_count(to))
2649 break;
2650 if (ret < nr) {
2651 error = -EFAULT;
2652 break;
2653 }
2654 cond_resched();
2655 }
2656
2657 *ppos = ((loff_t) index << PAGE_SHIFT) + offset;
2658 file_accessed(file);
2659 return retval ? retval : error;
2660 }
2661
2662 /*
2663 * llseek SEEK_DATA or SEEK_HOLE through the page cache.
2664 */
2665 static pgoff_t shmem_seek_hole_data(struct address_space *mapping,
2666 pgoff_t index, pgoff_t end, int whence)
2667 {
2668 struct page *page;
2669 struct pagevec pvec;
2670 pgoff_t indices[PAGEVEC_SIZE];
2671 bool done = false;
2672 int i;
2673
2674 pagevec_init(&pvec);
2675 pvec.nr = 1; /* start small: we may be there already */
2676 while (!done) {
2677 pvec.nr = find_get_entries(mapping, index,
2678 pvec.nr, pvec.pages, indices);
2679 if (!pvec.nr) {
2680 if (whence == SEEK_DATA)
2681 index = end;
2682 break;
2683 }
2684 for (i = 0; i < pvec.nr; i++, index++) {
2685 if (index < indices[i]) {
2686 if (whence == SEEK_HOLE) {
2687 done = true;
2688 break;
2689 }
2690 index = indices[i];
2691 }
2692 page = pvec.pages[i];
2693 if (page && !xa_is_value(page)) {
2694 if (!PageUptodate(page))
2695 page = NULL;
2696 }
2697 if (index >= end ||
2698 (page && whence == SEEK_DATA) ||
2699 (!page && whence == SEEK_HOLE)) {
2700 done = true;
2701 break;
2702 }
2703 }
2704 pagevec_remove_exceptionals(&pvec);
2705 pagevec_release(&pvec);
2706 pvec.nr = PAGEVEC_SIZE;
2707 cond_resched();
2708 }
2709 return index;
2710 }
2711
2712 static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence)
2713 {
2714 struct address_space *mapping = file->f_mapping;
2715 struct inode *inode = mapping->host;
2716 pgoff_t start, end;
2717 loff_t new_offset;
2718
2719 if (whence != SEEK_DATA && whence != SEEK_HOLE)
2720 return generic_file_llseek_size(file, offset, whence,
2721 MAX_LFS_FILESIZE, i_size_read(inode));
2722 inode_lock(inode);
2723 /* We're holding i_mutex so we can access i_size directly */
2724
2725 if (offset < 0 || offset >= inode->i_size)
2726 offset = -ENXIO;
2727 else {
2728 start = offset >> PAGE_SHIFT;
2729 end = (inode->i_size + PAGE_SIZE - 1) >> PAGE_SHIFT;
2730 new_offset = shmem_seek_hole_data(mapping, start, end, whence);
2731 new_offset <<= PAGE_SHIFT;
2732 if (new_offset > offset) {
2733 if (new_offset < inode->i_size)
2734 offset = new_offset;
2735 else if (whence == SEEK_DATA)
2736 offset = -ENXIO;
2737 else
2738 offset = inode->i_size;
2739 }
2740 }
2741
2742 if (offset >= 0)
2743 offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE);
2744 inode_unlock(inode);
2745 return offset;
2746 }
2747
2748 static long shmem_fallocate(struct file *file, int mode, loff_t offset,
2749 loff_t len)
2750 {
2751 struct inode *inode = file_inode(file);
2752 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
2753 struct shmem_inode_info *info = SHMEM_I(inode);
2754 struct shmem_falloc shmem_falloc;
2755 pgoff_t start, index, end;
2756 int error;
2757
2758 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
2759 return -EOPNOTSUPP;
2760
2761 inode_lock(inode);
2762
2763 if (mode & FALLOC_FL_PUNCH_HOLE) {
2764 struct address_space *mapping = file->f_mapping;
2765 loff_t unmap_start = round_up(offset, PAGE_SIZE);
2766 loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1;
2767 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq);
2768
2769 /* protected by i_mutex */
2770 if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) {
2771 error = -EPERM;
2772 goto out;
2773 }
2774
2775 shmem_falloc.waitq = &shmem_falloc_waitq;
2776 shmem_falloc.start = (u64)unmap_start >> PAGE_SHIFT;
2777 shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT;
2778 spin_lock(&inode->i_lock);
2779 inode->i_private = &shmem_falloc;
2780 spin_unlock(&inode->i_lock);
2781
2782 if ((u64)unmap_end > (u64)unmap_start)
2783 unmap_mapping_range(mapping, unmap_start,
2784 1 + unmap_end - unmap_start, 0);
2785 shmem_truncate_range(inode, offset, offset + len - 1);
2786 /* No need to unmap again: hole-punching leaves COWed pages */
2787
2788 spin_lock(&inode->i_lock);
2789 inode->i_private = NULL;
2790 wake_up_all(&shmem_falloc_waitq);
2791 WARN_ON_ONCE(!list_empty(&shmem_falloc_waitq.head));
2792 spin_unlock(&inode->i_lock);
2793 error = 0;
2794 goto out;
2795 }
2796
2797 /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
2798 error = inode_newsize_ok(inode, offset + len);
2799 if (error)
2800 goto out;
2801
2802 if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) {
2803 error = -EPERM;
2804 goto out;
2805 }
2806
2807 start = offset >> PAGE_SHIFT;
2808 end = (offset + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
2809 /* Try to avoid a swapstorm if len is impossible to satisfy */
2810 if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) {
2811 error = -ENOSPC;
2812 goto out;
2813 }
2814
2815 shmem_falloc.waitq = NULL;
2816 shmem_falloc.start = start;
2817 shmem_falloc.next = start;
2818 shmem_falloc.nr_falloced = 0;
2819 shmem_falloc.nr_unswapped = 0;
2820 spin_lock(&inode->i_lock);
2821 inode->i_private = &shmem_falloc;
2822 spin_unlock(&inode->i_lock);
2823
2824 for (index = start; index < end; index++) {
2825 struct page *page;
2826
2827 /*
2828 * Good, the fallocate(2) manpage permits EINTR: we may have
2829 * been interrupted because we are using up too much memory.
2830 */
2831 if (signal_pending(current))
2832 error = -EINTR;
2833 else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced)
2834 error = -ENOMEM;
2835 else
2836 error = shmem_getpage(inode, index, &page, SGP_FALLOC);
2837 if (error) {
2838 /* Remove the !PageUptodate pages we added */
2839 if (index > start) {
2840 shmem_undo_range(inode,
2841 (loff_t)start << PAGE_SHIFT,
2842 ((loff_t)index << PAGE_SHIFT) - 1, true);
2843 }
2844 goto undone;
2845 }
2846
2847 /*
2848 * Inform shmem_writepage() how far we have reached.
2849 * No need for lock or barrier: we have the page lock.
2850 */
2851 shmem_falloc.next++;
2852 if (!PageUptodate(page))
2853 shmem_falloc.nr_falloced++;
2854
2855 /*
2856 * If !PageUptodate, leave it that way so that freeable pages
2857 * can be recognized if we need to rollback on error later.
2858 * But set_page_dirty so that memory pressure will swap rather
2859 * than free the pages we are allocating (and SGP_CACHE pages
2860 * might still be clean: we now need to mark those dirty too).
2861 */
2862 set_page_dirty(page);
2863 unlock_page(page);
2864 put_page(page);
2865 cond_resched();
2866 }
2867
2868 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
2869 i_size_write(inode, offset + len);
2870 inode->i_ctime = current_time(inode);
2871 undone:
2872 spin_lock(&inode->i_lock);
2873 inode->i_private = NULL;
2874 spin_unlock(&inode->i_lock);
2875 out:
2876 inode_unlock(inode);
2877 return error;
2878 }
2879
2880 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
2881 {
2882 struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
2883
2884 buf->f_type = TMPFS_MAGIC;
2885 buf->f_bsize = PAGE_SIZE;
2886 buf->f_namelen = NAME_MAX;
2887 if (sbinfo->max_blocks) {
2888 buf->f_blocks = sbinfo->max_blocks;
2889 buf->f_bavail =
2890 buf->f_bfree = sbinfo->max_blocks -
2891 percpu_counter_sum(&sbinfo->used_blocks);
2892 }
2893 if (sbinfo->max_inodes) {
2894 buf->f_files = sbinfo->max_inodes;
2895 buf->f_ffree = sbinfo->free_inodes;
2896 }
2897 /* else leave those fields 0 like simple_statfs */
2898 return 0;
2899 }
2900
2901 /*
2902 * File creation. Allocate an inode, and we're done..
2903 */
2904 static int
2905 shmem_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
2906 {
2907 struct inode *inode;
2908 int error = -ENOSPC;
2909
2910 inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE);
2911 if (inode) {
2912 error = simple_acl_create(dir, inode);
2913 if (error)
2914 goto out_iput;
2915 error = security_inode_init_security(inode, dir,
2916 &dentry->d_name,
2917 shmem_initxattrs, NULL);
2918 if (error && error != -EOPNOTSUPP)
2919 goto out_iput;
2920
2921 error = 0;
2922 dir->i_size += BOGO_DIRENT_SIZE;
2923 dir->i_ctime = dir->i_mtime = current_time(dir);
2924 d_instantiate(dentry, inode);
2925 dget(dentry); /* Extra count - pin the dentry in core */
2926 }
2927 return error;
2928 out_iput:
2929 iput(inode);
2930 return error;
2931 }
2932
2933 static int
2934 shmem_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode)
2935 {
2936 struct inode *inode;
2937 int error = -ENOSPC;
2938
2939 inode = shmem_get_inode(dir->i_sb, dir, mode, 0, VM_NORESERVE);
2940 if (inode) {
2941 error = security_inode_init_security(inode, dir,
2942 NULL,
2943 shmem_initxattrs, NULL);
2944 if (error && error != -EOPNOTSUPP)
2945 goto out_iput;
2946 error = simple_acl_create(dir, inode);
2947 if (error)
2948 goto out_iput;
2949 d_tmpfile(dentry, inode);
2950 }
2951 return error;
2952 out_iput:
2953 iput(inode);
2954 return error;
2955 }
2956
2957 static int shmem_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
2958 {
2959 int error;
2960
2961 if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0)))
2962 return error;
2963 inc_nlink(dir);
2964 return 0;
2965 }
2966
2967 static int shmem_create(struct inode *dir, struct dentry *dentry, umode_t mode,
2968 bool excl)
2969 {
2970 return shmem_mknod(dir, dentry, mode | S_IFREG, 0);
2971 }
2972
2973 /*
2974 * Link a file..
2975 */
2976 static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
2977 {
2978 struct inode *inode = d_inode(old_dentry);
2979 int ret = 0;
2980
2981 /*
2982 * No ordinary (disk based) filesystem counts links as inodes;
2983 * but each new link needs a new dentry, pinning lowmem, and
2984 * tmpfs dentries cannot be pruned until they are unlinked.
2985 * But if an O_TMPFILE file is linked into the tmpfs, the
2986 * first link must skip that, to get the accounting right.
2987 */
2988 if (inode->i_nlink) {
2989 ret = shmem_reserve_inode(inode->i_sb);
2990 if (ret)
2991 goto out;
2992 }
2993
2994 dir->i_size += BOGO_DIRENT_SIZE;
2995 inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
2996 inc_nlink(inode);
2997 ihold(inode); /* New dentry reference */
2998 dget(dentry); /* Extra pinning count for the created dentry */
2999 d_instantiate(dentry, inode);
3000 out:
3001 return ret;
3002 }
3003
3004 static int shmem_unlink(struct inode *dir, struct dentry *dentry)
3005 {
3006 struct inode *inode = d_inode(dentry);
3007
3008 if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
3009 shmem_free_inode(inode->i_sb);
3010
3011 dir->i_size -= BOGO_DIRENT_SIZE;
3012 inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
3013 drop_nlink(inode);
3014 dput(dentry); /* Undo the count from "create" - this does all the work */
3015 return 0;
3016 }
3017
3018 static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
3019 {
3020 if (!simple_empty(dentry))
3021 return -ENOTEMPTY;
3022
3023 drop_nlink(d_inode(dentry));
3024 drop_nlink(dir);
3025 return shmem_unlink(dir, dentry);
3026 }
3027
3028 static int shmem_exchange(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry)
3029 {
3030 bool old_is_dir = d_is_dir(old_dentry);
3031 bool new_is_dir = d_is_dir(new_dentry);
3032
3033 if (old_dir != new_dir && old_is_dir != new_is_dir) {
3034 if (old_is_dir) {
3035 drop_nlink(old_dir);
3036 inc_nlink(new_dir);
3037 } else {
3038 drop_nlink(new_dir);
3039 inc_nlink(old_dir);
3040 }
3041 }
3042 old_dir->i_ctime = old_dir->i_mtime =
3043 new_dir->i_ctime = new_dir->i_mtime =
3044 d_inode(old_dentry)->i_ctime =
3045 d_inode(new_dentry)->i_ctime = current_time(old_dir);
3046
3047 return 0;
3048 }
3049
3050 static int shmem_whiteout(struct inode *old_dir, struct dentry *old_dentry)
3051 {
3052 struct dentry *whiteout;
3053 int error;
3054
3055 whiteout = d_alloc(old_dentry->d_parent, &old_dentry->d_name);
3056 if (!whiteout)
3057 return -ENOMEM;
3058
3059 error = shmem_mknod(old_dir, whiteout,
3060 S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
3061 dput(whiteout);
3062 if (error)
3063 return error;
3064
3065 /*
3066 * Cheat and hash the whiteout while the old dentry is still in
3067 * place, instead of playing games with FS_RENAME_DOES_D_MOVE.
3068 *
3069 * d_lookup() will consistently find one of them at this point,
3070 * not sure which one, but that isn't even important.
3071 */
3072 d_rehash(whiteout);
3073 return 0;
3074 }
3075
3076 /*
3077 * The VFS layer already does all the dentry stuff for rename,
3078 * we just have to decrement the usage count for the target if
3079 * it exists so that the VFS layer correctly free's it when it
3080 * gets overwritten.
3081 */
3082 static int shmem_rename2(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry, unsigned int flags)
3083 {
3084 struct inode *inode = d_inode(old_dentry);
3085 int they_are_dirs = S_ISDIR(inode->i_mode);
3086
3087 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
3088 return -EINVAL;
3089
3090 if (flags & RENAME_EXCHANGE)
3091 return shmem_exchange(old_dir, old_dentry, new_dir, new_dentry);
3092
3093 if (!simple_empty(new_dentry))
3094 return -ENOTEMPTY;
3095
3096 if (flags & RENAME_WHITEOUT) {
3097 int error;
3098
3099 error = shmem_whiteout(old_dir, old_dentry);
3100 if (error)
3101 return error;
3102 }
3103
3104 if (d_really_is_positive(new_dentry)) {
3105 (void) shmem_unlink(new_dir, new_dentry);
3106 if (they_are_dirs) {
3107 drop_nlink(d_inode(new_dentry));
3108 drop_nlink(old_dir);
3109 }
3110 } else if (they_are_dirs) {
3111 drop_nlink(old_dir);
3112 inc_nlink(new_dir);
3113 }
3114
3115 old_dir->i_size -= BOGO_DIRENT_SIZE;
3116 new_dir->i_size += BOGO_DIRENT_SIZE;
3117 old_dir->i_ctime = old_dir->i_mtime =
3118 new_dir->i_ctime = new_dir->i_mtime =
3119 inode->i_ctime = current_time(old_dir);
3120 return 0;
3121 }
3122
3123 static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
3124 {
3125 int error;
3126 int len;
3127 struct inode *inode;
3128 struct page *page;
3129
3130 len = strlen(symname) + 1;
3131 if (len > PAGE_SIZE)
3132 return -ENAMETOOLONG;
3133
3134 inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK | 0777, 0,
3135 VM_NORESERVE);
3136 if (!inode)
3137 return -ENOSPC;
3138
3139 error = security_inode_init_security(inode, dir, &dentry->d_name,
3140 shmem_initxattrs, NULL);
3141 if (error) {
3142 if (error != -EOPNOTSUPP) {
3143 iput(inode);
3144 return error;
3145 }
3146 error = 0;
3147 }
3148
3149 inode->i_size = len-1;
3150 if (len <= SHORT_SYMLINK_LEN) {
3151 inode->i_link = kmemdup(symname, len, GFP_KERNEL);
3152 if (!inode->i_link) {
3153 iput(inode);
3154 return -ENOMEM;
3155 }
3156 inode->i_op = &shmem_short_symlink_operations;
3157 } else {
3158 inode_nohighmem(inode);
3159 error = shmem_getpage(inode, 0, &page, SGP_WRITE);
3160 if (error) {
3161 iput(inode);
3162 return error;
3163 }
3164 inode->i_mapping->a_ops = &shmem_aops;
3165 inode->i_op = &shmem_symlink_inode_operations;
3166 memcpy(page_address(page), symname, len);
3167 SetPageUptodate(page);
3168 set_page_dirty(page);
3169 unlock_page(page);
3170 put_page(page);
3171 }
3172 dir->i_size += BOGO_DIRENT_SIZE;
3173 dir->i_ctime = dir->i_mtime = current_time(dir);
3174 d_instantiate(dentry, inode);
3175 dget(dentry);
3176 return 0;
3177 }
3178
3179 static void shmem_put_link(void *arg)
3180 {
3181 mark_page_accessed(arg);
3182 put_page(arg);
3183 }
3184
3185 static const char *shmem_get_link(struct dentry *dentry,
3186 struct inode *inode,
3187 struct delayed_call *done)
3188 {
3189 struct page *page = NULL;
3190 int error;
3191 if (!dentry) {
3192 page = find_get_page(inode->i_mapping, 0);
3193 if (!page)
3194 return ERR_PTR(-ECHILD);
3195 if (!PageUptodate(page)) {
3196 put_page(page);
3197 return ERR_PTR(-ECHILD);
3198 }
3199 } else {
3200 error = shmem_getpage(inode, 0, &page, SGP_READ);
3201 if (error)
3202 return ERR_PTR(error);
3203 unlock_page(page);
3204 }
3205 set_delayed_call(done, shmem_put_link, page);
3206 return page_address(page);
3207 }
3208
3209 #ifdef CONFIG_TMPFS_XATTR
3210 /*
3211 * Superblocks without xattr inode operations may get some security.* xattr
3212 * support from the LSM "for free". As soon as we have any other xattrs
3213 * like ACLs, we also need to implement the security.* handlers at
3214 * filesystem level, though.
3215 */
3216
3217 /*
3218 * Callback for security_inode_init_security() for acquiring xattrs.
3219 */
3220 static int shmem_initxattrs(struct inode *inode,
3221 const struct xattr *xattr_array,
3222 void *fs_info)
3223 {
3224 struct shmem_inode_info *info = SHMEM_I(inode);
3225 const struct xattr *xattr;
3226 struct simple_xattr *new_xattr;
3227 size_t len;
3228
3229 for (xattr = xattr_array; xattr->name != NULL; xattr++) {
3230 new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len);
3231 if (!new_xattr)
3232 return -ENOMEM;
3233
3234 len = strlen(xattr->name) + 1;
3235 new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len,
3236 GFP_KERNEL);
3237 if (!new_xattr->name) {
3238 kfree(new_xattr);
3239 return -ENOMEM;
3240 }
3241
3242 memcpy(new_xattr->name, XATTR_SECURITY_PREFIX,
3243 XATTR_SECURITY_PREFIX_LEN);
3244 memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN,
3245 xattr->name, len);
3246
3247 simple_xattr_list_add(&info->xattrs, new_xattr);
3248 }
3249
3250 return 0;
3251 }
3252
3253 static int shmem_xattr_handler_get(const struct xattr_handler *handler,
3254 struct dentry *unused, struct inode *inode,
3255 const char *name, void *buffer, size_t size)
3256 {
3257 struct shmem_inode_info *info = SHMEM_I(inode);
3258
3259 name = xattr_full_name(handler, name);
3260 return simple_xattr_get(&info->xattrs, name, buffer, size);
3261 }
3262
3263 static int shmem_xattr_handler_set(const struct xattr_handler *handler,
3264 struct dentry *unused, struct inode *inode,
3265 const char *name, const void *value,
3266 size_t size, int flags)
3267 {
3268 struct shmem_inode_info *info = SHMEM_I(inode);
3269
3270 name = xattr_full_name(handler, name);
3271 return simple_xattr_set(&info->xattrs, name, value, size, flags);
3272 }
3273
3274 static const struct xattr_handler shmem_security_xattr_handler = {
3275 .prefix = XATTR_SECURITY_PREFIX,
3276 .get = shmem_xattr_handler_get,
3277 .set = shmem_xattr_handler_set,
3278 };
3279
3280 static const struct xattr_handler shmem_trusted_xattr_handler = {
3281 .prefix = XATTR_TRUSTED_PREFIX,
3282 .get = shmem_xattr_handler_get,
3283 .set = shmem_xattr_handler_set,
3284 };
3285
3286 static const struct xattr_handler *shmem_xattr_handlers[] = {
3287 #ifdef CONFIG_TMPFS_POSIX_ACL
3288 &posix_acl_access_xattr_handler,
3289 &posix_acl_default_xattr_handler,
3290 #endif
3291 &shmem_security_xattr_handler,
3292 &shmem_trusted_xattr_handler,
3293 NULL
3294 };
3295
3296 static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size)
3297 {
3298 struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
3299 return simple_xattr_list(d_inode(dentry), &info->xattrs, buffer, size);
3300 }
3301 #endif /* CONFIG_TMPFS_XATTR */
3302
3303 static const struct inode_operations shmem_short_symlink_operations = {
3304 .get_link = simple_get_link,
3305 #ifdef CONFIG_TMPFS_XATTR
3306 .listxattr = shmem_listxattr,
3307 #endif
3308 };
3309
3310 static const struct inode_operations shmem_symlink_inode_operations = {
3311 .get_link = shmem_get_link,
3312 #ifdef CONFIG_TMPFS_XATTR
3313 .listxattr = shmem_listxattr,
3314 #endif
3315 };
3316
3317 static struct dentry *shmem_get_parent(struct dentry *child)
3318 {
3319 return ERR_PTR(-ESTALE);
3320 }
3321
3322 static int shmem_match(struct inode *ino, void *vfh)
3323 {
3324 __u32 *fh = vfh;
3325 __u64 inum = fh[1];
3326 return ino->i_ino == inum && fh[0] == ino->i_generation;
3327 }
3328
3329 /* Find any alias of inode, but prefer a hashed alias */
3330 static struct dentry *shmem_find_alias(struct inode *inode)
3331 {
3332 struct dentry *alias = d_find_alias(inode);
3333
3334 return alias ?: d_find_any_alias(inode);
3335 }
3336
3337
3338 static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
3339 struct fid *fid, int fh_len, int fh_type)
3340 {
3341 struct inode *inode;
3342 struct dentry *dentry = NULL;
3343 u64 inum;
3344
3345 if (fh_len < 2)
3346 return NULL;
3347
3348 inum = fid->raw[1];
3349 inode = ilookup5(sb, inum, shmem_match, fid->raw);
3350 if (inode) {
3351 dentry = shmem_find_alias(inode);
3352 iput(inode);
3353 }
3354
3355 return dentry;
3356 }
3357
3358 static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len,
3359 struct inode *parent)
3360 {
3361 if (*len < 2) {
3362 *len = 2;
3363 return FILEID_INVALID;
3364 }
3365
3366 fh[0] = inode->i_generation;
3367 fh[1] = inode->i_ino;
3368
3369 *len = 2;
3370 return 1;
3371 }
3372
3373 static const struct export_operations shmem_export_ops = {
3374 .get_parent = shmem_get_parent,
3375 .encode_fh = shmem_encode_fh,
3376 .fh_to_dentry = shmem_fh_to_dentry,
3377 };
3378
3379 enum shmem_param {
3380 Opt_gid,
3381 Opt_huge,
3382 Opt_mode,
3383 Opt_mpol,
3384 Opt_nr_blocks,
3385 Opt_nr_inodes,
3386 Opt_size,
3387 Opt_uid,
3388 };
3389
3390 static const struct fs_parameter_spec shmem_param_specs[] = {
3391 fsparam_u32 ("gid", Opt_gid),
3392 fsparam_enum ("huge", Opt_huge),
3393 fsparam_u32oct("mode", Opt_mode),
3394 fsparam_string("mpol", Opt_mpol),
3395 fsparam_string("nr_blocks", Opt_nr_blocks),
3396 fsparam_string("nr_inodes", Opt_nr_inodes),
3397 fsparam_string("size", Opt_size),
3398 fsparam_u32 ("uid", Opt_uid),
3399 {}
3400 };
3401
3402 static const struct fs_parameter_enum shmem_param_enums[] = {
3403 { Opt_huge, "never", SHMEM_HUGE_NEVER },
3404 { Opt_huge, "always", SHMEM_HUGE_ALWAYS },
3405 { Opt_huge, "within_size", SHMEM_HUGE_WITHIN_SIZE },
3406 { Opt_huge, "advise", SHMEM_HUGE_ADVISE },
3407 {}
3408 };
3409
3410 const struct fs_parameter_description shmem_fs_parameters = {
3411 .name = "tmpfs",
3412 .specs = shmem_param_specs,
3413 .enums = shmem_param_enums,
3414 };
3415
3416 static int shmem_parse_one(struct fs_context *fc, struct fs_parameter *param)
3417 {
3418 struct shmem_options *ctx = fc->fs_private;
3419 struct fs_parse_result result;
3420 unsigned long long size;
3421 char *rest;
3422 int opt;
3423
3424 opt = fs_parse(fc, &shmem_fs_parameters, param, &result);
3425 if (opt < 0)
3426 return opt;
3427
3428 switch (opt) {
3429 case Opt_size:
3430 size = memparse(param->string, &rest);
3431 if (*rest == '%') {
3432 size <<= PAGE_SHIFT;
3433 size *= totalram_pages();
3434 do_div(size, 100);
3435 rest++;
3436 }
3437 if (*rest)
3438 goto bad_value;
3439 ctx->blocks = DIV_ROUND_UP(size, PAGE_SIZE);
3440 ctx->seen |= SHMEM_SEEN_BLOCKS;
3441 break;
3442 case Opt_nr_blocks:
3443 ctx->blocks = memparse(param->string, &rest);
3444 if (*rest)
3445 goto bad_value;
3446 ctx->seen |= SHMEM_SEEN_BLOCKS;
3447 break;
3448 case Opt_nr_inodes:
3449 ctx->inodes = memparse(param->string, &rest);
3450 if (*rest || ctx->inodes < 2)
3451 goto bad_value;
3452 ctx->seen |= SHMEM_SEEN_INODES;
3453 break;
3454 case Opt_mode:
3455 ctx->mode = result.uint_32 & 07777;
3456 break;
3457 case Opt_uid:
3458 ctx->uid = make_kuid(current_user_ns(), result.uint_32);
3459 if (!uid_valid(ctx->uid))
3460 goto bad_value;
3461 break;
3462 case Opt_gid:
3463 ctx->gid = make_kgid(current_user_ns(), result.uint_32);
3464 if (!gid_valid(ctx->gid))
3465 goto bad_value;
3466 break;
3467 case Opt_huge:
3468 ctx->huge = result.uint_32;
3469 if (ctx->huge != SHMEM_HUGE_NEVER &&
3470 !(IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE) &&
3471 has_transparent_hugepage()))
3472 goto unsupported_parameter;
3473 ctx->seen |= SHMEM_SEEN_HUGE;
3474 break;
3475 case Opt_mpol:
3476 if (IS_ENABLED(CONFIG_NUMA)) {
3477 mpol_put(ctx->mpol);
3478 ctx->mpol = NULL;
3479 if (mpol_parse_str(param->string, &ctx->mpol))
3480 goto bad_value;
3481 break;
3482 }
3483 goto unsupported_parameter;
3484 }
3485 return 0;
3486
3487 unsupported_parameter:
3488 return invalf(fc, "tmpfs: Unsupported parameter '%s'", param->key);
3489 bad_value:
3490 return invalf(fc, "tmpfs: Bad value for '%s'", param->key);
3491 }
3492
3493 static int shmem_parse_options(struct fs_context *fc, void *data)
3494 {
3495 char *options = data;
3496
3497 if (options) {
3498 int err = security_sb_eat_lsm_opts(options, &fc->security);
3499 if (err)
3500 return err;
3501 }
3502
3503 while (options != NULL) {
3504 char *this_char = options;
3505 for (;;) {
3506 /*
3507 * NUL-terminate this option: unfortunately,
3508 * mount options form a comma-separated list,
3509 * but mpol's nodelist may also contain commas.
3510 */
3511 options = strchr(options, ',');
3512 if (options == NULL)
3513 break;
3514 options++;
3515 if (!isdigit(*options)) {
3516 options[-1] = '\0';
3517 break;
3518 }
3519 }
3520 if (*this_char) {
3521 char *value = strchr(this_char,'=');
3522 size_t len = 0;
3523 int err;
3524
3525 if (value) {
3526 *value++ = '\0';
3527 len = strlen(value);
3528 }
3529 err = vfs_parse_fs_string(fc, this_char, value, len);
3530 if (err < 0)
3531 return err;
3532 }
3533 }
3534 return 0;
3535 }
3536
3537 /*
3538 * Reconfigure a shmem filesystem.
3539 *
3540 * Note that we disallow change from limited->unlimited blocks/inodes while any
3541 * are in use; but we must separately disallow unlimited->limited, because in
3542 * that case we have no record of how much is already in use.
3543 */
3544 static int shmem_reconfigure(struct fs_context *fc)
3545 {
3546 struct shmem_options *ctx = fc->fs_private;
3547 struct shmem_sb_info *sbinfo = SHMEM_SB(fc->root->d_sb);
3548 int inodes;
3549 const char *err;
3550
3551 spin_lock(&sbinfo->stat_lock);
3552 inodes = sbinfo->max_inodes - sbinfo->free_inodes;
3553 if ((ctx->seen & SHMEM_SEEN_BLOCKS) && ctx->blocks) {
3554 if (!sbinfo->max_blocks) {
3555 err = "Cannot retroactively limit size";
3556 goto out;
3557 }
3558 if (percpu_counter_compare(&sbinfo->used_blocks,
3559 ctx->blocks) > 0) {
3560 err = "Too small a size for current use";
3561 goto out;
3562 }
3563 }
3564 if ((ctx->seen & SHMEM_SEEN_INODES) && ctx->inodes) {
3565 if (!sbinfo->max_inodes) {
3566 err = "Cannot retroactively limit inodes";
3567 goto out;
3568 }
3569 if (ctx->inodes < inodes) {
3570 err = "Too few inodes for current use";
3571 goto out;
3572 }
3573 }
3574
3575 if (ctx->seen & SHMEM_SEEN_HUGE)
3576 sbinfo->huge = ctx->huge;
3577 if (ctx->seen & SHMEM_SEEN_BLOCKS)
3578 sbinfo->max_blocks = ctx->blocks;
3579 if (ctx->seen & SHMEM_SEEN_INODES) {
3580 sbinfo->max_inodes = ctx->inodes;
3581 sbinfo->free_inodes = ctx->inodes - inodes;
3582 }
3583
3584 /*
3585 * Preserve previous mempolicy unless mpol remount option was specified.
3586 */
3587 if (ctx->mpol) {
3588 mpol_put(sbinfo->mpol);
3589 sbinfo->mpol = ctx->mpol; /* transfers initial ref */
3590 ctx->mpol = NULL;
3591 }
3592 spin_unlock(&sbinfo->stat_lock);
3593 return 0;
3594 out:
3595 spin_unlock(&sbinfo->stat_lock);
3596 return invalf(fc, "tmpfs: %s", err);
3597 }
3598
3599 static int shmem_show_options(struct seq_file *seq, struct dentry *root)
3600 {
3601 struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb);
3602
3603 if (sbinfo->max_blocks != shmem_default_max_blocks())
3604 seq_printf(seq, ",size=%luk",
3605 sbinfo->max_blocks << (PAGE_SHIFT - 10));
3606 if (sbinfo->max_inodes != shmem_default_max_inodes())
3607 seq_printf(seq, ",nr_inodes=%d", sbinfo->max_inodes);
3608 if (sbinfo->mode != (0777 | S_ISVTX))
3609 seq_printf(seq, ",mode=%03ho", sbinfo->mode);
3610 if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
3611 seq_printf(seq, ",uid=%u",
3612 from_kuid_munged(&init_user_ns, sbinfo->uid));
3613 if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
3614 seq_printf(seq, ",gid=%u",
3615 from_kgid_munged(&init_user_ns, sbinfo->gid));
3616 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3617 /* Rightly or wrongly, show huge mount option unmasked by shmem_huge */
3618 if (sbinfo->huge)
3619 seq_printf(seq, ",huge=%s", shmem_format_huge(sbinfo->huge));
3620 #endif
3621 shmem_show_mpol(seq, sbinfo->mpol);
3622 return 0;
3623 }
3624
3625 #endif /* CONFIG_TMPFS */
3626
3627 static void shmem_put_super(struct super_block *sb)
3628 {
3629 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
3630
3631 if (!sbinfo->idr_nouse)
3632 idr_destroy(&sbinfo->idr);
3633 percpu_counter_destroy(&sbinfo->used_blocks);
3634 mpol_put(sbinfo->mpol);
3635 kfree(sbinfo);
3636 sb->s_fs_info = NULL;
3637 }
3638
3639 static int shmem_fill_super(struct super_block *sb, struct fs_context *fc)
3640 {
3641 struct shmem_options *ctx = fc->fs_private;
3642 struct inode *inode;
3643 struct shmem_sb_info *sbinfo;
3644 int err = -ENOMEM;
3645
3646 /* Round up to L1_CACHE_BYTES to resist false sharing */
3647 sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
3648 L1_CACHE_BYTES), GFP_KERNEL);
3649 if (!sbinfo)
3650 return -ENOMEM;
3651
3652 sb->s_fs_info = sbinfo;
3653
3654 #ifdef CONFIG_TMPFS
3655 /*
3656 * Per default we only allow half of the physical ram per
3657 * tmpfs instance, limiting inodes to one per page of lowmem;
3658 * but the internal instance is left unlimited.
3659 */
3660 if (!(sb->s_flags & SB_KERNMOUNT)) {
3661 if (!(ctx->seen & SHMEM_SEEN_BLOCKS))
3662 ctx->blocks = shmem_default_max_blocks();
3663 if (!(ctx->seen & SHMEM_SEEN_INODES))
3664 ctx->inodes = shmem_default_max_inodes();
3665 } else {
3666 sb->s_flags |= SB_NOUSER;
3667 }
3668 sb->s_export_op = &shmem_export_ops;
3669 sb->s_flags |= SB_NOSEC;
3670 #else
3671 sb->s_flags |= SB_NOUSER;
3672 #endif
3673 mutex_init(&sbinfo->idr_lock);
3674 idr_init(&sbinfo->idr);
3675 sbinfo->max_blocks = ctx->blocks;
3676 sbinfo->free_inodes = sbinfo->max_inodes = ctx->inodes;
3677 sbinfo->uid = ctx->uid;
3678 sbinfo->gid = ctx->gid;
3679 sbinfo->mode = ctx->mode;
3680 sbinfo->huge = ctx->huge;
3681 sbinfo->mpol = ctx->mpol;
3682 ctx->mpol = NULL;
3683
3684 spin_lock_init(&sbinfo->stat_lock);
3685 if (percpu_counter_init(&sbinfo->used_blocks, 0, GFP_KERNEL))
3686 goto failed;
3687 spin_lock_init(&sbinfo->shrinklist_lock);
3688 INIT_LIST_HEAD(&sbinfo->shrinklist);
3689
3690 sb->s_maxbytes = MAX_LFS_FILESIZE;
3691 sb->s_blocksize = PAGE_SIZE;
3692 sb->s_blocksize_bits = PAGE_SHIFT;
3693 sb->s_magic = TMPFS_MAGIC;
3694 sb->s_op = &shmem_ops;
3695 sb->s_time_gran = 1;
3696 #ifdef CONFIG_TMPFS_XATTR
3697 sb->s_xattr = shmem_xattr_handlers;
3698 #endif
3699 #ifdef CONFIG_TMPFS_POSIX_ACL
3700 sb->s_flags |= SB_POSIXACL;
3701 #endif
3702 uuid_gen(&sb->s_uuid);
3703
3704 inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
3705 if (!inode)
3706 goto failed;
3707 inode->i_uid = sbinfo->uid;
3708 inode->i_gid = sbinfo->gid;
3709 sb->s_root = d_make_root(inode);
3710 if (!sb->s_root)
3711 goto failed;
3712 return 0;
3713
3714 failed:
3715 shmem_put_super(sb);
3716 return err;
3717 }
3718
3719 static int shmem_get_tree(struct fs_context *fc)
3720 {
3721 return get_tree_nodev(fc, shmem_fill_super);
3722 }
3723
3724 static void shmem_free_fc(struct fs_context *fc)
3725 {
3726 struct shmem_options *ctx = fc->fs_private;
3727
3728 if (ctx) {
3729 mpol_put(ctx->mpol);
3730 kfree(ctx);
3731 }
3732 }
3733
3734 static const struct fs_context_operations shmem_fs_context_ops = {
3735 .free = shmem_free_fc,
3736 .get_tree = shmem_get_tree,
3737 #ifdef CONFIG_TMPFS
3738 .parse_monolithic = shmem_parse_options,
3739 .parse_param = shmem_parse_one,
3740 .reconfigure = shmem_reconfigure,
3741 #endif
3742 };
3743
3744 static struct kmem_cache *shmem_inode_cachep;
3745
3746 static struct inode *shmem_alloc_inode(struct super_block *sb)
3747 {
3748 struct shmem_inode_info *info;
3749 info = kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL);
3750 if (!info)
3751 return NULL;
3752 return &info->vfs_inode;
3753 }
3754
3755 static void shmem_free_in_core_inode(struct inode *inode)
3756 {
3757 if (S_ISLNK(inode->i_mode))
3758 kfree(inode->i_link);
3759 kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
3760 }
3761
3762 static void shmem_destroy_inode(struct inode *inode)
3763 {
3764 if (S_ISREG(inode->i_mode))
3765 mpol_free_shared_policy(&SHMEM_I(inode)->policy);
3766 }
3767
3768 static void shmem_init_inode(void *foo)
3769 {
3770 struct shmem_inode_info *info = foo;
3771 inode_init_once(&info->vfs_inode);
3772 }
3773
3774 static void shmem_init_inodecache(void)
3775 {
3776 shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
3777 sizeof(struct shmem_inode_info),
3778 0, SLAB_PANIC|SLAB_ACCOUNT, shmem_init_inode);
3779 }
3780
3781 static void shmem_destroy_inodecache(void)
3782 {
3783 kmem_cache_destroy(shmem_inode_cachep);
3784 }
3785
3786 static __init void shmem_no_idr(struct super_block *sb)
3787 {
3788 struct shmem_sb_info *sbinfo;
3789
3790 sbinfo = SHMEM_SB(sb);
3791 sbinfo->idr_nouse = true;
3792 idr_destroy(&sbinfo->idr);
3793 }
3794
3795 static const struct address_space_operations shmem_aops = {
3796 .writepage = shmem_writepage,
3797 .set_page_dirty = __set_page_dirty_no_writeback,
3798 #ifdef CONFIG_TMPFS
3799 .write_begin = shmem_write_begin,
3800 .write_end = shmem_write_end,
3801 #endif
3802 #ifdef CONFIG_MIGRATION
3803 .migratepage = migrate_page,
3804 #endif
3805 .error_remove_page = generic_error_remove_page,
3806 };
3807
3808 static const struct file_operations shmem_file_operations = {
3809 .mmap = shmem_mmap,
3810 .get_unmapped_area = shmem_get_unmapped_area,
3811 #ifdef CONFIG_TMPFS
3812 .llseek = shmem_file_llseek,
3813 .read_iter = shmem_file_read_iter,
3814 .write_iter = generic_file_write_iter,
3815 .fsync = noop_fsync,
3816 .splice_read = generic_file_splice_read,
3817 .splice_write = iter_file_splice_write,
3818 .fallocate = shmem_fallocate,
3819 #endif
3820 };
3821
3822 static const struct inode_operations shmem_inode_operations = {
3823 .getattr = shmem_getattr,
3824 .setattr = shmem_setattr,
3825 #ifdef CONFIG_TMPFS_XATTR
3826 .listxattr = shmem_listxattr,
3827 .set_acl = simple_set_acl,
3828 #endif
3829 };
3830
3831 static const struct inode_operations shmem_dir_inode_operations = {
3832 #ifdef CONFIG_TMPFS
3833 .create = shmem_create,
3834 .lookup = simple_lookup,
3835 .link = shmem_link,
3836 .unlink = shmem_unlink,
3837 .symlink = shmem_symlink,
3838 .mkdir = shmem_mkdir,
3839 .rmdir = shmem_rmdir,
3840 .mknod = shmem_mknod,
3841 .rename = shmem_rename2,
3842 .tmpfile = shmem_tmpfile,
3843 #endif
3844 #ifdef CONFIG_TMPFS_XATTR
3845 .listxattr = shmem_listxattr,
3846 #endif
3847 #ifdef CONFIG_TMPFS_POSIX_ACL
3848 .setattr = shmem_setattr,
3849 .set_acl = simple_set_acl,
3850 #endif
3851 };
3852
3853 static const struct inode_operations shmem_special_inode_operations = {
3854 #ifdef CONFIG_TMPFS_XATTR
3855 .listxattr = shmem_listxattr,
3856 #endif
3857 #ifdef CONFIG_TMPFS_POSIX_ACL
3858 .setattr = shmem_setattr,
3859 .set_acl = simple_set_acl,
3860 #endif
3861 };
3862
3863 static const struct super_operations shmem_ops = {
3864 .alloc_inode = shmem_alloc_inode,
3865 .free_inode = shmem_free_in_core_inode,
3866 .destroy_inode = shmem_destroy_inode,
3867 #ifdef CONFIG_TMPFS
3868 .statfs = shmem_statfs,
3869 .show_options = shmem_show_options,
3870 #endif
3871 .evict_inode = shmem_evict_inode,
3872 .drop_inode = generic_delete_inode,
3873 .put_super = shmem_put_super,
3874 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3875 .nr_cached_objects = shmem_unused_huge_count,
3876 .free_cached_objects = shmem_unused_huge_scan,
3877 #endif
3878 };
3879
3880 static const struct vm_operations_struct shmem_vm_ops = {
3881 .fault = shmem_fault,
3882 .map_pages = filemap_map_pages,
3883 #ifdef CONFIG_NUMA
3884 .set_policy = shmem_set_policy,
3885 .get_policy = shmem_get_policy,
3886 #endif
3887 };
3888
3889 int shmem_init_fs_context(struct fs_context *fc)
3890 {
3891 struct shmem_options *ctx;
3892
3893 ctx = kzalloc(sizeof(struct shmem_options), GFP_KERNEL);
3894 if (!ctx)
3895 return -ENOMEM;
3896
3897 ctx->mode = 0777 | S_ISVTX;
3898 ctx->uid = current_fsuid();
3899 ctx->gid = current_fsgid();
3900
3901 fc->fs_private = ctx;
3902 fc->ops = &shmem_fs_context_ops;
3903 return 0;
3904 }
3905
3906 static struct file_system_type shmem_fs_type = {
3907 .owner = THIS_MODULE,
3908 .name = "tmpfs",
3909 .init_fs_context = shmem_init_fs_context,
3910 #ifdef CONFIG_TMPFS
3911 .parameters = &shmem_fs_parameters,
3912 #endif
3913 .kill_sb = kill_litter_super,
3914 .fs_flags = FS_USERNS_MOUNT,
3915 };
3916
3917 int __init shmem_init(void)
3918 {
3919 int error;
3920
3921 shmem_init_inodecache();
3922
3923 error = register_filesystem(&shmem_fs_type);
3924 if (error) {
3925 pr_err("Could not register tmpfs\n");
3926 goto out2;
3927 }
3928
3929 shm_mnt = kern_mount(&shmem_fs_type);
3930 if (IS_ERR(shm_mnt)) {
3931 error = PTR_ERR(shm_mnt);
3932 pr_err("Could not kern_mount tmpfs\n");
3933 goto out1;
3934 }
3935 shmem_no_idr(shm_mnt->mnt_sb);
3936
3937 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3938 if (has_transparent_hugepage() && shmem_huge > SHMEM_HUGE_DENY)
3939 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
3940 else
3941 shmem_huge = 0; /* just in case it was patched */
3942 #endif
3943 return 0;
3944
3945 out1:
3946 unregister_filesystem(&shmem_fs_type);
3947 out2:
3948 shmem_destroy_inodecache();
3949 shm_mnt = ERR_PTR(error);
3950 return error;
3951 }
3952
3953 #if defined(CONFIG_TRANSPARENT_HUGE_PAGECACHE) && defined(CONFIG_SYSFS)
3954 static ssize_t shmem_enabled_show(struct kobject *kobj,
3955 struct kobj_attribute *attr, char *buf)
3956 {
3957 int values[] = {
3958 SHMEM_HUGE_ALWAYS,
3959 SHMEM_HUGE_WITHIN_SIZE,
3960 SHMEM_HUGE_ADVISE,
3961 SHMEM_HUGE_NEVER,
3962 SHMEM_HUGE_DENY,
3963 SHMEM_HUGE_FORCE,
3964 };
3965 int i, count;
3966
3967 for (i = 0, count = 0; i < ARRAY_SIZE(values); i++) {
3968 const char *fmt = shmem_huge == values[i] ? "[%s] " : "%s ";
3969
3970 count += sprintf(buf + count, fmt,
3971 shmem_format_huge(values[i]));
3972 }
3973 buf[count - 1] = '\n';
3974 return count;
3975 }
3976
3977 static ssize_t shmem_enabled_store(struct kobject *kobj,
3978 struct kobj_attribute *attr, const char *buf, size_t count)
3979 {
3980 char tmp[16];
3981 int huge;
3982
3983 if (count + 1 > sizeof(tmp))
3984 return -EINVAL;
3985 memcpy(tmp, buf, count);
3986 tmp[count] = '\0';
3987 if (count && tmp[count - 1] == '\n')
3988 tmp[count - 1] = '\0';
3989
3990 huge = shmem_parse_huge(tmp);
3991 if (huge == -EINVAL)
3992 return -EINVAL;
3993 if (!has_transparent_hugepage() &&
3994 huge != SHMEM_HUGE_NEVER && huge != SHMEM_HUGE_DENY)
3995 return -EINVAL;
3996
3997 shmem_huge = huge;
3998 if (shmem_huge > SHMEM_HUGE_DENY)
3999 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
4000 return count;
4001 }
4002
4003 struct kobj_attribute shmem_enabled_attr =
4004 __ATTR(shmem_enabled, 0644, shmem_enabled_show, shmem_enabled_store);
4005 #endif /* CONFIG_TRANSPARENT_HUGE_PAGECACHE && CONFIG_SYSFS */
4006
4007 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
4008 bool shmem_huge_enabled(struct vm_area_struct *vma)
4009 {
4010 struct inode *inode = file_inode(vma->vm_file);
4011 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
4012 loff_t i_size;
4013 pgoff_t off;
4014
4015 if ((vma->vm_flags & VM_NOHUGEPAGE) ||
4016 test_bit(MMF_DISABLE_THP, &vma->vm_mm->flags))
4017 return false;
4018 if (shmem_huge == SHMEM_HUGE_FORCE)
4019 return true;
4020 if (shmem_huge == SHMEM_HUGE_DENY)
4021 return false;
4022 switch (sbinfo->huge) {
4023 case SHMEM_HUGE_NEVER:
4024 return false;
4025 case SHMEM_HUGE_ALWAYS:
4026 return true;
4027 case SHMEM_HUGE_WITHIN_SIZE:
4028 off = round_up(vma->vm_pgoff, HPAGE_PMD_NR);
4029 i_size = round_up(i_size_read(inode), PAGE_SIZE);
4030 if (i_size >= HPAGE_PMD_SIZE &&
4031 i_size >> PAGE_SHIFT >= off)
4032 return true;
4033 /* fall through */
4034 case SHMEM_HUGE_ADVISE:
4035 /* TODO: implement fadvise() hints */
4036 return (vma->vm_flags & VM_HUGEPAGE);
4037 default:
4038 VM_BUG_ON(1);
4039 return false;
4040 }
4041 }
4042 #endif /* CONFIG_TRANSPARENT_HUGE_PAGECACHE */
4043
4044 #else /* !CONFIG_SHMEM */
4045
4046 /*
4047 * tiny-shmem: simple shmemfs and tmpfs using ramfs code
4048 *
4049 * This is intended for small system where the benefits of the full
4050 * shmem code (swap-backed and resource-limited) are outweighed by
4051 * their complexity. On systems without swap this code should be
4052 * effectively equivalent, but much lighter weight.
4053 */
4054
4055 static struct file_system_type shmem_fs_type = {
4056 .name = "tmpfs",
4057 .init_fs_context = ramfs_init_fs_context,
4058 .parameters = &ramfs_fs_parameters,
4059 .kill_sb = kill_litter_super,
4060 .fs_flags = FS_USERNS_MOUNT,
4061 };
4062
4063 int __init shmem_init(void)
4064 {
4065 BUG_ON(register_filesystem(&shmem_fs_type) != 0);
4066
4067 shm_mnt = kern_mount(&shmem_fs_type);
4068 BUG_ON(IS_ERR(shm_mnt));
4069
4070 return 0;
4071 }
4072
4073 int shmem_unuse(unsigned int type, bool frontswap,
4074 unsigned long *fs_pages_to_unuse)
4075 {
4076 return 0;
4077 }
4078
4079 int shmem_lock(struct file *file, int lock, struct user_struct *user)
4080 {
4081 return 0;
4082 }
4083
4084 void shmem_unlock_mapping(struct address_space *mapping)
4085 {
4086 }
4087
4088 #ifdef CONFIG_MMU
4089 unsigned long shmem_get_unmapped_area(struct file *file,
4090 unsigned long addr, unsigned long len,
4091 unsigned long pgoff, unsigned long flags)
4092 {
4093 return current->mm->get_unmapped_area(file, addr, len, pgoff, flags);
4094 }
4095 #endif
4096
4097 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
4098 {
4099 truncate_inode_pages_range(inode->i_mapping, lstart, lend);
4100 }
4101 EXPORT_SYMBOL_GPL(shmem_truncate_range);
4102
4103 #define shmem_vm_ops generic_file_vm_ops
4104 #define shmem_file_operations ramfs_file_operations
4105 #define shmem_get_inode(sb, dir, mode, dev, flags) ramfs_get_inode(sb, dir, mode, dev)
4106 #define shmem_acct_size(flags, size) 0
4107 #define shmem_unacct_size(flags, size) do {} while (0)
4108
4109 #endif /* CONFIG_SHMEM */
4110
4111 /* common code */
4112
4113 static struct file *__shmem_file_setup(struct vfsmount *mnt, const char *name, loff_t size,
4114 unsigned long flags, unsigned int i_flags)
4115 {
4116 struct inode *inode;
4117 struct file *res;
4118
4119 if (IS_ERR(mnt))
4120 return ERR_CAST(mnt);
4121
4122 if (size < 0 || size > MAX_LFS_FILESIZE)
4123 return ERR_PTR(-EINVAL);
4124
4125 if (shmem_acct_size(flags, size))
4126 return ERR_PTR(-ENOMEM);
4127
4128 inode = shmem_get_inode(mnt->mnt_sb, NULL, S_IFREG | S_IRWXUGO, 0,
4129 flags);
4130 if (unlikely(!inode)) {
4131 shmem_unacct_size(flags, size);
4132 return ERR_PTR(-ENOSPC);
4133 }
4134 inode->i_flags |= i_flags;
4135 inode->i_size = size;
4136 clear_nlink(inode); /* It is unlinked */
4137 res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size));
4138 if (!IS_ERR(res))
4139 res = alloc_file_pseudo(inode, mnt, name, O_RDWR,
4140 &shmem_file_operations);
4141 if (IS_ERR(res))
4142 iput(inode);
4143 return res;
4144 }
4145
4146 /**
4147 * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be
4148 * kernel internal. There will be NO LSM permission checks against the
4149 * underlying inode. So users of this interface must do LSM checks at a
4150 * higher layer. The users are the big_key and shm implementations. LSM
4151 * checks are provided at the key or shm level rather than the inode.
4152 * @name: name for dentry (to be seen in /proc/<pid>/maps
4153 * @size: size to be set for the file
4154 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4155 */
4156 struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags)
4157 {
4158 return __shmem_file_setup(shm_mnt, name, size, flags, S_PRIVATE);
4159 }
4160
4161 /**
4162 * shmem_file_setup - get an unlinked file living in tmpfs
4163 * @name: name for dentry (to be seen in /proc/<pid>/maps
4164 * @size: size to be set for the file
4165 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4166 */
4167 struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
4168 {
4169 return __shmem_file_setup(shm_mnt, name, size, flags, 0);
4170 }
4171 EXPORT_SYMBOL_GPL(shmem_file_setup);
4172
4173 /**
4174 * shmem_file_setup_with_mnt - get an unlinked file living in tmpfs
4175 * @mnt: the tmpfs mount where the file will be created
4176 * @name: name for dentry (to be seen in /proc/<pid>/maps
4177 * @size: size to be set for the file
4178 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4179 */
4180 struct file *shmem_file_setup_with_mnt(struct vfsmount *mnt, const char *name,
4181 loff_t size, unsigned long flags)
4182 {
4183 return __shmem_file_setup(mnt, name, size, flags, 0);
4184 }
4185 EXPORT_SYMBOL_GPL(shmem_file_setup_with_mnt);
4186
4187 /**
4188 * shmem_zero_setup - setup a shared anonymous mapping
4189 * @vma: the vma to be mmapped is prepared by do_mmap_pgoff
4190 */
4191 int shmem_zero_setup(struct vm_area_struct *vma)
4192 {
4193 struct file *file;
4194 loff_t size = vma->vm_end - vma->vm_start;
4195
4196 /*
4197 * Cloning a new file under mmap_sem leads to a lock ordering conflict
4198 * between XFS directory reading and selinux: since this file is only
4199 * accessible to the user through its mapping, use S_PRIVATE flag to
4200 * bypass file security, in the same way as shmem_kernel_file_setup().
4201 */
4202 file = shmem_kernel_file_setup("dev/zero", size, vma->vm_flags);
4203 if (IS_ERR(file))
4204 return PTR_ERR(file);
4205
4206 if (vma->vm_file)
4207 fput(vma->vm_file);
4208 vma->vm_file = file;
4209 vma->vm_ops = &shmem_vm_ops;
4210
4211 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE) &&
4212 ((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) <
4213 (vma->vm_end & HPAGE_PMD_MASK)) {
4214 khugepaged_enter(vma, vma->vm_flags);
4215 }
4216
4217 return 0;
4218 }
4219 EXPORT_SYMBOL_GPL(shmem_zero_setup);
4220
4221 /**
4222 * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags.
4223 * @mapping: the page's address_space
4224 * @index: the page index
4225 * @gfp: the page allocator flags to use if allocating
4226 *
4227 * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
4228 * with any new page allocations done using the specified allocation flags.
4229 * But read_cache_page_gfp() uses the ->readpage() method: which does not
4230 * suit tmpfs, since it may have pages in swapcache, and needs to find those
4231 * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
4232 *
4233 * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
4234 * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
4235 */
4236 struct page *shmem_read_mapping_page_gfp(struct address_space *mapping,
4237 pgoff_t index, gfp_t gfp)
4238 {
4239 #ifdef CONFIG_SHMEM
4240 struct inode *inode = mapping->host;
4241 struct page *page;
4242 int error;
4243
4244 BUG_ON(mapping->a_ops != &shmem_aops);
4245 error = shmem_getpage_gfp(inode, index, &page, SGP_CACHE,
4246 gfp, NULL, NULL, NULL);
4247 if (error)
4248 page = ERR_PTR(error);
4249 else
4250 unlock_page(page);
4251 return page;
4252 #else
4253 /*
4254 * The tiny !SHMEM case uses ramfs without swap
4255 */
4256 return read_cache_page_gfp(mapping, index, gfp);
4257 #endif
4258 }
4259 EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp);