]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - mm/shmem.c
mm: allow drivers to prevent new writable mappings
[mirror_ubuntu-zesty-kernel.git] / mm / shmem.c
1 /*
2 * Resizable virtual memory filesystem for Linux.
3 *
4 * Copyright (C) 2000 Linus Torvalds.
5 * 2000 Transmeta Corp.
6 * 2000-2001 Christoph Rohland
7 * 2000-2001 SAP AG
8 * 2002 Red Hat Inc.
9 * Copyright (C) 2002-2011 Hugh Dickins.
10 * Copyright (C) 2011 Google Inc.
11 * Copyright (C) 2002-2005 VERITAS Software Corporation.
12 * Copyright (C) 2004 Andi Kleen, SuSE Labs
13 *
14 * Extended attribute support for tmpfs:
15 * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
16 * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
17 *
18 * tiny-shmem:
19 * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
20 *
21 * This file is released under the GPL.
22 */
23
24 #include <linux/fs.h>
25 #include <linux/init.h>
26 #include <linux/vfs.h>
27 #include <linux/mount.h>
28 #include <linux/ramfs.h>
29 #include <linux/pagemap.h>
30 #include <linux/file.h>
31 #include <linux/mm.h>
32 #include <linux/export.h>
33 #include <linux/swap.h>
34 #include <linux/aio.h>
35
36 static struct vfsmount *shm_mnt;
37
38 #ifdef CONFIG_SHMEM
39 /*
40 * This virtual memory filesystem is heavily based on the ramfs. It
41 * extends ramfs by the ability to use swap and honor resource limits
42 * which makes it a completely usable filesystem.
43 */
44
45 #include <linux/xattr.h>
46 #include <linux/exportfs.h>
47 #include <linux/posix_acl.h>
48 #include <linux/posix_acl_xattr.h>
49 #include <linux/mman.h>
50 #include <linux/string.h>
51 #include <linux/slab.h>
52 #include <linux/backing-dev.h>
53 #include <linux/shmem_fs.h>
54 #include <linux/writeback.h>
55 #include <linux/blkdev.h>
56 #include <linux/pagevec.h>
57 #include <linux/percpu_counter.h>
58 #include <linux/falloc.h>
59 #include <linux/splice.h>
60 #include <linux/security.h>
61 #include <linux/swapops.h>
62 #include <linux/mempolicy.h>
63 #include <linux/namei.h>
64 #include <linux/ctype.h>
65 #include <linux/migrate.h>
66 #include <linux/highmem.h>
67 #include <linux/seq_file.h>
68 #include <linux/magic.h>
69
70 #include <asm/uaccess.h>
71 #include <asm/pgtable.h>
72
73 #define BLOCKS_PER_PAGE (PAGE_CACHE_SIZE/512)
74 #define VM_ACCT(size) (PAGE_CACHE_ALIGN(size) >> PAGE_SHIFT)
75
76 /* Pretend that each entry is of this size in directory's i_size */
77 #define BOGO_DIRENT_SIZE 20
78
79 /* Symlink up to this size is kmalloc'ed instead of using a swappable page */
80 #define SHORT_SYMLINK_LEN 128
81
82 /*
83 * shmem_fallocate communicates with shmem_fault or shmem_writepage via
84 * inode->i_private (with i_mutex making sure that it has only one user at
85 * a time): we would prefer not to enlarge the shmem inode just for that.
86 */
87 struct shmem_falloc {
88 wait_queue_head_t *waitq; /* faults into hole wait for punch to end */
89 pgoff_t start; /* start of range currently being fallocated */
90 pgoff_t next; /* the next page offset to be fallocated */
91 pgoff_t nr_falloced; /* how many new pages have been fallocated */
92 pgoff_t nr_unswapped; /* how often writepage refused to swap out */
93 };
94
95 /* Flag allocation requirements to shmem_getpage */
96 enum sgp_type {
97 SGP_READ, /* don't exceed i_size, don't allocate page */
98 SGP_CACHE, /* don't exceed i_size, may allocate page */
99 SGP_DIRTY, /* like SGP_CACHE, but set new page dirty */
100 SGP_WRITE, /* may exceed i_size, may allocate !Uptodate page */
101 SGP_FALLOC, /* like SGP_WRITE, but make existing page Uptodate */
102 };
103
104 #ifdef CONFIG_TMPFS
105 static unsigned long shmem_default_max_blocks(void)
106 {
107 return totalram_pages / 2;
108 }
109
110 static unsigned long shmem_default_max_inodes(void)
111 {
112 return min(totalram_pages - totalhigh_pages, totalram_pages / 2);
113 }
114 #endif
115
116 static bool shmem_should_replace_page(struct page *page, gfp_t gfp);
117 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
118 struct shmem_inode_info *info, pgoff_t index);
119 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
120 struct page **pagep, enum sgp_type sgp, gfp_t gfp, int *fault_type);
121
122 static inline int shmem_getpage(struct inode *inode, pgoff_t index,
123 struct page **pagep, enum sgp_type sgp, int *fault_type)
124 {
125 return shmem_getpage_gfp(inode, index, pagep, sgp,
126 mapping_gfp_mask(inode->i_mapping), fault_type);
127 }
128
129 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
130 {
131 return sb->s_fs_info;
132 }
133
134 /*
135 * shmem_file_setup pre-accounts the whole fixed size of a VM object,
136 * for shared memory and for shared anonymous (/dev/zero) mappings
137 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
138 * consistent with the pre-accounting of private mappings ...
139 */
140 static inline int shmem_acct_size(unsigned long flags, loff_t size)
141 {
142 return (flags & VM_NORESERVE) ?
143 0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size));
144 }
145
146 static inline void shmem_unacct_size(unsigned long flags, loff_t size)
147 {
148 if (!(flags & VM_NORESERVE))
149 vm_unacct_memory(VM_ACCT(size));
150 }
151
152 static inline int shmem_reacct_size(unsigned long flags,
153 loff_t oldsize, loff_t newsize)
154 {
155 if (!(flags & VM_NORESERVE)) {
156 if (VM_ACCT(newsize) > VM_ACCT(oldsize))
157 return security_vm_enough_memory_mm(current->mm,
158 VM_ACCT(newsize) - VM_ACCT(oldsize));
159 else if (VM_ACCT(newsize) < VM_ACCT(oldsize))
160 vm_unacct_memory(VM_ACCT(oldsize) - VM_ACCT(newsize));
161 }
162 return 0;
163 }
164
165 /*
166 * ... whereas tmpfs objects are accounted incrementally as
167 * pages are allocated, in order to allow huge sparse files.
168 * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
169 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
170 */
171 static inline int shmem_acct_block(unsigned long flags)
172 {
173 return (flags & VM_NORESERVE) ?
174 security_vm_enough_memory_mm(current->mm, VM_ACCT(PAGE_CACHE_SIZE)) : 0;
175 }
176
177 static inline void shmem_unacct_blocks(unsigned long flags, long pages)
178 {
179 if (flags & VM_NORESERVE)
180 vm_unacct_memory(pages * VM_ACCT(PAGE_CACHE_SIZE));
181 }
182
183 static const struct super_operations shmem_ops;
184 static const struct address_space_operations shmem_aops;
185 static const struct file_operations shmem_file_operations;
186 static const struct inode_operations shmem_inode_operations;
187 static const struct inode_operations shmem_dir_inode_operations;
188 static const struct inode_operations shmem_special_inode_operations;
189 static const struct vm_operations_struct shmem_vm_ops;
190
191 static struct backing_dev_info shmem_backing_dev_info __read_mostly = {
192 .ra_pages = 0, /* No readahead */
193 .capabilities = BDI_CAP_NO_ACCT_AND_WRITEBACK | BDI_CAP_SWAP_BACKED,
194 };
195
196 static LIST_HEAD(shmem_swaplist);
197 static DEFINE_MUTEX(shmem_swaplist_mutex);
198
199 static int shmem_reserve_inode(struct super_block *sb)
200 {
201 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
202 if (sbinfo->max_inodes) {
203 spin_lock(&sbinfo->stat_lock);
204 if (!sbinfo->free_inodes) {
205 spin_unlock(&sbinfo->stat_lock);
206 return -ENOSPC;
207 }
208 sbinfo->free_inodes--;
209 spin_unlock(&sbinfo->stat_lock);
210 }
211 return 0;
212 }
213
214 static void shmem_free_inode(struct super_block *sb)
215 {
216 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
217 if (sbinfo->max_inodes) {
218 spin_lock(&sbinfo->stat_lock);
219 sbinfo->free_inodes++;
220 spin_unlock(&sbinfo->stat_lock);
221 }
222 }
223
224 /**
225 * shmem_recalc_inode - recalculate the block usage of an inode
226 * @inode: inode to recalc
227 *
228 * We have to calculate the free blocks since the mm can drop
229 * undirtied hole pages behind our back.
230 *
231 * But normally info->alloced == inode->i_mapping->nrpages + info->swapped
232 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
233 *
234 * It has to be called with the spinlock held.
235 */
236 static void shmem_recalc_inode(struct inode *inode)
237 {
238 struct shmem_inode_info *info = SHMEM_I(inode);
239 long freed;
240
241 freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
242 if (freed > 0) {
243 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
244 if (sbinfo->max_blocks)
245 percpu_counter_add(&sbinfo->used_blocks, -freed);
246 info->alloced -= freed;
247 inode->i_blocks -= freed * BLOCKS_PER_PAGE;
248 shmem_unacct_blocks(info->flags, freed);
249 }
250 }
251
252 /*
253 * Replace item expected in radix tree by a new item, while holding tree lock.
254 */
255 static int shmem_radix_tree_replace(struct address_space *mapping,
256 pgoff_t index, void *expected, void *replacement)
257 {
258 void **pslot;
259 void *item;
260
261 VM_BUG_ON(!expected);
262 VM_BUG_ON(!replacement);
263 pslot = radix_tree_lookup_slot(&mapping->page_tree, index);
264 if (!pslot)
265 return -ENOENT;
266 item = radix_tree_deref_slot_protected(pslot, &mapping->tree_lock);
267 if (item != expected)
268 return -ENOENT;
269 radix_tree_replace_slot(pslot, replacement);
270 return 0;
271 }
272
273 /*
274 * Sometimes, before we decide whether to proceed or to fail, we must check
275 * that an entry was not already brought back from swap by a racing thread.
276 *
277 * Checking page is not enough: by the time a SwapCache page is locked, it
278 * might be reused, and again be SwapCache, using the same swap as before.
279 */
280 static bool shmem_confirm_swap(struct address_space *mapping,
281 pgoff_t index, swp_entry_t swap)
282 {
283 void *item;
284
285 rcu_read_lock();
286 item = radix_tree_lookup(&mapping->page_tree, index);
287 rcu_read_unlock();
288 return item == swp_to_radix_entry(swap);
289 }
290
291 /*
292 * Like add_to_page_cache_locked, but error if expected item has gone.
293 */
294 static int shmem_add_to_page_cache(struct page *page,
295 struct address_space *mapping,
296 pgoff_t index, void *expected)
297 {
298 int error;
299
300 VM_BUG_ON_PAGE(!PageLocked(page), page);
301 VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
302
303 page_cache_get(page);
304 page->mapping = mapping;
305 page->index = index;
306
307 spin_lock_irq(&mapping->tree_lock);
308 if (!expected)
309 error = radix_tree_insert(&mapping->page_tree, index, page);
310 else
311 error = shmem_radix_tree_replace(mapping, index, expected,
312 page);
313 if (!error) {
314 mapping->nrpages++;
315 __inc_zone_page_state(page, NR_FILE_PAGES);
316 __inc_zone_page_state(page, NR_SHMEM);
317 spin_unlock_irq(&mapping->tree_lock);
318 } else {
319 page->mapping = NULL;
320 spin_unlock_irq(&mapping->tree_lock);
321 page_cache_release(page);
322 }
323 return error;
324 }
325
326 /*
327 * Like delete_from_page_cache, but substitutes swap for page.
328 */
329 static void shmem_delete_from_page_cache(struct page *page, void *radswap)
330 {
331 struct address_space *mapping = page->mapping;
332 int error;
333
334 spin_lock_irq(&mapping->tree_lock);
335 error = shmem_radix_tree_replace(mapping, page->index, page, radswap);
336 page->mapping = NULL;
337 mapping->nrpages--;
338 __dec_zone_page_state(page, NR_FILE_PAGES);
339 __dec_zone_page_state(page, NR_SHMEM);
340 spin_unlock_irq(&mapping->tree_lock);
341 page_cache_release(page);
342 BUG_ON(error);
343 }
344
345 /*
346 * Remove swap entry from radix tree, free the swap and its page cache.
347 */
348 static int shmem_free_swap(struct address_space *mapping,
349 pgoff_t index, void *radswap)
350 {
351 void *old;
352
353 spin_lock_irq(&mapping->tree_lock);
354 old = radix_tree_delete_item(&mapping->page_tree, index, radswap);
355 spin_unlock_irq(&mapping->tree_lock);
356 if (old != radswap)
357 return -ENOENT;
358 free_swap_and_cache(radix_to_swp_entry(radswap));
359 return 0;
360 }
361
362 /*
363 * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists.
364 */
365 void shmem_unlock_mapping(struct address_space *mapping)
366 {
367 struct pagevec pvec;
368 pgoff_t indices[PAGEVEC_SIZE];
369 pgoff_t index = 0;
370
371 pagevec_init(&pvec, 0);
372 /*
373 * Minor point, but we might as well stop if someone else SHM_LOCKs it.
374 */
375 while (!mapping_unevictable(mapping)) {
376 /*
377 * Avoid pagevec_lookup(): find_get_pages() returns 0 as if it
378 * has finished, if it hits a row of PAGEVEC_SIZE swap entries.
379 */
380 pvec.nr = find_get_entries(mapping, index,
381 PAGEVEC_SIZE, pvec.pages, indices);
382 if (!pvec.nr)
383 break;
384 index = indices[pvec.nr - 1] + 1;
385 pagevec_remove_exceptionals(&pvec);
386 check_move_unevictable_pages(pvec.pages, pvec.nr);
387 pagevec_release(&pvec);
388 cond_resched();
389 }
390 }
391
392 /*
393 * Remove range of pages and swap entries from radix tree, and free them.
394 * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate.
395 */
396 static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend,
397 bool unfalloc)
398 {
399 struct address_space *mapping = inode->i_mapping;
400 struct shmem_inode_info *info = SHMEM_I(inode);
401 pgoff_t start = (lstart + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
402 pgoff_t end = (lend + 1) >> PAGE_CACHE_SHIFT;
403 unsigned int partial_start = lstart & (PAGE_CACHE_SIZE - 1);
404 unsigned int partial_end = (lend + 1) & (PAGE_CACHE_SIZE - 1);
405 struct pagevec pvec;
406 pgoff_t indices[PAGEVEC_SIZE];
407 long nr_swaps_freed = 0;
408 pgoff_t index;
409 int i;
410
411 if (lend == -1)
412 end = -1; /* unsigned, so actually very big */
413
414 pagevec_init(&pvec, 0);
415 index = start;
416 while (index < end) {
417 pvec.nr = find_get_entries(mapping, index,
418 min(end - index, (pgoff_t)PAGEVEC_SIZE),
419 pvec.pages, indices);
420 if (!pvec.nr)
421 break;
422 for (i = 0; i < pagevec_count(&pvec); i++) {
423 struct page *page = pvec.pages[i];
424
425 index = indices[i];
426 if (index >= end)
427 break;
428
429 if (radix_tree_exceptional_entry(page)) {
430 if (unfalloc)
431 continue;
432 nr_swaps_freed += !shmem_free_swap(mapping,
433 index, page);
434 continue;
435 }
436
437 if (!trylock_page(page))
438 continue;
439 if (!unfalloc || !PageUptodate(page)) {
440 if (page->mapping == mapping) {
441 VM_BUG_ON_PAGE(PageWriteback(page), page);
442 truncate_inode_page(mapping, page);
443 }
444 }
445 unlock_page(page);
446 }
447 pagevec_remove_exceptionals(&pvec);
448 pagevec_release(&pvec);
449 cond_resched();
450 index++;
451 }
452
453 if (partial_start) {
454 struct page *page = NULL;
455 shmem_getpage(inode, start - 1, &page, SGP_READ, NULL);
456 if (page) {
457 unsigned int top = PAGE_CACHE_SIZE;
458 if (start > end) {
459 top = partial_end;
460 partial_end = 0;
461 }
462 zero_user_segment(page, partial_start, top);
463 set_page_dirty(page);
464 unlock_page(page);
465 page_cache_release(page);
466 }
467 }
468 if (partial_end) {
469 struct page *page = NULL;
470 shmem_getpage(inode, end, &page, SGP_READ, NULL);
471 if (page) {
472 zero_user_segment(page, 0, partial_end);
473 set_page_dirty(page);
474 unlock_page(page);
475 page_cache_release(page);
476 }
477 }
478 if (start >= end)
479 return;
480
481 index = start;
482 while (index < end) {
483 cond_resched();
484
485 pvec.nr = find_get_entries(mapping, index,
486 min(end - index, (pgoff_t)PAGEVEC_SIZE),
487 pvec.pages, indices);
488 if (!pvec.nr) {
489 /* If all gone or hole-punch or unfalloc, we're done */
490 if (index == start || end != -1)
491 break;
492 /* But if truncating, restart to make sure all gone */
493 index = start;
494 continue;
495 }
496 for (i = 0; i < pagevec_count(&pvec); i++) {
497 struct page *page = pvec.pages[i];
498
499 index = indices[i];
500 if (index >= end)
501 break;
502
503 if (radix_tree_exceptional_entry(page)) {
504 if (unfalloc)
505 continue;
506 if (shmem_free_swap(mapping, index, page)) {
507 /* Swap was replaced by page: retry */
508 index--;
509 break;
510 }
511 nr_swaps_freed++;
512 continue;
513 }
514
515 lock_page(page);
516 if (!unfalloc || !PageUptodate(page)) {
517 if (page->mapping == mapping) {
518 VM_BUG_ON_PAGE(PageWriteback(page), page);
519 truncate_inode_page(mapping, page);
520 } else {
521 /* Page was replaced by swap: retry */
522 unlock_page(page);
523 index--;
524 break;
525 }
526 }
527 unlock_page(page);
528 }
529 pagevec_remove_exceptionals(&pvec);
530 pagevec_release(&pvec);
531 index++;
532 }
533
534 spin_lock(&info->lock);
535 info->swapped -= nr_swaps_freed;
536 shmem_recalc_inode(inode);
537 spin_unlock(&info->lock);
538 }
539
540 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
541 {
542 shmem_undo_range(inode, lstart, lend, false);
543 inode->i_ctime = inode->i_mtime = CURRENT_TIME;
544 }
545 EXPORT_SYMBOL_GPL(shmem_truncate_range);
546
547 static int shmem_setattr(struct dentry *dentry, struct iattr *attr)
548 {
549 struct inode *inode = dentry->d_inode;
550 int error;
551
552 error = inode_change_ok(inode, attr);
553 if (error)
554 return error;
555
556 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
557 loff_t oldsize = inode->i_size;
558 loff_t newsize = attr->ia_size;
559
560 if (newsize != oldsize) {
561 error = shmem_reacct_size(SHMEM_I(inode)->flags,
562 oldsize, newsize);
563 if (error)
564 return error;
565 i_size_write(inode, newsize);
566 inode->i_ctime = inode->i_mtime = CURRENT_TIME;
567 }
568 if (newsize < oldsize) {
569 loff_t holebegin = round_up(newsize, PAGE_SIZE);
570 unmap_mapping_range(inode->i_mapping, holebegin, 0, 1);
571 shmem_truncate_range(inode, newsize, (loff_t)-1);
572 /* unmap again to remove racily COWed private pages */
573 unmap_mapping_range(inode->i_mapping, holebegin, 0, 1);
574 }
575 }
576
577 setattr_copy(inode, attr);
578 if (attr->ia_valid & ATTR_MODE)
579 error = posix_acl_chmod(inode, inode->i_mode);
580 return error;
581 }
582
583 static void shmem_evict_inode(struct inode *inode)
584 {
585 struct shmem_inode_info *info = SHMEM_I(inode);
586
587 if (inode->i_mapping->a_ops == &shmem_aops) {
588 shmem_unacct_size(info->flags, inode->i_size);
589 inode->i_size = 0;
590 shmem_truncate_range(inode, 0, (loff_t)-1);
591 if (!list_empty(&info->swaplist)) {
592 mutex_lock(&shmem_swaplist_mutex);
593 list_del_init(&info->swaplist);
594 mutex_unlock(&shmem_swaplist_mutex);
595 }
596 } else
597 kfree(info->symlink);
598
599 simple_xattrs_free(&info->xattrs);
600 WARN_ON(inode->i_blocks);
601 shmem_free_inode(inode->i_sb);
602 clear_inode(inode);
603 }
604
605 /*
606 * If swap found in inode, free it and move page from swapcache to filecache.
607 */
608 static int shmem_unuse_inode(struct shmem_inode_info *info,
609 swp_entry_t swap, struct page **pagep)
610 {
611 struct address_space *mapping = info->vfs_inode.i_mapping;
612 void *radswap;
613 pgoff_t index;
614 gfp_t gfp;
615 int error = 0;
616
617 radswap = swp_to_radix_entry(swap);
618 index = radix_tree_locate_item(&mapping->page_tree, radswap);
619 if (index == -1)
620 return -EAGAIN; /* tell shmem_unuse we found nothing */
621
622 /*
623 * Move _head_ to start search for next from here.
624 * But be careful: shmem_evict_inode checks list_empty without taking
625 * mutex, and there's an instant in list_move_tail when info->swaplist
626 * would appear empty, if it were the only one on shmem_swaplist.
627 */
628 if (shmem_swaplist.next != &info->swaplist)
629 list_move_tail(&shmem_swaplist, &info->swaplist);
630
631 gfp = mapping_gfp_mask(mapping);
632 if (shmem_should_replace_page(*pagep, gfp)) {
633 mutex_unlock(&shmem_swaplist_mutex);
634 error = shmem_replace_page(pagep, gfp, info, index);
635 mutex_lock(&shmem_swaplist_mutex);
636 /*
637 * We needed to drop mutex to make that restrictive page
638 * allocation, but the inode might have been freed while we
639 * dropped it: although a racing shmem_evict_inode() cannot
640 * complete without emptying the radix_tree, our page lock
641 * on this swapcache page is not enough to prevent that -
642 * free_swap_and_cache() of our swap entry will only
643 * trylock_page(), removing swap from radix_tree whatever.
644 *
645 * We must not proceed to shmem_add_to_page_cache() if the
646 * inode has been freed, but of course we cannot rely on
647 * inode or mapping or info to check that. However, we can
648 * safely check if our swap entry is still in use (and here
649 * it can't have got reused for another page): if it's still
650 * in use, then the inode cannot have been freed yet, and we
651 * can safely proceed (if it's no longer in use, that tells
652 * nothing about the inode, but we don't need to unuse swap).
653 */
654 if (!page_swapcount(*pagep))
655 error = -ENOENT;
656 }
657
658 /*
659 * We rely on shmem_swaplist_mutex, not only to protect the swaplist,
660 * but also to hold up shmem_evict_inode(): so inode cannot be freed
661 * beneath us (pagelock doesn't help until the page is in pagecache).
662 */
663 if (!error)
664 error = shmem_add_to_page_cache(*pagep, mapping, index,
665 radswap);
666 if (error != -ENOMEM) {
667 /*
668 * Truncation and eviction use free_swap_and_cache(), which
669 * only does trylock page: if we raced, best clean up here.
670 */
671 delete_from_swap_cache(*pagep);
672 set_page_dirty(*pagep);
673 if (!error) {
674 spin_lock(&info->lock);
675 info->swapped--;
676 spin_unlock(&info->lock);
677 swap_free(swap);
678 }
679 }
680 return error;
681 }
682
683 /*
684 * Search through swapped inodes to find and replace swap by page.
685 */
686 int shmem_unuse(swp_entry_t swap, struct page *page)
687 {
688 struct list_head *this, *next;
689 struct shmem_inode_info *info;
690 struct mem_cgroup *memcg;
691 int error = 0;
692
693 /*
694 * There's a faint possibility that swap page was replaced before
695 * caller locked it: caller will come back later with the right page.
696 */
697 if (unlikely(!PageSwapCache(page) || page_private(page) != swap.val))
698 goto out;
699
700 /*
701 * Charge page using GFP_KERNEL while we can wait, before taking
702 * the shmem_swaplist_mutex which might hold up shmem_writepage().
703 * Charged back to the user (not to caller) when swap account is used.
704 */
705 error = mem_cgroup_try_charge(page, current->mm, GFP_KERNEL, &memcg);
706 if (error)
707 goto out;
708 /* No radix_tree_preload: swap entry keeps a place for page in tree */
709 error = -EAGAIN;
710
711 mutex_lock(&shmem_swaplist_mutex);
712 list_for_each_safe(this, next, &shmem_swaplist) {
713 info = list_entry(this, struct shmem_inode_info, swaplist);
714 if (info->swapped)
715 error = shmem_unuse_inode(info, swap, &page);
716 else
717 list_del_init(&info->swaplist);
718 cond_resched();
719 if (error != -EAGAIN)
720 break;
721 /* found nothing in this: move on to search the next */
722 }
723 mutex_unlock(&shmem_swaplist_mutex);
724
725 if (error) {
726 if (error != -ENOMEM)
727 error = 0;
728 mem_cgroup_cancel_charge(page, memcg);
729 } else
730 mem_cgroup_commit_charge(page, memcg, true);
731 out:
732 unlock_page(page);
733 page_cache_release(page);
734 return error;
735 }
736
737 /*
738 * Move the page from the page cache to the swap cache.
739 */
740 static int shmem_writepage(struct page *page, struct writeback_control *wbc)
741 {
742 struct shmem_inode_info *info;
743 struct address_space *mapping;
744 struct inode *inode;
745 swp_entry_t swap;
746 pgoff_t index;
747
748 BUG_ON(!PageLocked(page));
749 mapping = page->mapping;
750 index = page->index;
751 inode = mapping->host;
752 info = SHMEM_I(inode);
753 if (info->flags & VM_LOCKED)
754 goto redirty;
755 if (!total_swap_pages)
756 goto redirty;
757
758 /*
759 * shmem_backing_dev_info's capabilities prevent regular writeback or
760 * sync from ever calling shmem_writepage; but a stacking filesystem
761 * might use ->writepage of its underlying filesystem, in which case
762 * tmpfs should write out to swap only in response to memory pressure,
763 * and not for the writeback threads or sync.
764 */
765 if (!wbc->for_reclaim) {
766 WARN_ON_ONCE(1); /* Still happens? Tell us about it! */
767 goto redirty;
768 }
769
770 /*
771 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC
772 * value into swapfile.c, the only way we can correctly account for a
773 * fallocated page arriving here is now to initialize it and write it.
774 *
775 * That's okay for a page already fallocated earlier, but if we have
776 * not yet completed the fallocation, then (a) we want to keep track
777 * of this page in case we have to undo it, and (b) it may not be a
778 * good idea to continue anyway, once we're pushing into swap. So
779 * reactivate the page, and let shmem_fallocate() quit when too many.
780 */
781 if (!PageUptodate(page)) {
782 if (inode->i_private) {
783 struct shmem_falloc *shmem_falloc;
784 spin_lock(&inode->i_lock);
785 shmem_falloc = inode->i_private;
786 if (shmem_falloc &&
787 !shmem_falloc->waitq &&
788 index >= shmem_falloc->start &&
789 index < shmem_falloc->next)
790 shmem_falloc->nr_unswapped++;
791 else
792 shmem_falloc = NULL;
793 spin_unlock(&inode->i_lock);
794 if (shmem_falloc)
795 goto redirty;
796 }
797 clear_highpage(page);
798 flush_dcache_page(page);
799 SetPageUptodate(page);
800 }
801
802 swap = get_swap_page();
803 if (!swap.val)
804 goto redirty;
805
806 /*
807 * Add inode to shmem_unuse()'s list of swapped-out inodes,
808 * if it's not already there. Do it now before the page is
809 * moved to swap cache, when its pagelock no longer protects
810 * the inode from eviction. But don't unlock the mutex until
811 * we've incremented swapped, because shmem_unuse_inode() will
812 * prune a !swapped inode from the swaplist under this mutex.
813 */
814 mutex_lock(&shmem_swaplist_mutex);
815 if (list_empty(&info->swaplist))
816 list_add_tail(&info->swaplist, &shmem_swaplist);
817
818 if (add_to_swap_cache(page, swap, GFP_ATOMIC) == 0) {
819 swap_shmem_alloc(swap);
820 shmem_delete_from_page_cache(page, swp_to_radix_entry(swap));
821
822 spin_lock(&info->lock);
823 info->swapped++;
824 shmem_recalc_inode(inode);
825 spin_unlock(&info->lock);
826
827 mutex_unlock(&shmem_swaplist_mutex);
828 BUG_ON(page_mapped(page));
829 swap_writepage(page, wbc);
830 return 0;
831 }
832
833 mutex_unlock(&shmem_swaplist_mutex);
834 swapcache_free(swap);
835 redirty:
836 set_page_dirty(page);
837 if (wbc->for_reclaim)
838 return AOP_WRITEPAGE_ACTIVATE; /* Return with page locked */
839 unlock_page(page);
840 return 0;
841 }
842
843 #ifdef CONFIG_NUMA
844 #ifdef CONFIG_TMPFS
845 static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
846 {
847 char buffer[64];
848
849 if (!mpol || mpol->mode == MPOL_DEFAULT)
850 return; /* show nothing */
851
852 mpol_to_str(buffer, sizeof(buffer), mpol);
853
854 seq_printf(seq, ",mpol=%s", buffer);
855 }
856
857 static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
858 {
859 struct mempolicy *mpol = NULL;
860 if (sbinfo->mpol) {
861 spin_lock(&sbinfo->stat_lock); /* prevent replace/use races */
862 mpol = sbinfo->mpol;
863 mpol_get(mpol);
864 spin_unlock(&sbinfo->stat_lock);
865 }
866 return mpol;
867 }
868 #endif /* CONFIG_TMPFS */
869
870 static struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
871 struct shmem_inode_info *info, pgoff_t index)
872 {
873 struct vm_area_struct pvma;
874 struct page *page;
875
876 /* Create a pseudo vma that just contains the policy */
877 pvma.vm_start = 0;
878 /* Bias interleave by inode number to distribute better across nodes */
879 pvma.vm_pgoff = index + info->vfs_inode.i_ino;
880 pvma.vm_ops = NULL;
881 pvma.vm_policy = mpol_shared_policy_lookup(&info->policy, index);
882
883 page = swapin_readahead(swap, gfp, &pvma, 0);
884
885 /* Drop reference taken by mpol_shared_policy_lookup() */
886 mpol_cond_put(pvma.vm_policy);
887
888 return page;
889 }
890
891 static struct page *shmem_alloc_page(gfp_t gfp,
892 struct shmem_inode_info *info, pgoff_t index)
893 {
894 struct vm_area_struct pvma;
895 struct page *page;
896
897 /* Create a pseudo vma that just contains the policy */
898 pvma.vm_start = 0;
899 /* Bias interleave by inode number to distribute better across nodes */
900 pvma.vm_pgoff = index + info->vfs_inode.i_ino;
901 pvma.vm_ops = NULL;
902 pvma.vm_policy = mpol_shared_policy_lookup(&info->policy, index);
903
904 page = alloc_page_vma(gfp, &pvma, 0);
905
906 /* Drop reference taken by mpol_shared_policy_lookup() */
907 mpol_cond_put(pvma.vm_policy);
908
909 return page;
910 }
911 #else /* !CONFIG_NUMA */
912 #ifdef CONFIG_TMPFS
913 static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
914 {
915 }
916 #endif /* CONFIG_TMPFS */
917
918 static inline struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
919 struct shmem_inode_info *info, pgoff_t index)
920 {
921 return swapin_readahead(swap, gfp, NULL, 0);
922 }
923
924 static inline struct page *shmem_alloc_page(gfp_t gfp,
925 struct shmem_inode_info *info, pgoff_t index)
926 {
927 return alloc_page(gfp);
928 }
929 #endif /* CONFIG_NUMA */
930
931 #if !defined(CONFIG_NUMA) || !defined(CONFIG_TMPFS)
932 static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
933 {
934 return NULL;
935 }
936 #endif
937
938 /*
939 * When a page is moved from swapcache to shmem filecache (either by the
940 * usual swapin of shmem_getpage_gfp(), or by the less common swapoff of
941 * shmem_unuse_inode()), it may have been read in earlier from swap, in
942 * ignorance of the mapping it belongs to. If that mapping has special
943 * constraints (like the gma500 GEM driver, which requires RAM below 4GB),
944 * we may need to copy to a suitable page before moving to filecache.
945 *
946 * In a future release, this may well be extended to respect cpuset and
947 * NUMA mempolicy, and applied also to anonymous pages in do_swap_page();
948 * but for now it is a simple matter of zone.
949 */
950 static bool shmem_should_replace_page(struct page *page, gfp_t gfp)
951 {
952 return page_zonenum(page) > gfp_zone(gfp);
953 }
954
955 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
956 struct shmem_inode_info *info, pgoff_t index)
957 {
958 struct page *oldpage, *newpage;
959 struct address_space *swap_mapping;
960 pgoff_t swap_index;
961 int error;
962
963 oldpage = *pagep;
964 swap_index = page_private(oldpage);
965 swap_mapping = page_mapping(oldpage);
966
967 /*
968 * We have arrived here because our zones are constrained, so don't
969 * limit chance of success by further cpuset and node constraints.
970 */
971 gfp &= ~GFP_CONSTRAINT_MASK;
972 newpage = shmem_alloc_page(gfp, info, index);
973 if (!newpage)
974 return -ENOMEM;
975
976 page_cache_get(newpage);
977 copy_highpage(newpage, oldpage);
978 flush_dcache_page(newpage);
979
980 __set_page_locked(newpage);
981 SetPageUptodate(newpage);
982 SetPageSwapBacked(newpage);
983 set_page_private(newpage, swap_index);
984 SetPageSwapCache(newpage);
985
986 /*
987 * Our caller will very soon move newpage out of swapcache, but it's
988 * a nice clean interface for us to replace oldpage by newpage there.
989 */
990 spin_lock_irq(&swap_mapping->tree_lock);
991 error = shmem_radix_tree_replace(swap_mapping, swap_index, oldpage,
992 newpage);
993 if (!error) {
994 __inc_zone_page_state(newpage, NR_FILE_PAGES);
995 __dec_zone_page_state(oldpage, NR_FILE_PAGES);
996 }
997 spin_unlock_irq(&swap_mapping->tree_lock);
998
999 if (unlikely(error)) {
1000 /*
1001 * Is this possible? I think not, now that our callers check
1002 * both PageSwapCache and page_private after getting page lock;
1003 * but be defensive. Reverse old to newpage for clear and free.
1004 */
1005 oldpage = newpage;
1006 } else {
1007 mem_cgroup_migrate(oldpage, newpage, false);
1008 lru_cache_add_anon(newpage);
1009 *pagep = newpage;
1010 }
1011
1012 ClearPageSwapCache(oldpage);
1013 set_page_private(oldpage, 0);
1014
1015 unlock_page(oldpage);
1016 page_cache_release(oldpage);
1017 page_cache_release(oldpage);
1018 return error;
1019 }
1020
1021 /*
1022 * shmem_getpage_gfp - find page in cache, or get from swap, or allocate
1023 *
1024 * If we allocate a new one we do not mark it dirty. That's up to the
1025 * vm. If we swap it in we mark it dirty since we also free the swap
1026 * entry since a page cannot live in both the swap and page cache
1027 */
1028 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
1029 struct page **pagep, enum sgp_type sgp, gfp_t gfp, int *fault_type)
1030 {
1031 struct address_space *mapping = inode->i_mapping;
1032 struct shmem_inode_info *info;
1033 struct shmem_sb_info *sbinfo;
1034 struct mem_cgroup *memcg;
1035 struct page *page;
1036 swp_entry_t swap;
1037 int error;
1038 int once = 0;
1039 int alloced = 0;
1040
1041 if (index > (MAX_LFS_FILESIZE >> PAGE_CACHE_SHIFT))
1042 return -EFBIG;
1043 repeat:
1044 swap.val = 0;
1045 page = find_lock_entry(mapping, index);
1046 if (radix_tree_exceptional_entry(page)) {
1047 swap = radix_to_swp_entry(page);
1048 page = NULL;
1049 }
1050
1051 if (sgp != SGP_WRITE && sgp != SGP_FALLOC &&
1052 ((loff_t)index << PAGE_CACHE_SHIFT) >= i_size_read(inode)) {
1053 error = -EINVAL;
1054 goto failed;
1055 }
1056
1057 if (page && sgp == SGP_WRITE)
1058 mark_page_accessed(page);
1059
1060 /* fallocated page? */
1061 if (page && !PageUptodate(page)) {
1062 if (sgp != SGP_READ)
1063 goto clear;
1064 unlock_page(page);
1065 page_cache_release(page);
1066 page = NULL;
1067 }
1068 if (page || (sgp == SGP_READ && !swap.val)) {
1069 *pagep = page;
1070 return 0;
1071 }
1072
1073 /*
1074 * Fast cache lookup did not find it:
1075 * bring it back from swap or allocate.
1076 */
1077 info = SHMEM_I(inode);
1078 sbinfo = SHMEM_SB(inode->i_sb);
1079
1080 if (swap.val) {
1081 /* Look it up and read it in.. */
1082 page = lookup_swap_cache(swap);
1083 if (!page) {
1084 /* here we actually do the io */
1085 if (fault_type)
1086 *fault_type |= VM_FAULT_MAJOR;
1087 page = shmem_swapin(swap, gfp, info, index);
1088 if (!page) {
1089 error = -ENOMEM;
1090 goto failed;
1091 }
1092 }
1093
1094 /* We have to do this with page locked to prevent races */
1095 lock_page(page);
1096 if (!PageSwapCache(page) || page_private(page) != swap.val ||
1097 !shmem_confirm_swap(mapping, index, swap)) {
1098 error = -EEXIST; /* try again */
1099 goto unlock;
1100 }
1101 if (!PageUptodate(page)) {
1102 error = -EIO;
1103 goto failed;
1104 }
1105 wait_on_page_writeback(page);
1106
1107 if (shmem_should_replace_page(page, gfp)) {
1108 error = shmem_replace_page(&page, gfp, info, index);
1109 if (error)
1110 goto failed;
1111 }
1112
1113 error = mem_cgroup_try_charge(page, current->mm, gfp, &memcg);
1114 if (!error) {
1115 error = shmem_add_to_page_cache(page, mapping, index,
1116 swp_to_radix_entry(swap));
1117 /*
1118 * We already confirmed swap under page lock, and make
1119 * no memory allocation here, so usually no possibility
1120 * of error; but free_swap_and_cache() only trylocks a
1121 * page, so it is just possible that the entry has been
1122 * truncated or holepunched since swap was confirmed.
1123 * shmem_undo_range() will have done some of the
1124 * unaccounting, now delete_from_swap_cache() will do
1125 * the rest (including mem_cgroup_uncharge_swapcache).
1126 * Reset swap.val? No, leave it so "failed" goes back to
1127 * "repeat": reading a hole and writing should succeed.
1128 */
1129 if (error) {
1130 mem_cgroup_cancel_charge(page, memcg);
1131 delete_from_swap_cache(page);
1132 }
1133 }
1134 if (error)
1135 goto failed;
1136
1137 mem_cgroup_commit_charge(page, memcg, true);
1138
1139 spin_lock(&info->lock);
1140 info->swapped--;
1141 shmem_recalc_inode(inode);
1142 spin_unlock(&info->lock);
1143
1144 if (sgp == SGP_WRITE)
1145 mark_page_accessed(page);
1146
1147 delete_from_swap_cache(page);
1148 set_page_dirty(page);
1149 swap_free(swap);
1150
1151 } else {
1152 if (shmem_acct_block(info->flags)) {
1153 error = -ENOSPC;
1154 goto failed;
1155 }
1156 if (sbinfo->max_blocks) {
1157 if (percpu_counter_compare(&sbinfo->used_blocks,
1158 sbinfo->max_blocks) >= 0) {
1159 error = -ENOSPC;
1160 goto unacct;
1161 }
1162 percpu_counter_inc(&sbinfo->used_blocks);
1163 }
1164
1165 page = shmem_alloc_page(gfp, info, index);
1166 if (!page) {
1167 error = -ENOMEM;
1168 goto decused;
1169 }
1170
1171 __SetPageSwapBacked(page);
1172 __set_page_locked(page);
1173 if (sgp == SGP_WRITE)
1174 __SetPageReferenced(page);
1175
1176 error = mem_cgroup_try_charge(page, current->mm, gfp, &memcg);
1177 if (error)
1178 goto decused;
1179 error = radix_tree_maybe_preload(gfp & GFP_RECLAIM_MASK);
1180 if (!error) {
1181 error = shmem_add_to_page_cache(page, mapping, index,
1182 NULL);
1183 radix_tree_preload_end();
1184 }
1185 if (error) {
1186 mem_cgroup_cancel_charge(page, memcg);
1187 goto decused;
1188 }
1189 mem_cgroup_commit_charge(page, memcg, false);
1190 lru_cache_add_anon(page);
1191
1192 spin_lock(&info->lock);
1193 info->alloced++;
1194 inode->i_blocks += BLOCKS_PER_PAGE;
1195 shmem_recalc_inode(inode);
1196 spin_unlock(&info->lock);
1197 alloced = true;
1198
1199 /*
1200 * Let SGP_FALLOC use the SGP_WRITE optimization on a new page.
1201 */
1202 if (sgp == SGP_FALLOC)
1203 sgp = SGP_WRITE;
1204 clear:
1205 /*
1206 * Let SGP_WRITE caller clear ends if write does not fill page;
1207 * but SGP_FALLOC on a page fallocated earlier must initialize
1208 * it now, lest undo on failure cancel our earlier guarantee.
1209 */
1210 if (sgp != SGP_WRITE) {
1211 clear_highpage(page);
1212 flush_dcache_page(page);
1213 SetPageUptodate(page);
1214 }
1215 if (sgp == SGP_DIRTY)
1216 set_page_dirty(page);
1217 }
1218
1219 /* Perhaps the file has been truncated since we checked */
1220 if (sgp != SGP_WRITE && sgp != SGP_FALLOC &&
1221 ((loff_t)index << PAGE_CACHE_SHIFT) >= i_size_read(inode)) {
1222 error = -EINVAL;
1223 if (alloced)
1224 goto trunc;
1225 else
1226 goto failed;
1227 }
1228 *pagep = page;
1229 return 0;
1230
1231 /*
1232 * Error recovery.
1233 */
1234 trunc:
1235 info = SHMEM_I(inode);
1236 ClearPageDirty(page);
1237 delete_from_page_cache(page);
1238 spin_lock(&info->lock);
1239 info->alloced--;
1240 inode->i_blocks -= BLOCKS_PER_PAGE;
1241 spin_unlock(&info->lock);
1242 decused:
1243 sbinfo = SHMEM_SB(inode->i_sb);
1244 if (sbinfo->max_blocks)
1245 percpu_counter_add(&sbinfo->used_blocks, -1);
1246 unacct:
1247 shmem_unacct_blocks(info->flags, 1);
1248 failed:
1249 if (swap.val && error != -EINVAL &&
1250 !shmem_confirm_swap(mapping, index, swap))
1251 error = -EEXIST;
1252 unlock:
1253 if (page) {
1254 unlock_page(page);
1255 page_cache_release(page);
1256 }
1257 if (error == -ENOSPC && !once++) {
1258 info = SHMEM_I(inode);
1259 spin_lock(&info->lock);
1260 shmem_recalc_inode(inode);
1261 spin_unlock(&info->lock);
1262 goto repeat;
1263 }
1264 if (error == -EEXIST) /* from above or from radix_tree_insert */
1265 goto repeat;
1266 return error;
1267 }
1268
1269 static int shmem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1270 {
1271 struct inode *inode = file_inode(vma->vm_file);
1272 int error;
1273 int ret = VM_FAULT_LOCKED;
1274
1275 /*
1276 * Trinity finds that probing a hole which tmpfs is punching can
1277 * prevent the hole-punch from ever completing: which in turn
1278 * locks writers out with its hold on i_mutex. So refrain from
1279 * faulting pages into the hole while it's being punched. Although
1280 * shmem_undo_range() does remove the additions, it may be unable to
1281 * keep up, as each new page needs its own unmap_mapping_range() call,
1282 * and the i_mmap tree grows ever slower to scan if new vmas are added.
1283 *
1284 * It does not matter if we sometimes reach this check just before the
1285 * hole-punch begins, so that one fault then races with the punch:
1286 * we just need to make racing faults a rare case.
1287 *
1288 * The implementation below would be much simpler if we just used a
1289 * standard mutex or completion: but we cannot take i_mutex in fault,
1290 * and bloating every shmem inode for this unlikely case would be sad.
1291 */
1292 if (unlikely(inode->i_private)) {
1293 struct shmem_falloc *shmem_falloc;
1294
1295 spin_lock(&inode->i_lock);
1296 shmem_falloc = inode->i_private;
1297 if (shmem_falloc &&
1298 shmem_falloc->waitq &&
1299 vmf->pgoff >= shmem_falloc->start &&
1300 vmf->pgoff < shmem_falloc->next) {
1301 wait_queue_head_t *shmem_falloc_waitq;
1302 DEFINE_WAIT(shmem_fault_wait);
1303
1304 ret = VM_FAULT_NOPAGE;
1305 if ((vmf->flags & FAULT_FLAG_ALLOW_RETRY) &&
1306 !(vmf->flags & FAULT_FLAG_RETRY_NOWAIT)) {
1307 /* It's polite to up mmap_sem if we can */
1308 up_read(&vma->vm_mm->mmap_sem);
1309 ret = VM_FAULT_RETRY;
1310 }
1311
1312 shmem_falloc_waitq = shmem_falloc->waitq;
1313 prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait,
1314 TASK_UNINTERRUPTIBLE);
1315 spin_unlock(&inode->i_lock);
1316 schedule();
1317
1318 /*
1319 * shmem_falloc_waitq points into the shmem_fallocate()
1320 * stack of the hole-punching task: shmem_falloc_waitq
1321 * is usually invalid by the time we reach here, but
1322 * finish_wait() does not dereference it in that case;
1323 * though i_lock needed lest racing with wake_up_all().
1324 */
1325 spin_lock(&inode->i_lock);
1326 finish_wait(shmem_falloc_waitq, &shmem_fault_wait);
1327 spin_unlock(&inode->i_lock);
1328 return ret;
1329 }
1330 spin_unlock(&inode->i_lock);
1331 }
1332
1333 error = shmem_getpage(inode, vmf->pgoff, &vmf->page, SGP_CACHE, &ret);
1334 if (error)
1335 return ((error == -ENOMEM) ? VM_FAULT_OOM : VM_FAULT_SIGBUS);
1336
1337 if (ret & VM_FAULT_MAJOR) {
1338 count_vm_event(PGMAJFAULT);
1339 mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT);
1340 }
1341 return ret;
1342 }
1343
1344 #ifdef CONFIG_NUMA
1345 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol)
1346 {
1347 struct inode *inode = file_inode(vma->vm_file);
1348 return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol);
1349 }
1350
1351 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
1352 unsigned long addr)
1353 {
1354 struct inode *inode = file_inode(vma->vm_file);
1355 pgoff_t index;
1356
1357 index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
1358 return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index);
1359 }
1360 #endif
1361
1362 int shmem_lock(struct file *file, int lock, struct user_struct *user)
1363 {
1364 struct inode *inode = file_inode(file);
1365 struct shmem_inode_info *info = SHMEM_I(inode);
1366 int retval = -ENOMEM;
1367
1368 spin_lock(&info->lock);
1369 if (lock && !(info->flags & VM_LOCKED)) {
1370 if (!user_shm_lock(inode->i_size, user))
1371 goto out_nomem;
1372 info->flags |= VM_LOCKED;
1373 mapping_set_unevictable(file->f_mapping);
1374 }
1375 if (!lock && (info->flags & VM_LOCKED) && user) {
1376 user_shm_unlock(inode->i_size, user);
1377 info->flags &= ~VM_LOCKED;
1378 mapping_clear_unevictable(file->f_mapping);
1379 }
1380 retval = 0;
1381
1382 out_nomem:
1383 spin_unlock(&info->lock);
1384 return retval;
1385 }
1386
1387 static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
1388 {
1389 file_accessed(file);
1390 vma->vm_ops = &shmem_vm_ops;
1391 return 0;
1392 }
1393
1394 static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir,
1395 umode_t mode, dev_t dev, unsigned long flags)
1396 {
1397 struct inode *inode;
1398 struct shmem_inode_info *info;
1399 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
1400
1401 if (shmem_reserve_inode(sb))
1402 return NULL;
1403
1404 inode = new_inode(sb);
1405 if (inode) {
1406 inode->i_ino = get_next_ino();
1407 inode_init_owner(inode, dir, mode);
1408 inode->i_blocks = 0;
1409 inode->i_mapping->backing_dev_info = &shmem_backing_dev_info;
1410 inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
1411 inode->i_generation = get_seconds();
1412 info = SHMEM_I(inode);
1413 memset(info, 0, (char *)inode - (char *)info);
1414 spin_lock_init(&info->lock);
1415 info->flags = flags & VM_NORESERVE;
1416 INIT_LIST_HEAD(&info->swaplist);
1417 simple_xattrs_init(&info->xattrs);
1418 cache_no_acl(inode);
1419
1420 switch (mode & S_IFMT) {
1421 default:
1422 inode->i_op = &shmem_special_inode_operations;
1423 init_special_inode(inode, mode, dev);
1424 break;
1425 case S_IFREG:
1426 inode->i_mapping->a_ops = &shmem_aops;
1427 inode->i_op = &shmem_inode_operations;
1428 inode->i_fop = &shmem_file_operations;
1429 mpol_shared_policy_init(&info->policy,
1430 shmem_get_sbmpol(sbinfo));
1431 break;
1432 case S_IFDIR:
1433 inc_nlink(inode);
1434 /* Some things misbehave if size == 0 on a directory */
1435 inode->i_size = 2 * BOGO_DIRENT_SIZE;
1436 inode->i_op = &shmem_dir_inode_operations;
1437 inode->i_fop = &simple_dir_operations;
1438 break;
1439 case S_IFLNK:
1440 /*
1441 * Must not load anything in the rbtree,
1442 * mpol_free_shared_policy will not be called.
1443 */
1444 mpol_shared_policy_init(&info->policy, NULL);
1445 break;
1446 }
1447 } else
1448 shmem_free_inode(sb);
1449 return inode;
1450 }
1451
1452 bool shmem_mapping(struct address_space *mapping)
1453 {
1454 return mapping->backing_dev_info == &shmem_backing_dev_info;
1455 }
1456
1457 #ifdef CONFIG_TMPFS
1458 static const struct inode_operations shmem_symlink_inode_operations;
1459 static const struct inode_operations shmem_short_symlink_operations;
1460
1461 #ifdef CONFIG_TMPFS_XATTR
1462 static int shmem_initxattrs(struct inode *, const struct xattr *, void *);
1463 #else
1464 #define shmem_initxattrs NULL
1465 #endif
1466
1467 static int
1468 shmem_write_begin(struct file *file, struct address_space *mapping,
1469 loff_t pos, unsigned len, unsigned flags,
1470 struct page **pagep, void **fsdata)
1471 {
1472 struct inode *inode = mapping->host;
1473 pgoff_t index = pos >> PAGE_CACHE_SHIFT;
1474 return shmem_getpage(inode, index, pagep, SGP_WRITE, NULL);
1475 }
1476
1477 static int
1478 shmem_write_end(struct file *file, struct address_space *mapping,
1479 loff_t pos, unsigned len, unsigned copied,
1480 struct page *page, void *fsdata)
1481 {
1482 struct inode *inode = mapping->host;
1483
1484 if (pos + copied > inode->i_size)
1485 i_size_write(inode, pos + copied);
1486
1487 if (!PageUptodate(page)) {
1488 if (copied < PAGE_CACHE_SIZE) {
1489 unsigned from = pos & (PAGE_CACHE_SIZE - 1);
1490 zero_user_segments(page, 0, from,
1491 from + copied, PAGE_CACHE_SIZE);
1492 }
1493 SetPageUptodate(page);
1494 }
1495 set_page_dirty(page);
1496 unlock_page(page);
1497 page_cache_release(page);
1498
1499 return copied;
1500 }
1501
1502 static ssize_t shmem_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
1503 {
1504 struct file *file = iocb->ki_filp;
1505 struct inode *inode = file_inode(file);
1506 struct address_space *mapping = inode->i_mapping;
1507 pgoff_t index;
1508 unsigned long offset;
1509 enum sgp_type sgp = SGP_READ;
1510 int error = 0;
1511 ssize_t retval = 0;
1512 loff_t *ppos = &iocb->ki_pos;
1513
1514 /*
1515 * Might this read be for a stacking filesystem? Then when reading
1516 * holes of a sparse file, we actually need to allocate those pages,
1517 * and even mark them dirty, so it cannot exceed the max_blocks limit.
1518 */
1519 if (segment_eq(get_fs(), KERNEL_DS))
1520 sgp = SGP_DIRTY;
1521
1522 index = *ppos >> PAGE_CACHE_SHIFT;
1523 offset = *ppos & ~PAGE_CACHE_MASK;
1524
1525 for (;;) {
1526 struct page *page = NULL;
1527 pgoff_t end_index;
1528 unsigned long nr, ret;
1529 loff_t i_size = i_size_read(inode);
1530
1531 end_index = i_size >> PAGE_CACHE_SHIFT;
1532 if (index > end_index)
1533 break;
1534 if (index == end_index) {
1535 nr = i_size & ~PAGE_CACHE_MASK;
1536 if (nr <= offset)
1537 break;
1538 }
1539
1540 error = shmem_getpage(inode, index, &page, sgp, NULL);
1541 if (error) {
1542 if (error == -EINVAL)
1543 error = 0;
1544 break;
1545 }
1546 if (page)
1547 unlock_page(page);
1548
1549 /*
1550 * We must evaluate after, since reads (unlike writes)
1551 * are called without i_mutex protection against truncate
1552 */
1553 nr = PAGE_CACHE_SIZE;
1554 i_size = i_size_read(inode);
1555 end_index = i_size >> PAGE_CACHE_SHIFT;
1556 if (index == end_index) {
1557 nr = i_size & ~PAGE_CACHE_MASK;
1558 if (nr <= offset) {
1559 if (page)
1560 page_cache_release(page);
1561 break;
1562 }
1563 }
1564 nr -= offset;
1565
1566 if (page) {
1567 /*
1568 * If users can be writing to this page using arbitrary
1569 * virtual addresses, take care about potential aliasing
1570 * before reading the page on the kernel side.
1571 */
1572 if (mapping_writably_mapped(mapping))
1573 flush_dcache_page(page);
1574 /*
1575 * Mark the page accessed if we read the beginning.
1576 */
1577 if (!offset)
1578 mark_page_accessed(page);
1579 } else {
1580 page = ZERO_PAGE(0);
1581 page_cache_get(page);
1582 }
1583
1584 /*
1585 * Ok, we have the page, and it's up-to-date, so
1586 * now we can copy it to user space...
1587 */
1588 ret = copy_page_to_iter(page, offset, nr, to);
1589 retval += ret;
1590 offset += ret;
1591 index += offset >> PAGE_CACHE_SHIFT;
1592 offset &= ~PAGE_CACHE_MASK;
1593
1594 page_cache_release(page);
1595 if (!iov_iter_count(to))
1596 break;
1597 if (ret < nr) {
1598 error = -EFAULT;
1599 break;
1600 }
1601 cond_resched();
1602 }
1603
1604 *ppos = ((loff_t) index << PAGE_CACHE_SHIFT) + offset;
1605 file_accessed(file);
1606 return retval ? retval : error;
1607 }
1608
1609 static ssize_t shmem_file_splice_read(struct file *in, loff_t *ppos,
1610 struct pipe_inode_info *pipe, size_t len,
1611 unsigned int flags)
1612 {
1613 struct address_space *mapping = in->f_mapping;
1614 struct inode *inode = mapping->host;
1615 unsigned int loff, nr_pages, req_pages;
1616 struct page *pages[PIPE_DEF_BUFFERS];
1617 struct partial_page partial[PIPE_DEF_BUFFERS];
1618 struct page *page;
1619 pgoff_t index, end_index;
1620 loff_t isize, left;
1621 int error, page_nr;
1622 struct splice_pipe_desc spd = {
1623 .pages = pages,
1624 .partial = partial,
1625 .nr_pages_max = PIPE_DEF_BUFFERS,
1626 .flags = flags,
1627 .ops = &page_cache_pipe_buf_ops,
1628 .spd_release = spd_release_page,
1629 };
1630
1631 isize = i_size_read(inode);
1632 if (unlikely(*ppos >= isize))
1633 return 0;
1634
1635 left = isize - *ppos;
1636 if (unlikely(left < len))
1637 len = left;
1638
1639 if (splice_grow_spd(pipe, &spd))
1640 return -ENOMEM;
1641
1642 index = *ppos >> PAGE_CACHE_SHIFT;
1643 loff = *ppos & ~PAGE_CACHE_MASK;
1644 req_pages = (len + loff + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1645 nr_pages = min(req_pages, spd.nr_pages_max);
1646
1647 spd.nr_pages = find_get_pages_contig(mapping, index,
1648 nr_pages, spd.pages);
1649 index += spd.nr_pages;
1650 error = 0;
1651
1652 while (spd.nr_pages < nr_pages) {
1653 error = shmem_getpage(inode, index, &page, SGP_CACHE, NULL);
1654 if (error)
1655 break;
1656 unlock_page(page);
1657 spd.pages[spd.nr_pages++] = page;
1658 index++;
1659 }
1660
1661 index = *ppos >> PAGE_CACHE_SHIFT;
1662 nr_pages = spd.nr_pages;
1663 spd.nr_pages = 0;
1664
1665 for (page_nr = 0; page_nr < nr_pages; page_nr++) {
1666 unsigned int this_len;
1667
1668 if (!len)
1669 break;
1670
1671 this_len = min_t(unsigned long, len, PAGE_CACHE_SIZE - loff);
1672 page = spd.pages[page_nr];
1673
1674 if (!PageUptodate(page) || page->mapping != mapping) {
1675 error = shmem_getpage(inode, index, &page,
1676 SGP_CACHE, NULL);
1677 if (error)
1678 break;
1679 unlock_page(page);
1680 page_cache_release(spd.pages[page_nr]);
1681 spd.pages[page_nr] = page;
1682 }
1683
1684 isize = i_size_read(inode);
1685 end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
1686 if (unlikely(!isize || index > end_index))
1687 break;
1688
1689 if (end_index == index) {
1690 unsigned int plen;
1691
1692 plen = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
1693 if (plen <= loff)
1694 break;
1695
1696 this_len = min(this_len, plen - loff);
1697 len = this_len;
1698 }
1699
1700 spd.partial[page_nr].offset = loff;
1701 spd.partial[page_nr].len = this_len;
1702 len -= this_len;
1703 loff = 0;
1704 spd.nr_pages++;
1705 index++;
1706 }
1707
1708 while (page_nr < nr_pages)
1709 page_cache_release(spd.pages[page_nr++]);
1710
1711 if (spd.nr_pages)
1712 error = splice_to_pipe(pipe, &spd);
1713
1714 splice_shrink_spd(&spd);
1715
1716 if (error > 0) {
1717 *ppos += error;
1718 file_accessed(in);
1719 }
1720 return error;
1721 }
1722
1723 /*
1724 * llseek SEEK_DATA or SEEK_HOLE through the radix_tree.
1725 */
1726 static pgoff_t shmem_seek_hole_data(struct address_space *mapping,
1727 pgoff_t index, pgoff_t end, int whence)
1728 {
1729 struct page *page;
1730 struct pagevec pvec;
1731 pgoff_t indices[PAGEVEC_SIZE];
1732 bool done = false;
1733 int i;
1734
1735 pagevec_init(&pvec, 0);
1736 pvec.nr = 1; /* start small: we may be there already */
1737 while (!done) {
1738 pvec.nr = find_get_entries(mapping, index,
1739 pvec.nr, pvec.pages, indices);
1740 if (!pvec.nr) {
1741 if (whence == SEEK_DATA)
1742 index = end;
1743 break;
1744 }
1745 for (i = 0; i < pvec.nr; i++, index++) {
1746 if (index < indices[i]) {
1747 if (whence == SEEK_HOLE) {
1748 done = true;
1749 break;
1750 }
1751 index = indices[i];
1752 }
1753 page = pvec.pages[i];
1754 if (page && !radix_tree_exceptional_entry(page)) {
1755 if (!PageUptodate(page))
1756 page = NULL;
1757 }
1758 if (index >= end ||
1759 (page && whence == SEEK_DATA) ||
1760 (!page && whence == SEEK_HOLE)) {
1761 done = true;
1762 break;
1763 }
1764 }
1765 pagevec_remove_exceptionals(&pvec);
1766 pagevec_release(&pvec);
1767 pvec.nr = PAGEVEC_SIZE;
1768 cond_resched();
1769 }
1770 return index;
1771 }
1772
1773 static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence)
1774 {
1775 struct address_space *mapping = file->f_mapping;
1776 struct inode *inode = mapping->host;
1777 pgoff_t start, end;
1778 loff_t new_offset;
1779
1780 if (whence != SEEK_DATA && whence != SEEK_HOLE)
1781 return generic_file_llseek_size(file, offset, whence,
1782 MAX_LFS_FILESIZE, i_size_read(inode));
1783 mutex_lock(&inode->i_mutex);
1784 /* We're holding i_mutex so we can access i_size directly */
1785
1786 if (offset < 0)
1787 offset = -EINVAL;
1788 else if (offset >= inode->i_size)
1789 offset = -ENXIO;
1790 else {
1791 start = offset >> PAGE_CACHE_SHIFT;
1792 end = (inode->i_size + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1793 new_offset = shmem_seek_hole_data(mapping, start, end, whence);
1794 new_offset <<= PAGE_CACHE_SHIFT;
1795 if (new_offset > offset) {
1796 if (new_offset < inode->i_size)
1797 offset = new_offset;
1798 else if (whence == SEEK_DATA)
1799 offset = -ENXIO;
1800 else
1801 offset = inode->i_size;
1802 }
1803 }
1804
1805 if (offset >= 0)
1806 offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE);
1807 mutex_unlock(&inode->i_mutex);
1808 return offset;
1809 }
1810
1811 static long shmem_fallocate(struct file *file, int mode, loff_t offset,
1812 loff_t len)
1813 {
1814 struct inode *inode = file_inode(file);
1815 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1816 struct shmem_falloc shmem_falloc;
1817 pgoff_t start, index, end;
1818 int error;
1819
1820 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
1821 return -EOPNOTSUPP;
1822
1823 mutex_lock(&inode->i_mutex);
1824
1825 if (mode & FALLOC_FL_PUNCH_HOLE) {
1826 struct address_space *mapping = file->f_mapping;
1827 loff_t unmap_start = round_up(offset, PAGE_SIZE);
1828 loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1;
1829 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq);
1830
1831 shmem_falloc.waitq = &shmem_falloc_waitq;
1832 shmem_falloc.start = unmap_start >> PAGE_SHIFT;
1833 shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT;
1834 spin_lock(&inode->i_lock);
1835 inode->i_private = &shmem_falloc;
1836 spin_unlock(&inode->i_lock);
1837
1838 if ((u64)unmap_end > (u64)unmap_start)
1839 unmap_mapping_range(mapping, unmap_start,
1840 1 + unmap_end - unmap_start, 0);
1841 shmem_truncate_range(inode, offset, offset + len - 1);
1842 /* No need to unmap again: hole-punching leaves COWed pages */
1843
1844 spin_lock(&inode->i_lock);
1845 inode->i_private = NULL;
1846 wake_up_all(&shmem_falloc_waitq);
1847 spin_unlock(&inode->i_lock);
1848 error = 0;
1849 goto out;
1850 }
1851
1852 /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
1853 error = inode_newsize_ok(inode, offset + len);
1854 if (error)
1855 goto out;
1856
1857 start = offset >> PAGE_CACHE_SHIFT;
1858 end = (offset + len + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1859 /* Try to avoid a swapstorm if len is impossible to satisfy */
1860 if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) {
1861 error = -ENOSPC;
1862 goto out;
1863 }
1864
1865 shmem_falloc.waitq = NULL;
1866 shmem_falloc.start = start;
1867 shmem_falloc.next = start;
1868 shmem_falloc.nr_falloced = 0;
1869 shmem_falloc.nr_unswapped = 0;
1870 spin_lock(&inode->i_lock);
1871 inode->i_private = &shmem_falloc;
1872 spin_unlock(&inode->i_lock);
1873
1874 for (index = start; index < end; index++) {
1875 struct page *page;
1876
1877 /*
1878 * Good, the fallocate(2) manpage permits EINTR: we may have
1879 * been interrupted because we are using up too much memory.
1880 */
1881 if (signal_pending(current))
1882 error = -EINTR;
1883 else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced)
1884 error = -ENOMEM;
1885 else
1886 error = shmem_getpage(inode, index, &page, SGP_FALLOC,
1887 NULL);
1888 if (error) {
1889 /* Remove the !PageUptodate pages we added */
1890 shmem_undo_range(inode,
1891 (loff_t)start << PAGE_CACHE_SHIFT,
1892 (loff_t)index << PAGE_CACHE_SHIFT, true);
1893 goto undone;
1894 }
1895
1896 /*
1897 * Inform shmem_writepage() how far we have reached.
1898 * No need for lock or barrier: we have the page lock.
1899 */
1900 shmem_falloc.next++;
1901 if (!PageUptodate(page))
1902 shmem_falloc.nr_falloced++;
1903
1904 /*
1905 * If !PageUptodate, leave it that way so that freeable pages
1906 * can be recognized if we need to rollback on error later.
1907 * But set_page_dirty so that memory pressure will swap rather
1908 * than free the pages we are allocating (and SGP_CACHE pages
1909 * might still be clean: we now need to mark those dirty too).
1910 */
1911 set_page_dirty(page);
1912 unlock_page(page);
1913 page_cache_release(page);
1914 cond_resched();
1915 }
1916
1917 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
1918 i_size_write(inode, offset + len);
1919 inode->i_ctime = CURRENT_TIME;
1920 undone:
1921 spin_lock(&inode->i_lock);
1922 inode->i_private = NULL;
1923 spin_unlock(&inode->i_lock);
1924 out:
1925 mutex_unlock(&inode->i_mutex);
1926 return error;
1927 }
1928
1929 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
1930 {
1931 struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
1932
1933 buf->f_type = TMPFS_MAGIC;
1934 buf->f_bsize = PAGE_CACHE_SIZE;
1935 buf->f_namelen = NAME_MAX;
1936 if (sbinfo->max_blocks) {
1937 buf->f_blocks = sbinfo->max_blocks;
1938 buf->f_bavail =
1939 buf->f_bfree = sbinfo->max_blocks -
1940 percpu_counter_sum(&sbinfo->used_blocks);
1941 }
1942 if (sbinfo->max_inodes) {
1943 buf->f_files = sbinfo->max_inodes;
1944 buf->f_ffree = sbinfo->free_inodes;
1945 }
1946 /* else leave those fields 0 like simple_statfs */
1947 return 0;
1948 }
1949
1950 /*
1951 * File creation. Allocate an inode, and we're done..
1952 */
1953 static int
1954 shmem_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
1955 {
1956 struct inode *inode;
1957 int error = -ENOSPC;
1958
1959 inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE);
1960 if (inode) {
1961 error = simple_acl_create(dir, inode);
1962 if (error)
1963 goto out_iput;
1964 error = security_inode_init_security(inode, dir,
1965 &dentry->d_name,
1966 shmem_initxattrs, NULL);
1967 if (error && error != -EOPNOTSUPP)
1968 goto out_iput;
1969
1970 error = 0;
1971 dir->i_size += BOGO_DIRENT_SIZE;
1972 dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1973 d_instantiate(dentry, inode);
1974 dget(dentry); /* Extra count - pin the dentry in core */
1975 }
1976 return error;
1977 out_iput:
1978 iput(inode);
1979 return error;
1980 }
1981
1982 static int
1983 shmem_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode)
1984 {
1985 struct inode *inode;
1986 int error = -ENOSPC;
1987
1988 inode = shmem_get_inode(dir->i_sb, dir, mode, 0, VM_NORESERVE);
1989 if (inode) {
1990 error = security_inode_init_security(inode, dir,
1991 NULL,
1992 shmem_initxattrs, NULL);
1993 if (error && error != -EOPNOTSUPP)
1994 goto out_iput;
1995 error = simple_acl_create(dir, inode);
1996 if (error)
1997 goto out_iput;
1998 d_tmpfile(dentry, inode);
1999 }
2000 return error;
2001 out_iput:
2002 iput(inode);
2003 return error;
2004 }
2005
2006 static int shmem_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
2007 {
2008 int error;
2009
2010 if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0)))
2011 return error;
2012 inc_nlink(dir);
2013 return 0;
2014 }
2015
2016 static int shmem_create(struct inode *dir, struct dentry *dentry, umode_t mode,
2017 bool excl)
2018 {
2019 return shmem_mknod(dir, dentry, mode | S_IFREG, 0);
2020 }
2021
2022 /*
2023 * Link a file..
2024 */
2025 static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
2026 {
2027 struct inode *inode = old_dentry->d_inode;
2028 int ret;
2029
2030 /*
2031 * No ordinary (disk based) filesystem counts links as inodes;
2032 * but each new link needs a new dentry, pinning lowmem, and
2033 * tmpfs dentries cannot be pruned until they are unlinked.
2034 */
2035 ret = shmem_reserve_inode(inode->i_sb);
2036 if (ret)
2037 goto out;
2038
2039 dir->i_size += BOGO_DIRENT_SIZE;
2040 inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
2041 inc_nlink(inode);
2042 ihold(inode); /* New dentry reference */
2043 dget(dentry); /* Extra pinning count for the created dentry */
2044 d_instantiate(dentry, inode);
2045 out:
2046 return ret;
2047 }
2048
2049 static int shmem_unlink(struct inode *dir, struct dentry *dentry)
2050 {
2051 struct inode *inode = dentry->d_inode;
2052
2053 if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
2054 shmem_free_inode(inode->i_sb);
2055
2056 dir->i_size -= BOGO_DIRENT_SIZE;
2057 inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
2058 drop_nlink(inode);
2059 dput(dentry); /* Undo the count from "create" - this does all the work */
2060 return 0;
2061 }
2062
2063 static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
2064 {
2065 if (!simple_empty(dentry))
2066 return -ENOTEMPTY;
2067
2068 drop_nlink(dentry->d_inode);
2069 drop_nlink(dir);
2070 return shmem_unlink(dir, dentry);
2071 }
2072
2073 /*
2074 * The VFS layer already does all the dentry stuff for rename,
2075 * we just have to decrement the usage count for the target if
2076 * it exists so that the VFS layer correctly free's it when it
2077 * gets overwritten.
2078 */
2079 static int shmem_rename(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry)
2080 {
2081 struct inode *inode = old_dentry->d_inode;
2082 int they_are_dirs = S_ISDIR(inode->i_mode);
2083
2084 if (!simple_empty(new_dentry))
2085 return -ENOTEMPTY;
2086
2087 if (new_dentry->d_inode) {
2088 (void) shmem_unlink(new_dir, new_dentry);
2089 if (they_are_dirs)
2090 drop_nlink(old_dir);
2091 } else if (they_are_dirs) {
2092 drop_nlink(old_dir);
2093 inc_nlink(new_dir);
2094 }
2095
2096 old_dir->i_size -= BOGO_DIRENT_SIZE;
2097 new_dir->i_size += BOGO_DIRENT_SIZE;
2098 old_dir->i_ctime = old_dir->i_mtime =
2099 new_dir->i_ctime = new_dir->i_mtime =
2100 inode->i_ctime = CURRENT_TIME;
2101 return 0;
2102 }
2103
2104 static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
2105 {
2106 int error;
2107 int len;
2108 struct inode *inode;
2109 struct page *page;
2110 char *kaddr;
2111 struct shmem_inode_info *info;
2112
2113 len = strlen(symname) + 1;
2114 if (len > PAGE_CACHE_SIZE)
2115 return -ENAMETOOLONG;
2116
2117 inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK|S_IRWXUGO, 0, VM_NORESERVE);
2118 if (!inode)
2119 return -ENOSPC;
2120
2121 error = security_inode_init_security(inode, dir, &dentry->d_name,
2122 shmem_initxattrs, NULL);
2123 if (error) {
2124 if (error != -EOPNOTSUPP) {
2125 iput(inode);
2126 return error;
2127 }
2128 error = 0;
2129 }
2130
2131 info = SHMEM_I(inode);
2132 inode->i_size = len-1;
2133 if (len <= SHORT_SYMLINK_LEN) {
2134 info->symlink = kmemdup(symname, len, GFP_KERNEL);
2135 if (!info->symlink) {
2136 iput(inode);
2137 return -ENOMEM;
2138 }
2139 inode->i_op = &shmem_short_symlink_operations;
2140 } else {
2141 error = shmem_getpage(inode, 0, &page, SGP_WRITE, NULL);
2142 if (error) {
2143 iput(inode);
2144 return error;
2145 }
2146 inode->i_mapping->a_ops = &shmem_aops;
2147 inode->i_op = &shmem_symlink_inode_operations;
2148 kaddr = kmap_atomic(page);
2149 memcpy(kaddr, symname, len);
2150 kunmap_atomic(kaddr);
2151 SetPageUptodate(page);
2152 set_page_dirty(page);
2153 unlock_page(page);
2154 page_cache_release(page);
2155 }
2156 dir->i_size += BOGO_DIRENT_SIZE;
2157 dir->i_ctime = dir->i_mtime = CURRENT_TIME;
2158 d_instantiate(dentry, inode);
2159 dget(dentry);
2160 return 0;
2161 }
2162
2163 static void *shmem_follow_short_symlink(struct dentry *dentry, struct nameidata *nd)
2164 {
2165 nd_set_link(nd, SHMEM_I(dentry->d_inode)->symlink);
2166 return NULL;
2167 }
2168
2169 static void *shmem_follow_link(struct dentry *dentry, struct nameidata *nd)
2170 {
2171 struct page *page = NULL;
2172 int error = shmem_getpage(dentry->d_inode, 0, &page, SGP_READ, NULL);
2173 nd_set_link(nd, error ? ERR_PTR(error) : kmap(page));
2174 if (page)
2175 unlock_page(page);
2176 return page;
2177 }
2178
2179 static void shmem_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie)
2180 {
2181 if (!IS_ERR(nd_get_link(nd))) {
2182 struct page *page = cookie;
2183 kunmap(page);
2184 mark_page_accessed(page);
2185 page_cache_release(page);
2186 }
2187 }
2188
2189 #ifdef CONFIG_TMPFS_XATTR
2190 /*
2191 * Superblocks without xattr inode operations may get some security.* xattr
2192 * support from the LSM "for free". As soon as we have any other xattrs
2193 * like ACLs, we also need to implement the security.* handlers at
2194 * filesystem level, though.
2195 */
2196
2197 /*
2198 * Callback for security_inode_init_security() for acquiring xattrs.
2199 */
2200 static int shmem_initxattrs(struct inode *inode,
2201 const struct xattr *xattr_array,
2202 void *fs_info)
2203 {
2204 struct shmem_inode_info *info = SHMEM_I(inode);
2205 const struct xattr *xattr;
2206 struct simple_xattr *new_xattr;
2207 size_t len;
2208
2209 for (xattr = xattr_array; xattr->name != NULL; xattr++) {
2210 new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len);
2211 if (!new_xattr)
2212 return -ENOMEM;
2213
2214 len = strlen(xattr->name) + 1;
2215 new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len,
2216 GFP_KERNEL);
2217 if (!new_xattr->name) {
2218 kfree(new_xattr);
2219 return -ENOMEM;
2220 }
2221
2222 memcpy(new_xattr->name, XATTR_SECURITY_PREFIX,
2223 XATTR_SECURITY_PREFIX_LEN);
2224 memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN,
2225 xattr->name, len);
2226
2227 simple_xattr_list_add(&info->xattrs, new_xattr);
2228 }
2229
2230 return 0;
2231 }
2232
2233 static const struct xattr_handler *shmem_xattr_handlers[] = {
2234 #ifdef CONFIG_TMPFS_POSIX_ACL
2235 &posix_acl_access_xattr_handler,
2236 &posix_acl_default_xattr_handler,
2237 #endif
2238 NULL
2239 };
2240
2241 static int shmem_xattr_validate(const char *name)
2242 {
2243 struct { const char *prefix; size_t len; } arr[] = {
2244 { XATTR_SECURITY_PREFIX, XATTR_SECURITY_PREFIX_LEN },
2245 { XATTR_TRUSTED_PREFIX, XATTR_TRUSTED_PREFIX_LEN }
2246 };
2247 int i;
2248
2249 for (i = 0; i < ARRAY_SIZE(arr); i++) {
2250 size_t preflen = arr[i].len;
2251 if (strncmp(name, arr[i].prefix, preflen) == 0) {
2252 if (!name[preflen])
2253 return -EINVAL;
2254 return 0;
2255 }
2256 }
2257 return -EOPNOTSUPP;
2258 }
2259
2260 static ssize_t shmem_getxattr(struct dentry *dentry, const char *name,
2261 void *buffer, size_t size)
2262 {
2263 struct shmem_inode_info *info = SHMEM_I(dentry->d_inode);
2264 int err;
2265
2266 /*
2267 * If this is a request for a synthetic attribute in the system.*
2268 * namespace use the generic infrastructure to resolve a handler
2269 * for it via sb->s_xattr.
2270 */
2271 if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN))
2272 return generic_getxattr(dentry, name, buffer, size);
2273
2274 err = shmem_xattr_validate(name);
2275 if (err)
2276 return err;
2277
2278 return simple_xattr_get(&info->xattrs, name, buffer, size);
2279 }
2280
2281 static int shmem_setxattr(struct dentry *dentry, const char *name,
2282 const void *value, size_t size, int flags)
2283 {
2284 struct shmem_inode_info *info = SHMEM_I(dentry->d_inode);
2285 int err;
2286
2287 /*
2288 * If this is a request for a synthetic attribute in the system.*
2289 * namespace use the generic infrastructure to resolve a handler
2290 * for it via sb->s_xattr.
2291 */
2292 if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN))
2293 return generic_setxattr(dentry, name, value, size, flags);
2294
2295 err = shmem_xattr_validate(name);
2296 if (err)
2297 return err;
2298
2299 return simple_xattr_set(&info->xattrs, name, value, size, flags);
2300 }
2301
2302 static int shmem_removexattr(struct dentry *dentry, const char *name)
2303 {
2304 struct shmem_inode_info *info = SHMEM_I(dentry->d_inode);
2305 int err;
2306
2307 /*
2308 * If this is a request for a synthetic attribute in the system.*
2309 * namespace use the generic infrastructure to resolve a handler
2310 * for it via sb->s_xattr.
2311 */
2312 if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN))
2313 return generic_removexattr(dentry, name);
2314
2315 err = shmem_xattr_validate(name);
2316 if (err)
2317 return err;
2318
2319 return simple_xattr_remove(&info->xattrs, name);
2320 }
2321
2322 static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size)
2323 {
2324 struct shmem_inode_info *info = SHMEM_I(dentry->d_inode);
2325 return simple_xattr_list(&info->xattrs, buffer, size);
2326 }
2327 #endif /* CONFIG_TMPFS_XATTR */
2328
2329 static const struct inode_operations shmem_short_symlink_operations = {
2330 .readlink = generic_readlink,
2331 .follow_link = shmem_follow_short_symlink,
2332 #ifdef CONFIG_TMPFS_XATTR
2333 .setxattr = shmem_setxattr,
2334 .getxattr = shmem_getxattr,
2335 .listxattr = shmem_listxattr,
2336 .removexattr = shmem_removexattr,
2337 #endif
2338 };
2339
2340 static const struct inode_operations shmem_symlink_inode_operations = {
2341 .readlink = generic_readlink,
2342 .follow_link = shmem_follow_link,
2343 .put_link = shmem_put_link,
2344 #ifdef CONFIG_TMPFS_XATTR
2345 .setxattr = shmem_setxattr,
2346 .getxattr = shmem_getxattr,
2347 .listxattr = shmem_listxattr,
2348 .removexattr = shmem_removexattr,
2349 #endif
2350 };
2351
2352 static struct dentry *shmem_get_parent(struct dentry *child)
2353 {
2354 return ERR_PTR(-ESTALE);
2355 }
2356
2357 static int shmem_match(struct inode *ino, void *vfh)
2358 {
2359 __u32 *fh = vfh;
2360 __u64 inum = fh[2];
2361 inum = (inum << 32) | fh[1];
2362 return ino->i_ino == inum && fh[0] == ino->i_generation;
2363 }
2364
2365 static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
2366 struct fid *fid, int fh_len, int fh_type)
2367 {
2368 struct inode *inode;
2369 struct dentry *dentry = NULL;
2370 u64 inum;
2371
2372 if (fh_len < 3)
2373 return NULL;
2374
2375 inum = fid->raw[2];
2376 inum = (inum << 32) | fid->raw[1];
2377
2378 inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
2379 shmem_match, fid->raw);
2380 if (inode) {
2381 dentry = d_find_alias(inode);
2382 iput(inode);
2383 }
2384
2385 return dentry;
2386 }
2387
2388 static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len,
2389 struct inode *parent)
2390 {
2391 if (*len < 3) {
2392 *len = 3;
2393 return FILEID_INVALID;
2394 }
2395
2396 if (inode_unhashed(inode)) {
2397 /* Unfortunately insert_inode_hash is not idempotent,
2398 * so as we hash inodes here rather than at creation
2399 * time, we need a lock to ensure we only try
2400 * to do it once
2401 */
2402 static DEFINE_SPINLOCK(lock);
2403 spin_lock(&lock);
2404 if (inode_unhashed(inode))
2405 __insert_inode_hash(inode,
2406 inode->i_ino + inode->i_generation);
2407 spin_unlock(&lock);
2408 }
2409
2410 fh[0] = inode->i_generation;
2411 fh[1] = inode->i_ino;
2412 fh[2] = ((__u64)inode->i_ino) >> 32;
2413
2414 *len = 3;
2415 return 1;
2416 }
2417
2418 static const struct export_operations shmem_export_ops = {
2419 .get_parent = shmem_get_parent,
2420 .encode_fh = shmem_encode_fh,
2421 .fh_to_dentry = shmem_fh_to_dentry,
2422 };
2423
2424 static int shmem_parse_options(char *options, struct shmem_sb_info *sbinfo,
2425 bool remount)
2426 {
2427 char *this_char, *value, *rest;
2428 struct mempolicy *mpol = NULL;
2429 uid_t uid;
2430 gid_t gid;
2431
2432 while (options != NULL) {
2433 this_char = options;
2434 for (;;) {
2435 /*
2436 * NUL-terminate this option: unfortunately,
2437 * mount options form a comma-separated list,
2438 * but mpol's nodelist may also contain commas.
2439 */
2440 options = strchr(options, ',');
2441 if (options == NULL)
2442 break;
2443 options++;
2444 if (!isdigit(*options)) {
2445 options[-1] = '\0';
2446 break;
2447 }
2448 }
2449 if (!*this_char)
2450 continue;
2451 if ((value = strchr(this_char,'=')) != NULL) {
2452 *value++ = 0;
2453 } else {
2454 printk(KERN_ERR
2455 "tmpfs: No value for mount option '%s'\n",
2456 this_char);
2457 goto error;
2458 }
2459
2460 if (!strcmp(this_char,"size")) {
2461 unsigned long long size;
2462 size = memparse(value,&rest);
2463 if (*rest == '%') {
2464 size <<= PAGE_SHIFT;
2465 size *= totalram_pages;
2466 do_div(size, 100);
2467 rest++;
2468 }
2469 if (*rest)
2470 goto bad_val;
2471 sbinfo->max_blocks =
2472 DIV_ROUND_UP(size, PAGE_CACHE_SIZE);
2473 } else if (!strcmp(this_char,"nr_blocks")) {
2474 sbinfo->max_blocks = memparse(value, &rest);
2475 if (*rest)
2476 goto bad_val;
2477 } else if (!strcmp(this_char,"nr_inodes")) {
2478 sbinfo->max_inodes = memparse(value, &rest);
2479 if (*rest)
2480 goto bad_val;
2481 } else if (!strcmp(this_char,"mode")) {
2482 if (remount)
2483 continue;
2484 sbinfo->mode = simple_strtoul(value, &rest, 8) & 07777;
2485 if (*rest)
2486 goto bad_val;
2487 } else if (!strcmp(this_char,"uid")) {
2488 if (remount)
2489 continue;
2490 uid = simple_strtoul(value, &rest, 0);
2491 if (*rest)
2492 goto bad_val;
2493 sbinfo->uid = make_kuid(current_user_ns(), uid);
2494 if (!uid_valid(sbinfo->uid))
2495 goto bad_val;
2496 } else if (!strcmp(this_char,"gid")) {
2497 if (remount)
2498 continue;
2499 gid = simple_strtoul(value, &rest, 0);
2500 if (*rest)
2501 goto bad_val;
2502 sbinfo->gid = make_kgid(current_user_ns(), gid);
2503 if (!gid_valid(sbinfo->gid))
2504 goto bad_val;
2505 } else if (!strcmp(this_char,"mpol")) {
2506 mpol_put(mpol);
2507 mpol = NULL;
2508 if (mpol_parse_str(value, &mpol))
2509 goto bad_val;
2510 } else {
2511 printk(KERN_ERR "tmpfs: Bad mount option %s\n",
2512 this_char);
2513 goto error;
2514 }
2515 }
2516 sbinfo->mpol = mpol;
2517 return 0;
2518
2519 bad_val:
2520 printk(KERN_ERR "tmpfs: Bad value '%s' for mount option '%s'\n",
2521 value, this_char);
2522 error:
2523 mpol_put(mpol);
2524 return 1;
2525
2526 }
2527
2528 static int shmem_remount_fs(struct super_block *sb, int *flags, char *data)
2529 {
2530 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2531 struct shmem_sb_info config = *sbinfo;
2532 unsigned long inodes;
2533 int error = -EINVAL;
2534
2535 config.mpol = NULL;
2536 if (shmem_parse_options(data, &config, true))
2537 return error;
2538
2539 spin_lock(&sbinfo->stat_lock);
2540 inodes = sbinfo->max_inodes - sbinfo->free_inodes;
2541 if (percpu_counter_compare(&sbinfo->used_blocks, config.max_blocks) > 0)
2542 goto out;
2543 if (config.max_inodes < inodes)
2544 goto out;
2545 /*
2546 * Those tests disallow limited->unlimited while any are in use;
2547 * but we must separately disallow unlimited->limited, because
2548 * in that case we have no record of how much is already in use.
2549 */
2550 if (config.max_blocks && !sbinfo->max_blocks)
2551 goto out;
2552 if (config.max_inodes && !sbinfo->max_inodes)
2553 goto out;
2554
2555 error = 0;
2556 sbinfo->max_blocks = config.max_blocks;
2557 sbinfo->max_inodes = config.max_inodes;
2558 sbinfo->free_inodes = config.max_inodes - inodes;
2559
2560 /*
2561 * Preserve previous mempolicy unless mpol remount option was specified.
2562 */
2563 if (config.mpol) {
2564 mpol_put(sbinfo->mpol);
2565 sbinfo->mpol = config.mpol; /* transfers initial ref */
2566 }
2567 out:
2568 spin_unlock(&sbinfo->stat_lock);
2569 return error;
2570 }
2571
2572 static int shmem_show_options(struct seq_file *seq, struct dentry *root)
2573 {
2574 struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb);
2575
2576 if (sbinfo->max_blocks != shmem_default_max_blocks())
2577 seq_printf(seq, ",size=%luk",
2578 sbinfo->max_blocks << (PAGE_CACHE_SHIFT - 10));
2579 if (sbinfo->max_inodes != shmem_default_max_inodes())
2580 seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
2581 if (sbinfo->mode != (S_IRWXUGO | S_ISVTX))
2582 seq_printf(seq, ",mode=%03ho", sbinfo->mode);
2583 if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
2584 seq_printf(seq, ",uid=%u",
2585 from_kuid_munged(&init_user_ns, sbinfo->uid));
2586 if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
2587 seq_printf(seq, ",gid=%u",
2588 from_kgid_munged(&init_user_ns, sbinfo->gid));
2589 shmem_show_mpol(seq, sbinfo->mpol);
2590 return 0;
2591 }
2592 #endif /* CONFIG_TMPFS */
2593
2594 static void shmem_put_super(struct super_block *sb)
2595 {
2596 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2597
2598 percpu_counter_destroy(&sbinfo->used_blocks);
2599 mpol_put(sbinfo->mpol);
2600 kfree(sbinfo);
2601 sb->s_fs_info = NULL;
2602 }
2603
2604 int shmem_fill_super(struct super_block *sb, void *data, int silent)
2605 {
2606 struct inode *inode;
2607 struct shmem_sb_info *sbinfo;
2608 int err = -ENOMEM;
2609
2610 /* Round up to L1_CACHE_BYTES to resist false sharing */
2611 sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
2612 L1_CACHE_BYTES), GFP_KERNEL);
2613 if (!sbinfo)
2614 return -ENOMEM;
2615
2616 sbinfo->mode = S_IRWXUGO | S_ISVTX;
2617 sbinfo->uid = current_fsuid();
2618 sbinfo->gid = current_fsgid();
2619 sb->s_fs_info = sbinfo;
2620
2621 #ifdef CONFIG_TMPFS
2622 /*
2623 * Per default we only allow half of the physical ram per
2624 * tmpfs instance, limiting inodes to one per page of lowmem;
2625 * but the internal instance is left unlimited.
2626 */
2627 if (!(sb->s_flags & MS_KERNMOUNT)) {
2628 sbinfo->max_blocks = shmem_default_max_blocks();
2629 sbinfo->max_inodes = shmem_default_max_inodes();
2630 if (shmem_parse_options(data, sbinfo, false)) {
2631 err = -EINVAL;
2632 goto failed;
2633 }
2634 } else {
2635 sb->s_flags |= MS_NOUSER;
2636 }
2637 sb->s_export_op = &shmem_export_ops;
2638 sb->s_flags |= MS_NOSEC;
2639 #else
2640 sb->s_flags |= MS_NOUSER;
2641 #endif
2642
2643 spin_lock_init(&sbinfo->stat_lock);
2644 if (percpu_counter_init(&sbinfo->used_blocks, 0))
2645 goto failed;
2646 sbinfo->free_inodes = sbinfo->max_inodes;
2647
2648 sb->s_maxbytes = MAX_LFS_FILESIZE;
2649 sb->s_blocksize = PAGE_CACHE_SIZE;
2650 sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
2651 sb->s_magic = TMPFS_MAGIC;
2652 sb->s_op = &shmem_ops;
2653 sb->s_time_gran = 1;
2654 #ifdef CONFIG_TMPFS_XATTR
2655 sb->s_xattr = shmem_xattr_handlers;
2656 #endif
2657 #ifdef CONFIG_TMPFS_POSIX_ACL
2658 sb->s_flags |= MS_POSIXACL;
2659 #endif
2660
2661 inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
2662 if (!inode)
2663 goto failed;
2664 inode->i_uid = sbinfo->uid;
2665 inode->i_gid = sbinfo->gid;
2666 sb->s_root = d_make_root(inode);
2667 if (!sb->s_root)
2668 goto failed;
2669 return 0;
2670
2671 failed:
2672 shmem_put_super(sb);
2673 return err;
2674 }
2675
2676 static struct kmem_cache *shmem_inode_cachep;
2677
2678 static struct inode *shmem_alloc_inode(struct super_block *sb)
2679 {
2680 struct shmem_inode_info *info;
2681 info = kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL);
2682 if (!info)
2683 return NULL;
2684 return &info->vfs_inode;
2685 }
2686
2687 static void shmem_destroy_callback(struct rcu_head *head)
2688 {
2689 struct inode *inode = container_of(head, struct inode, i_rcu);
2690 kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
2691 }
2692
2693 static void shmem_destroy_inode(struct inode *inode)
2694 {
2695 if (S_ISREG(inode->i_mode))
2696 mpol_free_shared_policy(&SHMEM_I(inode)->policy);
2697 call_rcu(&inode->i_rcu, shmem_destroy_callback);
2698 }
2699
2700 static void shmem_init_inode(void *foo)
2701 {
2702 struct shmem_inode_info *info = foo;
2703 inode_init_once(&info->vfs_inode);
2704 }
2705
2706 static int shmem_init_inodecache(void)
2707 {
2708 shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
2709 sizeof(struct shmem_inode_info),
2710 0, SLAB_PANIC, shmem_init_inode);
2711 return 0;
2712 }
2713
2714 static void shmem_destroy_inodecache(void)
2715 {
2716 kmem_cache_destroy(shmem_inode_cachep);
2717 }
2718
2719 static const struct address_space_operations shmem_aops = {
2720 .writepage = shmem_writepage,
2721 .set_page_dirty = __set_page_dirty_no_writeback,
2722 #ifdef CONFIG_TMPFS
2723 .write_begin = shmem_write_begin,
2724 .write_end = shmem_write_end,
2725 #endif
2726 .migratepage = migrate_page,
2727 .error_remove_page = generic_error_remove_page,
2728 };
2729
2730 static const struct file_operations shmem_file_operations = {
2731 .mmap = shmem_mmap,
2732 #ifdef CONFIG_TMPFS
2733 .llseek = shmem_file_llseek,
2734 .read = new_sync_read,
2735 .write = new_sync_write,
2736 .read_iter = shmem_file_read_iter,
2737 .write_iter = generic_file_write_iter,
2738 .fsync = noop_fsync,
2739 .splice_read = shmem_file_splice_read,
2740 .splice_write = iter_file_splice_write,
2741 .fallocate = shmem_fallocate,
2742 #endif
2743 };
2744
2745 static const struct inode_operations shmem_inode_operations = {
2746 .setattr = shmem_setattr,
2747 #ifdef CONFIG_TMPFS_XATTR
2748 .setxattr = shmem_setxattr,
2749 .getxattr = shmem_getxattr,
2750 .listxattr = shmem_listxattr,
2751 .removexattr = shmem_removexattr,
2752 .set_acl = simple_set_acl,
2753 #endif
2754 };
2755
2756 static const struct inode_operations shmem_dir_inode_operations = {
2757 #ifdef CONFIG_TMPFS
2758 .create = shmem_create,
2759 .lookup = simple_lookup,
2760 .link = shmem_link,
2761 .unlink = shmem_unlink,
2762 .symlink = shmem_symlink,
2763 .mkdir = shmem_mkdir,
2764 .rmdir = shmem_rmdir,
2765 .mknod = shmem_mknod,
2766 .rename = shmem_rename,
2767 .tmpfile = shmem_tmpfile,
2768 #endif
2769 #ifdef CONFIG_TMPFS_XATTR
2770 .setxattr = shmem_setxattr,
2771 .getxattr = shmem_getxattr,
2772 .listxattr = shmem_listxattr,
2773 .removexattr = shmem_removexattr,
2774 #endif
2775 #ifdef CONFIG_TMPFS_POSIX_ACL
2776 .setattr = shmem_setattr,
2777 .set_acl = simple_set_acl,
2778 #endif
2779 };
2780
2781 static const struct inode_operations shmem_special_inode_operations = {
2782 #ifdef CONFIG_TMPFS_XATTR
2783 .setxattr = shmem_setxattr,
2784 .getxattr = shmem_getxattr,
2785 .listxattr = shmem_listxattr,
2786 .removexattr = shmem_removexattr,
2787 #endif
2788 #ifdef CONFIG_TMPFS_POSIX_ACL
2789 .setattr = shmem_setattr,
2790 .set_acl = simple_set_acl,
2791 #endif
2792 };
2793
2794 static const struct super_operations shmem_ops = {
2795 .alloc_inode = shmem_alloc_inode,
2796 .destroy_inode = shmem_destroy_inode,
2797 #ifdef CONFIG_TMPFS
2798 .statfs = shmem_statfs,
2799 .remount_fs = shmem_remount_fs,
2800 .show_options = shmem_show_options,
2801 #endif
2802 .evict_inode = shmem_evict_inode,
2803 .drop_inode = generic_delete_inode,
2804 .put_super = shmem_put_super,
2805 };
2806
2807 static const struct vm_operations_struct shmem_vm_ops = {
2808 .fault = shmem_fault,
2809 .map_pages = filemap_map_pages,
2810 #ifdef CONFIG_NUMA
2811 .set_policy = shmem_set_policy,
2812 .get_policy = shmem_get_policy,
2813 #endif
2814 .remap_pages = generic_file_remap_pages,
2815 };
2816
2817 static struct dentry *shmem_mount(struct file_system_type *fs_type,
2818 int flags, const char *dev_name, void *data)
2819 {
2820 return mount_nodev(fs_type, flags, data, shmem_fill_super);
2821 }
2822
2823 static struct file_system_type shmem_fs_type = {
2824 .owner = THIS_MODULE,
2825 .name = "tmpfs",
2826 .mount = shmem_mount,
2827 .kill_sb = kill_litter_super,
2828 .fs_flags = FS_USERNS_MOUNT,
2829 };
2830
2831 int __init shmem_init(void)
2832 {
2833 int error;
2834
2835 /* If rootfs called this, don't re-init */
2836 if (shmem_inode_cachep)
2837 return 0;
2838
2839 error = bdi_init(&shmem_backing_dev_info);
2840 if (error)
2841 goto out4;
2842
2843 error = shmem_init_inodecache();
2844 if (error)
2845 goto out3;
2846
2847 error = register_filesystem(&shmem_fs_type);
2848 if (error) {
2849 printk(KERN_ERR "Could not register tmpfs\n");
2850 goto out2;
2851 }
2852
2853 shm_mnt = kern_mount(&shmem_fs_type);
2854 if (IS_ERR(shm_mnt)) {
2855 error = PTR_ERR(shm_mnt);
2856 printk(KERN_ERR "Could not kern_mount tmpfs\n");
2857 goto out1;
2858 }
2859 return 0;
2860
2861 out1:
2862 unregister_filesystem(&shmem_fs_type);
2863 out2:
2864 shmem_destroy_inodecache();
2865 out3:
2866 bdi_destroy(&shmem_backing_dev_info);
2867 out4:
2868 shm_mnt = ERR_PTR(error);
2869 return error;
2870 }
2871
2872 #else /* !CONFIG_SHMEM */
2873
2874 /*
2875 * tiny-shmem: simple shmemfs and tmpfs using ramfs code
2876 *
2877 * This is intended for small system where the benefits of the full
2878 * shmem code (swap-backed and resource-limited) are outweighed by
2879 * their complexity. On systems without swap this code should be
2880 * effectively equivalent, but much lighter weight.
2881 */
2882
2883 static struct file_system_type shmem_fs_type = {
2884 .name = "tmpfs",
2885 .mount = ramfs_mount,
2886 .kill_sb = kill_litter_super,
2887 .fs_flags = FS_USERNS_MOUNT,
2888 };
2889
2890 int __init shmem_init(void)
2891 {
2892 BUG_ON(register_filesystem(&shmem_fs_type) != 0);
2893
2894 shm_mnt = kern_mount(&shmem_fs_type);
2895 BUG_ON(IS_ERR(shm_mnt));
2896
2897 return 0;
2898 }
2899
2900 int shmem_unuse(swp_entry_t swap, struct page *page)
2901 {
2902 return 0;
2903 }
2904
2905 int shmem_lock(struct file *file, int lock, struct user_struct *user)
2906 {
2907 return 0;
2908 }
2909
2910 void shmem_unlock_mapping(struct address_space *mapping)
2911 {
2912 }
2913
2914 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
2915 {
2916 truncate_inode_pages_range(inode->i_mapping, lstart, lend);
2917 }
2918 EXPORT_SYMBOL_GPL(shmem_truncate_range);
2919
2920 #define shmem_vm_ops generic_file_vm_ops
2921 #define shmem_file_operations ramfs_file_operations
2922 #define shmem_get_inode(sb, dir, mode, dev, flags) ramfs_get_inode(sb, dir, mode, dev)
2923 #define shmem_acct_size(flags, size) 0
2924 #define shmem_unacct_size(flags, size) do {} while (0)
2925
2926 #endif /* CONFIG_SHMEM */
2927
2928 /* common code */
2929
2930 static struct dentry_operations anon_ops = {
2931 .d_dname = simple_dname
2932 };
2933
2934 static struct file *__shmem_file_setup(const char *name, loff_t size,
2935 unsigned long flags, unsigned int i_flags)
2936 {
2937 struct file *res;
2938 struct inode *inode;
2939 struct path path;
2940 struct super_block *sb;
2941 struct qstr this;
2942
2943 if (IS_ERR(shm_mnt))
2944 return ERR_CAST(shm_mnt);
2945
2946 if (size < 0 || size > MAX_LFS_FILESIZE)
2947 return ERR_PTR(-EINVAL);
2948
2949 if (shmem_acct_size(flags, size))
2950 return ERR_PTR(-ENOMEM);
2951
2952 res = ERR_PTR(-ENOMEM);
2953 this.name = name;
2954 this.len = strlen(name);
2955 this.hash = 0; /* will go */
2956 sb = shm_mnt->mnt_sb;
2957 path.mnt = mntget(shm_mnt);
2958 path.dentry = d_alloc_pseudo(sb, &this);
2959 if (!path.dentry)
2960 goto put_memory;
2961 d_set_d_op(path.dentry, &anon_ops);
2962
2963 res = ERR_PTR(-ENOSPC);
2964 inode = shmem_get_inode(sb, NULL, S_IFREG | S_IRWXUGO, 0, flags);
2965 if (!inode)
2966 goto put_memory;
2967
2968 inode->i_flags |= i_flags;
2969 d_instantiate(path.dentry, inode);
2970 inode->i_size = size;
2971 clear_nlink(inode); /* It is unlinked */
2972 res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size));
2973 if (IS_ERR(res))
2974 goto put_path;
2975
2976 res = alloc_file(&path, FMODE_WRITE | FMODE_READ,
2977 &shmem_file_operations);
2978 if (IS_ERR(res))
2979 goto put_path;
2980
2981 return res;
2982
2983 put_memory:
2984 shmem_unacct_size(flags, size);
2985 put_path:
2986 path_put(&path);
2987 return res;
2988 }
2989
2990 /**
2991 * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be
2992 * kernel internal. There will be NO LSM permission checks against the
2993 * underlying inode. So users of this interface must do LSM checks at a
2994 * higher layer. The one user is the big_key implementation. LSM checks
2995 * are provided at the key level rather than the inode level.
2996 * @name: name for dentry (to be seen in /proc/<pid>/maps
2997 * @size: size to be set for the file
2998 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
2999 */
3000 struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags)
3001 {
3002 return __shmem_file_setup(name, size, flags, S_PRIVATE);
3003 }
3004
3005 /**
3006 * shmem_file_setup - get an unlinked file living in tmpfs
3007 * @name: name for dentry (to be seen in /proc/<pid>/maps
3008 * @size: size to be set for the file
3009 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
3010 */
3011 struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
3012 {
3013 return __shmem_file_setup(name, size, flags, 0);
3014 }
3015 EXPORT_SYMBOL_GPL(shmem_file_setup);
3016
3017 /**
3018 * shmem_zero_setup - setup a shared anonymous mapping
3019 * @vma: the vma to be mmapped is prepared by do_mmap_pgoff
3020 */
3021 int shmem_zero_setup(struct vm_area_struct *vma)
3022 {
3023 struct file *file;
3024 loff_t size = vma->vm_end - vma->vm_start;
3025
3026 file = shmem_file_setup("dev/zero", size, vma->vm_flags);
3027 if (IS_ERR(file))
3028 return PTR_ERR(file);
3029
3030 if (vma->vm_file)
3031 fput(vma->vm_file);
3032 vma->vm_file = file;
3033 vma->vm_ops = &shmem_vm_ops;
3034 return 0;
3035 }
3036
3037 /**
3038 * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags.
3039 * @mapping: the page's address_space
3040 * @index: the page index
3041 * @gfp: the page allocator flags to use if allocating
3042 *
3043 * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
3044 * with any new page allocations done using the specified allocation flags.
3045 * But read_cache_page_gfp() uses the ->readpage() method: which does not
3046 * suit tmpfs, since it may have pages in swapcache, and needs to find those
3047 * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
3048 *
3049 * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
3050 * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
3051 */
3052 struct page *shmem_read_mapping_page_gfp(struct address_space *mapping,
3053 pgoff_t index, gfp_t gfp)
3054 {
3055 #ifdef CONFIG_SHMEM
3056 struct inode *inode = mapping->host;
3057 struct page *page;
3058 int error;
3059
3060 BUG_ON(mapping->a_ops != &shmem_aops);
3061 error = shmem_getpage_gfp(inode, index, &page, SGP_CACHE, gfp, NULL);
3062 if (error)
3063 page = ERR_PTR(error);
3064 else
3065 unlock_page(page);
3066 return page;
3067 #else
3068 /*
3069 * The tiny !SHMEM case uses ramfs without swap
3070 */
3071 return read_cache_page_gfp(mapping, index, gfp);
3072 #endif
3073 }
3074 EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp);