]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - mm/slub.c
Merge tag 'ieee802154-for-davem-2021-08-12' of git://git.kernel.org/pub/scm/linux...
[mirror_ubuntu-jammy-kernel.git] / mm / slub.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * SLUB: A slab allocator that limits cache line use instead of queuing
4 * objects in per cpu and per node lists.
5 *
6 * The allocator synchronizes using per slab locks or atomic operations
7 * and only uses a centralized lock to manage a pool of partial slabs.
8 *
9 * (C) 2007 SGI, Christoph Lameter
10 * (C) 2011 Linux Foundation, Christoph Lameter
11 */
12
13 #include <linux/mm.h>
14 #include <linux/swap.h> /* struct reclaim_state */
15 #include <linux/module.h>
16 #include <linux/bit_spinlock.h>
17 #include <linux/interrupt.h>
18 #include <linux/swab.h>
19 #include <linux/bitops.h>
20 #include <linux/slab.h>
21 #include "slab.h"
22 #include <linux/proc_fs.h>
23 #include <linux/seq_file.h>
24 #include <linux/kasan.h>
25 #include <linux/cpu.h>
26 #include <linux/cpuset.h>
27 #include <linux/mempolicy.h>
28 #include <linux/ctype.h>
29 #include <linux/debugobjects.h>
30 #include <linux/kallsyms.h>
31 #include <linux/kfence.h>
32 #include <linux/memory.h>
33 #include <linux/math64.h>
34 #include <linux/fault-inject.h>
35 #include <linux/stacktrace.h>
36 #include <linux/prefetch.h>
37 #include <linux/memcontrol.h>
38 #include <linux/random.h>
39 #include <kunit/test.h>
40
41 #include <linux/debugfs.h>
42 #include <trace/events/kmem.h>
43
44 #include "internal.h"
45
46 /*
47 * Lock order:
48 * 1. slab_mutex (Global Mutex)
49 * 2. node->list_lock
50 * 3. slab_lock(page) (Only on some arches and for debugging)
51 *
52 * slab_mutex
53 *
54 * The role of the slab_mutex is to protect the list of all the slabs
55 * and to synchronize major metadata changes to slab cache structures.
56 *
57 * The slab_lock is only used for debugging and on arches that do not
58 * have the ability to do a cmpxchg_double. It only protects:
59 * A. page->freelist -> List of object free in a page
60 * B. page->inuse -> Number of objects in use
61 * C. page->objects -> Number of objects in page
62 * D. page->frozen -> frozen state
63 *
64 * If a slab is frozen then it is exempt from list management. It is not
65 * on any list except per cpu partial list. The processor that froze the
66 * slab is the one who can perform list operations on the page. Other
67 * processors may put objects onto the freelist but the processor that
68 * froze the slab is the only one that can retrieve the objects from the
69 * page's freelist.
70 *
71 * The list_lock protects the partial and full list on each node and
72 * the partial slab counter. If taken then no new slabs may be added or
73 * removed from the lists nor make the number of partial slabs be modified.
74 * (Note that the total number of slabs is an atomic value that may be
75 * modified without taking the list lock).
76 *
77 * The list_lock is a centralized lock and thus we avoid taking it as
78 * much as possible. As long as SLUB does not have to handle partial
79 * slabs, operations can continue without any centralized lock. F.e.
80 * allocating a long series of objects that fill up slabs does not require
81 * the list lock.
82 * Interrupts are disabled during allocation and deallocation in order to
83 * make the slab allocator safe to use in the context of an irq. In addition
84 * interrupts are disabled to ensure that the processor does not change
85 * while handling per_cpu slabs, due to kernel preemption.
86 *
87 * SLUB assigns one slab for allocation to each processor.
88 * Allocations only occur from these slabs called cpu slabs.
89 *
90 * Slabs with free elements are kept on a partial list and during regular
91 * operations no list for full slabs is used. If an object in a full slab is
92 * freed then the slab will show up again on the partial lists.
93 * We track full slabs for debugging purposes though because otherwise we
94 * cannot scan all objects.
95 *
96 * Slabs are freed when they become empty. Teardown and setup is
97 * minimal so we rely on the page allocators per cpu caches for
98 * fast frees and allocs.
99 *
100 * page->frozen The slab is frozen and exempt from list processing.
101 * This means that the slab is dedicated to a purpose
102 * such as satisfying allocations for a specific
103 * processor. Objects may be freed in the slab while
104 * it is frozen but slab_free will then skip the usual
105 * list operations. It is up to the processor holding
106 * the slab to integrate the slab into the slab lists
107 * when the slab is no longer needed.
108 *
109 * One use of this flag is to mark slabs that are
110 * used for allocations. Then such a slab becomes a cpu
111 * slab. The cpu slab may be equipped with an additional
112 * freelist that allows lockless access to
113 * free objects in addition to the regular freelist
114 * that requires the slab lock.
115 *
116 * SLAB_DEBUG_FLAGS Slab requires special handling due to debug
117 * options set. This moves slab handling out of
118 * the fast path and disables lockless freelists.
119 */
120
121 #ifdef CONFIG_SLUB_DEBUG
122 #ifdef CONFIG_SLUB_DEBUG_ON
123 DEFINE_STATIC_KEY_TRUE(slub_debug_enabled);
124 #else
125 DEFINE_STATIC_KEY_FALSE(slub_debug_enabled);
126 #endif
127 #endif /* CONFIG_SLUB_DEBUG */
128
129 static inline bool kmem_cache_debug(struct kmem_cache *s)
130 {
131 return kmem_cache_debug_flags(s, SLAB_DEBUG_FLAGS);
132 }
133
134 void *fixup_red_left(struct kmem_cache *s, void *p)
135 {
136 if (kmem_cache_debug_flags(s, SLAB_RED_ZONE))
137 p += s->red_left_pad;
138
139 return p;
140 }
141
142 static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s)
143 {
144 #ifdef CONFIG_SLUB_CPU_PARTIAL
145 return !kmem_cache_debug(s);
146 #else
147 return false;
148 #endif
149 }
150
151 /*
152 * Issues still to be resolved:
153 *
154 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
155 *
156 * - Variable sizing of the per node arrays
157 */
158
159 /* Enable to log cmpxchg failures */
160 #undef SLUB_DEBUG_CMPXCHG
161
162 /*
163 * Minimum number of partial slabs. These will be left on the partial
164 * lists even if they are empty. kmem_cache_shrink may reclaim them.
165 */
166 #define MIN_PARTIAL 5
167
168 /*
169 * Maximum number of desirable partial slabs.
170 * The existence of more partial slabs makes kmem_cache_shrink
171 * sort the partial list by the number of objects in use.
172 */
173 #define MAX_PARTIAL 10
174
175 #define DEBUG_DEFAULT_FLAGS (SLAB_CONSISTENCY_CHECKS | SLAB_RED_ZONE | \
176 SLAB_POISON | SLAB_STORE_USER)
177
178 /*
179 * These debug flags cannot use CMPXCHG because there might be consistency
180 * issues when checking or reading debug information
181 */
182 #define SLAB_NO_CMPXCHG (SLAB_CONSISTENCY_CHECKS | SLAB_STORE_USER | \
183 SLAB_TRACE)
184
185
186 /*
187 * Debugging flags that require metadata to be stored in the slab. These get
188 * disabled when slub_debug=O is used and a cache's min order increases with
189 * metadata.
190 */
191 #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
192
193 #define OO_SHIFT 16
194 #define OO_MASK ((1 << OO_SHIFT) - 1)
195 #define MAX_OBJS_PER_PAGE 32767 /* since page.objects is u15 */
196
197 /* Internal SLUB flags */
198 /* Poison object */
199 #define __OBJECT_POISON ((slab_flags_t __force)0x80000000U)
200 /* Use cmpxchg_double */
201 #define __CMPXCHG_DOUBLE ((slab_flags_t __force)0x40000000U)
202
203 /*
204 * Tracking user of a slab.
205 */
206 #define TRACK_ADDRS_COUNT 16
207 struct track {
208 unsigned long addr; /* Called from address */
209 #ifdef CONFIG_STACKTRACE
210 unsigned long addrs[TRACK_ADDRS_COUNT]; /* Called from address */
211 #endif
212 int cpu; /* Was running on cpu */
213 int pid; /* Pid context */
214 unsigned long when; /* When did the operation occur */
215 };
216
217 enum track_item { TRACK_ALLOC, TRACK_FREE };
218
219 #ifdef CONFIG_SYSFS
220 static int sysfs_slab_add(struct kmem_cache *);
221 static int sysfs_slab_alias(struct kmem_cache *, const char *);
222 #else
223 static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
224 static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
225 { return 0; }
226 #endif
227
228 #if defined(CONFIG_DEBUG_FS) && defined(CONFIG_SLUB_DEBUG)
229 static void debugfs_slab_add(struct kmem_cache *);
230 #else
231 static inline void debugfs_slab_add(struct kmem_cache *s) { }
232 #endif
233
234 static inline void stat(const struct kmem_cache *s, enum stat_item si)
235 {
236 #ifdef CONFIG_SLUB_STATS
237 /*
238 * The rmw is racy on a preemptible kernel but this is acceptable, so
239 * avoid this_cpu_add()'s irq-disable overhead.
240 */
241 raw_cpu_inc(s->cpu_slab->stat[si]);
242 #endif
243 }
244
245 /*
246 * Tracks for which NUMA nodes we have kmem_cache_nodes allocated.
247 * Corresponds to node_state[N_NORMAL_MEMORY], but can temporarily
248 * differ during memory hotplug/hotremove operations.
249 * Protected by slab_mutex.
250 */
251 static nodemask_t slab_nodes;
252
253 /********************************************************************
254 * Core slab cache functions
255 *******************************************************************/
256
257 /*
258 * Returns freelist pointer (ptr). With hardening, this is obfuscated
259 * with an XOR of the address where the pointer is held and a per-cache
260 * random number.
261 */
262 static inline void *freelist_ptr(const struct kmem_cache *s, void *ptr,
263 unsigned long ptr_addr)
264 {
265 #ifdef CONFIG_SLAB_FREELIST_HARDENED
266 /*
267 * When CONFIG_KASAN_SW/HW_TAGS is enabled, ptr_addr might be tagged.
268 * Normally, this doesn't cause any issues, as both set_freepointer()
269 * and get_freepointer() are called with a pointer with the same tag.
270 * However, there are some issues with CONFIG_SLUB_DEBUG code. For
271 * example, when __free_slub() iterates over objects in a cache, it
272 * passes untagged pointers to check_object(). check_object() in turns
273 * calls get_freepointer() with an untagged pointer, which causes the
274 * freepointer to be restored incorrectly.
275 */
276 return (void *)((unsigned long)ptr ^ s->random ^
277 swab((unsigned long)kasan_reset_tag((void *)ptr_addr)));
278 #else
279 return ptr;
280 #endif
281 }
282
283 /* Returns the freelist pointer recorded at location ptr_addr. */
284 static inline void *freelist_dereference(const struct kmem_cache *s,
285 void *ptr_addr)
286 {
287 return freelist_ptr(s, (void *)*(unsigned long *)(ptr_addr),
288 (unsigned long)ptr_addr);
289 }
290
291 static inline void *get_freepointer(struct kmem_cache *s, void *object)
292 {
293 object = kasan_reset_tag(object);
294 return freelist_dereference(s, object + s->offset);
295 }
296
297 static void prefetch_freepointer(const struct kmem_cache *s, void *object)
298 {
299 prefetch(object + s->offset);
300 }
301
302 static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
303 {
304 unsigned long freepointer_addr;
305 void *p;
306
307 if (!debug_pagealloc_enabled_static())
308 return get_freepointer(s, object);
309
310 object = kasan_reset_tag(object);
311 freepointer_addr = (unsigned long)object + s->offset;
312 copy_from_kernel_nofault(&p, (void **)freepointer_addr, sizeof(p));
313 return freelist_ptr(s, p, freepointer_addr);
314 }
315
316 static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
317 {
318 unsigned long freeptr_addr = (unsigned long)object + s->offset;
319
320 #ifdef CONFIG_SLAB_FREELIST_HARDENED
321 BUG_ON(object == fp); /* naive detection of double free or corruption */
322 #endif
323
324 freeptr_addr = (unsigned long)kasan_reset_tag((void *)freeptr_addr);
325 *(void **)freeptr_addr = freelist_ptr(s, fp, freeptr_addr);
326 }
327
328 /* Loop over all objects in a slab */
329 #define for_each_object(__p, __s, __addr, __objects) \
330 for (__p = fixup_red_left(__s, __addr); \
331 __p < (__addr) + (__objects) * (__s)->size; \
332 __p += (__s)->size)
333
334 static inline unsigned int order_objects(unsigned int order, unsigned int size)
335 {
336 return ((unsigned int)PAGE_SIZE << order) / size;
337 }
338
339 static inline struct kmem_cache_order_objects oo_make(unsigned int order,
340 unsigned int size)
341 {
342 struct kmem_cache_order_objects x = {
343 (order << OO_SHIFT) + order_objects(order, size)
344 };
345
346 return x;
347 }
348
349 static inline unsigned int oo_order(struct kmem_cache_order_objects x)
350 {
351 return x.x >> OO_SHIFT;
352 }
353
354 static inline unsigned int oo_objects(struct kmem_cache_order_objects x)
355 {
356 return x.x & OO_MASK;
357 }
358
359 /*
360 * Per slab locking using the pagelock
361 */
362 static __always_inline void slab_lock(struct page *page)
363 {
364 VM_BUG_ON_PAGE(PageTail(page), page);
365 bit_spin_lock(PG_locked, &page->flags);
366 }
367
368 static __always_inline void slab_unlock(struct page *page)
369 {
370 VM_BUG_ON_PAGE(PageTail(page), page);
371 __bit_spin_unlock(PG_locked, &page->flags);
372 }
373
374 /* Interrupts must be disabled (for the fallback code to work right) */
375 static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
376 void *freelist_old, unsigned long counters_old,
377 void *freelist_new, unsigned long counters_new,
378 const char *n)
379 {
380 VM_BUG_ON(!irqs_disabled());
381 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
382 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
383 if (s->flags & __CMPXCHG_DOUBLE) {
384 if (cmpxchg_double(&page->freelist, &page->counters,
385 freelist_old, counters_old,
386 freelist_new, counters_new))
387 return true;
388 } else
389 #endif
390 {
391 slab_lock(page);
392 if (page->freelist == freelist_old &&
393 page->counters == counters_old) {
394 page->freelist = freelist_new;
395 page->counters = counters_new;
396 slab_unlock(page);
397 return true;
398 }
399 slab_unlock(page);
400 }
401
402 cpu_relax();
403 stat(s, CMPXCHG_DOUBLE_FAIL);
404
405 #ifdef SLUB_DEBUG_CMPXCHG
406 pr_info("%s %s: cmpxchg double redo ", n, s->name);
407 #endif
408
409 return false;
410 }
411
412 static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
413 void *freelist_old, unsigned long counters_old,
414 void *freelist_new, unsigned long counters_new,
415 const char *n)
416 {
417 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
418 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
419 if (s->flags & __CMPXCHG_DOUBLE) {
420 if (cmpxchg_double(&page->freelist, &page->counters,
421 freelist_old, counters_old,
422 freelist_new, counters_new))
423 return true;
424 } else
425 #endif
426 {
427 unsigned long flags;
428
429 local_irq_save(flags);
430 slab_lock(page);
431 if (page->freelist == freelist_old &&
432 page->counters == counters_old) {
433 page->freelist = freelist_new;
434 page->counters = counters_new;
435 slab_unlock(page);
436 local_irq_restore(flags);
437 return true;
438 }
439 slab_unlock(page);
440 local_irq_restore(flags);
441 }
442
443 cpu_relax();
444 stat(s, CMPXCHG_DOUBLE_FAIL);
445
446 #ifdef SLUB_DEBUG_CMPXCHG
447 pr_info("%s %s: cmpxchg double redo ", n, s->name);
448 #endif
449
450 return false;
451 }
452
453 #ifdef CONFIG_SLUB_DEBUG
454 static unsigned long object_map[BITS_TO_LONGS(MAX_OBJS_PER_PAGE)];
455 static DEFINE_SPINLOCK(object_map_lock);
456
457 #if IS_ENABLED(CONFIG_KUNIT)
458 static bool slab_add_kunit_errors(void)
459 {
460 struct kunit_resource *resource;
461
462 if (likely(!current->kunit_test))
463 return false;
464
465 resource = kunit_find_named_resource(current->kunit_test, "slab_errors");
466 if (!resource)
467 return false;
468
469 (*(int *)resource->data)++;
470 kunit_put_resource(resource);
471 return true;
472 }
473 #else
474 static inline bool slab_add_kunit_errors(void) { return false; }
475 #endif
476
477 /*
478 * Determine a map of object in use on a page.
479 *
480 * Node listlock must be held to guarantee that the page does
481 * not vanish from under us.
482 */
483 static unsigned long *get_map(struct kmem_cache *s, struct page *page)
484 __acquires(&object_map_lock)
485 {
486 void *p;
487 void *addr = page_address(page);
488
489 VM_BUG_ON(!irqs_disabled());
490
491 spin_lock(&object_map_lock);
492
493 bitmap_zero(object_map, page->objects);
494
495 for (p = page->freelist; p; p = get_freepointer(s, p))
496 set_bit(__obj_to_index(s, addr, p), object_map);
497
498 return object_map;
499 }
500
501 static void put_map(unsigned long *map) __releases(&object_map_lock)
502 {
503 VM_BUG_ON(map != object_map);
504 spin_unlock(&object_map_lock);
505 }
506
507 static inline unsigned int size_from_object(struct kmem_cache *s)
508 {
509 if (s->flags & SLAB_RED_ZONE)
510 return s->size - s->red_left_pad;
511
512 return s->size;
513 }
514
515 static inline void *restore_red_left(struct kmem_cache *s, void *p)
516 {
517 if (s->flags & SLAB_RED_ZONE)
518 p -= s->red_left_pad;
519
520 return p;
521 }
522
523 /*
524 * Debug settings:
525 */
526 #if defined(CONFIG_SLUB_DEBUG_ON)
527 static slab_flags_t slub_debug = DEBUG_DEFAULT_FLAGS;
528 #else
529 static slab_flags_t slub_debug;
530 #endif
531
532 static char *slub_debug_string;
533 static int disable_higher_order_debug;
534
535 /*
536 * slub is about to manipulate internal object metadata. This memory lies
537 * outside the range of the allocated object, so accessing it would normally
538 * be reported by kasan as a bounds error. metadata_access_enable() is used
539 * to tell kasan that these accesses are OK.
540 */
541 static inline void metadata_access_enable(void)
542 {
543 kasan_disable_current();
544 }
545
546 static inline void metadata_access_disable(void)
547 {
548 kasan_enable_current();
549 }
550
551 /*
552 * Object debugging
553 */
554
555 /* Verify that a pointer has an address that is valid within a slab page */
556 static inline int check_valid_pointer(struct kmem_cache *s,
557 struct page *page, void *object)
558 {
559 void *base;
560
561 if (!object)
562 return 1;
563
564 base = page_address(page);
565 object = kasan_reset_tag(object);
566 object = restore_red_left(s, object);
567 if (object < base || object >= base + page->objects * s->size ||
568 (object - base) % s->size) {
569 return 0;
570 }
571
572 return 1;
573 }
574
575 static void print_section(char *level, char *text, u8 *addr,
576 unsigned int length)
577 {
578 metadata_access_enable();
579 print_hex_dump(level, kasan_reset_tag(text), DUMP_PREFIX_ADDRESS,
580 16, 1, addr, length, 1);
581 metadata_access_disable();
582 }
583
584 /*
585 * See comment in calculate_sizes().
586 */
587 static inline bool freeptr_outside_object(struct kmem_cache *s)
588 {
589 return s->offset >= s->inuse;
590 }
591
592 /*
593 * Return offset of the end of info block which is inuse + free pointer if
594 * not overlapping with object.
595 */
596 static inline unsigned int get_info_end(struct kmem_cache *s)
597 {
598 if (freeptr_outside_object(s))
599 return s->inuse + sizeof(void *);
600 else
601 return s->inuse;
602 }
603
604 static struct track *get_track(struct kmem_cache *s, void *object,
605 enum track_item alloc)
606 {
607 struct track *p;
608
609 p = object + get_info_end(s);
610
611 return kasan_reset_tag(p + alloc);
612 }
613
614 static void set_track(struct kmem_cache *s, void *object,
615 enum track_item alloc, unsigned long addr)
616 {
617 struct track *p = get_track(s, object, alloc);
618
619 if (addr) {
620 #ifdef CONFIG_STACKTRACE
621 unsigned int nr_entries;
622
623 metadata_access_enable();
624 nr_entries = stack_trace_save(kasan_reset_tag(p->addrs),
625 TRACK_ADDRS_COUNT, 3);
626 metadata_access_disable();
627
628 if (nr_entries < TRACK_ADDRS_COUNT)
629 p->addrs[nr_entries] = 0;
630 #endif
631 p->addr = addr;
632 p->cpu = smp_processor_id();
633 p->pid = current->pid;
634 p->when = jiffies;
635 } else {
636 memset(p, 0, sizeof(struct track));
637 }
638 }
639
640 static void init_tracking(struct kmem_cache *s, void *object)
641 {
642 if (!(s->flags & SLAB_STORE_USER))
643 return;
644
645 set_track(s, object, TRACK_FREE, 0UL);
646 set_track(s, object, TRACK_ALLOC, 0UL);
647 }
648
649 static void print_track(const char *s, struct track *t, unsigned long pr_time)
650 {
651 if (!t->addr)
652 return;
653
654 pr_err("%s in %pS age=%lu cpu=%u pid=%d\n",
655 s, (void *)t->addr, pr_time - t->when, t->cpu, t->pid);
656 #ifdef CONFIG_STACKTRACE
657 {
658 int i;
659 for (i = 0; i < TRACK_ADDRS_COUNT; i++)
660 if (t->addrs[i])
661 pr_err("\t%pS\n", (void *)t->addrs[i]);
662 else
663 break;
664 }
665 #endif
666 }
667
668 void print_tracking(struct kmem_cache *s, void *object)
669 {
670 unsigned long pr_time = jiffies;
671 if (!(s->flags & SLAB_STORE_USER))
672 return;
673
674 print_track("Allocated", get_track(s, object, TRACK_ALLOC), pr_time);
675 print_track("Freed", get_track(s, object, TRACK_FREE), pr_time);
676 }
677
678 static void print_page_info(struct page *page)
679 {
680 pr_err("Slab 0x%p objects=%u used=%u fp=0x%p flags=%#lx(%pGp)\n",
681 page, page->objects, page->inuse, page->freelist,
682 page->flags, &page->flags);
683
684 }
685
686 static void slab_bug(struct kmem_cache *s, char *fmt, ...)
687 {
688 struct va_format vaf;
689 va_list args;
690
691 va_start(args, fmt);
692 vaf.fmt = fmt;
693 vaf.va = &args;
694 pr_err("=============================================================================\n");
695 pr_err("BUG %s (%s): %pV\n", s->name, print_tainted(), &vaf);
696 pr_err("-----------------------------------------------------------------------------\n\n");
697 va_end(args);
698 }
699
700 __printf(2, 3)
701 static void slab_fix(struct kmem_cache *s, char *fmt, ...)
702 {
703 struct va_format vaf;
704 va_list args;
705
706 if (slab_add_kunit_errors())
707 return;
708
709 va_start(args, fmt);
710 vaf.fmt = fmt;
711 vaf.va = &args;
712 pr_err("FIX %s: %pV\n", s->name, &vaf);
713 va_end(args);
714 }
715
716 static bool freelist_corrupted(struct kmem_cache *s, struct page *page,
717 void **freelist, void *nextfree)
718 {
719 if ((s->flags & SLAB_CONSISTENCY_CHECKS) &&
720 !check_valid_pointer(s, page, nextfree) && freelist) {
721 object_err(s, page, *freelist, "Freechain corrupt");
722 *freelist = NULL;
723 slab_fix(s, "Isolate corrupted freechain");
724 return true;
725 }
726
727 return false;
728 }
729
730 static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
731 {
732 unsigned int off; /* Offset of last byte */
733 u8 *addr = page_address(page);
734
735 print_tracking(s, p);
736
737 print_page_info(page);
738
739 pr_err("Object 0x%p @offset=%tu fp=0x%p\n\n",
740 p, p - addr, get_freepointer(s, p));
741
742 if (s->flags & SLAB_RED_ZONE)
743 print_section(KERN_ERR, "Redzone ", p - s->red_left_pad,
744 s->red_left_pad);
745 else if (p > addr + 16)
746 print_section(KERN_ERR, "Bytes b4 ", p - 16, 16);
747
748 print_section(KERN_ERR, "Object ", p,
749 min_t(unsigned int, s->object_size, PAGE_SIZE));
750 if (s->flags & SLAB_RED_ZONE)
751 print_section(KERN_ERR, "Redzone ", p + s->object_size,
752 s->inuse - s->object_size);
753
754 off = get_info_end(s);
755
756 if (s->flags & SLAB_STORE_USER)
757 off += 2 * sizeof(struct track);
758
759 off += kasan_metadata_size(s);
760
761 if (off != size_from_object(s))
762 /* Beginning of the filler is the free pointer */
763 print_section(KERN_ERR, "Padding ", p + off,
764 size_from_object(s) - off);
765
766 dump_stack();
767 }
768
769 void object_err(struct kmem_cache *s, struct page *page,
770 u8 *object, char *reason)
771 {
772 if (slab_add_kunit_errors())
773 return;
774
775 slab_bug(s, "%s", reason);
776 print_trailer(s, page, object);
777 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
778 }
779
780 static __printf(3, 4) void slab_err(struct kmem_cache *s, struct page *page,
781 const char *fmt, ...)
782 {
783 va_list args;
784 char buf[100];
785
786 if (slab_add_kunit_errors())
787 return;
788
789 va_start(args, fmt);
790 vsnprintf(buf, sizeof(buf), fmt, args);
791 va_end(args);
792 slab_bug(s, "%s", buf);
793 print_page_info(page);
794 dump_stack();
795 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
796 }
797
798 static void init_object(struct kmem_cache *s, void *object, u8 val)
799 {
800 u8 *p = kasan_reset_tag(object);
801
802 if (s->flags & SLAB_RED_ZONE)
803 memset(p - s->red_left_pad, val, s->red_left_pad);
804
805 if (s->flags & __OBJECT_POISON) {
806 memset(p, POISON_FREE, s->object_size - 1);
807 p[s->object_size - 1] = POISON_END;
808 }
809
810 if (s->flags & SLAB_RED_ZONE)
811 memset(p + s->object_size, val, s->inuse - s->object_size);
812 }
813
814 static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
815 void *from, void *to)
816 {
817 slab_fix(s, "Restoring %s 0x%p-0x%p=0x%x", message, from, to - 1, data);
818 memset(from, data, to - from);
819 }
820
821 static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
822 u8 *object, char *what,
823 u8 *start, unsigned int value, unsigned int bytes)
824 {
825 u8 *fault;
826 u8 *end;
827 u8 *addr = page_address(page);
828
829 metadata_access_enable();
830 fault = memchr_inv(kasan_reset_tag(start), value, bytes);
831 metadata_access_disable();
832 if (!fault)
833 return 1;
834
835 end = start + bytes;
836 while (end > fault && end[-1] == value)
837 end--;
838
839 if (slab_add_kunit_errors())
840 goto skip_bug_print;
841
842 slab_bug(s, "%s overwritten", what);
843 pr_err("0x%p-0x%p @offset=%tu. First byte 0x%x instead of 0x%x\n",
844 fault, end - 1, fault - addr,
845 fault[0], value);
846 print_trailer(s, page, object);
847 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
848
849 skip_bug_print:
850 restore_bytes(s, what, value, fault, end);
851 return 0;
852 }
853
854 /*
855 * Object layout:
856 *
857 * object address
858 * Bytes of the object to be managed.
859 * If the freepointer may overlay the object then the free
860 * pointer is at the middle of the object.
861 *
862 * Poisoning uses 0x6b (POISON_FREE) and the last byte is
863 * 0xa5 (POISON_END)
864 *
865 * object + s->object_size
866 * Padding to reach word boundary. This is also used for Redzoning.
867 * Padding is extended by another word if Redzoning is enabled and
868 * object_size == inuse.
869 *
870 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
871 * 0xcc (RED_ACTIVE) for objects in use.
872 *
873 * object + s->inuse
874 * Meta data starts here.
875 *
876 * A. Free pointer (if we cannot overwrite object on free)
877 * B. Tracking data for SLAB_STORE_USER
878 * C. Padding to reach required alignment boundary or at minimum
879 * one word if debugging is on to be able to detect writes
880 * before the word boundary.
881 *
882 * Padding is done using 0x5a (POISON_INUSE)
883 *
884 * object + s->size
885 * Nothing is used beyond s->size.
886 *
887 * If slabcaches are merged then the object_size and inuse boundaries are mostly
888 * ignored. And therefore no slab options that rely on these boundaries
889 * may be used with merged slabcaches.
890 */
891
892 static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
893 {
894 unsigned long off = get_info_end(s); /* The end of info */
895
896 if (s->flags & SLAB_STORE_USER)
897 /* We also have user information there */
898 off += 2 * sizeof(struct track);
899
900 off += kasan_metadata_size(s);
901
902 if (size_from_object(s) == off)
903 return 1;
904
905 return check_bytes_and_report(s, page, p, "Object padding",
906 p + off, POISON_INUSE, size_from_object(s) - off);
907 }
908
909 /* Check the pad bytes at the end of a slab page */
910 static int slab_pad_check(struct kmem_cache *s, struct page *page)
911 {
912 u8 *start;
913 u8 *fault;
914 u8 *end;
915 u8 *pad;
916 int length;
917 int remainder;
918
919 if (!(s->flags & SLAB_POISON))
920 return 1;
921
922 start = page_address(page);
923 length = page_size(page);
924 end = start + length;
925 remainder = length % s->size;
926 if (!remainder)
927 return 1;
928
929 pad = end - remainder;
930 metadata_access_enable();
931 fault = memchr_inv(kasan_reset_tag(pad), POISON_INUSE, remainder);
932 metadata_access_disable();
933 if (!fault)
934 return 1;
935 while (end > fault && end[-1] == POISON_INUSE)
936 end--;
937
938 slab_err(s, page, "Padding overwritten. 0x%p-0x%p @offset=%tu",
939 fault, end - 1, fault - start);
940 print_section(KERN_ERR, "Padding ", pad, remainder);
941
942 restore_bytes(s, "slab padding", POISON_INUSE, fault, end);
943 return 0;
944 }
945
946 static int check_object(struct kmem_cache *s, struct page *page,
947 void *object, u8 val)
948 {
949 u8 *p = object;
950 u8 *endobject = object + s->object_size;
951
952 if (s->flags & SLAB_RED_ZONE) {
953 if (!check_bytes_and_report(s, page, object, "Left Redzone",
954 object - s->red_left_pad, val, s->red_left_pad))
955 return 0;
956
957 if (!check_bytes_and_report(s, page, object, "Right Redzone",
958 endobject, val, s->inuse - s->object_size))
959 return 0;
960 } else {
961 if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) {
962 check_bytes_and_report(s, page, p, "Alignment padding",
963 endobject, POISON_INUSE,
964 s->inuse - s->object_size);
965 }
966 }
967
968 if (s->flags & SLAB_POISON) {
969 if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) &&
970 (!check_bytes_and_report(s, page, p, "Poison", p,
971 POISON_FREE, s->object_size - 1) ||
972 !check_bytes_and_report(s, page, p, "End Poison",
973 p + s->object_size - 1, POISON_END, 1)))
974 return 0;
975 /*
976 * check_pad_bytes cleans up on its own.
977 */
978 check_pad_bytes(s, page, p);
979 }
980
981 if (!freeptr_outside_object(s) && val == SLUB_RED_ACTIVE)
982 /*
983 * Object and freepointer overlap. Cannot check
984 * freepointer while object is allocated.
985 */
986 return 1;
987
988 /* Check free pointer validity */
989 if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
990 object_err(s, page, p, "Freepointer corrupt");
991 /*
992 * No choice but to zap it and thus lose the remainder
993 * of the free objects in this slab. May cause
994 * another error because the object count is now wrong.
995 */
996 set_freepointer(s, p, NULL);
997 return 0;
998 }
999 return 1;
1000 }
1001
1002 static int check_slab(struct kmem_cache *s, struct page *page)
1003 {
1004 int maxobj;
1005
1006 VM_BUG_ON(!irqs_disabled());
1007
1008 if (!PageSlab(page)) {
1009 slab_err(s, page, "Not a valid slab page");
1010 return 0;
1011 }
1012
1013 maxobj = order_objects(compound_order(page), s->size);
1014 if (page->objects > maxobj) {
1015 slab_err(s, page, "objects %u > max %u",
1016 page->objects, maxobj);
1017 return 0;
1018 }
1019 if (page->inuse > page->objects) {
1020 slab_err(s, page, "inuse %u > max %u",
1021 page->inuse, page->objects);
1022 return 0;
1023 }
1024 /* Slab_pad_check fixes things up after itself */
1025 slab_pad_check(s, page);
1026 return 1;
1027 }
1028
1029 /*
1030 * Determine if a certain object on a page is on the freelist. Must hold the
1031 * slab lock to guarantee that the chains are in a consistent state.
1032 */
1033 static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
1034 {
1035 int nr = 0;
1036 void *fp;
1037 void *object = NULL;
1038 int max_objects;
1039
1040 fp = page->freelist;
1041 while (fp && nr <= page->objects) {
1042 if (fp == search)
1043 return 1;
1044 if (!check_valid_pointer(s, page, fp)) {
1045 if (object) {
1046 object_err(s, page, object,
1047 "Freechain corrupt");
1048 set_freepointer(s, object, NULL);
1049 } else {
1050 slab_err(s, page, "Freepointer corrupt");
1051 page->freelist = NULL;
1052 page->inuse = page->objects;
1053 slab_fix(s, "Freelist cleared");
1054 return 0;
1055 }
1056 break;
1057 }
1058 object = fp;
1059 fp = get_freepointer(s, object);
1060 nr++;
1061 }
1062
1063 max_objects = order_objects(compound_order(page), s->size);
1064 if (max_objects > MAX_OBJS_PER_PAGE)
1065 max_objects = MAX_OBJS_PER_PAGE;
1066
1067 if (page->objects != max_objects) {
1068 slab_err(s, page, "Wrong number of objects. Found %d but should be %d",
1069 page->objects, max_objects);
1070 page->objects = max_objects;
1071 slab_fix(s, "Number of objects adjusted");
1072 }
1073 if (page->inuse != page->objects - nr) {
1074 slab_err(s, page, "Wrong object count. Counter is %d but counted were %d",
1075 page->inuse, page->objects - nr);
1076 page->inuse = page->objects - nr;
1077 slab_fix(s, "Object count adjusted");
1078 }
1079 return search == NULL;
1080 }
1081
1082 static void trace(struct kmem_cache *s, struct page *page, void *object,
1083 int alloc)
1084 {
1085 if (s->flags & SLAB_TRACE) {
1086 pr_info("TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
1087 s->name,
1088 alloc ? "alloc" : "free",
1089 object, page->inuse,
1090 page->freelist);
1091
1092 if (!alloc)
1093 print_section(KERN_INFO, "Object ", (void *)object,
1094 s->object_size);
1095
1096 dump_stack();
1097 }
1098 }
1099
1100 /*
1101 * Tracking of fully allocated slabs for debugging purposes.
1102 */
1103 static void add_full(struct kmem_cache *s,
1104 struct kmem_cache_node *n, struct page *page)
1105 {
1106 if (!(s->flags & SLAB_STORE_USER))
1107 return;
1108
1109 lockdep_assert_held(&n->list_lock);
1110 list_add(&page->slab_list, &n->full);
1111 }
1112
1113 static void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, struct page *page)
1114 {
1115 if (!(s->flags & SLAB_STORE_USER))
1116 return;
1117
1118 lockdep_assert_held(&n->list_lock);
1119 list_del(&page->slab_list);
1120 }
1121
1122 /* Tracking of the number of slabs for debugging purposes */
1123 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1124 {
1125 struct kmem_cache_node *n = get_node(s, node);
1126
1127 return atomic_long_read(&n->nr_slabs);
1128 }
1129
1130 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1131 {
1132 return atomic_long_read(&n->nr_slabs);
1133 }
1134
1135 static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
1136 {
1137 struct kmem_cache_node *n = get_node(s, node);
1138
1139 /*
1140 * May be called early in order to allocate a slab for the
1141 * kmem_cache_node structure. Solve the chicken-egg
1142 * dilemma by deferring the increment of the count during
1143 * bootstrap (see early_kmem_cache_node_alloc).
1144 */
1145 if (likely(n)) {
1146 atomic_long_inc(&n->nr_slabs);
1147 atomic_long_add(objects, &n->total_objects);
1148 }
1149 }
1150 static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
1151 {
1152 struct kmem_cache_node *n = get_node(s, node);
1153
1154 atomic_long_dec(&n->nr_slabs);
1155 atomic_long_sub(objects, &n->total_objects);
1156 }
1157
1158 /* Object debug checks for alloc/free paths */
1159 static void setup_object_debug(struct kmem_cache *s, struct page *page,
1160 void *object)
1161 {
1162 if (!kmem_cache_debug_flags(s, SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON))
1163 return;
1164
1165 init_object(s, object, SLUB_RED_INACTIVE);
1166 init_tracking(s, object);
1167 }
1168
1169 static
1170 void setup_page_debug(struct kmem_cache *s, struct page *page, void *addr)
1171 {
1172 if (!kmem_cache_debug_flags(s, SLAB_POISON))
1173 return;
1174
1175 metadata_access_enable();
1176 memset(kasan_reset_tag(addr), POISON_INUSE, page_size(page));
1177 metadata_access_disable();
1178 }
1179
1180 static inline int alloc_consistency_checks(struct kmem_cache *s,
1181 struct page *page, void *object)
1182 {
1183 if (!check_slab(s, page))
1184 return 0;
1185
1186 if (!check_valid_pointer(s, page, object)) {
1187 object_err(s, page, object, "Freelist Pointer check fails");
1188 return 0;
1189 }
1190
1191 if (!check_object(s, page, object, SLUB_RED_INACTIVE))
1192 return 0;
1193
1194 return 1;
1195 }
1196
1197 static noinline int alloc_debug_processing(struct kmem_cache *s,
1198 struct page *page,
1199 void *object, unsigned long addr)
1200 {
1201 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1202 if (!alloc_consistency_checks(s, page, object))
1203 goto bad;
1204 }
1205
1206 /* Success perform special debug activities for allocs */
1207 if (s->flags & SLAB_STORE_USER)
1208 set_track(s, object, TRACK_ALLOC, addr);
1209 trace(s, page, object, 1);
1210 init_object(s, object, SLUB_RED_ACTIVE);
1211 return 1;
1212
1213 bad:
1214 if (PageSlab(page)) {
1215 /*
1216 * If this is a slab page then lets do the best we can
1217 * to avoid issues in the future. Marking all objects
1218 * as used avoids touching the remaining objects.
1219 */
1220 slab_fix(s, "Marking all objects used");
1221 page->inuse = page->objects;
1222 page->freelist = NULL;
1223 }
1224 return 0;
1225 }
1226
1227 static inline int free_consistency_checks(struct kmem_cache *s,
1228 struct page *page, void *object, unsigned long addr)
1229 {
1230 if (!check_valid_pointer(s, page, object)) {
1231 slab_err(s, page, "Invalid object pointer 0x%p", object);
1232 return 0;
1233 }
1234
1235 if (on_freelist(s, page, object)) {
1236 object_err(s, page, object, "Object already free");
1237 return 0;
1238 }
1239
1240 if (!check_object(s, page, object, SLUB_RED_ACTIVE))
1241 return 0;
1242
1243 if (unlikely(s != page->slab_cache)) {
1244 if (!PageSlab(page)) {
1245 slab_err(s, page, "Attempt to free object(0x%p) outside of slab",
1246 object);
1247 } else if (!page->slab_cache) {
1248 pr_err("SLUB <none>: no slab for object 0x%p.\n",
1249 object);
1250 dump_stack();
1251 } else
1252 object_err(s, page, object,
1253 "page slab pointer corrupt.");
1254 return 0;
1255 }
1256 return 1;
1257 }
1258
1259 /* Supports checking bulk free of a constructed freelist */
1260 static noinline int free_debug_processing(
1261 struct kmem_cache *s, struct page *page,
1262 void *head, void *tail, int bulk_cnt,
1263 unsigned long addr)
1264 {
1265 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1266 void *object = head;
1267 int cnt = 0;
1268 unsigned long flags;
1269 int ret = 0;
1270
1271 spin_lock_irqsave(&n->list_lock, flags);
1272 slab_lock(page);
1273
1274 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1275 if (!check_slab(s, page))
1276 goto out;
1277 }
1278
1279 next_object:
1280 cnt++;
1281
1282 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1283 if (!free_consistency_checks(s, page, object, addr))
1284 goto out;
1285 }
1286
1287 if (s->flags & SLAB_STORE_USER)
1288 set_track(s, object, TRACK_FREE, addr);
1289 trace(s, page, object, 0);
1290 /* Freepointer not overwritten by init_object(), SLAB_POISON moved it */
1291 init_object(s, object, SLUB_RED_INACTIVE);
1292
1293 /* Reached end of constructed freelist yet? */
1294 if (object != tail) {
1295 object = get_freepointer(s, object);
1296 goto next_object;
1297 }
1298 ret = 1;
1299
1300 out:
1301 if (cnt != bulk_cnt)
1302 slab_err(s, page, "Bulk freelist count(%d) invalid(%d)\n",
1303 bulk_cnt, cnt);
1304
1305 slab_unlock(page);
1306 spin_unlock_irqrestore(&n->list_lock, flags);
1307 if (!ret)
1308 slab_fix(s, "Object at 0x%p not freed", object);
1309 return ret;
1310 }
1311
1312 /*
1313 * Parse a block of slub_debug options. Blocks are delimited by ';'
1314 *
1315 * @str: start of block
1316 * @flags: returns parsed flags, or DEBUG_DEFAULT_FLAGS if none specified
1317 * @slabs: return start of list of slabs, or NULL when there's no list
1318 * @init: assume this is initial parsing and not per-kmem-create parsing
1319 *
1320 * returns the start of next block if there's any, or NULL
1321 */
1322 static char *
1323 parse_slub_debug_flags(char *str, slab_flags_t *flags, char **slabs, bool init)
1324 {
1325 bool higher_order_disable = false;
1326
1327 /* Skip any completely empty blocks */
1328 while (*str && *str == ';')
1329 str++;
1330
1331 if (*str == ',') {
1332 /*
1333 * No options but restriction on slabs. This means full
1334 * debugging for slabs matching a pattern.
1335 */
1336 *flags = DEBUG_DEFAULT_FLAGS;
1337 goto check_slabs;
1338 }
1339 *flags = 0;
1340
1341 /* Determine which debug features should be switched on */
1342 for (; *str && *str != ',' && *str != ';'; str++) {
1343 switch (tolower(*str)) {
1344 case '-':
1345 *flags = 0;
1346 break;
1347 case 'f':
1348 *flags |= SLAB_CONSISTENCY_CHECKS;
1349 break;
1350 case 'z':
1351 *flags |= SLAB_RED_ZONE;
1352 break;
1353 case 'p':
1354 *flags |= SLAB_POISON;
1355 break;
1356 case 'u':
1357 *flags |= SLAB_STORE_USER;
1358 break;
1359 case 't':
1360 *flags |= SLAB_TRACE;
1361 break;
1362 case 'a':
1363 *flags |= SLAB_FAILSLAB;
1364 break;
1365 case 'o':
1366 /*
1367 * Avoid enabling debugging on caches if its minimum
1368 * order would increase as a result.
1369 */
1370 higher_order_disable = true;
1371 break;
1372 default:
1373 if (init)
1374 pr_err("slub_debug option '%c' unknown. skipped\n", *str);
1375 }
1376 }
1377 check_slabs:
1378 if (*str == ',')
1379 *slabs = ++str;
1380 else
1381 *slabs = NULL;
1382
1383 /* Skip over the slab list */
1384 while (*str && *str != ';')
1385 str++;
1386
1387 /* Skip any completely empty blocks */
1388 while (*str && *str == ';')
1389 str++;
1390
1391 if (init && higher_order_disable)
1392 disable_higher_order_debug = 1;
1393
1394 if (*str)
1395 return str;
1396 else
1397 return NULL;
1398 }
1399
1400 static int __init setup_slub_debug(char *str)
1401 {
1402 slab_flags_t flags;
1403 char *saved_str;
1404 char *slab_list;
1405 bool global_slub_debug_changed = false;
1406 bool slab_list_specified = false;
1407
1408 slub_debug = DEBUG_DEFAULT_FLAGS;
1409 if (*str++ != '=' || !*str)
1410 /*
1411 * No options specified. Switch on full debugging.
1412 */
1413 goto out;
1414
1415 saved_str = str;
1416 while (str) {
1417 str = parse_slub_debug_flags(str, &flags, &slab_list, true);
1418
1419 if (!slab_list) {
1420 slub_debug = flags;
1421 global_slub_debug_changed = true;
1422 } else {
1423 slab_list_specified = true;
1424 }
1425 }
1426
1427 /*
1428 * For backwards compatibility, a single list of flags with list of
1429 * slabs means debugging is only enabled for those slabs, so the global
1430 * slub_debug should be 0. We can extended that to multiple lists as
1431 * long as there is no option specifying flags without a slab list.
1432 */
1433 if (slab_list_specified) {
1434 if (!global_slub_debug_changed)
1435 slub_debug = 0;
1436 slub_debug_string = saved_str;
1437 }
1438 out:
1439 if (slub_debug != 0 || slub_debug_string)
1440 static_branch_enable(&slub_debug_enabled);
1441 else
1442 static_branch_disable(&slub_debug_enabled);
1443 if ((static_branch_unlikely(&init_on_alloc) ||
1444 static_branch_unlikely(&init_on_free)) &&
1445 (slub_debug & SLAB_POISON))
1446 pr_info("mem auto-init: SLAB_POISON will take precedence over init_on_alloc/init_on_free\n");
1447 return 1;
1448 }
1449
1450 __setup("slub_debug", setup_slub_debug);
1451
1452 /*
1453 * kmem_cache_flags - apply debugging options to the cache
1454 * @object_size: the size of an object without meta data
1455 * @flags: flags to set
1456 * @name: name of the cache
1457 *
1458 * Debug option(s) are applied to @flags. In addition to the debug
1459 * option(s), if a slab name (or multiple) is specified i.e.
1460 * slub_debug=<Debug-Options>,<slab name1>,<slab name2> ...
1461 * then only the select slabs will receive the debug option(s).
1462 */
1463 slab_flags_t kmem_cache_flags(unsigned int object_size,
1464 slab_flags_t flags, const char *name)
1465 {
1466 char *iter;
1467 size_t len;
1468 char *next_block;
1469 slab_flags_t block_flags;
1470 slab_flags_t slub_debug_local = slub_debug;
1471
1472 /*
1473 * If the slab cache is for debugging (e.g. kmemleak) then
1474 * don't store user (stack trace) information by default,
1475 * but let the user enable it via the command line below.
1476 */
1477 if (flags & SLAB_NOLEAKTRACE)
1478 slub_debug_local &= ~SLAB_STORE_USER;
1479
1480 len = strlen(name);
1481 next_block = slub_debug_string;
1482 /* Go through all blocks of debug options, see if any matches our slab's name */
1483 while (next_block) {
1484 next_block = parse_slub_debug_flags(next_block, &block_flags, &iter, false);
1485 if (!iter)
1486 continue;
1487 /* Found a block that has a slab list, search it */
1488 while (*iter) {
1489 char *end, *glob;
1490 size_t cmplen;
1491
1492 end = strchrnul(iter, ',');
1493 if (next_block && next_block < end)
1494 end = next_block - 1;
1495
1496 glob = strnchr(iter, end - iter, '*');
1497 if (glob)
1498 cmplen = glob - iter;
1499 else
1500 cmplen = max_t(size_t, len, (end - iter));
1501
1502 if (!strncmp(name, iter, cmplen)) {
1503 flags |= block_flags;
1504 return flags;
1505 }
1506
1507 if (!*end || *end == ';')
1508 break;
1509 iter = end + 1;
1510 }
1511 }
1512
1513 return flags | slub_debug_local;
1514 }
1515 #else /* !CONFIG_SLUB_DEBUG */
1516 static inline void setup_object_debug(struct kmem_cache *s,
1517 struct page *page, void *object) {}
1518 static inline
1519 void setup_page_debug(struct kmem_cache *s, struct page *page, void *addr) {}
1520
1521 static inline int alloc_debug_processing(struct kmem_cache *s,
1522 struct page *page, void *object, unsigned long addr) { return 0; }
1523
1524 static inline int free_debug_processing(
1525 struct kmem_cache *s, struct page *page,
1526 void *head, void *tail, int bulk_cnt,
1527 unsigned long addr) { return 0; }
1528
1529 static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1530 { return 1; }
1531 static inline int check_object(struct kmem_cache *s, struct page *page,
1532 void *object, u8 val) { return 1; }
1533 static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
1534 struct page *page) {}
1535 static inline void remove_full(struct kmem_cache *s, struct kmem_cache_node *n,
1536 struct page *page) {}
1537 slab_flags_t kmem_cache_flags(unsigned int object_size,
1538 slab_flags_t flags, const char *name)
1539 {
1540 return flags;
1541 }
1542 #define slub_debug 0
1543
1544 #define disable_higher_order_debug 0
1545
1546 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1547 { return 0; }
1548 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1549 { return 0; }
1550 static inline void inc_slabs_node(struct kmem_cache *s, int node,
1551 int objects) {}
1552 static inline void dec_slabs_node(struct kmem_cache *s, int node,
1553 int objects) {}
1554
1555 static bool freelist_corrupted(struct kmem_cache *s, struct page *page,
1556 void **freelist, void *nextfree)
1557 {
1558 return false;
1559 }
1560 #endif /* CONFIG_SLUB_DEBUG */
1561
1562 /*
1563 * Hooks for other subsystems that check memory allocations. In a typical
1564 * production configuration these hooks all should produce no code at all.
1565 */
1566 static inline void *kmalloc_large_node_hook(void *ptr, size_t size, gfp_t flags)
1567 {
1568 ptr = kasan_kmalloc_large(ptr, size, flags);
1569 /* As ptr might get tagged, call kmemleak hook after KASAN. */
1570 kmemleak_alloc(ptr, size, 1, flags);
1571 return ptr;
1572 }
1573
1574 static __always_inline void kfree_hook(void *x)
1575 {
1576 kmemleak_free(x);
1577 kasan_kfree_large(x);
1578 }
1579
1580 static __always_inline bool slab_free_hook(struct kmem_cache *s,
1581 void *x, bool init)
1582 {
1583 kmemleak_free_recursive(x, s->flags);
1584
1585 /*
1586 * Trouble is that we may no longer disable interrupts in the fast path
1587 * So in order to make the debug calls that expect irqs to be
1588 * disabled we need to disable interrupts temporarily.
1589 */
1590 #ifdef CONFIG_LOCKDEP
1591 {
1592 unsigned long flags;
1593
1594 local_irq_save(flags);
1595 debug_check_no_locks_freed(x, s->object_size);
1596 local_irq_restore(flags);
1597 }
1598 #endif
1599 if (!(s->flags & SLAB_DEBUG_OBJECTS))
1600 debug_check_no_obj_freed(x, s->object_size);
1601
1602 /* Use KCSAN to help debug racy use-after-free. */
1603 if (!(s->flags & SLAB_TYPESAFE_BY_RCU))
1604 __kcsan_check_access(x, s->object_size,
1605 KCSAN_ACCESS_WRITE | KCSAN_ACCESS_ASSERT);
1606
1607 /*
1608 * As memory initialization might be integrated into KASAN,
1609 * kasan_slab_free and initialization memset's must be
1610 * kept together to avoid discrepancies in behavior.
1611 *
1612 * The initialization memset's clear the object and the metadata,
1613 * but don't touch the SLAB redzone.
1614 */
1615 if (init) {
1616 int rsize;
1617
1618 if (!kasan_has_integrated_init())
1619 memset(kasan_reset_tag(x), 0, s->object_size);
1620 rsize = (s->flags & SLAB_RED_ZONE) ? s->red_left_pad : 0;
1621 memset((char *)kasan_reset_tag(x) + s->inuse, 0,
1622 s->size - s->inuse - rsize);
1623 }
1624 /* KASAN might put x into memory quarantine, delaying its reuse. */
1625 return kasan_slab_free(s, x, init);
1626 }
1627
1628 static inline bool slab_free_freelist_hook(struct kmem_cache *s,
1629 void **head, void **tail)
1630 {
1631
1632 void *object;
1633 void *next = *head;
1634 void *old_tail = *tail ? *tail : *head;
1635
1636 if (is_kfence_address(next)) {
1637 slab_free_hook(s, next, false);
1638 return true;
1639 }
1640
1641 /* Head and tail of the reconstructed freelist */
1642 *head = NULL;
1643 *tail = NULL;
1644
1645 do {
1646 object = next;
1647 next = get_freepointer(s, object);
1648
1649 /* If object's reuse doesn't have to be delayed */
1650 if (!slab_free_hook(s, object, slab_want_init_on_free(s))) {
1651 /* Move object to the new freelist */
1652 set_freepointer(s, object, *head);
1653 *head = object;
1654 if (!*tail)
1655 *tail = object;
1656 }
1657 } while (object != old_tail);
1658
1659 if (*head == *tail)
1660 *tail = NULL;
1661
1662 return *head != NULL;
1663 }
1664
1665 static void *setup_object(struct kmem_cache *s, struct page *page,
1666 void *object)
1667 {
1668 setup_object_debug(s, page, object);
1669 object = kasan_init_slab_obj(s, object);
1670 if (unlikely(s->ctor)) {
1671 kasan_unpoison_object_data(s, object);
1672 s->ctor(object);
1673 kasan_poison_object_data(s, object);
1674 }
1675 return object;
1676 }
1677
1678 /*
1679 * Slab allocation and freeing
1680 */
1681 static inline struct page *alloc_slab_page(struct kmem_cache *s,
1682 gfp_t flags, int node, struct kmem_cache_order_objects oo)
1683 {
1684 struct page *page;
1685 unsigned int order = oo_order(oo);
1686
1687 if (node == NUMA_NO_NODE)
1688 page = alloc_pages(flags, order);
1689 else
1690 page = __alloc_pages_node(node, flags, order);
1691
1692 return page;
1693 }
1694
1695 #ifdef CONFIG_SLAB_FREELIST_RANDOM
1696 /* Pre-initialize the random sequence cache */
1697 static int init_cache_random_seq(struct kmem_cache *s)
1698 {
1699 unsigned int count = oo_objects(s->oo);
1700 int err;
1701
1702 /* Bailout if already initialised */
1703 if (s->random_seq)
1704 return 0;
1705
1706 err = cache_random_seq_create(s, count, GFP_KERNEL);
1707 if (err) {
1708 pr_err("SLUB: Unable to initialize free list for %s\n",
1709 s->name);
1710 return err;
1711 }
1712
1713 /* Transform to an offset on the set of pages */
1714 if (s->random_seq) {
1715 unsigned int i;
1716
1717 for (i = 0; i < count; i++)
1718 s->random_seq[i] *= s->size;
1719 }
1720 return 0;
1721 }
1722
1723 /* Initialize each random sequence freelist per cache */
1724 static void __init init_freelist_randomization(void)
1725 {
1726 struct kmem_cache *s;
1727
1728 mutex_lock(&slab_mutex);
1729
1730 list_for_each_entry(s, &slab_caches, list)
1731 init_cache_random_seq(s);
1732
1733 mutex_unlock(&slab_mutex);
1734 }
1735
1736 /* Get the next entry on the pre-computed freelist randomized */
1737 static void *next_freelist_entry(struct kmem_cache *s, struct page *page,
1738 unsigned long *pos, void *start,
1739 unsigned long page_limit,
1740 unsigned long freelist_count)
1741 {
1742 unsigned int idx;
1743
1744 /*
1745 * If the target page allocation failed, the number of objects on the
1746 * page might be smaller than the usual size defined by the cache.
1747 */
1748 do {
1749 idx = s->random_seq[*pos];
1750 *pos += 1;
1751 if (*pos >= freelist_count)
1752 *pos = 0;
1753 } while (unlikely(idx >= page_limit));
1754
1755 return (char *)start + idx;
1756 }
1757
1758 /* Shuffle the single linked freelist based on a random pre-computed sequence */
1759 static bool shuffle_freelist(struct kmem_cache *s, struct page *page)
1760 {
1761 void *start;
1762 void *cur;
1763 void *next;
1764 unsigned long idx, pos, page_limit, freelist_count;
1765
1766 if (page->objects < 2 || !s->random_seq)
1767 return false;
1768
1769 freelist_count = oo_objects(s->oo);
1770 pos = get_random_int() % freelist_count;
1771
1772 page_limit = page->objects * s->size;
1773 start = fixup_red_left(s, page_address(page));
1774
1775 /* First entry is used as the base of the freelist */
1776 cur = next_freelist_entry(s, page, &pos, start, page_limit,
1777 freelist_count);
1778 cur = setup_object(s, page, cur);
1779 page->freelist = cur;
1780
1781 for (idx = 1; idx < page->objects; idx++) {
1782 next = next_freelist_entry(s, page, &pos, start, page_limit,
1783 freelist_count);
1784 next = setup_object(s, page, next);
1785 set_freepointer(s, cur, next);
1786 cur = next;
1787 }
1788 set_freepointer(s, cur, NULL);
1789
1790 return true;
1791 }
1792 #else
1793 static inline int init_cache_random_seq(struct kmem_cache *s)
1794 {
1795 return 0;
1796 }
1797 static inline void init_freelist_randomization(void) { }
1798 static inline bool shuffle_freelist(struct kmem_cache *s, struct page *page)
1799 {
1800 return false;
1801 }
1802 #endif /* CONFIG_SLAB_FREELIST_RANDOM */
1803
1804 static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1805 {
1806 struct page *page;
1807 struct kmem_cache_order_objects oo = s->oo;
1808 gfp_t alloc_gfp;
1809 void *start, *p, *next;
1810 int idx;
1811 bool shuffle;
1812
1813 flags &= gfp_allowed_mask;
1814
1815 if (gfpflags_allow_blocking(flags))
1816 local_irq_enable();
1817
1818 flags |= s->allocflags;
1819
1820 /*
1821 * Let the initial higher-order allocation fail under memory pressure
1822 * so we fall-back to the minimum order allocation.
1823 */
1824 alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
1825 if ((alloc_gfp & __GFP_DIRECT_RECLAIM) && oo_order(oo) > oo_order(s->min))
1826 alloc_gfp = (alloc_gfp | __GFP_NOMEMALLOC) & ~(__GFP_RECLAIM|__GFP_NOFAIL);
1827
1828 page = alloc_slab_page(s, alloc_gfp, node, oo);
1829 if (unlikely(!page)) {
1830 oo = s->min;
1831 alloc_gfp = flags;
1832 /*
1833 * Allocation may have failed due to fragmentation.
1834 * Try a lower order alloc if possible
1835 */
1836 page = alloc_slab_page(s, alloc_gfp, node, oo);
1837 if (unlikely(!page))
1838 goto out;
1839 stat(s, ORDER_FALLBACK);
1840 }
1841
1842 page->objects = oo_objects(oo);
1843
1844 account_slab_page(page, oo_order(oo), s, flags);
1845
1846 page->slab_cache = s;
1847 __SetPageSlab(page);
1848 if (page_is_pfmemalloc(page))
1849 SetPageSlabPfmemalloc(page);
1850
1851 kasan_poison_slab(page);
1852
1853 start = page_address(page);
1854
1855 setup_page_debug(s, page, start);
1856
1857 shuffle = shuffle_freelist(s, page);
1858
1859 if (!shuffle) {
1860 start = fixup_red_left(s, start);
1861 start = setup_object(s, page, start);
1862 page->freelist = start;
1863 for (idx = 0, p = start; idx < page->objects - 1; idx++) {
1864 next = p + s->size;
1865 next = setup_object(s, page, next);
1866 set_freepointer(s, p, next);
1867 p = next;
1868 }
1869 set_freepointer(s, p, NULL);
1870 }
1871
1872 page->inuse = page->objects;
1873 page->frozen = 1;
1874
1875 out:
1876 if (gfpflags_allow_blocking(flags))
1877 local_irq_disable();
1878 if (!page)
1879 return NULL;
1880
1881 inc_slabs_node(s, page_to_nid(page), page->objects);
1882
1883 return page;
1884 }
1885
1886 static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1887 {
1888 if (unlikely(flags & GFP_SLAB_BUG_MASK))
1889 flags = kmalloc_fix_flags(flags);
1890
1891 return allocate_slab(s,
1892 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
1893 }
1894
1895 static void __free_slab(struct kmem_cache *s, struct page *page)
1896 {
1897 int order = compound_order(page);
1898 int pages = 1 << order;
1899
1900 if (kmem_cache_debug_flags(s, SLAB_CONSISTENCY_CHECKS)) {
1901 void *p;
1902
1903 slab_pad_check(s, page);
1904 for_each_object(p, s, page_address(page),
1905 page->objects)
1906 check_object(s, page, p, SLUB_RED_INACTIVE);
1907 }
1908
1909 __ClearPageSlabPfmemalloc(page);
1910 __ClearPageSlab(page);
1911 /* In union with page->mapping where page allocator expects NULL */
1912 page->slab_cache = NULL;
1913 if (current->reclaim_state)
1914 current->reclaim_state->reclaimed_slab += pages;
1915 unaccount_slab_page(page, order, s);
1916 __free_pages(page, order);
1917 }
1918
1919 static void rcu_free_slab(struct rcu_head *h)
1920 {
1921 struct page *page = container_of(h, struct page, rcu_head);
1922
1923 __free_slab(page->slab_cache, page);
1924 }
1925
1926 static void free_slab(struct kmem_cache *s, struct page *page)
1927 {
1928 if (unlikely(s->flags & SLAB_TYPESAFE_BY_RCU)) {
1929 call_rcu(&page->rcu_head, rcu_free_slab);
1930 } else
1931 __free_slab(s, page);
1932 }
1933
1934 static void discard_slab(struct kmem_cache *s, struct page *page)
1935 {
1936 dec_slabs_node(s, page_to_nid(page), page->objects);
1937 free_slab(s, page);
1938 }
1939
1940 /*
1941 * Management of partially allocated slabs.
1942 */
1943 static inline void
1944 __add_partial(struct kmem_cache_node *n, struct page *page, int tail)
1945 {
1946 n->nr_partial++;
1947 if (tail == DEACTIVATE_TO_TAIL)
1948 list_add_tail(&page->slab_list, &n->partial);
1949 else
1950 list_add(&page->slab_list, &n->partial);
1951 }
1952
1953 static inline void add_partial(struct kmem_cache_node *n,
1954 struct page *page, int tail)
1955 {
1956 lockdep_assert_held(&n->list_lock);
1957 __add_partial(n, page, tail);
1958 }
1959
1960 static inline void remove_partial(struct kmem_cache_node *n,
1961 struct page *page)
1962 {
1963 lockdep_assert_held(&n->list_lock);
1964 list_del(&page->slab_list);
1965 n->nr_partial--;
1966 }
1967
1968 /*
1969 * Remove slab from the partial list, freeze it and
1970 * return the pointer to the freelist.
1971 *
1972 * Returns a list of objects or NULL if it fails.
1973 */
1974 static inline void *acquire_slab(struct kmem_cache *s,
1975 struct kmem_cache_node *n, struct page *page,
1976 int mode, int *objects)
1977 {
1978 void *freelist;
1979 unsigned long counters;
1980 struct page new;
1981
1982 lockdep_assert_held(&n->list_lock);
1983
1984 /*
1985 * Zap the freelist and set the frozen bit.
1986 * The old freelist is the list of objects for the
1987 * per cpu allocation list.
1988 */
1989 freelist = page->freelist;
1990 counters = page->counters;
1991 new.counters = counters;
1992 *objects = new.objects - new.inuse;
1993 if (mode) {
1994 new.inuse = page->objects;
1995 new.freelist = NULL;
1996 } else {
1997 new.freelist = freelist;
1998 }
1999
2000 VM_BUG_ON(new.frozen);
2001 new.frozen = 1;
2002
2003 if (!__cmpxchg_double_slab(s, page,
2004 freelist, counters,
2005 new.freelist, new.counters,
2006 "acquire_slab"))
2007 return NULL;
2008
2009 remove_partial(n, page);
2010 WARN_ON(!freelist);
2011 return freelist;
2012 }
2013
2014 static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain);
2015 static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags);
2016
2017 /*
2018 * Try to allocate a partial slab from a specific node.
2019 */
2020 static void *get_partial_node(struct kmem_cache *s, struct kmem_cache_node *n,
2021 struct kmem_cache_cpu *c, gfp_t flags)
2022 {
2023 struct page *page, *page2;
2024 void *object = NULL;
2025 unsigned int available = 0;
2026 int objects;
2027
2028 /*
2029 * Racy check. If we mistakenly see no partial slabs then we
2030 * just allocate an empty slab. If we mistakenly try to get a
2031 * partial slab and there is none available then get_partial()
2032 * will return NULL.
2033 */
2034 if (!n || !n->nr_partial)
2035 return NULL;
2036
2037 spin_lock(&n->list_lock);
2038 list_for_each_entry_safe(page, page2, &n->partial, slab_list) {
2039 void *t;
2040
2041 if (!pfmemalloc_match(page, flags))
2042 continue;
2043
2044 t = acquire_slab(s, n, page, object == NULL, &objects);
2045 if (!t)
2046 break;
2047
2048 available += objects;
2049 if (!object) {
2050 c->page = page;
2051 stat(s, ALLOC_FROM_PARTIAL);
2052 object = t;
2053 } else {
2054 put_cpu_partial(s, page, 0);
2055 stat(s, CPU_PARTIAL_NODE);
2056 }
2057 if (!kmem_cache_has_cpu_partial(s)
2058 || available > slub_cpu_partial(s) / 2)
2059 break;
2060
2061 }
2062 spin_unlock(&n->list_lock);
2063 return object;
2064 }
2065
2066 /*
2067 * Get a page from somewhere. Search in increasing NUMA distances.
2068 */
2069 static void *get_any_partial(struct kmem_cache *s, gfp_t flags,
2070 struct kmem_cache_cpu *c)
2071 {
2072 #ifdef CONFIG_NUMA
2073 struct zonelist *zonelist;
2074 struct zoneref *z;
2075 struct zone *zone;
2076 enum zone_type highest_zoneidx = gfp_zone(flags);
2077 void *object;
2078 unsigned int cpuset_mems_cookie;
2079
2080 /*
2081 * The defrag ratio allows a configuration of the tradeoffs between
2082 * inter node defragmentation and node local allocations. A lower
2083 * defrag_ratio increases the tendency to do local allocations
2084 * instead of attempting to obtain partial slabs from other nodes.
2085 *
2086 * If the defrag_ratio is set to 0 then kmalloc() always
2087 * returns node local objects. If the ratio is higher then kmalloc()
2088 * may return off node objects because partial slabs are obtained
2089 * from other nodes and filled up.
2090 *
2091 * If /sys/kernel/slab/xx/remote_node_defrag_ratio is set to 100
2092 * (which makes defrag_ratio = 1000) then every (well almost)
2093 * allocation will first attempt to defrag slab caches on other nodes.
2094 * This means scanning over all nodes to look for partial slabs which
2095 * may be expensive if we do it every time we are trying to find a slab
2096 * with available objects.
2097 */
2098 if (!s->remote_node_defrag_ratio ||
2099 get_cycles() % 1024 > s->remote_node_defrag_ratio)
2100 return NULL;
2101
2102 do {
2103 cpuset_mems_cookie = read_mems_allowed_begin();
2104 zonelist = node_zonelist(mempolicy_slab_node(), flags);
2105 for_each_zone_zonelist(zone, z, zonelist, highest_zoneidx) {
2106 struct kmem_cache_node *n;
2107
2108 n = get_node(s, zone_to_nid(zone));
2109
2110 if (n && cpuset_zone_allowed(zone, flags) &&
2111 n->nr_partial > s->min_partial) {
2112 object = get_partial_node(s, n, c, flags);
2113 if (object) {
2114 /*
2115 * Don't check read_mems_allowed_retry()
2116 * here - if mems_allowed was updated in
2117 * parallel, that was a harmless race
2118 * between allocation and the cpuset
2119 * update
2120 */
2121 return object;
2122 }
2123 }
2124 }
2125 } while (read_mems_allowed_retry(cpuset_mems_cookie));
2126 #endif /* CONFIG_NUMA */
2127 return NULL;
2128 }
2129
2130 /*
2131 * Get a partial page, lock it and return it.
2132 */
2133 static void *get_partial(struct kmem_cache *s, gfp_t flags, int node,
2134 struct kmem_cache_cpu *c)
2135 {
2136 void *object;
2137 int searchnode = node;
2138
2139 if (node == NUMA_NO_NODE)
2140 searchnode = numa_mem_id();
2141
2142 object = get_partial_node(s, get_node(s, searchnode), c, flags);
2143 if (object || node != NUMA_NO_NODE)
2144 return object;
2145
2146 return get_any_partial(s, flags, c);
2147 }
2148
2149 #ifdef CONFIG_PREEMPTION
2150 /*
2151 * Calculate the next globally unique transaction for disambiguation
2152 * during cmpxchg. The transactions start with the cpu number and are then
2153 * incremented by CONFIG_NR_CPUS.
2154 */
2155 #define TID_STEP roundup_pow_of_two(CONFIG_NR_CPUS)
2156 #else
2157 /*
2158 * No preemption supported therefore also no need to check for
2159 * different cpus.
2160 */
2161 #define TID_STEP 1
2162 #endif
2163
2164 static inline unsigned long next_tid(unsigned long tid)
2165 {
2166 return tid + TID_STEP;
2167 }
2168
2169 #ifdef SLUB_DEBUG_CMPXCHG
2170 static inline unsigned int tid_to_cpu(unsigned long tid)
2171 {
2172 return tid % TID_STEP;
2173 }
2174
2175 static inline unsigned long tid_to_event(unsigned long tid)
2176 {
2177 return tid / TID_STEP;
2178 }
2179 #endif
2180
2181 static inline unsigned int init_tid(int cpu)
2182 {
2183 return cpu;
2184 }
2185
2186 static inline void note_cmpxchg_failure(const char *n,
2187 const struct kmem_cache *s, unsigned long tid)
2188 {
2189 #ifdef SLUB_DEBUG_CMPXCHG
2190 unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);
2191
2192 pr_info("%s %s: cmpxchg redo ", n, s->name);
2193
2194 #ifdef CONFIG_PREEMPTION
2195 if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
2196 pr_warn("due to cpu change %d -> %d\n",
2197 tid_to_cpu(tid), tid_to_cpu(actual_tid));
2198 else
2199 #endif
2200 if (tid_to_event(tid) != tid_to_event(actual_tid))
2201 pr_warn("due to cpu running other code. Event %ld->%ld\n",
2202 tid_to_event(tid), tid_to_event(actual_tid));
2203 else
2204 pr_warn("for unknown reason: actual=%lx was=%lx target=%lx\n",
2205 actual_tid, tid, next_tid(tid));
2206 #endif
2207 stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
2208 }
2209
2210 static void init_kmem_cache_cpus(struct kmem_cache *s)
2211 {
2212 int cpu;
2213
2214 for_each_possible_cpu(cpu)
2215 per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu);
2216 }
2217
2218 /*
2219 * Remove the cpu slab
2220 */
2221 static void deactivate_slab(struct kmem_cache *s, struct page *page,
2222 void *freelist, struct kmem_cache_cpu *c)
2223 {
2224 enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE };
2225 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
2226 int lock = 0, free_delta = 0;
2227 enum slab_modes l = M_NONE, m = M_NONE;
2228 void *nextfree, *freelist_iter, *freelist_tail;
2229 int tail = DEACTIVATE_TO_HEAD;
2230 struct page new;
2231 struct page old;
2232
2233 if (page->freelist) {
2234 stat(s, DEACTIVATE_REMOTE_FREES);
2235 tail = DEACTIVATE_TO_TAIL;
2236 }
2237
2238 /*
2239 * Stage one: Count the objects on cpu's freelist as free_delta and
2240 * remember the last object in freelist_tail for later splicing.
2241 */
2242 freelist_tail = NULL;
2243 freelist_iter = freelist;
2244 while (freelist_iter) {
2245 nextfree = get_freepointer(s, freelist_iter);
2246
2247 /*
2248 * If 'nextfree' is invalid, it is possible that the object at
2249 * 'freelist_iter' is already corrupted. So isolate all objects
2250 * starting at 'freelist_iter' by skipping them.
2251 */
2252 if (freelist_corrupted(s, page, &freelist_iter, nextfree))
2253 break;
2254
2255 freelist_tail = freelist_iter;
2256 free_delta++;
2257
2258 freelist_iter = nextfree;
2259 }
2260
2261 /*
2262 * Stage two: Unfreeze the page while splicing the per-cpu
2263 * freelist to the head of page's freelist.
2264 *
2265 * Ensure that the page is unfrozen while the list presence
2266 * reflects the actual number of objects during unfreeze.
2267 *
2268 * We setup the list membership and then perform a cmpxchg
2269 * with the count. If there is a mismatch then the page
2270 * is not unfrozen but the page is on the wrong list.
2271 *
2272 * Then we restart the process which may have to remove
2273 * the page from the list that we just put it on again
2274 * because the number of objects in the slab may have
2275 * changed.
2276 */
2277 redo:
2278
2279 old.freelist = READ_ONCE(page->freelist);
2280 old.counters = READ_ONCE(page->counters);
2281 VM_BUG_ON(!old.frozen);
2282
2283 /* Determine target state of the slab */
2284 new.counters = old.counters;
2285 if (freelist_tail) {
2286 new.inuse -= free_delta;
2287 set_freepointer(s, freelist_tail, old.freelist);
2288 new.freelist = freelist;
2289 } else
2290 new.freelist = old.freelist;
2291
2292 new.frozen = 0;
2293
2294 if (!new.inuse && n->nr_partial >= s->min_partial)
2295 m = M_FREE;
2296 else if (new.freelist) {
2297 m = M_PARTIAL;
2298 if (!lock) {
2299 lock = 1;
2300 /*
2301 * Taking the spinlock removes the possibility
2302 * that acquire_slab() will see a slab page that
2303 * is frozen
2304 */
2305 spin_lock(&n->list_lock);
2306 }
2307 } else {
2308 m = M_FULL;
2309 if (kmem_cache_debug_flags(s, SLAB_STORE_USER) && !lock) {
2310 lock = 1;
2311 /*
2312 * This also ensures that the scanning of full
2313 * slabs from diagnostic functions will not see
2314 * any frozen slabs.
2315 */
2316 spin_lock(&n->list_lock);
2317 }
2318 }
2319
2320 if (l != m) {
2321 if (l == M_PARTIAL)
2322 remove_partial(n, page);
2323 else if (l == M_FULL)
2324 remove_full(s, n, page);
2325
2326 if (m == M_PARTIAL)
2327 add_partial(n, page, tail);
2328 else if (m == M_FULL)
2329 add_full(s, n, page);
2330 }
2331
2332 l = m;
2333 if (!__cmpxchg_double_slab(s, page,
2334 old.freelist, old.counters,
2335 new.freelist, new.counters,
2336 "unfreezing slab"))
2337 goto redo;
2338
2339 if (lock)
2340 spin_unlock(&n->list_lock);
2341
2342 if (m == M_PARTIAL)
2343 stat(s, tail);
2344 else if (m == M_FULL)
2345 stat(s, DEACTIVATE_FULL);
2346 else if (m == M_FREE) {
2347 stat(s, DEACTIVATE_EMPTY);
2348 discard_slab(s, page);
2349 stat(s, FREE_SLAB);
2350 }
2351
2352 c->page = NULL;
2353 c->freelist = NULL;
2354 }
2355
2356 /*
2357 * Unfreeze all the cpu partial slabs.
2358 *
2359 * This function must be called with interrupts disabled
2360 * for the cpu using c (or some other guarantee must be there
2361 * to guarantee no concurrent accesses).
2362 */
2363 static void unfreeze_partials(struct kmem_cache *s,
2364 struct kmem_cache_cpu *c)
2365 {
2366 #ifdef CONFIG_SLUB_CPU_PARTIAL
2367 struct kmem_cache_node *n = NULL, *n2 = NULL;
2368 struct page *page, *discard_page = NULL;
2369
2370 while ((page = slub_percpu_partial(c))) {
2371 struct page new;
2372 struct page old;
2373
2374 slub_set_percpu_partial(c, page);
2375
2376 n2 = get_node(s, page_to_nid(page));
2377 if (n != n2) {
2378 if (n)
2379 spin_unlock(&n->list_lock);
2380
2381 n = n2;
2382 spin_lock(&n->list_lock);
2383 }
2384
2385 do {
2386
2387 old.freelist = page->freelist;
2388 old.counters = page->counters;
2389 VM_BUG_ON(!old.frozen);
2390
2391 new.counters = old.counters;
2392 new.freelist = old.freelist;
2393
2394 new.frozen = 0;
2395
2396 } while (!__cmpxchg_double_slab(s, page,
2397 old.freelist, old.counters,
2398 new.freelist, new.counters,
2399 "unfreezing slab"));
2400
2401 if (unlikely(!new.inuse && n->nr_partial >= s->min_partial)) {
2402 page->next = discard_page;
2403 discard_page = page;
2404 } else {
2405 add_partial(n, page, DEACTIVATE_TO_TAIL);
2406 stat(s, FREE_ADD_PARTIAL);
2407 }
2408 }
2409
2410 if (n)
2411 spin_unlock(&n->list_lock);
2412
2413 while (discard_page) {
2414 page = discard_page;
2415 discard_page = discard_page->next;
2416
2417 stat(s, DEACTIVATE_EMPTY);
2418 discard_slab(s, page);
2419 stat(s, FREE_SLAB);
2420 }
2421 #endif /* CONFIG_SLUB_CPU_PARTIAL */
2422 }
2423
2424 /*
2425 * Put a page that was just frozen (in __slab_free|get_partial_node) into a
2426 * partial page slot if available.
2427 *
2428 * If we did not find a slot then simply move all the partials to the
2429 * per node partial list.
2430 */
2431 static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain)
2432 {
2433 #ifdef CONFIG_SLUB_CPU_PARTIAL
2434 struct page *oldpage;
2435 int pages;
2436 int pobjects;
2437
2438 preempt_disable();
2439 do {
2440 pages = 0;
2441 pobjects = 0;
2442 oldpage = this_cpu_read(s->cpu_slab->partial);
2443
2444 if (oldpage) {
2445 pobjects = oldpage->pobjects;
2446 pages = oldpage->pages;
2447 if (drain && pobjects > slub_cpu_partial(s)) {
2448 unsigned long flags;
2449 /*
2450 * partial array is full. Move the existing
2451 * set to the per node partial list.
2452 */
2453 local_irq_save(flags);
2454 unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
2455 local_irq_restore(flags);
2456 oldpage = NULL;
2457 pobjects = 0;
2458 pages = 0;
2459 stat(s, CPU_PARTIAL_DRAIN);
2460 }
2461 }
2462
2463 pages++;
2464 pobjects += page->objects - page->inuse;
2465
2466 page->pages = pages;
2467 page->pobjects = pobjects;
2468 page->next = oldpage;
2469
2470 } while (this_cpu_cmpxchg(s->cpu_slab->partial, oldpage, page)
2471 != oldpage);
2472 if (unlikely(!slub_cpu_partial(s))) {
2473 unsigned long flags;
2474
2475 local_irq_save(flags);
2476 unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
2477 local_irq_restore(flags);
2478 }
2479 preempt_enable();
2480 #endif /* CONFIG_SLUB_CPU_PARTIAL */
2481 }
2482
2483 static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
2484 {
2485 stat(s, CPUSLAB_FLUSH);
2486 deactivate_slab(s, c->page, c->freelist, c);
2487
2488 c->tid = next_tid(c->tid);
2489 }
2490
2491 /*
2492 * Flush cpu slab.
2493 *
2494 * Called from IPI handler with interrupts disabled.
2495 */
2496 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
2497 {
2498 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2499
2500 if (c->page)
2501 flush_slab(s, c);
2502
2503 unfreeze_partials(s, c);
2504 }
2505
2506 static void flush_cpu_slab(void *d)
2507 {
2508 struct kmem_cache *s = d;
2509
2510 __flush_cpu_slab(s, smp_processor_id());
2511 }
2512
2513 static bool has_cpu_slab(int cpu, void *info)
2514 {
2515 struct kmem_cache *s = info;
2516 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2517
2518 return c->page || slub_percpu_partial(c);
2519 }
2520
2521 static void flush_all(struct kmem_cache *s)
2522 {
2523 on_each_cpu_cond(has_cpu_slab, flush_cpu_slab, s, 1);
2524 }
2525
2526 /*
2527 * Use the cpu notifier to insure that the cpu slabs are flushed when
2528 * necessary.
2529 */
2530 static int slub_cpu_dead(unsigned int cpu)
2531 {
2532 struct kmem_cache *s;
2533 unsigned long flags;
2534
2535 mutex_lock(&slab_mutex);
2536 list_for_each_entry(s, &slab_caches, list) {
2537 local_irq_save(flags);
2538 __flush_cpu_slab(s, cpu);
2539 local_irq_restore(flags);
2540 }
2541 mutex_unlock(&slab_mutex);
2542 return 0;
2543 }
2544
2545 /*
2546 * Check if the objects in a per cpu structure fit numa
2547 * locality expectations.
2548 */
2549 static inline int node_match(struct page *page, int node)
2550 {
2551 #ifdef CONFIG_NUMA
2552 if (node != NUMA_NO_NODE && page_to_nid(page) != node)
2553 return 0;
2554 #endif
2555 return 1;
2556 }
2557
2558 #ifdef CONFIG_SLUB_DEBUG
2559 static int count_free(struct page *page)
2560 {
2561 return page->objects - page->inuse;
2562 }
2563
2564 static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
2565 {
2566 return atomic_long_read(&n->total_objects);
2567 }
2568 #endif /* CONFIG_SLUB_DEBUG */
2569
2570 #if defined(CONFIG_SLUB_DEBUG) || defined(CONFIG_SYSFS)
2571 static unsigned long count_partial(struct kmem_cache_node *n,
2572 int (*get_count)(struct page *))
2573 {
2574 unsigned long flags;
2575 unsigned long x = 0;
2576 struct page *page;
2577
2578 spin_lock_irqsave(&n->list_lock, flags);
2579 list_for_each_entry(page, &n->partial, slab_list)
2580 x += get_count(page);
2581 spin_unlock_irqrestore(&n->list_lock, flags);
2582 return x;
2583 }
2584 #endif /* CONFIG_SLUB_DEBUG || CONFIG_SYSFS */
2585
2586 static noinline void
2587 slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
2588 {
2589 #ifdef CONFIG_SLUB_DEBUG
2590 static DEFINE_RATELIMIT_STATE(slub_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
2591 DEFAULT_RATELIMIT_BURST);
2592 int node;
2593 struct kmem_cache_node *n;
2594
2595 if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slub_oom_rs))
2596 return;
2597
2598 pr_warn("SLUB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n",
2599 nid, gfpflags, &gfpflags);
2600 pr_warn(" cache: %s, object size: %u, buffer size: %u, default order: %u, min order: %u\n",
2601 s->name, s->object_size, s->size, oo_order(s->oo),
2602 oo_order(s->min));
2603
2604 if (oo_order(s->min) > get_order(s->object_size))
2605 pr_warn(" %s debugging increased min order, use slub_debug=O to disable.\n",
2606 s->name);
2607
2608 for_each_kmem_cache_node(s, node, n) {
2609 unsigned long nr_slabs;
2610 unsigned long nr_objs;
2611 unsigned long nr_free;
2612
2613 nr_free = count_partial(n, count_free);
2614 nr_slabs = node_nr_slabs(n);
2615 nr_objs = node_nr_objs(n);
2616
2617 pr_warn(" node %d: slabs: %ld, objs: %ld, free: %ld\n",
2618 node, nr_slabs, nr_objs, nr_free);
2619 }
2620 #endif
2621 }
2622
2623 static inline void *new_slab_objects(struct kmem_cache *s, gfp_t flags,
2624 int node, struct kmem_cache_cpu **pc)
2625 {
2626 void *freelist;
2627 struct kmem_cache_cpu *c = *pc;
2628 struct page *page;
2629
2630 WARN_ON_ONCE(s->ctor && (flags & __GFP_ZERO));
2631
2632 freelist = get_partial(s, flags, node, c);
2633
2634 if (freelist)
2635 return freelist;
2636
2637 page = new_slab(s, flags, node);
2638 if (page) {
2639 c = raw_cpu_ptr(s->cpu_slab);
2640 if (c->page)
2641 flush_slab(s, c);
2642
2643 /*
2644 * No other reference to the page yet so we can
2645 * muck around with it freely without cmpxchg
2646 */
2647 freelist = page->freelist;
2648 page->freelist = NULL;
2649
2650 stat(s, ALLOC_SLAB);
2651 c->page = page;
2652 *pc = c;
2653 }
2654
2655 return freelist;
2656 }
2657
2658 static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags)
2659 {
2660 if (unlikely(PageSlabPfmemalloc(page)))
2661 return gfp_pfmemalloc_allowed(gfpflags);
2662
2663 return true;
2664 }
2665
2666 /*
2667 * Check the page->freelist of a page and either transfer the freelist to the
2668 * per cpu freelist or deactivate the page.
2669 *
2670 * The page is still frozen if the return value is not NULL.
2671 *
2672 * If this function returns NULL then the page has been unfrozen.
2673 *
2674 * This function must be called with interrupt disabled.
2675 */
2676 static inline void *get_freelist(struct kmem_cache *s, struct page *page)
2677 {
2678 struct page new;
2679 unsigned long counters;
2680 void *freelist;
2681
2682 do {
2683 freelist = page->freelist;
2684 counters = page->counters;
2685
2686 new.counters = counters;
2687 VM_BUG_ON(!new.frozen);
2688
2689 new.inuse = page->objects;
2690 new.frozen = freelist != NULL;
2691
2692 } while (!__cmpxchg_double_slab(s, page,
2693 freelist, counters,
2694 NULL, new.counters,
2695 "get_freelist"));
2696
2697 return freelist;
2698 }
2699
2700 /*
2701 * Slow path. The lockless freelist is empty or we need to perform
2702 * debugging duties.
2703 *
2704 * Processing is still very fast if new objects have been freed to the
2705 * regular freelist. In that case we simply take over the regular freelist
2706 * as the lockless freelist and zap the regular freelist.
2707 *
2708 * If that is not working then we fall back to the partial lists. We take the
2709 * first element of the freelist as the object to allocate now and move the
2710 * rest of the freelist to the lockless freelist.
2711 *
2712 * And if we were unable to get a new slab from the partial slab lists then
2713 * we need to allocate a new slab. This is the slowest path since it involves
2714 * a call to the page allocator and the setup of a new slab.
2715 *
2716 * Version of __slab_alloc to use when we know that interrupts are
2717 * already disabled (which is the case for bulk allocation).
2718 */
2719 static void *___slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
2720 unsigned long addr, struct kmem_cache_cpu *c)
2721 {
2722 void *freelist;
2723 struct page *page;
2724
2725 stat(s, ALLOC_SLOWPATH);
2726
2727 page = c->page;
2728 if (!page) {
2729 /*
2730 * if the node is not online or has no normal memory, just
2731 * ignore the node constraint
2732 */
2733 if (unlikely(node != NUMA_NO_NODE &&
2734 !node_isset(node, slab_nodes)))
2735 node = NUMA_NO_NODE;
2736 goto new_slab;
2737 }
2738 redo:
2739
2740 if (unlikely(!node_match(page, node))) {
2741 /*
2742 * same as above but node_match() being false already
2743 * implies node != NUMA_NO_NODE
2744 */
2745 if (!node_isset(node, slab_nodes)) {
2746 node = NUMA_NO_NODE;
2747 goto redo;
2748 } else {
2749 stat(s, ALLOC_NODE_MISMATCH);
2750 deactivate_slab(s, page, c->freelist, c);
2751 goto new_slab;
2752 }
2753 }
2754
2755 /*
2756 * By rights, we should be searching for a slab page that was
2757 * PFMEMALLOC but right now, we are losing the pfmemalloc
2758 * information when the page leaves the per-cpu allocator
2759 */
2760 if (unlikely(!pfmemalloc_match(page, gfpflags))) {
2761 deactivate_slab(s, page, c->freelist, c);
2762 goto new_slab;
2763 }
2764
2765 /* must check again c->freelist in case of cpu migration or IRQ */
2766 freelist = c->freelist;
2767 if (freelist)
2768 goto load_freelist;
2769
2770 freelist = get_freelist(s, page);
2771
2772 if (!freelist) {
2773 c->page = NULL;
2774 stat(s, DEACTIVATE_BYPASS);
2775 goto new_slab;
2776 }
2777
2778 stat(s, ALLOC_REFILL);
2779
2780 load_freelist:
2781 /*
2782 * freelist is pointing to the list of objects to be used.
2783 * page is pointing to the page from which the objects are obtained.
2784 * That page must be frozen for per cpu allocations to work.
2785 */
2786 VM_BUG_ON(!c->page->frozen);
2787 c->freelist = get_freepointer(s, freelist);
2788 c->tid = next_tid(c->tid);
2789 return freelist;
2790
2791 new_slab:
2792
2793 if (slub_percpu_partial(c)) {
2794 page = c->page = slub_percpu_partial(c);
2795 slub_set_percpu_partial(c, page);
2796 stat(s, CPU_PARTIAL_ALLOC);
2797 goto redo;
2798 }
2799
2800 freelist = new_slab_objects(s, gfpflags, node, &c);
2801
2802 if (unlikely(!freelist)) {
2803 slab_out_of_memory(s, gfpflags, node);
2804 return NULL;
2805 }
2806
2807 page = c->page;
2808 if (likely(!kmem_cache_debug(s) && pfmemalloc_match(page, gfpflags)))
2809 goto load_freelist;
2810
2811 /* Only entered in the debug case */
2812 if (kmem_cache_debug(s) &&
2813 !alloc_debug_processing(s, page, freelist, addr))
2814 goto new_slab; /* Slab failed checks. Next slab needed */
2815
2816 deactivate_slab(s, page, get_freepointer(s, freelist), c);
2817 return freelist;
2818 }
2819
2820 /*
2821 * Another one that disabled interrupt and compensates for possible
2822 * cpu changes by refetching the per cpu area pointer.
2823 */
2824 static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
2825 unsigned long addr, struct kmem_cache_cpu *c)
2826 {
2827 void *p;
2828 unsigned long flags;
2829
2830 local_irq_save(flags);
2831 #ifdef CONFIG_PREEMPTION
2832 /*
2833 * We may have been preempted and rescheduled on a different
2834 * cpu before disabling interrupts. Need to reload cpu area
2835 * pointer.
2836 */
2837 c = this_cpu_ptr(s->cpu_slab);
2838 #endif
2839
2840 p = ___slab_alloc(s, gfpflags, node, addr, c);
2841 local_irq_restore(flags);
2842 return p;
2843 }
2844
2845 /*
2846 * If the object has been wiped upon free, make sure it's fully initialized by
2847 * zeroing out freelist pointer.
2848 */
2849 static __always_inline void maybe_wipe_obj_freeptr(struct kmem_cache *s,
2850 void *obj)
2851 {
2852 if (unlikely(slab_want_init_on_free(s)) && obj)
2853 memset((void *)((char *)kasan_reset_tag(obj) + s->offset),
2854 0, sizeof(void *));
2855 }
2856
2857 /*
2858 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
2859 * have the fastpath folded into their functions. So no function call
2860 * overhead for requests that can be satisfied on the fastpath.
2861 *
2862 * The fastpath works by first checking if the lockless freelist can be used.
2863 * If not then __slab_alloc is called for slow processing.
2864 *
2865 * Otherwise we can simply pick the next object from the lockless free list.
2866 */
2867 static __always_inline void *slab_alloc_node(struct kmem_cache *s,
2868 gfp_t gfpflags, int node, unsigned long addr, size_t orig_size)
2869 {
2870 void *object;
2871 struct kmem_cache_cpu *c;
2872 struct page *page;
2873 unsigned long tid;
2874 struct obj_cgroup *objcg = NULL;
2875 bool init = false;
2876
2877 s = slab_pre_alloc_hook(s, &objcg, 1, gfpflags);
2878 if (!s)
2879 return NULL;
2880
2881 object = kfence_alloc(s, orig_size, gfpflags);
2882 if (unlikely(object))
2883 goto out;
2884
2885 redo:
2886 /*
2887 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
2888 * enabled. We may switch back and forth between cpus while
2889 * reading from one cpu area. That does not matter as long
2890 * as we end up on the original cpu again when doing the cmpxchg.
2891 *
2892 * We should guarantee that tid and kmem_cache are retrieved on
2893 * the same cpu. It could be different if CONFIG_PREEMPTION so we need
2894 * to check if it is matched or not.
2895 */
2896 do {
2897 tid = this_cpu_read(s->cpu_slab->tid);
2898 c = raw_cpu_ptr(s->cpu_slab);
2899 } while (IS_ENABLED(CONFIG_PREEMPTION) &&
2900 unlikely(tid != READ_ONCE(c->tid)));
2901
2902 /*
2903 * Irqless object alloc/free algorithm used here depends on sequence
2904 * of fetching cpu_slab's data. tid should be fetched before anything
2905 * on c to guarantee that object and page associated with previous tid
2906 * won't be used with current tid. If we fetch tid first, object and
2907 * page could be one associated with next tid and our alloc/free
2908 * request will be failed. In this case, we will retry. So, no problem.
2909 */
2910 barrier();
2911
2912 /*
2913 * The transaction ids are globally unique per cpu and per operation on
2914 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
2915 * occurs on the right processor and that there was no operation on the
2916 * linked list in between.
2917 */
2918
2919 object = c->freelist;
2920 page = c->page;
2921 if (unlikely(!object || !page || !node_match(page, node))) {
2922 object = __slab_alloc(s, gfpflags, node, addr, c);
2923 } else {
2924 void *next_object = get_freepointer_safe(s, object);
2925
2926 /*
2927 * The cmpxchg will only match if there was no additional
2928 * operation and if we are on the right processor.
2929 *
2930 * The cmpxchg does the following atomically (without lock
2931 * semantics!)
2932 * 1. Relocate first pointer to the current per cpu area.
2933 * 2. Verify that tid and freelist have not been changed
2934 * 3. If they were not changed replace tid and freelist
2935 *
2936 * Since this is without lock semantics the protection is only
2937 * against code executing on this cpu *not* from access by
2938 * other cpus.
2939 */
2940 if (unlikely(!this_cpu_cmpxchg_double(
2941 s->cpu_slab->freelist, s->cpu_slab->tid,
2942 object, tid,
2943 next_object, next_tid(tid)))) {
2944
2945 note_cmpxchg_failure("slab_alloc", s, tid);
2946 goto redo;
2947 }
2948 prefetch_freepointer(s, next_object);
2949 stat(s, ALLOC_FASTPATH);
2950 }
2951
2952 maybe_wipe_obj_freeptr(s, object);
2953 init = slab_want_init_on_alloc(gfpflags, s);
2954
2955 out:
2956 slab_post_alloc_hook(s, objcg, gfpflags, 1, &object, init);
2957
2958 return object;
2959 }
2960
2961 static __always_inline void *slab_alloc(struct kmem_cache *s,
2962 gfp_t gfpflags, unsigned long addr, size_t orig_size)
2963 {
2964 return slab_alloc_node(s, gfpflags, NUMA_NO_NODE, addr, orig_size);
2965 }
2966
2967 void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
2968 {
2969 void *ret = slab_alloc(s, gfpflags, _RET_IP_, s->object_size);
2970
2971 trace_kmem_cache_alloc(_RET_IP_, ret, s->object_size,
2972 s->size, gfpflags);
2973
2974 return ret;
2975 }
2976 EXPORT_SYMBOL(kmem_cache_alloc);
2977
2978 #ifdef CONFIG_TRACING
2979 void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
2980 {
2981 void *ret = slab_alloc(s, gfpflags, _RET_IP_, size);
2982 trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags);
2983 ret = kasan_kmalloc(s, ret, size, gfpflags);
2984 return ret;
2985 }
2986 EXPORT_SYMBOL(kmem_cache_alloc_trace);
2987 #endif
2988
2989 #ifdef CONFIG_NUMA
2990 void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
2991 {
2992 void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_, s->object_size);
2993
2994 trace_kmem_cache_alloc_node(_RET_IP_, ret,
2995 s->object_size, s->size, gfpflags, node);
2996
2997 return ret;
2998 }
2999 EXPORT_SYMBOL(kmem_cache_alloc_node);
3000
3001 #ifdef CONFIG_TRACING
3002 void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
3003 gfp_t gfpflags,
3004 int node, size_t size)
3005 {
3006 void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_, size);
3007
3008 trace_kmalloc_node(_RET_IP_, ret,
3009 size, s->size, gfpflags, node);
3010
3011 ret = kasan_kmalloc(s, ret, size, gfpflags);
3012 return ret;
3013 }
3014 EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
3015 #endif
3016 #endif /* CONFIG_NUMA */
3017
3018 /*
3019 * Slow path handling. This may still be called frequently since objects
3020 * have a longer lifetime than the cpu slabs in most processing loads.
3021 *
3022 * So we still attempt to reduce cache line usage. Just take the slab
3023 * lock and free the item. If there is no additional partial page
3024 * handling required then we can return immediately.
3025 */
3026 static void __slab_free(struct kmem_cache *s, struct page *page,
3027 void *head, void *tail, int cnt,
3028 unsigned long addr)
3029
3030 {
3031 void *prior;
3032 int was_frozen;
3033 struct page new;
3034 unsigned long counters;
3035 struct kmem_cache_node *n = NULL;
3036 unsigned long flags;
3037
3038 stat(s, FREE_SLOWPATH);
3039
3040 if (kfence_free(head))
3041 return;
3042
3043 if (kmem_cache_debug(s) &&
3044 !free_debug_processing(s, page, head, tail, cnt, addr))
3045 return;
3046
3047 do {
3048 if (unlikely(n)) {
3049 spin_unlock_irqrestore(&n->list_lock, flags);
3050 n = NULL;
3051 }
3052 prior = page->freelist;
3053 counters = page->counters;
3054 set_freepointer(s, tail, prior);
3055 new.counters = counters;
3056 was_frozen = new.frozen;
3057 new.inuse -= cnt;
3058 if ((!new.inuse || !prior) && !was_frozen) {
3059
3060 if (kmem_cache_has_cpu_partial(s) && !prior) {
3061
3062 /*
3063 * Slab was on no list before and will be
3064 * partially empty
3065 * We can defer the list move and instead
3066 * freeze it.
3067 */
3068 new.frozen = 1;
3069
3070 } else { /* Needs to be taken off a list */
3071
3072 n = get_node(s, page_to_nid(page));
3073 /*
3074 * Speculatively acquire the list_lock.
3075 * If the cmpxchg does not succeed then we may
3076 * drop the list_lock without any processing.
3077 *
3078 * Otherwise the list_lock will synchronize with
3079 * other processors updating the list of slabs.
3080 */
3081 spin_lock_irqsave(&n->list_lock, flags);
3082
3083 }
3084 }
3085
3086 } while (!cmpxchg_double_slab(s, page,
3087 prior, counters,
3088 head, new.counters,
3089 "__slab_free"));
3090
3091 if (likely(!n)) {
3092
3093 if (likely(was_frozen)) {
3094 /*
3095 * The list lock was not taken therefore no list
3096 * activity can be necessary.
3097 */
3098 stat(s, FREE_FROZEN);
3099 } else if (new.frozen) {
3100 /*
3101 * If we just froze the page then put it onto the
3102 * per cpu partial list.
3103 */
3104 put_cpu_partial(s, page, 1);
3105 stat(s, CPU_PARTIAL_FREE);
3106 }
3107
3108 return;
3109 }
3110
3111 if (unlikely(!new.inuse && n->nr_partial >= s->min_partial))
3112 goto slab_empty;
3113
3114 /*
3115 * Objects left in the slab. If it was not on the partial list before
3116 * then add it.
3117 */
3118 if (!kmem_cache_has_cpu_partial(s) && unlikely(!prior)) {
3119 remove_full(s, n, page);
3120 add_partial(n, page, DEACTIVATE_TO_TAIL);
3121 stat(s, FREE_ADD_PARTIAL);
3122 }
3123 spin_unlock_irqrestore(&n->list_lock, flags);
3124 return;
3125
3126 slab_empty:
3127 if (prior) {
3128 /*
3129 * Slab on the partial list.
3130 */
3131 remove_partial(n, page);
3132 stat(s, FREE_REMOVE_PARTIAL);
3133 } else {
3134 /* Slab must be on the full list */
3135 remove_full(s, n, page);
3136 }
3137
3138 spin_unlock_irqrestore(&n->list_lock, flags);
3139 stat(s, FREE_SLAB);
3140 discard_slab(s, page);
3141 }
3142
3143 /*
3144 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
3145 * can perform fastpath freeing without additional function calls.
3146 *
3147 * The fastpath is only possible if we are freeing to the current cpu slab
3148 * of this processor. This typically the case if we have just allocated
3149 * the item before.
3150 *
3151 * If fastpath is not possible then fall back to __slab_free where we deal
3152 * with all sorts of special processing.
3153 *
3154 * Bulk free of a freelist with several objects (all pointing to the
3155 * same page) possible by specifying head and tail ptr, plus objects
3156 * count (cnt). Bulk free indicated by tail pointer being set.
3157 */
3158 static __always_inline void do_slab_free(struct kmem_cache *s,
3159 struct page *page, void *head, void *tail,
3160 int cnt, unsigned long addr)
3161 {
3162 void *tail_obj = tail ? : head;
3163 struct kmem_cache_cpu *c;
3164 unsigned long tid;
3165
3166 memcg_slab_free_hook(s, &head, 1);
3167 redo:
3168 /*
3169 * Determine the currently cpus per cpu slab.
3170 * The cpu may change afterward. However that does not matter since
3171 * data is retrieved via this pointer. If we are on the same cpu
3172 * during the cmpxchg then the free will succeed.
3173 */
3174 do {
3175 tid = this_cpu_read(s->cpu_slab->tid);
3176 c = raw_cpu_ptr(s->cpu_slab);
3177 } while (IS_ENABLED(CONFIG_PREEMPTION) &&
3178 unlikely(tid != READ_ONCE(c->tid)));
3179
3180 /* Same with comment on barrier() in slab_alloc_node() */
3181 barrier();
3182
3183 if (likely(page == c->page)) {
3184 void **freelist = READ_ONCE(c->freelist);
3185
3186 set_freepointer(s, tail_obj, freelist);
3187
3188 if (unlikely(!this_cpu_cmpxchg_double(
3189 s->cpu_slab->freelist, s->cpu_slab->tid,
3190 freelist, tid,
3191 head, next_tid(tid)))) {
3192
3193 note_cmpxchg_failure("slab_free", s, tid);
3194 goto redo;
3195 }
3196 stat(s, FREE_FASTPATH);
3197 } else
3198 __slab_free(s, page, head, tail_obj, cnt, addr);
3199
3200 }
3201
3202 static __always_inline void slab_free(struct kmem_cache *s, struct page *page,
3203 void *head, void *tail, int cnt,
3204 unsigned long addr)
3205 {
3206 /*
3207 * With KASAN enabled slab_free_freelist_hook modifies the freelist
3208 * to remove objects, whose reuse must be delayed.
3209 */
3210 if (slab_free_freelist_hook(s, &head, &tail))
3211 do_slab_free(s, page, head, tail, cnt, addr);
3212 }
3213
3214 #ifdef CONFIG_KASAN_GENERIC
3215 void ___cache_free(struct kmem_cache *cache, void *x, unsigned long addr)
3216 {
3217 do_slab_free(cache, virt_to_head_page(x), x, NULL, 1, addr);
3218 }
3219 #endif
3220
3221 void kmem_cache_free(struct kmem_cache *s, void *x)
3222 {
3223 s = cache_from_obj(s, x);
3224 if (!s)
3225 return;
3226 slab_free(s, virt_to_head_page(x), x, NULL, 1, _RET_IP_);
3227 trace_kmem_cache_free(_RET_IP_, x, s->name);
3228 }
3229 EXPORT_SYMBOL(kmem_cache_free);
3230
3231 struct detached_freelist {
3232 struct page *page;
3233 void *tail;
3234 void *freelist;
3235 int cnt;
3236 struct kmem_cache *s;
3237 };
3238
3239 static inline void free_nonslab_page(struct page *page)
3240 {
3241 unsigned int order = compound_order(page);
3242
3243 VM_BUG_ON_PAGE(!PageCompound(page), page);
3244 kfree_hook(page_address(page));
3245 mod_lruvec_page_state(page, NR_SLAB_UNRECLAIMABLE_B, -(PAGE_SIZE << order));
3246 __free_pages(page, order);
3247 }
3248
3249 /*
3250 * This function progressively scans the array with free objects (with
3251 * a limited look ahead) and extract objects belonging to the same
3252 * page. It builds a detached freelist directly within the given
3253 * page/objects. This can happen without any need for
3254 * synchronization, because the objects are owned by running process.
3255 * The freelist is build up as a single linked list in the objects.
3256 * The idea is, that this detached freelist can then be bulk
3257 * transferred to the real freelist(s), but only requiring a single
3258 * synchronization primitive. Look ahead in the array is limited due
3259 * to performance reasons.
3260 */
3261 static inline
3262 int build_detached_freelist(struct kmem_cache *s, size_t size,
3263 void **p, struct detached_freelist *df)
3264 {
3265 size_t first_skipped_index = 0;
3266 int lookahead = 3;
3267 void *object;
3268 struct page *page;
3269
3270 /* Always re-init detached_freelist */
3271 df->page = NULL;
3272
3273 do {
3274 object = p[--size];
3275 /* Do we need !ZERO_OR_NULL_PTR(object) here? (for kfree) */
3276 } while (!object && size);
3277
3278 if (!object)
3279 return 0;
3280
3281 page = virt_to_head_page(object);
3282 if (!s) {
3283 /* Handle kalloc'ed objects */
3284 if (unlikely(!PageSlab(page))) {
3285 free_nonslab_page(page);
3286 p[size] = NULL; /* mark object processed */
3287 return size;
3288 }
3289 /* Derive kmem_cache from object */
3290 df->s = page->slab_cache;
3291 } else {
3292 df->s = cache_from_obj(s, object); /* Support for memcg */
3293 }
3294
3295 if (is_kfence_address(object)) {
3296 slab_free_hook(df->s, object, false);
3297 __kfence_free(object);
3298 p[size] = NULL; /* mark object processed */
3299 return size;
3300 }
3301
3302 /* Start new detached freelist */
3303 df->page = page;
3304 set_freepointer(df->s, object, NULL);
3305 df->tail = object;
3306 df->freelist = object;
3307 p[size] = NULL; /* mark object processed */
3308 df->cnt = 1;
3309
3310 while (size) {
3311 object = p[--size];
3312 if (!object)
3313 continue; /* Skip processed objects */
3314
3315 /* df->page is always set at this point */
3316 if (df->page == virt_to_head_page(object)) {
3317 /* Opportunity build freelist */
3318 set_freepointer(df->s, object, df->freelist);
3319 df->freelist = object;
3320 df->cnt++;
3321 p[size] = NULL; /* mark object processed */
3322
3323 continue;
3324 }
3325
3326 /* Limit look ahead search */
3327 if (!--lookahead)
3328 break;
3329
3330 if (!first_skipped_index)
3331 first_skipped_index = size + 1;
3332 }
3333
3334 return first_skipped_index;
3335 }
3336
3337 /* Note that interrupts must be enabled when calling this function. */
3338 void kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p)
3339 {
3340 if (WARN_ON(!size))
3341 return;
3342
3343 memcg_slab_free_hook(s, p, size);
3344 do {
3345 struct detached_freelist df;
3346
3347 size = build_detached_freelist(s, size, p, &df);
3348 if (!df.page)
3349 continue;
3350
3351 slab_free(df.s, df.page, df.freelist, df.tail, df.cnt, _RET_IP_);
3352 } while (likely(size));
3353 }
3354 EXPORT_SYMBOL(kmem_cache_free_bulk);
3355
3356 /* Note that interrupts must be enabled when calling this function. */
3357 int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size,
3358 void **p)
3359 {
3360 struct kmem_cache_cpu *c;
3361 int i;
3362 struct obj_cgroup *objcg = NULL;
3363
3364 /* memcg and kmem_cache debug support */
3365 s = slab_pre_alloc_hook(s, &objcg, size, flags);
3366 if (unlikely(!s))
3367 return false;
3368 /*
3369 * Drain objects in the per cpu slab, while disabling local
3370 * IRQs, which protects against PREEMPT and interrupts
3371 * handlers invoking normal fastpath.
3372 */
3373 local_irq_disable();
3374 c = this_cpu_ptr(s->cpu_slab);
3375
3376 for (i = 0; i < size; i++) {
3377 void *object = kfence_alloc(s, s->object_size, flags);
3378
3379 if (unlikely(object)) {
3380 p[i] = object;
3381 continue;
3382 }
3383
3384 object = c->freelist;
3385 if (unlikely(!object)) {
3386 /*
3387 * We may have removed an object from c->freelist using
3388 * the fastpath in the previous iteration; in that case,
3389 * c->tid has not been bumped yet.
3390 * Since ___slab_alloc() may reenable interrupts while
3391 * allocating memory, we should bump c->tid now.
3392 */
3393 c->tid = next_tid(c->tid);
3394
3395 /*
3396 * Invoking slow path likely have side-effect
3397 * of re-populating per CPU c->freelist
3398 */
3399 p[i] = ___slab_alloc(s, flags, NUMA_NO_NODE,
3400 _RET_IP_, c);
3401 if (unlikely(!p[i]))
3402 goto error;
3403
3404 c = this_cpu_ptr(s->cpu_slab);
3405 maybe_wipe_obj_freeptr(s, p[i]);
3406
3407 continue; /* goto for-loop */
3408 }
3409 c->freelist = get_freepointer(s, object);
3410 p[i] = object;
3411 maybe_wipe_obj_freeptr(s, p[i]);
3412 }
3413 c->tid = next_tid(c->tid);
3414 local_irq_enable();
3415
3416 /*
3417 * memcg and kmem_cache debug support and memory initialization.
3418 * Done outside of the IRQ disabled fastpath loop.
3419 */
3420 slab_post_alloc_hook(s, objcg, flags, size, p,
3421 slab_want_init_on_alloc(flags, s));
3422 return i;
3423 error:
3424 local_irq_enable();
3425 slab_post_alloc_hook(s, objcg, flags, i, p, false);
3426 __kmem_cache_free_bulk(s, i, p);
3427 return 0;
3428 }
3429 EXPORT_SYMBOL(kmem_cache_alloc_bulk);
3430
3431
3432 /*
3433 * Object placement in a slab is made very easy because we always start at
3434 * offset 0. If we tune the size of the object to the alignment then we can
3435 * get the required alignment by putting one properly sized object after
3436 * another.
3437 *
3438 * Notice that the allocation order determines the sizes of the per cpu
3439 * caches. Each processor has always one slab available for allocations.
3440 * Increasing the allocation order reduces the number of times that slabs
3441 * must be moved on and off the partial lists and is therefore a factor in
3442 * locking overhead.
3443 */
3444
3445 /*
3446 * Minimum / Maximum order of slab pages. This influences locking overhead
3447 * and slab fragmentation. A higher order reduces the number of partial slabs
3448 * and increases the number of allocations possible without having to
3449 * take the list_lock.
3450 */
3451 static unsigned int slub_min_order;
3452 static unsigned int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
3453 static unsigned int slub_min_objects;
3454
3455 /*
3456 * Calculate the order of allocation given an slab object size.
3457 *
3458 * The order of allocation has significant impact on performance and other
3459 * system components. Generally order 0 allocations should be preferred since
3460 * order 0 does not cause fragmentation in the page allocator. Larger objects
3461 * be problematic to put into order 0 slabs because there may be too much
3462 * unused space left. We go to a higher order if more than 1/16th of the slab
3463 * would be wasted.
3464 *
3465 * In order to reach satisfactory performance we must ensure that a minimum
3466 * number of objects is in one slab. Otherwise we may generate too much
3467 * activity on the partial lists which requires taking the list_lock. This is
3468 * less a concern for large slabs though which are rarely used.
3469 *
3470 * slub_max_order specifies the order where we begin to stop considering the
3471 * number of objects in a slab as critical. If we reach slub_max_order then
3472 * we try to keep the page order as low as possible. So we accept more waste
3473 * of space in favor of a small page order.
3474 *
3475 * Higher order allocations also allow the placement of more objects in a
3476 * slab and thereby reduce object handling overhead. If the user has
3477 * requested a higher minimum order then we start with that one instead of
3478 * the smallest order which will fit the object.
3479 */
3480 static inline unsigned int slab_order(unsigned int size,
3481 unsigned int min_objects, unsigned int max_order,
3482 unsigned int fract_leftover)
3483 {
3484 unsigned int min_order = slub_min_order;
3485 unsigned int order;
3486
3487 if (order_objects(min_order, size) > MAX_OBJS_PER_PAGE)
3488 return get_order(size * MAX_OBJS_PER_PAGE) - 1;
3489
3490 for (order = max(min_order, (unsigned int)get_order(min_objects * size));
3491 order <= max_order; order++) {
3492
3493 unsigned int slab_size = (unsigned int)PAGE_SIZE << order;
3494 unsigned int rem;
3495
3496 rem = slab_size % size;
3497
3498 if (rem <= slab_size / fract_leftover)
3499 break;
3500 }
3501
3502 return order;
3503 }
3504
3505 static inline int calculate_order(unsigned int size)
3506 {
3507 unsigned int order;
3508 unsigned int min_objects;
3509 unsigned int max_objects;
3510 unsigned int nr_cpus;
3511
3512 /*
3513 * Attempt to find best configuration for a slab. This
3514 * works by first attempting to generate a layout with
3515 * the best configuration and backing off gradually.
3516 *
3517 * First we increase the acceptable waste in a slab. Then
3518 * we reduce the minimum objects required in a slab.
3519 */
3520 min_objects = slub_min_objects;
3521 if (!min_objects) {
3522 /*
3523 * Some architectures will only update present cpus when
3524 * onlining them, so don't trust the number if it's just 1. But
3525 * we also don't want to use nr_cpu_ids always, as on some other
3526 * architectures, there can be many possible cpus, but never
3527 * onlined. Here we compromise between trying to avoid too high
3528 * order on systems that appear larger than they are, and too
3529 * low order on systems that appear smaller than they are.
3530 */
3531 nr_cpus = num_present_cpus();
3532 if (nr_cpus <= 1)
3533 nr_cpus = nr_cpu_ids;
3534 min_objects = 4 * (fls(nr_cpus) + 1);
3535 }
3536 max_objects = order_objects(slub_max_order, size);
3537 min_objects = min(min_objects, max_objects);
3538
3539 while (min_objects > 1) {
3540 unsigned int fraction;
3541
3542 fraction = 16;
3543 while (fraction >= 4) {
3544 order = slab_order(size, min_objects,
3545 slub_max_order, fraction);
3546 if (order <= slub_max_order)
3547 return order;
3548 fraction /= 2;
3549 }
3550 min_objects--;
3551 }
3552
3553 /*
3554 * We were unable to place multiple objects in a slab. Now
3555 * lets see if we can place a single object there.
3556 */
3557 order = slab_order(size, 1, slub_max_order, 1);
3558 if (order <= slub_max_order)
3559 return order;
3560
3561 /*
3562 * Doh this slab cannot be placed using slub_max_order.
3563 */
3564 order = slab_order(size, 1, MAX_ORDER, 1);
3565 if (order < MAX_ORDER)
3566 return order;
3567 return -ENOSYS;
3568 }
3569
3570 static void
3571 init_kmem_cache_node(struct kmem_cache_node *n)
3572 {
3573 n->nr_partial = 0;
3574 spin_lock_init(&n->list_lock);
3575 INIT_LIST_HEAD(&n->partial);
3576 #ifdef CONFIG_SLUB_DEBUG
3577 atomic_long_set(&n->nr_slabs, 0);
3578 atomic_long_set(&n->total_objects, 0);
3579 INIT_LIST_HEAD(&n->full);
3580 #endif
3581 }
3582
3583 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
3584 {
3585 BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
3586 KMALLOC_SHIFT_HIGH * sizeof(struct kmem_cache_cpu));
3587
3588 /*
3589 * Must align to double word boundary for the double cmpxchg
3590 * instructions to work; see __pcpu_double_call_return_bool().
3591 */
3592 s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
3593 2 * sizeof(void *));
3594
3595 if (!s->cpu_slab)
3596 return 0;
3597
3598 init_kmem_cache_cpus(s);
3599
3600 return 1;
3601 }
3602
3603 static struct kmem_cache *kmem_cache_node;
3604
3605 /*
3606 * No kmalloc_node yet so do it by hand. We know that this is the first
3607 * slab on the node for this slabcache. There are no concurrent accesses
3608 * possible.
3609 *
3610 * Note that this function only works on the kmem_cache_node
3611 * when allocating for the kmem_cache_node. This is used for bootstrapping
3612 * memory on a fresh node that has no slab structures yet.
3613 */
3614 static void early_kmem_cache_node_alloc(int node)
3615 {
3616 struct page *page;
3617 struct kmem_cache_node *n;
3618
3619 BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
3620
3621 page = new_slab(kmem_cache_node, GFP_NOWAIT, node);
3622
3623 BUG_ON(!page);
3624 if (page_to_nid(page) != node) {
3625 pr_err("SLUB: Unable to allocate memory from node %d\n", node);
3626 pr_err("SLUB: Allocating a useless per node structure in order to be able to continue\n");
3627 }
3628
3629 n = page->freelist;
3630 BUG_ON(!n);
3631 #ifdef CONFIG_SLUB_DEBUG
3632 init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
3633 init_tracking(kmem_cache_node, n);
3634 #endif
3635 n = kasan_slab_alloc(kmem_cache_node, n, GFP_KERNEL, false);
3636 page->freelist = get_freepointer(kmem_cache_node, n);
3637 page->inuse = 1;
3638 page->frozen = 0;
3639 kmem_cache_node->node[node] = n;
3640 init_kmem_cache_node(n);
3641 inc_slabs_node(kmem_cache_node, node, page->objects);
3642
3643 /*
3644 * No locks need to be taken here as it has just been
3645 * initialized and there is no concurrent access.
3646 */
3647 __add_partial(n, page, DEACTIVATE_TO_HEAD);
3648 }
3649
3650 static void free_kmem_cache_nodes(struct kmem_cache *s)
3651 {
3652 int node;
3653 struct kmem_cache_node *n;
3654
3655 for_each_kmem_cache_node(s, node, n) {
3656 s->node[node] = NULL;
3657 kmem_cache_free(kmem_cache_node, n);
3658 }
3659 }
3660
3661 void __kmem_cache_release(struct kmem_cache *s)
3662 {
3663 cache_random_seq_destroy(s);
3664 free_percpu(s->cpu_slab);
3665 free_kmem_cache_nodes(s);
3666 }
3667
3668 static int init_kmem_cache_nodes(struct kmem_cache *s)
3669 {
3670 int node;
3671
3672 for_each_node_mask(node, slab_nodes) {
3673 struct kmem_cache_node *n;
3674
3675 if (slab_state == DOWN) {
3676 early_kmem_cache_node_alloc(node);
3677 continue;
3678 }
3679 n = kmem_cache_alloc_node(kmem_cache_node,
3680 GFP_KERNEL, node);
3681
3682 if (!n) {
3683 free_kmem_cache_nodes(s);
3684 return 0;
3685 }
3686
3687 init_kmem_cache_node(n);
3688 s->node[node] = n;
3689 }
3690 return 1;
3691 }
3692
3693 static void set_min_partial(struct kmem_cache *s, unsigned long min)
3694 {
3695 if (min < MIN_PARTIAL)
3696 min = MIN_PARTIAL;
3697 else if (min > MAX_PARTIAL)
3698 min = MAX_PARTIAL;
3699 s->min_partial = min;
3700 }
3701
3702 static void set_cpu_partial(struct kmem_cache *s)
3703 {
3704 #ifdef CONFIG_SLUB_CPU_PARTIAL
3705 /*
3706 * cpu_partial determined the maximum number of objects kept in the
3707 * per cpu partial lists of a processor.
3708 *
3709 * Per cpu partial lists mainly contain slabs that just have one
3710 * object freed. If they are used for allocation then they can be
3711 * filled up again with minimal effort. The slab will never hit the
3712 * per node partial lists and therefore no locking will be required.
3713 *
3714 * This setting also determines
3715 *
3716 * A) The number of objects from per cpu partial slabs dumped to the
3717 * per node list when we reach the limit.
3718 * B) The number of objects in cpu partial slabs to extract from the
3719 * per node list when we run out of per cpu objects. We only fetch
3720 * 50% to keep some capacity around for frees.
3721 */
3722 if (!kmem_cache_has_cpu_partial(s))
3723 slub_set_cpu_partial(s, 0);
3724 else if (s->size >= PAGE_SIZE)
3725 slub_set_cpu_partial(s, 2);
3726 else if (s->size >= 1024)
3727 slub_set_cpu_partial(s, 6);
3728 else if (s->size >= 256)
3729 slub_set_cpu_partial(s, 13);
3730 else
3731 slub_set_cpu_partial(s, 30);
3732 #endif
3733 }
3734
3735 /*
3736 * calculate_sizes() determines the order and the distribution of data within
3737 * a slab object.
3738 */
3739 static int calculate_sizes(struct kmem_cache *s, int forced_order)
3740 {
3741 slab_flags_t flags = s->flags;
3742 unsigned int size = s->object_size;
3743 unsigned int order;
3744
3745 /*
3746 * Round up object size to the next word boundary. We can only
3747 * place the free pointer at word boundaries and this determines
3748 * the possible location of the free pointer.
3749 */
3750 size = ALIGN(size, sizeof(void *));
3751
3752 #ifdef CONFIG_SLUB_DEBUG
3753 /*
3754 * Determine if we can poison the object itself. If the user of
3755 * the slab may touch the object after free or before allocation
3756 * then we should never poison the object itself.
3757 */
3758 if ((flags & SLAB_POISON) && !(flags & SLAB_TYPESAFE_BY_RCU) &&
3759 !s->ctor)
3760 s->flags |= __OBJECT_POISON;
3761 else
3762 s->flags &= ~__OBJECT_POISON;
3763
3764
3765 /*
3766 * If we are Redzoning then check if there is some space between the
3767 * end of the object and the free pointer. If not then add an
3768 * additional word to have some bytes to store Redzone information.
3769 */
3770 if ((flags & SLAB_RED_ZONE) && size == s->object_size)
3771 size += sizeof(void *);
3772 #endif
3773
3774 /*
3775 * With that we have determined the number of bytes in actual use
3776 * by the object and redzoning.
3777 */
3778 s->inuse = size;
3779
3780 if ((flags & (SLAB_TYPESAFE_BY_RCU | SLAB_POISON)) ||
3781 ((flags & SLAB_RED_ZONE) && s->object_size < sizeof(void *)) ||
3782 s->ctor) {
3783 /*
3784 * Relocate free pointer after the object if it is not
3785 * permitted to overwrite the first word of the object on
3786 * kmem_cache_free.
3787 *
3788 * This is the case if we do RCU, have a constructor or
3789 * destructor, are poisoning the objects, or are
3790 * redzoning an object smaller than sizeof(void *).
3791 *
3792 * The assumption that s->offset >= s->inuse means free
3793 * pointer is outside of the object is used in the
3794 * freeptr_outside_object() function. If that is no
3795 * longer true, the function needs to be modified.
3796 */
3797 s->offset = size;
3798 size += sizeof(void *);
3799 } else {
3800 /*
3801 * Store freelist pointer near middle of object to keep
3802 * it away from the edges of the object to avoid small
3803 * sized over/underflows from neighboring allocations.
3804 */
3805 s->offset = ALIGN_DOWN(s->object_size / 2, sizeof(void *));
3806 }
3807
3808 #ifdef CONFIG_SLUB_DEBUG
3809 if (flags & SLAB_STORE_USER)
3810 /*
3811 * Need to store information about allocs and frees after
3812 * the object.
3813 */
3814 size += 2 * sizeof(struct track);
3815 #endif
3816
3817 kasan_cache_create(s, &size, &s->flags);
3818 #ifdef CONFIG_SLUB_DEBUG
3819 if (flags & SLAB_RED_ZONE) {
3820 /*
3821 * Add some empty padding so that we can catch
3822 * overwrites from earlier objects rather than let
3823 * tracking information or the free pointer be
3824 * corrupted if a user writes before the start
3825 * of the object.
3826 */
3827 size += sizeof(void *);
3828
3829 s->red_left_pad = sizeof(void *);
3830 s->red_left_pad = ALIGN(s->red_left_pad, s->align);
3831 size += s->red_left_pad;
3832 }
3833 #endif
3834
3835 /*
3836 * SLUB stores one object immediately after another beginning from
3837 * offset 0. In order to align the objects we have to simply size
3838 * each object to conform to the alignment.
3839 */
3840 size = ALIGN(size, s->align);
3841 s->size = size;
3842 s->reciprocal_size = reciprocal_value(size);
3843 if (forced_order >= 0)
3844 order = forced_order;
3845 else
3846 order = calculate_order(size);
3847
3848 if ((int)order < 0)
3849 return 0;
3850
3851 s->allocflags = 0;
3852 if (order)
3853 s->allocflags |= __GFP_COMP;
3854
3855 if (s->flags & SLAB_CACHE_DMA)
3856 s->allocflags |= GFP_DMA;
3857
3858 if (s->flags & SLAB_CACHE_DMA32)
3859 s->allocflags |= GFP_DMA32;
3860
3861 if (s->flags & SLAB_RECLAIM_ACCOUNT)
3862 s->allocflags |= __GFP_RECLAIMABLE;
3863
3864 /*
3865 * Determine the number of objects per slab
3866 */
3867 s->oo = oo_make(order, size);
3868 s->min = oo_make(get_order(size), size);
3869 if (oo_objects(s->oo) > oo_objects(s->max))
3870 s->max = s->oo;
3871
3872 return !!oo_objects(s->oo);
3873 }
3874
3875 static int kmem_cache_open(struct kmem_cache *s, slab_flags_t flags)
3876 {
3877 s->flags = kmem_cache_flags(s->size, flags, s->name);
3878 #ifdef CONFIG_SLAB_FREELIST_HARDENED
3879 s->random = get_random_long();
3880 #endif
3881
3882 if (!calculate_sizes(s, -1))
3883 goto error;
3884 if (disable_higher_order_debug) {
3885 /*
3886 * Disable debugging flags that store metadata if the min slab
3887 * order increased.
3888 */
3889 if (get_order(s->size) > get_order(s->object_size)) {
3890 s->flags &= ~DEBUG_METADATA_FLAGS;
3891 s->offset = 0;
3892 if (!calculate_sizes(s, -1))
3893 goto error;
3894 }
3895 }
3896
3897 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
3898 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
3899 if (system_has_cmpxchg_double() && (s->flags & SLAB_NO_CMPXCHG) == 0)
3900 /* Enable fast mode */
3901 s->flags |= __CMPXCHG_DOUBLE;
3902 #endif
3903
3904 /*
3905 * The larger the object size is, the more pages we want on the partial
3906 * list to avoid pounding the page allocator excessively.
3907 */
3908 set_min_partial(s, ilog2(s->size) / 2);
3909
3910 set_cpu_partial(s);
3911
3912 #ifdef CONFIG_NUMA
3913 s->remote_node_defrag_ratio = 1000;
3914 #endif
3915
3916 /* Initialize the pre-computed randomized freelist if slab is up */
3917 if (slab_state >= UP) {
3918 if (init_cache_random_seq(s))
3919 goto error;
3920 }
3921
3922 if (!init_kmem_cache_nodes(s))
3923 goto error;
3924
3925 if (alloc_kmem_cache_cpus(s))
3926 return 0;
3927
3928 free_kmem_cache_nodes(s);
3929 error:
3930 return -EINVAL;
3931 }
3932
3933 static void list_slab_objects(struct kmem_cache *s, struct page *page,
3934 const char *text)
3935 {
3936 #ifdef CONFIG_SLUB_DEBUG
3937 void *addr = page_address(page);
3938 unsigned long *map;
3939 void *p;
3940
3941 slab_err(s, page, text, s->name);
3942 slab_lock(page);
3943
3944 map = get_map(s, page);
3945 for_each_object(p, s, addr, page->objects) {
3946
3947 if (!test_bit(__obj_to_index(s, addr, p), map)) {
3948 pr_err("Object 0x%p @offset=%tu\n", p, p - addr);
3949 print_tracking(s, p);
3950 }
3951 }
3952 put_map(map);
3953 slab_unlock(page);
3954 #endif
3955 }
3956
3957 /*
3958 * Attempt to free all partial slabs on a node.
3959 * This is called from __kmem_cache_shutdown(). We must take list_lock
3960 * because sysfs file might still access partial list after the shutdowning.
3961 */
3962 static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
3963 {
3964 LIST_HEAD(discard);
3965 struct page *page, *h;
3966
3967 BUG_ON(irqs_disabled());
3968 spin_lock_irq(&n->list_lock);
3969 list_for_each_entry_safe(page, h, &n->partial, slab_list) {
3970 if (!page->inuse) {
3971 remove_partial(n, page);
3972 list_add(&page->slab_list, &discard);
3973 } else {
3974 list_slab_objects(s, page,
3975 "Objects remaining in %s on __kmem_cache_shutdown()");
3976 }
3977 }
3978 spin_unlock_irq(&n->list_lock);
3979
3980 list_for_each_entry_safe(page, h, &discard, slab_list)
3981 discard_slab(s, page);
3982 }
3983
3984 bool __kmem_cache_empty(struct kmem_cache *s)
3985 {
3986 int node;
3987 struct kmem_cache_node *n;
3988
3989 for_each_kmem_cache_node(s, node, n)
3990 if (n->nr_partial || slabs_node(s, node))
3991 return false;
3992 return true;
3993 }
3994
3995 /*
3996 * Release all resources used by a slab cache.
3997 */
3998 int __kmem_cache_shutdown(struct kmem_cache *s)
3999 {
4000 int node;
4001 struct kmem_cache_node *n;
4002
4003 flush_all(s);
4004 /* Attempt to free all objects */
4005 for_each_kmem_cache_node(s, node, n) {
4006 free_partial(s, n);
4007 if (n->nr_partial || slabs_node(s, node))
4008 return 1;
4009 }
4010 return 0;
4011 }
4012
4013 #ifdef CONFIG_PRINTK
4014 void kmem_obj_info(struct kmem_obj_info *kpp, void *object, struct page *page)
4015 {
4016 void *base;
4017 int __maybe_unused i;
4018 unsigned int objnr;
4019 void *objp;
4020 void *objp0;
4021 struct kmem_cache *s = page->slab_cache;
4022 struct track __maybe_unused *trackp;
4023
4024 kpp->kp_ptr = object;
4025 kpp->kp_page = page;
4026 kpp->kp_slab_cache = s;
4027 base = page_address(page);
4028 objp0 = kasan_reset_tag(object);
4029 #ifdef CONFIG_SLUB_DEBUG
4030 objp = restore_red_left(s, objp0);
4031 #else
4032 objp = objp0;
4033 #endif
4034 objnr = obj_to_index(s, page, objp);
4035 kpp->kp_data_offset = (unsigned long)((char *)objp0 - (char *)objp);
4036 objp = base + s->size * objnr;
4037 kpp->kp_objp = objp;
4038 if (WARN_ON_ONCE(objp < base || objp >= base + page->objects * s->size || (objp - base) % s->size) ||
4039 !(s->flags & SLAB_STORE_USER))
4040 return;
4041 #ifdef CONFIG_SLUB_DEBUG
4042 objp = fixup_red_left(s, objp);
4043 trackp = get_track(s, objp, TRACK_ALLOC);
4044 kpp->kp_ret = (void *)trackp->addr;
4045 #ifdef CONFIG_STACKTRACE
4046 for (i = 0; i < KS_ADDRS_COUNT && i < TRACK_ADDRS_COUNT; i++) {
4047 kpp->kp_stack[i] = (void *)trackp->addrs[i];
4048 if (!kpp->kp_stack[i])
4049 break;
4050 }
4051
4052 trackp = get_track(s, objp, TRACK_FREE);
4053 for (i = 0; i < KS_ADDRS_COUNT && i < TRACK_ADDRS_COUNT; i++) {
4054 kpp->kp_free_stack[i] = (void *)trackp->addrs[i];
4055 if (!kpp->kp_free_stack[i])
4056 break;
4057 }
4058 #endif
4059 #endif
4060 }
4061 #endif
4062
4063 /********************************************************************
4064 * Kmalloc subsystem
4065 *******************************************************************/
4066
4067 static int __init setup_slub_min_order(char *str)
4068 {
4069 get_option(&str, (int *)&slub_min_order);
4070
4071 return 1;
4072 }
4073
4074 __setup("slub_min_order=", setup_slub_min_order);
4075
4076 static int __init setup_slub_max_order(char *str)
4077 {
4078 get_option(&str, (int *)&slub_max_order);
4079 slub_max_order = min(slub_max_order, (unsigned int)MAX_ORDER - 1);
4080
4081 return 1;
4082 }
4083
4084 __setup("slub_max_order=", setup_slub_max_order);
4085
4086 static int __init setup_slub_min_objects(char *str)
4087 {
4088 get_option(&str, (int *)&slub_min_objects);
4089
4090 return 1;
4091 }
4092
4093 __setup("slub_min_objects=", setup_slub_min_objects);
4094
4095 void *__kmalloc(size_t size, gfp_t flags)
4096 {
4097 struct kmem_cache *s;
4098 void *ret;
4099
4100 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
4101 return kmalloc_large(size, flags);
4102
4103 s = kmalloc_slab(size, flags);
4104
4105 if (unlikely(ZERO_OR_NULL_PTR(s)))
4106 return s;
4107
4108 ret = slab_alloc(s, flags, _RET_IP_, size);
4109
4110 trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
4111
4112 ret = kasan_kmalloc(s, ret, size, flags);
4113
4114 return ret;
4115 }
4116 EXPORT_SYMBOL(__kmalloc);
4117
4118 #ifdef CONFIG_NUMA
4119 static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
4120 {
4121 struct page *page;
4122 void *ptr = NULL;
4123 unsigned int order = get_order(size);
4124
4125 flags |= __GFP_COMP;
4126 page = alloc_pages_node(node, flags, order);
4127 if (page) {
4128 ptr = page_address(page);
4129 mod_lruvec_page_state(page, NR_SLAB_UNRECLAIMABLE_B,
4130 PAGE_SIZE << order);
4131 }
4132
4133 return kmalloc_large_node_hook(ptr, size, flags);
4134 }
4135
4136 void *__kmalloc_node(size_t size, gfp_t flags, int node)
4137 {
4138 struct kmem_cache *s;
4139 void *ret;
4140
4141 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
4142 ret = kmalloc_large_node(size, flags, node);
4143
4144 trace_kmalloc_node(_RET_IP_, ret,
4145 size, PAGE_SIZE << get_order(size),
4146 flags, node);
4147
4148 return ret;
4149 }
4150
4151 s = kmalloc_slab(size, flags);
4152
4153 if (unlikely(ZERO_OR_NULL_PTR(s)))
4154 return s;
4155
4156 ret = slab_alloc_node(s, flags, node, _RET_IP_, size);
4157
4158 trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
4159
4160 ret = kasan_kmalloc(s, ret, size, flags);
4161
4162 return ret;
4163 }
4164 EXPORT_SYMBOL(__kmalloc_node);
4165 #endif /* CONFIG_NUMA */
4166
4167 #ifdef CONFIG_HARDENED_USERCOPY
4168 /*
4169 * Rejects incorrectly sized objects and objects that are to be copied
4170 * to/from userspace but do not fall entirely within the containing slab
4171 * cache's usercopy region.
4172 *
4173 * Returns NULL if check passes, otherwise const char * to name of cache
4174 * to indicate an error.
4175 */
4176 void __check_heap_object(const void *ptr, unsigned long n, struct page *page,
4177 bool to_user)
4178 {
4179 struct kmem_cache *s;
4180 unsigned int offset;
4181 size_t object_size;
4182 bool is_kfence = is_kfence_address(ptr);
4183
4184 ptr = kasan_reset_tag(ptr);
4185
4186 /* Find object and usable object size. */
4187 s = page->slab_cache;
4188
4189 /* Reject impossible pointers. */
4190 if (ptr < page_address(page))
4191 usercopy_abort("SLUB object not in SLUB page?!", NULL,
4192 to_user, 0, n);
4193
4194 /* Find offset within object. */
4195 if (is_kfence)
4196 offset = ptr - kfence_object_start(ptr);
4197 else
4198 offset = (ptr - page_address(page)) % s->size;
4199
4200 /* Adjust for redzone and reject if within the redzone. */
4201 if (!is_kfence && kmem_cache_debug_flags(s, SLAB_RED_ZONE)) {
4202 if (offset < s->red_left_pad)
4203 usercopy_abort("SLUB object in left red zone",
4204 s->name, to_user, offset, n);
4205 offset -= s->red_left_pad;
4206 }
4207
4208 /* Allow address range falling entirely within usercopy region. */
4209 if (offset >= s->useroffset &&
4210 offset - s->useroffset <= s->usersize &&
4211 n <= s->useroffset - offset + s->usersize)
4212 return;
4213
4214 /*
4215 * If the copy is still within the allocated object, produce
4216 * a warning instead of rejecting the copy. This is intended
4217 * to be a temporary method to find any missing usercopy
4218 * whitelists.
4219 */
4220 object_size = slab_ksize(s);
4221 if (usercopy_fallback &&
4222 offset <= object_size && n <= object_size - offset) {
4223 usercopy_warn("SLUB object", s->name, to_user, offset, n);
4224 return;
4225 }
4226
4227 usercopy_abort("SLUB object", s->name, to_user, offset, n);
4228 }
4229 #endif /* CONFIG_HARDENED_USERCOPY */
4230
4231 size_t __ksize(const void *object)
4232 {
4233 struct page *page;
4234
4235 if (unlikely(object == ZERO_SIZE_PTR))
4236 return 0;
4237
4238 page = virt_to_head_page(object);
4239
4240 if (unlikely(!PageSlab(page))) {
4241 WARN_ON(!PageCompound(page));
4242 return page_size(page);
4243 }
4244
4245 return slab_ksize(page->slab_cache);
4246 }
4247 EXPORT_SYMBOL(__ksize);
4248
4249 void kfree(const void *x)
4250 {
4251 struct page *page;
4252 void *object = (void *)x;
4253
4254 trace_kfree(_RET_IP_, x);
4255
4256 if (unlikely(ZERO_OR_NULL_PTR(x)))
4257 return;
4258
4259 page = virt_to_head_page(x);
4260 if (unlikely(!PageSlab(page))) {
4261 free_nonslab_page(page);
4262 return;
4263 }
4264 slab_free(page->slab_cache, page, object, NULL, 1, _RET_IP_);
4265 }
4266 EXPORT_SYMBOL(kfree);
4267
4268 #define SHRINK_PROMOTE_MAX 32
4269
4270 /*
4271 * kmem_cache_shrink discards empty slabs and promotes the slabs filled
4272 * up most to the head of the partial lists. New allocations will then
4273 * fill those up and thus they can be removed from the partial lists.
4274 *
4275 * The slabs with the least items are placed last. This results in them
4276 * being allocated from last increasing the chance that the last objects
4277 * are freed in them.
4278 */
4279 int __kmem_cache_shrink(struct kmem_cache *s)
4280 {
4281 int node;
4282 int i;
4283 struct kmem_cache_node *n;
4284 struct page *page;
4285 struct page *t;
4286 struct list_head discard;
4287 struct list_head promote[SHRINK_PROMOTE_MAX];
4288 unsigned long flags;
4289 int ret = 0;
4290
4291 flush_all(s);
4292 for_each_kmem_cache_node(s, node, n) {
4293 INIT_LIST_HEAD(&discard);
4294 for (i = 0; i < SHRINK_PROMOTE_MAX; i++)
4295 INIT_LIST_HEAD(promote + i);
4296
4297 spin_lock_irqsave(&n->list_lock, flags);
4298
4299 /*
4300 * Build lists of slabs to discard or promote.
4301 *
4302 * Note that concurrent frees may occur while we hold the
4303 * list_lock. page->inuse here is the upper limit.
4304 */
4305 list_for_each_entry_safe(page, t, &n->partial, slab_list) {
4306 int free = page->objects - page->inuse;
4307
4308 /* Do not reread page->inuse */
4309 barrier();
4310
4311 /* We do not keep full slabs on the list */
4312 BUG_ON(free <= 0);
4313
4314 if (free == page->objects) {
4315 list_move(&page->slab_list, &discard);
4316 n->nr_partial--;
4317 } else if (free <= SHRINK_PROMOTE_MAX)
4318 list_move(&page->slab_list, promote + free - 1);
4319 }
4320
4321 /*
4322 * Promote the slabs filled up most to the head of the
4323 * partial list.
4324 */
4325 for (i = SHRINK_PROMOTE_MAX - 1; i >= 0; i--)
4326 list_splice(promote + i, &n->partial);
4327
4328 spin_unlock_irqrestore(&n->list_lock, flags);
4329
4330 /* Release empty slabs */
4331 list_for_each_entry_safe(page, t, &discard, slab_list)
4332 discard_slab(s, page);
4333
4334 if (slabs_node(s, node))
4335 ret = 1;
4336 }
4337
4338 return ret;
4339 }
4340
4341 static int slab_mem_going_offline_callback(void *arg)
4342 {
4343 struct kmem_cache *s;
4344
4345 mutex_lock(&slab_mutex);
4346 list_for_each_entry(s, &slab_caches, list)
4347 __kmem_cache_shrink(s);
4348 mutex_unlock(&slab_mutex);
4349
4350 return 0;
4351 }
4352
4353 static void slab_mem_offline_callback(void *arg)
4354 {
4355 struct memory_notify *marg = arg;
4356 int offline_node;
4357
4358 offline_node = marg->status_change_nid_normal;
4359
4360 /*
4361 * If the node still has available memory. we need kmem_cache_node
4362 * for it yet.
4363 */
4364 if (offline_node < 0)
4365 return;
4366
4367 mutex_lock(&slab_mutex);
4368 node_clear(offline_node, slab_nodes);
4369 /*
4370 * We no longer free kmem_cache_node structures here, as it would be
4371 * racy with all get_node() users, and infeasible to protect them with
4372 * slab_mutex.
4373 */
4374 mutex_unlock(&slab_mutex);
4375 }
4376
4377 static int slab_mem_going_online_callback(void *arg)
4378 {
4379 struct kmem_cache_node *n;
4380 struct kmem_cache *s;
4381 struct memory_notify *marg = arg;
4382 int nid = marg->status_change_nid_normal;
4383 int ret = 0;
4384
4385 /*
4386 * If the node's memory is already available, then kmem_cache_node is
4387 * already created. Nothing to do.
4388 */
4389 if (nid < 0)
4390 return 0;
4391
4392 /*
4393 * We are bringing a node online. No memory is available yet. We must
4394 * allocate a kmem_cache_node structure in order to bring the node
4395 * online.
4396 */
4397 mutex_lock(&slab_mutex);
4398 list_for_each_entry(s, &slab_caches, list) {
4399 /*
4400 * The structure may already exist if the node was previously
4401 * onlined and offlined.
4402 */
4403 if (get_node(s, nid))
4404 continue;
4405 /*
4406 * XXX: kmem_cache_alloc_node will fallback to other nodes
4407 * since memory is not yet available from the node that
4408 * is brought up.
4409 */
4410 n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
4411 if (!n) {
4412 ret = -ENOMEM;
4413 goto out;
4414 }
4415 init_kmem_cache_node(n);
4416 s->node[nid] = n;
4417 }
4418 /*
4419 * Any cache created after this point will also have kmem_cache_node
4420 * initialized for the new node.
4421 */
4422 node_set(nid, slab_nodes);
4423 out:
4424 mutex_unlock(&slab_mutex);
4425 return ret;
4426 }
4427
4428 static int slab_memory_callback(struct notifier_block *self,
4429 unsigned long action, void *arg)
4430 {
4431 int ret = 0;
4432
4433 switch (action) {
4434 case MEM_GOING_ONLINE:
4435 ret = slab_mem_going_online_callback(arg);
4436 break;
4437 case MEM_GOING_OFFLINE:
4438 ret = slab_mem_going_offline_callback(arg);
4439 break;
4440 case MEM_OFFLINE:
4441 case MEM_CANCEL_ONLINE:
4442 slab_mem_offline_callback(arg);
4443 break;
4444 case MEM_ONLINE:
4445 case MEM_CANCEL_OFFLINE:
4446 break;
4447 }
4448 if (ret)
4449 ret = notifier_from_errno(ret);
4450 else
4451 ret = NOTIFY_OK;
4452 return ret;
4453 }
4454
4455 static struct notifier_block slab_memory_callback_nb = {
4456 .notifier_call = slab_memory_callback,
4457 .priority = SLAB_CALLBACK_PRI,
4458 };
4459
4460 /********************************************************************
4461 * Basic setup of slabs
4462 *******************************************************************/
4463
4464 /*
4465 * Used for early kmem_cache structures that were allocated using
4466 * the page allocator. Allocate them properly then fix up the pointers
4467 * that may be pointing to the wrong kmem_cache structure.
4468 */
4469
4470 static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache)
4471 {
4472 int node;
4473 struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
4474 struct kmem_cache_node *n;
4475
4476 memcpy(s, static_cache, kmem_cache->object_size);
4477
4478 /*
4479 * This runs very early, and only the boot processor is supposed to be
4480 * up. Even if it weren't true, IRQs are not up so we couldn't fire
4481 * IPIs around.
4482 */
4483 __flush_cpu_slab(s, smp_processor_id());
4484 for_each_kmem_cache_node(s, node, n) {
4485 struct page *p;
4486
4487 list_for_each_entry(p, &n->partial, slab_list)
4488 p->slab_cache = s;
4489
4490 #ifdef CONFIG_SLUB_DEBUG
4491 list_for_each_entry(p, &n->full, slab_list)
4492 p->slab_cache = s;
4493 #endif
4494 }
4495 list_add(&s->list, &slab_caches);
4496 return s;
4497 }
4498
4499 void __init kmem_cache_init(void)
4500 {
4501 static __initdata struct kmem_cache boot_kmem_cache,
4502 boot_kmem_cache_node;
4503 int node;
4504
4505 if (debug_guardpage_minorder())
4506 slub_max_order = 0;
4507
4508 /* Print slub debugging pointers without hashing */
4509 if (__slub_debug_enabled())
4510 no_hash_pointers_enable(NULL);
4511
4512 kmem_cache_node = &boot_kmem_cache_node;
4513 kmem_cache = &boot_kmem_cache;
4514
4515 /*
4516 * Initialize the nodemask for which we will allocate per node
4517 * structures. Here we don't need taking slab_mutex yet.
4518 */
4519 for_each_node_state(node, N_NORMAL_MEMORY)
4520 node_set(node, slab_nodes);
4521
4522 create_boot_cache(kmem_cache_node, "kmem_cache_node",
4523 sizeof(struct kmem_cache_node), SLAB_HWCACHE_ALIGN, 0, 0);
4524
4525 register_hotmemory_notifier(&slab_memory_callback_nb);
4526
4527 /* Able to allocate the per node structures */
4528 slab_state = PARTIAL;
4529
4530 create_boot_cache(kmem_cache, "kmem_cache",
4531 offsetof(struct kmem_cache, node) +
4532 nr_node_ids * sizeof(struct kmem_cache_node *),
4533 SLAB_HWCACHE_ALIGN, 0, 0);
4534
4535 kmem_cache = bootstrap(&boot_kmem_cache);
4536 kmem_cache_node = bootstrap(&boot_kmem_cache_node);
4537
4538 /* Now we can use the kmem_cache to allocate kmalloc slabs */
4539 setup_kmalloc_cache_index_table();
4540 create_kmalloc_caches(0);
4541
4542 /* Setup random freelists for each cache */
4543 init_freelist_randomization();
4544
4545 cpuhp_setup_state_nocalls(CPUHP_SLUB_DEAD, "slub:dead", NULL,
4546 slub_cpu_dead);
4547
4548 pr_info("SLUB: HWalign=%d, Order=%u-%u, MinObjects=%u, CPUs=%u, Nodes=%u\n",
4549 cache_line_size(),
4550 slub_min_order, slub_max_order, slub_min_objects,
4551 nr_cpu_ids, nr_node_ids);
4552 }
4553
4554 void __init kmem_cache_init_late(void)
4555 {
4556 }
4557
4558 struct kmem_cache *
4559 __kmem_cache_alias(const char *name, unsigned int size, unsigned int align,
4560 slab_flags_t flags, void (*ctor)(void *))
4561 {
4562 struct kmem_cache *s;
4563
4564 s = find_mergeable(size, align, flags, name, ctor);
4565 if (s) {
4566 s->refcount++;
4567
4568 /*
4569 * Adjust the object sizes so that we clear
4570 * the complete object on kzalloc.
4571 */
4572 s->object_size = max(s->object_size, size);
4573 s->inuse = max(s->inuse, ALIGN(size, sizeof(void *)));
4574
4575 if (sysfs_slab_alias(s, name)) {
4576 s->refcount--;
4577 s = NULL;
4578 }
4579 }
4580
4581 return s;
4582 }
4583
4584 int __kmem_cache_create(struct kmem_cache *s, slab_flags_t flags)
4585 {
4586 int err;
4587
4588 err = kmem_cache_open(s, flags);
4589 if (err)
4590 return err;
4591
4592 /* Mutex is not taken during early boot */
4593 if (slab_state <= UP)
4594 return 0;
4595
4596 err = sysfs_slab_add(s);
4597 if (err)
4598 __kmem_cache_release(s);
4599
4600 if (s->flags & SLAB_STORE_USER)
4601 debugfs_slab_add(s);
4602
4603 return err;
4604 }
4605
4606 void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
4607 {
4608 struct kmem_cache *s;
4609 void *ret;
4610
4611 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
4612 return kmalloc_large(size, gfpflags);
4613
4614 s = kmalloc_slab(size, gfpflags);
4615
4616 if (unlikely(ZERO_OR_NULL_PTR(s)))
4617 return s;
4618
4619 ret = slab_alloc(s, gfpflags, caller, size);
4620
4621 /* Honor the call site pointer we received. */
4622 trace_kmalloc(caller, ret, size, s->size, gfpflags);
4623
4624 return ret;
4625 }
4626 EXPORT_SYMBOL(__kmalloc_track_caller);
4627
4628 #ifdef CONFIG_NUMA
4629 void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
4630 int node, unsigned long caller)
4631 {
4632 struct kmem_cache *s;
4633 void *ret;
4634
4635 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
4636 ret = kmalloc_large_node(size, gfpflags, node);
4637
4638 trace_kmalloc_node(caller, ret,
4639 size, PAGE_SIZE << get_order(size),
4640 gfpflags, node);
4641
4642 return ret;
4643 }
4644
4645 s = kmalloc_slab(size, gfpflags);
4646
4647 if (unlikely(ZERO_OR_NULL_PTR(s)))
4648 return s;
4649
4650 ret = slab_alloc_node(s, gfpflags, node, caller, size);
4651
4652 /* Honor the call site pointer we received. */
4653 trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
4654
4655 return ret;
4656 }
4657 EXPORT_SYMBOL(__kmalloc_node_track_caller);
4658 #endif
4659
4660 #ifdef CONFIG_SYSFS
4661 static int count_inuse(struct page *page)
4662 {
4663 return page->inuse;
4664 }
4665
4666 static int count_total(struct page *page)
4667 {
4668 return page->objects;
4669 }
4670 #endif
4671
4672 #ifdef CONFIG_SLUB_DEBUG
4673 static void validate_slab(struct kmem_cache *s, struct page *page)
4674 {
4675 void *p;
4676 void *addr = page_address(page);
4677 unsigned long *map;
4678
4679 slab_lock(page);
4680
4681 if (!check_slab(s, page) || !on_freelist(s, page, NULL))
4682 goto unlock;
4683
4684 /* Now we know that a valid freelist exists */
4685 map = get_map(s, page);
4686 for_each_object(p, s, addr, page->objects) {
4687 u8 val = test_bit(__obj_to_index(s, addr, p), map) ?
4688 SLUB_RED_INACTIVE : SLUB_RED_ACTIVE;
4689
4690 if (!check_object(s, page, p, val))
4691 break;
4692 }
4693 put_map(map);
4694 unlock:
4695 slab_unlock(page);
4696 }
4697
4698 static int validate_slab_node(struct kmem_cache *s,
4699 struct kmem_cache_node *n)
4700 {
4701 unsigned long count = 0;
4702 struct page *page;
4703 unsigned long flags;
4704
4705 spin_lock_irqsave(&n->list_lock, flags);
4706
4707 list_for_each_entry(page, &n->partial, slab_list) {
4708 validate_slab(s, page);
4709 count++;
4710 }
4711 if (count != n->nr_partial) {
4712 pr_err("SLUB %s: %ld partial slabs counted but counter=%ld\n",
4713 s->name, count, n->nr_partial);
4714 slab_add_kunit_errors();
4715 }
4716
4717 if (!(s->flags & SLAB_STORE_USER))
4718 goto out;
4719
4720 list_for_each_entry(page, &n->full, slab_list) {
4721 validate_slab(s, page);
4722 count++;
4723 }
4724 if (count != atomic_long_read(&n->nr_slabs)) {
4725 pr_err("SLUB: %s %ld slabs counted but counter=%ld\n",
4726 s->name, count, atomic_long_read(&n->nr_slabs));
4727 slab_add_kunit_errors();
4728 }
4729
4730 out:
4731 spin_unlock_irqrestore(&n->list_lock, flags);
4732 return count;
4733 }
4734
4735 long validate_slab_cache(struct kmem_cache *s)
4736 {
4737 int node;
4738 unsigned long count = 0;
4739 struct kmem_cache_node *n;
4740
4741 flush_all(s);
4742 for_each_kmem_cache_node(s, node, n)
4743 count += validate_slab_node(s, n);
4744
4745 return count;
4746 }
4747 EXPORT_SYMBOL(validate_slab_cache);
4748
4749 #ifdef CONFIG_DEBUG_FS
4750 /*
4751 * Generate lists of code addresses where slabcache objects are allocated
4752 * and freed.
4753 */
4754
4755 struct location {
4756 unsigned long count;
4757 unsigned long addr;
4758 long long sum_time;
4759 long min_time;
4760 long max_time;
4761 long min_pid;
4762 long max_pid;
4763 DECLARE_BITMAP(cpus, NR_CPUS);
4764 nodemask_t nodes;
4765 };
4766
4767 struct loc_track {
4768 unsigned long max;
4769 unsigned long count;
4770 struct location *loc;
4771 };
4772
4773 static struct dentry *slab_debugfs_root;
4774
4775 static void free_loc_track(struct loc_track *t)
4776 {
4777 if (t->max)
4778 free_pages((unsigned long)t->loc,
4779 get_order(sizeof(struct location) * t->max));
4780 }
4781
4782 static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
4783 {
4784 struct location *l;
4785 int order;
4786
4787 order = get_order(sizeof(struct location) * max);
4788
4789 l = (void *)__get_free_pages(flags, order);
4790 if (!l)
4791 return 0;
4792
4793 if (t->count) {
4794 memcpy(l, t->loc, sizeof(struct location) * t->count);
4795 free_loc_track(t);
4796 }
4797 t->max = max;
4798 t->loc = l;
4799 return 1;
4800 }
4801
4802 static int add_location(struct loc_track *t, struct kmem_cache *s,
4803 const struct track *track)
4804 {
4805 long start, end, pos;
4806 struct location *l;
4807 unsigned long caddr;
4808 unsigned long age = jiffies - track->when;
4809
4810 start = -1;
4811 end = t->count;
4812
4813 for ( ; ; ) {
4814 pos = start + (end - start + 1) / 2;
4815
4816 /*
4817 * There is nothing at "end". If we end up there
4818 * we need to add something to before end.
4819 */
4820 if (pos == end)
4821 break;
4822
4823 caddr = t->loc[pos].addr;
4824 if (track->addr == caddr) {
4825
4826 l = &t->loc[pos];
4827 l->count++;
4828 if (track->when) {
4829 l->sum_time += age;
4830 if (age < l->min_time)
4831 l->min_time = age;
4832 if (age > l->max_time)
4833 l->max_time = age;
4834
4835 if (track->pid < l->min_pid)
4836 l->min_pid = track->pid;
4837 if (track->pid > l->max_pid)
4838 l->max_pid = track->pid;
4839
4840 cpumask_set_cpu(track->cpu,
4841 to_cpumask(l->cpus));
4842 }
4843 node_set(page_to_nid(virt_to_page(track)), l->nodes);
4844 return 1;
4845 }
4846
4847 if (track->addr < caddr)
4848 end = pos;
4849 else
4850 start = pos;
4851 }
4852
4853 /*
4854 * Not found. Insert new tracking element.
4855 */
4856 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
4857 return 0;
4858
4859 l = t->loc + pos;
4860 if (pos < t->count)
4861 memmove(l + 1, l,
4862 (t->count - pos) * sizeof(struct location));
4863 t->count++;
4864 l->count = 1;
4865 l->addr = track->addr;
4866 l->sum_time = age;
4867 l->min_time = age;
4868 l->max_time = age;
4869 l->min_pid = track->pid;
4870 l->max_pid = track->pid;
4871 cpumask_clear(to_cpumask(l->cpus));
4872 cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
4873 nodes_clear(l->nodes);
4874 node_set(page_to_nid(virt_to_page(track)), l->nodes);
4875 return 1;
4876 }
4877
4878 static void process_slab(struct loc_track *t, struct kmem_cache *s,
4879 struct page *page, enum track_item alloc)
4880 {
4881 void *addr = page_address(page);
4882 void *p;
4883 unsigned long *map;
4884
4885 map = get_map(s, page);
4886 for_each_object(p, s, addr, page->objects)
4887 if (!test_bit(__obj_to_index(s, addr, p), map))
4888 add_location(t, s, get_track(s, p, alloc));
4889 put_map(map);
4890 }
4891 #endif /* CONFIG_DEBUG_FS */
4892 #endif /* CONFIG_SLUB_DEBUG */
4893
4894 #ifdef CONFIG_SYSFS
4895 enum slab_stat_type {
4896 SL_ALL, /* All slabs */
4897 SL_PARTIAL, /* Only partially allocated slabs */
4898 SL_CPU, /* Only slabs used for cpu caches */
4899 SL_OBJECTS, /* Determine allocated objects not slabs */
4900 SL_TOTAL /* Determine object capacity not slabs */
4901 };
4902
4903 #define SO_ALL (1 << SL_ALL)
4904 #define SO_PARTIAL (1 << SL_PARTIAL)
4905 #define SO_CPU (1 << SL_CPU)
4906 #define SO_OBJECTS (1 << SL_OBJECTS)
4907 #define SO_TOTAL (1 << SL_TOTAL)
4908
4909 static ssize_t show_slab_objects(struct kmem_cache *s,
4910 char *buf, unsigned long flags)
4911 {
4912 unsigned long total = 0;
4913 int node;
4914 int x;
4915 unsigned long *nodes;
4916 int len = 0;
4917
4918 nodes = kcalloc(nr_node_ids, sizeof(unsigned long), GFP_KERNEL);
4919 if (!nodes)
4920 return -ENOMEM;
4921
4922 if (flags & SO_CPU) {
4923 int cpu;
4924
4925 for_each_possible_cpu(cpu) {
4926 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab,
4927 cpu);
4928 int node;
4929 struct page *page;
4930
4931 page = READ_ONCE(c->page);
4932 if (!page)
4933 continue;
4934
4935 node = page_to_nid(page);
4936 if (flags & SO_TOTAL)
4937 x = page->objects;
4938 else if (flags & SO_OBJECTS)
4939 x = page->inuse;
4940 else
4941 x = 1;
4942
4943 total += x;
4944 nodes[node] += x;
4945
4946 page = slub_percpu_partial_read_once(c);
4947 if (page) {
4948 node = page_to_nid(page);
4949 if (flags & SO_TOTAL)
4950 WARN_ON_ONCE(1);
4951 else if (flags & SO_OBJECTS)
4952 WARN_ON_ONCE(1);
4953 else
4954 x = page->pages;
4955 total += x;
4956 nodes[node] += x;
4957 }
4958 }
4959 }
4960
4961 /*
4962 * It is impossible to take "mem_hotplug_lock" here with "kernfs_mutex"
4963 * already held which will conflict with an existing lock order:
4964 *
4965 * mem_hotplug_lock->slab_mutex->kernfs_mutex
4966 *
4967 * We don't really need mem_hotplug_lock (to hold off
4968 * slab_mem_going_offline_callback) here because slab's memory hot
4969 * unplug code doesn't destroy the kmem_cache->node[] data.
4970 */
4971
4972 #ifdef CONFIG_SLUB_DEBUG
4973 if (flags & SO_ALL) {
4974 struct kmem_cache_node *n;
4975
4976 for_each_kmem_cache_node(s, node, n) {
4977
4978 if (flags & SO_TOTAL)
4979 x = atomic_long_read(&n->total_objects);
4980 else if (flags & SO_OBJECTS)
4981 x = atomic_long_read(&n->total_objects) -
4982 count_partial(n, count_free);
4983 else
4984 x = atomic_long_read(&n->nr_slabs);
4985 total += x;
4986 nodes[node] += x;
4987 }
4988
4989 } else
4990 #endif
4991 if (flags & SO_PARTIAL) {
4992 struct kmem_cache_node *n;
4993
4994 for_each_kmem_cache_node(s, node, n) {
4995 if (flags & SO_TOTAL)
4996 x = count_partial(n, count_total);
4997 else if (flags & SO_OBJECTS)
4998 x = count_partial(n, count_inuse);
4999 else
5000 x = n->nr_partial;
5001 total += x;
5002 nodes[node] += x;
5003 }
5004 }
5005
5006 len += sysfs_emit_at(buf, len, "%lu", total);
5007 #ifdef CONFIG_NUMA
5008 for (node = 0; node < nr_node_ids; node++) {
5009 if (nodes[node])
5010 len += sysfs_emit_at(buf, len, " N%d=%lu",
5011 node, nodes[node]);
5012 }
5013 #endif
5014 len += sysfs_emit_at(buf, len, "\n");
5015 kfree(nodes);
5016
5017 return len;
5018 }
5019
5020 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
5021 #define to_slab(n) container_of(n, struct kmem_cache, kobj)
5022
5023 struct slab_attribute {
5024 struct attribute attr;
5025 ssize_t (*show)(struct kmem_cache *s, char *buf);
5026 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
5027 };
5028
5029 #define SLAB_ATTR_RO(_name) \
5030 static struct slab_attribute _name##_attr = \
5031 __ATTR(_name, 0400, _name##_show, NULL)
5032
5033 #define SLAB_ATTR(_name) \
5034 static struct slab_attribute _name##_attr = \
5035 __ATTR(_name, 0600, _name##_show, _name##_store)
5036
5037 static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
5038 {
5039 return sysfs_emit(buf, "%u\n", s->size);
5040 }
5041 SLAB_ATTR_RO(slab_size);
5042
5043 static ssize_t align_show(struct kmem_cache *s, char *buf)
5044 {
5045 return sysfs_emit(buf, "%u\n", s->align);
5046 }
5047 SLAB_ATTR_RO(align);
5048
5049 static ssize_t object_size_show(struct kmem_cache *s, char *buf)
5050 {
5051 return sysfs_emit(buf, "%u\n", s->object_size);
5052 }
5053 SLAB_ATTR_RO(object_size);
5054
5055 static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
5056 {
5057 return sysfs_emit(buf, "%u\n", oo_objects(s->oo));
5058 }
5059 SLAB_ATTR_RO(objs_per_slab);
5060
5061 static ssize_t order_show(struct kmem_cache *s, char *buf)
5062 {
5063 return sysfs_emit(buf, "%u\n", oo_order(s->oo));
5064 }
5065 SLAB_ATTR_RO(order);
5066
5067 static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
5068 {
5069 return sysfs_emit(buf, "%lu\n", s->min_partial);
5070 }
5071
5072 static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
5073 size_t length)
5074 {
5075 unsigned long min;
5076 int err;
5077
5078 err = kstrtoul(buf, 10, &min);
5079 if (err)
5080 return err;
5081
5082 set_min_partial(s, min);
5083 return length;
5084 }
5085 SLAB_ATTR(min_partial);
5086
5087 static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf)
5088 {
5089 return sysfs_emit(buf, "%u\n", slub_cpu_partial(s));
5090 }
5091
5092 static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf,
5093 size_t length)
5094 {
5095 unsigned int objects;
5096 int err;
5097
5098 err = kstrtouint(buf, 10, &objects);
5099 if (err)
5100 return err;
5101 if (objects && !kmem_cache_has_cpu_partial(s))
5102 return -EINVAL;
5103
5104 slub_set_cpu_partial(s, objects);
5105 flush_all(s);
5106 return length;
5107 }
5108 SLAB_ATTR(cpu_partial);
5109
5110 static ssize_t ctor_show(struct kmem_cache *s, char *buf)
5111 {
5112 if (!s->ctor)
5113 return 0;
5114 return sysfs_emit(buf, "%pS\n", s->ctor);
5115 }
5116 SLAB_ATTR_RO(ctor);
5117
5118 static ssize_t aliases_show(struct kmem_cache *s, char *buf)
5119 {
5120 return sysfs_emit(buf, "%d\n", s->refcount < 0 ? 0 : s->refcount - 1);
5121 }
5122 SLAB_ATTR_RO(aliases);
5123
5124 static ssize_t partial_show(struct kmem_cache *s, char *buf)
5125 {
5126 return show_slab_objects(s, buf, SO_PARTIAL);
5127 }
5128 SLAB_ATTR_RO(partial);
5129
5130 static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
5131 {
5132 return show_slab_objects(s, buf, SO_CPU);
5133 }
5134 SLAB_ATTR_RO(cpu_slabs);
5135
5136 static ssize_t objects_show(struct kmem_cache *s, char *buf)
5137 {
5138 return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
5139 }
5140 SLAB_ATTR_RO(objects);
5141
5142 static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
5143 {
5144 return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
5145 }
5146 SLAB_ATTR_RO(objects_partial);
5147
5148 static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf)
5149 {
5150 int objects = 0;
5151 int pages = 0;
5152 int cpu;
5153 int len = 0;
5154
5155 for_each_online_cpu(cpu) {
5156 struct page *page;
5157
5158 page = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu));
5159
5160 if (page) {
5161 pages += page->pages;
5162 objects += page->pobjects;
5163 }
5164 }
5165
5166 len += sysfs_emit_at(buf, len, "%d(%d)", objects, pages);
5167
5168 #ifdef CONFIG_SMP
5169 for_each_online_cpu(cpu) {
5170 struct page *page;
5171
5172 page = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu));
5173 if (page)
5174 len += sysfs_emit_at(buf, len, " C%d=%d(%d)",
5175 cpu, page->pobjects, page->pages);
5176 }
5177 #endif
5178 len += sysfs_emit_at(buf, len, "\n");
5179
5180 return len;
5181 }
5182 SLAB_ATTR_RO(slabs_cpu_partial);
5183
5184 static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
5185 {
5186 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
5187 }
5188 SLAB_ATTR_RO(reclaim_account);
5189
5190 static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
5191 {
5192 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
5193 }
5194 SLAB_ATTR_RO(hwcache_align);
5195
5196 #ifdef CONFIG_ZONE_DMA
5197 static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
5198 {
5199 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
5200 }
5201 SLAB_ATTR_RO(cache_dma);
5202 #endif
5203
5204 static ssize_t usersize_show(struct kmem_cache *s, char *buf)
5205 {
5206 return sysfs_emit(buf, "%u\n", s->usersize);
5207 }
5208 SLAB_ATTR_RO(usersize);
5209
5210 static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
5211 {
5212 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_TYPESAFE_BY_RCU));
5213 }
5214 SLAB_ATTR_RO(destroy_by_rcu);
5215
5216 #ifdef CONFIG_SLUB_DEBUG
5217 static ssize_t slabs_show(struct kmem_cache *s, char *buf)
5218 {
5219 return show_slab_objects(s, buf, SO_ALL);
5220 }
5221 SLAB_ATTR_RO(slabs);
5222
5223 static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
5224 {
5225 return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
5226 }
5227 SLAB_ATTR_RO(total_objects);
5228
5229 static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
5230 {
5231 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_CONSISTENCY_CHECKS));
5232 }
5233 SLAB_ATTR_RO(sanity_checks);
5234
5235 static ssize_t trace_show(struct kmem_cache *s, char *buf)
5236 {
5237 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_TRACE));
5238 }
5239 SLAB_ATTR_RO(trace);
5240
5241 static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
5242 {
5243 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
5244 }
5245
5246 SLAB_ATTR_RO(red_zone);
5247
5248 static ssize_t poison_show(struct kmem_cache *s, char *buf)
5249 {
5250 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_POISON));
5251 }
5252
5253 SLAB_ATTR_RO(poison);
5254
5255 static ssize_t store_user_show(struct kmem_cache *s, char *buf)
5256 {
5257 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
5258 }
5259
5260 SLAB_ATTR_RO(store_user);
5261
5262 static ssize_t validate_show(struct kmem_cache *s, char *buf)
5263 {
5264 return 0;
5265 }
5266
5267 static ssize_t validate_store(struct kmem_cache *s,
5268 const char *buf, size_t length)
5269 {
5270 int ret = -EINVAL;
5271
5272 if (buf[0] == '1') {
5273 ret = validate_slab_cache(s);
5274 if (ret >= 0)
5275 ret = length;
5276 }
5277 return ret;
5278 }
5279 SLAB_ATTR(validate);
5280
5281 #endif /* CONFIG_SLUB_DEBUG */
5282
5283 #ifdef CONFIG_FAILSLAB
5284 static ssize_t failslab_show(struct kmem_cache *s, char *buf)
5285 {
5286 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
5287 }
5288 SLAB_ATTR_RO(failslab);
5289 #endif
5290
5291 static ssize_t shrink_show(struct kmem_cache *s, char *buf)
5292 {
5293 return 0;
5294 }
5295
5296 static ssize_t shrink_store(struct kmem_cache *s,
5297 const char *buf, size_t length)
5298 {
5299 if (buf[0] == '1')
5300 kmem_cache_shrink(s);
5301 else
5302 return -EINVAL;
5303 return length;
5304 }
5305 SLAB_ATTR(shrink);
5306
5307 #ifdef CONFIG_NUMA
5308 static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
5309 {
5310 return sysfs_emit(buf, "%u\n", s->remote_node_defrag_ratio / 10);
5311 }
5312
5313 static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
5314 const char *buf, size_t length)
5315 {
5316 unsigned int ratio;
5317 int err;
5318
5319 err = kstrtouint(buf, 10, &ratio);
5320 if (err)
5321 return err;
5322 if (ratio > 100)
5323 return -ERANGE;
5324
5325 s->remote_node_defrag_ratio = ratio * 10;
5326
5327 return length;
5328 }
5329 SLAB_ATTR(remote_node_defrag_ratio);
5330 #endif
5331
5332 #ifdef CONFIG_SLUB_STATS
5333 static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
5334 {
5335 unsigned long sum = 0;
5336 int cpu;
5337 int len = 0;
5338 int *data = kmalloc_array(nr_cpu_ids, sizeof(int), GFP_KERNEL);
5339
5340 if (!data)
5341 return -ENOMEM;
5342
5343 for_each_online_cpu(cpu) {
5344 unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
5345
5346 data[cpu] = x;
5347 sum += x;
5348 }
5349
5350 len += sysfs_emit_at(buf, len, "%lu", sum);
5351
5352 #ifdef CONFIG_SMP
5353 for_each_online_cpu(cpu) {
5354 if (data[cpu])
5355 len += sysfs_emit_at(buf, len, " C%d=%u",
5356 cpu, data[cpu]);
5357 }
5358 #endif
5359 kfree(data);
5360 len += sysfs_emit_at(buf, len, "\n");
5361
5362 return len;
5363 }
5364
5365 static void clear_stat(struct kmem_cache *s, enum stat_item si)
5366 {
5367 int cpu;
5368
5369 for_each_online_cpu(cpu)
5370 per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
5371 }
5372
5373 #define STAT_ATTR(si, text) \
5374 static ssize_t text##_show(struct kmem_cache *s, char *buf) \
5375 { \
5376 return show_stat(s, buf, si); \
5377 } \
5378 static ssize_t text##_store(struct kmem_cache *s, \
5379 const char *buf, size_t length) \
5380 { \
5381 if (buf[0] != '0') \
5382 return -EINVAL; \
5383 clear_stat(s, si); \
5384 return length; \
5385 } \
5386 SLAB_ATTR(text); \
5387
5388 STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
5389 STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
5390 STAT_ATTR(FREE_FASTPATH, free_fastpath);
5391 STAT_ATTR(FREE_SLOWPATH, free_slowpath);
5392 STAT_ATTR(FREE_FROZEN, free_frozen);
5393 STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
5394 STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
5395 STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
5396 STAT_ATTR(ALLOC_SLAB, alloc_slab);
5397 STAT_ATTR(ALLOC_REFILL, alloc_refill);
5398 STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch);
5399 STAT_ATTR(FREE_SLAB, free_slab);
5400 STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
5401 STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
5402 STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
5403 STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
5404 STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
5405 STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
5406 STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass);
5407 STAT_ATTR(ORDER_FALLBACK, order_fallback);
5408 STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
5409 STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
5410 STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc);
5411 STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free);
5412 STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node);
5413 STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain);
5414 #endif /* CONFIG_SLUB_STATS */
5415
5416 static struct attribute *slab_attrs[] = {
5417 &slab_size_attr.attr,
5418 &object_size_attr.attr,
5419 &objs_per_slab_attr.attr,
5420 &order_attr.attr,
5421 &min_partial_attr.attr,
5422 &cpu_partial_attr.attr,
5423 &objects_attr.attr,
5424 &objects_partial_attr.attr,
5425 &partial_attr.attr,
5426 &cpu_slabs_attr.attr,
5427 &ctor_attr.attr,
5428 &aliases_attr.attr,
5429 &align_attr.attr,
5430 &hwcache_align_attr.attr,
5431 &reclaim_account_attr.attr,
5432 &destroy_by_rcu_attr.attr,
5433 &shrink_attr.attr,
5434 &slabs_cpu_partial_attr.attr,
5435 #ifdef CONFIG_SLUB_DEBUG
5436 &total_objects_attr.attr,
5437 &slabs_attr.attr,
5438 &sanity_checks_attr.attr,
5439 &trace_attr.attr,
5440 &red_zone_attr.attr,
5441 &poison_attr.attr,
5442 &store_user_attr.attr,
5443 &validate_attr.attr,
5444 #endif
5445 #ifdef CONFIG_ZONE_DMA
5446 &cache_dma_attr.attr,
5447 #endif
5448 #ifdef CONFIG_NUMA
5449 &remote_node_defrag_ratio_attr.attr,
5450 #endif
5451 #ifdef CONFIG_SLUB_STATS
5452 &alloc_fastpath_attr.attr,
5453 &alloc_slowpath_attr.attr,
5454 &free_fastpath_attr.attr,
5455 &free_slowpath_attr.attr,
5456 &free_frozen_attr.attr,
5457 &free_add_partial_attr.attr,
5458 &free_remove_partial_attr.attr,
5459 &alloc_from_partial_attr.attr,
5460 &alloc_slab_attr.attr,
5461 &alloc_refill_attr.attr,
5462 &alloc_node_mismatch_attr.attr,
5463 &free_slab_attr.attr,
5464 &cpuslab_flush_attr.attr,
5465 &deactivate_full_attr.attr,
5466 &deactivate_empty_attr.attr,
5467 &deactivate_to_head_attr.attr,
5468 &deactivate_to_tail_attr.attr,
5469 &deactivate_remote_frees_attr.attr,
5470 &deactivate_bypass_attr.attr,
5471 &order_fallback_attr.attr,
5472 &cmpxchg_double_fail_attr.attr,
5473 &cmpxchg_double_cpu_fail_attr.attr,
5474 &cpu_partial_alloc_attr.attr,
5475 &cpu_partial_free_attr.attr,
5476 &cpu_partial_node_attr.attr,
5477 &cpu_partial_drain_attr.attr,
5478 #endif
5479 #ifdef CONFIG_FAILSLAB
5480 &failslab_attr.attr,
5481 #endif
5482 &usersize_attr.attr,
5483
5484 NULL
5485 };
5486
5487 static const struct attribute_group slab_attr_group = {
5488 .attrs = slab_attrs,
5489 };
5490
5491 static ssize_t slab_attr_show(struct kobject *kobj,
5492 struct attribute *attr,
5493 char *buf)
5494 {
5495 struct slab_attribute *attribute;
5496 struct kmem_cache *s;
5497 int err;
5498
5499 attribute = to_slab_attr(attr);
5500 s = to_slab(kobj);
5501
5502 if (!attribute->show)
5503 return -EIO;
5504
5505 err = attribute->show(s, buf);
5506
5507 return err;
5508 }
5509
5510 static ssize_t slab_attr_store(struct kobject *kobj,
5511 struct attribute *attr,
5512 const char *buf, size_t len)
5513 {
5514 struct slab_attribute *attribute;
5515 struct kmem_cache *s;
5516 int err;
5517
5518 attribute = to_slab_attr(attr);
5519 s = to_slab(kobj);
5520
5521 if (!attribute->store)
5522 return -EIO;
5523
5524 err = attribute->store(s, buf, len);
5525 return err;
5526 }
5527
5528 static void kmem_cache_release(struct kobject *k)
5529 {
5530 slab_kmem_cache_release(to_slab(k));
5531 }
5532
5533 static const struct sysfs_ops slab_sysfs_ops = {
5534 .show = slab_attr_show,
5535 .store = slab_attr_store,
5536 };
5537
5538 static struct kobj_type slab_ktype = {
5539 .sysfs_ops = &slab_sysfs_ops,
5540 .release = kmem_cache_release,
5541 };
5542
5543 static struct kset *slab_kset;
5544
5545 static inline struct kset *cache_kset(struct kmem_cache *s)
5546 {
5547 return slab_kset;
5548 }
5549
5550 #define ID_STR_LENGTH 64
5551
5552 /* Create a unique string id for a slab cache:
5553 *
5554 * Format :[flags-]size
5555 */
5556 static char *create_unique_id(struct kmem_cache *s)
5557 {
5558 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
5559 char *p = name;
5560
5561 BUG_ON(!name);
5562
5563 *p++ = ':';
5564 /*
5565 * First flags affecting slabcache operations. We will only
5566 * get here for aliasable slabs so we do not need to support
5567 * too many flags. The flags here must cover all flags that
5568 * are matched during merging to guarantee that the id is
5569 * unique.
5570 */
5571 if (s->flags & SLAB_CACHE_DMA)
5572 *p++ = 'd';
5573 if (s->flags & SLAB_CACHE_DMA32)
5574 *p++ = 'D';
5575 if (s->flags & SLAB_RECLAIM_ACCOUNT)
5576 *p++ = 'a';
5577 if (s->flags & SLAB_CONSISTENCY_CHECKS)
5578 *p++ = 'F';
5579 if (s->flags & SLAB_ACCOUNT)
5580 *p++ = 'A';
5581 if (p != name + 1)
5582 *p++ = '-';
5583 p += sprintf(p, "%07u", s->size);
5584
5585 BUG_ON(p > name + ID_STR_LENGTH - 1);
5586 return name;
5587 }
5588
5589 static int sysfs_slab_add(struct kmem_cache *s)
5590 {
5591 int err;
5592 const char *name;
5593 struct kset *kset = cache_kset(s);
5594 int unmergeable = slab_unmergeable(s);
5595
5596 if (!kset) {
5597 kobject_init(&s->kobj, &slab_ktype);
5598 return 0;
5599 }
5600
5601 if (!unmergeable && disable_higher_order_debug &&
5602 (slub_debug & DEBUG_METADATA_FLAGS))
5603 unmergeable = 1;
5604
5605 if (unmergeable) {
5606 /*
5607 * Slabcache can never be merged so we can use the name proper.
5608 * This is typically the case for debug situations. In that
5609 * case we can catch duplicate names easily.
5610 */
5611 sysfs_remove_link(&slab_kset->kobj, s->name);
5612 name = s->name;
5613 } else {
5614 /*
5615 * Create a unique name for the slab as a target
5616 * for the symlinks.
5617 */
5618 name = create_unique_id(s);
5619 }
5620
5621 s->kobj.kset = kset;
5622 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, "%s", name);
5623 if (err)
5624 goto out;
5625
5626 err = sysfs_create_group(&s->kobj, &slab_attr_group);
5627 if (err)
5628 goto out_del_kobj;
5629
5630 if (!unmergeable) {
5631 /* Setup first alias */
5632 sysfs_slab_alias(s, s->name);
5633 }
5634 out:
5635 if (!unmergeable)
5636 kfree(name);
5637 return err;
5638 out_del_kobj:
5639 kobject_del(&s->kobj);
5640 goto out;
5641 }
5642
5643 void sysfs_slab_unlink(struct kmem_cache *s)
5644 {
5645 if (slab_state >= FULL)
5646 kobject_del(&s->kobj);
5647 }
5648
5649 void sysfs_slab_release(struct kmem_cache *s)
5650 {
5651 if (slab_state >= FULL)
5652 kobject_put(&s->kobj);
5653 }
5654
5655 /*
5656 * Need to buffer aliases during bootup until sysfs becomes
5657 * available lest we lose that information.
5658 */
5659 struct saved_alias {
5660 struct kmem_cache *s;
5661 const char *name;
5662 struct saved_alias *next;
5663 };
5664
5665 static struct saved_alias *alias_list;
5666
5667 static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
5668 {
5669 struct saved_alias *al;
5670
5671 if (slab_state == FULL) {
5672 /*
5673 * If we have a leftover link then remove it.
5674 */
5675 sysfs_remove_link(&slab_kset->kobj, name);
5676 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
5677 }
5678
5679 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
5680 if (!al)
5681 return -ENOMEM;
5682
5683 al->s = s;
5684 al->name = name;
5685 al->next = alias_list;
5686 alias_list = al;
5687 return 0;
5688 }
5689
5690 static int __init slab_sysfs_init(void)
5691 {
5692 struct kmem_cache *s;
5693 int err;
5694
5695 mutex_lock(&slab_mutex);
5696
5697 slab_kset = kset_create_and_add("slab", NULL, kernel_kobj);
5698 if (!slab_kset) {
5699 mutex_unlock(&slab_mutex);
5700 pr_err("Cannot register slab subsystem.\n");
5701 return -ENOSYS;
5702 }
5703
5704 slab_state = FULL;
5705
5706 list_for_each_entry(s, &slab_caches, list) {
5707 err = sysfs_slab_add(s);
5708 if (err)
5709 pr_err("SLUB: Unable to add boot slab %s to sysfs\n",
5710 s->name);
5711 }
5712
5713 while (alias_list) {
5714 struct saved_alias *al = alias_list;
5715
5716 alias_list = alias_list->next;
5717 err = sysfs_slab_alias(al->s, al->name);
5718 if (err)
5719 pr_err("SLUB: Unable to add boot slab alias %s to sysfs\n",
5720 al->name);
5721 kfree(al);
5722 }
5723
5724 mutex_unlock(&slab_mutex);
5725 return 0;
5726 }
5727
5728 __initcall(slab_sysfs_init);
5729 #endif /* CONFIG_SYSFS */
5730
5731 #if defined(CONFIG_SLUB_DEBUG) && defined(CONFIG_DEBUG_FS)
5732 static int slab_debugfs_show(struct seq_file *seq, void *v)
5733 {
5734
5735 struct location *l;
5736 unsigned int idx = *(unsigned int *)v;
5737 struct loc_track *t = seq->private;
5738
5739 if (idx < t->count) {
5740 l = &t->loc[idx];
5741
5742 seq_printf(seq, "%7ld ", l->count);
5743
5744 if (l->addr)
5745 seq_printf(seq, "%pS", (void *)l->addr);
5746 else
5747 seq_puts(seq, "<not-available>");
5748
5749 if (l->sum_time != l->min_time) {
5750 seq_printf(seq, " age=%ld/%llu/%ld",
5751 l->min_time, div_u64(l->sum_time, l->count),
5752 l->max_time);
5753 } else
5754 seq_printf(seq, " age=%ld", l->min_time);
5755
5756 if (l->min_pid != l->max_pid)
5757 seq_printf(seq, " pid=%ld-%ld", l->min_pid, l->max_pid);
5758 else
5759 seq_printf(seq, " pid=%ld",
5760 l->min_pid);
5761
5762 if (num_online_cpus() > 1 && !cpumask_empty(to_cpumask(l->cpus)))
5763 seq_printf(seq, " cpus=%*pbl",
5764 cpumask_pr_args(to_cpumask(l->cpus)));
5765
5766 if (nr_online_nodes > 1 && !nodes_empty(l->nodes))
5767 seq_printf(seq, " nodes=%*pbl",
5768 nodemask_pr_args(&l->nodes));
5769
5770 seq_puts(seq, "\n");
5771 }
5772
5773 if (!idx && !t->count)
5774 seq_puts(seq, "No data\n");
5775
5776 return 0;
5777 }
5778
5779 static void slab_debugfs_stop(struct seq_file *seq, void *v)
5780 {
5781 }
5782
5783 static void *slab_debugfs_next(struct seq_file *seq, void *v, loff_t *ppos)
5784 {
5785 struct loc_track *t = seq->private;
5786
5787 v = ppos;
5788 ++*ppos;
5789 if (*ppos <= t->count)
5790 return v;
5791
5792 return NULL;
5793 }
5794
5795 static void *slab_debugfs_start(struct seq_file *seq, loff_t *ppos)
5796 {
5797 return ppos;
5798 }
5799
5800 static const struct seq_operations slab_debugfs_sops = {
5801 .start = slab_debugfs_start,
5802 .next = slab_debugfs_next,
5803 .stop = slab_debugfs_stop,
5804 .show = slab_debugfs_show,
5805 };
5806
5807 static int slab_debug_trace_open(struct inode *inode, struct file *filep)
5808 {
5809
5810 struct kmem_cache_node *n;
5811 enum track_item alloc;
5812 int node;
5813 struct loc_track *t = __seq_open_private(filep, &slab_debugfs_sops,
5814 sizeof(struct loc_track));
5815 struct kmem_cache *s = file_inode(filep)->i_private;
5816
5817 if (strcmp(filep->f_path.dentry->d_name.name, "alloc_traces") == 0)
5818 alloc = TRACK_ALLOC;
5819 else
5820 alloc = TRACK_FREE;
5821
5822 if (!alloc_loc_track(t, PAGE_SIZE / sizeof(struct location), GFP_KERNEL))
5823 return -ENOMEM;
5824
5825 /* Push back cpu slabs */
5826 flush_all(s);
5827
5828 for_each_kmem_cache_node(s, node, n) {
5829 unsigned long flags;
5830 struct page *page;
5831
5832 if (!atomic_long_read(&n->nr_slabs))
5833 continue;
5834
5835 spin_lock_irqsave(&n->list_lock, flags);
5836 list_for_each_entry(page, &n->partial, slab_list)
5837 process_slab(t, s, page, alloc);
5838 list_for_each_entry(page, &n->full, slab_list)
5839 process_slab(t, s, page, alloc);
5840 spin_unlock_irqrestore(&n->list_lock, flags);
5841 }
5842
5843 return 0;
5844 }
5845
5846 static int slab_debug_trace_release(struct inode *inode, struct file *file)
5847 {
5848 struct seq_file *seq = file->private_data;
5849 struct loc_track *t = seq->private;
5850
5851 free_loc_track(t);
5852 return seq_release_private(inode, file);
5853 }
5854
5855 static const struct file_operations slab_debugfs_fops = {
5856 .open = slab_debug_trace_open,
5857 .read = seq_read,
5858 .llseek = seq_lseek,
5859 .release = slab_debug_trace_release,
5860 };
5861
5862 static void debugfs_slab_add(struct kmem_cache *s)
5863 {
5864 struct dentry *slab_cache_dir;
5865
5866 if (unlikely(!slab_debugfs_root))
5867 return;
5868
5869 slab_cache_dir = debugfs_create_dir(s->name, slab_debugfs_root);
5870
5871 debugfs_create_file("alloc_traces", 0400,
5872 slab_cache_dir, s, &slab_debugfs_fops);
5873
5874 debugfs_create_file("free_traces", 0400,
5875 slab_cache_dir, s, &slab_debugfs_fops);
5876 }
5877
5878 void debugfs_slab_release(struct kmem_cache *s)
5879 {
5880 debugfs_remove_recursive(debugfs_lookup(s->name, slab_debugfs_root));
5881 }
5882
5883 static int __init slab_debugfs_init(void)
5884 {
5885 struct kmem_cache *s;
5886
5887 slab_debugfs_root = debugfs_create_dir("slab", NULL);
5888
5889 list_for_each_entry(s, &slab_caches, list)
5890 if (s->flags & SLAB_STORE_USER)
5891 debugfs_slab_add(s);
5892
5893 return 0;
5894
5895 }
5896 __initcall(slab_debugfs_init);
5897 #endif
5898 /*
5899 * The /proc/slabinfo ABI
5900 */
5901 #ifdef CONFIG_SLUB_DEBUG
5902 void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo)
5903 {
5904 unsigned long nr_slabs = 0;
5905 unsigned long nr_objs = 0;
5906 unsigned long nr_free = 0;
5907 int node;
5908 struct kmem_cache_node *n;
5909
5910 for_each_kmem_cache_node(s, node, n) {
5911 nr_slabs += node_nr_slabs(n);
5912 nr_objs += node_nr_objs(n);
5913 nr_free += count_partial(n, count_free);
5914 }
5915
5916 sinfo->active_objs = nr_objs - nr_free;
5917 sinfo->num_objs = nr_objs;
5918 sinfo->active_slabs = nr_slabs;
5919 sinfo->num_slabs = nr_slabs;
5920 sinfo->objects_per_slab = oo_objects(s->oo);
5921 sinfo->cache_order = oo_order(s->oo);
5922 }
5923
5924 void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s)
5925 {
5926 }
5927
5928 ssize_t slabinfo_write(struct file *file, const char __user *buffer,
5929 size_t count, loff_t *ppos)
5930 {
5931 return -EIO;
5932 }
5933 #endif /* CONFIG_SLUB_DEBUG */