]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - mm/slab.c
mm/slab: activate debug_pagealloc in SLAB when it is actually enabled
[mirror_ubuntu-artful-kernel.git] / mm / slab.c
1 /*
2 * linux/mm/slab.c
3 * Written by Mark Hemment, 1996/97.
4 * (markhe@nextd.demon.co.uk)
5 *
6 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
7 *
8 * Major cleanup, different bufctl logic, per-cpu arrays
9 * (c) 2000 Manfred Spraul
10 *
11 * Cleanup, make the head arrays unconditional, preparation for NUMA
12 * (c) 2002 Manfred Spraul
13 *
14 * An implementation of the Slab Allocator as described in outline in;
15 * UNIX Internals: The New Frontiers by Uresh Vahalia
16 * Pub: Prentice Hall ISBN 0-13-101908-2
17 * or with a little more detail in;
18 * The Slab Allocator: An Object-Caching Kernel Memory Allocator
19 * Jeff Bonwick (Sun Microsystems).
20 * Presented at: USENIX Summer 1994 Technical Conference
21 *
22 * The memory is organized in caches, one cache for each object type.
23 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
24 * Each cache consists out of many slabs (they are small (usually one
25 * page long) and always contiguous), and each slab contains multiple
26 * initialized objects.
27 *
28 * This means, that your constructor is used only for newly allocated
29 * slabs and you must pass objects with the same initializations to
30 * kmem_cache_free.
31 *
32 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
33 * normal). If you need a special memory type, then must create a new
34 * cache for that memory type.
35 *
36 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
37 * full slabs with 0 free objects
38 * partial slabs
39 * empty slabs with no allocated objects
40 *
41 * If partial slabs exist, then new allocations come from these slabs,
42 * otherwise from empty slabs or new slabs are allocated.
43 *
44 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
45 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
46 *
47 * Each cache has a short per-cpu head array, most allocs
48 * and frees go into that array, and if that array overflows, then 1/2
49 * of the entries in the array are given back into the global cache.
50 * The head array is strictly LIFO and should improve the cache hit rates.
51 * On SMP, it additionally reduces the spinlock operations.
52 *
53 * The c_cpuarray may not be read with enabled local interrupts -
54 * it's changed with a smp_call_function().
55 *
56 * SMP synchronization:
57 * constructors and destructors are called without any locking.
58 * Several members in struct kmem_cache and struct slab never change, they
59 * are accessed without any locking.
60 * The per-cpu arrays are never accessed from the wrong cpu, no locking,
61 * and local interrupts are disabled so slab code is preempt-safe.
62 * The non-constant members are protected with a per-cache irq spinlock.
63 *
64 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
65 * in 2000 - many ideas in the current implementation are derived from
66 * his patch.
67 *
68 * Further notes from the original documentation:
69 *
70 * 11 April '97. Started multi-threading - markhe
71 * The global cache-chain is protected by the mutex 'slab_mutex'.
72 * The sem is only needed when accessing/extending the cache-chain, which
73 * can never happen inside an interrupt (kmem_cache_create(),
74 * kmem_cache_shrink() and kmem_cache_reap()).
75 *
76 * At present, each engine can be growing a cache. This should be blocked.
77 *
78 * 15 March 2005. NUMA slab allocator.
79 * Shai Fultheim <shai@scalex86.org>.
80 * Shobhit Dayal <shobhit@calsoftinc.com>
81 * Alok N Kataria <alokk@calsoftinc.com>
82 * Christoph Lameter <christoph@lameter.com>
83 *
84 * Modified the slab allocator to be node aware on NUMA systems.
85 * Each node has its own list of partial, free and full slabs.
86 * All object allocations for a node occur from node specific slab lists.
87 */
88
89 #include <linux/slab.h>
90 #include <linux/mm.h>
91 #include <linux/poison.h>
92 #include <linux/swap.h>
93 #include <linux/cache.h>
94 #include <linux/interrupt.h>
95 #include <linux/init.h>
96 #include <linux/compiler.h>
97 #include <linux/cpuset.h>
98 #include <linux/proc_fs.h>
99 #include <linux/seq_file.h>
100 #include <linux/notifier.h>
101 #include <linux/kallsyms.h>
102 #include <linux/cpu.h>
103 #include <linux/sysctl.h>
104 #include <linux/module.h>
105 #include <linux/rcupdate.h>
106 #include <linux/string.h>
107 #include <linux/uaccess.h>
108 #include <linux/nodemask.h>
109 #include <linux/kmemleak.h>
110 #include <linux/mempolicy.h>
111 #include <linux/mutex.h>
112 #include <linux/fault-inject.h>
113 #include <linux/rtmutex.h>
114 #include <linux/reciprocal_div.h>
115 #include <linux/debugobjects.h>
116 #include <linux/kmemcheck.h>
117 #include <linux/memory.h>
118 #include <linux/prefetch.h>
119
120 #include <net/sock.h>
121
122 #include <asm/cacheflush.h>
123 #include <asm/tlbflush.h>
124 #include <asm/page.h>
125
126 #include <trace/events/kmem.h>
127
128 #include "internal.h"
129
130 #include "slab.h"
131
132 /*
133 * DEBUG - 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON.
134 * 0 for faster, smaller code (especially in the critical paths).
135 *
136 * STATS - 1 to collect stats for /proc/slabinfo.
137 * 0 for faster, smaller code (especially in the critical paths).
138 *
139 * FORCED_DEBUG - 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
140 */
141
142 #ifdef CONFIG_DEBUG_SLAB
143 #define DEBUG 1
144 #define STATS 1
145 #define FORCED_DEBUG 1
146 #else
147 #define DEBUG 0
148 #define STATS 0
149 #define FORCED_DEBUG 0
150 #endif
151
152 /* Shouldn't this be in a header file somewhere? */
153 #define BYTES_PER_WORD sizeof(void *)
154 #define REDZONE_ALIGN max(BYTES_PER_WORD, __alignof__(unsigned long long))
155
156 #ifndef ARCH_KMALLOC_FLAGS
157 #define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
158 #endif
159
160 #define FREELIST_BYTE_INDEX (((PAGE_SIZE >> BITS_PER_BYTE) \
161 <= SLAB_OBJ_MIN_SIZE) ? 1 : 0)
162
163 #if FREELIST_BYTE_INDEX
164 typedef unsigned char freelist_idx_t;
165 #else
166 typedef unsigned short freelist_idx_t;
167 #endif
168
169 #define SLAB_OBJ_MAX_NUM ((1 << sizeof(freelist_idx_t) * BITS_PER_BYTE) - 1)
170
171 /*
172 * true if a page was allocated from pfmemalloc reserves for network-based
173 * swap
174 */
175 static bool pfmemalloc_active __read_mostly;
176
177 /*
178 * struct array_cache
179 *
180 * Purpose:
181 * - LIFO ordering, to hand out cache-warm objects from _alloc
182 * - reduce the number of linked list operations
183 * - reduce spinlock operations
184 *
185 * The limit is stored in the per-cpu structure to reduce the data cache
186 * footprint.
187 *
188 */
189 struct array_cache {
190 unsigned int avail;
191 unsigned int limit;
192 unsigned int batchcount;
193 unsigned int touched;
194 void *entry[]; /*
195 * Must have this definition in here for the proper
196 * alignment of array_cache. Also simplifies accessing
197 * the entries.
198 *
199 * Entries should not be directly dereferenced as
200 * entries belonging to slabs marked pfmemalloc will
201 * have the lower bits set SLAB_OBJ_PFMEMALLOC
202 */
203 };
204
205 struct alien_cache {
206 spinlock_t lock;
207 struct array_cache ac;
208 };
209
210 #define SLAB_OBJ_PFMEMALLOC 1
211 static inline bool is_obj_pfmemalloc(void *objp)
212 {
213 return (unsigned long)objp & SLAB_OBJ_PFMEMALLOC;
214 }
215
216 static inline void set_obj_pfmemalloc(void **objp)
217 {
218 *objp = (void *)((unsigned long)*objp | SLAB_OBJ_PFMEMALLOC);
219 return;
220 }
221
222 static inline void clear_obj_pfmemalloc(void **objp)
223 {
224 *objp = (void *)((unsigned long)*objp & ~SLAB_OBJ_PFMEMALLOC);
225 }
226
227 /*
228 * Need this for bootstrapping a per node allocator.
229 */
230 #define NUM_INIT_LISTS (2 * MAX_NUMNODES)
231 static struct kmem_cache_node __initdata init_kmem_cache_node[NUM_INIT_LISTS];
232 #define CACHE_CACHE 0
233 #define SIZE_NODE (MAX_NUMNODES)
234
235 static int drain_freelist(struct kmem_cache *cache,
236 struct kmem_cache_node *n, int tofree);
237 static void free_block(struct kmem_cache *cachep, void **objpp, int len,
238 int node, struct list_head *list);
239 static void slabs_destroy(struct kmem_cache *cachep, struct list_head *list);
240 static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp);
241 static void cache_reap(struct work_struct *unused);
242
243 static int slab_early_init = 1;
244
245 #define INDEX_NODE kmalloc_index(sizeof(struct kmem_cache_node))
246
247 static void kmem_cache_node_init(struct kmem_cache_node *parent)
248 {
249 INIT_LIST_HEAD(&parent->slabs_full);
250 INIT_LIST_HEAD(&parent->slabs_partial);
251 INIT_LIST_HEAD(&parent->slabs_free);
252 parent->shared = NULL;
253 parent->alien = NULL;
254 parent->colour_next = 0;
255 spin_lock_init(&parent->list_lock);
256 parent->free_objects = 0;
257 parent->free_touched = 0;
258 }
259
260 #define MAKE_LIST(cachep, listp, slab, nodeid) \
261 do { \
262 INIT_LIST_HEAD(listp); \
263 list_splice(&get_node(cachep, nodeid)->slab, listp); \
264 } while (0)
265
266 #define MAKE_ALL_LISTS(cachep, ptr, nodeid) \
267 do { \
268 MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid); \
269 MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
270 MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid); \
271 } while (0)
272
273 #define CFLGS_OFF_SLAB (0x80000000UL)
274 #define OFF_SLAB(x) ((x)->flags & CFLGS_OFF_SLAB)
275 #define OFF_SLAB_MIN_SIZE (max_t(size_t, PAGE_SIZE >> 5, KMALLOC_MIN_SIZE + 1))
276
277 #define BATCHREFILL_LIMIT 16
278 /*
279 * Optimization question: fewer reaps means less probability for unnessary
280 * cpucache drain/refill cycles.
281 *
282 * OTOH the cpuarrays can contain lots of objects,
283 * which could lock up otherwise freeable slabs.
284 */
285 #define REAPTIMEOUT_AC (2*HZ)
286 #define REAPTIMEOUT_NODE (4*HZ)
287
288 #if STATS
289 #define STATS_INC_ACTIVE(x) ((x)->num_active++)
290 #define STATS_DEC_ACTIVE(x) ((x)->num_active--)
291 #define STATS_INC_ALLOCED(x) ((x)->num_allocations++)
292 #define STATS_INC_GROWN(x) ((x)->grown++)
293 #define STATS_ADD_REAPED(x,y) ((x)->reaped += (y))
294 #define STATS_SET_HIGH(x) \
295 do { \
296 if ((x)->num_active > (x)->high_mark) \
297 (x)->high_mark = (x)->num_active; \
298 } while (0)
299 #define STATS_INC_ERR(x) ((x)->errors++)
300 #define STATS_INC_NODEALLOCS(x) ((x)->node_allocs++)
301 #define STATS_INC_NODEFREES(x) ((x)->node_frees++)
302 #define STATS_INC_ACOVERFLOW(x) ((x)->node_overflow++)
303 #define STATS_SET_FREEABLE(x, i) \
304 do { \
305 if ((x)->max_freeable < i) \
306 (x)->max_freeable = i; \
307 } while (0)
308 #define STATS_INC_ALLOCHIT(x) atomic_inc(&(x)->allochit)
309 #define STATS_INC_ALLOCMISS(x) atomic_inc(&(x)->allocmiss)
310 #define STATS_INC_FREEHIT(x) atomic_inc(&(x)->freehit)
311 #define STATS_INC_FREEMISS(x) atomic_inc(&(x)->freemiss)
312 #else
313 #define STATS_INC_ACTIVE(x) do { } while (0)
314 #define STATS_DEC_ACTIVE(x) do { } while (0)
315 #define STATS_INC_ALLOCED(x) do { } while (0)
316 #define STATS_INC_GROWN(x) do { } while (0)
317 #define STATS_ADD_REAPED(x,y) do { (void)(y); } while (0)
318 #define STATS_SET_HIGH(x) do { } while (0)
319 #define STATS_INC_ERR(x) do { } while (0)
320 #define STATS_INC_NODEALLOCS(x) do { } while (0)
321 #define STATS_INC_NODEFREES(x) do { } while (0)
322 #define STATS_INC_ACOVERFLOW(x) do { } while (0)
323 #define STATS_SET_FREEABLE(x, i) do { } while (0)
324 #define STATS_INC_ALLOCHIT(x) do { } while (0)
325 #define STATS_INC_ALLOCMISS(x) do { } while (0)
326 #define STATS_INC_FREEHIT(x) do { } while (0)
327 #define STATS_INC_FREEMISS(x) do { } while (0)
328 #endif
329
330 #if DEBUG
331
332 /*
333 * memory layout of objects:
334 * 0 : objp
335 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
336 * the end of an object is aligned with the end of the real
337 * allocation. Catches writes behind the end of the allocation.
338 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
339 * redzone word.
340 * cachep->obj_offset: The real object.
341 * cachep->size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
342 * cachep->size - 1* BYTES_PER_WORD: last caller address
343 * [BYTES_PER_WORD long]
344 */
345 static int obj_offset(struct kmem_cache *cachep)
346 {
347 return cachep->obj_offset;
348 }
349
350 static unsigned long long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
351 {
352 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
353 return (unsigned long long*) (objp + obj_offset(cachep) -
354 sizeof(unsigned long long));
355 }
356
357 static unsigned long long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
358 {
359 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
360 if (cachep->flags & SLAB_STORE_USER)
361 return (unsigned long long *)(objp + cachep->size -
362 sizeof(unsigned long long) -
363 REDZONE_ALIGN);
364 return (unsigned long long *) (objp + cachep->size -
365 sizeof(unsigned long long));
366 }
367
368 static void **dbg_userword(struct kmem_cache *cachep, void *objp)
369 {
370 BUG_ON(!(cachep->flags & SLAB_STORE_USER));
371 return (void **)(objp + cachep->size - BYTES_PER_WORD);
372 }
373
374 #else
375
376 #define obj_offset(x) 0
377 #define dbg_redzone1(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
378 #define dbg_redzone2(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
379 #define dbg_userword(cachep, objp) ({BUG(); (void **)NULL;})
380
381 #endif
382
383 #define OBJECT_FREE (0)
384 #define OBJECT_ACTIVE (1)
385
386 #ifdef CONFIG_DEBUG_SLAB_LEAK
387
388 static void set_obj_status(struct page *page, int idx, int val)
389 {
390 int freelist_size;
391 char *status;
392 struct kmem_cache *cachep = page->slab_cache;
393
394 freelist_size = cachep->num * sizeof(freelist_idx_t);
395 status = (char *)page->freelist + freelist_size;
396 status[idx] = val;
397 }
398
399 static inline unsigned int get_obj_status(struct page *page, int idx)
400 {
401 int freelist_size;
402 char *status;
403 struct kmem_cache *cachep = page->slab_cache;
404
405 freelist_size = cachep->num * sizeof(freelist_idx_t);
406 status = (char *)page->freelist + freelist_size;
407
408 return status[idx];
409 }
410
411 #else
412 static inline void set_obj_status(struct page *page, int idx, int val) {}
413
414 #endif
415
416 /*
417 * Do not go above this order unless 0 objects fit into the slab or
418 * overridden on the command line.
419 */
420 #define SLAB_MAX_ORDER_HI 1
421 #define SLAB_MAX_ORDER_LO 0
422 static int slab_max_order = SLAB_MAX_ORDER_LO;
423 static bool slab_max_order_set __initdata;
424
425 static inline struct kmem_cache *virt_to_cache(const void *obj)
426 {
427 struct page *page = virt_to_head_page(obj);
428 return page->slab_cache;
429 }
430
431 static inline void *index_to_obj(struct kmem_cache *cache, struct page *page,
432 unsigned int idx)
433 {
434 return page->s_mem + cache->size * idx;
435 }
436
437 /*
438 * We want to avoid an expensive divide : (offset / cache->size)
439 * Using the fact that size is a constant for a particular cache,
440 * we can replace (offset / cache->size) by
441 * reciprocal_divide(offset, cache->reciprocal_buffer_size)
442 */
443 static inline unsigned int obj_to_index(const struct kmem_cache *cache,
444 const struct page *page, void *obj)
445 {
446 u32 offset = (obj - page->s_mem);
447 return reciprocal_divide(offset, cache->reciprocal_buffer_size);
448 }
449
450 #define BOOT_CPUCACHE_ENTRIES 1
451 /* internal cache of cache description objs */
452 static struct kmem_cache kmem_cache_boot = {
453 .batchcount = 1,
454 .limit = BOOT_CPUCACHE_ENTRIES,
455 .shared = 1,
456 .size = sizeof(struct kmem_cache),
457 .name = "kmem_cache",
458 };
459
460 #define BAD_ALIEN_MAGIC 0x01020304ul
461
462 static DEFINE_PER_CPU(struct delayed_work, slab_reap_work);
463
464 static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
465 {
466 return this_cpu_ptr(cachep->cpu_cache);
467 }
468
469 static size_t calculate_freelist_size(int nr_objs, size_t align)
470 {
471 size_t freelist_size;
472
473 freelist_size = nr_objs * sizeof(freelist_idx_t);
474 if (IS_ENABLED(CONFIG_DEBUG_SLAB_LEAK))
475 freelist_size += nr_objs * sizeof(char);
476
477 if (align)
478 freelist_size = ALIGN(freelist_size, align);
479
480 return freelist_size;
481 }
482
483 static int calculate_nr_objs(size_t slab_size, size_t buffer_size,
484 size_t idx_size, size_t align)
485 {
486 int nr_objs;
487 size_t remained_size;
488 size_t freelist_size;
489 int extra_space = 0;
490
491 if (IS_ENABLED(CONFIG_DEBUG_SLAB_LEAK))
492 extra_space = sizeof(char);
493 /*
494 * Ignore padding for the initial guess. The padding
495 * is at most @align-1 bytes, and @buffer_size is at
496 * least @align. In the worst case, this result will
497 * be one greater than the number of objects that fit
498 * into the memory allocation when taking the padding
499 * into account.
500 */
501 nr_objs = slab_size / (buffer_size + idx_size + extra_space);
502
503 /*
504 * This calculated number will be either the right
505 * amount, or one greater than what we want.
506 */
507 remained_size = slab_size - nr_objs * buffer_size;
508 freelist_size = calculate_freelist_size(nr_objs, align);
509 if (remained_size < freelist_size)
510 nr_objs--;
511
512 return nr_objs;
513 }
514
515 /*
516 * Calculate the number of objects and left-over bytes for a given buffer size.
517 */
518 static void cache_estimate(unsigned long gfporder, size_t buffer_size,
519 size_t align, int flags, size_t *left_over,
520 unsigned int *num)
521 {
522 int nr_objs;
523 size_t mgmt_size;
524 size_t slab_size = PAGE_SIZE << gfporder;
525
526 /*
527 * The slab management structure can be either off the slab or
528 * on it. For the latter case, the memory allocated for a
529 * slab is used for:
530 *
531 * - One freelist_idx_t for each object
532 * - Padding to respect alignment of @align
533 * - @buffer_size bytes for each object
534 *
535 * If the slab management structure is off the slab, then the
536 * alignment will already be calculated into the size. Because
537 * the slabs are all pages aligned, the objects will be at the
538 * correct alignment when allocated.
539 */
540 if (flags & CFLGS_OFF_SLAB) {
541 mgmt_size = 0;
542 nr_objs = slab_size / buffer_size;
543
544 } else {
545 nr_objs = calculate_nr_objs(slab_size, buffer_size,
546 sizeof(freelist_idx_t), align);
547 mgmt_size = calculate_freelist_size(nr_objs, align);
548 }
549 *num = nr_objs;
550 *left_over = slab_size - nr_objs*buffer_size - mgmt_size;
551 }
552
553 #if DEBUG
554 #define slab_error(cachep, msg) __slab_error(__func__, cachep, msg)
555
556 static void __slab_error(const char *function, struct kmem_cache *cachep,
557 char *msg)
558 {
559 printk(KERN_ERR "slab error in %s(): cache `%s': %s\n",
560 function, cachep->name, msg);
561 dump_stack();
562 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
563 }
564 #endif
565
566 /*
567 * By default on NUMA we use alien caches to stage the freeing of
568 * objects allocated from other nodes. This causes massive memory
569 * inefficiencies when using fake NUMA setup to split memory into a
570 * large number of small nodes, so it can be disabled on the command
571 * line
572 */
573
574 static int use_alien_caches __read_mostly = 1;
575 static int __init noaliencache_setup(char *s)
576 {
577 use_alien_caches = 0;
578 return 1;
579 }
580 __setup("noaliencache", noaliencache_setup);
581
582 static int __init slab_max_order_setup(char *str)
583 {
584 get_option(&str, &slab_max_order);
585 slab_max_order = slab_max_order < 0 ? 0 :
586 min(slab_max_order, MAX_ORDER - 1);
587 slab_max_order_set = true;
588
589 return 1;
590 }
591 __setup("slab_max_order=", slab_max_order_setup);
592
593 #ifdef CONFIG_NUMA
594 /*
595 * Special reaping functions for NUMA systems called from cache_reap().
596 * These take care of doing round robin flushing of alien caches (containing
597 * objects freed on different nodes from which they were allocated) and the
598 * flushing of remote pcps by calling drain_node_pages.
599 */
600 static DEFINE_PER_CPU(unsigned long, slab_reap_node);
601
602 static void init_reap_node(int cpu)
603 {
604 int node;
605
606 node = next_node(cpu_to_mem(cpu), node_online_map);
607 if (node == MAX_NUMNODES)
608 node = first_node(node_online_map);
609
610 per_cpu(slab_reap_node, cpu) = node;
611 }
612
613 static void next_reap_node(void)
614 {
615 int node = __this_cpu_read(slab_reap_node);
616
617 node = next_node(node, node_online_map);
618 if (unlikely(node >= MAX_NUMNODES))
619 node = first_node(node_online_map);
620 __this_cpu_write(slab_reap_node, node);
621 }
622
623 #else
624 #define init_reap_node(cpu) do { } while (0)
625 #define next_reap_node(void) do { } while (0)
626 #endif
627
628 /*
629 * Initiate the reap timer running on the target CPU. We run at around 1 to 2Hz
630 * via the workqueue/eventd.
631 * Add the CPU number into the expiration time to minimize the possibility of
632 * the CPUs getting into lockstep and contending for the global cache chain
633 * lock.
634 */
635 static void start_cpu_timer(int cpu)
636 {
637 struct delayed_work *reap_work = &per_cpu(slab_reap_work, cpu);
638
639 /*
640 * When this gets called from do_initcalls via cpucache_init(),
641 * init_workqueues() has already run, so keventd will be setup
642 * at that time.
643 */
644 if (keventd_up() && reap_work->work.func == NULL) {
645 init_reap_node(cpu);
646 INIT_DEFERRABLE_WORK(reap_work, cache_reap);
647 schedule_delayed_work_on(cpu, reap_work,
648 __round_jiffies_relative(HZ, cpu));
649 }
650 }
651
652 static void init_arraycache(struct array_cache *ac, int limit, int batch)
653 {
654 /*
655 * The array_cache structures contain pointers to free object.
656 * However, when such objects are allocated or transferred to another
657 * cache the pointers are not cleared and they could be counted as
658 * valid references during a kmemleak scan. Therefore, kmemleak must
659 * not scan such objects.
660 */
661 kmemleak_no_scan(ac);
662 if (ac) {
663 ac->avail = 0;
664 ac->limit = limit;
665 ac->batchcount = batch;
666 ac->touched = 0;
667 }
668 }
669
670 static struct array_cache *alloc_arraycache(int node, int entries,
671 int batchcount, gfp_t gfp)
672 {
673 size_t memsize = sizeof(void *) * entries + sizeof(struct array_cache);
674 struct array_cache *ac = NULL;
675
676 ac = kmalloc_node(memsize, gfp, node);
677 init_arraycache(ac, entries, batchcount);
678 return ac;
679 }
680
681 static inline bool is_slab_pfmemalloc(struct page *page)
682 {
683 return PageSlabPfmemalloc(page);
684 }
685
686 /* Clears pfmemalloc_active if no slabs have pfmalloc set */
687 static void recheck_pfmemalloc_active(struct kmem_cache *cachep,
688 struct array_cache *ac)
689 {
690 struct kmem_cache_node *n = get_node(cachep, numa_mem_id());
691 struct page *page;
692 unsigned long flags;
693
694 if (!pfmemalloc_active)
695 return;
696
697 spin_lock_irqsave(&n->list_lock, flags);
698 list_for_each_entry(page, &n->slabs_full, lru)
699 if (is_slab_pfmemalloc(page))
700 goto out;
701
702 list_for_each_entry(page, &n->slabs_partial, lru)
703 if (is_slab_pfmemalloc(page))
704 goto out;
705
706 list_for_each_entry(page, &n->slabs_free, lru)
707 if (is_slab_pfmemalloc(page))
708 goto out;
709
710 pfmemalloc_active = false;
711 out:
712 spin_unlock_irqrestore(&n->list_lock, flags);
713 }
714
715 static void *__ac_get_obj(struct kmem_cache *cachep, struct array_cache *ac,
716 gfp_t flags, bool force_refill)
717 {
718 int i;
719 void *objp = ac->entry[--ac->avail];
720
721 /* Ensure the caller is allowed to use objects from PFMEMALLOC slab */
722 if (unlikely(is_obj_pfmemalloc(objp))) {
723 struct kmem_cache_node *n;
724
725 if (gfp_pfmemalloc_allowed(flags)) {
726 clear_obj_pfmemalloc(&objp);
727 return objp;
728 }
729
730 /* The caller cannot use PFMEMALLOC objects, find another one */
731 for (i = 0; i < ac->avail; i++) {
732 /* If a !PFMEMALLOC object is found, swap them */
733 if (!is_obj_pfmemalloc(ac->entry[i])) {
734 objp = ac->entry[i];
735 ac->entry[i] = ac->entry[ac->avail];
736 ac->entry[ac->avail] = objp;
737 return objp;
738 }
739 }
740
741 /*
742 * If there are empty slabs on the slabs_free list and we are
743 * being forced to refill the cache, mark this one !pfmemalloc.
744 */
745 n = get_node(cachep, numa_mem_id());
746 if (!list_empty(&n->slabs_free) && force_refill) {
747 struct page *page = virt_to_head_page(objp);
748 ClearPageSlabPfmemalloc(page);
749 clear_obj_pfmemalloc(&objp);
750 recheck_pfmemalloc_active(cachep, ac);
751 return objp;
752 }
753
754 /* No !PFMEMALLOC objects available */
755 ac->avail++;
756 objp = NULL;
757 }
758
759 return objp;
760 }
761
762 static inline void *ac_get_obj(struct kmem_cache *cachep,
763 struct array_cache *ac, gfp_t flags, bool force_refill)
764 {
765 void *objp;
766
767 if (unlikely(sk_memalloc_socks()))
768 objp = __ac_get_obj(cachep, ac, flags, force_refill);
769 else
770 objp = ac->entry[--ac->avail];
771
772 return objp;
773 }
774
775 static noinline void *__ac_put_obj(struct kmem_cache *cachep,
776 struct array_cache *ac, void *objp)
777 {
778 if (unlikely(pfmemalloc_active)) {
779 /* Some pfmemalloc slabs exist, check if this is one */
780 struct page *page = virt_to_head_page(objp);
781 if (PageSlabPfmemalloc(page))
782 set_obj_pfmemalloc(&objp);
783 }
784
785 return objp;
786 }
787
788 static inline void ac_put_obj(struct kmem_cache *cachep, struct array_cache *ac,
789 void *objp)
790 {
791 if (unlikely(sk_memalloc_socks()))
792 objp = __ac_put_obj(cachep, ac, objp);
793
794 ac->entry[ac->avail++] = objp;
795 }
796
797 /*
798 * Transfer objects in one arraycache to another.
799 * Locking must be handled by the caller.
800 *
801 * Return the number of entries transferred.
802 */
803 static int transfer_objects(struct array_cache *to,
804 struct array_cache *from, unsigned int max)
805 {
806 /* Figure out how many entries to transfer */
807 int nr = min3(from->avail, max, to->limit - to->avail);
808
809 if (!nr)
810 return 0;
811
812 memcpy(to->entry + to->avail, from->entry + from->avail -nr,
813 sizeof(void *) *nr);
814
815 from->avail -= nr;
816 to->avail += nr;
817 return nr;
818 }
819
820 #ifndef CONFIG_NUMA
821
822 #define drain_alien_cache(cachep, alien) do { } while (0)
823 #define reap_alien(cachep, n) do { } while (0)
824
825 static inline struct alien_cache **alloc_alien_cache(int node,
826 int limit, gfp_t gfp)
827 {
828 return (struct alien_cache **)BAD_ALIEN_MAGIC;
829 }
830
831 static inline void free_alien_cache(struct alien_cache **ac_ptr)
832 {
833 }
834
835 static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
836 {
837 return 0;
838 }
839
840 static inline void *alternate_node_alloc(struct kmem_cache *cachep,
841 gfp_t flags)
842 {
843 return NULL;
844 }
845
846 static inline void *____cache_alloc_node(struct kmem_cache *cachep,
847 gfp_t flags, int nodeid)
848 {
849 return NULL;
850 }
851
852 static inline gfp_t gfp_exact_node(gfp_t flags)
853 {
854 return flags;
855 }
856
857 #else /* CONFIG_NUMA */
858
859 static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int);
860 static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
861
862 static struct alien_cache *__alloc_alien_cache(int node, int entries,
863 int batch, gfp_t gfp)
864 {
865 size_t memsize = sizeof(void *) * entries + sizeof(struct alien_cache);
866 struct alien_cache *alc = NULL;
867
868 alc = kmalloc_node(memsize, gfp, node);
869 init_arraycache(&alc->ac, entries, batch);
870 spin_lock_init(&alc->lock);
871 return alc;
872 }
873
874 static struct alien_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
875 {
876 struct alien_cache **alc_ptr;
877 size_t memsize = sizeof(void *) * nr_node_ids;
878 int i;
879
880 if (limit > 1)
881 limit = 12;
882 alc_ptr = kzalloc_node(memsize, gfp, node);
883 if (!alc_ptr)
884 return NULL;
885
886 for_each_node(i) {
887 if (i == node || !node_online(i))
888 continue;
889 alc_ptr[i] = __alloc_alien_cache(node, limit, 0xbaadf00d, gfp);
890 if (!alc_ptr[i]) {
891 for (i--; i >= 0; i--)
892 kfree(alc_ptr[i]);
893 kfree(alc_ptr);
894 return NULL;
895 }
896 }
897 return alc_ptr;
898 }
899
900 static void free_alien_cache(struct alien_cache **alc_ptr)
901 {
902 int i;
903
904 if (!alc_ptr)
905 return;
906 for_each_node(i)
907 kfree(alc_ptr[i]);
908 kfree(alc_ptr);
909 }
910
911 static void __drain_alien_cache(struct kmem_cache *cachep,
912 struct array_cache *ac, int node,
913 struct list_head *list)
914 {
915 struct kmem_cache_node *n = get_node(cachep, node);
916
917 if (ac->avail) {
918 spin_lock(&n->list_lock);
919 /*
920 * Stuff objects into the remote nodes shared array first.
921 * That way we could avoid the overhead of putting the objects
922 * into the free lists and getting them back later.
923 */
924 if (n->shared)
925 transfer_objects(n->shared, ac, ac->limit);
926
927 free_block(cachep, ac->entry, ac->avail, node, list);
928 ac->avail = 0;
929 spin_unlock(&n->list_lock);
930 }
931 }
932
933 /*
934 * Called from cache_reap() to regularly drain alien caches round robin.
935 */
936 static void reap_alien(struct kmem_cache *cachep, struct kmem_cache_node *n)
937 {
938 int node = __this_cpu_read(slab_reap_node);
939
940 if (n->alien) {
941 struct alien_cache *alc = n->alien[node];
942 struct array_cache *ac;
943
944 if (alc) {
945 ac = &alc->ac;
946 if (ac->avail && spin_trylock_irq(&alc->lock)) {
947 LIST_HEAD(list);
948
949 __drain_alien_cache(cachep, ac, node, &list);
950 spin_unlock_irq(&alc->lock);
951 slabs_destroy(cachep, &list);
952 }
953 }
954 }
955 }
956
957 static void drain_alien_cache(struct kmem_cache *cachep,
958 struct alien_cache **alien)
959 {
960 int i = 0;
961 struct alien_cache *alc;
962 struct array_cache *ac;
963 unsigned long flags;
964
965 for_each_online_node(i) {
966 alc = alien[i];
967 if (alc) {
968 LIST_HEAD(list);
969
970 ac = &alc->ac;
971 spin_lock_irqsave(&alc->lock, flags);
972 __drain_alien_cache(cachep, ac, i, &list);
973 spin_unlock_irqrestore(&alc->lock, flags);
974 slabs_destroy(cachep, &list);
975 }
976 }
977 }
978
979 static int __cache_free_alien(struct kmem_cache *cachep, void *objp,
980 int node, int page_node)
981 {
982 struct kmem_cache_node *n;
983 struct alien_cache *alien = NULL;
984 struct array_cache *ac;
985 LIST_HEAD(list);
986
987 n = get_node(cachep, node);
988 STATS_INC_NODEFREES(cachep);
989 if (n->alien && n->alien[page_node]) {
990 alien = n->alien[page_node];
991 ac = &alien->ac;
992 spin_lock(&alien->lock);
993 if (unlikely(ac->avail == ac->limit)) {
994 STATS_INC_ACOVERFLOW(cachep);
995 __drain_alien_cache(cachep, ac, page_node, &list);
996 }
997 ac_put_obj(cachep, ac, objp);
998 spin_unlock(&alien->lock);
999 slabs_destroy(cachep, &list);
1000 } else {
1001 n = get_node(cachep, page_node);
1002 spin_lock(&n->list_lock);
1003 free_block(cachep, &objp, 1, page_node, &list);
1004 spin_unlock(&n->list_lock);
1005 slabs_destroy(cachep, &list);
1006 }
1007 return 1;
1008 }
1009
1010 static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
1011 {
1012 int page_node = page_to_nid(virt_to_page(objp));
1013 int node = numa_mem_id();
1014 /*
1015 * Make sure we are not freeing a object from another node to the array
1016 * cache on this cpu.
1017 */
1018 if (likely(node == page_node))
1019 return 0;
1020
1021 return __cache_free_alien(cachep, objp, node, page_node);
1022 }
1023
1024 /*
1025 * Construct gfp mask to allocate from a specific node but do not direct reclaim
1026 * or warn about failures. kswapd may still wake to reclaim in the background.
1027 */
1028 static inline gfp_t gfp_exact_node(gfp_t flags)
1029 {
1030 return (flags | __GFP_THISNODE | __GFP_NOWARN) & ~__GFP_DIRECT_RECLAIM;
1031 }
1032 #endif
1033
1034 /*
1035 * Allocates and initializes node for a node on each slab cache, used for
1036 * either memory or cpu hotplug. If memory is being hot-added, the kmem_cache_node
1037 * will be allocated off-node since memory is not yet online for the new node.
1038 * When hotplugging memory or a cpu, existing node are not replaced if
1039 * already in use.
1040 *
1041 * Must hold slab_mutex.
1042 */
1043 static int init_cache_node_node(int node)
1044 {
1045 struct kmem_cache *cachep;
1046 struct kmem_cache_node *n;
1047 const size_t memsize = sizeof(struct kmem_cache_node);
1048
1049 list_for_each_entry(cachep, &slab_caches, list) {
1050 /*
1051 * Set up the kmem_cache_node for cpu before we can
1052 * begin anything. Make sure some other cpu on this
1053 * node has not already allocated this
1054 */
1055 n = get_node(cachep, node);
1056 if (!n) {
1057 n = kmalloc_node(memsize, GFP_KERNEL, node);
1058 if (!n)
1059 return -ENOMEM;
1060 kmem_cache_node_init(n);
1061 n->next_reap = jiffies + REAPTIMEOUT_NODE +
1062 ((unsigned long)cachep) % REAPTIMEOUT_NODE;
1063
1064 /*
1065 * The kmem_cache_nodes don't come and go as CPUs
1066 * come and go. slab_mutex is sufficient
1067 * protection here.
1068 */
1069 cachep->node[node] = n;
1070 }
1071
1072 spin_lock_irq(&n->list_lock);
1073 n->free_limit =
1074 (1 + nr_cpus_node(node)) *
1075 cachep->batchcount + cachep->num;
1076 spin_unlock_irq(&n->list_lock);
1077 }
1078 return 0;
1079 }
1080
1081 static inline int slabs_tofree(struct kmem_cache *cachep,
1082 struct kmem_cache_node *n)
1083 {
1084 return (n->free_objects + cachep->num - 1) / cachep->num;
1085 }
1086
1087 static void cpuup_canceled(long cpu)
1088 {
1089 struct kmem_cache *cachep;
1090 struct kmem_cache_node *n = NULL;
1091 int node = cpu_to_mem(cpu);
1092 const struct cpumask *mask = cpumask_of_node(node);
1093
1094 list_for_each_entry(cachep, &slab_caches, list) {
1095 struct array_cache *nc;
1096 struct array_cache *shared;
1097 struct alien_cache **alien;
1098 LIST_HEAD(list);
1099
1100 n = get_node(cachep, node);
1101 if (!n)
1102 continue;
1103
1104 spin_lock_irq(&n->list_lock);
1105
1106 /* Free limit for this kmem_cache_node */
1107 n->free_limit -= cachep->batchcount;
1108
1109 /* cpu is dead; no one can alloc from it. */
1110 nc = per_cpu_ptr(cachep->cpu_cache, cpu);
1111 if (nc) {
1112 free_block(cachep, nc->entry, nc->avail, node, &list);
1113 nc->avail = 0;
1114 }
1115
1116 if (!cpumask_empty(mask)) {
1117 spin_unlock_irq(&n->list_lock);
1118 goto free_slab;
1119 }
1120
1121 shared = n->shared;
1122 if (shared) {
1123 free_block(cachep, shared->entry,
1124 shared->avail, node, &list);
1125 n->shared = NULL;
1126 }
1127
1128 alien = n->alien;
1129 n->alien = NULL;
1130
1131 spin_unlock_irq(&n->list_lock);
1132
1133 kfree(shared);
1134 if (alien) {
1135 drain_alien_cache(cachep, alien);
1136 free_alien_cache(alien);
1137 }
1138
1139 free_slab:
1140 slabs_destroy(cachep, &list);
1141 }
1142 /*
1143 * In the previous loop, all the objects were freed to
1144 * the respective cache's slabs, now we can go ahead and
1145 * shrink each nodelist to its limit.
1146 */
1147 list_for_each_entry(cachep, &slab_caches, list) {
1148 n = get_node(cachep, node);
1149 if (!n)
1150 continue;
1151 drain_freelist(cachep, n, slabs_tofree(cachep, n));
1152 }
1153 }
1154
1155 static int cpuup_prepare(long cpu)
1156 {
1157 struct kmem_cache *cachep;
1158 struct kmem_cache_node *n = NULL;
1159 int node = cpu_to_mem(cpu);
1160 int err;
1161
1162 /*
1163 * We need to do this right in the beginning since
1164 * alloc_arraycache's are going to use this list.
1165 * kmalloc_node allows us to add the slab to the right
1166 * kmem_cache_node and not this cpu's kmem_cache_node
1167 */
1168 err = init_cache_node_node(node);
1169 if (err < 0)
1170 goto bad;
1171
1172 /*
1173 * Now we can go ahead with allocating the shared arrays and
1174 * array caches
1175 */
1176 list_for_each_entry(cachep, &slab_caches, list) {
1177 struct array_cache *shared = NULL;
1178 struct alien_cache **alien = NULL;
1179
1180 if (cachep->shared) {
1181 shared = alloc_arraycache(node,
1182 cachep->shared * cachep->batchcount,
1183 0xbaadf00d, GFP_KERNEL);
1184 if (!shared)
1185 goto bad;
1186 }
1187 if (use_alien_caches) {
1188 alien = alloc_alien_cache(node, cachep->limit, GFP_KERNEL);
1189 if (!alien) {
1190 kfree(shared);
1191 goto bad;
1192 }
1193 }
1194 n = get_node(cachep, node);
1195 BUG_ON(!n);
1196
1197 spin_lock_irq(&n->list_lock);
1198 if (!n->shared) {
1199 /*
1200 * We are serialised from CPU_DEAD or
1201 * CPU_UP_CANCELLED by the cpucontrol lock
1202 */
1203 n->shared = shared;
1204 shared = NULL;
1205 }
1206 #ifdef CONFIG_NUMA
1207 if (!n->alien) {
1208 n->alien = alien;
1209 alien = NULL;
1210 }
1211 #endif
1212 spin_unlock_irq(&n->list_lock);
1213 kfree(shared);
1214 free_alien_cache(alien);
1215 }
1216
1217 return 0;
1218 bad:
1219 cpuup_canceled(cpu);
1220 return -ENOMEM;
1221 }
1222
1223 static int cpuup_callback(struct notifier_block *nfb,
1224 unsigned long action, void *hcpu)
1225 {
1226 long cpu = (long)hcpu;
1227 int err = 0;
1228
1229 switch (action) {
1230 case CPU_UP_PREPARE:
1231 case CPU_UP_PREPARE_FROZEN:
1232 mutex_lock(&slab_mutex);
1233 err = cpuup_prepare(cpu);
1234 mutex_unlock(&slab_mutex);
1235 break;
1236 case CPU_ONLINE:
1237 case CPU_ONLINE_FROZEN:
1238 start_cpu_timer(cpu);
1239 break;
1240 #ifdef CONFIG_HOTPLUG_CPU
1241 case CPU_DOWN_PREPARE:
1242 case CPU_DOWN_PREPARE_FROZEN:
1243 /*
1244 * Shutdown cache reaper. Note that the slab_mutex is
1245 * held so that if cache_reap() is invoked it cannot do
1246 * anything expensive but will only modify reap_work
1247 * and reschedule the timer.
1248 */
1249 cancel_delayed_work_sync(&per_cpu(slab_reap_work, cpu));
1250 /* Now the cache_reaper is guaranteed to be not running. */
1251 per_cpu(slab_reap_work, cpu).work.func = NULL;
1252 break;
1253 case CPU_DOWN_FAILED:
1254 case CPU_DOWN_FAILED_FROZEN:
1255 start_cpu_timer(cpu);
1256 break;
1257 case CPU_DEAD:
1258 case CPU_DEAD_FROZEN:
1259 /*
1260 * Even if all the cpus of a node are down, we don't free the
1261 * kmem_cache_node of any cache. This to avoid a race between
1262 * cpu_down, and a kmalloc allocation from another cpu for
1263 * memory from the node of the cpu going down. The node
1264 * structure is usually allocated from kmem_cache_create() and
1265 * gets destroyed at kmem_cache_destroy().
1266 */
1267 /* fall through */
1268 #endif
1269 case CPU_UP_CANCELED:
1270 case CPU_UP_CANCELED_FROZEN:
1271 mutex_lock(&slab_mutex);
1272 cpuup_canceled(cpu);
1273 mutex_unlock(&slab_mutex);
1274 break;
1275 }
1276 return notifier_from_errno(err);
1277 }
1278
1279 static struct notifier_block cpucache_notifier = {
1280 &cpuup_callback, NULL, 0
1281 };
1282
1283 #if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
1284 /*
1285 * Drains freelist for a node on each slab cache, used for memory hot-remove.
1286 * Returns -EBUSY if all objects cannot be drained so that the node is not
1287 * removed.
1288 *
1289 * Must hold slab_mutex.
1290 */
1291 static int __meminit drain_cache_node_node(int node)
1292 {
1293 struct kmem_cache *cachep;
1294 int ret = 0;
1295
1296 list_for_each_entry(cachep, &slab_caches, list) {
1297 struct kmem_cache_node *n;
1298
1299 n = get_node(cachep, node);
1300 if (!n)
1301 continue;
1302
1303 drain_freelist(cachep, n, slabs_tofree(cachep, n));
1304
1305 if (!list_empty(&n->slabs_full) ||
1306 !list_empty(&n->slabs_partial)) {
1307 ret = -EBUSY;
1308 break;
1309 }
1310 }
1311 return ret;
1312 }
1313
1314 static int __meminit slab_memory_callback(struct notifier_block *self,
1315 unsigned long action, void *arg)
1316 {
1317 struct memory_notify *mnb = arg;
1318 int ret = 0;
1319 int nid;
1320
1321 nid = mnb->status_change_nid;
1322 if (nid < 0)
1323 goto out;
1324
1325 switch (action) {
1326 case MEM_GOING_ONLINE:
1327 mutex_lock(&slab_mutex);
1328 ret = init_cache_node_node(nid);
1329 mutex_unlock(&slab_mutex);
1330 break;
1331 case MEM_GOING_OFFLINE:
1332 mutex_lock(&slab_mutex);
1333 ret = drain_cache_node_node(nid);
1334 mutex_unlock(&slab_mutex);
1335 break;
1336 case MEM_ONLINE:
1337 case MEM_OFFLINE:
1338 case MEM_CANCEL_ONLINE:
1339 case MEM_CANCEL_OFFLINE:
1340 break;
1341 }
1342 out:
1343 return notifier_from_errno(ret);
1344 }
1345 #endif /* CONFIG_NUMA && CONFIG_MEMORY_HOTPLUG */
1346
1347 /*
1348 * swap the static kmem_cache_node with kmalloced memory
1349 */
1350 static void __init init_list(struct kmem_cache *cachep, struct kmem_cache_node *list,
1351 int nodeid)
1352 {
1353 struct kmem_cache_node *ptr;
1354
1355 ptr = kmalloc_node(sizeof(struct kmem_cache_node), GFP_NOWAIT, nodeid);
1356 BUG_ON(!ptr);
1357
1358 memcpy(ptr, list, sizeof(struct kmem_cache_node));
1359 /*
1360 * Do not assume that spinlocks can be initialized via memcpy:
1361 */
1362 spin_lock_init(&ptr->list_lock);
1363
1364 MAKE_ALL_LISTS(cachep, ptr, nodeid);
1365 cachep->node[nodeid] = ptr;
1366 }
1367
1368 /*
1369 * For setting up all the kmem_cache_node for cache whose buffer_size is same as
1370 * size of kmem_cache_node.
1371 */
1372 static void __init set_up_node(struct kmem_cache *cachep, int index)
1373 {
1374 int node;
1375
1376 for_each_online_node(node) {
1377 cachep->node[node] = &init_kmem_cache_node[index + node];
1378 cachep->node[node]->next_reap = jiffies +
1379 REAPTIMEOUT_NODE +
1380 ((unsigned long)cachep) % REAPTIMEOUT_NODE;
1381 }
1382 }
1383
1384 /*
1385 * Initialisation. Called after the page allocator have been initialised and
1386 * before smp_init().
1387 */
1388 void __init kmem_cache_init(void)
1389 {
1390 int i;
1391
1392 BUILD_BUG_ON(sizeof(((struct page *)NULL)->lru) <
1393 sizeof(struct rcu_head));
1394 kmem_cache = &kmem_cache_boot;
1395
1396 if (num_possible_nodes() == 1)
1397 use_alien_caches = 0;
1398
1399 for (i = 0; i < NUM_INIT_LISTS; i++)
1400 kmem_cache_node_init(&init_kmem_cache_node[i]);
1401
1402 /*
1403 * Fragmentation resistance on low memory - only use bigger
1404 * page orders on machines with more than 32MB of memory if
1405 * not overridden on the command line.
1406 */
1407 if (!slab_max_order_set && totalram_pages > (32 << 20) >> PAGE_SHIFT)
1408 slab_max_order = SLAB_MAX_ORDER_HI;
1409
1410 /* Bootstrap is tricky, because several objects are allocated
1411 * from caches that do not exist yet:
1412 * 1) initialize the kmem_cache cache: it contains the struct
1413 * kmem_cache structures of all caches, except kmem_cache itself:
1414 * kmem_cache is statically allocated.
1415 * Initially an __init data area is used for the head array and the
1416 * kmem_cache_node structures, it's replaced with a kmalloc allocated
1417 * array at the end of the bootstrap.
1418 * 2) Create the first kmalloc cache.
1419 * The struct kmem_cache for the new cache is allocated normally.
1420 * An __init data area is used for the head array.
1421 * 3) Create the remaining kmalloc caches, with minimally sized
1422 * head arrays.
1423 * 4) Replace the __init data head arrays for kmem_cache and the first
1424 * kmalloc cache with kmalloc allocated arrays.
1425 * 5) Replace the __init data for kmem_cache_node for kmem_cache and
1426 * the other cache's with kmalloc allocated memory.
1427 * 6) Resize the head arrays of the kmalloc caches to their final sizes.
1428 */
1429
1430 /* 1) create the kmem_cache */
1431
1432 /*
1433 * struct kmem_cache size depends on nr_node_ids & nr_cpu_ids
1434 */
1435 create_boot_cache(kmem_cache, "kmem_cache",
1436 offsetof(struct kmem_cache, node) +
1437 nr_node_ids * sizeof(struct kmem_cache_node *),
1438 SLAB_HWCACHE_ALIGN);
1439 list_add(&kmem_cache->list, &slab_caches);
1440 slab_state = PARTIAL;
1441
1442 /*
1443 * Initialize the caches that provide memory for the kmem_cache_node
1444 * structures first. Without this, further allocations will bug.
1445 */
1446 kmalloc_caches[INDEX_NODE] = create_kmalloc_cache("kmalloc-node",
1447 kmalloc_size(INDEX_NODE), ARCH_KMALLOC_FLAGS);
1448 slab_state = PARTIAL_NODE;
1449 setup_kmalloc_cache_index_table();
1450
1451 slab_early_init = 0;
1452
1453 /* 5) Replace the bootstrap kmem_cache_node */
1454 {
1455 int nid;
1456
1457 for_each_online_node(nid) {
1458 init_list(kmem_cache, &init_kmem_cache_node[CACHE_CACHE + nid], nid);
1459
1460 init_list(kmalloc_caches[INDEX_NODE],
1461 &init_kmem_cache_node[SIZE_NODE + nid], nid);
1462 }
1463 }
1464
1465 create_kmalloc_caches(ARCH_KMALLOC_FLAGS);
1466 }
1467
1468 void __init kmem_cache_init_late(void)
1469 {
1470 struct kmem_cache *cachep;
1471
1472 slab_state = UP;
1473
1474 /* 6) resize the head arrays to their final sizes */
1475 mutex_lock(&slab_mutex);
1476 list_for_each_entry(cachep, &slab_caches, list)
1477 if (enable_cpucache(cachep, GFP_NOWAIT))
1478 BUG();
1479 mutex_unlock(&slab_mutex);
1480
1481 /* Done! */
1482 slab_state = FULL;
1483
1484 /*
1485 * Register a cpu startup notifier callback that initializes
1486 * cpu_cache_get for all new cpus
1487 */
1488 register_cpu_notifier(&cpucache_notifier);
1489
1490 #ifdef CONFIG_NUMA
1491 /*
1492 * Register a memory hotplug callback that initializes and frees
1493 * node.
1494 */
1495 hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
1496 #endif
1497
1498 /*
1499 * The reap timers are started later, with a module init call: That part
1500 * of the kernel is not yet operational.
1501 */
1502 }
1503
1504 static int __init cpucache_init(void)
1505 {
1506 int cpu;
1507
1508 /*
1509 * Register the timers that return unneeded pages to the page allocator
1510 */
1511 for_each_online_cpu(cpu)
1512 start_cpu_timer(cpu);
1513
1514 /* Done! */
1515 slab_state = FULL;
1516 return 0;
1517 }
1518 __initcall(cpucache_init);
1519
1520 static noinline void
1521 slab_out_of_memory(struct kmem_cache *cachep, gfp_t gfpflags, int nodeid)
1522 {
1523 #if DEBUG
1524 struct kmem_cache_node *n;
1525 struct page *page;
1526 unsigned long flags;
1527 int node;
1528 static DEFINE_RATELIMIT_STATE(slab_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
1529 DEFAULT_RATELIMIT_BURST);
1530
1531 if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slab_oom_rs))
1532 return;
1533
1534 printk(KERN_WARNING
1535 "SLAB: Unable to allocate memory on node %d (gfp=0x%x)\n",
1536 nodeid, gfpflags);
1537 printk(KERN_WARNING " cache: %s, object size: %d, order: %d\n",
1538 cachep->name, cachep->size, cachep->gfporder);
1539
1540 for_each_kmem_cache_node(cachep, node, n) {
1541 unsigned long active_objs = 0, num_objs = 0, free_objects = 0;
1542 unsigned long active_slabs = 0, num_slabs = 0;
1543
1544 spin_lock_irqsave(&n->list_lock, flags);
1545 list_for_each_entry(page, &n->slabs_full, lru) {
1546 active_objs += cachep->num;
1547 active_slabs++;
1548 }
1549 list_for_each_entry(page, &n->slabs_partial, lru) {
1550 active_objs += page->active;
1551 active_slabs++;
1552 }
1553 list_for_each_entry(page, &n->slabs_free, lru)
1554 num_slabs++;
1555
1556 free_objects += n->free_objects;
1557 spin_unlock_irqrestore(&n->list_lock, flags);
1558
1559 num_slabs += active_slabs;
1560 num_objs = num_slabs * cachep->num;
1561 printk(KERN_WARNING
1562 " node %d: slabs: %ld/%ld, objs: %ld/%ld, free: %ld\n",
1563 node, active_slabs, num_slabs, active_objs, num_objs,
1564 free_objects);
1565 }
1566 #endif
1567 }
1568
1569 /*
1570 * Interface to system's page allocator. No need to hold the
1571 * kmem_cache_node ->list_lock.
1572 *
1573 * If we requested dmaable memory, we will get it. Even if we
1574 * did not request dmaable memory, we might get it, but that
1575 * would be relatively rare and ignorable.
1576 */
1577 static struct page *kmem_getpages(struct kmem_cache *cachep, gfp_t flags,
1578 int nodeid)
1579 {
1580 struct page *page;
1581 int nr_pages;
1582
1583 flags |= cachep->allocflags;
1584 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1585 flags |= __GFP_RECLAIMABLE;
1586
1587 page = __alloc_pages_node(nodeid, flags | __GFP_NOTRACK, cachep->gfporder);
1588 if (!page) {
1589 slab_out_of_memory(cachep, flags, nodeid);
1590 return NULL;
1591 }
1592
1593 if (memcg_charge_slab(page, flags, cachep->gfporder, cachep)) {
1594 __free_pages(page, cachep->gfporder);
1595 return NULL;
1596 }
1597
1598 /* Record if ALLOC_NO_WATERMARKS was set when allocating the slab */
1599 if (page_is_pfmemalloc(page))
1600 pfmemalloc_active = true;
1601
1602 nr_pages = (1 << cachep->gfporder);
1603 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1604 add_zone_page_state(page_zone(page),
1605 NR_SLAB_RECLAIMABLE, nr_pages);
1606 else
1607 add_zone_page_state(page_zone(page),
1608 NR_SLAB_UNRECLAIMABLE, nr_pages);
1609 __SetPageSlab(page);
1610 if (page_is_pfmemalloc(page))
1611 SetPageSlabPfmemalloc(page);
1612
1613 if (kmemcheck_enabled && !(cachep->flags & SLAB_NOTRACK)) {
1614 kmemcheck_alloc_shadow(page, cachep->gfporder, flags, nodeid);
1615
1616 if (cachep->ctor)
1617 kmemcheck_mark_uninitialized_pages(page, nr_pages);
1618 else
1619 kmemcheck_mark_unallocated_pages(page, nr_pages);
1620 }
1621
1622 return page;
1623 }
1624
1625 /*
1626 * Interface to system's page release.
1627 */
1628 static void kmem_freepages(struct kmem_cache *cachep, struct page *page)
1629 {
1630 const unsigned long nr_freed = (1 << cachep->gfporder);
1631
1632 kmemcheck_free_shadow(page, cachep->gfporder);
1633
1634 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1635 sub_zone_page_state(page_zone(page),
1636 NR_SLAB_RECLAIMABLE, nr_freed);
1637 else
1638 sub_zone_page_state(page_zone(page),
1639 NR_SLAB_UNRECLAIMABLE, nr_freed);
1640
1641 BUG_ON(!PageSlab(page));
1642 __ClearPageSlabPfmemalloc(page);
1643 __ClearPageSlab(page);
1644 page_mapcount_reset(page);
1645 page->mapping = NULL;
1646
1647 if (current->reclaim_state)
1648 current->reclaim_state->reclaimed_slab += nr_freed;
1649 __free_kmem_pages(page, cachep->gfporder);
1650 }
1651
1652 static void kmem_rcu_free(struct rcu_head *head)
1653 {
1654 struct kmem_cache *cachep;
1655 struct page *page;
1656
1657 page = container_of(head, struct page, rcu_head);
1658 cachep = page->slab_cache;
1659
1660 kmem_freepages(cachep, page);
1661 }
1662
1663 #if DEBUG
1664
1665 #ifdef CONFIG_DEBUG_PAGEALLOC
1666 static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr,
1667 unsigned long caller)
1668 {
1669 int size = cachep->object_size;
1670
1671 addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)];
1672
1673 if (size < 5 * sizeof(unsigned long))
1674 return;
1675
1676 *addr++ = 0x12345678;
1677 *addr++ = caller;
1678 *addr++ = smp_processor_id();
1679 size -= 3 * sizeof(unsigned long);
1680 {
1681 unsigned long *sptr = &caller;
1682 unsigned long svalue;
1683
1684 while (!kstack_end(sptr)) {
1685 svalue = *sptr++;
1686 if (kernel_text_address(svalue)) {
1687 *addr++ = svalue;
1688 size -= sizeof(unsigned long);
1689 if (size <= sizeof(unsigned long))
1690 break;
1691 }
1692 }
1693
1694 }
1695 *addr++ = 0x87654321;
1696 }
1697 #endif
1698
1699 static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
1700 {
1701 int size = cachep->object_size;
1702 addr = &((char *)addr)[obj_offset(cachep)];
1703
1704 memset(addr, val, size);
1705 *(unsigned char *)(addr + size - 1) = POISON_END;
1706 }
1707
1708 static void dump_line(char *data, int offset, int limit)
1709 {
1710 int i;
1711 unsigned char error = 0;
1712 int bad_count = 0;
1713
1714 printk(KERN_ERR "%03x: ", offset);
1715 for (i = 0; i < limit; i++) {
1716 if (data[offset + i] != POISON_FREE) {
1717 error = data[offset + i];
1718 bad_count++;
1719 }
1720 }
1721 print_hex_dump(KERN_CONT, "", 0, 16, 1,
1722 &data[offset], limit, 1);
1723
1724 if (bad_count == 1) {
1725 error ^= POISON_FREE;
1726 if (!(error & (error - 1))) {
1727 printk(KERN_ERR "Single bit error detected. Probably "
1728 "bad RAM.\n");
1729 #ifdef CONFIG_X86
1730 printk(KERN_ERR "Run memtest86+ or a similar memory "
1731 "test tool.\n");
1732 #else
1733 printk(KERN_ERR "Run a memory test tool.\n");
1734 #endif
1735 }
1736 }
1737 }
1738 #endif
1739
1740 #if DEBUG
1741
1742 static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
1743 {
1744 int i, size;
1745 char *realobj;
1746
1747 if (cachep->flags & SLAB_RED_ZONE) {
1748 printk(KERN_ERR "Redzone: 0x%llx/0x%llx.\n",
1749 *dbg_redzone1(cachep, objp),
1750 *dbg_redzone2(cachep, objp));
1751 }
1752
1753 if (cachep->flags & SLAB_STORE_USER) {
1754 printk(KERN_ERR "Last user: [<%p>](%pSR)\n",
1755 *dbg_userword(cachep, objp),
1756 *dbg_userword(cachep, objp));
1757 }
1758 realobj = (char *)objp + obj_offset(cachep);
1759 size = cachep->object_size;
1760 for (i = 0; i < size && lines; i += 16, lines--) {
1761 int limit;
1762 limit = 16;
1763 if (i + limit > size)
1764 limit = size - i;
1765 dump_line(realobj, i, limit);
1766 }
1767 }
1768
1769 static void check_poison_obj(struct kmem_cache *cachep, void *objp)
1770 {
1771 char *realobj;
1772 int size, i;
1773 int lines = 0;
1774
1775 realobj = (char *)objp + obj_offset(cachep);
1776 size = cachep->object_size;
1777
1778 for (i = 0; i < size; i++) {
1779 char exp = POISON_FREE;
1780 if (i == size - 1)
1781 exp = POISON_END;
1782 if (realobj[i] != exp) {
1783 int limit;
1784 /* Mismatch ! */
1785 /* Print header */
1786 if (lines == 0) {
1787 printk(KERN_ERR
1788 "Slab corruption (%s): %s start=%p, len=%d\n",
1789 print_tainted(), cachep->name, realobj, size);
1790 print_objinfo(cachep, objp, 0);
1791 }
1792 /* Hexdump the affected line */
1793 i = (i / 16) * 16;
1794 limit = 16;
1795 if (i + limit > size)
1796 limit = size - i;
1797 dump_line(realobj, i, limit);
1798 i += 16;
1799 lines++;
1800 /* Limit to 5 lines */
1801 if (lines > 5)
1802 break;
1803 }
1804 }
1805 if (lines != 0) {
1806 /* Print some data about the neighboring objects, if they
1807 * exist:
1808 */
1809 struct page *page = virt_to_head_page(objp);
1810 unsigned int objnr;
1811
1812 objnr = obj_to_index(cachep, page, objp);
1813 if (objnr) {
1814 objp = index_to_obj(cachep, page, objnr - 1);
1815 realobj = (char *)objp + obj_offset(cachep);
1816 printk(KERN_ERR "Prev obj: start=%p, len=%d\n",
1817 realobj, size);
1818 print_objinfo(cachep, objp, 2);
1819 }
1820 if (objnr + 1 < cachep->num) {
1821 objp = index_to_obj(cachep, page, objnr + 1);
1822 realobj = (char *)objp + obj_offset(cachep);
1823 printk(KERN_ERR "Next obj: start=%p, len=%d\n",
1824 realobj, size);
1825 print_objinfo(cachep, objp, 2);
1826 }
1827 }
1828 }
1829 #endif
1830
1831 #if DEBUG
1832 static void slab_destroy_debugcheck(struct kmem_cache *cachep,
1833 struct page *page)
1834 {
1835 int i;
1836 for (i = 0; i < cachep->num; i++) {
1837 void *objp = index_to_obj(cachep, page, i);
1838
1839 if (cachep->flags & SLAB_POISON) {
1840 #ifdef CONFIG_DEBUG_PAGEALLOC
1841 if (debug_pagealloc_enabled() &&
1842 cachep->size % PAGE_SIZE == 0 &&
1843 OFF_SLAB(cachep))
1844 kernel_map_pages(virt_to_page(objp),
1845 cachep->size / PAGE_SIZE, 1);
1846 else
1847 check_poison_obj(cachep, objp);
1848 #else
1849 check_poison_obj(cachep, objp);
1850 #endif
1851 }
1852 if (cachep->flags & SLAB_RED_ZONE) {
1853 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
1854 slab_error(cachep, "start of a freed object "
1855 "was overwritten");
1856 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
1857 slab_error(cachep, "end of a freed object "
1858 "was overwritten");
1859 }
1860 }
1861 }
1862 #else
1863 static void slab_destroy_debugcheck(struct kmem_cache *cachep,
1864 struct page *page)
1865 {
1866 }
1867 #endif
1868
1869 /**
1870 * slab_destroy - destroy and release all objects in a slab
1871 * @cachep: cache pointer being destroyed
1872 * @page: page pointer being destroyed
1873 *
1874 * Destroy all the objs in a slab page, and release the mem back to the system.
1875 * Before calling the slab page must have been unlinked from the cache. The
1876 * kmem_cache_node ->list_lock is not held/needed.
1877 */
1878 static void slab_destroy(struct kmem_cache *cachep, struct page *page)
1879 {
1880 void *freelist;
1881
1882 freelist = page->freelist;
1883 slab_destroy_debugcheck(cachep, page);
1884 if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU))
1885 call_rcu(&page->rcu_head, kmem_rcu_free);
1886 else
1887 kmem_freepages(cachep, page);
1888
1889 /*
1890 * From now on, we don't use freelist
1891 * although actual page can be freed in rcu context
1892 */
1893 if (OFF_SLAB(cachep))
1894 kmem_cache_free(cachep->freelist_cache, freelist);
1895 }
1896
1897 static void slabs_destroy(struct kmem_cache *cachep, struct list_head *list)
1898 {
1899 struct page *page, *n;
1900
1901 list_for_each_entry_safe(page, n, list, lru) {
1902 list_del(&page->lru);
1903 slab_destroy(cachep, page);
1904 }
1905 }
1906
1907 /**
1908 * calculate_slab_order - calculate size (page order) of slabs
1909 * @cachep: pointer to the cache that is being created
1910 * @size: size of objects to be created in this cache.
1911 * @align: required alignment for the objects.
1912 * @flags: slab allocation flags
1913 *
1914 * Also calculates the number of objects per slab.
1915 *
1916 * This could be made much more intelligent. For now, try to avoid using
1917 * high order pages for slabs. When the gfp() functions are more friendly
1918 * towards high-order requests, this should be changed.
1919 */
1920 static size_t calculate_slab_order(struct kmem_cache *cachep,
1921 size_t size, size_t align, unsigned long flags)
1922 {
1923 unsigned long offslab_limit;
1924 size_t left_over = 0;
1925 int gfporder;
1926
1927 for (gfporder = 0; gfporder <= KMALLOC_MAX_ORDER; gfporder++) {
1928 unsigned int num;
1929 size_t remainder;
1930
1931 cache_estimate(gfporder, size, align, flags, &remainder, &num);
1932 if (!num)
1933 continue;
1934
1935 /* Can't handle number of objects more than SLAB_OBJ_MAX_NUM */
1936 if (num > SLAB_OBJ_MAX_NUM)
1937 break;
1938
1939 if (flags & CFLGS_OFF_SLAB) {
1940 size_t freelist_size_per_obj = sizeof(freelist_idx_t);
1941 /*
1942 * Max number of objs-per-slab for caches which
1943 * use off-slab slabs. Needed to avoid a possible
1944 * looping condition in cache_grow().
1945 */
1946 if (IS_ENABLED(CONFIG_DEBUG_SLAB_LEAK))
1947 freelist_size_per_obj += sizeof(char);
1948 offslab_limit = size;
1949 offslab_limit /= freelist_size_per_obj;
1950
1951 if (num > offslab_limit)
1952 break;
1953 }
1954
1955 /* Found something acceptable - save it away */
1956 cachep->num = num;
1957 cachep->gfporder = gfporder;
1958 left_over = remainder;
1959
1960 /*
1961 * A VFS-reclaimable slab tends to have most allocations
1962 * as GFP_NOFS and we really don't want to have to be allocating
1963 * higher-order pages when we are unable to shrink dcache.
1964 */
1965 if (flags & SLAB_RECLAIM_ACCOUNT)
1966 break;
1967
1968 /*
1969 * Large number of objects is good, but very large slabs are
1970 * currently bad for the gfp()s.
1971 */
1972 if (gfporder >= slab_max_order)
1973 break;
1974
1975 /*
1976 * Acceptable internal fragmentation?
1977 */
1978 if (left_over * 8 <= (PAGE_SIZE << gfporder))
1979 break;
1980 }
1981 return left_over;
1982 }
1983
1984 static struct array_cache __percpu *alloc_kmem_cache_cpus(
1985 struct kmem_cache *cachep, int entries, int batchcount)
1986 {
1987 int cpu;
1988 size_t size;
1989 struct array_cache __percpu *cpu_cache;
1990
1991 size = sizeof(void *) * entries + sizeof(struct array_cache);
1992 cpu_cache = __alloc_percpu(size, sizeof(void *));
1993
1994 if (!cpu_cache)
1995 return NULL;
1996
1997 for_each_possible_cpu(cpu) {
1998 init_arraycache(per_cpu_ptr(cpu_cache, cpu),
1999 entries, batchcount);
2000 }
2001
2002 return cpu_cache;
2003 }
2004
2005 static int __init_refok setup_cpu_cache(struct kmem_cache *cachep, gfp_t gfp)
2006 {
2007 if (slab_state >= FULL)
2008 return enable_cpucache(cachep, gfp);
2009
2010 cachep->cpu_cache = alloc_kmem_cache_cpus(cachep, 1, 1);
2011 if (!cachep->cpu_cache)
2012 return 1;
2013
2014 if (slab_state == DOWN) {
2015 /* Creation of first cache (kmem_cache). */
2016 set_up_node(kmem_cache, CACHE_CACHE);
2017 } else if (slab_state == PARTIAL) {
2018 /* For kmem_cache_node */
2019 set_up_node(cachep, SIZE_NODE);
2020 } else {
2021 int node;
2022
2023 for_each_online_node(node) {
2024 cachep->node[node] = kmalloc_node(
2025 sizeof(struct kmem_cache_node), gfp, node);
2026 BUG_ON(!cachep->node[node]);
2027 kmem_cache_node_init(cachep->node[node]);
2028 }
2029 }
2030
2031 cachep->node[numa_mem_id()]->next_reap =
2032 jiffies + REAPTIMEOUT_NODE +
2033 ((unsigned long)cachep) % REAPTIMEOUT_NODE;
2034
2035 cpu_cache_get(cachep)->avail = 0;
2036 cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
2037 cpu_cache_get(cachep)->batchcount = 1;
2038 cpu_cache_get(cachep)->touched = 0;
2039 cachep->batchcount = 1;
2040 cachep->limit = BOOT_CPUCACHE_ENTRIES;
2041 return 0;
2042 }
2043
2044 unsigned long kmem_cache_flags(unsigned long object_size,
2045 unsigned long flags, const char *name,
2046 void (*ctor)(void *))
2047 {
2048 return flags;
2049 }
2050
2051 struct kmem_cache *
2052 __kmem_cache_alias(const char *name, size_t size, size_t align,
2053 unsigned long flags, void (*ctor)(void *))
2054 {
2055 struct kmem_cache *cachep;
2056
2057 cachep = find_mergeable(size, align, flags, name, ctor);
2058 if (cachep) {
2059 cachep->refcount++;
2060
2061 /*
2062 * Adjust the object sizes so that we clear
2063 * the complete object on kzalloc.
2064 */
2065 cachep->object_size = max_t(int, cachep->object_size, size);
2066 }
2067 return cachep;
2068 }
2069
2070 /**
2071 * __kmem_cache_create - Create a cache.
2072 * @cachep: cache management descriptor
2073 * @flags: SLAB flags
2074 *
2075 * Returns a ptr to the cache on success, NULL on failure.
2076 * Cannot be called within a int, but can be interrupted.
2077 * The @ctor is run when new pages are allocated by the cache.
2078 *
2079 * The flags are
2080 *
2081 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
2082 * to catch references to uninitialised memory.
2083 *
2084 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
2085 * for buffer overruns.
2086 *
2087 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
2088 * cacheline. This can be beneficial if you're counting cycles as closely
2089 * as davem.
2090 */
2091 int
2092 __kmem_cache_create (struct kmem_cache *cachep, unsigned long flags)
2093 {
2094 size_t left_over, freelist_size;
2095 size_t ralign = BYTES_PER_WORD;
2096 gfp_t gfp;
2097 int err;
2098 size_t size = cachep->size;
2099
2100 #if DEBUG
2101 #if FORCED_DEBUG
2102 /*
2103 * Enable redzoning and last user accounting, except for caches with
2104 * large objects, if the increased size would increase the object size
2105 * above the next power of two: caches with object sizes just above a
2106 * power of two have a significant amount of internal fragmentation.
2107 */
2108 if (size < 4096 || fls(size - 1) == fls(size-1 + REDZONE_ALIGN +
2109 2 * sizeof(unsigned long long)))
2110 flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
2111 if (!(flags & SLAB_DESTROY_BY_RCU))
2112 flags |= SLAB_POISON;
2113 #endif
2114 #endif
2115
2116 /*
2117 * Check that size is in terms of words. This is needed to avoid
2118 * unaligned accesses for some archs when redzoning is used, and makes
2119 * sure any on-slab bufctl's are also correctly aligned.
2120 */
2121 if (size & (BYTES_PER_WORD - 1)) {
2122 size += (BYTES_PER_WORD - 1);
2123 size &= ~(BYTES_PER_WORD - 1);
2124 }
2125
2126 if (flags & SLAB_RED_ZONE) {
2127 ralign = REDZONE_ALIGN;
2128 /* If redzoning, ensure that the second redzone is suitably
2129 * aligned, by adjusting the object size accordingly. */
2130 size += REDZONE_ALIGN - 1;
2131 size &= ~(REDZONE_ALIGN - 1);
2132 }
2133
2134 /* 3) caller mandated alignment */
2135 if (ralign < cachep->align) {
2136 ralign = cachep->align;
2137 }
2138 /* disable debug if necessary */
2139 if (ralign > __alignof__(unsigned long long))
2140 flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
2141 /*
2142 * 4) Store it.
2143 */
2144 cachep->align = ralign;
2145
2146 if (slab_is_available())
2147 gfp = GFP_KERNEL;
2148 else
2149 gfp = GFP_NOWAIT;
2150
2151 #if DEBUG
2152
2153 /*
2154 * Both debugging options require word-alignment which is calculated
2155 * into align above.
2156 */
2157 if (flags & SLAB_RED_ZONE) {
2158 /* add space for red zone words */
2159 cachep->obj_offset += sizeof(unsigned long long);
2160 size += 2 * sizeof(unsigned long long);
2161 }
2162 if (flags & SLAB_STORE_USER) {
2163 /* user store requires one word storage behind the end of
2164 * the real object. But if the second red zone needs to be
2165 * aligned to 64 bits, we must allow that much space.
2166 */
2167 if (flags & SLAB_RED_ZONE)
2168 size += REDZONE_ALIGN;
2169 else
2170 size += BYTES_PER_WORD;
2171 }
2172 #if FORCED_DEBUG && defined(CONFIG_DEBUG_PAGEALLOC)
2173 /*
2174 * To activate debug pagealloc, off-slab management is necessary
2175 * requirement. In early phase of initialization, small sized slab
2176 * doesn't get initialized so it would not be possible. So, we need
2177 * to check size >= 256. It guarantees that all necessary small
2178 * sized slab is initialized in current slab initialization sequence.
2179 */
2180 if (debug_pagealloc_enabled() &&
2181 !slab_early_init && size >= kmalloc_size(INDEX_NODE) &&
2182 size >= 256 && cachep->object_size > cache_line_size() &&
2183 ALIGN(size, cachep->align) < PAGE_SIZE) {
2184 cachep->obj_offset += PAGE_SIZE - ALIGN(size, cachep->align);
2185 size = PAGE_SIZE;
2186 }
2187 #endif
2188 #endif
2189
2190 /*
2191 * Determine if the slab management is 'on' or 'off' slab.
2192 * (bootstrapping cannot cope with offslab caches so don't do
2193 * it too early on. Always use on-slab management when
2194 * SLAB_NOLEAKTRACE to avoid recursive calls into kmemleak)
2195 */
2196 if (size >= OFF_SLAB_MIN_SIZE && !slab_early_init &&
2197 !(flags & SLAB_NOLEAKTRACE))
2198 /*
2199 * Size is large, assume best to place the slab management obj
2200 * off-slab (should allow better packing of objs).
2201 */
2202 flags |= CFLGS_OFF_SLAB;
2203
2204 size = ALIGN(size, cachep->align);
2205 /*
2206 * We should restrict the number of objects in a slab to implement
2207 * byte sized index. Refer comment on SLAB_OBJ_MIN_SIZE definition.
2208 */
2209 if (FREELIST_BYTE_INDEX && size < SLAB_OBJ_MIN_SIZE)
2210 size = ALIGN(SLAB_OBJ_MIN_SIZE, cachep->align);
2211
2212 left_over = calculate_slab_order(cachep, size, cachep->align, flags);
2213
2214 if (!cachep->num)
2215 return -E2BIG;
2216
2217 freelist_size = calculate_freelist_size(cachep->num, cachep->align);
2218
2219 /*
2220 * If the slab has been placed off-slab, and we have enough space then
2221 * move it on-slab. This is at the expense of any extra colouring.
2222 */
2223 if (flags & CFLGS_OFF_SLAB && left_over >= freelist_size) {
2224 flags &= ~CFLGS_OFF_SLAB;
2225 left_over -= freelist_size;
2226 }
2227
2228 if (flags & CFLGS_OFF_SLAB) {
2229 /* really off slab. No need for manual alignment */
2230 freelist_size = calculate_freelist_size(cachep->num, 0);
2231
2232 #ifdef CONFIG_PAGE_POISONING
2233 /* If we're going to use the generic kernel_map_pages()
2234 * poisoning, then it's going to smash the contents of
2235 * the redzone and userword anyhow, so switch them off.
2236 */
2237 if (debug_pagealloc_enabled() &&
2238 size % PAGE_SIZE == 0 && flags & SLAB_POISON)
2239 flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
2240 #endif
2241 }
2242
2243 cachep->colour_off = cache_line_size();
2244 /* Offset must be a multiple of the alignment. */
2245 if (cachep->colour_off < cachep->align)
2246 cachep->colour_off = cachep->align;
2247 cachep->colour = left_over / cachep->colour_off;
2248 cachep->freelist_size = freelist_size;
2249 cachep->flags = flags;
2250 cachep->allocflags = __GFP_COMP;
2251 if (CONFIG_ZONE_DMA_FLAG && (flags & SLAB_CACHE_DMA))
2252 cachep->allocflags |= GFP_DMA;
2253 cachep->size = size;
2254 cachep->reciprocal_buffer_size = reciprocal_value(size);
2255
2256 if (flags & CFLGS_OFF_SLAB) {
2257 cachep->freelist_cache = kmalloc_slab(freelist_size, 0u);
2258 /*
2259 * This is a possibility for one of the kmalloc_{dma,}_caches.
2260 * But since we go off slab only for object size greater than
2261 * OFF_SLAB_MIN_SIZE, and kmalloc_{dma,}_caches get created
2262 * in ascending order,this should not happen at all.
2263 * But leave a BUG_ON for some lucky dude.
2264 */
2265 BUG_ON(ZERO_OR_NULL_PTR(cachep->freelist_cache));
2266 }
2267
2268 err = setup_cpu_cache(cachep, gfp);
2269 if (err) {
2270 __kmem_cache_release(cachep);
2271 return err;
2272 }
2273
2274 return 0;
2275 }
2276
2277 #if DEBUG
2278 static void check_irq_off(void)
2279 {
2280 BUG_ON(!irqs_disabled());
2281 }
2282
2283 static void check_irq_on(void)
2284 {
2285 BUG_ON(irqs_disabled());
2286 }
2287
2288 static void check_spinlock_acquired(struct kmem_cache *cachep)
2289 {
2290 #ifdef CONFIG_SMP
2291 check_irq_off();
2292 assert_spin_locked(&get_node(cachep, numa_mem_id())->list_lock);
2293 #endif
2294 }
2295
2296 static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
2297 {
2298 #ifdef CONFIG_SMP
2299 check_irq_off();
2300 assert_spin_locked(&get_node(cachep, node)->list_lock);
2301 #endif
2302 }
2303
2304 #else
2305 #define check_irq_off() do { } while(0)
2306 #define check_irq_on() do { } while(0)
2307 #define check_spinlock_acquired(x) do { } while(0)
2308 #define check_spinlock_acquired_node(x, y) do { } while(0)
2309 #endif
2310
2311 static void drain_array(struct kmem_cache *cachep, struct kmem_cache_node *n,
2312 struct array_cache *ac,
2313 int force, int node);
2314
2315 static void do_drain(void *arg)
2316 {
2317 struct kmem_cache *cachep = arg;
2318 struct array_cache *ac;
2319 int node = numa_mem_id();
2320 struct kmem_cache_node *n;
2321 LIST_HEAD(list);
2322
2323 check_irq_off();
2324 ac = cpu_cache_get(cachep);
2325 n = get_node(cachep, node);
2326 spin_lock(&n->list_lock);
2327 free_block(cachep, ac->entry, ac->avail, node, &list);
2328 spin_unlock(&n->list_lock);
2329 slabs_destroy(cachep, &list);
2330 ac->avail = 0;
2331 }
2332
2333 static void drain_cpu_caches(struct kmem_cache *cachep)
2334 {
2335 struct kmem_cache_node *n;
2336 int node;
2337
2338 on_each_cpu(do_drain, cachep, 1);
2339 check_irq_on();
2340 for_each_kmem_cache_node(cachep, node, n)
2341 if (n->alien)
2342 drain_alien_cache(cachep, n->alien);
2343
2344 for_each_kmem_cache_node(cachep, node, n)
2345 drain_array(cachep, n, n->shared, 1, node);
2346 }
2347
2348 /*
2349 * Remove slabs from the list of free slabs.
2350 * Specify the number of slabs to drain in tofree.
2351 *
2352 * Returns the actual number of slabs released.
2353 */
2354 static int drain_freelist(struct kmem_cache *cache,
2355 struct kmem_cache_node *n, int tofree)
2356 {
2357 struct list_head *p;
2358 int nr_freed;
2359 struct page *page;
2360
2361 nr_freed = 0;
2362 while (nr_freed < tofree && !list_empty(&n->slabs_free)) {
2363
2364 spin_lock_irq(&n->list_lock);
2365 p = n->slabs_free.prev;
2366 if (p == &n->slabs_free) {
2367 spin_unlock_irq(&n->list_lock);
2368 goto out;
2369 }
2370
2371 page = list_entry(p, struct page, lru);
2372 list_del(&page->lru);
2373 /*
2374 * Safe to drop the lock. The slab is no longer linked
2375 * to the cache.
2376 */
2377 n->free_objects -= cache->num;
2378 spin_unlock_irq(&n->list_lock);
2379 slab_destroy(cache, page);
2380 nr_freed++;
2381 }
2382 out:
2383 return nr_freed;
2384 }
2385
2386 int __kmem_cache_shrink(struct kmem_cache *cachep, bool deactivate)
2387 {
2388 int ret = 0;
2389 int node;
2390 struct kmem_cache_node *n;
2391
2392 drain_cpu_caches(cachep);
2393
2394 check_irq_on();
2395 for_each_kmem_cache_node(cachep, node, n) {
2396 drain_freelist(cachep, n, slabs_tofree(cachep, n));
2397
2398 ret += !list_empty(&n->slabs_full) ||
2399 !list_empty(&n->slabs_partial);
2400 }
2401 return (ret ? 1 : 0);
2402 }
2403
2404 int __kmem_cache_shutdown(struct kmem_cache *cachep)
2405 {
2406 return __kmem_cache_shrink(cachep, false);
2407 }
2408
2409 void __kmem_cache_release(struct kmem_cache *cachep)
2410 {
2411 int i;
2412 struct kmem_cache_node *n;
2413
2414 free_percpu(cachep->cpu_cache);
2415
2416 /* NUMA: free the node structures */
2417 for_each_kmem_cache_node(cachep, i, n) {
2418 kfree(n->shared);
2419 free_alien_cache(n->alien);
2420 kfree(n);
2421 cachep->node[i] = NULL;
2422 }
2423 }
2424
2425 /*
2426 * Get the memory for a slab management obj.
2427 *
2428 * For a slab cache when the slab descriptor is off-slab, the
2429 * slab descriptor can't come from the same cache which is being created,
2430 * Because if it is the case, that means we defer the creation of
2431 * the kmalloc_{dma,}_cache of size sizeof(slab descriptor) to this point.
2432 * And we eventually call down to __kmem_cache_create(), which
2433 * in turn looks up in the kmalloc_{dma,}_caches for the disired-size one.
2434 * This is a "chicken-and-egg" problem.
2435 *
2436 * So the off-slab slab descriptor shall come from the kmalloc_{dma,}_caches,
2437 * which are all initialized during kmem_cache_init().
2438 */
2439 static void *alloc_slabmgmt(struct kmem_cache *cachep,
2440 struct page *page, int colour_off,
2441 gfp_t local_flags, int nodeid)
2442 {
2443 void *freelist;
2444 void *addr = page_address(page);
2445
2446 if (OFF_SLAB(cachep)) {
2447 /* Slab management obj is off-slab. */
2448 freelist = kmem_cache_alloc_node(cachep->freelist_cache,
2449 local_flags, nodeid);
2450 if (!freelist)
2451 return NULL;
2452 } else {
2453 freelist = addr + colour_off;
2454 colour_off += cachep->freelist_size;
2455 }
2456 page->active = 0;
2457 page->s_mem = addr + colour_off;
2458 return freelist;
2459 }
2460
2461 static inline freelist_idx_t get_free_obj(struct page *page, unsigned int idx)
2462 {
2463 return ((freelist_idx_t *)page->freelist)[idx];
2464 }
2465
2466 static inline void set_free_obj(struct page *page,
2467 unsigned int idx, freelist_idx_t val)
2468 {
2469 ((freelist_idx_t *)(page->freelist))[idx] = val;
2470 }
2471
2472 static void cache_init_objs(struct kmem_cache *cachep,
2473 struct page *page)
2474 {
2475 int i;
2476
2477 for (i = 0; i < cachep->num; i++) {
2478 void *objp = index_to_obj(cachep, page, i);
2479 #if DEBUG
2480 /* need to poison the objs? */
2481 if (cachep->flags & SLAB_POISON)
2482 poison_obj(cachep, objp, POISON_FREE);
2483 if (cachep->flags & SLAB_STORE_USER)
2484 *dbg_userword(cachep, objp) = NULL;
2485
2486 if (cachep->flags & SLAB_RED_ZONE) {
2487 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2488 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2489 }
2490 /*
2491 * Constructors are not allowed to allocate memory from the same
2492 * cache which they are a constructor for. Otherwise, deadlock.
2493 * They must also be threaded.
2494 */
2495 if (cachep->ctor && !(cachep->flags & SLAB_POISON))
2496 cachep->ctor(objp + obj_offset(cachep));
2497
2498 if (cachep->flags & SLAB_RED_ZONE) {
2499 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
2500 slab_error(cachep, "constructor overwrote the"
2501 " end of an object");
2502 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
2503 slab_error(cachep, "constructor overwrote the"
2504 " start of an object");
2505 }
2506 if ((cachep->size % PAGE_SIZE) == 0 &&
2507 OFF_SLAB(cachep) && cachep->flags & SLAB_POISON)
2508 kernel_map_pages(virt_to_page(objp),
2509 cachep->size / PAGE_SIZE, 0);
2510 #else
2511 if (cachep->ctor)
2512 cachep->ctor(objp);
2513 #endif
2514 set_obj_status(page, i, OBJECT_FREE);
2515 set_free_obj(page, i, i);
2516 }
2517 }
2518
2519 static void kmem_flagcheck(struct kmem_cache *cachep, gfp_t flags)
2520 {
2521 if (CONFIG_ZONE_DMA_FLAG) {
2522 if (flags & GFP_DMA)
2523 BUG_ON(!(cachep->allocflags & GFP_DMA));
2524 else
2525 BUG_ON(cachep->allocflags & GFP_DMA);
2526 }
2527 }
2528
2529 static void *slab_get_obj(struct kmem_cache *cachep, struct page *page)
2530 {
2531 void *objp;
2532
2533 objp = index_to_obj(cachep, page, get_free_obj(page, page->active));
2534 page->active++;
2535
2536 return objp;
2537 }
2538
2539 static void slab_put_obj(struct kmem_cache *cachep,
2540 struct page *page, void *objp)
2541 {
2542 unsigned int objnr = obj_to_index(cachep, page, objp);
2543 #if DEBUG
2544 unsigned int i;
2545
2546 /* Verify double free bug */
2547 for (i = page->active; i < cachep->num; i++) {
2548 if (get_free_obj(page, i) == objnr) {
2549 printk(KERN_ERR "slab: double free detected in cache "
2550 "'%s', objp %p\n", cachep->name, objp);
2551 BUG();
2552 }
2553 }
2554 #endif
2555 page->active--;
2556 set_free_obj(page, page->active, objnr);
2557 }
2558
2559 /*
2560 * Map pages beginning at addr to the given cache and slab. This is required
2561 * for the slab allocator to be able to lookup the cache and slab of a
2562 * virtual address for kfree, ksize, and slab debugging.
2563 */
2564 static void slab_map_pages(struct kmem_cache *cache, struct page *page,
2565 void *freelist)
2566 {
2567 page->slab_cache = cache;
2568 page->freelist = freelist;
2569 }
2570
2571 /*
2572 * Grow (by 1) the number of slabs within a cache. This is called by
2573 * kmem_cache_alloc() when there are no active objs left in a cache.
2574 */
2575 static int cache_grow(struct kmem_cache *cachep,
2576 gfp_t flags, int nodeid, struct page *page)
2577 {
2578 void *freelist;
2579 size_t offset;
2580 gfp_t local_flags;
2581 struct kmem_cache_node *n;
2582
2583 /*
2584 * Be lazy and only check for valid flags here, keeping it out of the
2585 * critical path in kmem_cache_alloc().
2586 */
2587 if (unlikely(flags & GFP_SLAB_BUG_MASK)) {
2588 pr_emerg("gfp: %u\n", flags & GFP_SLAB_BUG_MASK);
2589 BUG();
2590 }
2591 local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
2592
2593 /* Take the node list lock to change the colour_next on this node */
2594 check_irq_off();
2595 n = get_node(cachep, nodeid);
2596 spin_lock(&n->list_lock);
2597
2598 /* Get colour for the slab, and cal the next value. */
2599 offset = n->colour_next;
2600 n->colour_next++;
2601 if (n->colour_next >= cachep->colour)
2602 n->colour_next = 0;
2603 spin_unlock(&n->list_lock);
2604
2605 offset *= cachep->colour_off;
2606
2607 if (gfpflags_allow_blocking(local_flags))
2608 local_irq_enable();
2609
2610 /*
2611 * The test for missing atomic flag is performed here, rather than
2612 * the more obvious place, simply to reduce the critical path length
2613 * in kmem_cache_alloc(). If a caller is seriously mis-behaving they
2614 * will eventually be caught here (where it matters).
2615 */
2616 kmem_flagcheck(cachep, flags);
2617
2618 /*
2619 * Get mem for the objs. Attempt to allocate a physical page from
2620 * 'nodeid'.
2621 */
2622 if (!page)
2623 page = kmem_getpages(cachep, local_flags, nodeid);
2624 if (!page)
2625 goto failed;
2626
2627 /* Get slab management. */
2628 freelist = alloc_slabmgmt(cachep, page, offset,
2629 local_flags & ~GFP_CONSTRAINT_MASK, nodeid);
2630 if (!freelist)
2631 goto opps1;
2632
2633 slab_map_pages(cachep, page, freelist);
2634
2635 cache_init_objs(cachep, page);
2636
2637 if (gfpflags_allow_blocking(local_flags))
2638 local_irq_disable();
2639 check_irq_off();
2640 spin_lock(&n->list_lock);
2641
2642 /* Make slab active. */
2643 list_add_tail(&page->lru, &(n->slabs_free));
2644 STATS_INC_GROWN(cachep);
2645 n->free_objects += cachep->num;
2646 spin_unlock(&n->list_lock);
2647 return 1;
2648 opps1:
2649 kmem_freepages(cachep, page);
2650 failed:
2651 if (gfpflags_allow_blocking(local_flags))
2652 local_irq_disable();
2653 return 0;
2654 }
2655
2656 #if DEBUG
2657
2658 /*
2659 * Perform extra freeing checks:
2660 * - detect bad pointers.
2661 * - POISON/RED_ZONE checking
2662 */
2663 static void kfree_debugcheck(const void *objp)
2664 {
2665 if (!virt_addr_valid(objp)) {
2666 printk(KERN_ERR "kfree_debugcheck: out of range ptr %lxh.\n",
2667 (unsigned long)objp);
2668 BUG();
2669 }
2670 }
2671
2672 static inline void verify_redzone_free(struct kmem_cache *cache, void *obj)
2673 {
2674 unsigned long long redzone1, redzone2;
2675
2676 redzone1 = *dbg_redzone1(cache, obj);
2677 redzone2 = *dbg_redzone2(cache, obj);
2678
2679 /*
2680 * Redzone is ok.
2681 */
2682 if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE)
2683 return;
2684
2685 if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE)
2686 slab_error(cache, "double free detected");
2687 else
2688 slab_error(cache, "memory outside object was overwritten");
2689
2690 printk(KERN_ERR "%p: redzone 1:0x%llx, redzone 2:0x%llx.\n",
2691 obj, redzone1, redzone2);
2692 }
2693
2694 static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
2695 unsigned long caller)
2696 {
2697 unsigned int objnr;
2698 struct page *page;
2699
2700 BUG_ON(virt_to_cache(objp) != cachep);
2701
2702 objp -= obj_offset(cachep);
2703 kfree_debugcheck(objp);
2704 page = virt_to_head_page(objp);
2705
2706 if (cachep->flags & SLAB_RED_ZONE) {
2707 verify_redzone_free(cachep, objp);
2708 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2709 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2710 }
2711 if (cachep->flags & SLAB_STORE_USER)
2712 *dbg_userword(cachep, objp) = (void *)caller;
2713
2714 objnr = obj_to_index(cachep, page, objp);
2715
2716 BUG_ON(objnr >= cachep->num);
2717 BUG_ON(objp != index_to_obj(cachep, page, objnr));
2718
2719 set_obj_status(page, objnr, OBJECT_FREE);
2720 if (cachep->flags & SLAB_POISON) {
2721 #ifdef CONFIG_DEBUG_PAGEALLOC
2722 if (debug_pagealloc_enabled() &&
2723 (cachep->size % PAGE_SIZE) == 0 && OFF_SLAB(cachep)) {
2724 store_stackinfo(cachep, objp, caller);
2725 kernel_map_pages(virt_to_page(objp),
2726 cachep->size / PAGE_SIZE, 0);
2727 } else {
2728 poison_obj(cachep, objp, POISON_FREE);
2729 }
2730 #else
2731 poison_obj(cachep, objp, POISON_FREE);
2732 #endif
2733 }
2734 return objp;
2735 }
2736
2737 #else
2738 #define kfree_debugcheck(x) do { } while(0)
2739 #define cache_free_debugcheck(x,objp,z) (objp)
2740 #endif
2741
2742 static struct page *get_first_slab(struct kmem_cache_node *n)
2743 {
2744 struct page *page;
2745
2746 page = list_first_entry_or_null(&n->slabs_partial,
2747 struct page, lru);
2748 if (!page) {
2749 n->free_touched = 1;
2750 page = list_first_entry_or_null(&n->slabs_free,
2751 struct page, lru);
2752 }
2753
2754 return page;
2755 }
2756
2757 static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags,
2758 bool force_refill)
2759 {
2760 int batchcount;
2761 struct kmem_cache_node *n;
2762 struct array_cache *ac;
2763 int node;
2764
2765 check_irq_off();
2766 node = numa_mem_id();
2767 if (unlikely(force_refill))
2768 goto force_grow;
2769 retry:
2770 ac = cpu_cache_get(cachep);
2771 batchcount = ac->batchcount;
2772 if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
2773 /*
2774 * If there was little recent activity on this cache, then
2775 * perform only a partial refill. Otherwise we could generate
2776 * refill bouncing.
2777 */
2778 batchcount = BATCHREFILL_LIMIT;
2779 }
2780 n = get_node(cachep, node);
2781
2782 BUG_ON(ac->avail > 0 || !n);
2783 spin_lock(&n->list_lock);
2784
2785 /* See if we can refill from the shared array */
2786 if (n->shared && transfer_objects(ac, n->shared, batchcount)) {
2787 n->shared->touched = 1;
2788 goto alloc_done;
2789 }
2790
2791 while (batchcount > 0) {
2792 struct page *page;
2793 /* Get slab alloc is to come from. */
2794 page = get_first_slab(n);
2795 if (!page)
2796 goto must_grow;
2797
2798 check_spinlock_acquired(cachep);
2799
2800 /*
2801 * The slab was either on partial or free list so
2802 * there must be at least one object available for
2803 * allocation.
2804 */
2805 BUG_ON(page->active >= cachep->num);
2806
2807 while (page->active < cachep->num && batchcount--) {
2808 STATS_INC_ALLOCED(cachep);
2809 STATS_INC_ACTIVE(cachep);
2810 STATS_SET_HIGH(cachep);
2811
2812 ac_put_obj(cachep, ac, slab_get_obj(cachep, page));
2813 }
2814
2815 /* move slabp to correct slabp list: */
2816 list_del(&page->lru);
2817 if (page->active == cachep->num)
2818 list_add(&page->lru, &n->slabs_full);
2819 else
2820 list_add(&page->lru, &n->slabs_partial);
2821 }
2822
2823 must_grow:
2824 n->free_objects -= ac->avail;
2825 alloc_done:
2826 spin_unlock(&n->list_lock);
2827
2828 if (unlikely(!ac->avail)) {
2829 int x;
2830 force_grow:
2831 x = cache_grow(cachep, gfp_exact_node(flags), node, NULL);
2832
2833 /* cache_grow can reenable interrupts, then ac could change. */
2834 ac = cpu_cache_get(cachep);
2835 node = numa_mem_id();
2836
2837 /* no objects in sight? abort */
2838 if (!x && (ac->avail == 0 || force_refill))
2839 return NULL;
2840
2841 if (!ac->avail) /* objects refilled by interrupt? */
2842 goto retry;
2843 }
2844 ac->touched = 1;
2845
2846 return ac_get_obj(cachep, ac, flags, force_refill);
2847 }
2848
2849 static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep,
2850 gfp_t flags)
2851 {
2852 might_sleep_if(gfpflags_allow_blocking(flags));
2853 #if DEBUG
2854 kmem_flagcheck(cachep, flags);
2855 #endif
2856 }
2857
2858 #if DEBUG
2859 static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
2860 gfp_t flags, void *objp, unsigned long caller)
2861 {
2862 struct page *page;
2863
2864 if (!objp)
2865 return objp;
2866 if (cachep->flags & SLAB_POISON) {
2867 #ifdef CONFIG_DEBUG_PAGEALLOC
2868 if (debug_pagealloc_enabled() &&
2869 (cachep->size % PAGE_SIZE) == 0 && OFF_SLAB(cachep))
2870 kernel_map_pages(virt_to_page(objp),
2871 cachep->size / PAGE_SIZE, 1);
2872 else
2873 check_poison_obj(cachep, objp);
2874 #else
2875 check_poison_obj(cachep, objp);
2876 #endif
2877 poison_obj(cachep, objp, POISON_INUSE);
2878 }
2879 if (cachep->flags & SLAB_STORE_USER)
2880 *dbg_userword(cachep, objp) = (void *)caller;
2881
2882 if (cachep->flags & SLAB_RED_ZONE) {
2883 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE ||
2884 *dbg_redzone2(cachep, objp) != RED_INACTIVE) {
2885 slab_error(cachep, "double free, or memory outside"
2886 " object was overwritten");
2887 printk(KERN_ERR
2888 "%p: redzone 1:0x%llx, redzone 2:0x%llx\n",
2889 objp, *dbg_redzone1(cachep, objp),
2890 *dbg_redzone2(cachep, objp));
2891 }
2892 *dbg_redzone1(cachep, objp) = RED_ACTIVE;
2893 *dbg_redzone2(cachep, objp) = RED_ACTIVE;
2894 }
2895
2896 page = virt_to_head_page(objp);
2897 set_obj_status(page, obj_to_index(cachep, page, objp), OBJECT_ACTIVE);
2898 objp += obj_offset(cachep);
2899 if (cachep->ctor && cachep->flags & SLAB_POISON)
2900 cachep->ctor(objp);
2901 if (ARCH_SLAB_MINALIGN &&
2902 ((unsigned long)objp & (ARCH_SLAB_MINALIGN-1))) {
2903 printk(KERN_ERR "0x%p: not aligned to ARCH_SLAB_MINALIGN=%d\n",
2904 objp, (int)ARCH_SLAB_MINALIGN);
2905 }
2906 return objp;
2907 }
2908 #else
2909 #define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
2910 #endif
2911
2912 static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
2913 {
2914 void *objp;
2915 struct array_cache *ac;
2916 bool force_refill = false;
2917
2918 check_irq_off();
2919
2920 ac = cpu_cache_get(cachep);
2921 if (likely(ac->avail)) {
2922 ac->touched = 1;
2923 objp = ac_get_obj(cachep, ac, flags, false);
2924
2925 /*
2926 * Allow for the possibility all avail objects are not allowed
2927 * by the current flags
2928 */
2929 if (objp) {
2930 STATS_INC_ALLOCHIT(cachep);
2931 goto out;
2932 }
2933 force_refill = true;
2934 }
2935
2936 STATS_INC_ALLOCMISS(cachep);
2937 objp = cache_alloc_refill(cachep, flags, force_refill);
2938 /*
2939 * the 'ac' may be updated by cache_alloc_refill(),
2940 * and kmemleak_erase() requires its correct value.
2941 */
2942 ac = cpu_cache_get(cachep);
2943
2944 out:
2945 /*
2946 * To avoid a false negative, if an object that is in one of the
2947 * per-CPU caches is leaked, we need to make sure kmemleak doesn't
2948 * treat the array pointers as a reference to the object.
2949 */
2950 if (objp)
2951 kmemleak_erase(&ac->entry[ac->avail]);
2952 return objp;
2953 }
2954
2955 #ifdef CONFIG_NUMA
2956 /*
2957 * Try allocating on another node if PFA_SPREAD_SLAB is a mempolicy is set.
2958 *
2959 * If we are in_interrupt, then process context, including cpusets and
2960 * mempolicy, may not apply and should not be used for allocation policy.
2961 */
2962 static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags)
2963 {
2964 int nid_alloc, nid_here;
2965
2966 if (in_interrupt() || (flags & __GFP_THISNODE))
2967 return NULL;
2968 nid_alloc = nid_here = numa_mem_id();
2969 if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD))
2970 nid_alloc = cpuset_slab_spread_node();
2971 else if (current->mempolicy)
2972 nid_alloc = mempolicy_slab_node();
2973 if (nid_alloc != nid_here)
2974 return ____cache_alloc_node(cachep, flags, nid_alloc);
2975 return NULL;
2976 }
2977
2978 /*
2979 * Fallback function if there was no memory available and no objects on a
2980 * certain node and fall back is permitted. First we scan all the
2981 * available node for available objects. If that fails then we
2982 * perform an allocation without specifying a node. This allows the page
2983 * allocator to do its reclaim / fallback magic. We then insert the
2984 * slab into the proper nodelist and then allocate from it.
2985 */
2986 static void *fallback_alloc(struct kmem_cache *cache, gfp_t flags)
2987 {
2988 struct zonelist *zonelist;
2989 gfp_t local_flags;
2990 struct zoneref *z;
2991 struct zone *zone;
2992 enum zone_type high_zoneidx = gfp_zone(flags);
2993 void *obj = NULL;
2994 int nid;
2995 unsigned int cpuset_mems_cookie;
2996
2997 if (flags & __GFP_THISNODE)
2998 return NULL;
2999
3000 local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
3001
3002 retry_cpuset:
3003 cpuset_mems_cookie = read_mems_allowed_begin();
3004 zonelist = node_zonelist(mempolicy_slab_node(), flags);
3005
3006 retry:
3007 /*
3008 * Look through allowed nodes for objects available
3009 * from existing per node queues.
3010 */
3011 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
3012 nid = zone_to_nid(zone);
3013
3014 if (cpuset_zone_allowed(zone, flags) &&
3015 get_node(cache, nid) &&
3016 get_node(cache, nid)->free_objects) {
3017 obj = ____cache_alloc_node(cache,
3018 gfp_exact_node(flags), nid);
3019 if (obj)
3020 break;
3021 }
3022 }
3023
3024 if (!obj) {
3025 /*
3026 * This allocation will be performed within the constraints
3027 * of the current cpuset / memory policy requirements.
3028 * We may trigger various forms of reclaim on the allowed
3029 * set and go into memory reserves if necessary.
3030 */
3031 struct page *page;
3032
3033 if (gfpflags_allow_blocking(local_flags))
3034 local_irq_enable();
3035 kmem_flagcheck(cache, flags);
3036 page = kmem_getpages(cache, local_flags, numa_mem_id());
3037 if (gfpflags_allow_blocking(local_flags))
3038 local_irq_disable();
3039 if (page) {
3040 /*
3041 * Insert into the appropriate per node queues
3042 */
3043 nid = page_to_nid(page);
3044 if (cache_grow(cache, flags, nid, page)) {
3045 obj = ____cache_alloc_node(cache,
3046 gfp_exact_node(flags), nid);
3047 if (!obj)
3048 /*
3049 * Another processor may allocate the
3050 * objects in the slab since we are
3051 * not holding any locks.
3052 */
3053 goto retry;
3054 } else {
3055 /* cache_grow already freed obj */
3056 obj = NULL;
3057 }
3058 }
3059 }
3060
3061 if (unlikely(!obj && read_mems_allowed_retry(cpuset_mems_cookie)))
3062 goto retry_cpuset;
3063 return obj;
3064 }
3065
3066 /*
3067 * A interface to enable slab creation on nodeid
3068 */
3069 static void *____cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
3070 int nodeid)
3071 {
3072 struct page *page;
3073 struct kmem_cache_node *n;
3074 void *obj;
3075 int x;
3076
3077 VM_BUG_ON(nodeid < 0 || nodeid >= MAX_NUMNODES);
3078 n = get_node(cachep, nodeid);
3079 BUG_ON(!n);
3080
3081 retry:
3082 check_irq_off();
3083 spin_lock(&n->list_lock);
3084 page = get_first_slab(n);
3085 if (!page)
3086 goto must_grow;
3087
3088 check_spinlock_acquired_node(cachep, nodeid);
3089
3090 STATS_INC_NODEALLOCS(cachep);
3091 STATS_INC_ACTIVE(cachep);
3092 STATS_SET_HIGH(cachep);
3093
3094 BUG_ON(page->active == cachep->num);
3095
3096 obj = slab_get_obj(cachep, page);
3097 n->free_objects--;
3098 /* move slabp to correct slabp list: */
3099 list_del(&page->lru);
3100
3101 if (page->active == cachep->num)
3102 list_add(&page->lru, &n->slabs_full);
3103 else
3104 list_add(&page->lru, &n->slabs_partial);
3105
3106 spin_unlock(&n->list_lock);
3107 goto done;
3108
3109 must_grow:
3110 spin_unlock(&n->list_lock);
3111 x = cache_grow(cachep, gfp_exact_node(flags), nodeid, NULL);
3112 if (x)
3113 goto retry;
3114
3115 return fallback_alloc(cachep, flags);
3116
3117 done:
3118 return obj;
3119 }
3120
3121 static __always_inline void *
3122 slab_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid,
3123 unsigned long caller)
3124 {
3125 unsigned long save_flags;
3126 void *ptr;
3127 int slab_node = numa_mem_id();
3128
3129 flags &= gfp_allowed_mask;
3130 cachep = slab_pre_alloc_hook(cachep, flags);
3131 if (unlikely(!cachep))
3132 return NULL;
3133
3134 cache_alloc_debugcheck_before(cachep, flags);
3135 local_irq_save(save_flags);
3136
3137 if (nodeid == NUMA_NO_NODE)
3138 nodeid = slab_node;
3139
3140 if (unlikely(!get_node(cachep, nodeid))) {
3141 /* Node not bootstrapped yet */
3142 ptr = fallback_alloc(cachep, flags);
3143 goto out;
3144 }
3145
3146 if (nodeid == slab_node) {
3147 /*
3148 * Use the locally cached objects if possible.
3149 * However ____cache_alloc does not allow fallback
3150 * to other nodes. It may fail while we still have
3151 * objects on other nodes available.
3152 */
3153 ptr = ____cache_alloc(cachep, flags);
3154 if (ptr)
3155 goto out;
3156 }
3157 /* ___cache_alloc_node can fall back to other nodes */
3158 ptr = ____cache_alloc_node(cachep, flags, nodeid);
3159 out:
3160 local_irq_restore(save_flags);
3161 ptr = cache_alloc_debugcheck_after(cachep, flags, ptr, caller);
3162
3163 if (unlikely(flags & __GFP_ZERO) && ptr)
3164 memset(ptr, 0, cachep->object_size);
3165
3166 slab_post_alloc_hook(cachep, flags, 1, &ptr);
3167 return ptr;
3168 }
3169
3170 static __always_inline void *
3171 __do_cache_alloc(struct kmem_cache *cache, gfp_t flags)
3172 {
3173 void *objp;
3174
3175 if (current->mempolicy || cpuset_do_slab_mem_spread()) {
3176 objp = alternate_node_alloc(cache, flags);
3177 if (objp)
3178 goto out;
3179 }
3180 objp = ____cache_alloc(cache, flags);
3181
3182 /*
3183 * We may just have run out of memory on the local node.
3184 * ____cache_alloc_node() knows how to locate memory on other nodes
3185 */
3186 if (!objp)
3187 objp = ____cache_alloc_node(cache, flags, numa_mem_id());
3188
3189 out:
3190 return objp;
3191 }
3192 #else
3193
3194 static __always_inline void *
3195 __do_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3196 {
3197 return ____cache_alloc(cachep, flags);
3198 }
3199
3200 #endif /* CONFIG_NUMA */
3201
3202 static __always_inline void *
3203 slab_alloc(struct kmem_cache *cachep, gfp_t flags, unsigned long caller)
3204 {
3205 unsigned long save_flags;
3206 void *objp;
3207
3208 flags &= gfp_allowed_mask;
3209 cachep = slab_pre_alloc_hook(cachep, flags);
3210 if (unlikely(!cachep))
3211 return NULL;
3212
3213 cache_alloc_debugcheck_before(cachep, flags);
3214 local_irq_save(save_flags);
3215 objp = __do_cache_alloc(cachep, flags);
3216 local_irq_restore(save_flags);
3217 objp = cache_alloc_debugcheck_after(cachep, flags, objp, caller);
3218 prefetchw(objp);
3219
3220 if (unlikely(flags & __GFP_ZERO) && objp)
3221 memset(objp, 0, cachep->object_size);
3222
3223 slab_post_alloc_hook(cachep, flags, 1, &objp);
3224 return objp;
3225 }
3226
3227 /*
3228 * Caller needs to acquire correct kmem_cache_node's list_lock
3229 * @list: List of detached free slabs should be freed by caller
3230 */
3231 static void free_block(struct kmem_cache *cachep, void **objpp,
3232 int nr_objects, int node, struct list_head *list)
3233 {
3234 int i;
3235 struct kmem_cache_node *n = get_node(cachep, node);
3236
3237 for (i = 0; i < nr_objects; i++) {
3238 void *objp;
3239 struct page *page;
3240
3241 clear_obj_pfmemalloc(&objpp[i]);
3242 objp = objpp[i];
3243
3244 page = virt_to_head_page(objp);
3245 list_del(&page->lru);
3246 check_spinlock_acquired_node(cachep, node);
3247 slab_put_obj(cachep, page, objp);
3248 STATS_DEC_ACTIVE(cachep);
3249 n->free_objects++;
3250
3251 /* fixup slab chains */
3252 if (page->active == 0) {
3253 if (n->free_objects > n->free_limit) {
3254 n->free_objects -= cachep->num;
3255 list_add_tail(&page->lru, list);
3256 } else {
3257 list_add(&page->lru, &n->slabs_free);
3258 }
3259 } else {
3260 /* Unconditionally move a slab to the end of the
3261 * partial list on free - maximum time for the
3262 * other objects to be freed, too.
3263 */
3264 list_add_tail(&page->lru, &n->slabs_partial);
3265 }
3266 }
3267 }
3268
3269 static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
3270 {
3271 int batchcount;
3272 struct kmem_cache_node *n;
3273 int node = numa_mem_id();
3274 LIST_HEAD(list);
3275
3276 batchcount = ac->batchcount;
3277
3278 check_irq_off();
3279 n = get_node(cachep, node);
3280 spin_lock(&n->list_lock);
3281 if (n->shared) {
3282 struct array_cache *shared_array = n->shared;
3283 int max = shared_array->limit - shared_array->avail;
3284 if (max) {
3285 if (batchcount > max)
3286 batchcount = max;
3287 memcpy(&(shared_array->entry[shared_array->avail]),
3288 ac->entry, sizeof(void *) * batchcount);
3289 shared_array->avail += batchcount;
3290 goto free_done;
3291 }
3292 }
3293
3294 free_block(cachep, ac->entry, batchcount, node, &list);
3295 free_done:
3296 #if STATS
3297 {
3298 int i = 0;
3299 struct page *page;
3300
3301 list_for_each_entry(page, &n->slabs_free, lru) {
3302 BUG_ON(page->active);
3303
3304 i++;
3305 }
3306 STATS_SET_FREEABLE(cachep, i);
3307 }
3308 #endif
3309 spin_unlock(&n->list_lock);
3310 slabs_destroy(cachep, &list);
3311 ac->avail -= batchcount;
3312 memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail);
3313 }
3314
3315 /*
3316 * Release an obj back to its cache. If the obj has a constructed state, it must
3317 * be in this state _before_ it is released. Called with disabled ints.
3318 */
3319 static inline void __cache_free(struct kmem_cache *cachep, void *objp,
3320 unsigned long caller)
3321 {
3322 struct array_cache *ac = cpu_cache_get(cachep);
3323
3324 check_irq_off();
3325 kmemleak_free_recursive(objp, cachep->flags);
3326 objp = cache_free_debugcheck(cachep, objp, caller);
3327
3328 kmemcheck_slab_free(cachep, objp, cachep->object_size);
3329
3330 /*
3331 * Skip calling cache_free_alien() when the platform is not numa.
3332 * This will avoid cache misses that happen while accessing slabp (which
3333 * is per page memory reference) to get nodeid. Instead use a global
3334 * variable to skip the call, which is mostly likely to be present in
3335 * the cache.
3336 */
3337 if (nr_online_nodes > 1 && cache_free_alien(cachep, objp))
3338 return;
3339
3340 if (ac->avail < ac->limit) {
3341 STATS_INC_FREEHIT(cachep);
3342 } else {
3343 STATS_INC_FREEMISS(cachep);
3344 cache_flusharray(cachep, ac);
3345 }
3346
3347 ac_put_obj(cachep, ac, objp);
3348 }
3349
3350 /**
3351 * kmem_cache_alloc - Allocate an object
3352 * @cachep: The cache to allocate from.
3353 * @flags: See kmalloc().
3354 *
3355 * Allocate an object from this cache. The flags are only relevant
3356 * if the cache has no available objects.
3357 */
3358 void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3359 {
3360 void *ret = slab_alloc(cachep, flags, _RET_IP_);
3361
3362 trace_kmem_cache_alloc(_RET_IP_, ret,
3363 cachep->object_size, cachep->size, flags);
3364
3365 return ret;
3366 }
3367 EXPORT_SYMBOL(kmem_cache_alloc);
3368
3369 static __always_inline void
3370 cache_alloc_debugcheck_after_bulk(struct kmem_cache *s, gfp_t flags,
3371 size_t size, void **p, unsigned long caller)
3372 {
3373 size_t i;
3374
3375 for (i = 0; i < size; i++)
3376 p[i] = cache_alloc_debugcheck_after(s, flags, p[i], caller);
3377 }
3378
3379 int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size,
3380 void **p)
3381 {
3382 size_t i;
3383
3384 s = slab_pre_alloc_hook(s, flags);
3385 if (!s)
3386 return 0;
3387
3388 cache_alloc_debugcheck_before(s, flags);
3389
3390 local_irq_disable();
3391 for (i = 0; i < size; i++) {
3392 void *objp = __do_cache_alloc(s, flags);
3393
3394 if (unlikely(!objp))
3395 goto error;
3396 p[i] = objp;
3397 }
3398 local_irq_enable();
3399
3400 cache_alloc_debugcheck_after_bulk(s, flags, size, p, _RET_IP_);
3401
3402 /* Clear memory outside IRQ disabled section */
3403 if (unlikely(flags & __GFP_ZERO))
3404 for (i = 0; i < size; i++)
3405 memset(p[i], 0, s->object_size);
3406
3407 slab_post_alloc_hook(s, flags, size, p);
3408 /* FIXME: Trace call missing. Christoph would like a bulk variant */
3409 return size;
3410 error:
3411 local_irq_enable();
3412 cache_alloc_debugcheck_after_bulk(s, flags, i, p, _RET_IP_);
3413 slab_post_alloc_hook(s, flags, i, p);
3414 __kmem_cache_free_bulk(s, i, p);
3415 return 0;
3416 }
3417 EXPORT_SYMBOL(kmem_cache_alloc_bulk);
3418
3419 #ifdef CONFIG_TRACING
3420 void *
3421 kmem_cache_alloc_trace(struct kmem_cache *cachep, gfp_t flags, size_t size)
3422 {
3423 void *ret;
3424
3425 ret = slab_alloc(cachep, flags, _RET_IP_);
3426
3427 trace_kmalloc(_RET_IP_, ret,
3428 size, cachep->size, flags);
3429 return ret;
3430 }
3431 EXPORT_SYMBOL(kmem_cache_alloc_trace);
3432 #endif
3433
3434 #ifdef CONFIG_NUMA
3435 /**
3436 * kmem_cache_alloc_node - Allocate an object on the specified node
3437 * @cachep: The cache to allocate from.
3438 * @flags: See kmalloc().
3439 * @nodeid: node number of the target node.
3440 *
3441 * Identical to kmem_cache_alloc but it will allocate memory on the given
3442 * node, which can improve the performance for cpu bound structures.
3443 *
3444 * Fallback to other node is possible if __GFP_THISNODE is not set.
3445 */
3446 void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
3447 {
3448 void *ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_);
3449
3450 trace_kmem_cache_alloc_node(_RET_IP_, ret,
3451 cachep->object_size, cachep->size,
3452 flags, nodeid);
3453
3454 return ret;
3455 }
3456 EXPORT_SYMBOL(kmem_cache_alloc_node);
3457
3458 #ifdef CONFIG_TRACING
3459 void *kmem_cache_alloc_node_trace(struct kmem_cache *cachep,
3460 gfp_t flags,
3461 int nodeid,
3462 size_t size)
3463 {
3464 void *ret;
3465
3466 ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_);
3467
3468 trace_kmalloc_node(_RET_IP_, ret,
3469 size, cachep->size,
3470 flags, nodeid);
3471 return ret;
3472 }
3473 EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
3474 #endif
3475
3476 static __always_inline void *
3477 __do_kmalloc_node(size_t size, gfp_t flags, int node, unsigned long caller)
3478 {
3479 struct kmem_cache *cachep;
3480
3481 cachep = kmalloc_slab(size, flags);
3482 if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3483 return cachep;
3484 return kmem_cache_alloc_node_trace(cachep, flags, node, size);
3485 }
3486
3487 void *__kmalloc_node(size_t size, gfp_t flags, int node)
3488 {
3489 return __do_kmalloc_node(size, flags, node, _RET_IP_);
3490 }
3491 EXPORT_SYMBOL(__kmalloc_node);
3492
3493 void *__kmalloc_node_track_caller(size_t size, gfp_t flags,
3494 int node, unsigned long caller)
3495 {
3496 return __do_kmalloc_node(size, flags, node, caller);
3497 }
3498 EXPORT_SYMBOL(__kmalloc_node_track_caller);
3499 #endif /* CONFIG_NUMA */
3500
3501 /**
3502 * __do_kmalloc - allocate memory
3503 * @size: how many bytes of memory are required.
3504 * @flags: the type of memory to allocate (see kmalloc).
3505 * @caller: function caller for debug tracking of the caller
3506 */
3507 static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
3508 unsigned long caller)
3509 {
3510 struct kmem_cache *cachep;
3511 void *ret;
3512
3513 cachep = kmalloc_slab(size, flags);
3514 if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3515 return cachep;
3516 ret = slab_alloc(cachep, flags, caller);
3517
3518 trace_kmalloc(caller, ret,
3519 size, cachep->size, flags);
3520
3521 return ret;
3522 }
3523
3524 void *__kmalloc(size_t size, gfp_t flags)
3525 {
3526 return __do_kmalloc(size, flags, _RET_IP_);
3527 }
3528 EXPORT_SYMBOL(__kmalloc);
3529
3530 void *__kmalloc_track_caller(size_t size, gfp_t flags, unsigned long caller)
3531 {
3532 return __do_kmalloc(size, flags, caller);
3533 }
3534 EXPORT_SYMBOL(__kmalloc_track_caller);
3535
3536 /**
3537 * kmem_cache_free - Deallocate an object
3538 * @cachep: The cache the allocation was from.
3539 * @objp: The previously allocated object.
3540 *
3541 * Free an object which was previously allocated from this
3542 * cache.
3543 */
3544 void kmem_cache_free(struct kmem_cache *cachep, void *objp)
3545 {
3546 unsigned long flags;
3547 cachep = cache_from_obj(cachep, objp);
3548 if (!cachep)
3549 return;
3550
3551 local_irq_save(flags);
3552 debug_check_no_locks_freed(objp, cachep->object_size);
3553 if (!(cachep->flags & SLAB_DEBUG_OBJECTS))
3554 debug_check_no_obj_freed(objp, cachep->object_size);
3555 __cache_free(cachep, objp, _RET_IP_);
3556 local_irq_restore(flags);
3557
3558 trace_kmem_cache_free(_RET_IP_, objp);
3559 }
3560 EXPORT_SYMBOL(kmem_cache_free);
3561
3562 void kmem_cache_free_bulk(struct kmem_cache *orig_s, size_t size, void **p)
3563 {
3564 struct kmem_cache *s;
3565 size_t i;
3566
3567 local_irq_disable();
3568 for (i = 0; i < size; i++) {
3569 void *objp = p[i];
3570
3571 if (!orig_s) /* called via kfree_bulk */
3572 s = virt_to_cache(objp);
3573 else
3574 s = cache_from_obj(orig_s, objp);
3575
3576 debug_check_no_locks_freed(objp, s->object_size);
3577 if (!(s->flags & SLAB_DEBUG_OBJECTS))
3578 debug_check_no_obj_freed(objp, s->object_size);
3579
3580 __cache_free(s, objp, _RET_IP_);
3581 }
3582 local_irq_enable();
3583
3584 /* FIXME: add tracing */
3585 }
3586 EXPORT_SYMBOL(kmem_cache_free_bulk);
3587
3588 /**
3589 * kfree - free previously allocated memory
3590 * @objp: pointer returned by kmalloc.
3591 *
3592 * If @objp is NULL, no operation is performed.
3593 *
3594 * Don't free memory not originally allocated by kmalloc()
3595 * or you will run into trouble.
3596 */
3597 void kfree(const void *objp)
3598 {
3599 struct kmem_cache *c;
3600 unsigned long flags;
3601
3602 trace_kfree(_RET_IP_, objp);
3603
3604 if (unlikely(ZERO_OR_NULL_PTR(objp)))
3605 return;
3606 local_irq_save(flags);
3607 kfree_debugcheck(objp);
3608 c = virt_to_cache(objp);
3609 debug_check_no_locks_freed(objp, c->object_size);
3610
3611 debug_check_no_obj_freed(objp, c->object_size);
3612 __cache_free(c, (void *)objp, _RET_IP_);
3613 local_irq_restore(flags);
3614 }
3615 EXPORT_SYMBOL(kfree);
3616
3617 /*
3618 * This initializes kmem_cache_node or resizes various caches for all nodes.
3619 */
3620 static int alloc_kmem_cache_node(struct kmem_cache *cachep, gfp_t gfp)
3621 {
3622 int node;
3623 struct kmem_cache_node *n;
3624 struct array_cache *new_shared;
3625 struct alien_cache **new_alien = NULL;
3626
3627 for_each_online_node(node) {
3628
3629 if (use_alien_caches) {
3630 new_alien = alloc_alien_cache(node, cachep->limit, gfp);
3631 if (!new_alien)
3632 goto fail;
3633 }
3634
3635 new_shared = NULL;
3636 if (cachep->shared) {
3637 new_shared = alloc_arraycache(node,
3638 cachep->shared*cachep->batchcount,
3639 0xbaadf00d, gfp);
3640 if (!new_shared) {
3641 free_alien_cache(new_alien);
3642 goto fail;
3643 }
3644 }
3645
3646 n = get_node(cachep, node);
3647 if (n) {
3648 struct array_cache *shared = n->shared;
3649 LIST_HEAD(list);
3650
3651 spin_lock_irq(&n->list_lock);
3652
3653 if (shared)
3654 free_block(cachep, shared->entry,
3655 shared->avail, node, &list);
3656
3657 n->shared = new_shared;
3658 if (!n->alien) {
3659 n->alien = new_alien;
3660 new_alien = NULL;
3661 }
3662 n->free_limit = (1 + nr_cpus_node(node)) *
3663 cachep->batchcount + cachep->num;
3664 spin_unlock_irq(&n->list_lock);
3665 slabs_destroy(cachep, &list);
3666 kfree(shared);
3667 free_alien_cache(new_alien);
3668 continue;
3669 }
3670 n = kmalloc_node(sizeof(struct kmem_cache_node), gfp, node);
3671 if (!n) {
3672 free_alien_cache(new_alien);
3673 kfree(new_shared);
3674 goto fail;
3675 }
3676
3677 kmem_cache_node_init(n);
3678 n->next_reap = jiffies + REAPTIMEOUT_NODE +
3679 ((unsigned long)cachep) % REAPTIMEOUT_NODE;
3680 n->shared = new_shared;
3681 n->alien = new_alien;
3682 n->free_limit = (1 + nr_cpus_node(node)) *
3683 cachep->batchcount + cachep->num;
3684 cachep->node[node] = n;
3685 }
3686 return 0;
3687
3688 fail:
3689 if (!cachep->list.next) {
3690 /* Cache is not active yet. Roll back what we did */
3691 node--;
3692 while (node >= 0) {
3693 n = get_node(cachep, node);
3694 if (n) {
3695 kfree(n->shared);
3696 free_alien_cache(n->alien);
3697 kfree(n);
3698 cachep->node[node] = NULL;
3699 }
3700 node--;
3701 }
3702 }
3703 return -ENOMEM;
3704 }
3705
3706 /* Always called with the slab_mutex held */
3707 static int __do_tune_cpucache(struct kmem_cache *cachep, int limit,
3708 int batchcount, int shared, gfp_t gfp)
3709 {
3710 struct array_cache __percpu *cpu_cache, *prev;
3711 int cpu;
3712
3713 cpu_cache = alloc_kmem_cache_cpus(cachep, limit, batchcount);
3714 if (!cpu_cache)
3715 return -ENOMEM;
3716
3717 prev = cachep->cpu_cache;
3718 cachep->cpu_cache = cpu_cache;
3719 kick_all_cpus_sync();
3720
3721 check_irq_on();
3722 cachep->batchcount = batchcount;
3723 cachep->limit = limit;
3724 cachep->shared = shared;
3725
3726 if (!prev)
3727 goto alloc_node;
3728
3729 for_each_online_cpu(cpu) {
3730 LIST_HEAD(list);
3731 int node;
3732 struct kmem_cache_node *n;
3733 struct array_cache *ac = per_cpu_ptr(prev, cpu);
3734
3735 node = cpu_to_mem(cpu);
3736 n = get_node(cachep, node);
3737 spin_lock_irq(&n->list_lock);
3738 free_block(cachep, ac->entry, ac->avail, node, &list);
3739 spin_unlock_irq(&n->list_lock);
3740 slabs_destroy(cachep, &list);
3741 }
3742 free_percpu(prev);
3743
3744 alloc_node:
3745 return alloc_kmem_cache_node(cachep, gfp);
3746 }
3747
3748 static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
3749 int batchcount, int shared, gfp_t gfp)
3750 {
3751 int ret;
3752 struct kmem_cache *c;
3753
3754 ret = __do_tune_cpucache(cachep, limit, batchcount, shared, gfp);
3755
3756 if (slab_state < FULL)
3757 return ret;
3758
3759 if ((ret < 0) || !is_root_cache(cachep))
3760 return ret;
3761
3762 lockdep_assert_held(&slab_mutex);
3763 for_each_memcg_cache(c, cachep) {
3764 /* return value determined by the root cache only */
3765 __do_tune_cpucache(c, limit, batchcount, shared, gfp);
3766 }
3767
3768 return ret;
3769 }
3770
3771 /* Called with slab_mutex held always */
3772 static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp)
3773 {
3774 int err;
3775 int limit = 0;
3776 int shared = 0;
3777 int batchcount = 0;
3778
3779 if (!is_root_cache(cachep)) {
3780 struct kmem_cache *root = memcg_root_cache(cachep);
3781 limit = root->limit;
3782 shared = root->shared;
3783 batchcount = root->batchcount;
3784 }
3785
3786 if (limit && shared && batchcount)
3787 goto skip_setup;
3788 /*
3789 * The head array serves three purposes:
3790 * - create a LIFO ordering, i.e. return objects that are cache-warm
3791 * - reduce the number of spinlock operations.
3792 * - reduce the number of linked list operations on the slab and
3793 * bufctl chains: array operations are cheaper.
3794 * The numbers are guessed, we should auto-tune as described by
3795 * Bonwick.
3796 */
3797 if (cachep->size > 131072)
3798 limit = 1;
3799 else if (cachep->size > PAGE_SIZE)
3800 limit = 8;
3801 else if (cachep->size > 1024)
3802 limit = 24;
3803 else if (cachep->size > 256)
3804 limit = 54;
3805 else
3806 limit = 120;
3807
3808 /*
3809 * CPU bound tasks (e.g. network routing) can exhibit cpu bound
3810 * allocation behaviour: Most allocs on one cpu, most free operations
3811 * on another cpu. For these cases, an efficient object passing between
3812 * cpus is necessary. This is provided by a shared array. The array
3813 * replaces Bonwick's magazine layer.
3814 * On uniprocessor, it's functionally equivalent (but less efficient)
3815 * to a larger limit. Thus disabled by default.
3816 */
3817 shared = 0;
3818 if (cachep->size <= PAGE_SIZE && num_possible_cpus() > 1)
3819 shared = 8;
3820
3821 #if DEBUG
3822 /*
3823 * With debugging enabled, large batchcount lead to excessively long
3824 * periods with disabled local interrupts. Limit the batchcount
3825 */
3826 if (limit > 32)
3827 limit = 32;
3828 #endif
3829 batchcount = (limit + 1) / 2;
3830 skip_setup:
3831 err = do_tune_cpucache(cachep, limit, batchcount, shared, gfp);
3832 if (err)
3833 printk(KERN_ERR "enable_cpucache failed for %s, error %d.\n",
3834 cachep->name, -err);
3835 return err;
3836 }
3837
3838 /*
3839 * Drain an array if it contains any elements taking the node lock only if
3840 * necessary. Note that the node listlock also protects the array_cache
3841 * if drain_array() is used on the shared array.
3842 */
3843 static void drain_array(struct kmem_cache *cachep, struct kmem_cache_node *n,
3844 struct array_cache *ac, int force, int node)
3845 {
3846 LIST_HEAD(list);
3847 int tofree;
3848
3849 if (!ac || !ac->avail)
3850 return;
3851 if (ac->touched && !force) {
3852 ac->touched = 0;
3853 } else {
3854 spin_lock_irq(&n->list_lock);
3855 if (ac->avail) {
3856 tofree = force ? ac->avail : (ac->limit + 4) / 5;
3857 if (tofree > ac->avail)
3858 tofree = (ac->avail + 1) / 2;
3859 free_block(cachep, ac->entry, tofree, node, &list);
3860 ac->avail -= tofree;
3861 memmove(ac->entry, &(ac->entry[tofree]),
3862 sizeof(void *) * ac->avail);
3863 }
3864 spin_unlock_irq(&n->list_lock);
3865 slabs_destroy(cachep, &list);
3866 }
3867 }
3868
3869 /**
3870 * cache_reap - Reclaim memory from caches.
3871 * @w: work descriptor
3872 *
3873 * Called from workqueue/eventd every few seconds.
3874 * Purpose:
3875 * - clear the per-cpu caches for this CPU.
3876 * - return freeable pages to the main free memory pool.
3877 *
3878 * If we cannot acquire the cache chain mutex then just give up - we'll try
3879 * again on the next iteration.
3880 */
3881 static void cache_reap(struct work_struct *w)
3882 {
3883 struct kmem_cache *searchp;
3884 struct kmem_cache_node *n;
3885 int node = numa_mem_id();
3886 struct delayed_work *work = to_delayed_work(w);
3887
3888 if (!mutex_trylock(&slab_mutex))
3889 /* Give up. Setup the next iteration. */
3890 goto out;
3891
3892 list_for_each_entry(searchp, &slab_caches, list) {
3893 check_irq_on();
3894
3895 /*
3896 * We only take the node lock if absolutely necessary and we
3897 * have established with reasonable certainty that
3898 * we can do some work if the lock was obtained.
3899 */
3900 n = get_node(searchp, node);
3901
3902 reap_alien(searchp, n);
3903
3904 drain_array(searchp, n, cpu_cache_get(searchp), 0, node);
3905
3906 /*
3907 * These are racy checks but it does not matter
3908 * if we skip one check or scan twice.
3909 */
3910 if (time_after(n->next_reap, jiffies))
3911 goto next;
3912
3913 n->next_reap = jiffies + REAPTIMEOUT_NODE;
3914
3915 drain_array(searchp, n, n->shared, 0, node);
3916
3917 if (n->free_touched)
3918 n->free_touched = 0;
3919 else {
3920 int freed;
3921
3922 freed = drain_freelist(searchp, n, (n->free_limit +
3923 5 * searchp->num - 1) / (5 * searchp->num));
3924 STATS_ADD_REAPED(searchp, freed);
3925 }
3926 next:
3927 cond_resched();
3928 }
3929 check_irq_on();
3930 mutex_unlock(&slab_mutex);
3931 next_reap_node();
3932 out:
3933 /* Set up the next iteration */
3934 schedule_delayed_work(work, round_jiffies_relative(REAPTIMEOUT_AC));
3935 }
3936
3937 #ifdef CONFIG_SLABINFO
3938 void get_slabinfo(struct kmem_cache *cachep, struct slabinfo *sinfo)
3939 {
3940 struct page *page;
3941 unsigned long active_objs;
3942 unsigned long num_objs;
3943 unsigned long active_slabs = 0;
3944 unsigned long num_slabs, free_objects = 0, shared_avail = 0;
3945 const char *name;
3946 char *error = NULL;
3947 int node;
3948 struct kmem_cache_node *n;
3949
3950 active_objs = 0;
3951 num_slabs = 0;
3952 for_each_kmem_cache_node(cachep, node, n) {
3953
3954 check_irq_on();
3955 spin_lock_irq(&n->list_lock);
3956
3957 list_for_each_entry(page, &n->slabs_full, lru) {
3958 if (page->active != cachep->num && !error)
3959 error = "slabs_full accounting error";
3960 active_objs += cachep->num;
3961 active_slabs++;
3962 }
3963 list_for_each_entry(page, &n->slabs_partial, lru) {
3964 if (page->active == cachep->num && !error)
3965 error = "slabs_partial accounting error";
3966 if (!page->active && !error)
3967 error = "slabs_partial accounting error";
3968 active_objs += page->active;
3969 active_slabs++;
3970 }
3971 list_for_each_entry(page, &n->slabs_free, lru) {
3972 if (page->active && !error)
3973 error = "slabs_free accounting error";
3974 num_slabs++;
3975 }
3976 free_objects += n->free_objects;
3977 if (n->shared)
3978 shared_avail += n->shared->avail;
3979
3980 spin_unlock_irq(&n->list_lock);
3981 }
3982 num_slabs += active_slabs;
3983 num_objs = num_slabs * cachep->num;
3984 if (num_objs - active_objs != free_objects && !error)
3985 error = "free_objects accounting error";
3986
3987 name = cachep->name;
3988 if (error)
3989 printk(KERN_ERR "slab: cache %s error: %s\n", name, error);
3990
3991 sinfo->active_objs = active_objs;
3992 sinfo->num_objs = num_objs;
3993 sinfo->active_slabs = active_slabs;
3994 sinfo->num_slabs = num_slabs;
3995 sinfo->shared_avail = shared_avail;
3996 sinfo->limit = cachep->limit;
3997 sinfo->batchcount = cachep->batchcount;
3998 sinfo->shared = cachep->shared;
3999 sinfo->objects_per_slab = cachep->num;
4000 sinfo->cache_order = cachep->gfporder;
4001 }
4002
4003 void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *cachep)
4004 {
4005 #if STATS
4006 { /* node stats */
4007 unsigned long high = cachep->high_mark;
4008 unsigned long allocs = cachep->num_allocations;
4009 unsigned long grown = cachep->grown;
4010 unsigned long reaped = cachep->reaped;
4011 unsigned long errors = cachep->errors;
4012 unsigned long max_freeable = cachep->max_freeable;
4013 unsigned long node_allocs = cachep->node_allocs;
4014 unsigned long node_frees = cachep->node_frees;
4015 unsigned long overflows = cachep->node_overflow;
4016
4017 seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu "
4018 "%4lu %4lu %4lu %4lu %4lu",
4019 allocs, high, grown,
4020 reaped, errors, max_freeable, node_allocs,
4021 node_frees, overflows);
4022 }
4023 /* cpu stats */
4024 {
4025 unsigned long allochit = atomic_read(&cachep->allochit);
4026 unsigned long allocmiss = atomic_read(&cachep->allocmiss);
4027 unsigned long freehit = atomic_read(&cachep->freehit);
4028 unsigned long freemiss = atomic_read(&cachep->freemiss);
4029
4030 seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
4031 allochit, allocmiss, freehit, freemiss);
4032 }
4033 #endif
4034 }
4035
4036 #define MAX_SLABINFO_WRITE 128
4037 /**
4038 * slabinfo_write - Tuning for the slab allocator
4039 * @file: unused
4040 * @buffer: user buffer
4041 * @count: data length
4042 * @ppos: unused
4043 */
4044 ssize_t slabinfo_write(struct file *file, const char __user *buffer,
4045 size_t count, loff_t *ppos)
4046 {
4047 char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
4048 int limit, batchcount, shared, res;
4049 struct kmem_cache *cachep;
4050
4051 if (count > MAX_SLABINFO_WRITE)
4052 return -EINVAL;
4053 if (copy_from_user(&kbuf, buffer, count))
4054 return -EFAULT;
4055 kbuf[MAX_SLABINFO_WRITE] = '\0';
4056
4057 tmp = strchr(kbuf, ' ');
4058 if (!tmp)
4059 return -EINVAL;
4060 *tmp = '\0';
4061 tmp++;
4062 if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
4063 return -EINVAL;
4064
4065 /* Find the cache in the chain of caches. */
4066 mutex_lock(&slab_mutex);
4067 res = -EINVAL;
4068 list_for_each_entry(cachep, &slab_caches, list) {
4069 if (!strcmp(cachep->name, kbuf)) {
4070 if (limit < 1 || batchcount < 1 ||
4071 batchcount > limit || shared < 0) {
4072 res = 0;
4073 } else {
4074 res = do_tune_cpucache(cachep, limit,
4075 batchcount, shared,
4076 GFP_KERNEL);
4077 }
4078 break;
4079 }
4080 }
4081 mutex_unlock(&slab_mutex);
4082 if (res >= 0)
4083 res = count;
4084 return res;
4085 }
4086
4087 #ifdef CONFIG_DEBUG_SLAB_LEAK
4088
4089 static inline int add_caller(unsigned long *n, unsigned long v)
4090 {
4091 unsigned long *p;
4092 int l;
4093 if (!v)
4094 return 1;
4095 l = n[1];
4096 p = n + 2;
4097 while (l) {
4098 int i = l/2;
4099 unsigned long *q = p + 2 * i;
4100 if (*q == v) {
4101 q[1]++;
4102 return 1;
4103 }
4104 if (*q > v) {
4105 l = i;
4106 } else {
4107 p = q + 2;
4108 l -= i + 1;
4109 }
4110 }
4111 if (++n[1] == n[0])
4112 return 0;
4113 memmove(p + 2, p, n[1] * 2 * sizeof(unsigned long) - ((void *)p - (void *)n));
4114 p[0] = v;
4115 p[1] = 1;
4116 return 1;
4117 }
4118
4119 static void handle_slab(unsigned long *n, struct kmem_cache *c,
4120 struct page *page)
4121 {
4122 void *p;
4123 int i;
4124
4125 if (n[0] == n[1])
4126 return;
4127 for (i = 0, p = page->s_mem; i < c->num; i++, p += c->size) {
4128 if (get_obj_status(page, i) != OBJECT_ACTIVE)
4129 continue;
4130
4131 if (!add_caller(n, (unsigned long)*dbg_userword(c, p)))
4132 return;
4133 }
4134 }
4135
4136 static void show_symbol(struct seq_file *m, unsigned long address)
4137 {
4138 #ifdef CONFIG_KALLSYMS
4139 unsigned long offset, size;
4140 char modname[MODULE_NAME_LEN], name[KSYM_NAME_LEN];
4141
4142 if (lookup_symbol_attrs(address, &size, &offset, modname, name) == 0) {
4143 seq_printf(m, "%s+%#lx/%#lx", name, offset, size);
4144 if (modname[0])
4145 seq_printf(m, " [%s]", modname);
4146 return;
4147 }
4148 #endif
4149 seq_printf(m, "%p", (void *)address);
4150 }
4151
4152 static int leaks_show(struct seq_file *m, void *p)
4153 {
4154 struct kmem_cache *cachep = list_entry(p, struct kmem_cache, list);
4155 struct page *page;
4156 struct kmem_cache_node *n;
4157 const char *name;
4158 unsigned long *x = m->private;
4159 int node;
4160 int i;
4161
4162 if (!(cachep->flags & SLAB_STORE_USER))
4163 return 0;
4164 if (!(cachep->flags & SLAB_RED_ZONE))
4165 return 0;
4166
4167 /* OK, we can do it */
4168
4169 x[1] = 0;
4170
4171 for_each_kmem_cache_node(cachep, node, n) {
4172
4173 check_irq_on();
4174 spin_lock_irq(&n->list_lock);
4175
4176 list_for_each_entry(page, &n->slabs_full, lru)
4177 handle_slab(x, cachep, page);
4178 list_for_each_entry(page, &n->slabs_partial, lru)
4179 handle_slab(x, cachep, page);
4180 spin_unlock_irq(&n->list_lock);
4181 }
4182 name = cachep->name;
4183 if (x[0] == x[1]) {
4184 /* Increase the buffer size */
4185 mutex_unlock(&slab_mutex);
4186 m->private = kzalloc(x[0] * 4 * sizeof(unsigned long), GFP_KERNEL);
4187 if (!m->private) {
4188 /* Too bad, we are really out */
4189 m->private = x;
4190 mutex_lock(&slab_mutex);
4191 return -ENOMEM;
4192 }
4193 *(unsigned long *)m->private = x[0] * 2;
4194 kfree(x);
4195 mutex_lock(&slab_mutex);
4196 /* Now make sure this entry will be retried */
4197 m->count = m->size;
4198 return 0;
4199 }
4200 for (i = 0; i < x[1]; i++) {
4201 seq_printf(m, "%s: %lu ", name, x[2*i+3]);
4202 show_symbol(m, x[2*i+2]);
4203 seq_putc(m, '\n');
4204 }
4205
4206 return 0;
4207 }
4208
4209 static const struct seq_operations slabstats_op = {
4210 .start = slab_start,
4211 .next = slab_next,
4212 .stop = slab_stop,
4213 .show = leaks_show,
4214 };
4215
4216 static int slabstats_open(struct inode *inode, struct file *file)
4217 {
4218 unsigned long *n;
4219
4220 n = __seq_open_private(file, &slabstats_op, PAGE_SIZE);
4221 if (!n)
4222 return -ENOMEM;
4223
4224 *n = PAGE_SIZE / (2 * sizeof(unsigned long));
4225
4226 return 0;
4227 }
4228
4229 static const struct file_operations proc_slabstats_operations = {
4230 .open = slabstats_open,
4231 .read = seq_read,
4232 .llseek = seq_lseek,
4233 .release = seq_release_private,
4234 };
4235 #endif
4236
4237 static int __init slab_proc_init(void)
4238 {
4239 #ifdef CONFIG_DEBUG_SLAB_LEAK
4240 proc_create("slab_allocators", 0, NULL, &proc_slabstats_operations);
4241 #endif
4242 return 0;
4243 }
4244 module_init(slab_proc_init);
4245 #endif
4246
4247 /**
4248 * ksize - get the actual amount of memory allocated for a given object
4249 * @objp: Pointer to the object
4250 *
4251 * kmalloc may internally round up allocations and return more memory
4252 * than requested. ksize() can be used to determine the actual amount of
4253 * memory allocated. The caller may use this additional memory, even though
4254 * a smaller amount of memory was initially specified with the kmalloc call.
4255 * The caller must guarantee that objp points to a valid object previously
4256 * allocated with either kmalloc() or kmem_cache_alloc(). The object
4257 * must not be freed during the duration of the call.
4258 */
4259 size_t ksize(const void *objp)
4260 {
4261 BUG_ON(!objp);
4262 if (unlikely(objp == ZERO_SIZE_PTR))
4263 return 0;
4264
4265 return virt_to_cache(objp)->object_size;
4266 }
4267 EXPORT_SYMBOL(ksize);