]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - mm/shmem.c
mm/fs: remove truncate_range
[mirror_ubuntu-zesty-kernel.git] / mm / shmem.c
1 /*
2 * Resizable virtual memory filesystem for Linux.
3 *
4 * Copyright (C) 2000 Linus Torvalds.
5 * 2000 Transmeta Corp.
6 * 2000-2001 Christoph Rohland
7 * 2000-2001 SAP AG
8 * 2002 Red Hat Inc.
9 * Copyright (C) 2002-2011 Hugh Dickins.
10 * Copyright (C) 2011 Google Inc.
11 * Copyright (C) 2002-2005 VERITAS Software Corporation.
12 * Copyright (C) 2004 Andi Kleen, SuSE Labs
13 *
14 * Extended attribute support for tmpfs:
15 * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
16 * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
17 *
18 * tiny-shmem:
19 * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
20 *
21 * This file is released under the GPL.
22 */
23
24 #include <linux/fs.h>
25 #include <linux/init.h>
26 #include <linux/vfs.h>
27 #include <linux/mount.h>
28 #include <linux/pagemap.h>
29 #include <linux/file.h>
30 #include <linux/mm.h>
31 #include <linux/export.h>
32 #include <linux/swap.h>
33
34 static struct vfsmount *shm_mnt;
35
36 #ifdef CONFIG_SHMEM
37 /*
38 * This virtual memory filesystem is heavily based on the ramfs. It
39 * extends ramfs by the ability to use swap and honor resource limits
40 * which makes it a completely usable filesystem.
41 */
42
43 #include <linux/xattr.h>
44 #include <linux/exportfs.h>
45 #include <linux/posix_acl.h>
46 #include <linux/generic_acl.h>
47 #include <linux/mman.h>
48 #include <linux/string.h>
49 #include <linux/slab.h>
50 #include <linux/backing-dev.h>
51 #include <linux/shmem_fs.h>
52 #include <linux/writeback.h>
53 #include <linux/blkdev.h>
54 #include <linux/pagevec.h>
55 #include <linux/percpu_counter.h>
56 #include <linux/falloc.h>
57 #include <linux/splice.h>
58 #include <linux/security.h>
59 #include <linux/swapops.h>
60 #include <linux/mempolicy.h>
61 #include <linux/namei.h>
62 #include <linux/ctype.h>
63 #include <linux/migrate.h>
64 #include <linux/highmem.h>
65 #include <linux/seq_file.h>
66 #include <linux/magic.h>
67
68 #include <asm/uaccess.h>
69 #include <asm/pgtable.h>
70
71 #define BLOCKS_PER_PAGE (PAGE_CACHE_SIZE/512)
72 #define VM_ACCT(size) (PAGE_CACHE_ALIGN(size) >> PAGE_SHIFT)
73
74 /* Pretend that each entry is of this size in directory's i_size */
75 #define BOGO_DIRENT_SIZE 20
76
77 /* Symlink up to this size is kmalloc'ed instead of using a swappable page */
78 #define SHORT_SYMLINK_LEN 128
79
80 struct shmem_xattr {
81 struct list_head list; /* anchored by shmem_inode_info->xattr_list */
82 char *name; /* xattr name */
83 size_t size;
84 char value[0];
85 };
86
87 /* Flag allocation requirements to shmem_getpage */
88 enum sgp_type {
89 SGP_READ, /* don't exceed i_size, don't allocate page */
90 SGP_CACHE, /* don't exceed i_size, may allocate page */
91 SGP_DIRTY, /* like SGP_CACHE, but set new page dirty */
92 SGP_WRITE, /* may exceed i_size, may allocate page */
93 };
94
95 #ifdef CONFIG_TMPFS
96 static unsigned long shmem_default_max_blocks(void)
97 {
98 return totalram_pages / 2;
99 }
100
101 static unsigned long shmem_default_max_inodes(void)
102 {
103 return min(totalram_pages - totalhigh_pages, totalram_pages / 2);
104 }
105 #endif
106
107 static bool shmem_should_replace_page(struct page *page, gfp_t gfp);
108 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
109 struct shmem_inode_info *info, pgoff_t index);
110 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
111 struct page **pagep, enum sgp_type sgp, gfp_t gfp, int *fault_type);
112
113 static inline int shmem_getpage(struct inode *inode, pgoff_t index,
114 struct page **pagep, enum sgp_type sgp, int *fault_type)
115 {
116 return shmem_getpage_gfp(inode, index, pagep, sgp,
117 mapping_gfp_mask(inode->i_mapping), fault_type);
118 }
119
120 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
121 {
122 return sb->s_fs_info;
123 }
124
125 /*
126 * shmem_file_setup pre-accounts the whole fixed size of a VM object,
127 * for shared memory and for shared anonymous (/dev/zero) mappings
128 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
129 * consistent with the pre-accounting of private mappings ...
130 */
131 static inline int shmem_acct_size(unsigned long flags, loff_t size)
132 {
133 return (flags & VM_NORESERVE) ?
134 0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size));
135 }
136
137 static inline void shmem_unacct_size(unsigned long flags, loff_t size)
138 {
139 if (!(flags & VM_NORESERVE))
140 vm_unacct_memory(VM_ACCT(size));
141 }
142
143 /*
144 * ... whereas tmpfs objects are accounted incrementally as
145 * pages are allocated, in order to allow huge sparse files.
146 * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
147 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
148 */
149 static inline int shmem_acct_block(unsigned long flags)
150 {
151 return (flags & VM_NORESERVE) ?
152 security_vm_enough_memory_mm(current->mm, VM_ACCT(PAGE_CACHE_SIZE)) : 0;
153 }
154
155 static inline void shmem_unacct_blocks(unsigned long flags, long pages)
156 {
157 if (flags & VM_NORESERVE)
158 vm_unacct_memory(pages * VM_ACCT(PAGE_CACHE_SIZE));
159 }
160
161 static const struct super_operations shmem_ops;
162 static const struct address_space_operations shmem_aops;
163 static const struct file_operations shmem_file_operations;
164 static const struct inode_operations shmem_inode_operations;
165 static const struct inode_operations shmem_dir_inode_operations;
166 static const struct inode_operations shmem_special_inode_operations;
167 static const struct vm_operations_struct shmem_vm_ops;
168
169 static struct backing_dev_info shmem_backing_dev_info __read_mostly = {
170 .ra_pages = 0, /* No readahead */
171 .capabilities = BDI_CAP_NO_ACCT_AND_WRITEBACK | BDI_CAP_SWAP_BACKED,
172 };
173
174 static LIST_HEAD(shmem_swaplist);
175 static DEFINE_MUTEX(shmem_swaplist_mutex);
176
177 static int shmem_reserve_inode(struct super_block *sb)
178 {
179 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
180 if (sbinfo->max_inodes) {
181 spin_lock(&sbinfo->stat_lock);
182 if (!sbinfo->free_inodes) {
183 spin_unlock(&sbinfo->stat_lock);
184 return -ENOSPC;
185 }
186 sbinfo->free_inodes--;
187 spin_unlock(&sbinfo->stat_lock);
188 }
189 return 0;
190 }
191
192 static void shmem_free_inode(struct super_block *sb)
193 {
194 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
195 if (sbinfo->max_inodes) {
196 spin_lock(&sbinfo->stat_lock);
197 sbinfo->free_inodes++;
198 spin_unlock(&sbinfo->stat_lock);
199 }
200 }
201
202 /**
203 * shmem_recalc_inode - recalculate the block usage of an inode
204 * @inode: inode to recalc
205 *
206 * We have to calculate the free blocks since the mm can drop
207 * undirtied hole pages behind our back.
208 *
209 * But normally info->alloced == inode->i_mapping->nrpages + info->swapped
210 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
211 *
212 * It has to be called with the spinlock held.
213 */
214 static void shmem_recalc_inode(struct inode *inode)
215 {
216 struct shmem_inode_info *info = SHMEM_I(inode);
217 long freed;
218
219 freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
220 if (freed > 0) {
221 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
222 if (sbinfo->max_blocks)
223 percpu_counter_add(&sbinfo->used_blocks, -freed);
224 info->alloced -= freed;
225 inode->i_blocks -= freed * BLOCKS_PER_PAGE;
226 shmem_unacct_blocks(info->flags, freed);
227 }
228 }
229
230 /*
231 * Replace item expected in radix tree by a new item, while holding tree lock.
232 */
233 static int shmem_radix_tree_replace(struct address_space *mapping,
234 pgoff_t index, void *expected, void *replacement)
235 {
236 void **pslot;
237 void *item = NULL;
238
239 VM_BUG_ON(!expected);
240 pslot = radix_tree_lookup_slot(&mapping->page_tree, index);
241 if (pslot)
242 item = radix_tree_deref_slot_protected(pslot,
243 &mapping->tree_lock);
244 if (item != expected)
245 return -ENOENT;
246 if (replacement)
247 radix_tree_replace_slot(pslot, replacement);
248 else
249 radix_tree_delete(&mapping->page_tree, index);
250 return 0;
251 }
252
253 /*
254 * Like add_to_page_cache_locked, but error if expected item has gone.
255 */
256 static int shmem_add_to_page_cache(struct page *page,
257 struct address_space *mapping,
258 pgoff_t index, gfp_t gfp, void *expected)
259 {
260 int error = 0;
261
262 VM_BUG_ON(!PageLocked(page));
263 VM_BUG_ON(!PageSwapBacked(page));
264
265 if (!expected)
266 error = radix_tree_preload(gfp & GFP_RECLAIM_MASK);
267 if (!error) {
268 page_cache_get(page);
269 page->mapping = mapping;
270 page->index = index;
271
272 spin_lock_irq(&mapping->tree_lock);
273 if (!expected)
274 error = radix_tree_insert(&mapping->page_tree,
275 index, page);
276 else
277 error = shmem_radix_tree_replace(mapping, index,
278 expected, page);
279 if (!error) {
280 mapping->nrpages++;
281 __inc_zone_page_state(page, NR_FILE_PAGES);
282 __inc_zone_page_state(page, NR_SHMEM);
283 spin_unlock_irq(&mapping->tree_lock);
284 } else {
285 page->mapping = NULL;
286 spin_unlock_irq(&mapping->tree_lock);
287 page_cache_release(page);
288 }
289 if (!expected)
290 radix_tree_preload_end();
291 }
292 if (error)
293 mem_cgroup_uncharge_cache_page(page);
294 return error;
295 }
296
297 /*
298 * Like delete_from_page_cache, but substitutes swap for page.
299 */
300 static void shmem_delete_from_page_cache(struct page *page, void *radswap)
301 {
302 struct address_space *mapping = page->mapping;
303 int error;
304
305 spin_lock_irq(&mapping->tree_lock);
306 error = shmem_radix_tree_replace(mapping, page->index, page, radswap);
307 page->mapping = NULL;
308 mapping->nrpages--;
309 __dec_zone_page_state(page, NR_FILE_PAGES);
310 __dec_zone_page_state(page, NR_SHMEM);
311 spin_unlock_irq(&mapping->tree_lock);
312 page_cache_release(page);
313 BUG_ON(error);
314 }
315
316 /*
317 * Like find_get_pages, but collecting swap entries as well as pages.
318 */
319 static unsigned shmem_find_get_pages_and_swap(struct address_space *mapping,
320 pgoff_t start, unsigned int nr_pages,
321 struct page **pages, pgoff_t *indices)
322 {
323 unsigned int i;
324 unsigned int ret;
325 unsigned int nr_found;
326
327 rcu_read_lock();
328 restart:
329 nr_found = radix_tree_gang_lookup_slot(&mapping->page_tree,
330 (void ***)pages, indices, start, nr_pages);
331 ret = 0;
332 for (i = 0; i < nr_found; i++) {
333 struct page *page;
334 repeat:
335 page = radix_tree_deref_slot((void **)pages[i]);
336 if (unlikely(!page))
337 continue;
338 if (radix_tree_exception(page)) {
339 if (radix_tree_deref_retry(page))
340 goto restart;
341 /*
342 * Otherwise, we must be storing a swap entry
343 * here as an exceptional entry: so return it
344 * without attempting to raise page count.
345 */
346 goto export;
347 }
348 if (!page_cache_get_speculative(page))
349 goto repeat;
350
351 /* Has the page moved? */
352 if (unlikely(page != *((void **)pages[i]))) {
353 page_cache_release(page);
354 goto repeat;
355 }
356 export:
357 indices[ret] = indices[i];
358 pages[ret] = page;
359 ret++;
360 }
361 if (unlikely(!ret && nr_found))
362 goto restart;
363 rcu_read_unlock();
364 return ret;
365 }
366
367 /*
368 * Remove swap entry from radix tree, free the swap and its page cache.
369 */
370 static int shmem_free_swap(struct address_space *mapping,
371 pgoff_t index, void *radswap)
372 {
373 int error;
374
375 spin_lock_irq(&mapping->tree_lock);
376 error = shmem_radix_tree_replace(mapping, index, radswap, NULL);
377 spin_unlock_irq(&mapping->tree_lock);
378 if (!error)
379 free_swap_and_cache(radix_to_swp_entry(radswap));
380 return error;
381 }
382
383 /*
384 * Pagevec may contain swap entries, so shuffle up pages before releasing.
385 */
386 static void shmem_deswap_pagevec(struct pagevec *pvec)
387 {
388 int i, j;
389
390 for (i = 0, j = 0; i < pagevec_count(pvec); i++) {
391 struct page *page = pvec->pages[i];
392 if (!radix_tree_exceptional_entry(page))
393 pvec->pages[j++] = page;
394 }
395 pvec->nr = j;
396 }
397
398 /*
399 * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists.
400 */
401 void shmem_unlock_mapping(struct address_space *mapping)
402 {
403 struct pagevec pvec;
404 pgoff_t indices[PAGEVEC_SIZE];
405 pgoff_t index = 0;
406
407 pagevec_init(&pvec, 0);
408 /*
409 * Minor point, but we might as well stop if someone else SHM_LOCKs it.
410 */
411 while (!mapping_unevictable(mapping)) {
412 /*
413 * Avoid pagevec_lookup(): find_get_pages() returns 0 as if it
414 * has finished, if it hits a row of PAGEVEC_SIZE swap entries.
415 */
416 pvec.nr = shmem_find_get_pages_and_swap(mapping, index,
417 PAGEVEC_SIZE, pvec.pages, indices);
418 if (!pvec.nr)
419 break;
420 index = indices[pvec.nr - 1] + 1;
421 shmem_deswap_pagevec(&pvec);
422 check_move_unevictable_pages(pvec.pages, pvec.nr);
423 pagevec_release(&pvec);
424 cond_resched();
425 }
426 }
427
428 /*
429 * Remove range of pages and swap entries from radix tree, and free them.
430 */
431 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
432 {
433 struct address_space *mapping = inode->i_mapping;
434 struct shmem_inode_info *info = SHMEM_I(inode);
435 pgoff_t start = (lstart + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
436 pgoff_t end = (lend + 1) >> PAGE_CACHE_SHIFT;
437 unsigned int partial_start = lstart & (PAGE_CACHE_SIZE - 1);
438 unsigned int partial_end = (lend + 1) & (PAGE_CACHE_SIZE - 1);
439 struct pagevec pvec;
440 pgoff_t indices[PAGEVEC_SIZE];
441 long nr_swaps_freed = 0;
442 pgoff_t index;
443 int i;
444
445 if (lend == -1)
446 end = -1; /* unsigned, so actually very big */
447
448 pagevec_init(&pvec, 0);
449 index = start;
450 while (index < end) {
451 pvec.nr = shmem_find_get_pages_and_swap(mapping, index,
452 min(end - index, (pgoff_t)PAGEVEC_SIZE),
453 pvec.pages, indices);
454 if (!pvec.nr)
455 break;
456 mem_cgroup_uncharge_start();
457 for (i = 0; i < pagevec_count(&pvec); i++) {
458 struct page *page = pvec.pages[i];
459
460 index = indices[i];
461 if (index >= end)
462 break;
463
464 if (radix_tree_exceptional_entry(page)) {
465 nr_swaps_freed += !shmem_free_swap(mapping,
466 index, page);
467 continue;
468 }
469
470 if (!trylock_page(page))
471 continue;
472 if (page->mapping == mapping) {
473 VM_BUG_ON(PageWriteback(page));
474 truncate_inode_page(mapping, page);
475 }
476 unlock_page(page);
477 }
478 shmem_deswap_pagevec(&pvec);
479 pagevec_release(&pvec);
480 mem_cgroup_uncharge_end();
481 cond_resched();
482 index++;
483 }
484
485 if (partial_start) {
486 struct page *page = NULL;
487 shmem_getpage(inode, start - 1, &page, SGP_READ, NULL);
488 if (page) {
489 unsigned int top = PAGE_CACHE_SIZE;
490 if (start > end) {
491 top = partial_end;
492 partial_end = 0;
493 }
494 zero_user_segment(page, partial_start, top);
495 set_page_dirty(page);
496 unlock_page(page);
497 page_cache_release(page);
498 }
499 }
500 if (partial_end) {
501 struct page *page = NULL;
502 shmem_getpage(inode, end, &page, SGP_READ, NULL);
503 if (page) {
504 zero_user_segment(page, 0, partial_end);
505 set_page_dirty(page);
506 unlock_page(page);
507 page_cache_release(page);
508 }
509 }
510 if (start >= end)
511 return;
512
513 index = start;
514 for ( ; ; ) {
515 cond_resched();
516 pvec.nr = shmem_find_get_pages_and_swap(mapping, index,
517 min(end - index, (pgoff_t)PAGEVEC_SIZE),
518 pvec.pages, indices);
519 if (!pvec.nr) {
520 if (index == start)
521 break;
522 index = start;
523 continue;
524 }
525 if (index == start && indices[0] >= end) {
526 shmem_deswap_pagevec(&pvec);
527 pagevec_release(&pvec);
528 break;
529 }
530 mem_cgroup_uncharge_start();
531 for (i = 0; i < pagevec_count(&pvec); i++) {
532 struct page *page = pvec.pages[i];
533
534 index = indices[i];
535 if (index >= end)
536 break;
537
538 if (radix_tree_exceptional_entry(page)) {
539 nr_swaps_freed += !shmem_free_swap(mapping,
540 index, page);
541 continue;
542 }
543
544 lock_page(page);
545 if (page->mapping == mapping) {
546 VM_BUG_ON(PageWriteback(page));
547 truncate_inode_page(mapping, page);
548 }
549 unlock_page(page);
550 }
551 shmem_deswap_pagevec(&pvec);
552 pagevec_release(&pvec);
553 mem_cgroup_uncharge_end();
554 index++;
555 }
556
557 spin_lock(&info->lock);
558 info->swapped -= nr_swaps_freed;
559 shmem_recalc_inode(inode);
560 spin_unlock(&info->lock);
561
562 inode->i_ctime = inode->i_mtime = CURRENT_TIME;
563 }
564 EXPORT_SYMBOL_GPL(shmem_truncate_range);
565
566 static int shmem_setattr(struct dentry *dentry, struct iattr *attr)
567 {
568 struct inode *inode = dentry->d_inode;
569 int error;
570
571 error = inode_change_ok(inode, attr);
572 if (error)
573 return error;
574
575 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
576 loff_t oldsize = inode->i_size;
577 loff_t newsize = attr->ia_size;
578
579 if (newsize != oldsize) {
580 i_size_write(inode, newsize);
581 inode->i_ctime = inode->i_mtime = CURRENT_TIME;
582 }
583 if (newsize < oldsize) {
584 loff_t holebegin = round_up(newsize, PAGE_SIZE);
585 unmap_mapping_range(inode->i_mapping, holebegin, 0, 1);
586 shmem_truncate_range(inode, newsize, (loff_t)-1);
587 /* unmap again to remove racily COWed private pages */
588 unmap_mapping_range(inode->i_mapping, holebegin, 0, 1);
589 }
590 }
591
592 setattr_copy(inode, attr);
593 #ifdef CONFIG_TMPFS_POSIX_ACL
594 if (attr->ia_valid & ATTR_MODE)
595 error = generic_acl_chmod(inode);
596 #endif
597 return error;
598 }
599
600 static void shmem_evict_inode(struct inode *inode)
601 {
602 struct shmem_inode_info *info = SHMEM_I(inode);
603 struct shmem_xattr *xattr, *nxattr;
604
605 if (inode->i_mapping->a_ops == &shmem_aops) {
606 shmem_unacct_size(info->flags, inode->i_size);
607 inode->i_size = 0;
608 shmem_truncate_range(inode, 0, (loff_t)-1);
609 if (!list_empty(&info->swaplist)) {
610 mutex_lock(&shmem_swaplist_mutex);
611 list_del_init(&info->swaplist);
612 mutex_unlock(&shmem_swaplist_mutex);
613 }
614 } else
615 kfree(info->symlink);
616
617 list_for_each_entry_safe(xattr, nxattr, &info->xattr_list, list) {
618 kfree(xattr->name);
619 kfree(xattr);
620 }
621 BUG_ON(inode->i_blocks);
622 shmem_free_inode(inode->i_sb);
623 clear_inode(inode);
624 }
625
626 /*
627 * If swap found in inode, free it and move page from swapcache to filecache.
628 */
629 static int shmem_unuse_inode(struct shmem_inode_info *info,
630 swp_entry_t swap, struct page **pagep)
631 {
632 struct address_space *mapping = info->vfs_inode.i_mapping;
633 void *radswap;
634 pgoff_t index;
635 gfp_t gfp;
636 int error = 0;
637
638 radswap = swp_to_radix_entry(swap);
639 index = radix_tree_locate_item(&mapping->page_tree, radswap);
640 if (index == -1)
641 return 0;
642
643 /*
644 * Move _head_ to start search for next from here.
645 * But be careful: shmem_evict_inode checks list_empty without taking
646 * mutex, and there's an instant in list_move_tail when info->swaplist
647 * would appear empty, if it were the only one on shmem_swaplist.
648 */
649 if (shmem_swaplist.next != &info->swaplist)
650 list_move_tail(&shmem_swaplist, &info->swaplist);
651
652 gfp = mapping_gfp_mask(mapping);
653 if (shmem_should_replace_page(*pagep, gfp)) {
654 mutex_unlock(&shmem_swaplist_mutex);
655 error = shmem_replace_page(pagep, gfp, info, index);
656 mutex_lock(&shmem_swaplist_mutex);
657 /*
658 * We needed to drop mutex to make that restrictive page
659 * allocation; but the inode might already be freed by now,
660 * and we cannot refer to inode or mapping or info to check.
661 * However, we do hold page lock on the PageSwapCache page,
662 * so can check if that still has our reference remaining.
663 */
664 if (!page_swapcount(*pagep))
665 error = -ENOENT;
666 }
667
668 /*
669 * We rely on shmem_swaplist_mutex, not only to protect the swaplist,
670 * but also to hold up shmem_evict_inode(): so inode cannot be freed
671 * beneath us (pagelock doesn't help until the page is in pagecache).
672 */
673 if (!error)
674 error = shmem_add_to_page_cache(*pagep, mapping, index,
675 GFP_NOWAIT, radswap);
676 if (error != -ENOMEM) {
677 /*
678 * Truncation and eviction use free_swap_and_cache(), which
679 * only does trylock page: if we raced, best clean up here.
680 */
681 delete_from_swap_cache(*pagep);
682 set_page_dirty(*pagep);
683 if (!error) {
684 spin_lock(&info->lock);
685 info->swapped--;
686 spin_unlock(&info->lock);
687 swap_free(swap);
688 }
689 error = 1; /* not an error, but entry was found */
690 }
691 return error;
692 }
693
694 /*
695 * Search through swapped inodes to find and replace swap by page.
696 */
697 int shmem_unuse(swp_entry_t swap, struct page *page)
698 {
699 struct list_head *this, *next;
700 struct shmem_inode_info *info;
701 int found = 0;
702 int error = 0;
703
704 /*
705 * There's a faint possibility that swap page was replaced before
706 * caller locked it: it will come back later with the right page.
707 */
708 if (unlikely(!PageSwapCache(page)))
709 goto out;
710
711 /*
712 * Charge page using GFP_KERNEL while we can wait, before taking
713 * the shmem_swaplist_mutex which might hold up shmem_writepage().
714 * Charged back to the user (not to caller) when swap account is used.
715 */
716 error = mem_cgroup_cache_charge(page, current->mm, GFP_KERNEL);
717 if (error)
718 goto out;
719 /* No radix_tree_preload: swap entry keeps a place for page in tree */
720
721 mutex_lock(&shmem_swaplist_mutex);
722 list_for_each_safe(this, next, &shmem_swaplist) {
723 info = list_entry(this, struct shmem_inode_info, swaplist);
724 if (info->swapped)
725 found = shmem_unuse_inode(info, swap, &page);
726 else
727 list_del_init(&info->swaplist);
728 cond_resched();
729 if (found)
730 break;
731 }
732 mutex_unlock(&shmem_swaplist_mutex);
733
734 if (found < 0)
735 error = found;
736 out:
737 unlock_page(page);
738 page_cache_release(page);
739 return error;
740 }
741
742 /*
743 * Move the page from the page cache to the swap cache.
744 */
745 static int shmem_writepage(struct page *page, struct writeback_control *wbc)
746 {
747 struct shmem_inode_info *info;
748 struct address_space *mapping;
749 struct inode *inode;
750 swp_entry_t swap;
751 pgoff_t index;
752
753 BUG_ON(!PageLocked(page));
754 mapping = page->mapping;
755 index = page->index;
756 inode = mapping->host;
757 info = SHMEM_I(inode);
758 if (info->flags & VM_LOCKED)
759 goto redirty;
760 if (!total_swap_pages)
761 goto redirty;
762
763 /*
764 * shmem_backing_dev_info's capabilities prevent regular writeback or
765 * sync from ever calling shmem_writepage; but a stacking filesystem
766 * might use ->writepage of its underlying filesystem, in which case
767 * tmpfs should write out to swap only in response to memory pressure,
768 * and not for the writeback threads or sync.
769 */
770 if (!wbc->for_reclaim) {
771 WARN_ON_ONCE(1); /* Still happens? Tell us about it! */
772 goto redirty;
773 }
774 swap = get_swap_page();
775 if (!swap.val)
776 goto redirty;
777
778 /*
779 * Add inode to shmem_unuse()'s list of swapped-out inodes,
780 * if it's not already there. Do it now before the page is
781 * moved to swap cache, when its pagelock no longer protects
782 * the inode from eviction. But don't unlock the mutex until
783 * we've incremented swapped, because shmem_unuse_inode() will
784 * prune a !swapped inode from the swaplist under this mutex.
785 */
786 mutex_lock(&shmem_swaplist_mutex);
787 if (list_empty(&info->swaplist))
788 list_add_tail(&info->swaplist, &shmem_swaplist);
789
790 if (add_to_swap_cache(page, swap, GFP_ATOMIC) == 0) {
791 swap_shmem_alloc(swap);
792 shmem_delete_from_page_cache(page, swp_to_radix_entry(swap));
793
794 spin_lock(&info->lock);
795 info->swapped++;
796 shmem_recalc_inode(inode);
797 spin_unlock(&info->lock);
798
799 mutex_unlock(&shmem_swaplist_mutex);
800 BUG_ON(page_mapped(page));
801 swap_writepage(page, wbc);
802 return 0;
803 }
804
805 mutex_unlock(&shmem_swaplist_mutex);
806 swapcache_free(swap, NULL);
807 redirty:
808 set_page_dirty(page);
809 if (wbc->for_reclaim)
810 return AOP_WRITEPAGE_ACTIVATE; /* Return with page locked */
811 unlock_page(page);
812 return 0;
813 }
814
815 #ifdef CONFIG_NUMA
816 #ifdef CONFIG_TMPFS
817 static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
818 {
819 char buffer[64];
820
821 if (!mpol || mpol->mode == MPOL_DEFAULT)
822 return; /* show nothing */
823
824 mpol_to_str(buffer, sizeof(buffer), mpol, 1);
825
826 seq_printf(seq, ",mpol=%s", buffer);
827 }
828
829 static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
830 {
831 struct mempolicy *mpol = NULL;
832 if (sbinfo->mpol) {
833 spin_lock(&sbinfo->stat_lock); /* prevent replace/use races */
834 mpol = sbinfo->mpol;
835 mpol_get(mpol);
836 spin_unlock(&sbinfo->stat_lock);
837 }
838 return mpol;
839 }
840 #endif /* CONFIG_TMPFS */
841
842 static struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
843 struct shmem_inode_info *info, pgoff_t index)
844 {
845 struct mempolicy mpol, *spol;
846 struct vm_area_struct pvma;
847
848 spol = mpol_cond_copy(&mpol,
849 mpol_shared_policy_lookup(&info->policy, index));
850
851 /* Create a pseudo vma that just contains the policy */
852 pvma.vm_start = 0;
853 pvma.vm_pgoff = index;
854 pvma.vm_ops = NULL;
855 pvma.vm_policy = spol;
856 return swapin_readahead(swap, gfp, &pvma, 0);
857 }
858
859 static struct page *shmem_alloc_page(gfp_t gfp,
860 struct shmem_inode_info *info, pgoff_t index)
861 {
862 struct vm_area_struct pvma;
863
864 /* Create a pseudo vma that just contains the policy */
865 pvma.vm_start = 0;
866 pvma.vm_pgoff = index;
867 pvma.vm_ops = NULL;
868 pvma.vm_policy = mpol_shared_policy_lookup(&info->policy, index);
869
870 /*
871 * alloc_page_vma() will drop the shared policy reference
872 */
873 return alloc_page_vma(gfp, &pvma, 0);
874 }
875 #else /* !CONFIG_NUMA */
876 #ifdef CONFIG_TMPFS
877 static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
878 {
879 }
880 #endif /* CONFIG_TMPFS */
881
882 static inline struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
883 struct shmem_inode_info *info, pgoff_t index)
884 {
885 return swapin_readahead(swap, gfp, NULL, 0);
886 }
887
888 static inline struct page *shmem_alloc_page(gfp_t gfp,
889 struct shmem_inode_info *info, pgoff_t index)
890 {
891 return alloc_page(gfp);
892 }
893 #endif /* CONFIG_NUMA */
894
895 #if !defined(CONFIG_NUMA) || !defined(CONFIG_TMPFS)
896 static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
897 {
898 return NULL;
899 }
900 #endif
901
902 /*
903 * When a page is moved from swapcache to shmem filecache (either by the
904 * usual swapin of shmem_getpage_gfp(), or by the less common swapoff of
905 * shmem_unuse_inode()), it may have been read in earlier from swap, in
906 * ignorance of the mapping it belongs to. If that mapping has special
907 * constraints (like the gma500 GEM driver, which requires RAM below 4GB),
908 * we may need to copy to a suitable page before moving to filecache.
909 *
910 * In a future release, this may well be extended to respect cpuset and
911 * NUMA mempolicy, and applied also to anonymous pages in do_swap_page();
912 * but for now it is a simple matter of zone.
913 */
914 static bool shmem_should_replace_page(struct page *page, gfp_t gfp)
915 {
916 return page_zonenum(page) > gfp_zone(gfp);
917 }
918
919 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
920 struct shmem_inode_info *info, pgoff_t index)
921 {
922 struct page *oldpage, *newpage;
923 struct address_space *swap_mapping;
924 pgoff_t swap_index;
925 int error;
926
927 oldpage = *pagep;
928 swap_index = page_private(oldpage);
929 swap_mapping = page_mapping(oldpage);
930
931 /*
932 * We have arrived here because our zones are constrained, so don't
933 * limit chance of success by further cpuset and node constraints.
934 */
935 gfp &= ~GFP_CONSTRAINT_MASK;
936 newpage = shmem_alloc_page(gfp, info, index);
937 if (!newpage)
938 return -ENOMEM;
939 VM_BUG_ON(shmem_should_replace_page(newpage, gfp));
940
941 *pagep = newpage;
942 page_cache_get(newpage);
943 copy_highpage(newpage, oldpage);
944
945 VM_BUG_ON(!PageLocked(oldpage));
946 __set_page_locked(newpage);
947 VM_BUG_ON(!PageUptodate(oldpage));
948 SetPageUptodate(newpage);
949 VM_BUG_ON(!PageSwapBacked(oldpage));
950 SetPageSwapBacked(newpage);
951 VM_BUG_ON(!swap_index);
952 set_page_private(newpage, swap_index);
953 VM_BUG_ON(!PageSwapCache(oldpage));
954 SetPageSwapCache(newpage);
955
956 /*
957 * Our caller will very soon move newpage out of swapcache, but it's
958 * a nice clean interface for us to replace oldpage by newpage there.
959 */
960 spin_lock_irq(&swap_mapping->tree_lock);
961 error = shmem_radix_tree_replace(swap_mapping, swap_index, oldpage,
962 newpage);
963 __inc_zone_page_state(newpage, NR_FILE_PAGES);
964 __dec_zone_page_state(oldpage, NR_FILE_PAGES);
965 spin_unlock_irq(&swap_mapping->tree_lock);
966 BUG_ON(error);
967
968 mem_cgroup_replace_page_cache(oldpage, newpage);
969 lru_cache_add_anon(newpage);
970
971 ClearPageSwapCache(oldpage);
972 set_page_private(oldpage, 0);
973
974 unlock_page(oldpage);
975 page_cache_release(oldpage);
976 page_cache_release(oldpage);
977 return 0;
978 }
979
980 /*
981 * shmem_getpage_gfp - find page in cache, or get from swap, or allocate
982 *
983 * If we allocate a new one we do not mark it dirty. That's up to the
984 * vm. If we swap it in we mark it dirty since we also free the swap
985 * entry since a page cannot live in both the swap and page cache
986 */
987 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
988 struct page **pagep, enum sgp_type sgp, gfp_t gfp, int *fault_type)
989 {
990 struct address_space *mapping = inode->i_mapping;
991 struct shmem_inode_info *info;
992 struct shmem_sb_info *sbinfo;
993 struct page *page;
994 swp_entry_t swap;
995 int error;
996 int once = 0;
997
998 if (index > (MAX_LFS_FILESIZE >> PAGE_CACHE_SHIFT))
999 return -EFBIG;
1000 repeat:
1001 swap.val = 0;
1002 page = find_lock_page(mapping, index);
1003 if (radix_tree_exceptional_entry(page)) {
1004 swap = radix_to_swp_entry(page);
1005 page = NULL;
1006 }
1007
1008 if (sgp != SGP_WRITE &&
1009 ((loff_t)index << PAGE_CACHE_SHIFT) >= i_size_read(inode)) {
1010 error = -EINVAL;
1011 goto failed;
1012 }
1013
1014 if (page || (sgp == SGP_READ && !swap.val)) {
1015 /*
1016 * Once we can get the page lock, it must be uptodate:
1017 * if there were an error in reading back from swap,
1018 * the page would not be inserted into the filecache.
1019 */
1020 BUG_ON(page && !PageUptodate(page));
1021 *pagep = page;
1022 return 0;
1023 }
1024
1025 /*
1026 * Fast cache lookup did not find it:
1027 * bring it back from swap or allocate.
1028 */
1029 info = SHMEM_I(inode);
1030 sbinfo = SHMEM_SB(inode->i_sb);
1031
1032 if (swap.val) {
1033 /* Look it up and read it in.. */
1034 page = lookup_swap_cache(swap);
1035 if (!page) {
1036 /* here we actually do the io */
1037 if (fault_type)
1038 *fault_type |= VM_FAULT_MAJOR;
1039 page = shmem_swapin(swap, gfp, info, index);
1040 if (!page) {
1041 error = -ENOMEM;
1042 goto failed;
1043 }
1044 }
1045
1046 /* We have to do this with page locked to prevent races */
1047 lock_page(page);
1048 if (!PageSwapCache(page) || page->mapping) {
1049 error = -EEXIST; /* try again */
1050 goto failed;
1051 }
1052 if (!PageUptodate(page)) {
1053 error = -EIO;
1054 goto failed;
1055 }
1056 wait_on_page_writeback(page);
1057
1058 if (shmem_should_replace_page(page, gfp)) {
1059 error = shmem_replace_page(&page, gfp, info, index);
1060 if (error)
1061 goto failed;
1062 }
1063
1064 error = mem_cgroup_cache_charge(page, current->mm,
1065 gfp & GFP_RECLAIM_MASK);
1066 if (!error)
1067 error = shmem_add_to_page_cache(page, mapping, index,
1068 gfp, swp_to_radix_entry(swap));
1069 if (error)
1070 goto failed;
1071
1072 spin_lock(&info->lock);
1073 info->swapped--;
1074 shmem_recalc_inode(inode);
1075 spin_unlock(&info->lock);
1076
1077 delete_from_swap_cache(page);
1078 set_page_dirty(page);
1079 swap_free(swap);
1080
1081 } else {
1082 if (shmem_acct_block(info->flags)) {
1083 error = -ENOSPC;
1084 goto failed;
1085 }
1086 if (sbinfo->max_blocks) {
1087 if (percpu_counter_compare(&sbinfo->used_blocks,
1088 sbinfo->max_blocks) >= 0) {
1089 error = -ENOSPC;
1090 goto unacct;
1091 }
1092 percpu_counter_inc(&sbinfo->used_blocks);
1093 }
1094
1095 page = shmem_alloc_page(gfp, info, index);
1096 if (!page) {
1097 error = -ENOMEM;
1098 goto decused;
1099 }
1100
1101 SetPageSwapBacked(page);
1102 __set_page_locked(page);
1103 error = mem_cgroup_cache_charge(page, current->mm,
1104 gfp & GFP_RECLAIM_MASK);
1105 if (!error)
1106 error = shmem_add_to_page_cache(page, mapping, index,
1107 gfp, NULL);
1108 if (error)
1109 goto decused;
1110 lru_cache_add_anon(page);
1111
1112 spin_lock(&info->lock);
1113 info->alloced++;
1114 inode->i_blocks += BLOCKS_PER_PAGE;
1115 shmem_recalc_inode(inode);
1116 spin_unlock(&info->lock);
1117
1118 /*
1119 * Let SGP_WRITE caller clear ends if write does not fill page
1120 */
1121 if (sgp != SGP_WRITE) {
1122 clear_highpage(page);
1123 flush_dcache_page(page);
1124 SetPageUptodate(page);
1125 }
1126 if (sgp == SGP_DIRTY)
1127 set_page_dirty(page);
1128 }
1129
1130 /* Perhaps the file has been truncated since we checked */
1131 if (sgp != SGP_WRITE &&
1132 ((loff_t)index << PAGE_CACHE_SHIFT) >= i_size_read(inode)) {
1133 error = -EINVAL;
1134 goto trunc;
1135 }
1136 *pagep = page;
1137 return 0;
1138
1139 /*
1140 * Error recovery.
1141 */
1142 trunc:
1143 ClearPageDirty(page);
1144 delete_from_page_cache(page);
1145 spin_lock(&info->lock);
1146 info->alloced--;
1147 inode->i_blocks -= BLOCKS_PER_PAGE;
1148 spin_unlock(&info->lock);
1149 decused:
1150 if (sbinfo->max_blocks)
1151 percpu_counter_add(&sbinfo->used_blocks, -1);
1152 unacct:
1153 shmem_unacct_blocks(info->flags, 1);
1154 failed:
1155 if (swap.val && error != -EINVAL) {
1156 struct page *test = find_get_page(mapping, index);
1157 if (test && !radix_tree_exceptional_entry(test))
1158 page_cache_release(test);
1159 /* Have another try if the entry has changed */
1160 if (test != swp_to_radix_entry(swap))
1161 error = -EEXIST;
1162 }
1163 if (page) {
1164 unlock_page(page);
1165 page_cache_release(page);
1166 }
1167 if (error == -ENOSPC && !once++) {
1168 info = SHMEM_I(inode);
1169 spin_lock(&info->lock);
1170 shmem_recalc_inode(inode);
1171 spin_unlock(&info->lock);
1172 goto repeat;
1173 }
1174 if (error == -EEXIST)
1175 goto repeat;
1176 return error;
1177 }
1178
1179 static int shmem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1180 {
1181 struct inode *inode = vma->vm_file->f_path.dentry->d_inode;
1182 int error;
1183 int ret = VM_FAULT_LOCKED;
1184
1185 error = shmem_getpage(inode, vmf->pgoff, &vmf->page, SGP_CACHE, &ret);
1186 if (error)
1187 return ((error == -ENOMEM) ? VM_FAULT_OOM : VM_FAULT_SIGBUS);
1188
1189 if (ret & VM_FAULT_MAJOR) {
1190 count_vm_event(PGMAJFAULT);
1191 mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT);
1192 }
1193 return ret;
1194 }
1195
1196 #ifdef CONFIG_NUMA
1197 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol)
1198 {
1199 struct inode *inode = vma->vm_file->f_path.dentry->d_inode;
1200 return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol);
1201 }
1202
1203 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
1204 unsigned long addr)
1205 {
1206 struct inode *inode = vma->vm_file->f_path.dentry->d_inode;
1207 pgoff_t index;
1208
1209 index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
1210 return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index);
1211 }
1212 #endif
1213
1214 int shmem_lock(struct file *file, int lock, struct user_struct *user)
1215 {
1216 struct inode *inode = file->f_path.dentry->d_inode;
1217 struct shmem_inode_info *info = SHMEM_I(inode);
1218 int retval = -ENOMEM;
1219
1220 spin_lock(&info->lock);
1221 if (lock && !(info->flags & VM_LOCKED)) {
1222 if (!user_shm_lock(inode->i_size, user))
1223 goto out_nomem;
1224 info->flags |= VM_LOCKED;
1225 mapping_set_unevictable(file->f_mapping);
1226 }
1227 if (!lock && (info->flags & VM_LOCKED) && user) {
1228 user_shm_unlock(inode->i_size, user);
1229 info->flags &= ~VM_LOCKED;
1230 mapping_clear_unevictable(file->f_mapping);
1231 }
1232 retval = 0;
1233
1234 out_nomem:
1235 spin_unlock(&info->lock);
1236 return retval;
1237 }
1238
1239 static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
1240 {
1241 file_accessed(file);
1242 vma->vm_ops = &shmem_vm_ops;
1243 vma->vm_flags |= VM_CAN_NONLINEAR;
1244 return 0;
1245 }
1246
1247 static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir,
1248 umode_t mode, dev_t dev, unsigned long flags)
1249 {
1250 struct inode *inode;
1251 struct shmem_inode_info *info;
1252 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
1253
1254 if (shmem_reserve_inode(sb))
1255 return NULL;
1256
1257 inode = new_inode(sb);
1258 if (inode) {
1259 inode->i_ino = get_next_ino();
1260 inode_init_owner(inode, dir, mode);
1261 inode->i_blocks = 0;
1262 inode->i_mapping->backing_dev_info = &shmem_backing_dev_info;
1263 inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
1264 inode->i_generation = get_seconds();
1265 info = SHMEM_I(inode);
1266 memset(info, 0, (char *)inode - (char *)info);
1267 spin_lock_init(&info->lock);
1268 info->flags = flags & VM_NORESERVE;
1269 INIT_LIST_HEAD(&info->swaplist);
1270 INIT_LIST_HEAD(&info->xattr_list);
1271 cache_no_acl(inode);
1272
1273 switch (mode & S_IFMT) {
1274 default:
1275 inode->i_op = &shmem_special_inode_operations;
1276 init_special_inode(inode, mode, dev);
1277 break;
1278 case S_IFREG:
1279 inode->i_mapping->a_ops = &shmem_aops;
1280 inode->i_op = &shmem_inode_operations;
1281 inode->i_fop = &shmem_file_operations;
1282 mpol_shared_policy_init(&info->policy,
1283 shmem_get_sbmpol(sbinfo));
1284 break;
1285 case S_IFDIR:
1286 inc_nlink(inode);
1287 /* Some things misbehave if size == 0 on a directory */
1288 inode->i_size = 2 * BOGO_DIRENT_SIZE;
1289 inode->i_op = &shmem_dir_inode_operations;
1290 inode->i_fop = &simple_dir_operations;
1291 break;
1292 case S_IFLNK:
1293 /*
1294 * Must not load anything in the rbtree,
1295 * mpol_free_shared_policy will not be called.
1296 */
1297 mpol_shared_policy_init(&info->policy, NULL);
1298 break;
1299 }
1300 } else
1301 shmem_free_inode(sb);
1302 return inode;
1303 }
1304
1305 #ifdef CONFIG_TMPFS
1306 static const struct inode_operations shmem_symlink_inode_operations;
1307 static const struct inode_operations shmem_short_symlink_operations;
1308
1309 #ifdef CONFIG_TMPFS_XATTR
1310 static int shmem_initxattrs(struct inode *, const struct xattr *, void *);
1311 #else
1312 #define shmem_initxattrs NULL
1313 #endif
1314
1315 static int
1316 shmem_write_begin(struct file *file, struct address_space *mapping,
1317 loff_t pos, unsigned len, unsigned flags,
1318 struct page **pagep, void **fsdata)
1319 {
1320 struct inode *inode = mapping->host;
1321 pgoff_t index = pos >> PAGE_CACHE_SHIFT;
1322 return shmem_getpage(inode, index, pagep, SGP_WRITE, NULL);
1323 }
1324
1325 static int
1326 shmem_write_end(struct file *file, struct address_space *mapping,
1327 loff_t pos, unsigned len, unsigned copied,
1328 struct page *page, void *fsdata)
1329 {
1330 struct inode *inode = mapping->host;
1331
1332 if (pos + copied > inode->i_size)
1333 i_size_write(inode, pos + copied);
1334
1335 if (!PageUptodate(page)) {
1336 if (copied < PAGE_CACHE_SIZE) {
1337 unsigned from = pos & (PAGE_CACHE_SIZE - 1);
1338 zero_user_segments(page, 0, from,
1339 from + copied, PAGE_CACHE_SIZE);
1340 }
1341 SetPageUptodate(page);
1342 }
1343 set_page_dirty(page);
1344 unlock_page(page);
1345 page_cache_release(page);
1346
1347 return copied;
1348 }
1349
1350 static void do_shmem_file_read(struct file *filp, loff_t *ppos, read_descriptor_t *desc, read_actor_t actor)
1351 {
1352 struct inode *inode = filp->f_path.dentry->d_inode;
1353 struct address_space *mapping = inode->i_mapping;
1354 pgoff_t index;
1355 unsigned long offset;
1356 enum sgp_type sgp = SGP_READ;
1357
1358 /*
1359 * Might this read be for a stacking filesystem? Then when reading
1360 * holes of a sparse file, we actually need to allocate those pages,
1361 * and even mark them dirty, so it cannot exceed the max_blocks limit.
1362 */
1363 if (segment_eq(get_fs(), KERNEL_DS))
1364 sgp = SGP_DIRTY;
1365
1366 index = *ppos >> PAGE_CACHE_SHIFT;
1367 offset = *ppos & ~PAGE_CACHE_MASK;
1368
1369 for (;;) {
1370 struct page *page = NULL;
1371 pgoff_t end_index;
1372 unsigned long nr, ret;
1373 loff_t i_size = i_size_read(inode);
1374
1375 end_index = i_size >> PAGE_CACHE_SHIFT;
1376 if (index > end_index)
1377 break;
1378 if (index == end_index) {
1379 nr = i_size & ~PAGE_CACHE_MASK;
1380 if (nr <= offset)
1381 break;
1382 }
1383
1384 desc->error = shmem_getpage(inode, index, &page, sgp, NULL);
1385 if (desc->error) {
1386 if (desc->error == -EINVAL)
1387 desc->error = 0;
1388 break;
1389 }
1390 if (page)
1391 unlock_page(page);
1392
1393 /*
1394 * We must evaluate after, since reads (unlike writes)
1395 * are called without i_mutex protection against truncate
1396 */
1397 nr = PAGE_CACHE_SIZE;
1398 i_size = i_size_read(inode);
1399 end_index = i_size >> PAGE_CACHE_SHIFT;
1400 if (index == end_index) {
1401 nr = i_size & ~PAGE_CACHE_MASK;
1402 if (nr <= offset) {
1403 if (page)
1404 page_cache_release(page);
1405 break;
1406 }
1407 }
1408 nr -= offset;
1409
1410 if (page) {
1411 /*
1412 * If users can be writing to this page using arbitrary
1413 * virtual addresses, take care about potential aliasing
1414 * before reading the page on the kernel side.
1415 */
1416 if (mapping_writably_mapped(mapping))
1417 flush_dcache_page(page);
1418 /*
1419 * Mark the page accessed if we read the beginning.
1420 */
1421 if (!offset)
1422 mark_page_accessed(page);
1423 } else {
1424 page = ZERO_PAGE(0);
1425 page_cache_get(page);
1426 }
1427
1428 /*
1429 * Ok, we have the page, and it's up-to-date, so
1430 * now we can copy it to user space...
1431 *
1432 * The actor routine returns how many bytes were actually used..
1433 * NOTE! This may not be the same as how much of a user buffer
1434 * we filled up (we may be padding etc), so we can only update
1435 * "pos" here (the actor routine has to update the user buffer
1436 * pointers and the remaining count).
1437 */
1438 ret = actor(desc, page, offset, nr);
1439 offset += ret;
1440 index += offset >> PAGE_CACHE_SHIFT;
1441 offset &= ~PAGE_CACHE_MASK;
1442
1443 page_cache_release(page);
1444 if (ret != nr || !desc->count)
1445 break;
1446
1447 cond_resched();
1448 }
1449
1450 *ppos = ((loff_t) index << PAGE_CACHE_SHIFT) + offset;
1451 file_accessed(filp);
1452 }
1453
1454 static ssize_t shmem_file_aio_read(struct kiocb *iocb,
1455 const struct iovec *iov, unsigned long nr_segs, loff_t pos)
1456 {
1457 struct file *filp = iocb->ki_filp;
1458 ssize_t retval;
1459 unsigned long seg;
1460 size_t count;
1461 loff_t *ppos = &iocb->ki_pos;
1462
1463 retval = generic_segment_checks(iov, &nr_segs, &count, VERIFY_WRITE);
1464 if (retval)
1465 return retval;
1466
1467 for (seg = 0; seg < nr_segs; seg++) {
1468 read_descriptor_t desc;
1469
1470 desc.written = 0;
1471 desc.arg.buf = iov[seg].iov_base;
1472 desc.count = iov[seg].iov_len;
1473 if (desc.count == 0)
1474 continue;
1475 desc.error = 0;
1476 do_shmem_file_read(filp, ppos, &desc, file_read_actor);
1477 retval += desc.written;
1478 if (desc.error) {
1479 retval = retval ?: desc.error;
1480 break;
1481 }
1482 if (desc.count > 0)
1483 break;
1484 }
1485 return retval;
1486 }
1487
1488 static ssize_t shmem_file_splice_read(struct file *in, loff_t *ppos,
1489 struct pipe_inode_info *pipe, size_t len,
1490 unsigned int flags)
1491 {
1492 struct address_space *mapping = in->f_mapping;
1493 struct inode *inode = mapping->host;
1494 unsigned int loff, nr_pages, req_pages;
1495 struct page *pages[PIPE_DEF_BUFFERS];
1496 struct partial_page partial[PIPE_DEF_BUFFERS];
1497 struct page *page;
1498 pgoff_t index, end_index;
1499 loff_t isize, left;
1500 int error, page_nr;
1501 struct splice_pipe_desc spd = {
1502 .pages = pages,
1503 .partial = partial,
1504 .flags = flags,
1505 .ops = &page_cache_pipe_buf_ops,
1506 .spd_release = spd_release_page,
1507 };
1508
1509 isize = i_size_read(inode);
1510 if (unlikely(*ppos >= isize))
1511 return 0;
1512
1513 left = isize - *ppos;
1514 if (unlikely(left < len))
1515 len = left;
1516
1517 if (splice_grow_spd(pipe, &spd))
1518 return -ENOMEM;
1519
1520 index = *ppos >> PAGE_CACHE_SHIFT;
1521 loff = *ppos & ~PAGE_CACHE_MASK;
1522 req_pages = (len + loff + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1523 nr_pages = min(req_pages, pipe->buffers);
1524
1525 spd.nr_pages = find_get_pages_contig(mapping, index,
1526 nr_pages, spd.pages);
1527 index += spd.nr_pages;
1528 error = 0;
1529
1530 while (spd.nr_pages < nr_pages) {
1531 error = shmem_getpage(inode, index, &page, SGP_CACHE, NULL);
1532 if (error)
1533 break;
1534 unlock_page(page);
1535 spd.pages[spd.nr_pages++] = page;
1536 index++;
1537 }
1538
1539 index = *ppos >> PAGE_CACHE_SHIFT;
1540 nr_pages = spd.nr_pages;
1541 spd.nr_pages = 0;
1542
1543 for (page_nr = 0; page_nr < nr_pages; page_nr++) {
1544 unsigned int this_len;
1545
1546 if (!len)
1547 break;
1548
1549 this_len = min_t(unsigned long, len, PAGE_CACHE_SIZE - loff);
1550 page = spd.pages[page_nr];
1551
1552 if (!PageUptodate(page) || page->mapping != mapping) {
1553 error = shmem_getpage(inode, index, &page,
1554 SGP_CACHE, NULL);
1555 if (error)
1556 break;
1557 unlock_page(page);
1558 page_cache_release(spd.pages[page_nr]);
1559 spd.pages[page_nr] = page;
1560 }
1561
1562 isize = i_size_read(inode);
1563 end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
1564 if (unlikely(!isize || index > end_index))
1565 break;
1566
1567 if (end_index == index) {
1568 unsigned int plen;
1569
1570 plen = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
1571 if (plen <= loff)
1572 break;
1573
1574 this_len = min(this_len, plen - loff);
1575 len = this_len;
1576 }
1577
1578 spd.partial[page_nr].offset = loff;
1579 spd.partial[page_nr].len = this_len;
1580 len -= this_len;
1581 loff = 0;
1582 spd.nr_pages++;
1583 index++;
1584 }
1585
1586 while (page_nr < nr_pages)
1587 page_cache_release(spd.pages[page_nr++]);
1588
1589 if (spd.nr_pages)
1590 error = splice_to_pipe(pipe, &spd);
1591
1592 splice_shrink_spd(pipe, &spd);
1593
1594 if (error > 0) {
1595 *ppos += error;
1596 file_accessed(in);
1597 }
1598 return error;
1599 }
1600
1601 static long shmem_fallocate(struct file *file, int mode, loff_t offset,
1602 loff_t len)
1603 {
1604 struct inode *inode = file->f_path.dentry->d_inode;
1605 int error = -EOPNOTSUPP;
1606
1607 mutex_lock(&inode->i_mutex);
1608
1609 if (mode & FALLOC_FL_PUNCH_HOLE) {
1610 struct address_space *mapping = file->f_mapping;
1611 loff_t unmap_start = round_up(offset, PAGE_SIZE);
1612 loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1;
1613
1614 if ((u64)unmap_end > (u64)unmap_start)
1615 unmap_mapping_range(mapping, unmap_start,
1616 1 + unmap_end - unmap_start, 0);
1617 shmem_truncate_range(inode, offset, offset + len - 1);
1618 /* No need to unmap again: hole-punching leaves COWed pages */
1619 error = 0;
1620 }
1621
1622 mutex_unlock(&inode->i_mutex);
1623 return error;
1624 }
1625
1626 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
1627 {
1628 struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
1629
1630 buf->f_type = TMPFS_MAGIC;
1631 buf->f_bsize = PAGE_CACHE_SIZE;
1632 buf->f_namelen = NAME_MAX;
1633 if (sbinfo->max_blocks) {
1634 buf->f_blocks = sbinfo->max_blocks;
1635 buf->f_bavail =
1636 buf->f_bfree = sbinfo->max_blocks -
1637 percpu_counter_sum(&sbinfo->used_blocks);
1638 }
1639 if (sbinfo->max_inodes) {
1640 buf->f_files = sbinfo->max_inodes;
1641 buf->f_ffree = sbinfo->free_inodes;
1642 }
1643 /* else leave those fields 0 like simple_statfs */
1644 return 0;
1645 }
1646
1647 /*
1648 * File creation. Allocate an inode, and we're done..
1649 */
1650 static int
1651 shmem_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
1652 {
1653 struct inode *inode;
1654 int error = -ENOSPC;
1655
1656 inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE);
1657 if (inode) {
1658 error = security_inode_init_security(inode, dir,
1659 &dentry->d_name,
1660 shmem_initxattrs, NULL);
1661 if (error) {
1662 if (error != -EOPNOTSUPP) {
1663 iput(inode);
1664 return error;
1665 }
1666 }
1667 #ifdef CONFIG_TMPFS_POSIX_ACL
1668 error = generic_acl_init(inode, dir);
1669 if (error) {
1670 iput(inode);
1671 return error;
1672 }
1673 #else
1674 error = 0;
1675 #endif
1676 dir->i_size += BOGO_DIRENT_SIZE;
1677 dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1678 d_instantiate(dentry, inode);
1679 dget(dentry); /* Extra count - pin the dentry in core */
1680 }
1681 return error;
1682 }
1683
1684 static int shmem_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
1685 {
1686 int error;
1687
1688 if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0)))
1689 return error;
1690 inc_nlink(dir);
1691 return 0;
1692 }
1693
1694 static int shmem_create(struct inode *dir, struct dentry *dentry, umode_t mode,
1695 struct nameidata *nd)
1696 {
1697 return shmem_mknod(dir, dentry, mode | S_IFREG, 0);
1698 }
1699
1700 /*
1701 * Link a file..
1702 */
1703 static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
1704 {
1705 struct inode *inode = old_dentry->d_inode;
1706 int ret;
1707
1708 /*
1709 * No ordinary (disk based) filesystem counts links as inodes;
1710 * but each new link needs a new dentry, pinning lowmem, and
1711 * tmpfs dentries cannot be pruned until they are unlinked.
1712 */
1713 ret = shmem_reserve_inode(inode->i_sb);
1714 if (ret)
1715 goto out;
1716
1717 dir->i_size += BOGO_DIRENT_SIZE;
1718 inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1719 inc_nlink(inode);
1720 ihold(inode); /* New dentry reference */
1721 dget(dentry); /* Extra pinning count for the created dentry */
1722 d_instantiate(dentry, inode);
1723 out:
1724 return ret;
1725 }
1726
1727 static int shmem_unlink(struct inode *dir, struct dentry *dentry)
1728 {
1729 struct inode *inode = dentry->d_inode;
1730
1731 if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
1732 shmem_free_inode(inode->i_sb);
1733
1734 dir->i_size -= BOGO_DIRENT_SIZE;
1735 inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1736 drop_nlink(inode);
1737 dput(dentry); /* Undo the count from "create" - this does all the work */
1738 return 0;
1739 }
1740
1741 static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
1742 {
1743 if (!simple_empty(dentry))
1744 return -ENOTEMPTY;
1745
1746 drop_nlink(dentry->d_inode);
1747 drop_nlink(dir);
1748 return shmem_unlink(dir, dentry);
1749 }
1750
1751 /*
1752 * The VFS layer already does all the dentry stuff for rename,
1753 * we just have to decrement the usage count for the target if
1754 * it exists so that the VFS layer correctly free's it when it
1755 * gets overwritten.
1756 */
1757 static int shmem_rename(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry)
1758 {
1759 struct inode *inode = old_dentry->d_inode;
1760 int they_are_dirs = S_ISDIR(inode->i_mode);
1761
1762 if (!simple_empty(new_dentry))
1763 return -ENOTEMPTY;
1764
1765 if (new_dentry->d_inode) {
1766 (void) shmem_unlink(new_dir, new_dentry);
1767 if (they_are_dirs)
1768 drop_nlink(old_dir);
1769 } else if (they_are_dirs) {
1770 drop_nlink(old_dir);
1771 inc_nlink(new_dir);
1772 }
1773
1774 old_dir->i_size -= BOGO_DIRENT_SIZE;
1775 new_dir->i_size += BOGO_DIRENT_SIZE;
1776 old_dir->i_ctime = old_dir->i_mtime =
1777 new_dir->i_ctime = new_dir->i_mtime =
1778 inode->i_ctime = CURRENT_TIME;
1779 return 0;
1780 }
1781
1782 static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
1783 {
1784 int error;
1785 int len;
1786 struct inode *inode;
1787 struct page *page;
1788 char *kaddr;
1789 struct shmem_inode_info *info;
1790
1791 len = strlen(symname) + 1;
1792 if (len > PAGE_CACHE_SIZE)
1793 return -ENAMETOOLONG;
1794
1795 inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK|S_IRWXUGO, 0, VM_NORESERVE);
1796 if (!inode)
1797 return -ENOSPC;
1798
1799 error = security_inode_init_security(inode, dir, &dentry->d_name,
1800 shmem_initxattrs, NULL);
1801 if (error) {
1802 if (error != -EOPNOTSUPP) {
1803 iput(inode);
1804 return error;
1805 }
1806 error = 0;
1807 }
1808
1809 info = SHMEM_I(inode);
1810 inode->i_size = len-1;
1811 if (len <= SHORT_SYMLINK_LEN) {
1812 info->symlink = kmemdup(symname, len, GFP_KERNEL);
1813 if (!info->symlink) {
1814 iput(inode);
1815 return -ENOMEM;
1816 }
1817 inode->i_op = &shmem_short_symlink_operations;
1818 } else {
1819 error = shmem_getpage(inode, 0, &page, SGP_WRITE, NULL);
1820 if (error) {
1821 iput(inode);
1822 return error;
1823 }
1824 inode->i_mapping->a_ops = &shmem_aops;
1825 inode->i_op = &shmem_symlink_inode_operations;
1826 kaddr = kmap_atomic(page);
1827 memcpy(kaddr, symname, len);
1828 kunmap_atomic(kaddr);
1829 SetPageUptodate(page);
1830 set_page_dirty(page);
1831 unlock_page(page);
1832 page_cache_release(page);
1833 }
1834 dir->i_size += BOGO_DIRENT_SIZE;
1835 dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1836 d_instantiate(dentry, inode);
1837 dget(dentry);
1838 return 0;
1839 }
1840
1841 static void *shmem_follow_short_symlink(struct dentry *dentry, struct nameidata *nd)
1842 {
1843 nd_set_link(nd, SHMEM_I(dentry->d_inode)->symlink);
1844 return NULL;
1845 }
1846
1847 static void *shmem_follow_link(struct dentry *dentry, struct nameidata *nd)
1848 {
1849 struct page *page = NULL;
1850 int error = shmem_getpage(dentry->d_inode, 0, &page, SGP_READ, NULL);
1851 nd_set_link(nd, error ? ERR_PTR(error) : kmap(page));
1852 if (page)
1853 unlock_page(page);
1854 return page;
1855 }
1856
1857 static void shmem_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie)
1858 {
1859 if (!IS_ERR(nd_get_link(nd))) {
1860 struct page *page = cookie;
1861 kunmap(page);
1862 mark_page_accessed(page);
1863 page_cache_release(page);
1864 }
1865 }
1866
1867 #ifdef CONFIG_TMPFS_XATTR
1868 /*
1869 * Superblocks without xattr inode operations may get some security.* xattr
1870 * support from the LSM "for free". As soon as we have any other xattrs
1871 * like ACLs, we also need to implement the security.* handlers at
1872 * filesystem level, though.
1873 */
1874
1875 /*
1876 * Allocate new xattr and copy in the value; but leave the name to callers.
1877 */
1878 static struct shmem_xattr *shmem_xattr_alloc(const void *value, size_t size)
1879 {
1880 struct shmem_xattr *new_xattr;
1881 size_t len;
1882
1883 /* wrap around? */
1884 len = sizeof(*new_xattr) + size;
1885 if (len <= sizeof(*new_xattr))
1886 return NULL;
1887
1888 new_xattr = kmalloc(len, GFP_KERNEL);
1889 if (!new_xattr)
1890 return NULL;
1891
1892 new_xattr->size = size;
1893 memcpy(new_xattr->value, value, size);
1894 return new_xattr;
1895 }
1896
1897 /*
1898 * Callback for security_inode_init_security() for acquiring xattrs.
1899 */
1900 static int shmem_initxattrs(struct inode *inode,
1901 const struct xattr *xattr_array,
1902 void *fs_info)
1903 {
1904 struct shmem_inode_info *info = SHMEM_I(inode);
1905 const struct xattr *xattr;
1906 struct shmem_xattr *new_xattr;
1907 size_t len;
1908
1909 for (xattr = xattr_array; xattr->name != NULL; xattr++) {
1910 new_xattr = shmem_xattr_alloc(xattr->value, xattr->value_len);
1911 if (!new_xattr)
1912 return -ENOMEM;
1913
1914 len = strlen(xattr->name) + 1;
1915 new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len,
1916 GFP_KERNEL);
1917 if (!new_xattr->name) {
1918 kfree(new_xattr);
1919 return -ENOMEM;
1920 }
1921
1922 memcpy(new_xattr->name, XATTR_SECURITY_PREFIX,
1923 XATTR_SECURITY_PREFIX_LEN);
1924 memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN,
1925 xattr->name, len);
1926
1927 spin_lock(&info->lock);
1928 list_add(&new_xattr->list, &info->xattr_list);
1929 spin_unlock(&info->lock);
1930 }
1931
1932 return 0;
1933 }
1934
1935 static int shmem_xattr_get(struct dentry *dentry, const char *name,
1936 void *buffer, size_t size)
1937 {
1938 struct shmem_inode_info *info;
1939 struct shmem_xattr *xattr;
1940 int ret = -ENODATA;
1941
1942 info = SHMEM_I(dentry->d_inode);
1943
1944 spin_lock(&info->lock);
1945 list_for_each_entry(xattr, &info->xattr_list, list) {
1946 if (strcmp(name, xattr->name))
1947 continue;
1948
1949 ret = xattr->size;
1950 if (buffer) {
1951 if (size < xattr->size)
1952 ret = -ERANGE;
1953 else
1954 memcpy(buffer, xattr->value, xattr->size);
1955 }
1956 break;
1957 }
1958 spin_unlock(&info->lock);
1959 return ret;
1960 }
1961
1962 static int shmem_xattr_set(struct inode *inode, const char *name,
1963 const void *value, size_t size, int flags)
1964 {
1965 struct shmem_inode_info *info = SHMEM_I(inode);
1966 struct shmem_xattr *xattr;
1967 struct shmem_xattr *new_xattr = NULL;
1968 int err = 0;
1969
1970 /* value == NULL means remove */
1971 if (value) {
1972 new_xattr = shmem_xattr_alloc(value, size);
1973 if (!new_xattr)
1974 return -ENOMEM;
1975
1976 new_xattr->name = kstrdup(name, GFP_KERNEL);
1977 if (!new_xattr->name) {
1978 kfree(new_xattr);
1979 return -ENOMEM;
1980 }
1981 }
1982
1983 spin_lock(&info->lock);
1984 list_for_each_entry(xattr, &info->xattr_list, list) {
1985 if (!strcmp(name, xattr->name)) {
1986 if (flags & XATTR_CREATE) {
1987 xattr = new_xattr;
1988 err = -EEXIST;
1989 } else if (new_xattr) {
1990 list_replace(&xattr->list, &new_xattr->list);
1991 } else {
1992 list_del(&xattr->list);
1993 }
1994 goto out;
1995 }
1996 }
1997 if (flags & XATTR_REPLACE) {
1998 xattr = new_xattr;
1999 err = -ENODATA;
2000 } else {
2001 list_add(&new_xattr->list, &info->xattr_list);
2002 xattr = NULL;
2003 }
2004 out:
2005 spin_unlock(&info->lock);
2006 if (xattr)
2007 kfree(xattr->name);
2008 kfree(xattr);
2009 return err;
2010 }
2011
2012 static const struct xattr_handler *shmem_xattr_handlers[] = {
2013 #ifdef CONFIG_TMPFS_POSIX_ACL
2014 &generic_acl_access_handler,
2015 &generic_acl_default_handler,
2016 #endif
2017 NULL
2018 };
2019
2020 static int shmem_xattr_validate(const char *name)
2021 {
2022 struct { const char *prefix; size_t len; } arr[] = {
2023 { XATTR_SECURITY_PREFIX, XATTR_SECURITY_PREFIX_LEN },
2024 { XATTR_TRUSTED_PREFIX, XATTR_TRUSTED_PREFIX_LEN }
2025 };
2026 int i;
2027
2028 for (i = 0; i < ARRAY_SIZE(arr); i++) {
2029 size_t preflen = arr[i].len;
2030 if (strncmp(name, arr[i].prefix, preflen) == 0) {
2031 if (!name[preflen])
2032 return -EINVAL;
2033 return 0;
2034 }
2035 }
2036 return -EOPNOTSUPP;
2037 }
2038
2039 static ssize_t shmem_getxattr(struct dentry *dentry, const char *name,
2040 void *buffer, size_t size)
2041 {
2042 int err;
2043
2044 /*
2045 * If this is a request for a synthetic attribute in the system.*
2046 * namespace use the generic infrastructure to resolve a handler
2047 * for it via sb->s_xattr.
2048 */
2049 if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN))
2050 return generic_getxattr(dentry, name, buffer, size);
2051
2052 err = shmem_xattr_validate(name);
2053 if (err)
2054 return err;
2055
2056 return shmem_xattr_get(dentry, name, buffer, size);
2057 }
2058
2059 static int shmem_setxattr(struct dentry *dentry, const char *name,
2060 const void *value, size_t size, int flags)
2061 {
2062 int err;
2063
2064 /*
2065 * If this is a request for a synthetic attribute in the system.*
2066 * namespace use the generic infrastructure to resolve a handler
2067 * for it via sb->s_xattr.
2068 */
2069 if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN))
2070 return generic_setxattr(dentry, name, value, size, flags);
2071
2072 err = shmem_xattr_validate(name);
2073 if (err)
2074 return err;
2075
2076 if (size == 0)
2077 value = ""; /* empty EA, do not remove */
2078
2079 return shmem_xattr_set(dentry->d_inode, name, value, size, flags);
2080
2081 }
2082
2083 static int shmem_removexattr(struct dentry *dentry, const char *name)
2084 {
2085 int err;
2086
2087 /*
2088 * If this is a request for a synthetic attribute in the system.*
2089 * namespace use the generic infrastructure to resolve a handler
2090 * for it via sb->s_xattr.
2091 */
2092 if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN))
2093 return generic_removexattr(dentry, name);
2094
2095 err = shmem_xattr_validate(name);
2096 if (err)
2097 return err;
2098
2099 return shmem_xattr_set(dentry->d_inode, name, NULL, 0, XATTR_REPLACE);
2100 }
2101
2102 static bool xattr_is_trusted(const char *name)
2103 {
2104 return !strncmp(name, XATTR_TRUSTED_PREFIX, XATTR_TRUSTED_PREFIX_LEN);
2105 }
2106
2107 static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size)
2108 {
2109 bool trusted = capable(CAP_SYS_ADMIN);
2110 struct shmem_xattr *xattr;
2111 struct shmem_inode_info *info;
2112 size_t used = 0;
2113
2114 info = SHMEM_I(dentry->d_inode);
2115
2116 spin_lock(&info->lock);
2117 list_for_each_entry(xattr, &info->xattr_list, list) {
2118 size_t len;
2119
2120 /* skip "trusted." attributes for unprivileged callers */
2121 if (!trusted && xattr_is_trusted(xattr->name))
2122 continue;
2123
2124 len = strlen(xattr->name) + 1;
2125 used += len;
2126 if (buffer) {
2127 if (size < used) {
2128 used = -ERANGE;
2129 break;
2130 }
2131 memcpy(buffer, xattr->name, len);
2132 buffer += len;
2133 }
2134 }
2135 spin_unlock(&info->lock);
2136
2137 return used;
2138 }
2139 #endif /* CONFIG_TMPFS_XATTR */
2140
2141 static const struct inode_operations shmem_short_symlink_operations = {
2142 .readlink = generic_readlink,
2143 .follow_link = shmem_follow_short_symlink,
2144 #ifdef CONFIG_TMPFS_XATTR
2145 .setxattr = shmem_setxattr,
2146 .getxattr = shmem_getxattr,
2147 .listxattr = shmem_listxattr,
2148 .removexattr = shmem_removexattr,
2149 #endif
2150 };
2151
2152 static const struct inode_operations shmem_symlink_inode_operations = {
2153 .readlink = generic_readlink,
2154 .follow_link = shmem_follow_link,
2155 .put_link = shmem_put_link,
2156 #ifdef CONFIG_TMPFS_XATTR
2157 .setxattr = shmem_setxattr,
2158 .getxattr = shmem_getxattr,
2159 .listxattr = shmem_listxattr,
2160 .removexattr = shmem_removexattr,
2161 #endif
2162 };
2163
2164 static struct dentry *shmem_get_parent(struct dentry *child)
2165 {
2166 return ERR_PTR(-ESTALE);
2167 }
2168
2169 static int shmem_match(struct inode *ino, void *vfh)
2170 {
2171 __u32 *fh = vfh;
2172 __u64 inum = fh[2];
2173 inum = (inum << 32) | fh[1];
2174 return ino->i_ino == inum && fh[0] == ino->i_generation;
2175 }
2176
2177 static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
2178 struct fid *fid, int fh_len, int fh_type)
2179 {
2180 struct inode *inode;
2181 struct dentry *dentry = NULL;
2182 u64 inum = fid->raw[2];
2183 inum = (inum << 32) | fid->raw[1];
2184
2185 if (fh_len < 3)
2186 return NULL;
2187
2188 inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
2189 shmem_match, fid->raw);
2190 if (inode) {
2191 dentry = d_find_alias(inode);
2192 iput(inode);
2193 }
2194
2195 return dentry;
2196 }
2197
2198 static int shmem_encode_fh(struct dentry *dentry, __u32 *fh, int *len,
2199 int connectable)
2200 {
2201 struct inode *inode = dentry->d_inode;
2202
2203 if (*len < 3) {
2204 *len = 3;
2205 return 255;
2206 }
2207
2208 if (inode_unhashed(inode)) {
2209 /* Unfortunately insert_inode_hash is not idempotent,
2210 * so as we hash inodes here rather than at creation
2211 * time, we need a lock to ensure we only try
2212 * to do it once
2213 */
2214 static DEFINE_SPINLOCK(lock);
2215 spin_lock(&lock);
2216 if (inode_unhashed(inode))
2217 __insert_inode_hash(inode,
2218 inode->i_ino + inode->i_generation);
2219 spin_unlock(&lock);
2220 }
2221
2222 fh[0] = inode->i_generation;
2223 fh[1] = inode->i_ino;
2224 fh[2] = ((__u64)inode->i_ino) >> 32;
2225
2226 *len = 3;
2227 return 1;
2228 }
2229
2230 static const struct export_operations shmem_export_ops = {
2231 .get_parent = shmem_get_parent,
2232 .encode_fh = shmem_encode_fh,
2233 .fh_to_dentry = shmem_fh_to_dentry,
2234 };
2235
2236 static int shmem_parse_options(char *options, struct shmem_sb_info *sbinfo,
2237 bool remount)
2238 {
2239 char *this_char, *value, *rest;
2240 uid_t uid;
2241 gid_t gid;
2242
2243 while (options != NULL) {
2244 this_char = options;
2245 for (;;) {
2246 /*
2247 * NUL-terminate this option: unfortunately,
2248 * mount options form a comma-separated list,
2249 * but mpol's nodelist may also contain commas.
2250 */
2251 options = strchr(options, ',');
2252 if (options == NULL)
2253 break;
2254 options++;
2255 if (!isdigit(*options)) {
2256 options[-1] = '\0';
2257 break;
2258 }
2259 }
2260 if (!*this_char)
2261 continue;
2262 if ((value = strchr(this_char,'=')) != NULL) {
2263 *value++ = 0;
2264 } else {
2265 printk(KERN_ERR
2266 "tmpfs: No value for mount option '%s'\n",
2267 this_char);
2268 return 1;
2269 }
2270
2271 if (!strcmp(this_char,"size")) {
2272 unsigned long long size;
2273 size = memparse(value,&rest);
2274 if (*rest == '%') {
2275 size <<= PAGE_SHIFT;
2276 size *= totalram_pages;
2277 do_div(size, 100);
2278 rest++;
2279 }
2280 if (*rest)
2281 goto bad_val;
2282 sbinfo->max_blocks =
2283 DIV_ROUND_UP(size, PAGE_CACHE_SIZE);
2284 } else if (!strcmp(this_char,"nr_blocks")) {
2285 sbinfo->max_blocks = memparse(value, &rest);
2286 if (*rest)
2287 goto bad_val;
2288 } else if (!strcmp(this_char,"nr_inodes")) {
2289 sbinfo->max_inodes = memparse(value, &rest);
2290 if (*rest)
2291 goto bad_val;
2292 } else if (!strcmp(this_char,"mode")) {
2293 if (remount)
2294 continue;
2295 sbinfo->mode = simple_strtoul(value, &rest, 8) & 07777;
2296 if (*rest)
2297 goto bad_val;
2298 } else if (!strcmp(this_char,"uid")) {
2299 if (remount)
2300 continue;
2301 uid = simple_strtoul(value, &rest, 0);
2302 if (*rest)
2303 goto bad_val;
2304 sbinfo->uid = make_kuid(current_user_ns(), uid);
2305 if (!uid_valid(sbinfo->uid))
2306 goto bad_val;
2307 } else if (!strcmp(this_char,"gid")) {
2308 if (remount)
2309 continue;
2310 gid = simple_strtoul(value, &rest, 0);
2311 if (*rest)
2312 goto bad_val;
2313 sbinfo->gid = make_kgid(current_user_ns(), gid);
2314 if (!gid_valid(sbinfo->gid))
2315 goto bad_val;
2316 } else if (!strcmp(this_char,"mpol")) {
2317 if (mpol_parse_str(value, &sbinfo->mpol, 1))
2318 goto bad_val;
2319 } else {
2320 printk(KERN_ERR "tmpfs: Bad mount option %s\n",
2321 this_char);
2322 return 1;
2323 }
2324 }
2325 return 0;
2326
2327 bad_val:
2328 printk(KERN_ERR "tmpfs: Bad value '%s' for mount option '%s'\n",
2329 value, this_char);
2330 return 1;
2331
2332 }
2333
2334 static int shmem_remount_fs(struct super_block *sb, int *flags, char *data)
2335 {
2336 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2337 struct shmem_sb_info config = *sbinfo;
2338 unsigned long inodes;
2339 int error = -EINVAL;
2340
2341 if (shmem_parse_options(data, &config, true))
2342 return error;
2343
2344 spin_lock(&sbinfo->stat_lock);
2345 inodes = sbinfo->max_inodes - sbinfo->free_inodes;
2346 if (percpu_counter_compare(&sbinfo->used_blocks, config.max_blocks) > 0)
2347 goto out;
2348 if (config.max_inodes < inodes)
2349 goto out;
2350 /*
2351 * Those tests disallow limited->unlimited while any are in use;
2352 * but we must separately disallow unlimited->limited, because
2353 * in that case we have no record of how much is already in use.
2354 */
2355 if (config.max_blocks && !sbinfo->max_blocks)
2356 goto out;
2357 if (config.max_inodes && !sbinfo->max_inodes)
2358 goto out;
2359
2360 error = 0;
2361 sbinfo->max_blocks = config.max_blocks;
2362 sbinfo->max_inodes = config.max_inodes;
2363 sbinfo->free_inodes = config.max_inodes - inodes;
2364
2365 mpol_put(sbinfo->mpol);
2366 sbinfo->mpol = config.mpol; /* transfers initial ref */
2367 out:
2368 spin_unlock(&sbinfo->stat_lock);
2369 return error;
2370 }
2371
2372 static int shmem_show_options(struct seq_file *seq, struct dentry *root)
2373 {
2374 struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb);
2375
2376 if (sbinfo->max_blocks != shmem_default_max_blocks())
2377 seq_printf(seq, ",size=%luk",
2378 sbinfo->max_blocks << (PAGE_CACHE_SHIFT - 10));
2379 if (sbinfo->max_inodes != shmem_default_max_inodes())
2380 seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
2381 if (sbinfo->mode != (S_IRWXUGO | S_ISVTX))
2382 seq_printf(seq, ",mode=%03ho", sbinfo->mode);
2383 if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
2384 seq_printf(seq, ",uid=%u",
2385 from_kuid_munged(&init_user_ns, sbinfo->uid));
2386 if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
2387 seq_printf(seq, ",gid=%u",
2388 from_kgid_munged(&init_user_ns, sbinfo->gid));
2389 shmem_show_mpol(seq, sbinfo->mpol);
2390 return 0;
2391 }
2392 #endif /* CONFIG_TMPFS */
2393
2394 static void shmem_put_super(struct super_block *sb)
2395 {
2396 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2397
2398 percpu_counter_destroy(&sbinfo->used_blocks);
2399 kfree(sbinfo);
2400 sb->s_fs_info = NULL;
2401 }
2402
2403 int shmem_fill_super(struct super_block *sb, void *data, int silent)
2404 {
2405 struct inode *inode;
2406 struct shmem_sb_info *sbinfo;
2407 int err = -ENOMEM;
2408
2409 /* Round up to L1_CACHE_BYTES to resist false sharing */
2410 sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
2411 L1_CACHE_BYTES), GFP_KERNEL);
2412 if (!sbinfo)
2413 return -ENOMEM;
2414
2415 sbinfo->mode = S_IRWXUGO | S_ISVTX;
2416 sbinfo->uid = current_fsuid();
2417 sbinfo->gid = current_fsgid();
2418 sb->s_fs_info = sbinfo;
2419
2420 #ifdef CONFIG_TMPFS
2421 /*
2422 * Per default we only allow half of the physical ram per
2423 * tmpfs instance, limiting inodes to one per page of lowmem;
2424 * but the internal instance is left unlimited.
2425 */
2426 if (!(sb->s_flags & MS_NOUSER)) {
2427 sbinfo->max_blocks = shmem_default_max_blocks();
2428 sbinfo->max_inodes = shmem_default_max_inodes();
2429 if (shmem_parse_options(data, sbinfo, false)) {
2430 err = -EINVAL;
2431 goto failed;
2432 }
2433 }
2434 sb->s_export_op = &shmem_export_ops;
2435 sb->s_flags |= MS_NOSEC;
2436 #else
2437 sb->s_flags |= MS_NOUSER;
2438 #endif
2439
2440 spin_lock_init(&sbinfo->stat_lock);
2441 if (percpu_counter_init(&sbinfo->used_blocks, 0))
2442 goto failed;
2443 sbinfo->free_inodes = sbinfo->max_inodes;
2444
2445 sb->s_maxbytes = MAX_LFS_FILESIZE;
2446 sb->s_blocksize = PAGE_CACHE_SIZE;
2447 sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
2448 sb->s_magic = TMPFS_MAGIC;
2449 sb->s_op = &shmem_ops;
2450 sb->s_time_gran = 1;
2451 #ifdef CONFIG_TMPFS_XATTR
2452 sb->s_xattr = shmem_xattr_handlers;
2453 #endif
2454 #ifdef CONFIG_TMPFS_POSIX_ACL
2455 sb->s_flags |= MS_POSIXACL;
2456 #endif
2457
2458 inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
2459 if (!inode)
2460 goto failed;
2461 inode->i_uid = sbinfo->uid;
2462 inode->i_gid = sbinfo->gid;
2463 sb->s_root = d_make_root(inode);
2464 if (!sb->s_root)
2465 goto failed;
2466 return 0;
2467
2468 failed:
2469 shmem_put_super(sb);
2470 return err;
2471 }
2472
2473 static struct kmem_cache *shmem_inode_cachep;
2474
2475 static struct inode *shmem_alloc_inode(struct super_block *sb)
2476 {
2477 struct shmem_inode_info *info;
2478 info = kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL);
2479 if (!info)
2480 return NULL;
2481 return &info->vfs_inode;
2482 }
2483
2484 static void shmem_destroy_callback(struct rcu_head *head)
2485 {
2486 struct inode *inode = container_of(head, struct inode, i_rcu);
2487 kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
2488 }
2489
2490 static void shmem_destroy_inode(struct inode *inode)
2491 {
2492 if (S_ISREG(inode->i_mode))
2493 mpol_free_shared_policy(&SHMEM_I(inode)->policy);
2494 call_rcu(&inode->i_rcu, shmem_destroy_callback);
2495 }
2496
2497 static void shmem_init_inode(void *foo)
2498 {
2499 struct shmem_inode_info *info = foo;
2500 inode_init_once(&info->vfs_inode);
2501 }
2502
2503 static int shmem_init_inodecache(void)
2504 {
2505 shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
2506 sizeof(struct shmem_inode_info),
2507 0, SLAB_PANIC, shmem_init_inode);
2508 return 0;
2509 }
2510
2511 static void shmem_destroy_inodecache(void)
2512 {
2513 kmem_cache_destroy(shmem_inode_cachep);
2514 }
2515
2516 static const struct address_space_operations shmem_aops = {
2517 .writepage = shmem_writepage,
2518 .set_page_dirty = __set_page_dirty_no_writeback,
2519 #ifdef CONFIG_TMPFS
2520 .write_begin = shmem_write_begin,
2521 .write_end = shmem_write_end,
2522 #endif
2523 .migratepage = migrate_page,
2524 .error_remove_page = generic_error_remove_page,
2525 };
2526
2527 static const struct file_operations shmem_file_operations = {
2528 .mmap = shmem_mmap,
2529 #ifdef CONFIG_TMPFS
2530 .llseek = generic_file_llseek,
2531 .read = do_sync_read,
2532 .write = do_sync_write,
2533 .aio_read = shmem_file_aio_read,
2534 .aio_write = generic_file_aio_write,
2535 .fsync = noop_fsync,
2536 .splice_read = shmem_file_splice_read,
2537 .splice_write = generic_file_splice_write,
2538 .fallocate = shmem_fallocate,
2539 #endif
2540 };
2541
2542 static const struct inode_operations shmem_inode_operations = {
2543 .setattr = shmem_setattr,
2544 #ifdef CONFIG_TMPFS_XATTR
2545 .setxattr = shmem_setxattr,
2546 .getxattr = shmem_getxattr,
2547 .listxattr = shmem_listxattr,
2548 .removexattr = shmem_removexattr,
2549 #endif
2550 };
2551
2552 static const struct inode_operations shmem_dir_inode_operations = {
2553 #ifdef CONFIG_TMPFS
2554 .create = shmem_create,
2555 .lookup = simple_lookup,
2556 .link = shmem_link,
2557 .unlink = shmem_unlink,
2558 .symlink = shmem_symlink,
2559 .mkdir = shmem_mkdir,
2560 .rmdir = shmem_rmdir,
2561 .mknod = shmem_mknod,
2562 .rename = shmem_rename,
2563 #endif
2564 #ifdef CONFIG_TMPFS_XATTR
2565 .setxattr = shmem_setxattr,
2566 .getxattr = shmem_getxattr,
2567 .listxattr = shmem_listxattr,
2568 .removexattr = shmem_removexattr,
2569 #endif
2570 #ifdef CONFIG_TMPFS_POSIX_ACL
2571 .setattr = shmem_setattr,
2572 #endif
2573 };
2574
2575 static const struct inode_operations shmem_special_inode_operations = {
2576 #ifdef CONFIG_TMPFS_XATTR
2577 .setxattr = shmem_setxattr,
2578 .getxattr = shmem_getxattr,
2579 .listxattr = shmem_listxattr,
2580 .removexattr = shmem_removexattr,
2581 #endif
2582 #ifdef CONFIG_TMPFS_POSIX_ACL
2583 .setattr = shmem_setattr,
2584 #endif
2585 };
2586
2587 static const struct super_operations shmem_ops = {
2588 .alloc_inode = shmem_alloc_inode,
2589 .destroy_inode = shmem_destroy_inode,
2590 #ifdef CONFIG_TMPFS
2591 .statfs = shmem_statfs,
2592 .remount_fs = shmem_remount_fs,
2593 .show_options = shmem_show_options,
2594 #endif
2595 .evict_inode = shmem_evict_inode,
2596 .drop_inode = generic_delete_inode,
2597 .put_super = shmem_put_super,
2598 };
2599
2600 static const struct vm_operations_struct shmem_vm_ops = {
2601 .fault = shmem_fault,
2602 #ifdef CONFIG_NUMA
2603 .set_policy = shmem_set_policy,
2604 .get_policy = shmem_get_policy,
2605 #endif
2606 };
2607
2608 static struct dentry *shmem_mount(struct file_system_type *fs_type,
2609 int flags, const char *dev_name, void *data)
2610 {
2611 return mount_nodev(fs_type, flags, data, shmem_fill_super);
2612 }
2613
2614 static struct file_system_type shmem_fs_type = {
2615 .owner = THIS_MODULE,
2616 .name = "tmpfs",
2617 .mount = shmem_mount,
2618 .kill_sb = kill_litter_super,
2619 };
2620
2621 int __init shmem_init(void)
2622 {
2623 int error;
2624
2625 error = bdi_init(&shmem_backing_dev_info);
2626 if (error)
2627 goto out4;
2628
2629 error = shmem_init_inodecache();
2630 if (error)
2631 goto out3;
2632
2633 error = register_filesystem(&shmem_fs_type);
2634 if (error) {
2635 printk(KERN_ERR "Could not register tmpfs\n");
2636 goto out2;
2637 }
2638
2639 shm_mnt = vfs_kern_mount(&shmem_fs_type, MS_NOUSER,
2640 shmem_fs_type.name, NULL);
2641 if (IS_ERR(shm_mnt)) {
2642 error = PTR_ERR(shm_mnt);
2643 printk(KERN_ERR "Could not kern_mount tmpfs\n");
2644 goto out1;
2645 }
2646 return 0;
2647
2648 out1:
2649 unregister_filesystem(&shmem_fs_type);
2650 out2:
2651 shmem_destroy_inodecache();
2652 out3:
2653 bdi_destroy(&shmem_backing_dev_info);
2654 out4:
2655 shm_mnt = ERR_PTR(error);
2656 return error;
2657 }
2658
2659 #else /* !CONFIG_SHMEM */
2660
2661 /*
2662 * tiny-shmem: simple shmemfs and tmpfs using ramfs code
2663 *
2664 * This is intended for small system where the benefits of the full
2665 * shmem code (swap-backed and resource-limited) are outweighed by
2666 * their complexity. On systems without swap this code should be
2667 * effectively equivalent, but much lighter weight.
2668 */
2669
2670 #include <linux/ramfs.h>
2671
2672 static struct file_system_type shmem_fs_type = {
2673 .name = "tmpfs",
2674 .mount = ramfs_mount,
2675 .kill_sb = kill_litter_super,
2676 };
2677
2678 int __init shmem_init(void)
2679 {
2680 BUG_ON(register_filesystem(&shmem_fs_type) != 0);
2681
2682 shm_mnt = kern_mount(&shmem_fs_type);
2683 BUG_ON(IS_ERR(shm_mnt));
2684
2685 return 0;
2686 }
2687
2688 int shmem_unuse(swp_entry_t swap, struct page *page)
2689 {
2690 return 0;
2691 }
2692
2693 int shmem_lock(struct file *file, int lock, struct user_struct *user)
2694 {
2695 return 0;
2696 }
2697
2698 void shmem_unlock_mapping(struct address_space *mapping)
2699 {
2700 }
2701
2702 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
2703 {
2704 truncate_inode_pages_range(inode->i_mapping, lstart, lend);
2705 }
2706 EXPORT_SYMBOL_GPL(shmem_truncate_range);
2707
2708 #define shmem_vm_ops generic_file_vm_ops
2709 #define shmem_file_operations ramfs_file_operations
2710 #define shmem_get_inode(sb, dir, mode, dev, flags) ramfs_get_inode(sb, dir, mode, dev)
2711 #define shmem_acct_size(flags, size) 0
2712 #define shmem_unacct_size(flags, size) do {} while (0)
2713
2714 #endif /* CONFIG_SHMEM */
2715
2716 /* common code */
2717
2718 /**
2719 * shmem_file_setup - get an unlinked file living in tmpfs
2720 * @name: name for dentry (to be seen in /proc/<pid>/maps
2721 * @size: size to be set for the file
2722 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
2723 */
2724 struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
2725 {
2726 int error;
2727 struct file *file;
2728 struct inode *inode;
2729 struct path path;
2730 struct dentry *root;
2731 struct qstr this;
2732
2733 if (IS_ERR(shm_mnt))
2734 return (void *)shm_mnt;
2735
2736 if (size < 0 || size > MAX_LFS_FILESIZE)
2737 return ERR_PTR(-EINVAL);
2738
2739 if (shmem_acct_size(flags, size))
2740 return ERR_PTR(-ENOMEM);
2741
2742 error = -ENOMEM;
2743 this.name = name;
2744 this.len = strlen(name);
2745 this.hash = 0; /* will go */
2746 root = shm_mnt->mnt_root;
2747 path.dentry = d_alloc(root, &this);
2748 if (!path.dentry)
2749 goto put_memory;
2750 path.mnt = mntget(shm_mnt);
2751
2752 error = -ENOSPC;
2753 inode = shmem_get_inode(root->d_sb, NULL, S_IFREG | S_IRWXUGO, 0, flags);
2754 if (!inode)
2755 goto put_dentry;
2756
2757 d_instantiate(path.dentry, inode);
2758 inode->i_size = size;
2759 clear_nlink(inode); /* It is unlinked */
2760 #ifndef CONFIG_MMU
2761 error = ramfs_nommu_expand_for_mapping(inode, size);
2762 if (error)
2763 goto put_dentry;
2764 #endif
2765
2766 error = -ENFILE;
2767 file = alloc_file(&path, FMODE_WRITE | FMODE_READ,
2768 &shmem_file_operations);
2769 if (!file)
2770 goto put_dentry;
2771
2772 return file;
2773
2774 put_dentry:
2775 path_put(&path);
2776 put_memory:
2777 shmem_unacct_size(flags, size);
2778 return ERR_PTR(error);
2779 }
2780 EXPORT_SYMBOL_GPL(shmem_file_setup);
2781
2782 /**
2783 * shmem_zero_setup - setup a shared anonymous mapping
2784 * @vma: the vma to be mmapped is prepared by do_mmap_pgoff
2785 */
2786 int shmem_zero_setup(struct vm_area_struct *vma)
2787 {
2788 struct file *file;
2789 loff_t size = vma->vm_end - vma->vm_start;
2790
2791 file = shmem_file_setup("dev/zero", size, vma->vm_flags);
2792 if (IS_ERR(file))
2793 return PTR_ERR(file);
2794
2795 if (vma->vm_file)
2796 fput(vma->vm_file);
2797 vma->vm_file = file;
2798 vma->vm_ops = &shmem_vm_ops;
2799 vma->vm_flags |= VM_CAN_NONLINEAR;
2800 return 0;
2801 }
2802
2803 /**
2804 * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags.
2805 * @mapping: the page's address_space
2806 * @index: the page index
2807 * @gfp: the page allocator flags to use if allocating
2808 *
2809 * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
2810 * with any new page allocations done using the specified allocation flags.
2811 * But read_cache_page_gfp() uses the ->readpage() method: which does not
2812 * suit tmpfs, since it may have pages in swapcache, and needs to find those
2813 * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
2814 *
2815 * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
2816 * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
2817 */
2818 struct page *shmem_read_mapping_page_gfp(struct address_space *mapping,
2819 pgoff_t index, gfp_t gfp)
2820 {
2821 #ifdef CONFIG_SHMEM
2822 struct inode *inode = mapping->host;
2823 struct page *page;
2824 int error;
2825
2826 BUG_ON(mapping->a_ops != &shmem_aops);
2827 error = shmem_getpage_gfp(inode, index, &page, SGP_CACHE, gfp, NULL);
2828 if (error)
2829 page = ERR_PTR(error);
2830 else
2831 unlock_page(page);
2832 return page;
2833 #else
2834 /*
2835 * The tiny !SHMEM case uses ramfs without swap
2836 */
2837 return read_cache_page_gfp(mapping, index, gfp);
2838 #endif
2839 }
2840 EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp);