]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - mm/slub.c
Merge tag 'hsi-for-5.13' of git://git.kernel.org/pub/scm/linux/kernel/git/sre/linux-hsi
[mirror_ubuntu-jammy-kernel.git] / mm / slub.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * SLUB: A slab allocator that limits cache line use instead of queuing
4 * objects in per cpu and per node lists.
5 *
6 * The allocator synchronizes using per slab locks or atomic operatios
7 * and only uses a centralized lock to manage a pool of partial slabs.
8 *
9 * (C) 2007 SGI, Christoph Lameter
10 * (C) 2011 Linux Foundation, Christoph Lameter
11 */
12
13 #include <linux/mm.h>
14 #include <linux/swap.h> /* struct reclaim_state */
15 #include <linux/module.h>
16 #include <linux/bit_spinlock.h>
17 #include <linux/interrupt.h>
18 #include <linux/bitops.h>
19 #include <linux/slab.h>
20 #include "slab.h"
21 #include <linux/proc_fs.h>
22 #include <linux/seq_file.h>
23 #include <linux/kasan.h>
24 #include <linux/cpu.h>
25 #include <linux/cpuset.h>
26 #include <linux/mempolicy.h>
27 #include <linux/ctype.h>
28 #include <linux/debugobjects.h>
29 #include <linux/kallsyms.h>
30 #include <linux/kfence.h>
31 #include <linux/memory.h>
32 #include <linux/math64.h>
33 #include <linux/fault-inject.h>
34 #include <linux/stacktrace.h>
35 #include <linux/prefetch.h>
36 #include <linux/memcontrol.h>
37 #include <linux/random.h>
38
39 #include <trace/events/kmem.h>
40
41 #include "internal.h"
42
43 /*
44 * Lock order:
45 * 1. slab_mutex (Global Mutex)
46 * 2. node->list_lock
47 * 3. slab_lock(page) (Only on some arches and for debugging)
48 *
49 * slab_mutex
50 *
51 * The role of the slab_mutex is to protect the list of all the slabs
52 * and to synchronize major metadata changes to slab cache structures.
53 *
54 * The slab_lock is only used for debugging and on arches that do not
55 * have the ability to do a cmpxchg_double. It only protects:
56 * A. page->freelist -> List of object free in a page
57 * B. page->inuse -> Number of objects in use
58 * C. page->objects -> Number of objects in page
59 * D. page->frozen -> frozen state
60 *
61 * If a slab is frozen then it is exempt from list management. It is not
62 * on any list except per cpu partial list. The processor that froze the
63 * slab is the one who can perform list operations on the page. Other
64 * processors may put objects onto the freelist but the processor that
65 * froze the slab is the only one that can retrieve the objects from the
66 * page's freelist.
67 *
68 * The list_lock protects the partial and full list on each node and
69 * the partial slab counter. If taken then no new slabs may be added or
70 * removed from the lists nor make the number of partial slabs be modified.
71 * (Note that the total number of slabs is an atomic value that may be
72 * modified without taking the list lock).
73 *
74 * The list_lock is a centralized lock and thus we avoid taking it as
75 * much as possible. As long as SLUB does not have to handle partial
76 * slabs, operations can continue without any centralized lock. F.e.
77 * allocating a long series of objects that fill up slabs does not require
78 * the list lock.
79 * Interrupts are disabled during allocation and deallocation in order to
80 * make the slab allocator safe to use in the context of an irq. In addition
81 * interrupts are disabled to ensure that the processor does not change
82 * while handling per_cpu slabs, due to kernel preemption.
83 *
84 * SLUB assigns one slab for allocation to each processor.
85 * Allocations only occur from these slabs called cpu slabs.
86 *
87 * Slabs with free elements are kept on a partial list and during regular
88 * operations no list for full slabs is used. If an object in a full slab is
89 * freed then the slab will show up again on the partial lists.
90 * We track full slabs for debugging purposes though because otherwise we
91 * cannot scan all objects.
92 *
93 * Slabs are freed when they become empty. Teardown and setup is
94 * minimal so we rely on the page allocators per cpu caches for
95 * fast frees and allocs.
96 *
97 * page->frozen The slab is frozen and exempt from list processing.
98 * This means that the slab is dedicated to a purpose
99 * such as satisfying allocations for a specific
100 * processor. Objects may be freed in the slab while
101 * it is frozen but slab_free will then skip the usual
102 * list operations. It is up to the processor holding
103 * the slab to integrate the slab into the slab lists
104 * when the slab is no longer needed.
105 *
106 * One use of this flag is to mark slabs that are
107 * used for allocations. Then such a slab becomes a cpu
108 * slab. The cpu slab may be equipped with an additional
109 * freelist that allows lockless access to
110 * free objects in addition to the regular freelist
111 * that requires the slab lock.
112 *
113 * SLAB_DEBUG_FLAGS Slab requires special handling due to debug
114 * options set. This moves slab handling out of
115 * the fast path and disables lockless freelists.
116 */
117
118 #ifdef CONFIG_SLUB_DEBUG
119 #ifdef CONFIG_SLUB_DEBUG_ON
120 DEFINE_STATIC_KEY_TRUE(slub_debug_enabled);
121 #else
122 DEFINE_STATIC_KEY_FALSE(slub_debug_enabled);
123 #endif
124 #endif
125
126 static inline bool kmem_cache_debug(struct kmem_cache *s)
127 {
128 return kmem_cache_debug_flags(s, SLAB_DEBUG_FLAGS);
129 }
130
131 void *fixup_red_left(struct kmem_cache *s, void *p)
132 {
133 if (kmem_cache_debug_flags(s, SLAB_RED_ZONE))
134 p += s->red_left_pad;
135
136 return p;
137 }
138
139 static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s)
140 {
141 #ifdef CONFIG_SLUB_CPU_PARTIAL
142 return !kmem_cache_debug(s);
143 #else
144 return false;
145 #endif
146 }
147
148 /*
149 * Issues still to be resolved:
150 *
151 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
152 *
153 * - Variable sizing of the per node arrays
154 */
155
156 /* Enable to test recovery from slab corruption on boot */
157 #undef SLUB_RESILIENCY_TEST
158
159 /* Enable to log cmpxchg failures */
160 #undef SLUB_DEBUG_CMPXCHG
161
162 /*
163 * Mininum number of partial slabs. These will be left on the partial
164 * lists even if they are empty. kmem_cache_shrink may reclaim them.
165 */
166 #define MIN_PARTIAL 5
167
168 /*
169 * Maximum number of desirable partial slabs.
170 * The existence of more partial slabs makes kmem_cache_shrink
171 * sort the partial list by the number of objects in use.
172 */
173 #define MAX_PARTIAL 10
174
175 #define DEBUG_DEFAULT_FLAGS (SLAB_CONSISTENCY_CHECKS | SLAB_RED_ZONE | \
176 SLAB_POISON | SLAB_STORE_USER)
177
178 /*
179 * These debug flags cannot use CMPXCHG because there might be consistency
180 * issues when checking or reading debug information
181 */
182 #define SLAB_NO_CMPXCHG (SLAB_CONSISTENCY_CHECKS | SLAB_STORE_USER | \
183 SLAB_TRACE)
184
185
186 /*
187 * Debugging flags that require metadata to be stored in the slab. These get
188 * disabled when slub_debug=O is used and a cache's min order increases with
189 * metadata.
190 */
191 #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
192
193 #define OO_SHIFT 16
194 #define OO_MASK ((1 << OO_SHIFT) - 1)
195 #define MAX_OBJS_PER_PAGE 32767 /* since page.objects is u15 */
196
197 /* Internal SLUB flags */
198 /* Poison object */
199 #define __OBJECT_POISON ((slab_flags_t __force)0x80000000U)
200 /* Use cmpxchg_double */
201 #define __CMPXCHG_DOUBLE ((slab_flags_t __force)0x40000000U)
202
203 /*
204 * Tracking user of a slab.
205 */
206 #define TRACK_ADDRS_COUNT 16
207 struct track {
208 unsigned long addr; /* Called from address */
209 #ifdef CONFIG_STACKTRACE
210 unsigned long addrs[TRACK_ADDRS_COUNT]; /* Called from address */
211 #endif
212 int cpu; /* Was running on cpu */
213 int pid; /* Pid context */
214 unsigned long when; /* When did the operation occur */
215 };
216
217 enum track_item { TRACK_ALLOC, TRACK_FREE };
218
219 #ifdef CONFIG_SYSFS
220 static int sysfs_slab_add(struct kmem_cache *);
221 static int sysfs_slab_alias(struct kmem_cache *, const char *);
222 #else
223 static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
224 static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
225 { return 0; }
226 #endif
227
228 static inline void stat(const struct kmem_cache *s, enum stat_item si)
229 {
230 #ifdef CONFIG_SLUB_STATS
231 /*
232 * The rmw is racy on a preemptible kernel but this is acceptable, so
233 * avoid this_cpu_add()'s irq-disable overhead.
234 */
235 raw_cpu_inc(s->cpu_slab->stat[si]);
236 #endif
237 }
238
239 /*
240 * Tracks for which NUMA nodes we have kmem_cache_nodes allocated.
241 * Corresponds to node_state[N_NORMAL_MEMORY], but can temporarily
242 * differ during memory hotplug/hotremove operations.
243 * Protected by slab_mutex.
244 */
245 static nodemask_t slab_nodes;
246
247 /********************************************************************
248 * Core slab cache functions
249 *******************************************************************/
250
251 /*
252 * Returns freelist pointer (ptr). With hardening, this is obfuscated
253 * with an XOR of the address where the pointer is held and a per-cache
254 * random number.
255 */
256 static inline void *freelist_ptr(const struct kmem_cache *s, void *ptr,
257 unsigned long ptr_addr)
258 {
259 #ifdef CONFIG_SLAB_FREELIST_HARDENED
260 /*
261 * When CONFIG_KASAN_SW/HW_TAGS is enabled, ptr_addr might be tagged.
262 * Normally, this doesn't cause any issues, as both set_freepointer()
263 * and get_freepointer() are called with a pointer with the same tag.
264 * However, there are some issues with CONFIG_SLUB_DEBUG code. For
265 * example, when __free_slub() iterates over objects in a cache, it
266 * passes untagged pointers to check_object(). check_object() in turns
267 * calls get_freepointer() with an untagged pointer, which causes the
268 * freepointer to be restored incorrectly.
269 */
270 return (void *)((unsigned long)ptr ^ s->random ^
271 swab((unsigned long)kasan_reset_tag((void *)ptr_addr)));
272 #else
273 return ptr;
274 #endif
275 }
276
277 /* Returns the freelist pointer recorded at location ptr_addr. */
278 static inline void *freelist_dereference(const struct kmem_cache *s,
279 void *ptr_addr)
280 {
281 return freelist_ptr(s, (void *)*(unsigned long *)(ptr_addr),
282 (unsigned long)ptr_addr);
283 }
284
285 static inline void *get_freepointer(struct kmem_cache *s, void *object)
286 {
287 object = kasan_reset_tag(object);
288 return freelist_dereference(s, object + s->offset);
289 }
290
291 static void prefetch_freepointer(const struct kmem_cache *s, void *object)
292 {
293 prefetch(object + s->offset);
294 }
295
296 static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
297 {
298 unsigned long freepointer_addr;
299 void *p;
300
301 if (!debug_pagealloc_enabled_static())
302 return get_freepointer(s, object);
303
304 freepointer_addr = (unsigned long)object + s->offset;
305 copy_from_kernel_nofault(&p, (void **)freepointer_addr, sizeof(p));
306 return freelist_ptr(s, p, freepointer_addr);
307 }
308
309 static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
310 {
311 unsigned long freeptr_addr = (unsigned long)object + s->offset;
312
313 #ifdef CONFIG_SLAB_FREELIST_HARDENED
314 BUG_ON(object == fp); /* naive detection of double free or corruption */
315 #endif
316
317 freeptr_addr = (unsigned long)kasan_reset_tag((void *)freeptr_addr);
318 *(void **)freeptr_addr = freelist_ptr(s, fp, freeptr_addr);
319 }
320
321 /* Loop over all objects in a slab */
322 #define for_each_object(__p, __s, __addr, __objects) \
323 for (__p = fixup_red_left(__s, __addr); \
324 __p < (__addr) + (__objects) * (__s)->size; \
325 __p += (__s)->size)
326
327 static inline unsigned int order_objects(unsigned int order, unsigned int size)
328 {
329 return ((unsigned int)PAGE_SIZE << order) / size;
330 }
331
332 static inline struct kmem_cache_order_objects oo_make(unsigned int order,
333 unsigned int size)
334 {
335 struct kmem_cache_order_objects x = {
336 (order << OO_SHIFT) + order_objects(order, size)
337 };
338
339 return x;
340 }
341
342 static inline unsigned int oo_order(struct kmem_cache_order_objects x)
343 {
344 return x.x >> OO_SHIFT;
345 }
346
347 static inline unsigned int oo_objects(struct kmem_cache_order_objects x)
348 {
349 return x.x & OO_MASK;
350 }
351
352 /*
353 * Per slab locking using the pagelock
354 */
355 static __always_inline void slab_lock(struct page *page)
356 {
357 VM_BUG_ON_PAGE(PageTail(page), page);
358 bit_spin_lock(PG_locked, &page->flags);
359 }
360
361 static __always_inline void slab_unlock(struct page *page)
362 {
363 VM_BUG_ON_PAGE(PageTail(page), page);
364 __bit_spin_unlock(PG_locked, &page->flags);
365 }
366
367 /* Interrupts must be disabled (for the fallback code to work right) */
368 static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
369 void *freelist_old, unsigned long counters_old,
370 void *freelist_new, unsigned long counters_new,
371 const char *n)
372 {
373 VM_BUG_ON(!irqs_disabled());
374 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
375 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
376 if (s->flags & __CMPXCHG_DOUBLE) {
377 if (cmpxchg_double(&page->freelist, &page->counters,
378 freelist_old, counters_old,
379 freelist_new, counters_new))
380 return true;
381 } else
382 #endif
383 {
384 slab_lock(page);
385 if (page->freelist == freelist_old &&
386 page->counters == counters_old) {
387 page->freelist = freelist_new;
388 page->counters = counters_new;
389 slab_unlock(page);
390 return true;
391 }
392 slab_unlock(page);
393 }
394
395 cpu_relax();
396 stat(s, CMPXCHG_DOUBLE_FAIL);
397
398 #ifdef SLUB_DEBUG_CMPXCHG
399 pr_info("%s %s: cmpxchg double redo ", n, s->name);
400 #endif
401
402 return false;
403 }
404
405 static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
406 void *freelist_old, unsigned long counters_old,
407 void *freelist_new, unsigned long counters_new,
408 const char *n)
409 {
410 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
411 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
412 if (s->flags & __CMPXCHG_DOUBLE) {
413 if (cmpxchg_double(&page->freelist, &page->counters,
414 freelist_old, counters_old,
415 freelist_new, counters_new))
416 return true;
417 } else
418 #endif
419 {
420 unsigned long flags;
421
422 local_irq_save(flags);
423 slab_lock(page);
424 if (page->freelist == freelist_old &&
425 page->counters == counters_old) {
426 page->freelist = freelist_new;
427 page->counters = counters_new;
428 slab_unlock(page);
429 local_irq_restore(flags);
430 return true;
431 }
432 slab_unlock(page);
433 local_irq_restore(flags);
434 }
435
436 cpu_relax();
437 stat(s, CMPXCHG_DOUBLE_FAIL);
438
439 #ifdef SLUB_DEBUG_CMPXCHG
440 pr_info("%s %s: cmpxchg double redo ", n, s->name);
441 #endif
442
443 return false;
444 }
445
446 #ifdef CONFIG_SLUB_DEBUG
447 static unsigned long object_map[BITS_TO_LONGS(MAX_OBJS_PER_PAGE)];
448 static DEFINE_SPINLOCK(object_map_lock);
449
450 /*
451 * Determine a map of object in use on a page.
452 *
453 * Node listlock must be held to guarantee that the page does
454 * not vanish from under us.
455 */
456 static unsigned long *get_map(struct kmem_cache *s, struct page *page)
457 __acquires(&object_map_lock)
458 {
459 void *p;
460 void *addr = page_address(page);
461
462 VM_BUG_ON(!irqs_disabled());
463
464 spin_lock(&object_map_lock);
465
466 bitmap_zero(object_map, page->objects);
467
468 for (p = page->freelist; p; p = get_freepointer(s, p))
469 set_bit(__obj_to_index(s, addr, p), object_map);
470
471 return object_map;
472 }
473
474 static void put_map(unsigned long *map) __releases(&object_map_lock)
475 {
476 VM_BUG_ON(map != object_map);
477 spin_unlock(&object_map_lock);
478 }
479
480 static inline unsigned int size_from_object(struct kmem_cache *s)
481 {
482 if (s->flags & SLAB_RED_ZONE)
483 return s->size - s->red_left_pad;
484
485 return s->size;
486 }
487
488 static inline void *restore_red_left(struct kmem_cache *s, void *p)
489 {
490 if (s->flags & SLAB_RED_ZONE)
491 p -= s->red_left_pad;
492
493 return p;
494 }
495
496 /*
497 * Debug settings:
498 */
499 #if defined(CONFIG_SLUB_DEBUG_ON)
500 static slab_flags_t slub_debug = DEBUG_DEFAULT_FLAGS;
501 #else
502 static slab_flags_t slub_debug;
503 #endif
504
505 static char *slub_debug_string;
506 static int disable_higher_order_debug;
507
508 /*
509 * slub is about to manipulate internal object metadata. This memory lies
510 * outside the range of the allocated object, so accessing it would normally
511 * be reported by kasan as a bounds error. metadata_access_enable() is used
512 * to tell kasan that these accesses are OK.
513 */
514 static inline void metadata_access_enable(void)
515 {
516 kasan_disable_current();
517 }
518
519 static inline void metadata_access_disable(void)
520 {
521 kasan_enable_current();
522 }
523
524 /*
525 * Object debugging
526 */
527
528 /* Verify that a pointer has an address that is valid within a slab page */
529 static inline int check_valid_pointer(struct kmem_cache *s,
530 struct page *page, void *object)
531 {
532 void *base;
533
534 if (!object)
535 return 1;
536
537 base = page_address(page);
538 object = kasan_reset_tag(object);
539 object = restore_red_left(s, object);
540 if (object < base || object >= base + page->objects * s->size ||
541 (object - base) % s->size) {
542 return 0;
543 }
544
545 return 1;
546 }
547
548 static void print_section(char *level, char *text, u8 *addr,
549 unsigned int length)
550 {
551 metadata_access_enable();
552 print_hex_dump(level, kasan_reset_tag(text), DUMP_PREFIX_ADDRESS,
553 16, 1, addr, length, 1);
554 metadata_access_disable();
555 }
556
557 /*
558 * See comment in calculate_sizes().
559 */
560 static inline bool freeptr_outside_object(struct kmem_cache *s)
561 {
562 return s->offset >= s->inuse;
563 }
564
565 /*
566 * Return offset of the end of info block which is inuse + free pointer if
567 * not overlapping with object.
568 */
569 static inline unsigned int get_info_end(struct kmem_cache *s)
570 {
571 if (freeptr_outside_object(s))
572 return s->inuse + sizeof(void *);
573 else
574 return s->inuse;
575 }
576
577 static struct track *get_track(struct kmem_cache *s, void *object,
578 enum track_item alloc)
579 {
580 struct track *p;
581
582 p = object + get_info_end(s);
583
584 return kasan_reset_tag(p + alloc);
585 }
586
587 static void set_track(struct kmem_cache *s, void *object,
588 enum track_item alloc, unsigned long addr)
589 {
590 struct track *p = get_track(s, object, alloc);
591
592 if (addr) {
593 #ifdef CONFIG_STACKTRACE
594 unsigned int nr_entries;
595
596 metadata_access_enable();
597 nr_entries = stack_trace_save(kasan_reset_tag(p->addrs),
598 TRACK_ADDRS_COUNT, 3);
599 metadata_access_disable();
600
601 if (nr_entries < TRACK_ADDRS_COUNT)
602 p->addrs[nr_entries] = 0;
603 #endif
604 p->addr = addr;
605 p->cpu = smp_processor_id();
606 p->pid = current->pid;
607 p->when = jiffies;
608 } else {
609 memset(p, 0, sizeof(struct track));
610 }
611 }
612
613 static void init_tracking(struct kmem_cache *s, void *object)
614 {
615 if (!(s->flags & SLAB_STORE_USER))
616 return;
617
618 set_track(s, object, TRACK_FREE, 0UL);
619 set_track(s, object, TRACK_ALLOC, 0UL);
620 }
621
622 static void print_track(const char *s, struct track *t, unsigned long pr_time)
623 {
624 if (!t->addr)
625 return;
626
627 pr_err("%s in %pS age=%lu cpu=%u pid=%d\n",
628 s, (void *)t->addr, pr_time - t->when, t->cpu, t->pid);
629 #ifdef CONFIG_STACKTRACE
630 {
631 int i;
632 for (i = 0; i < TRACK_ADDRS_COUNT; i++)
633 if (t->addrs[i])
634 pr_err("\t%pS\n", (void *)t->addrs[i]);
635 else
636 break;
637 }
638 #endif
639 }
640
641 void print_tracking(struct kmem_cache *s, void *object)
642 {
643 unsigned long pr_time = jiffies;
644 if (!(s->flags & SLAB_STORE_USER))
645 return;
646
647 print_track("Allocated", get_track(s, object, TRACK_ALLOC), pr_time);
648 print_track("Freed", get_track(s, object, TRACK_FREE), pr_time);
649 }
650
651 static void print_page_info(struct page *page)
652 {
653 pr_err("Slab 0x%p objects=%u used=%u fp=0x%p flags=%#lx(%pGp)\n",
654 page, page->objects, page->inuse, page->freelist,
655 page->flags, &page->flags);
656
657 }
658
659 static void slab_bug(struct kmem_cache *s, char *fmt, ...)
660 {
661 struct va_format vaf;
662 va_list args;
663
664 va_start(args, fmt);
665 vaf.fmt = fmt;
666 vaf.va = &args;
667 pr_err("=============================================================================\n");
668 pr_err("BUG %s (%s): %pV\n", s->name, print_tainted(), &vaf);
669 pr_err("-----------------------------------------------------------------------------\n\n");
670
671 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
672 va_end(args);
673 }
674
675 static void slab_fix(struct kmem_cache *s, char *fmt, ...)
676 {
677 struct va_format vaf;
678 va_list args;
679
680 va_start(args, fmt);
681 vaf.fmt = fmt;
682 vaf.va = &args;
683 pr_err("FIX %s: %pV\n", s->name, &vaf);
684 va_end(args);
685 }
686
687 static bool freelist_corrupted(struct kmem_cache *s, struct page *page,
688 void **freelist, void *nextfree)
689 {
690 if ((s->flags & SLAB_CONSISTENCY_CHECKS) &&
691 !check_valid_pointer(s, page, nextfree) && freelist) {
692 object_err(s, page, *freelist, "Freechain corrupt");
693 *freelist = NULL;
694 slab_fix(s, "Isolate corrupted freechain");
695 return true;
696 }
697
698 return false;
699 }
700
701 static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
702 {
703 unsigned int off; /* Offset of last byte */
704 u8 *addr = page_address(page);
705
706 print_tracking(s, p);
707
708 print_page_info(page);
709
710 pr_err("Object 0x%p @offset=%tu fp=0x%p\n\n",
711 p, p - addr, get_freepointer(s, p));
712
713 if (s->flags & SLAB_RED_ZONE)
714 print_section(KERN_ERR, "Redzone ", p - s->red_left_pad,
715 s->red_left_pad);
716 else if (p > addr + 16)
717 print_section(KERN_ERR, "Bytes b4 ", p - 16, 16);
718
719 print_section(KERN_ERR, "Object ", p,
720 min_t(unsigned int, s->object_size, PAGE_SIZE));
721 if (s->flags & SLAB_RED_ZONE)
722 print_section(KERN_ERR, "Redzone ", p + s->object_size,
723 s->inuse - s->object_size);
724
725 off = get_info_end(s);
726
727 if (s->flags & SLAB_STORE_USER)
728 off += 2 * sizeof(struct track);
729
730 off += kasan_metadata_size(s);
731
732 if (off != size_from_object(s))
733 /* Beginning of the filler is the free pointer */
734 print_section(KERN_ERR, "Padding ", p + off,
735 size_from_object(s) - off);
736
737 dump_stack();
738 }
739
740 void object_err(struct kmem_cache *s, struct page *page,
741 u8 *object, char *reason)
742 {
743 slab_bug(s, "%s", reason);
744 print_trailer(s, page, object);
745 }
746
747 static __printf(3, 4) void slab_err(struct kmem_cache *s, struct page *page,
748 const char *fmt, ...)
749 {
750 va_list args;
751 char buf[100];
752
753 va_start(args, fmt);
754 vsnprintf(buf, sizeof(buf), fmt, args);
755 va_end(args);
756 slab_bug(s, "%s", buf);
757 print_page_info(page);
758 dump_stack();
759 }
760
761 static void init_object(struct kmem_cache *s, void *object, u8 val)
762 {
763 u8 *p = kasan_reset_tag(object);
764
765 if (s->flags & SLAB_RED_ZONE)
766 memset(p - s->red_left_pad, val, s->red_left_pad);
767
768 if (s->flags & __OBJECT_POISON) {
769 memset(p, POISON_FREE, s->object_size - 1);
770 p[s->object_size - 1] = POISON_END;
771 }
772
773 if (s->flags & SLAB_RED_ZONE)
774 memset(p + s->object_size, val, s->inuse - s->object_size);
775 }
776
777 static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
778 void *from, void *to)
779 {
780 slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
781 memset(from, data, to - from);
782 }
783
784 static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
785 u8 *object, char *what,
786 u8 *start, unsigned int value, unsigned int bytes)
787 {
788 u8 *fault;
789 u8 *end;
790 u8 *addr = page_address(page);
791
792 metadata_access_enable();
793 fault = memchr_inv(kasan_reset_tag(start), value, bytes);
794 metadata_access_disable();
795 if (!fault)
796 return 1;
797
798 end = start + bytes;
799 while (end > fault && end[-1] == value)
800 end--;
801
802 slab_bug(s, "%s overwritten", what);
803 pr_err("0x%p-0x%p @offset=%tu. First byte 0x%x instead of 0x%x\n",
804 fault, end - 1, fault - addr,
805 fault[0], value);
806 print_trailer(s, page, object);
807
808 restore_bytes(s, what, value, fault, end);
809 return 0;
810 }
811
812 /*
813 * Object layout:
814 *
815 * object address
816 * Bytes of the object to be managed.
817 * If the freepointer may overlay the object then the free
818 * pointer is at the middle of the object.
819 *
820 * Poisoning uses 0x6b (POISON_FREE) and the last byte is
821 * 0xa5 (POISON_END)
822 *
823 * object + s->object_size
824 * Padding to reach word boundary. This is also used for Redzoning.
825 * Padding is extended by another word if Redzoning is enabled and
826 * object_size == inuse.
827 *
828 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
829 * 0xcc (RED_ACTIVE) for objects in use.
830 *
831 * object + s->inuse
832 * Meta data starts here.
833 *
834 * A. Free pointer (if we cannot overwrite object on free)
835 * B. Tracking data for SLAB_STORE_USER
836 * C. Padding to reach required alignment boundary or at mininum
837 * one word if debugging is on to be able to detect writes
838 * before the word boundary.
839 *
840 * Padding is done using 0x5a (POISON_INUSE)
841 *
842 * object + s->size
843 * Nothing is used beyond s->size.
844 *
845 * If slabcaches are merged then the object_size and inuse boundaries are mostly
846 * ignored. And therefore no slab options that rely on these boundaries
847 * may be used with merged slabcaches.
848 */
849
850 static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
851 {
852 unsigned long off = get_info_end(s); /* The end of info */
853
854 if (s->flags & SLAB_STORE_USER)
855 /* We also have user information there */
856 off += 2 * sizeof(struct track);
857
858 off += kasan_metadata_size(s);
859
860 if (size_from_object(s) == off)
861 return 1;
862
863 return check_bytes_and_report(s, page, p, "Object padding",
864 p + off, POISON_INUSE, size_from_object(s) - off);
865 }
866
867 /* Check the pad bytes at the end of a slab page */
868 static int slab_pad_check(struct kmem_cache *s, struct page *page)
869 {
870 u8 *start;
871 u8 *fault;
872 u8 *end;
873 u8 *pad;
874 int length;
875 int remainder;
876
877 if (!(s->flags & SLAB_POISON))
878 return 1;
879
880 start = page_address(page);
881 length = page_size(page);
882 end = start + length;
883 remainder = length % s->size;
884 if (!remainder)
885 return 1;
886
887 pad = end - remainder;
888 metadata_access_enable();
889 fault = memchr_inv(kasan_reset_tag(pad), POISON_INUSE, remainder);
890 metadata_access_disable();
891 if (!fault)
892 return 1;
893 while (end > fault && end[-1] == POISON_INUSE)
894 end--;
895
896 slab_err(s, page, "Padding overwritten. 0x%p-0x%p @offset=%tu",
897 fault, end - 1, fault - start);
898 print_section(KERN_ERR, "Padding ", pad, remainder);
899
900 restore_bytes(s, "slab padding", POISON_INUSE, fault, end);
901 return 0;
902 }
903
904 static int check_object(struct kmem_cache *s, struct page *page,
905 void *object, u8 val)
906 {
907 u8 *p = object;
908 u8 *endobject = object + s->object_size;
909
910 if (s->flags & SLAB_RED_ZONE) {
911 if (!check_bytes_and_report(s, page, object, "Redzone",
912 object - s->red_left_pad, val, s->red_left_pad))
913 return 0;
914
915 if (!check_bytes_and_report(s, page, object, "Redzone",
916 endobject, val, s->inuse - s->object_size))
917 return 0;
918 } else {
919 if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) {
920 check_bytes_and_report(s, page, p, "Alignment padding",
921 endobject, POISON_INUSE,
922 s->inuse - s->object_size);
923 }
924 }
925
926 if (s->flags & SLAB_POISON) {
927 if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) &&
928 (!check_bytes_and_report(s, page, p, "Poison", p,
929 POISON_FREE, s->object_size - 1) ||
930 !check_bytes_and_report(s, page, p, "Poison",
931 p + s->object_size - 1, POISON_END, 1)))
932 return 0;
933 /*
934 * check_pad_bytes cleans up on its own.
935 */
936 check_pad_bytes(s, page, p);
937 }
938
939 if (!freeptr_outside_object(s) && val == SLUB_RED_ACTIVE)
940 /*
941 * Object and freepointer overlap. Cannot check
942 * freepointer while object is allocated.
943 */
944 return 1;
945
946 /* Check free pointer validity */
947 if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
948 object_err(s, page, p, "Freepointer corrupt");
949 /*
950 * No choice but to zap it and thus lose the remainder
951 * of the free objects in this slab. May cause
952 * another error because the object count is now wrong.
953 */
954 set_freepointer(s, p, NULL);
955 return 0;
956 }
957 return 1;
958 }
959
960 static int check_slab(struct kmem_cache *s, struct page *page)
961 {
962 int maxobj;
963
964 VM_BUG_ON(!irqs_disabled());
965
966 if (!PageSlab(page)) {
967 slab_err(s, page, "Not a valid slab page");
968 return 0;
969 }
970
971 maxobj = order_objects(compound_order(page), s->size);
972 if (page->objects > maxobj) {
973 slab_err(s, page, "objects %u > max %u",
974 page->objects, maxobj);
975 return 0;
976 }
977 if (page->inuse > page->objects) {
978 slab_err(s, page, "inuse %u > max %u",
979 page->inuse, page->objects);
980 return 0;
981 }
982 /* Slab_pad_check fixes things up after itself */
983 slab_pad_check(s, page);
984 return 1;
985 }
986
987 /*
988 * Determine if a certain object on a page is on the freelist. Must hold the
989 * slab lock to guarantee that the chains are in a consistent state.
990 */
991 static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
992 {
993 int nr = 0;
994 void *fp;
995 void *object = NULL;
996 int max_objects;
997
998 fp = page->freelist;
999 while (fp && nr <= page->objects) {
1000 if (fp == search)
1001 return 1;
1002 if (!check_valid_pointer(s, page, fp)) {
1003 if (object) {
1004 object_err(s, page, object,
1005 "Freechain corrupt");
1006 set_freepointer(s, object, NULL);
1007 } else {
1008 slab_err(s, page, "Freepointer corrupt");
1009 page->freelist = NULL;
1010 page->inuse = page->objects;
1011 slab_fix(s, "Freelist cleared");
1012 return 0;
1013 }
1014 break;
1015 }
1016 object = fp;
1017 fp = get_freepointer(s, object);
1018 nr++;
1019 }
1020
1021 max_objects = order_objects(compound_order(page), s->size);
1022 if (max_objects > MAX_OBJS_PER_PAGE)
1023 max_objects = MAX_OBJS_PER_PAGE;
1024
1025 if (page->objects != max_objects) {
1026 slab_err(s, page, "Wrong number of objects. Found %d but should be %d",
1027 page->objects, max_objects);
1028 page->objects = max_objects;
1029 slab_fix(s, "Number of objects adjusted.");
1030 }
1031 if (page->inuse != page->objects - nr) {
1032 slab_err(s, page, "Wrong object count. Counter is %d but counted were %d",
1033 page->inuse, page->objects - nr);
1034 page->inuse = page->objects - nr;
1035 slab_fix(s, "Object count adjusted.");
1036 }
1037 return search == NULL;
1038 }
1039
1040 static void trace(struct kmem_cache *s, struct page *page, void *object,
1041 int alloc)
1042 {
1043 if (s->flags & SLAB_TRACE) {
1044 pr_info("TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
1045 s->name,
1046 alloc ? "alloc" : "free",
1047 object, page->inuse,
1048 page->freelist);
1049
1050 if (!alloc)
1051 print_section(KERN_INFO, "Object ", (void *)object,
1052 s->object_size);
1053
1054 dump_stack();
1055 }
1056 }
1057
1058 /*
1059 * Tracking of fully allocated slabs for debugging purposes.
1060 */
1061 static void add_full(struct kmem_cache *s,
1062 struct kmem_cache_node *n, struct page *page)
1063 {
1064 if (!(s->flags & SLAB_STORE_USER))
1065 return;
1066
1067 lockdep_assert_held(&n->list_lock);
1068 list_add(&page->slab_list, &n->full);
1069 }
1070
1071 static void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, struct page *page)
1072 {
1073 if (!(s->flags & SLAB_STORE_USER))
1074 return;
1075
1076 lockdep_assert_held(&n->list_lock);
1077 list_del(&page->slab_list);
1078 }
1079
1080 /* Tracking of the number of slabs for debugging purposes */
1081 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1082 {
1083 struct kmem_cache_node *n = get_node(s, node);
1084
1085 return atomic_long_read(&n->nr_slabs);
1086 }
1087
1088 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1089 {
1090 return atomic_long_read(&n->nr_slabs);
1091 }
1092
1093 static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
1094 {
1095 struct kmem_cache_node *n = get_node(s, node);
1096
1097 /*
1098 * May be called early in order to allocate a slab for the
1099 * kmem_cache_node structure. Solve the chicken-egg
1100 * dilemma by deferring the increment of the count during
1101 * bootstrap (see early_kmem_cache_node_alloc).
1102 */
1103 if (likely(n)) {
1104 atomic_long_inc(&n->nr_slabs);
1105 atomic_long_add(objects, &n->total_objects);
1106 }
1107 }
1108 static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
1109 {
1110 struct kmem_cache_node *n = get_node(s, node);
1111
1112 atomic_long_dec(&n->nr_slabs);
1113 atomic_long_sub(objects, &n->total_objects);
1114 }
1115
1116 /* Object debug checks for alloc/free paths */
1117 static void setup_object_debug(struct kmem_cache *s, struct page *page,
1118 void *object)
1119 {
1120 if (!kmem_cache_debug_flags(s, SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON))
1121 return;
1122
1123 init_object(s, object, SLUB_RED_INACTIVE);
1124 init_tracking(s, object);
1125 }
1126
1127 static
1128 void setup_page_debug(struct kmem_cache *s, struct page *page, void *addr)
1129 {
1130 if (!kmem_cache_debug_flags(s, SLAB_POISON))
1131 return;
1132
1133 metadata_access_enable();
1134 memset(kasan_reset_tag(addr), POISON_INUSE, page_size(page));
1135 metadata_access_disable();
1136 }
1137
1138 static inline int alloc_consistency_checks(struct kmem_cache *s,
1139 struct page *page, void *object)
1140 {
1141 if (!check_slab(s, page))
1142 return 0;
1143
1144 if (!check_valid_pointer(s, page, object)) {
1145 object_err(s, page, object, "Freelist Pointer check fails");
1146 return 0;
1147 }
1148
1149 if (!check_object(s, page, object, SLUB_RED_INACTIVE))
1150 return 0;
1151
1152 return 1;
1153 }
1154
1155 static noinline int alloc_debug_processing(struct kmem_cache *s,
1156 struct page *page,
1157 void *object, unsigned long addr)
1158 {
1159 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1160 if (!alloc_consistency_checks(s, page, object))
1161 goto bad;
1162 }
1163
1164 /* Success perform special debug activities for allocs */
1165 if (s->flags & SLAB_STORE_USER)
1166 set_track(s, object, TRACK_ALLOC, addr);
1167 trace(s, page, object, 1);
1168 init_object(s, object, SLUB_RED_ACTIVE);
1169 return 1;
1170
1171 bad:
1172 if (PageSlab(page)) {
1173 /*
1174 * If this is a slab page then lets do the best we can
1175 * to avoid issues in the future. Marking all objects
1176 * as used avoids touching the remaining objects.
1177 */
1178 slab_fix(s, "Marking all objects used");
1179 page->inuse = page->objects;
1180 page->freelist = NULL;
1181 }
1182 return 0;
1183 }
1184
1185 static inline int free_consistency_checks(struct kmem_cache *s,
1186 struct page *page, void *object, unsigned long addr)
1187 {
1188 if (!check_valid_pointer(s, page, object)) {
1189 slab_err(s, page, "Invalid object pointer 0x%p", object);
1190 return 0;
1191 }
1192
1193 if (on_freelist(s, page, object)) {
1194 object_err(s, page, object, "Object already free");
1195 return 0;
1196 }
1197
1198 if (!check_object(s, page, object, SLUB_RED_ACTIVE))
1199 return 0;
1200
1201 if (unlikely(s != page->slab_cache)) {
1202 if (!PageSlab(page)) {
1203 slab_err(s, page, "Attempt to free object(0x%p) outside of slab",
1204 object);
1205 } else if (!page->slab_cache) {
1206 pr_err("SLUB <none>: no slab for object 0x%p.\n",
1207 object);
1208 dump_stack();
1209 } else
1210 object_err(s, page, object,
1211 "page slab pointer corrupt.");
1212 return 0;
1213 }
1214 return 1;
1215 }
1216
1217 /* Supports checking bulk free of a constructed freelist */
1218 static noinline int free_debug_processing(
1219 struct kmem_cache *s, struct page *page,
1220 void *head, void *tail, int bulk_cnt,
1221 unsigned long addr)
1222 {
1223 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1224 void *object = head;
1225 int cnt = 0;
1226 unsigned long flags;
1227 int ret = 0;
1228
1229 spin_lock_irqsave(&n->list_lock, flags);
1230 slab_lock(page);
1231
1232 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1233 if (!check_slab(s, page))
1234 goto out;
1235 }
1236
1237 next_object:
1238 cnt++;
1239
1240 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1241 if (!free_consistency_checks(s, page, object, addr))
1242 goto out;
1243 }
1244
1245 if (s->flags & SLAB_STORE_USER)
1246 set_track(s, object, TRACK_FREE, addr);
1247 trace(s, page, object, 0);
1248 /* Freepointer not overwritten by init_object(), SLAB_POISON moved it */
1249 init_object(s, object, SLUB_RED_INACTIVE);
1250
1251 /* Reached end of constructed freelist yet? */
1252 if (object != tail) {
1253 object = get_freepointer(s, object);
1254 goto next_object;
1255 }
1256 ret = 1;
1257
1258 out:
1259 if (cnt != bulk_cnt)
1260 slab_err(s, page, "Bulk freelist count(%d) invalid(%d)\n",
1261 bulk_cnt, cnt);
1262
1263 slab_unlock(page);
1264 spin_unlock_irqrestore(&n->list_lock, flags);
1265 if (!ret)
1266 slab_fix(s, "Object at 0x%p not freed", object);
1267 return ret;
1268 }
1269
1270 /*
1271 * Parse a block of slub_debug options. Blocks are delimited by ';'
1272 *
1273 * @str: start of block
1274 * @flags: returns parsed flags, or DEBUG_DEFAULT_FLAGS if none specified
1275 * @slabs: return start of list of slabs, or NULL when there's no list
1276 * @init: assume this is initial parsing and not per-kmem-create parsing
1277 *
1278 * returns the start of next block if there's any, or NULL
1279 */
1280 static char *
1281 parse_slub_debug_flags(char *str, slab_flags_t *flags, char **slabs, bool init)
1282 {
1283 bool higher_order_disable = false;
1284
1285 /* Skip any completely empty blocks */
1286 while (*str && *str == ';')
1287 str++;
1288
1289 if (*str == ',') {
1290 /*
1291 * No options but restriction on slabs. This means full
1292 * debugging for slabs matching a pattern.
1293 */
1294 *flags = DEBUG_DEFAULT_FLAGS;
1295 goto check_slabs;
1296 }
1297 *flags = 0;
1298
1299 /* Determine which debug features should be switched on */
1300 for (; *str && *str != ',' && *str != ';'; str++) {
1301 switch (tolower(*str)) {
1302 case '-':
1303 *flags = 0;
1304 break;
1305 case 'f':
1306 *flags |= SLAB_CONSISTENCY_CHECKS;
1307 break;
1308 case 'z':
1309 *flags |= SLAB_RED_ZONE;
1310 break;
1311 case 'p':
1312 *flags |= SLAB_POISON;
1313 break;
1314 case 'u':
1315 *flags |= SLAB_STORE_USER;
1316 break;
1317 case 't':
1318 *flags |= SLAB_TRACE;
1319 break;
1320 case 'a':
1321 *flags |= SLAB_FAILSLAB;
1322 break;
1323 case 'o':
1324 /*
1325 * Avoid enabling debugging on caches if its minimum
1326 * order would increase as a result.
1327 */
1328 higher_order_disable = true;
1329 break;
1330 default:
1331 if (init)
1332 pr_err("slub_debug option '%c' unknown. skipped\n", *str);
1333 }
1334 }
1335 check_slabs:
1336 if (*str == ',')
1337 *slabs = ++str;
1338 else
1339 *slabs = NULL;
1340
1341 /* Skip over the slab list */
1342 while (*str && *str != ';')
1343 str++;
1344
1345 /* Skip any completely empty blocks */
1346 while (*str && *str == ';')
1347 str++;
1348
1349 if (init && higher_order_disable)
1350 disable_higher_order_debug = 1;
1351
1352 if (*str)
1353 return str;
1354 else
1355 return NULL;
1356 }
1357
1358 static int __init setup_slub_debug(char *str)
1359 {
1360 slab_flags_t flags;
1361 char *saved_str;
1362 char *slab_list;
1363 bool global_slub_debug_changed = false;
1364 bool slab_list_specified = false;
1365
1366 slub_debug = DEBUG_DEFAULT_FLAGS;
1367 if (*str++ != '=' || !*str)
1368 /*
1369 * No options specified. Switch on full debugging.
1370 */
1371 goto out;
1372
1373 saved_str = str;
1374 while (str) {
1375 str = parse_slub_debug_flags(str, &flags, &slab_list, true);
1376
1377 if (!slab_list) {
1378 slub_debug = flags;
1379 global_slub_debug_changed = true;
1380 } else {
1381 slab_list_specified = true;
1382 }
1383 }
1384
1385 /*
1386 * For backwards compatibility, a single list of flags with list of
1387 * slabs means debugging is only enabled for those slabs, so the global
1388 * slub_debug should be 0. We can extended that to multiple lists as
1389 * long as there is no option specifying flags without a slab list.
1390 */
1391 if (slab_list_specified) {
1392 if (!global_slub_debug_changed)
1393 slub_debug = 0;
1394 slub_debug_string = saved_str;
1395 }
1396 out:
1397 if (slub_debug != 0 || slub_debug_string)
1398 static_branch_enable(&slub_debug_enabled);
1399 if ((static_branch_unlikely(&init_on_alloc) ||
1400 static_branch_unlikely(&init_on_free)) &&
1401 (slub_debug & SLAB_POISON))
1402 pr_info("mem auto-init: SLAB_POISON will take precedence over init_on_alloc/init_on_free\n");
1403 return 1;
1404 }
1405
1406 __setup("slub_debug", setup_slub_debug);
1407
1408 /*
1409 * kmem_cache_flags - apply debugging options to the cache
1410 * @object_size: the size of an object without meta data
1411 * @flags: flags to set
1412 * @name: name of the cache
1413 *
1414 * Debug option(s) are applied to @flags. In addition to the debug
1415 * option(s), if a slab name (or multiple) is specified i.e.
1416 * slub_debug=<Debug-Options>,<slab name1>,<slab name2> ...
1417 * then only the select slabs will receive the debug option(s).
1418 */
1419 slab_flags_t kmem_cache_flags(unsigned int object_size,
1420 slab_flags_t flags, const char *name)
1421 {
1422 char *iter;
1423 size_t len;
1424 char *next_block;
1425 slab_flags_t block_flags;
1426 slab_flags_t slub_debug_local = slub_debug;
1427
1428 /*
1429 * If the slab cache is for debugging (e.g. kmemleak) then
1430 * don't store user (stack trace) information by default,
1431 * but let the user enable it via the command line below.
1432 */
1433 if (flags & SLAB_NOLEAKTRACE)
1434 slub_debug_local &= ~SLAB_STORE_USER;
1435
1436 len = strlen(name);
1437 next_block = slub_debug_string;
1438 /* Go through all blocks of debug options, see if any matches our slab's name */
1439 while (next_block) {
1440 next_block = parse_slub_debug_flags(next_block, &block_flags, &iter, false);
1441 if (!iter)
1442 continue;
1443 /* Found a block that has a slab list, search it */
1444 while (*iter) {
1445 char *end, *glob;
1446 size_t cmplen;
1447
1448 end = strchrnul(iter, ',');
1449 if (next_block && next_block < end)
1450 end = next_block - 1;
1451
1452 glob = strnchr(iter, end - iter, '*');
1453 if (glob)
1454 cmplen = glob - iter;
1455 else
1456 cmplen = max_t(size_t, len, (end - iter));
1457
1458 if (!strncmp(name, iter, cmplen)) {
1459 flags |= block_flags;
1460 return flags;
1461 }
1462
1463 if (!*end || *end == ';')
1464 break;
1465 iter = end + 1;
1466 }
1467 }
1468
1469 return flags | slub_debug_local;
1470 }
1471 #else /* !CONFIG_SLUB_DEBUG */
1472 static inline void setup_object_debug(struct kmem_cache *s,
1473 struct page *page, void *object) {}
1474 static inline
1475 void setup_page_debug(struct kmem_cache *s, struct page *page, void *addr) {}
1476
1477 static inline int alloc_debug_processing(struct kmem_cache *s,
1478 struct page *page, void *object, unsigned long addr) { return 0; }
1479
1480 static inline int free_debug_processing(
1481 struct kmem_cache *s, struct page *page,
1482 void *head, void *tail, int bulk_cnt,
1483 unsigned long addr) { return 0; }
1484
1485 static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1486 { return 1; }
1487 static inline int check_object(struct kmem_cache *s, struct page *page,
1488 void *object, u8 val) { return 1; }
1489 static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
1490 struct page *page) {}
1491 static inline void remove_full(struct kmem_cache *s, struct kmem_cache_node *n,
1492 struct page *page) {}
1493 slab_flags_t kmem_cache_flags(unsigned int object_size,
1494 slab_flags_t flags, const char *name)
1495 {
1496 return flags;
1497 }
1498 #define slub_debug 0
1499
1500 #define disable_higher_order_debug 0
1501
1502 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1503 { return 0; }
1504 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1505 { return 0; }
1506 static inline void inc_slabs_node(struct kmem_cache *s, int node,
1507 int objects) {}
1508 static inline void dec_slabs_node(struct kmem_cache *s, int node,
1509 int objects) {}
1510
1511 static bool freelist_corrupted(struct kmem_cache *s, struct page *page,
1512 void **freelist, void *nextfree)
1513 {
1514 return false;
1515 }
1516 #endif /* CONFIG_SLUB_DEBUG */
1517
1518 /*
1519 * Hooks for other subsystems that check memory allocations. In a typical
1520 * production configuration these hooks all should produce no code at all.
1521 */
1522 static inline void *kmalloc_large_node_hook(void *ptr, size_t size, gfp_t flags)
1523 {
1524 ptr = kasan_kmalloc_large(ptr, size, flags);
1525 /* As ptr might get tagged, call kmemleak hook after KASAN. */
1526 kmemleak_alloc(ptr, size, 1, flags);
1527 return ptr;
1528 }
1529
1530 static __always_inline void kfree_hook(void *x)
1531 {
1532 kmemleak_free(x);
1533 kasan_kfree_large(x);
1534 }
1535
1536 static __always_inline bool slab_free_hook(struct kmem_cache *s, void *x)
1537 {
1538 kmemleak_free_recursive(x, s->flags);
1539
1540 /*
1541 * Trouble is that we may no longer disable interrupts in the fast path
1542 * So in order to make the debug calls that expect irqs to be
1543 * disabled we need to disable interrupts temporarily.
1544 */
1545 #ifdef CONFIG_LOCKDEP
1546 {
1547 unsigned long flags;
1548
1549 local_irq_save(flags);
1550 debug_check_no_locks_freed(x, s->object_size);
1551 local_irq_restore(flags);
1552 }
1553 #endif
1554 if (!(s->flags & SLAB_DEBUG_OBJECTS))
1555 debug_check_no_obj_freed(x, s->object_size);
1556
1557 /* Use KCSAN to help debug racy use-after-free. */
1558 if (!(s->flags & SLAB_TYPESAFE_BY_RCU))
1559 __kcsan_check_access(x, s->object_size,
1560 KCSAN_ACCESS_WRITE | KCSAN_ACCESS_ASSERT);
1561
1562 /* KASAN might put x into memory quarantine, delaying its reuse */
1563 return kasan_slab_free(s, x);
1564 }
1565
1566 static inline bool slab_free_freelist_hook(struct kmem_cache *s,
1567 void **head, void **tail)
1568 {
1569
1570 void *object;
1571 void *next = *head;
1572 void *old_tail = *tail ? *tail : *head;
1573 int rsize;
1574
1575 if (is_kfence_address(next)) {
1576 slab_free_hook(s, next);
1577 return true;
1578 }
1579
1580 /* Head and tail of the reconstructed freelist */
1581 *head = NULL;
1582 *tail = NULL;
1583
1584 do {
1585 object = next;
1586 next = get_freepointer(s, object);
1587
1588 if (slab_want_init_on_free(s)) {
1589 /*
1590 * Clear the object and the metadata, but don't touch
1591 * the redzone.
1592 */
1593 memset(kasan_reset_tag(object), 0, s->object_size);
1594 rsize = (s->flags & SLAB_RED_ZONE) ? s->red_left_pad
1595 : 0;
1596 memset((char *)kasan_reset_tag(object) + s->inuse, 0,
1597 s->size - s->inuse - rsize);
1598
1599 }
1600 /* If object's reuse doesn't have to be delayed */
1601 if (!slab_free_hook(s, object)) {
1602 /* Move object to the new freelist */
1603 set_freepointer(s, object, *head);
1604 *head = object;
1605 if (!*tail)
1606 *tail = object;
1607 }
1608 } while (object != old_tail);
1609
1610 if (*head == *tail)
1611 *tail = NULL;
1612
1613 return *head != NULL;
1614 }
1615
1616 static void *setup_object(struct kmem_cache *s, struct page *page,
1617 void *object)
1618 {
1619 setup_object_debug(s, page, object);
1620 object = kasan_init_slab_obj(s, object);
1621 if (unlikely(s->ctor)) {
1622 kasan_unpoison_object_data(s, object);
1623 s->ctor(object);
1624 kasan_poison_object_data(s, object);
1625 }
1626 return object;
1627 }
1628
1629 /*
1630 * Slab allocation and freeing
1631 */
1632 static inline struct page *alloc_slab_page(struct kmem_cache *s,
1633 gfp_t flags, int node, struct kmem_cache_order_objects oo)
1634 {
1635 struct page *page;
1636 unsigned int order = oo_order(oo);
1637
1638 if (node == NUMA_NO_NODE)
1639 page = alloc_pages(flags, order);
1640 else
1641 page = __alloc_pages_node(node, flags, order);
1642
1643 return page;
1644 }
1645
1646 #ifdef CONFIG_SLAB_FREELIST_RANDOM
1647 /* Pre-initialize the random sequence cache */
1648 static int init_cache_random_seq(struct kmem_cache *s)
1649 {
1650 unsigned int count = oo_objects(s->oo);
1651 int err;
1652
1653 /* Bailout if already initialised */
1654 if (s->random_seq)
1655 return 0;
1656
1657 err = cache_random_seq_create(s, count, GFP_KERNEL);
1658 if (err) {
1659 pr_err("SLUB: Unable to initialize free list for %s\n",
1660 s->name);
1661 return err;
1662 }
1663
1664 /* Transform to an offset on the set of pages */
1665 if (s->random_seq) {
1666 unsigned int i;
1667
1668 for (i = 0; i < count; i++)
1669 s->random_seq[i] *= s->size;
1670 }
1671 return 0;
1672 }
1673
1674 /* Initialize each random sequence freelist per cache */
1675 static void __init init_freelist_randomization(void)
1676 {
1677 struct kmem_cache *s;
1678
1679 mutex_lock(&slab_mutex);
1680
1681 list_for_each_entry(s, &slab_caches, list)
1682 init_cache_random_seq(s);
1683
1684 mutex_unlock(&slab_mutex);
1685 }
1686
1687 /* Get the next entry on the pre-computed freelist randomized */
1688 static void *next_freelist_entry(struct kmem_cache *s, struct page *page,
1689 unsigned long *pos, void *start,
1690 unsigned long page_limit,
1691 unsigned long freelist_count)
1692 {
1693 unsigned int idx;
1694
1695 /*
1696 * If the target page allocation failed, the number of objects on the
1697 * page might be smaller than the usual size defined by the cache.
1698 */
1699 do {
1700 idx = s->random_seq[*pos];
1701 *pos += 1;
1702 if (*pos >= freelist_count)
1703 *pos = 0;
1704 } while (unlikely(idx >= page_limit));
1705
1706 return (char *)start + idx;
1707 }
1708
1709 /* Shuffle the single linked freelist based on a random pre-computed sequence */
1710 static bool shuffle_freelist(struct kmem_cache *s, struct page *page)
1711 {
1712 void *start;
1713 void *cur;
1714 void *next;
1715 unsigned long idx, pos, page_limit, freelist_count;
1716
1717 if (page->objects < 2 || !s->random_seq)
1718 return false;
1719
1720 freelist_count = oo_objects(s->oo);
1721 pos = get_random_int() % freelist_count;
1722
1723 page_limit = page->objects * s->size;
1724 start = fixup_red_left(s, page_address(page));
1725
1726 /* First entry is used as the base of the freelist */
1727 cur = next_freelist_entry(s, page, &pos, start, page_limit,
1728 freelist_count);
1729 cur = setup_object(s, page, cur);
1730 page->freelist = cur;
1731
1732 for (idx = 1; idx < page->objects; idx++) {
1733 next = next_freelist_entry(s, page, &pos, start, page_limit,
1734 freelist_count);
1735 next = setup_object(s, page, next);
1736 set_freepointer(s, cur, next);
1737 cur = next;
1738 }
1739 set_freepointer(s, cur, NULL);
1740
1741 return true;
1742 }
1743 #else
1744 static inline int init_cache_random_seq(struct kmem_cache *s)
1745 {
1746 return 0;
1747 }
1748 static inline void init_freelist_randomization(void) { }
1749 static inline bool shuffle_freelist(struct kmem_cache *s, struct page *page)
1750 {
1751 return false;
1752 }
1753 #endif /* CONFIG_SLAB_FREELIST_RANDOM */
1754
1755 static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1756 {
1757 struct page *page;
1758 struct kmem_cache_order_objects oo = s->oo;
1759 gfp_t alloc_gfp;
1760 void *start, *p, *next;
1761 int idx;
1762 bool shuffle;
1763
1764 flags &= gfp_allowed_mask;
1765
1766 if (gfpflags_allow_blocking(flags))
1767 local_irq_enable();
1768
1769 flags |= s->allocflags;
1770
1771 /*
1772 * Let the initial higher-order allocation fail under memory pressure
1773 * so we fall-back to the minimum order allocation.
1774 */
1775 alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
1776 if ((alloc_gfp & __GFP_DIRECT_RECLAIM) && oo_order(oo) > oo_order(s->min))
1777 alloc_gfp = (alloc_gfp | __GFP_NOMEMALLOC) & ~(__GFP_RECLAIM|__GFP_NOFAIL);
1778
1779 page = alloc_slab_page(s, alloc_gfp, node, oo);
1780 if (unlikely(!page)) {
1781 oo = s->min;
1782 alloc_gfp = flags;
1783 /*
1784 * Allocation may have failed due to fragmentation.
1785 * Try a lower order alloc if possible
1786 */
1787 page = alloc_slab_page(s, alloc_gfp, node, oo);
1788 if (unlikely(!page))
1789 goto out;
1790 stat(s, ORDER_FALLBACK);
1791 }
1792
1793 page->objects = oo_objects(oo);
1794
1795 account_slab_page(page, oo_order(oo), s, flags);
1796
1797 page->slab_cache = s;
1798 __SetPageSlab(page);
1799 if (page_is_pfmemalloc(page))
1800 SetPageSlabPfmemalloc(page);
1801
1802 kasan_poison_slab(page);
1803
1804 start = page_address(page);
1805
1806 setup_page_debug(s, page, start);
1807
1808 shuffle = shuffle_freelist(s, page);
1809
1810 if (!shuffle) {
1811 start = fixup_red_left(s, start);
1812 start = setup_object(s, page, start);
1813 page->freelist = start;
1814 for (idx = 0, p = start; idx < page->objects - 1; idx++) {
1815 next = p + s->size;
1816 next = setup_object(s, page, next);
1817 set_freepointer(s, p, next);
1818 p = next;
1819 }
1820 set_freepointer(s, p, NULL);
1821 }
1822
1823 page->inuse = page->objects;
1824 page->frozen = 1;
1825
1826 out:
1827 if (gfpflags_allow_blocking(flags))
1828 local_irq_disable();
1829 if (!page)
1830 return NULL;
1831
1832 inc_slabs_node(s, page_to_nid(page), page->objects);
1833
1834 return page;
1835 }
1836
1837 static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1838 {
1839 if (unlikely(flags & GFP_SLAB_BUG_MASK))
1840 flags = kmalloc_fix_flags(flags);
1841
1842 return allocate_slab(s,
1843 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
1844 }
1845
1846 static void __free_slab(struct kmem_cache *s, struct page *page)
1847 {
1848 int order = compound_order(page);
1849 int pages = 1 << order;
1850
1851 if (kmem_cache_debug_flags(s, SLAB_CONSISTENCY_CHECKS)) {
1852 void *p;
1853
1854 slab_pad_check(s, page);
1855 for_each_object(p, s, page_address(page),
1856 page->objects)
1857 check_object(s, page, p, SLUB_RED_INACTIVE);
1858 }
1859
1860 __ClearPageSlabPfmemalloc(page);
1861 __ClearPageSlab(page);
1862 /* In union with page->mapping where page allocator expects NULL */
1863 page->slab_cache = NULL;
1864 if (current->reclaim_state)
1865 current->reclaim_state->reclaimed_slab += pages;
1866 unaccount_slab_page(page, order, s);
1867 __free_pages(page, order);
1868 }
1869
1870 static void rcu_free_slab(struct rcu_head *h)
1871 {
1872 struct page *page = container_of(h, struct page, rcu_head);
1873
1874 __free_slab(page->slab_cache, page);
1875 }
1876
1877 static void free_slab(struct kmem_cache *s, struct page *page)
1878 {
1879 if (unlikely(s->flags & SLAB_TYPESAFE_BY_RCU)) {
1880 call_rcu(&page->rcu_head, rcu_free_slab);
1881 } else
1882 __free_slab(s, page);
1883 }
1884
1885 static void discard_slab(struct kmem_cache *s, struct page *page)
1886 {
1887 dec_slabs_node(s, page_to_nid(page), page->objects);
1888 free_slab(s, page);
1889 }
1890
1891 /*
1892 * Management of partially allocated slabs.
1893 */
1894 static inline void
1895 __add_partial(struct kmem_cache_node *n, struct page *page, int tail)
1896 {
1897 n->nr_partial++;
1898 if (tail == DEACTIVATE_TO_TAIL)
1899 list_add_tail(&page->slab_list, &n->partial);
1900 else
1901 list_add(&page->slab_list, &n->partial);
1902 }
1903
1904 static inline void add_partial(struct kmem_cache_node *n,
1905 struct page *page, int tail)
1906 {
1907 lockdep_assert_held(&n->list_lock);
1908 __add_partial(n, page, tail);
1909 }
1910
1911 static inline void remove_partial(struct kmem_cache_node *n,
1912 struct page *page)
1913 {
1914 lockdep_assert_held(&n->list_lock);
1915 list_del(&page->slab_list);
1916 n->nr_partial--;
1917 }
1918
1919 /*
1920 * Remove slab from the partial list, freeze it and
1921 * return the pointer to the freelist.
1922 *
1923 * Returns a list of objects or NULL if it fails.
1924 */
1925 static inline void *acquire_slab(struct kmem_cache *s,
1926 struct kmem_cache_node *n, struct page *page,
1927 int mode, int *objects)
1928 {
1929 void *freelist;
1930 unsigned long counters;
1931 struct page new;
1932
1933 lockdep_assert_held(&n->list_lock);
1934
1935 /*
1936 * Zap the freelist and set the frozen bit.
1937 * The old freelist is the list of objects for the
1938 * per cpu allocation list.
1939 */
1940 freelist = page->freelist;
1941 counters = page->counters;
1942 new.counters = counters;
1943 *objects = new.objects - new.inuse;
1944 if (mode) {
1945 new.inuse = page->objects;
1946 new.freelist = NULL;
1947 } else {
1948 new.freelist = freelist;
1949 }
1950
1951 VM_BUG_ON(new.frozen);
1952 new.frozen = 1;
1953
1954 if (!__cmpxchg_double_slab(s, page,
1955 freelist, counters,
1956 new.freelist, new.counters,
1957 "acquire_slab"))
1958 return NULL;
1959
1960 remove_partial(n, page);
1961 WARN_ON(!freelist);
1962 return freelist;
1963 }
1964
1965 static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain);
1966 static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags);
1967
1968 /*
1969 * Try to allocate a partial slab from a specific node.
1970 */
1971 static void *get_partial_node(struct kmem_cache *s, struct kmem_cache_node *n,
1972 struct kmem_cache_cpu *c, gfp_t flags)
1973 {
1974 struct page *page, *page2;
1975 void *object = NULL;
1976 unsigned int available = 0;
1977 int objects;
1978
1979 /*
1980 * Racy check. If we mistakenly see no partial slabs then we
1981 * just allocate an empty slab. If we mistakenly try to get a
1982 * partial slab and there is none available then get_partial()
1983 * will return NULL.
1984 */
1985 if (!n || !n->nr_partial)
1986 return NULL;
1987
1988 spin_lock(&n->list_lock);
1989 list_for_each_entry_safe(page, page2, &n->partial, slab_list) {
1990 void *t;
1991
1992 if (!pfmemalloc_match(page, flags))
1993 continue;
1994
1995 t = acquire_slab(s, n, page, object == NULL, &objects);
1996 if (!t)
1997 break;
1998
1999 available += objects;
2000 if (!object) {
2001 c->page = page;
2002 stat(s, ALLOC_FROM_PARTIAL);
2003 object = t;
2004 } else {
2005 put_cpu_partial(s, page, 0);
2006 stat(s, CPU_PARTIAL_NODE);
2007 }
2008 if (!kmem_cache_has_cpu_partial(s)
2009 || available > slub_cpu_partial(s) / 2)
2010 break;
2011
2012 }
2013 spin_unlock(&n->list_lock);
2014 return object;
2015 }
2016
2017 /*
2018 * Get a page from somewhere. Search in increasing NUMA distances.
2019 */
2020 static void *get_any_partial(struct kmem_cache *s, gfp_t flags,
2021 struct kmem_cache_cpu *c)
2022 {
2023 #ifdef CONFIG_NUMA
2024 struct zonelist *zonelist;
2025 struct zoneref *z;
2026 struct zone *zone;
2027 enum zone_type highest_zoneidx = gfp_zone(flags);
2028 void *object;
2029 unsigned int cpuset_mems_cookie;
2030
2031 /*
2032 * The defrag ratio allows a configuration of the tradeoffs between
2033 * inter node defragmentation and node local allocations. A lower
2034 * defrag_ratio increases the tendency to do local allocations
2035 * instead of attempting to obtain partial slabs from other nodes.
2036 *
2037 * If the defrag_ratio is set to 0 then kmalloc() always
2038 * returns node local objects. If the ratio is higher then kmalloc()
2039 * may return off node objects because partial slabs are obtained
2040 * from other nodes and filled up.
2041 *
2042 * If /sys/kernel/slab/xx/remote_node_defrag_ratio is set to 100
2043 * (which makes defrag_ratio = 1000) then every (well almost)
2044 * allocation will first attempt to defrag slab caches on other nodes.
2045 * This means scanning over all nodes to look for partial slabs which
2046 * may be expensive if we do it every time we are trying to find a slab
2047 * with available objects.
2048 */
2049 if (!s->remote_node_defrag_ratio ||
2050 get_cycles() % 1024 > s->remote_node_defrag_ratio)
2051 return NULL;
2052
2053 do {
2054 cpuset_mems_cookie = read_mems_allowed_begin();
2055 zonelist = node_zonelist(mempolicy_slab_node(), flags);
2056 for_each_zone_zonelist(zone, z, zonelist, highest_zoneidx) {
2057 struct kmem_cache_node *n;
2058
2059 n = get_node(s, zone_to_nid(zone));
2060
2061 if (n && cpuset_zone_allowed(zone, flags) &&
2062 n->nr_partial > s->min_partial) {
2063 object = get_partial_node(s, n, c, flags);
2064 if (object) {
2065 /*
2066 * Don't check read_mems_allowed_retry()
2067 * here - if mems_allowed was updated in
2068 * parallel, that was a harmless race
2069 * between allocation and the cpuset
2070 * update
2071 */
2072 return object;
2073 }
2074 }
2075 }
2076 } while (read_mems_allowed_retry(cpuset_mems_cookie));
2077 #endif /* CONFIG_NUMA */
2078 return NULL;
2079 }
2080
2081 /*
2082 * Get a partial page, lock it and return it.
2083 */
2084 static void *get_partial(struct kmem_cache *s, gfp_t flags, int node,
2085 struct kmem_cache_cpu *c)
2086 {
2087 void *object;
2088 int searchnode = node;
2089
2090 if (node == NUMA_NO_NODE)
2091 searchnode = numa_mem_id();
2092
2093 object = get_partial_node(s, get_node(s, searchnode), c, flags);
2094 if (object || node != NUMA_NO_NODE)
2095 return object;
2096
2097 return get_any_partial(s, flags, c);
2098 }
2099
2100 #ifdef CONFIG_PREEMPTION
2101 /*
2102 * Calculate the next globally unique transaction for disambiguation
2103 * during cmpxchg. The transactions start with the cpu number and are then
2104 * incremented by CONFIG_NR_CPUS.
2105 */
2106 #define TID_STEP roundup_pow_of_two(CONFIG_NR_CPUS)
2107 #else
2108 /*
2109 * No preemption supported therefore also no need to check for
2110 * different cpus.
2111 */
2112 #define TID_STEP 1
2113 #endif
2114
2115 static inline unsigned long next_tid(unsigned long tid)
2116 {
2117 return tid + TID_STEP;
2118 }
2119
2120 #ifdef SLUB_DEBUG_CMPXCHG
2121 static inline unsigned int tid_to_cpu(unsigned long tid)
2122 {
2123 return tid % TID_STEP;
2124 }
2125
2126 static inline unsigned long tid_to_event(unsigned long tid)
2127 {
2128 return tid / TID_STEP;
2129 }
2130 #endif
2131
2132 static inline unsigned int init_tid(int cpu)
2133 {
2134 return cpu;
2135 }
2136
2137 static inline void note_cmpxchg_failure(const char *n,
2138 const struct kmem_cache *s, unsigned long tid)
2139 {
2140 #ifdef SLUB_DEBUG_CMPXCHG
2141 unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);
2142
2143 pr_info("%s %s: cmpxchg redo ", n, s->name);
2144
2145 #ifdef CONFIG_PREEMPTION
2146 if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
2147 pr_warn("due to cpu change %d -> %d\n",
2148 tid_to_cpu(tid), tid_to_cpu(actual_tid));
2149 else
2150 #endif
2151 if (tid_to_event(tid) != tid_to_event(actual_tid))
2152 pr_warn("due to cpu running other code. Event %ld->%ld\n",
2153 tid_to_event(tid), tid_to_event(actual_tid));
2154 else
2155 pr_warn("for unknown reason: actual=%lx was=%lx target=%lx\n",
2156 actual_tid, tid, next_tid(tid));
2157 #endif
2158 stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
2159 }
2160
2161 static void init_kmem_cache_cpus(struct kmem_cache *s)
2162 {
2163 int cpu;
2164
2165 for_each_possible_cpu(cpu)
2166 per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu);
2167 }
2168
2169 /*
2170 * Remove the cpu slab
2171 */
2172 static void deactivate_slab(struct kmem_cache *s, struct page *page,
2173 void *freelist, struct kmem_cache_cpu *c)
2174 {
2175 enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE };
2176 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
2177 int lock = 0, free_delta = 0;
2178 enum slab_modes l = M_NONE, m = M_NONE;
2179 void *nextfree, *freelist_iter, *freelist_tail;
2180 int tail = DEACTIVATE_TO_HEAD;
2181 struct page new;
2182 struct page old;
2183
2184 if (page->freelist) {
2185 stat(s, DEACTIVATE_REMOTE_FREES);
2186 tail = DEACTIVATE_TO_TAIL;
2187 }
2188
2189 /*
2190 * Stage one: Count the objects on cpu's freelist as free_delta and
2191 * remember the last object in freelist_tail for later splicing.
2192 */
2193 freelist_tail = NULL;
2194 freelist_iter = freelist;
2195 while (freelist_iter) {
2196 nextfree = get_freepointer(s, freelist_iter);
2197
2198 /*
2199 * If 'nextfree' is invalid, it is possible that the object at
2200 * 'freelist_iter' is already corrupted. So isolate all objects
2201 * starting at 'freelist_iter' by skipping them.
2202 */
2203 if (freelist_corrupted(s, page, &freelist_iter, nextfree))
2204 break;
2205
2206 freelist_tail = freelist_iter;
2207 free_delta++;
2208
2209 freelist_iter = nextfree;
2210 }
2211
2212 /*
2213 * Stage two: Unfreeze the page while splicing the per-cpu
2214 * freelist to the head of page's freelist.
2215 *
2216 * Ensure that the page is unfrozen while the list presence
2217 * reflects the actual number of objects during unfreeze.
2218 *
2219 * We setup the list membership and then perform a cmpxchg
2220 * with the count. If there is a mismatch then the page
2221 * is not unfrozen but the page is on the wrong list.
2222 *
2223 * Then we restart the process which may have to remove
2224 * the page from the list that we just put it on again
2225 * because the number of objects in the slab may have
2226 * changed.
2227 */
2228 redo:
2229
2230 old.freelist = READ_ONCE(page->freelist);
2231 old.counters = READ_ONCE(page->counters);
2232 VM_BUG_ON(!old.frozen);
2233
2234 /* Determine target state of the slab */
2235 new.counters = old.counters;
2236 if (freelist_tail) {
2237 new.inuse -= free_delta;
2238 set_freepointer(s, freelist_tail, old.freelist);
2239 new.freelist = freelist;
2240 } else
2241 new.freelist = old.freelist;
2242
2243 new.frozen = 0;
2244
2245 if (!new.inuse && n->nr_partial >= s->min_partial)
2246 m = M_FREE;
2247 else if (new.freelist) {
2248 m = M_PARTIAL;
2249 if (!lock) {
2250 lock = 1;
2251 /*
2252 * Taking the spinlock removes the possibility
2253 * that acquire_slab() will see a slab page that
2254 * is frozen
2255 */
2256 spin_lock(&n->list_lock);
2257 }
2258 } else {
2259 m = M_FULL;
2260 if (kmem_cache_debug_flags(s, SLAB_STORE_USER) && !lock) {
2261 lock = 1;
2262 /*
2263 * This also ensures that the scanning of full
2264 * slabs from diagnostic functions will not see
2265 * any frozen slabs.
2266 */
2267 spin_lock(&n->list_lock);
2268 }
2269 }
2270
2271 if (l != m) {
2272 if (l == M_PARTIAL)
2273 remove_partial(n, page);
2274 else if (l == M_FULL)
2275 remove_full(s, n, page);
2276
2277 if (m == M_PARTIAL)
2278 add_partial(n, page, tail);
2279 else if (m == M_FULL)
2280 add_full(s, n, page);
2281 }
2282
2283 l = m;
2284 if (!__cmpxchg_double_slab(s, page,
2285 old.freelist, old.counters,
2286 new.freelist, new.counters,
2287 "unfreezing slab"))
2288 goto redo;
2289
2290 if (lock)
2291 spin_unlock(&n->list_lock);
2292
2293 if (m == M_PARTIAL)
2294 stat(s, tail);
2295 else if (m == M_FULL)
2296 stat(s, DEACTIVATE_FULL);
2297 else if (m == M_FREE) {
2298 stat(s, DEACTIVATE_EMPTY);
2299 discard_slab(s, page);
2300 stat(s, FREE_SLAB);
2301 }
2302
2303 c->page = NULL;
2304 c->freelist = NULL;
2305 }
2306
2307 /*
2308 * Unfreeze all the cpu partial slabs.
2309 *
2310 * This function must be called with interrupts disabled
2311 * for the cpu using c (or some other guarantee must be there
2312 * to guarantee no concurrent accesses).
2313 */
2314 static void unfreeze_partials(struct kmem_cache *s,
2315 struct kmem_cache_cpu *c)
2316 {
2317 #ifdef CONFIG_SLUB_CPU_PARTIAL
2318 struct kmem_cache_node *n = NULL, *n2 = NULL;
2319 struct page *page, *discard_page = NULL;
2320
2321 while ((page = slub_percpu_partial(c))) {
2322 struct page new;
2323 struct page old;
2324
2325 slub_set_percpu_partial(c, page);
2326
2327 n2 = get_node(s, page_to_nid(page));
2328 if (n != n2) {
2329 if (n)
2330 spin_unlock(&n->list_lock);
2331
2332 n = n2;
2333 spin_lock(&n->list_lock);
2334 }
2335
2336 do {
2337
2338 old.freelist = page->freelist;
2339 old.counters = page->counters;
2340 VM_BUG_ON(!old.frozen);
2341
2342 new.counters = old.counters;
2343 new.freelist = old.freelist;
2344
2345 new.frozen = 0;
2346
2347 } while (!__cmpxchg_double_slab(s, page,
2348 old.freelist, old.counters,
2349 new.freelist, new.counters,
2350 "unfreezing slab"));
2351
2352 if (unlikely(!new.inuse && n->nr_partial >= s->min_partial)) {
2353 page->next = discard_page;
2354 discard_page = page;
2355 } else {
2356 add_partial(n, page, DEACTIVATE_TO_TAIL);
2357 stat(s, FREE_ADD_PARTIAL);
2358 }
2359 }
2360
2361 if (n)
2362 spin_unlock(&n->list_lock);
2363
2364 while (discard_page) {
2365 page = discard_page;
2366 discard_page = discard_page->next;
2367
2368 stat(s, DEACTIVATE_EMPTY);
2369 discard_slab(s, page);
2370 stat(s, FREE_SLAB);
2371 }
2372 #endif /* CONFIG_SLUB_CPU_PARTIAL */
2373 }
2374
2375 /*
2376 * Put a page that was just frozen (in __slab_free|get_partial_node) into a
2377 * partial page slot if available.
2378 *
2379 * If we did not find a slot then simply move all the partials to the
2380 * per node partial list.
2381 */
2382 static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain)
2383 {
2384 #ifdef CONFIG_SLUB_CPU_PARTIAL
2385 struct page *oldpage;
2386 int pages;
2387 int pobjects;
2388
2389 preempt_disable();
2390 do {
2391 pages = 0;
2392 pobjects = 0;
2393 oldpage = this_cpu_read(s->cpu_slab->partial);
2394
2395 if (oldpage) {
2396 pobjects = oldpage->pobjects;
2397 pages = oldpage->pages;
2398 if (drain && pobjects > slub_cpu_partial(s)) {
2399 unsigned long flags;
2400 /*
2401 * partial array is full. Move the existing
2402 * set to the per node partial list.
2403 */
2404 local_irq_save(flags);
2405 unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
2406 local_irq_restore(flags);
2407 oldpage = NULL;
2408 pobjects = 0;
2409 pages = 0;
2410 stat(s, CPU_PARTIAL_DRAIN);
2411 }
2412 }
2413
2414 pages++;
2415 pobjects += page->objects - page->inuse;
2416
2417 page->pages = pages;
2418 page->pobjects = pobjects;
2419 page->next = oldpage;
2420
2421 } while (this_cpu_cmpxchg(s->cpu_slab->partial, oldpage, page)
2422 != oldpage);
2423 if (unlikely(!slub_cpu_partial(s))) {
2424 unsigned long flags;
2425
2426 local_irq_save(flags);
2427 unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
2428 local_irq_restore(flags);
2429 }
2430 preempt_enable();
2431 #endif /* CONFIG_SLUB_CPU_PARTIAL */
2432 }
2433
2434 static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
2435 {
2436 stat(s, CPUSLAB_FLUSH);
2437 deactivate_slab(s, c->page, c->freelist, c);
2438
2439 c->tid = next_tid(c->tid);
2440 }
2441
2442 /*
2443 * Flush cpu slab.
2444 *
2445 * Called from IPI handler with interrupts disabled.
2446 */
2447 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
2448 {
2449 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2450
2451 if (c->page)
2452 flush_slab(s, c);
2453
2454 unfreeze_partials(s, c);
2455 }
2456
2457 static void flush_cpu_slab(void *d)
2458 {
2459 struct kmem_cache *s = d;
2460
2461 __flush_cpu_slab(s, smp_processor_id());
2462 }
2463
2464 static bool has_cpu_slab(int cpu, void *info)
2465 {
2466 struct kmem_cache *s = info;
2467 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2468
2469 return c->page || slub_percpu_partial(c);
2470 }
2471
2472 static void flush_all(struct kmem_cache *s)
2473 {
2474 on_each_cpu_cond(has_cpu_slab, flush_cpu_slab, s, 1);
2475 }
2476
2477 /*
2478 * Use the cpu notifier to insure that the cpu slabs are flushed when
2479 * necessary.
2480 */
2481 static int slub_cpu_dead(unsigned int cpu)
2482 {
2483 struct kmem_cache *s;
2484 unsigned long flags;
2485
2486 mutex_lock(&slab_mutex);
2487 list_for_each_entry(s, &slab_caches, list) {
2488 local_irq_save(flags);
2489 __flush_cpu_slab(s, cpu);
2490 local_irq_restore(flags);
2491 }
2492 mutex_unlock(&slab_mutex);
2493 return 0;
2494 }
2495
2496 /*
2497 * Check if the objects in a per cpu structure fit numa
2498 * locality expectations.
2499 */
2500 static inline int node_match(struct page *page, int node)
2501 {
2502 #ifdef CONFIG_NUMA
2503 if (node != NUMA_NO_NODE && page_to_nid(page) != node)
2504 return 0;
2505 #endif
2506 return 1;
2507 }
2508
2509 #ifdef CONFIG_SLUB_DEBUG
2510 static int count_free(struct page *page)
2511 {
2512 return page->objects - page->inuse;
2513 }
2514
2515 static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
2516 {
2517 return atomic_long_read(&n->total_objects);
2518 }
2519 #endif /* CONFIG_SLUB_DEBUG */
2520
2521 #if defined(CONFIG_SLUB_DEBUG) || defined(CONFIG_SYSFS)
2522 static unsigned long count_partial(struct kmem_cache_node *n,
2523 int (*get_count)(struct page *))
2524 {
2525 unsigned long flags;
2526 unsigned long x = 0;
2527 struct page *page;
2528
2529 spin_lock_irqsave(&n->list_lock, flags);
2530 list_for_each_entry(page, &n->partial, slab_list)
2531 x += get_count(page);
2532 spin_unlock_irqrestore(&n->list_lock, flags);
2533 return x;
2534 }
2535 #endif /* CONFIG_SLUB_DEBUG || CONFIG_SYSFS */
2536
2537 static noinline void
2538 slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
2539 {
2540 #ifdef CONFIG_SLUB_DEBUG
2541 static DEFINE_RATELIMIT_STATE(slub_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
2542 DEFAULT_RATELIMIT_BURST);
2543 int node;
2544 struct kmem_cache_node *n;
2545
2546 if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slub_oom_rs))
2547 return;
2548
2549 pr_warn("SLUB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n",
2550 nid, gfpflags, &gfpflags);
2551 pr_warn(" cache: %s, object size: %u, buffer size: %u, default order: %u, min order: %u\n",
2552 s->name, s->object_size, s->size, oo_order(s->oo),
2553 oo_order(s->min));
2554
2555 if (oo_order(s->min) > get_order(s->object_size))
2556 pr_warn(" %s debugging increased min order, use slub_debug=O to disable.\n",
2557 s->name);
2558
2559 for_each_kmem_cache_node(s, node, n) {
2560 unsigned long nr_slabs;
2561 unsigned long nr_objs;
2562 unsigned long nr_free;
2563
2564 nr_free = count_partial(n, count_free);
2565 nr_slabs = node_nr_slabs(n);
2566 nr_objs = node_nr_objs(n);
2567
2568 pr_warn(" node %d: slabs: %ld, objs: %ld, free: %ld\n",
2569 node, nr_slabs, nr_objs, nr_free);
2570 }
2571 #endif
2572 }
2573
2574 static inline void *new_slab_objects(struct kmem_cache *s, gfp_t flags,
2575 int node, struct kmem_cache_cpu **pc)
2576 {
2577 void *freelist;
2578 struct kmem_cache_cpu *c = *pc;
2579 struct page *page;
2580
2581 WARN_ON_ONCE(s->ctor && (flags & __GFP_ZERO));
2582
2583 freelist = get_partial(s, flags, node, c);
2584
2585 if (freelist)
2586 return freelist;
2587
2588 page = new_slab(s, flags, node);
2589 if (page) {
2590 c = raw_cpu_ptr(s->cpu_slab);
2591 if (c->page)
2592 flush_slab(s, c);
2593
2594 /*
2595 * No other reference to the page yet so we can
2596 * muck around with it freely without cmpxchg
2597 */
2598 freelist = page->freelist;
2599 page->freelist = NULL;
2600
2601 stat(s, ALLOC_SLAB);
2602 c->page = page;
2603 *pc = c;
2604 }
2605
2606 return freelist;
2607 }
2608
2609 static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags)
2610 {
2611 if (unlikely(PageSlabPfmemalloc(page)))
2612 return gfp_pfmemalloc_allowed(gfpflags);
2613
2614 return true;
2615 }
2616
2617 /*
2618 * Check the page->freelist of a page and either transfer the freelist to the
2619 * per cpu freelist or deactivate the page.
2620 *
2621 * The page is still frozen if the return value is not NULL.
2622 *
2623 * If this function returns NULL then the page has been unfrozen.
2624 *
2625 * This function must be called with interrupt disabled.
2626 */
2627 static inline void *get_freelist(struct kmem_cache *s, struct page *page)
2628 {
2629 struct page new;
2630 unsigned long counters;
2631 void *freelist;
2632
2633 do {
2634 freelist = page->freelist;
2635 counters = page->counters;
2636
2637 new.counters = counters;
2638 VM_BUG_ON(!new.frozen);
2639
2640 new.inuse = page->objects;
2641 new.frozen = freelist != NULL;
2642
2643 } while (!__cmpxchg_double_slab(s, page,
2644 freelist, counters,
2645 NULL, new.counters,
2646 "get_freelist"));
2647
2648 return freelist;
2649 }
2650
2651 /*
2652 * Slow path. The lockless freelist is empty or we need to perform
2653 * debugging duties.
2654 *
2655 * Processing is still very fast if new objects have been freed to the
2656 * regular freelist. In that case we simply take over the regular freelist
2657 * as the lockless freelist and zap the regular freelist.
2658 *
2659 * If that is not working then we fall back to the partial lists. We take the
2660 * first element of the freelist as the object to allocate now and move the
2661 * rest of the freelist to the lockless freelist.
2662 *
2663 * And if we were unable to get a new slab from the partial slab lists then
2664 * we need to allocate a new slab. This is the slowest path since it involves
2665 * a call to the page allocator and the setup of a new slab.
2666 *
2667 * Version of __slab_alloc to use when we know that interrupts are
2668 * already disabled (which is the case for bulk allocation).
2669 */
2670 static void *___slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
2671 unsigned long addr, struct kmem_cache_cpu *c)
2672 {
2673 void *freelist;
2674 struct page *page;
2675
2676 stat(s, ALLOC_SLOWPATH);
2677
2678 page = c->page;
2679 if (!page) {
2680 /*
2681 * if the node is not online or has no normal memory, just
2682 * ignore the node constraint
2683 */
2684 if (unlikely(node != NUMA_NO_NODE &&
2685 !node_isset(node, slab_nodes)))
2686 node = NUMA_NO_NODE;
2687 goto new_slab;
2688 }
2689 redo:
2690
2691 if (unlikely(!node_match(page, node))) {
2692 /*
2693 * same as above but node_match() being false already
2694 * implies node != NUMA_NO_NODE
2695 */
2696 if (!node_isset(node, slab_nodes)) {
2697 node = NUMA_NO_NODE;
2698 goto redo;
2699 } else {
2700 stat(s, ALLOC_NODE_MISMATCH);
2701 deactivate_slab(s, page, c->freelist, c);
2702 goto new_slab;
2703 }
2704 }
2705
2706 /*
2707 * By rights, we should be searching for a slab page that was
2708 * PFMEMALLOC but right now, we are losing the pfmemalloc
2709 * information when the page leaves the per-cpu allocator
2710 */
2711 if (unlikely(!pfmemalloc_match(page, gfpflags))) {
2712 deactivate_slab(s, page, c->freelist, c);
2713 goto new_slab;
2714 }
2715
2716 /* must check again c->freelist in case of cpu migration or IRQ */
2717 freelist = c->freelist;
2718 if (freelist)
2719 goto load_freelist;
2720
2721 freelist = get_freelist(s, page);
2722
2723 if (!freelist) {
2724 c->page = NULL;
2725 stat(s, DEACTIVATE_BYPASS);
2726 goto new_slab;
2727 }
2728
2729 stat(s, ALLOC_REFILL);
2730
2731 load_freelist:
2732 /*
2733 * freelist is pointing to the list of objects to be used.
2734 * page is pointing to the page from which the objects are obtained.
2735 * That page must be frozen for per cpu allocations to work.
2736 */
2737 VM_BUG_ON(!c->page->frozen);
2738 c->freelist = get_freepointer(s, freelist);
2739 c->tid = next_tid(c->tid);
2740 return freelist;
2741
2742 new_slab:
2743
2744 if (slub_percpu_partial(c)) {
2745 page = c->page = slub_percpu_partial(c);
2746 slub_set_percpu_partial(c, page);
2747 stat(s, CPU_PARTIAL_ALLOC);
2748 goto redo;
2749 }
2750
2751 freelist = new_slab_objects(s, gfpflags, node, &c);
2752
2753 if (unlikely(!freelist)) {
2754 slab_out_of_memory(s, gfpflags, node);
2755 return NULL;
2756 }
2757
2758 page = c->page;
2759 if (likely(!kmem_cache_debug(s) && pfmemalloc_match(page, gfpflags)))
2760 goto load_freelist;
2761
2762 /* Only entered in the debug case */
2763 if (kmem_cache_debug(s) &&
2764 !alloc_debug_processing(s, page, freelist, addr))
2765 goto new_slab; /* Slab failed checks. Next slab needed */
2766
2767 deactivate_slab(s, page, get_freepointer(s, freelist), c);
2768 return freelist;
2769 }
2770
2771 /*
2772 * Another one that disabled interrupt and compensates for possible
2773 * cpu changes by refetching the per cpu area pointer.
2774 */
2775 static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
2776 unsigned long addr, struct kmem_cache_cpu *c)
2777 {
2778 void *p;
2779 unsigned long flags;
2780
2781 local_irq_save(flags);
2782 #ifdef CONFIG_PREEMPTION
2783 /*
2784 * We may have been preempted and rescheduled on a different
2785 * cpu before disabling interrupts. Need to reload cpu area
2786 * pointer.
2787 */
2788 c = this_cpu_ptr(s->cpu_slab);
2789 #endif
2790
2791 p = ___slab_alloc(s, gfpflags, node, addr, c);
2792 local_irq_restore(flags);
2793 return p;
2794 }
2795
2796 /*
2797 * If the object has been wiped upon free, make sure it's fully initialized by
2798 * zeroing out freelist pointer.
2799 */
2800 static __always_inline void maybe_wipe_obj_freeptr(struct kmem_cache *s,
2801 void *obj)
2802 {
2803 if (unlikely(slab_want_init_on_free(s)) && obj)
2804 memset((void *)((char *)kasan_reset_tag(obj) + s->offset),
2805 0, sizeof(void *));
2806 }
2807
2808 /*
2809 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
2810 * have the fastpath folded into their functions. So no function call
2811 * overhead for requests that can be satisfied on the fastpath.
2812 *
2813 * The fastpath works by first checking if the lockless freelist can be used.
2814 * If not then __slab_alloc is called for slow processing.
2815 *
2816 * Otherwise we can simply pick the next object from the lockless free list.
2817 */
2818 static __always_inline void *slab_alloc_node(struct kmem_cache *s,
2819 gfp_t gfpflags, int node, unsigned long addr, size_t orig_size)
2820 {
2821 void *object;
2822 struct kmem_cache_cpu *c;
2823 struct page *page;
2824 unsigned long tid;
2825 struct obj_cgroup *objcg = NULL;
2826
2827 s = slab_pre_alloc_hook(s, &objcg, 1, gfpflags);
2828 if (!s)
2829 return NULL;
2830
2831 object = kfence_alloc(s, orig_size, gfpflags);
2832 if (unlikely(object))
2833 goto out;
2834
2835 redo:
2836 /*
2837 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
2838 * enabled. We may switch back and forth between cpus while
2839 * reading from one cpu area. That does not matter as long
2840 * as we end up on the original cpu again when doing the cmpxchg.
2841 *
2842 * We should guarantee that tid and kmem_cache are retrieved on
2843 * the same cpu. It could be different if CONFIG_PREEMPTION so we need
2844 * to check if it is matched or not.
2845 */
2846 do {
2847 tid = this_cpu_read(s->cpu_slab->tid);
2848 c = raw_cpu_ptr(s->cpu_slab);
2849 } while (IS_ENABLED(CONFIG_PREEMPTION) &&
2850 unlikely(tid != READ_ONCE(c->tid)));
2851
2852 /*
2853 * Irqless object alloc/free algorithm used here depends on sequence
2854 * of fetching cpu_slab's data. tid should be fetched before anything
2855 * on c to guarantee that object and page associated with previous tid
2856 * won't be used with current tid. If we fetch tid first, object and
2857 * page could be one associated with next tid and our alloc/free
2858 * request will be failed. In this case, we will retry. So, no problem.
2859 */
2860 barrier();
2861
2862 /*
2863 * The transaction ids are globally unique per cpu and per operation on
2864 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
2865 * occurs on the right processor and that there was no operation on the
2866 * linked list in between.
2867 */
2868
2869 object = c->freelist;
2870 page = c->page;
2871 if (unlikely(!object || !page || !node_match(page, node))) {
2872 object = __slab_alloc(s, gfpflags, node, addr, c);
2873 } else {
2874 void *next_object = get_freepointer_safe(s, object);
2875
2876 /*
2877 * The cmpxchg will only match if there was no additional
2878 * operation and if we are on the right processor.
2879 *
2880 * The cmpxchg does the following atomically (without lock
2881 * semantics!)
2882 * 1. Relocate first pointer to the current per cpu area.
2883 * 2. Verify that tid and freelist have not been changed
2884 * 3. If they were not changed replace tid and freelist
2885 *
2886 * Since this is without lock semantics the protection is only
2887 * against code executing on this cpu *not* from access by
2888 * other cpus.
2889 */
2890 if (unlikely(!this_cpu_cmpxchg_double(
2891 s->cpu_slab->freelist, s->cpu_slab->tid,
2892 object, tid,
2893 next_object, next_tid(tid)))) {
2894
2895 note_cmpxchg_failure("slab_alloc", s, tid);
2896 goto redo;
2897 }
2898 prefetch_freepointer(s, next_object);
2899 stat(s, ALLOC_FASTPATH);
2900 }
2901
2902 maybe_wipe_obj_freeptr(s, object);
2903
2904 if (unlikely(slab_want_init_on_alloc(gfpflags, s)) && object)
2905 memset(kasan_reset_tag(object), 0, s->object_size);
2906
2907 out:
2908 slab_post_alloc_hook(s, objcg, gfpflags, 1, &object);
2909
2910 return object;
2911 }
2912
2913 static __always_inline void *slab_alloc(struct kmem_cache *s,
2914 gfp_t gfpflags, unsigned long addr, size_t orig_size)
2915 {
2916 return slab_alloc_node(s, gfpflags, NUMA_NO_NODE, addr, orig_size);
2917 }
2918
2919 void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
2920 {
2921 void *ret = slab_alloc(s, gfpflags, _RET_IP_, s->object_size);
2922
2923 trace_kmem_cache_alloc(_RET_IP_, ret, s->object_size,
2924 s->size, gfpflags);
2925
2926 return ret;
2927 }
2928 EXPORT_SYMBOL(kmem_cache_alloc);
2929
2930 #ifdef CONFIG_TRACING
2931 void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
2932 {
2933 void *ret = slab_alloc(s, gfpflags, _RET_IP_, size);
2934 trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags);
2935 ret = kasan_kmalloc(s, ret, size, gfpflags);
2936 return ret;
2937 }
2938 EXPORT_SYMBOL(kmem_cache_alloc_trace);
2939 #endif
2940
2941 #ifdef CONFIG_NUMA
2942 void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
2943 {
2944 void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_, s->object_size);
2945
2946 trace_kmem_cache_alloc_node(_RET_IP_, ret,
2947 s->object_size, s->size, gfpflags, node);
2948
2949 return ret;
2950 }
2951 EXPORT_SYMBOL(kmem_cache_alloc_node);
2952
2953 #ifdef CONFIG_TRACING
2954 void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
2955 gfp_t gfpflags,
2956 int node, size_t size)
2957 {
2958 void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_, size);
2959
2960 trace_kmalloc_node(_RET_IP_, ret,
2961 size, s->size, gfpflags, node);
2962
2963 ret = kasan_kmalloc(s, ret, size, gfpflags);
2964 return ret;
2965 }
2966 EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
2967 #endif
2968 #endif /* CONFIG_NUMA */
2969
2970 /*
2971 * Slow path handling. This may still be called frequently since objects
2972 * have a longer lifetime than the cpu slabs in most processing loads.
2973 *
2974 * So we still attempt to reduce cache line usage. Just take the slab
2975 * lock and free the item. If there is no additional partial page
2976 * handling required then we can return immediately.
2977 */
2978 static void __slab_free(struct kmem_cache *s, struct page *page,
2979 void *head, void *tail, int cnt,
2980 unsigned long addr)
2981
2982 {
2983 void *prior;
2984 int was_frozen;
2985 struct page new;
2986 unsigned long counters;
2987 struct kmem_cache_node *n = NULL;
2988 unsigned long flags;
2989
2990 stat(s, FREE_SLOWPATH);
2991
2992 if (kfence_free(head))
2993 return;
2994
2995 if (kmem_cache_debug(s) &&
2996 !free_debug_processing(s, page, head, tail, cnt, addr))
2997 return;
2998
2999 do {
3000 if (unlikely(n)) {
3001 spin_unlock_irqrestore(&n->list_lock, flags);
3002 n = NULL;
3003 }
3004 prior = page->freelist;
3005 counters = page->counters;
3006 set_freepointer(s, tail, prior);
3007 new.counters = counters;
3008 was_frozen = new.frozen;
3009 new.inuse -= cnt;
3010 if ((!new.inuse || !prior) && !was_frozen) {
3011
3012 if (kmem_cache_has_cpu_partial(s) && !prior) {
3013
3014 /*
3015 * Slab was on no list before and will be
3016 * partially empty
3017 * We can defer the list move and instead
3018 * freeze it.
3019 */
3020 new.frozen = 1;
3021
3022 } else { /* Needs to be taken off a list */
3023
3024 n = get_node(s, page_to_nid(page));
3025 /*
3026 * Speculatively acquire the list_lock.
3027 * If the cmpxchg does not succeed then we may
3028 * drop the list_lock without any processing.
3029 *
3030 * Otherwise the list_lock will synchronize with
3031 * other processors updating the list of slabs.
3032 */
3033 spin_lock_irqsave(&n->list_lock, flags);
3034
3035 }
3036 }
3037
3038 } while (!cmpxchg_double_slab(s, page,
3039 prior, counters,
3040 head, new.counters,
3041 "__slab_free"));
3042
3043 if (likely(!n)) {
3044
3045 if (likely(was_frozen)) {
3046 /*
3047 * The list lock was not taken therefore no list
3048 * activity can be necessary.
3049 */
3050 stat(s, FREE_FROZEN);
3051 } else if (new.frozen) {
3052 /*
3053 * If we just froze the page then put it onto the
3054 * per cpu partial list.
3055 */
3056 put_cpu_partial(s, page, 1);
3057 stat(s, CPU_PARTIAL_FREE);
3058 }
3059
3060 return;
3061 }
3062
3063 if (unlikely(!new.inuse && n->nr_partial >= s->min_partial))
3064 goto slab_empty;
3065
3066 /*
3067 * Objects left in the slab. If it was not on the partial list before
3068 * then add it.
3069 */
3070 if (!kmem_cache_has_cpu_partial(s) && unlikely(!prior)) {
3071 remove_full(s, n, page);
3072 add_partial(n, page, DEACTIVATE_TO_TAIL);
3073 stat(s, FREE_ADD_PARTIAL);
3074 }
3075 spin_unlock_irqrestore(&n->list_lock, flags);
3076 return;
3077
3078 slab_empty:
3079 if (prior) {
3080 /*
3081 * Slab on the partial list.
3082 */
3083 remove_partial(n, page);
3084 stat(s, FREE_REMOVE_PARTIAL);
3085 } else {
3086 /* Slab must be on the full list */
3087 remove_full(s, n, page);
3088 }
3089
3090 spin_unlock_irqrestore(&n->list_lock, flags);
3091 stat(s, FREE_SLAB);
3092 discard_slab(s, page);
3093 }
3094
3095 /*
3096 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
3097 * can perform fastpath freeing without additional function calls.
3098 *
3099 * The fastpath is only possible if we are freeing to the current cpu slab
3100 * of this processor. This typically the case if we have just allocated
3101 * the item before.
3102 *
3103 * If fastpath is not possible then fall back to __slab_free where we deal
3104 * with all sorts of special processing.
3105 *
3106 * Bulk free of a freelist with several objects (all pointing to the
3107 * same page) possible by specifying head and tail ptr, plus objects
3108 * count (cnt). Bulk free indicated by tail pointer being set.
3109 */
3110 static __always_inline void do_slab_free(struct kmem_cache *s,
3111 struct page *page, void *head, void *tail,
3112 int cnt, unsigned long addr)
3113 {
3114 void *tail_obj = tail ? : head;
3115 struct kmem_cache_cpu *c;
3116 unsigned long tid;
3117
3118 memcg_slab_free_hook(s, &head, 1);
3119 redo:
3120 /*
3121 * Determine the currently cpus per cpu slab.
3122 * The cpu may change afterward. However that does not matter since
3123 * data is retrieved via this pointer. If we are on the same cpu
3124 * during the cmpxchg then the free will succeed.
3125 */
3126 do {
3127 tid = this_cpu_read(s->cpu_slab->tid);
3128 c = raw_cpu_ptr(s->cpu_slab);
3129 } while (IS_ENABLED(CONFIG_PREEMPTION) &&
3130 unlikely(tid != READ_ONCE(c->tid)));
3131
3132 /* Same with comment on barrier() in slab_alloc_node() */
3133 barrier();
3134
3135 if (likely(page == c->page)) {
3136 void **freelist = READ_ONCE(c->freelist);
3137
3138 set_freepointer(s, tail_obj, freelist);
3139
3140 if (unlikely(!this_cpu_cmpxchg_double(
3141 s->cpu_slab->freelist, s->cpu_slab->tid,
3142 freelist, tid,
3143 head, next_tid(tid)))) {
3144
3145 note_cmpxchg_failure("slab_free", s, tid);
3146 goto redo;
3147 }
3148 stat(s, FREE_FASTPATH);
3149 } else
3150 __slab_free(s, page, head, tail_obj, cnt, addr);
3151
3152 }
3153
3154 static __always_inline void slab_free(struct kmem_cache *s, struct page *page,
3155 void *head, void *tail, int cnt,
3156 unsigned long addr)
3157 {
3158 /*
3159 * With KASAN enabled slab_free_freelist_hook modifies the freelist
3160 * to remove objects, whose reuse must be delayed.
3161 */
3162 if (slab_free_freelist_hook(s, &head, &tail))
3163 do_slab_free(s, page, head, tail, cnt, addr);
3164 }
3165
3166 #ifdef CONFIG_KASAN_GENERIC
3167 void ___cache_free(struct kmem_cache *cache, void *x, unsigned long addr)
3168 {
3169 do_slab_free(cache, virt_to_head_page(x), x, NULL, 1, addr);
3170 }
3171 #endif
3172
3173 void kmem_cache_free(struct kmem_cache *s, void *x)
3174 {
3175 s = cache_from_obj(s, x);
3176 if (!s)
3177 return;
3178 slab_free(s, virt_to_head_page(x), x, NULL, 1, _RET_IP_);
3179 trace_kmem_cache_free(_RET_IP_, x, s->name);
3180 }
3181 EXPORT_SYMBOL(kmem_cache_free);
3182
3183 struct detached_freelist {
3184 struct page *page;
3185 void *tail;
3186 void *freelist;
3187 int cnt;
3188 struct kmem_cache *s;
3189 };
3190
3191 /*
3192 * This function progressively scans the array with free objects (with
3193 * a limited look ahead) and extract objects belonging to the same
3194 * page. It builds a detached freelist directly within the given
3195 * page/objects. This can happen without any need for
3196 * synchronization, because the objects are owned by running process.
3197 * The freelist is build up as a single linked list in the objects.
3198 * The idea is, that this detached freelist can then be bulk
3199 * transferred to the real freelist(s), but only requiring a single
3200 * synchronization primitive. Look ahead in the array is limited due
3201 * to performance reasons.
3202 */
3203 static inline
3204 int build_detached_freelist(struct kmem_cache *s, size_t size,
3205 void **p, struct detached_freelist *df)
3206 {
3207 size_t first_skipped_index = 0;
3208 int lookahead = 3;
3209 void *object;
3210 struct page *page;
3211
3212 /* Always re-init detached_freelist */
3213 df->page = NULL;
3214
3215 do {
3216 object = p[--size];
3217 /* Do we need !ZERO_OR_NULL_PTR(object) here? (for kfree) */
3218 } while (!object && size);
3219
3220 if (!object)
3221 return 0;
3222
3223 page = virt_to_head_page(object);
3224 if (!s) {
3225 /* Handle kalloc'ed objects */
3226 if (unlikely(!PageSlab(page))) {
3227 BUG_ON(!PageCompound(page));
3228 kfree_hook(object);
3229 __free_pages(page, compound_order(page));
3230 p[size] = NULL; /* mark object processed */
3231 return size;
3232 }
3233 /* Derive kmem_cache from object */
3234 df->s = page->slab_cache;
3235 } else {
3236 df->s = cache_from_obj(s, object); /* Support for memcg */
3237 }
3238
3239 if (is_kfence_address(object)) {
3240 slab_free_hook(df->s, object);
3241 __kfence_free(object);
3242 p[size] = NULL; /* mark object processed */
3243 return size;
3244 }
3245
3246 /* Start new detached freelist */
3247 df->page = page;
3248 set_freepointer(df->s, object, NULL);
3249 df->tail = object;
3250 df->freelist = object;
3251 p[size] = NULL; /* mark object processed */
3252 df->cnt = 1;
3253
3254 while (size) {
3255 object = p[--size];
3256 if (!object)
3257 continue; /* Skip processed objects */
3258
3259 /* df->page is always set at this point */
3260 if (df->page == virt_to_head_page(object)) {
3261 /* Opportunity build freelist */
3262 set_freepointer(df->s, object, df->freelist);
3263 df->freelist = object;
3264 df->cnt++;
3265 p[size] = NULL; /* mark object processed */
3266
3267 continue;
3268 }
3269
3270 /* Limit look ahead search */
3271 if (!--lookahead)
3272 break;
3273
3274 if (!first_skipped_index)
3275 first_skipped_index = size + 1;
3276 }
3277
3278 return first_skipped_index;
3279 }
3280
3281 /* Note that interrupts must be enabled when calling this function. */
3282 void kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p)
3283 {
3284 if (WARN_ON(!size))
3285 return;
3286
3287 memcg_slab_free_hook(s, p, size);
3288 do {
3289 struct detached_freelist df;
3290
3291 size = build_detached_freelist(s, size, p, &df);
3292 if (!df.page)
3293 continue;
3294
3295 slab_free(df.s, df.page, df.freelist, df.tail, df.cnt, _RET_IP_);
3296 } while (likely(size));
3297 }
3298 EXPORT_SYMBOL(kmem_cache_free_bulk);
3299
3300 /* Note that interrupts must be enabled when calling this function. */
3301 int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size,
3302 void **p)
3303 {
3304 struct kmem_cache_cpu *c;
3305 int i;
3306 struct obj_cgroup *objcg = NULL;
3307
3308 /* memcg and kmem_cache debug support */
3309 s = slab_pre_alloc_hook(s, &objcg, size, flags);
3310 if (unlikely(!s))
3311 return false;
3312 /*
3313 * Drain objects in the per cpu slab, while disabling local
3314 * IRQs, which protects against PREEMPT and interrupts
3315 * handlers invoking normal fastpath.
3316 */
3317 local_irq_disable();
3318 c = this_cpu_ptr(s->cpu_slab);
3319
3320 for (i = 0; i < size; i++) {
3321 void *object = kfence_alloc(s, s->object_size, flags);
3322
3323 if (unlikely(object)) {
3324 p[i] = object;
3325 continue;
3326 }
3327
3328 object = c->freelist;
3329 if (unlikely(!object)) {
3330 /*
3331 * We may have removed an object from c->freelist using
3332 * the fastpath in the previous iteration; in that case,
3333 * c->tid has not been bumped yet.
3334 * Since ___slab_alloc() may reenable interrupts while
3335 * allocating memory, we should bump c->tid now.
3336 */
3337 c->tid = next_tid(c->tid);
3338
3339 /*
3340 * Invoking slow path likely have side-effect
3341 * of re-populating per CPU c->freelist
3342 */
3343 p[i] = ___slab_alloc(s, flags, NUMA_NO_NODE,
3344 _RET_IP_, c);
3345 if (unlikely(!p[i]))
3346 goto error;
3347
3348 c = this_cpu_ptr(s->cpu_slab);
3349 maybe_wipe_obj_freeptr(s, p[i]);
3350
3351 continue; /* goto for-loop */
3352 }
3353 c->freelist = get_freepointer(s, object);
3354 p[i] = object;
3355 maybe_wipe_obj_freeptr(s, p[i]);
3356 }
3357 c->tid = next_tid(c->tid);
3358 local_irq_enable();
3359
3360 /* Clear memory outside IRQ disabled fastpath loop */
3361 if (unlikely(slab_want_init_on_alloc(flags, s))) {
3362 int j;
3363
3364 for (j = 0; j < i; j++)
3365 memset(kasan_reset_tag(p[j]), 0, s->object_size);
3366 }
3367
3368 /* memcg and kmem_cache debug support */
3369 slab_post_alloc_hook(s, objcg, flags, size, p);
3370 return i;
3371 error:
3372 local_irq_enable();
3373 slab_post_alloc_hook(s, objcg, flags, i, p);
3374 __kmem_cache_free_bulk(s, i, p);
3375 return 0;
3376 }
3377 EXPORT_SYMBOL(kmem_cache_alloc_bulk);
3378
3379
3380 /*
3381 * Object placement in a slab is made very easy because we always start at
3382 * offset 0. If we tune the size of the object to the alignment then we can
3383 * get the required alignment by putting one properly sized object after
3384 * another.
3385 *
3386 * Notice that the allocation order determines the sizes of the per cpu
3387 * caches. Each processor has always one slab available for allocations.
3388 * Increasing the allocation order reduces the number of times that slabs
3389 * must be moved on and off the partial lists and is therefore a factor in
3390 * locking overhead.
3391 */
3392
3393 /*
3394 * Mininum / Maximum order of slab pages. This influences locking overhead
3395 * and slab fragmentation. A higher order reduces the number of partial slabs
3396 * and increases the number of allocations possible without having to
3397 * take the list_lock.
3398 */
3399 static unsigned int slub_min_order;
3400 static unsigned int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
3401 static unsigned int slub_min_objects;
3402
3403 /*
3404 * Calculate the order of allocation given an slab object size.
3405 *
3406 * The order of allocation has significant impact on performance and other
3407 * system components. Generally order 0 allocations should be preferred since
3408 * order 0 does not cause fragmentation in the page allocator. Larger objects
3409 * be problematic to put into order 0 slabs because there may be too much
3410 * unused space left. We go to a higher order if more than 1/16th of the slab
3411 * would be wasted.
3412 *
3413 * In order to reach satisfactory performance we must ensure that a minimum
3414 * number of objects is in one slab. Otherwise we may generate too much
3415 * activity on the partial lists which requires taking the list_lock. This is
3416 * less a concern for large slabs though which are rarely used.
3417 *
3418 * slub_max_order specifies the order where we begin to stop considering the
3419 * number of objects in a slab as critical. If we reach slub_max_order then
3420 * we try to keep the page order as low as possible. So we accept more waste
3421 * of space in favor of a small page order.
3422 *
3423 * Higher order allocations also allow the placement of more objects in a
3424 * slab and thereby reduce object handling overhead. If the user has
3425 * requested a higher mininum order then we start with that one instead of
3426 * the smallest order which will fit the object.
3427 */
3428 static inline unsigned int slab_order(unsigned int size,
3429 unsigned int min_objects, unsigned int max_order,
3430 unsigned int fract_leftover)
3431 {
3432 unsigned int min_order = slub_min_order;
3433 unsigned int order;
3434
3435 if (order_objects(min_order, size) > MAX_OBJS_PER_PAGE)
3436 return get_order(size * MAX_OBJS_PER_PAGE) - 1;
3437
3438 for (order = max(min_order, (unsigned int)get_order(min_objects * size));
3439 order <= max_order; order++) {
3440
3441 unsigned int slab_size = (unsigned int)PAGE_SIZE << order;
3442 unsigned int rem;
3443
3444 rem = slab_size % size;
3445
3446 if (rem <= slab_size / fract_leftover)
3447 break;
3448 }
3449
3450 return order;
3451 }
3452
3453 static inline int calculate_order(unsigned int size)
3454 {
3455 unsigned int order;
3456 unsigned int min_objects;
3457 unsigned int max_objects;
3458 unsigned int nr_cpus;
3459
3460 /*
3461 * Attempt to find best configuration for a slab. This
3462 * works by first attempting to generate a layout with
3463 * the best configuration and backing off gradually.
3464 *
3465 * First we increase the acceptable waste in a slab. Then
3466 * we reduce the minimum objects required in a slab.
3467 */
3468 min_objects = slub_min_objects;
3469 if (!min_objects) {
3470 /*
3471 * Some architectures will only update present cpus when
3472 * onlining them, so don't trust the number if it's just 1. But
3473 * we also don't want to use nr_cpu_ids always, as on some other
3474 * architectures, there can be many possible cpus, but never
3475 * onlined. Here we compromise between trying to avoid too high
3476 * order on systems that appear larger than they are, and too
3477 * low order on systems that appear smaller than they are.
3478 */
3479 nr_cpus = num_present_cpus();
3480 if (nr_cpus <= 1)
3481 nr_cpus = nr_cpu_ids;
3482 min_objects = 4 * (fls(nr_cpus) + 1);
3483 }
3484 max_objects = order_objects(slub_max_order, size);
3485 min_objects = min(min_objects, max_objects);
3486
3487 while (min_objects > 1) {
3488 unsigned int fraction;
3489
3490 fraction = 16;
3491 while (fraction >= 4) {
3492 order = slab_order(size, min_objects,
3493 slub_max_order, fraction);
3494 if (order <= slub_max_order)
3495 return order;
3496 fraction /= 2;
3497 }
3498 min_objects--;
3499 }
3500
3501 /*
3502 * We were unable to place multiple objects in a slab. Now
3503 * lets see if we can place a single object there.
3504 */
3505 order = slab_order(size, 1, slub_max_order, 1);
3506 if (order <= slub_max_order)
3507 return order;
3508
3509 /*
3510 * Doh this slab cannot be placed using slub_max_order.
3511 */
3512 order = slab_order(size, 1, MAX_ORDER, 1);
3513 if (order < MAX_ORDER)
3514 return order;
3515 return -ENOSYS;
3516 }
3517
3518 static void
3519 init_kmem_cache_node(struct kmem_cache_node *n)
3520 {
3521 n->nr_partial = 0;
3522 spin_lock_init(&n->list_lock);
3523 INIT_LIST_HEAD(&n->partial);
3524 #ifdef CONFIG_SLUB_DEBUG
3525 atomic_long_set(&n->nr_slabs, 0);
3526 atomic_long_set(&n->total_objects, 0);
3527 INIT_LIST_HEAD(&n->full);
3528 #endif
3529 }
3530
3531 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
3532 {
3533 BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
3534 KMALLOC_SHIFT_HIGH * sizeof(struct kmem_cache_cpu));
3535
3536 /*
3537 * Must align to double word boundary for the double cmpxchg
3538 * instructions to work; see __pcpu_double_call_return_bool().
3539 */
3540 s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
3541 2 * sizeof(void *));
3542
3543 if (!s->cpu_slab)
3544 return 0;
3545
3546 init_kmem_cache_cpus(s);
3547
3548 return 1;
3549 }
3550
3551 static struct kmem_cache *kmem_cache_node;
3552
3553 /*
3554 * No kmalloc_node yet so do it by hand. We know that this is the first
3555 * slab on the node for this slabcache. There are no concurrent accesses
3556 * possible.
3557 *
3558 * Note that this function only works on the kmem_cache_node
3559 * when allocating for the kmem_cache_node. This is used for bootstrapping
3560 * memory on a fresh node that has no slab structures yet.
3561 */
3562 static void early_kmem_cache_node_alloc(int node)
3563 {
3564 struct page *page;
3565 struct kmem_cache_node *n;
3566
3567 BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
3568
3569 page = new_slab(kmem_cache_node, GFP_NOWAIT, node);
3570
3571 BUG_ON(!page);
3572 if (page_to_nid(page) != node) {
3573 pr_err("SLUB: Unable to allocate memory from node %d\n", node);
3574 pr_err("SLUB: Allocating a useless per node structure in order to be able to continue\n");
3575 }
3576
3577 n = page->freelist;
3578 BUG_ON(!n);
3579 #ifdef CONFIG_SLUB_DEBUG
3580 init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
3581 init_tracking(kmem_cache_node, n);
3582 #endif
3583 n = kasan_slab_alloc(kmem_cache_node, n, GFP_KERNEL);
3584 page->freelist = get_freepointer(kmem_cache_node, n);
3585 page->inuse = 1;
3586 page->frozen = 0;
3587 kmem_cache_node->node[node] = n;
3588 init_kmem_cache_node(n);
3589 inc_slabs_node(kmem_cache_node, node, page->objects);
3590
3591 /*
3592 * No locks need to be taken here as it has just been
3593 * initialized and there is no concurrent access.
3594 */
3595 __add_partial(n, page, DEACTIVATE_TO_HEAD);
3596 }
3597
3598 static void free_kmem_cache_nodes(struct kmem_cache *s)
3599 {
3600 int node;
3601 struct kmem_cache_node *n;
3602
3603 for_each_kmem_cache_node(s, node, n) {
3604 s->node[node] = NULL;
3605 kmem_cache_free(kmem_cache_node, n);
3606 }
3607 }
3608
3609 void __kmem_cache_release(struct kmem_cache *s)
3610 {
3611 cache_random_seq_destroy(s);
3612 free_percpu(s->cpu_slab);
3613 free_kmem_cache_nodes(s);
3614 }
3615
3616 static int init_kmem_cache_nodes(struct kmem_cache *s)
3617 {
3618 int node;
3619
3620 for_each_node_mask(node, slab_nodes) {
3621 struct kmem_cache_node *n;
3622
3623 if (slab_state == DOWN) {
3624 early_kmem_cache_node_alloc(node);
3625 continue;
3626 }
3627 n = kmem_cache_alloc_node(kmem_cache_node,
3628 GFP_KERNEL, node);
3629
3630 if (!n) {
3631 free_kmem_cache_nodes(s);
3632 return 0;
3633 }
3634
3635 init_kmem_cache_node(n);
3636 s->node[node] = n;
3637 }
3638 return 1;
3639 }
3640
3641 static void set_min_partial(struct kmem_cache *s, unsigned long min)
3642 {
3643 if (min < MIN_PARTIAL)
3644 min = MIN_PARTIAL;
3645 else if (min > MAX_PARTIAL)
3646 min = MAX_PARTIAL;
3647 s->min_partial = min;
3648 }
3649
3650 static void set_cpu_partial(struct kmem_cache *s)
3651 {
3652 #ifdef CONFIG_SLUB_CPU_PARTIAL
3653 /*
3654 * cpu_partial determined the maximum number of objects kept in the
3655 * per cpu partial lists of a processor.
3656 *
3657 * Per cpu partial lists mainly contain slabs that just have one
3658 * object freed. If they are used for allocation then they can be
3659 * filled up again with minimal effort. The slab will never hit the
3660 * per node partial lists and therefore no locking will be required.
3661 *
3662 * This setting also determines
3663 *
3664 * A) The number of objects from per cpu partial slabs dumped to the
3665 * per node list when we reach the limit.
3666 * B) The number of objects in cpu partial slabs to extract from the
3667 * per node list when we run out of per cpu objects. We only fetch
3668 * 50% to keep some capacity around for frees.
3669 */
3670 if (!kmem_cache_has_cpu_partial(s))
3671 slub_set_cpu_partial(s, 0);
3672 else if (s->size >= PAGE_SIZE)
3673 slub_set_cpu_partial(s, 2);
3674 else if (s->size >= 1024)
3675 slub_set_cpu_partial(s, 6);
3676 else if (s->size >= 256)
3677 slub_set_cpu_partial(s, 13);
3678 else
3679 slub_set_cpu_partial(s, 30);
3680 #endif
3681 }
3682
3683 /*
3684 * calculate_sizes() determines the order and the distribution of data within
3685 * a slab object.
3686 */
3687 static int calculate_sizes(struct kmem_cache *s, int forced_order)
3688 {
3689 slab_flags_t flags = s->flags;
3690 unsigned int size = s->object_size;
3691 unsigned int freepointer_area;
3692 unsigned int order;
3693
3694 /*
3695 * Round up object size to the next word boundary. We can only
3696 * place the free pointer at word boundaries and this determines
3697 * the possible location of the free pointer.
3698 */
3699 size = ALIGN(size, sizeof(void *));
3700 /*
3701 * This is the area of the object where a freepointer can be
3702 * safely written. If redzoning adds more to the inuse size, we
3703 * can't use that portion for writing the freepointer, so
3704 * s->offset must be limited within this for the general case.
3705 */
3706 freepointer_area = size;
3707
3708 #ifdef CONFIG_SLUB_DEBUG
3709 /*
3710 * Determine if we can poison the object itself. If the user of
3711 * the slab may touch the object after free or before allocation
3712 * then we should never poison the object itself.
3713 */
3714 if ((flags & SLAB_POISON) && !(flags & SLAB_TYPESAFE_BY_RCU) &&
3715 !s->ctor)
3716 s->flags |= __OBJECT_POISON;
3717 else
3718 s->flags &= ~__OBJECT_POISON;
3719
3720
3721 /*
3722 * If we are Redzoning then check if there is some space between the
3723 * end of the object and the free pointer. If not then add an
3724 * additional word to have some bytes to store Redzone information.
3725 */
3726 if ((flags & SLAB_RED_ZONE) && size == s->object_size)
3727 size += sizeof(void *);
3728 #endif
3729
3730 /*
3731 * With that we have determined the number of bytes in actual use
3732 * by the object. This is the potential offset to the free pointer.
3733 */
3734 s->inuse = size;
3735
3736 if (((flags & (SLAB_TYPESAFE_BY_RCU | SLAB_POISON)) ||
3737 s->ctor)) {
3738 /*
3739 * Relocate free pointer after the object if it is not
3740 * permitted to overwrite the first word of the object on
3741 * kmem_cache_free.
3742 *
3743 * This is the case if we do RCU, have a constructor or
3744 * destructor or are poisoning the objects.
3745 *
3746 * The assumption that s->offset >= s->inuse means free
3747 * pointer is outside of the object is used in the
3748 * freeptr_outside_object() function. If that is no
3749 * longer true, the function needs to be modified.
3750 */
3751 s->offset = size;
3752 size += sizeof(void *);
3753 } else if (freepointer_area > sizeof(void *)) {
3754 /*
3755 * Store freelist pointer near middle of object to keep
3756 * it away from the edges of the object to avoid small
3757 * sized over/underflows from neighboring allocations.
3758 */
3759 s->offset = ALIGN(freepointer_area / 2, sizeof(void *));
3760 }
3761
3762 #ifdef CONFIG_SLUB_DEBUG
3763 if (flags & SLAB_STORE_USER)
3764 /*
3765 * Need to store information about allocs and frees after
3766 * the object.
3767 */
3768 size += 2 * sizeof(struct track);
3769 #endif
3770
3771 kasan_cache_create(s, &size, &s->flags);
3772 #ifdef CONFIG_SLUB_DEBUG
3773 if (flags & SLAB_RED_ZONE) {
3774 /*
3775 * Add some empty padding so that we can catch
3776 * overwrites from earlier objects rather than let
3777 * tracking information or the free pointer be
3778 * corrupted if a user writes before the start
3779 * of the object.
3780 */
3781 size += sizeof(void *);
3782
3783 s->red_left_pad = sizeof(void *);
3784 s->red_left_pad = ALIGN(s->red_left_pad, s->align);
3785 size += s->red_left_pad;
3786 }
3787 #endif
3788
3789 /*
3790 * SLUB stores one object immediately after another beginning from
3791 * offset 0. In order to align the objects we have to simply size
3792 * each object to conform to the alignment.
3793 */
3794 size = ALIGN(size, s->align);
3795 s->size = size;
3796 s->reciprocal_size = reciprocal_value(size);
3797 if (forced_order >= 0)
3798 order = forced_order;
3799 else
3800 order = calculate_order(size);
3801
3802 if ((int)order < 0)
3803 return 0;
3804
3805 s->allocflags = 0;
3806 if (order)
3807 s->allocflags |= __GFP_COMP;
3808
3809 if (s->flags & SLAB_CACHE_DMA)
3810 s->allocflags |= GFP_DMA;
3811
3812 if (s->flags & SLAB_CACHE_DMA32)
3813 s->allocflags |= GFP_DMA32;
3814
3815 if (s->flags & SLAB_RECLAIM_ACCOUNT)
3816 s->allocflags |= __GFP_RECLAIMABLE;
3817
3818 /*
3819 * Determine the number of objects per slab
3820 */
3821 s->oo = oo_make(order, size);
3822 s->min = oo_make(get_order(size), size);
3823 if (oo_objects(s->oo) > oo_objects(s->max))
3824 s->max = s->oo;
3825
3826 return !!oo_objects(s->oo);
3827 }
3828
3829 static int kmem_cache_open(struct kmem_cache *s, slab_flags_t flags)
3830 {
3831 s->flags = kmem_cache_flags(s->size, flags, s->name);
3832 #ifdef CONFIG_SLAB_FREELIST_HARDENED
3833 s->random = get_random_long();
3834 #endif
3835
3836 if (!calculate_sizes(s, -1))
3837 goto error;
3838 if (disable_higher_order_debug) {
3839 /*
3840 * Disable debugging flags that store metadata if the min slab
3841 * order increased.
3842 */
3843 if (get_order(s->size) > get_order(s->object_size)) {
3844 s->flags &= ~DEBUG_METADATA_FLAGS;
3845 s->offset = 0;
3846 if (!calculate_sizes(s, -1))
3847 goto error;
3848 }
3849 }
3850
3851 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
3852 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
3853 if (system_has_cmpxchg_double() && (s->flags & SLAB_NO_CMPXCHG) == 0)
3854 /* Enable fast mode */
3855 s->flags |= __CMPXCHG_DOUBLE;
3856 #endif
3857
3858 /*
3859 * The larger the object size is, the more pages we want on the partial
3860 * list to avoid pounding the page allocator excessively.
3861 */
3862 set_min_partial(s, ilog2(s->size) / 2);
3863
3864 set_cpu_partial(s);
3865
3866 #ifdef CONFIG_NUMA
3867 s->remote_node_defrag_ratio = 1000;
3868 #endif
3869
3870 /* Initialize the pre-computed randomized freelist if slab is up */
3871 if (slab_state >= UP) {
3872 if (init_cache_random_seq(s))
3873 goto error;
3874 }
3875
3876 if (!init_kmem_cache_nodes(s))
3877 goto error;
3878
3879 if (alloc_kmem_cache_cpus(s))
3880 return 0;
3881
3882 free_kmem_cache_nodes(s);
3883 error:
3884 return -EINVAL;
3885 }
3886
3887 static void list_slab_objects(struct kmem_cache *s, struct page *page,
3888 const char *text)
3889 {
3890 #ifdef CONFIG_SLUB_DEBUG
3891 void *addr = page_address(page);
3892 unsigned long *map;
3893 void *p;
3894
3895 slab_err(s, page, text, s->name);
3896 slab_lock(page);
3897
3898 map = get_map(s, page);
3899 for_each_object(p, s, addr, page->objects) {
3900
3901 if (!test_bit(__obj_to_index(s, addr, p), map)) {
3902 pr_err("Object 0x%p @offset=%tu\n", p, p - addr);
3903 print_tracking(s, p);
3904 }
3905 }
3906 put_map(map);
3907 slab_unlock(page);
3908 #endif
3909 }
3910
3911 /*
3912 * Attempt to free all partial slabs on a node.
3913 * This is called from __kmem_cache_shutdown(). We must take list_lock
3914 * because sysfs file might still access partial list after the shutdowning.
3915 */
3916 static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
3917 {
3918 LIST_HEAD(discard);
3919 struct page *page, *h;
3920
3921 BUG_ON(irqs_disabled());
3922 spin_lock_irq(&n->list_lock);
3923 list_for_each_entry_safe(page, h, &n->partial, slab_list) {
3924 if (!page->inuse) {
3925 remove_partial(n, page);
3926 list_add(&page->slab_list, &discard);
3927 } else {
3928 list_slab_objects(s, page,
3929 "Objects remaining in %s on __kmem_cache_shutdown()");
3930 }
3931 }
3932 spin_unlock_irq(&n->list_lock);
3933
3934 list_for_each_entry_safe(page, h, &discard, slab_list)
3935 discard_slab(s, page);
3936 }
3937
3938 bool __kmem_cache_empty(struct kmem_cache *s)
3939 {
3940 int node;
3941 struct kmem_cache_node *n;
3942
3943 for_each_kmem_cache_node(s, node, n)
3944 if (n->nr_partial || slabs_node(s, node))
3945 return false;
3946 return true;
3947 }
3948
3949 /*
3950 * Release all resources used by a slab cache.
3951 */
3952 int __kmem_cache_shutdown(struct kmem_cache *s)
3953 {
3954 int node;
3955 struct kmem_cache_node *n;
3956
3957 flush_all(s);
3958 /* Attempt to free all objects */
3959 for_each_kmem_cache_node(s, node, n) {
3960 free_partial(s, n);
3961 if (n->nr_partial || slabs_node(s, node))
3962 return 1;
3963 }
3964 return 0;
3965 }
3966
3967 #ifdef CONFIG_PRINTK
3968 void kmem_obj_info(struct kmem_obj_info *kpp, void *object, struct page *page)
3969 {
3970 void *base;
3971 int __maybe_unused i;
3972 unsigned int objnr;
3973 void *objp;
3974 void *objp0;
3975 struct kmem_cache *s = page->slab_cache;
3976 struct track __maybe_unused *trackp;
3977
3978 kpp->kp_ptr = object;
3979 kpp->kp_page = page;
3980 kpp->kp_slab_cache = s;
3981 base = page_address(page);
3982 objp0 = kasan_reset_tag(object);
3983 #ifdef CONFIG_SLUB_DEBUG
3984 objp = restore_red_left(s, objp0);
3985 #else
3986 objp = objp0;
3987 #endif
3988 objnr = obj_to_index(s, page, objp);
3989 kpp->kp_data_offset = (unsigned long)((char *)objp0 - (char *)objp);
3990 objp = base + s->size * objnr;
3991 kpp->kp_objp = objp;
3992 if (WARN_ON_ONCE(objp < base || objp >= base + page->objects * s->size || (objp - base) % s->size) ||
3993 !(s->flags & SLAB_STORE_USER))
3994 return;
3995 #ifdef CONFIG_SLUB_DEBUG
3996 trackp = get_track(s, objp, TRACK_ALLOC);
3997 kpp->kp_ret = (void *)trackp->addr;
3998 #ifdef CONFIG_STACKTRACE
3999 for (i = 0; i < KS_ADDRS_COUNT && i < TRACK_ADDRS_COUNT; i++) {
4000 kpp->kp_stack[i] = (void *)trackp->addrs[i];
4001 if (!kpp->kp_stack[i])
4002 break;
4003 }
4004 #endif
4005 #endif
4006 }
4007 #endif
4008
4009 /********************************************************************
4010 * Kmalloc subsystem
4011 *******************************************************************/
4012
4013 static int __init setup_slub_min_order(char *str)
4014 {
4015 get_option(&str, (int *)&slub_min_order);
4016
4017 return 1;
4018 }
4019
4020 __setup("slub_min_order=", setup_slub_min_order);
4021
4022 static int __init setup_slub_max_order(char *str)
4023 {
4024 get_option(&str, (int *)&slub_max_order);
4025 slub_max_order = min(slub_max_order, (unsigned int)MAX_ORDER - 1);
4026
4027 return 1;
4028 }
4029
4030 __setup("slub_max_order=", setup_slub_max_order);
4031
4032 static int __init setup_slub_min_objects(char *str)
4033 {
4034 get_option(&str, (int *)&slub_min_objects);
4035
4036 return 1;
4037 }
4038
4039 __setup("slub_min_objects=", setup_slub_min_objects);
4040
4041 void *__kmalloc(size_t size, gfp_t flags)
4042 {
4043 struct kmem_cache *s;
4044 void *ret;
4045
4046 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
4047 return kmalloc_large(size, flags);
4048
4049 s = kmalloc_slab(size, flags);
4050
4051 if (unlikely(ZERO_OR_NULL_PTR(s)))
4052 return s;
4053
4054 ret = slab_alloc(s, flags, _RET_IP_, size);
4055
4056 trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
4057
4058 ret = kasan_kmalloc(s, ret, size, flags);
4059
4060 return ret;
4061 }
4062 EXPORT_SYMBOL(__kmalloc);
4063
4064 #ifdef CONFIG_NUMA
4065 static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
4066 {
4067 struct page *page;
4068 void *ptr = NULL;
4069 unsigned int order = get_order(size);
4070
4071 flags |= __GFP_COMP;
4072 page = alloc_pages_node(node, flags, order);
4073 if (page) {
4074 ptr = page_address(page);
4075 mod_lruvec_page_state(page, NR_SLAB_UNRECLAIMABLE_B,
4076 PAGE_SIZE << order);
4077 }
4078
4079 return kmalloc_large_node_hook(ptr, size, flags);
4080 }
4081
4082 void *__kmalloc_node(size_t size, gfp_t flags, int node)
4083 {
4084 struct kmem_cache *s;
4085 void *ret;
4086
4087 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
4088 ret = kmalloc_large_node(size, flags, node);
4089
4090 trace_kmalloc_node(_RET_IP_, ret,
4091 size, PAGE_SIZE << get_order(size),
4092 flags, node);
4093
4094 return ret;
4095 }
4096
4097 s = kmalloc_slab(size, flags);
4098
4099 if (unlikely(ZERO_OR_NULL_PTR(s)))
4100 return s;
4101
4102 ret = slab_alloc_node(s, flags, node, _RET_IP_, size);
4103
4104 trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
4105
4106 ret = kasan_kmalloc(s, ret, size, flags);
4107
4108 return ret;
4109 }
4110 EXPORT_SYMBOL(__kmalloc_node);
4111 #endif /* CONFIG_NUMA */
4112
4113 #ifdef CONFIG_HARDENED_USERCOPY
4114 /*
4115 * Rejects incorrectly sized objects and objects that are to be copied
4116 * to/from userspace but do not fall entirely within the containing slab
4117 * cache's usercopy region.
4118 *
4119 * Returns NULL if check passes, otherwise const char * to name of cache
4120 * to indicate an error.
4121 */
4122 void __check_heap_object(const void *ptr, unsigned long n, struct page *page,
4123 bool to_user)
4124 {
4125 struct kmem_cache *s;
4126 unsigned int offset;
4127 size_t object_size;
4128 bool is_kfence = is_kfence_address(ptr);
4129
4130 ptr = kasan_reset_tag(ptr);
4131
4132 /* Find object and usable object size. */
4133 s = page->slab_cache;
4134
4135 /* Reject impossible pointers. */
4136 if (ptr < page_address(page))
4137 usercopy_abort("SLUB object not in SLUB page?!", NULL,
4138 to_user, 0, n);
4139
4140 /* Find offset within object. */
4141 if (is_kfence)
4142 offset = ptr - kfence_object_start(ptr);
4143 else
4144 offset = (ptr - page_address(page)) % s->size;
4145
4146 /* Adjust for redzone and reject if within the redzone. */
4147 if (!is_kfence && kmem_cache_debug_flags(s, SLAB_RED_ZONE)) {
4148 if (offset < s->red_left_pad)
4149 usercopy_abort("SLUB object in left red zone",
4150 s->name, to_user, offset, n);
4151 offset -= s->red_left_pad;
4152 }
4153
4154 /* Allow address range falling entirely within usercopy region. */
4155 if (offset >= s->useroffset &&
4156 offset - s->useroffset <= s->usersize &&
4157 n <= s->useroffset - offset + s->usersize)
4158 return;
4159
4160 /*
4161 * If the copy is still within the allocated object, produce
4162 * a warning instead of rejecting the copy. This is intended
4163 * to be a temporary method to find any missing usercopy
4164 * whitelists.
4165 */
4166 object_size = slab_ksize(s);
4167 if (usercopy_fallback &&
4168 offset <= object_size && n <= object_size - offset) {
4169 usercopy_warn("SLUB object", s->name, to_user, offset, n);
4170 return;
4171 }
4172
4173 usercopy_abort("SLUB object", s->name, to_user, offset, n);
4174 }
4175 #endif /* CONFIG_HARDENED_USERCOPY */
4176
4177 size_t __ksize(const void *object)
4178 {
4179 struct page *page;
4180
4181 if (unlikely(object == ZERO_SIZE_PTR))
4182 return 0;
4183
4184 page = virt_to_head_page(object);
4185
4186 if (unlikely(!PageSlab(page))) {
4187 WARN_ON(!PageCompound(page));
4188 return page_size(page);
4189 }
4190
4191 return slab_ksize(page->slab_cache);
4192 }
4193 EXPORT_SYMBOL(__ksize);
4194
4195 void kfree(const void *x)
4196 {
4197 struct page *page;
4198 void *object = (void *)x;
4199
4200 trace_kfree(_RET_IP_, x);
4201
4202 if (unlikely(ZERO_OR_NULL_PTR(x)))
4203 return;
4204
4205 page = virt_to_head_page(x);
4206 if (unlikely(!PageSlab(page))) {
4207 unsigned int order = compound_order(page);
4208
4209 BUG_ON(!PageCompound(page));
4210 kfree_hook(object);
4211 mod_lruvec_page_state(page, NR_SLAB_UNRECLAIMABLE_B,
4212 -(PAGE_SIZE << order));
4213 __free_pages(page, order);
4214 return;
4215 }
4216 slab_free(page->slab_cache, page, object, NULL, 1, _RET_IP_);
4217 }
4218 EXPORT_SYMBOL(kfree);
4219
4220 #define SHRINK_PROMOTE_MAX 32
4221
4222 /*
4223 * kmem_cache_shrink discards empty slabs and promotes the slabs filled
4224 * up most to the head of the partial lists. New allocations will then
4225 * fill those up and thus they can be removed from the partial lists.
4226 *
4227 * The slabs with the least items are placed last. This results in them
4228 * being allocated from last increasing the chance that the last objects
4229 * are freed in them.
4230 */
4231 int __kmem_cache_shrink(struct kmem_cache *s)
4232 {
4233 int node;
4234 int i;
4235 struct kmem_cache_node *n;
4236 struct page *page;
4237 struct page *t;
4238 struct list_head discard;
4239 struct list_head promote[SHRINK_PROMOTE_MAX];
4240 unsigned long flags;
4241 int ret = 0;
4242
4243 flush_all(s);
4244 for_each_kmem_cache_node(s, node, n) {
4245 INIT_LIST_HEAD(&discard);
4246 for (i = 0; i < SHRINK_PROMOTE_MAX; i++)
4247 INIT_LIST_HEAD(promote + i);
4248
4249 spin_lock_irqsave(&n->list_lock, flags);
4250
4251 /*
4252 * Build lists of slabs to discard or promote.
4253 *
4254 * Note that concurrent frees may occur while we hold the
4255 * list_lock. page->inuse here is the upper limit.
4256 */
4257 list_for_each_entry_safe(page, t, &n->partial, slab_list) {
4258 int free = page->objects - page->inuse;
4259
4260 /* Do not reread page->inuse */
4261 barrier();
4262
4263 /* We do not keep full slabs on the list */
4264 BUG_ON(free <= 0);
4265
4266 if (free == page->objects) {
4267 list_move(&page->slab_list, &discard);
4268 n->nr_partial--;
4269 } else if (free <= SHRINK_PROMOTE_MAX)
4270 list_move(&page->slab_list, promote + free - 1);
4271 }
4272
4273 /*
4274 * Promote the slabs filled up most to the head of the
4275 * partial list.
4276 */
4277 for (i = SHRINK_PROMOTE_MAX - 1; i >= 0; i--)
4278 list_splice(promote + i, &n->partial);
4279
4280 spin_unlock_irqrestore(&n->list_lock, flags);
4281
4282 /* Release empty slabs */
4283 list_for_each_entry_safe(page, t, &discard, slab_list)
4284 discard_slab(s, page);
4285
4286 if (slabs_node(s, node))
4287 ret = 1;
4288 }
4289
4290 return ret;
4291 }
4292
4293 static int slab_mem_going_offline_callback(void *arg)
4294 {
4295 struct kmem_cache *s;
4296
4297 mutex_lock(&slab_mutex);
4298 list_for_each_entry(s, &slab_caches, list)
4299 __kmem_cache_shrink(s);
4300 mutex_unlock(&slab_mutex);
4301
4302 return 0;
4303 }
4304
4305 static void slab_mem_offline_callback(void *arg)
4306 {
4307 struct memory_notify *marg = arg;
4308 int offline_node;
4309
4310 offline_node = marg->status_change_nid_normal;
4311
4312 /*
4313 * If the node still has available memory. we need kmem_cache_node
4314 * for it yet.
4315 */
4316 if (offline_node < 0)
4317 return;
4318
4319 mutex_lock(&slab_mutex);
4320 node_clear(offline_node, slab_nodes);
4321 /*
4322 * We no longer free kmem_cache_node structures here, as it would be
4323 * racy with all get_node() users, and infeasible to protect them with
4324 * slab_mutex.
4325 */
4326 mutex_unlock(&slab_mutex);
4327 }
4328
4329 static int slab_mem_going_online_callback(void *arg)
4330 {
4331 struct kmem_cache_node *n;
4332 struct kmem_cache *s;
4333 struct memory_notify *marg = arg;
4334 int nid = marg->status_change_nid_normal;
4335 int ret = 0;
4336
4337 /*
4338 * If the node's memory is already available, then kmem_cache_node is
4339 * already created. Nothing to do.
4340 */
4341 if (nid < 0)
4342 return 0;
4343
4344 /*
4345 * We are bringing a node online. No memory is available yet. We must
4346 * allocate a kmem_cache_node structure in order to bring the node
4347 * online.
4348 */
4349 mutex_lock(&slab_mutex);
4350 list_for_each_entry(s, &slab_caches, list) {
4351 /*
4352 * The structure may already exist if the node was previously
4353 * onlined and offlined.
4354 */
4355 if (get_node(s, nid))
4356 continue;
4357 /*
4358 * XXX: kmem_cache_alloc_node will fallback to other nodes
4359 * since memory is not yet available from the node that
4360 * is brought up.
4361 */
4362 n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
4363 if (!n) {
4364 ret = -ENOMEM;
4365 goto out;
4366 }
4367 init_kmem_cache_node(n);
4368 s->node[nid] = n;
4369 }
4370 /*
4371 * Any cache created after this point will also have kmem_cache_node
4372 * initialized for the new node.
4373 */
4374 node_set(nid, slab_nodes);
4375 out:
4376 mutex_unlock(&slab_mutex);
4377 return ret;
4378 }
4379
4380 static int slab_memory_callback(struct notifier_block *self,
4381 unsigned long action, void *arg)
4382 {
4383 int ret = 0;
4384
4385 switch (action) {
4386 case MEM_GOING_ONLINE:
4387 ret = slab_mem_going_online_callback(arg);
4388 break;
4389 case MEM_GOING_OFFLINE:
4390 ret = slab_mem_going_offline_callback(arg);
4391 break;
4392 case MEM_OFFLINE:
4393 case MEM_CANCEL_ONLINE:
4394 slab_mem_offline_callback(arg);
4395 break;
4396 case MEM_ONLINE:
4397 case MEM_CANCEL_OFFLINE:
4398 break;
4399 }
4400 if (ret)
4401 ret = notifier_from_errno(ret);
4402 else
4403 ret = NOTIFY_OK;
4404 return ret;
4405 }
4406
4407 static struct notifier_block slab_memory_callback_nb = {
4408 .notifier_call = slab_memory_callback,
4409 .priority = SLAB_CALLBACK_PRI,
4410 };
4411
4412 /********************************************************************
4413 * Basic setup of slabs
4414 *******************************************************************/
4415
4416 /*
4417 * Used for early kmem_cache structures that were allocated using
4418 * the page allocator. Allocate them properly then fix up the pointers
4419 * that may be pointing to the wrong kmem_cache structure.
4420 */
4421
4422 static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache)
4423 {
4424 int node;
4425 struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
4426 struct kmem_cache_node *n;
4427
4428 memcpy(s, static_cache, kmem_cache->object_size);
4429
4430 /*
4431 * This runs very early, and only the boot processor is supposed to be
4432 * up. Even if it weren't true, IRQs are not up so we couldn't fire
4433 * IPIs around.
4434 */
4435 __flush_cpu_slab(s, smp_processor_id());
4436 for_each_kmem_cache_node(s, node, n) {
4437 struct page *p;
4438
4439 list_for_each_entry(p, &n->partial, slab_list)
4440 p->slab_cache = s;
4441
4442 #ifdef CONFIG_SLUB_DEBUG
4443 list_for_each_entry(p, &n->full, slab_list)
4444 p->slab_cache = s;
4445 #endif
4446 }
4447 list_add(&s->list, &slab_caches);
4448 return s;
4449 }
4450
4451 void __init kmem_cache_init(void)
4452 {
4453 static __initdata struct kmem_cache boot_kmem_cache,
4454 boot_kmem_cache_node;
4455 int node;
4456
4457 if (debug_guardpage_minorder())
4458 slub_max_order = 0;
4459
4460 kmem_cache_node = &boot_kmem_cache_node;
4461 kmem_cache = &boot_kmem_cache;
4462
4463 /*
4464 * Initialize the nodemask for which we will allocate per node
4465 * structures. Here we don't need taking slab_mutex yet.
4466 */
4467 for_each_node_state(node, N_NORMAL_MEMORY)
4468 node_set(node, slab_nodes);
4469
4470 create_boot_cache(kmem_cache_node, "kmem_cache_node",
4471 sizeof(struct kmem_cache_node), SLAB_HWCACHE_ALIGN, 0, 0);
4472
4473 register_hotmemory_notifier(&slab_memory_callback_nb);
4474
4475 /* Able to allocate the per node structures */
4476 slab_state = PARTIAL;
4477
4478 create_boot_cache(kmem_cache, "kmem_cache",
4479 offsetof(struct kmem_cache, node) +
4480 nr_node_ids * sizeof(struct kmem_cache_node *),
4481 SLAB_HWCACHE_ALIGN, 0, 0);
4482
4483 kmem_cache = bootstrap(&boot_kmem_cache);
4484 kmem_cache_node = bootstrap(&boot_kmem_cache_node);
4485
4486 /* Now we can use the kmem_cache to allocate kmalloc slabs */
4487 setup_kmalloc_cache_index_table();
4488 create_kmalloc_caches(0);
4489
4490 /* Setup random freelists for each cache */
4491 init_freelist_randomization();
4492
4493 cpuhp_setup_state_nocalls(CPUHP_SLUB_DEAD, "slub:dead", NULL,
4494 slub_cpu_dead);
4495
4496 pr_info("SLUB: HWalign=%d, Order=%u-%u, MinObjects=%u, CPUs=%u, Nodes=%u\n",
4497 cache_line_size(),
4498 slub_min_order, slub_max_order, slub_min_objects,
4499 nr_cpu_ids, nr_node_ids);
4500 }
4501
4502 void __init kmem_cache_init_late(void)
4503 {
4504 }
4505
4506 struct kmem_cache *
4507 __kmem_cache_alias(const char *name, unsigned int size, unsigned int align,
4508 slab_flags_t flags, void (*ctor)(void *))
4509 {
4510 struct kmem_cache *s;
4511
4512 s = find_mergeable(size, align, flags, name, ctor);
4513 if (s) {
4514 s->refcount++;
4515
4516 /*
4517 * Adjust the object sizes so that we clear
4518 * the complete object on kzalloc.
4519 */
4520 s->object_size = max(s->object_size, size);
4521 s->inuse = max(s->inuse, ALIGN(size, sizeof(void *)));
4522
4523 if (sysfs_slab_alias(s, name)) {
4524 s->refcount--;
4525 s = NULL;
4526 }
4527 }
4528
4529 return s;
4530 }
4531
4532 int __kmem_cache_create(struct kmem_cache *s, slab_flags_t flags)
4533 {
4534 int err;
4535
4536 err = kmem_cache_open(s, flags);
4537 if (err)
4538 return err;
4539
4540 /* Mutex is not taken during early boot */
4541 if (slab_state <= UP)
4542 return 0;
4543
4544 err = sysfs_slab_add(s);
4545 if (err)
4546 __kmem_cache_release(s);
4547
4548 return err;
4549 }
4550
4551 void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
4552 {
4553 struct kmem_cache *s;
4554 void *ret;
4555
4556 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
4557 return kmalloc_large(size, gfpflags);
4558
4559 s = kmalloc_slab(size, gfpflags);
4560
4561 if (unlikely(ZERO_OR_NULL_PTR(s)))
4562 return s;
4563
4564 ret = slab_alloc(s, gfpflags, caller, size);
4565
4566 /* Honor the call site pointer we received. */
4567 trace_kmalloc(caller, ret, size, s->size, gfpflags);
4568
4569 return ret;
4570 }
4571 EXPORT_SYMBOL(__kmalloc_track_caller);
4572
4573 #ifdef CONFIG_NUMA
4574 void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
4575 int node, unsigned long caller)
4576 {
4577 struct kmem_cache *s;
4578 void *ret;
4579
4580 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
4581 ret = kmalloc_large_node(size, gfpflags, node);
4582
4583 trace_kmalloc_node(caller, ret,
4584 size, PAGE_SIZE << get_order(size),
4585 gfpflags, node);
4586
4587 return ret;
4588 }
4589
4590 s = kmalloc_slab(size, gfpflags);
4591
4592 if (unlikely(ZERO_OR_NULL_PTR(s)))
4593 return s;
4594
4595 ret = slab_alloc_node(s, gfpflags, node, caller, size);
4596
4597 /* Honor the call site pointer we received. */
4598 trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
4599
4600 return ret;
4601 }
4602 EXPORT_SYMBOL(__kmalloc_node_track_caller);
4603 #endif
4604
4605 #ifdef CONFIG_SYSFS
4606 static int count_inuse(struct page *page)
4607 {
4608 return page->inuse;
4609 }
4610
4611 static int count_total(struct page *page)
4612 {
4613 return page->objects;
4614 }
4615 #endif
4616
4617 #ifdef CONFIG_SLUB_DEBUG
4618 static void validate_slab(struct kmem_cache *s, struct page *page)
4619 {
4620 void *p;
4621 void *addr = page_address(page);
4622 unsigned long *map;
4623
4624 slab_lock(page);
4625
4626 if (!check_slab(s, page) || !on_freelist(s, page, NULL))
4627 goto unlock;
4628
4629 /* Now we know that a valid freelist exists */
4630 map = get_map(s, page);
4631 for_each_object(p, s, addr, page->objects) {
4632 u8 val = test_bit(__obj_to_index(s, addr, p), map) ?
4633 SLUB_RED_INACTIVE : SLUB_RED_ACTIVE;
4634
4635 if (!check_object(s, page, p, val))
4636 break;
4637 }
4638 put_map(map);
4639 unlock:
4640 slab_unlock(page);
4641 }
4642
4643 static int validate_slab_node(struct kmem_cache *s,
4644 struct kmem_cache_node *n)
4645 {
4646 unsigned long count = 0;
4647 struct page *page;
4648 unsigned long flags;
4649
4650 spin_lock_irqsave(&n->list_lock, flags);
4651
4652 list_for_each_entry(page, &n->partial, slab_list) {
4653 validate_slab(s, page);
4654 count++;
4655 }
4656 if (count != n->nr_partial)
4657 pr_err("SLUB %s: %ld partial slabs counted but counter=%ld\n",
4658 s->name, count, n->nr_partial);
4659
4660 if (!(s->flags & SLAB_STORE_USER))
4661 goto out;
4662
4663 list_for_each_entry(page, &n->full, slab_list) {
4664 validate_slab(s, page);
4665 count++;
4666 }
4667 if (count != atomic_long_read(&n->nr_slabs))
4668 pr_err("SLUB: %s %ld slabs counted but counter=%ld\n",
4669 s->name, count, atomic_long_read(&n->nr_slabs));
4670
4671 out:
4672 spin_unlock_irqrestore(&n->list_lock, flags);
4673 return count;
4674 }
4675
4676 static long validate_slab_cache(struct kmem_cache *s)
4677 {
4678 int node;
4679 unsigned long count = 0;
4680 struct kmem_cache_node *n;
4681
4682 flush_all(s);
4683 for_each_kmem_cache_node(s, node, n)
4684 count += validate_slab_node(s, n);
4685
4686 return count;
4687 }
4688 /*
4689 * Generate lists of code addresses where slabcache objects are allocated
4690 * and freed.
4691 */
4692
4693 struct location {
4694 unsigned long count;
4695 unsigned long addr;
4696 long long sum_time;
4697 long min_time;
4698 long max_time;
4699 long min_pid;
4700 long max_pid;
4701 DECLARE_BITMAP(cpus, NR_CPUS);
4702 nodemask_t nodes;
4703 };
4704
4705 struct loc_track {
4706 unsigned long max;
4707 unsigned long count;
4708 struct location *loc;
4709 };
4710
4711 static void free_loc_track(struct loc_track *t)
4712 {
4713 if (t->max)
4714 free_pages((unsigned long)t->loc,
4715 get_order(sizeof(struct location) * t->max));
4716 }
4717
4718 static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
4719 {
4720 struct location *l;
4721 int order;
4722
4723 order = get_order(sizeof(struct location) * max);
4724
4725 l = (void *)__get_free_pages(flags, order);
4726 if (!l)
4727 return 0;
4728
4729 if (t->count) {
4730 memcpy(l, t->loc, sizeof(struct location) * t->count);
4731 free_loc_track(t);
4732 }
4733 t->max = max;
4734 t->loc = l;
4735 return 1;
4736 }
4737
4738 static int add_location(struct loc_track *t, struct kmem_cache *s,
4739 const struct track *track)
4740 {
4741 long start, end, pos;
4742 struct location *l;
4743 unsigned long caddr;
4744 unsigned long age = jiffies - track->when;
4745
4746 start = -1;
4747 end = t->count;
4748
4749 for ( ; ; ) {
4750 pos = start + (end - start + 1) / 2;
4751
4752 /*
4753 * There is nothing at "end". If we end up there
4754 * we need to add something to before end.
4755 */
4756 if (pos == end)
4757 break;
4758
4759 caddr = t->loc[pos].addr;
4760 if (track->addr == caddr) {
4761
4762 l = &t->loc[pos];
4763 l->count++;
4764 if (track->when) {
4765 l->sum_time += age;
4766 if (age < l->min_time)
4767 l->min_time = age;
4768 if (age > l->max_time)
4769 l->max_time = age;
4770
4771 if (track->pid < l->min_pid)
4772 l->min_pid = track->pid;
4773 if (track->pid > l->max_pid)
4774 l->max_pid = track->pid;
4775
4776 cpumask_set_cpu(track->cpu,
4777 to_cpumask(l->cpus));
4778 }
4779 node_set(page_to_nid(virt_to_page(track)), l->nodes);
4780 return 1;
4781 }
4782
4783 if (track->addr < caddr)
4784 end = pos;
4785 else
4786 start = pos;
4787 }
4788
4789 /*
4790 * Not found. Insert new tracking element.
4791 */
4792 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
4793 return 0;
4794
4795 l = t->loc + pos;
4796 if (pos < t->count)
4797 memmove(l + 1, l,
4798 (t->count - pos) * sizeof(struct location));
4799 t->count++;
4800 l->count = 1;
4801 l->addr = track->addr;
4802 l->sum_time = age;
4803 l->min_time = age;
4804 l->max_time = age;
4805 l->min_pid = track->pid;
4806 l->max_pid = track->pid;
4807 cpumask_clear(to_cpumask(l->cpus));
4808 cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
4809 nodes_clear(l->nodes);
4810 node_set(page_to_nid(virt_to_page(track)), l->nodes);
4811 return 1;
4812 }
4813
4814 static void process_slab(struct loc_track *t, struct kmem_cache *s,
4815 struct page *page, enum track_item alloc)
4816 {
4817 void *addr = page_address(page);
4818 void *p;
4819 unsigned long *map;
4820
4821 map = get_map(s, page);
4822 for_each_object(p, s, addr, page->objects)
4823 if (!test_bit(__obj_to_index(s, addr, p), map))
4824 add_location(t, s, get_track(s, p, alloc));
4825 put_map(map);
4826 }
4827
4828 static int list_locations(struct kmem_cache *s, char *buf,
4829 enum track_item alloc)
4830 {
4831 int len = 0;
4832 unsigned long i;
4833 struct loc_track t = { 0, 0, NULL };
4834 int node;
4835 struct kmem_cache_node *n;
4836
4837 if (!alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
4838 GFP_KERNEL)) {
4839 return sysfs_emit(buf, "Out of memory\n");
4840 }
4841 /* Push back cpu slabs */
4842 flush_all(s);
4843
4844 for_each_kmem_cache_node(s, node, n) {
4845 unsigned long flags;
4846 struct page *page;
4847
4848 if (!atomic_long_read(&n->nr_slabs))
4849 continue;
4850
4851 spin_lock_irqsave(&n->list_lock, flags);
4852 list_for_each_entry(page, &n->partial, slab_list)
4853 process_slab(&t, s, page, alloc);
4854 list_for_each_entry(page, &n->full, slab_list)
4855 process_slab(&t, s, page, alloc);
4856 spin_unlock_irqrestore(&n->list_lock, flags);
4857 }
4858
4859 for (i = 0; i < t.count; i++) {
4860 struct location *l = &t.loc[i];
4861
4862 len += sysfs_emit_at(buf, len, "%7ld ", l->count);
4863
4864 if (l->addr)
4865 len += sysfs_emit_at(buf, len, "%pS", (void *)l->addr);
4866 else
4867 len += sysfs_emit_at(buf, len, "<not-available>");
4868
4869 if (l->sum_time != l->min_time)
4870 len += sysfs_emit_at(buf, len, " age=%ld/%ld/%ld",
4871 l->min_time,
4872 (long)div_u64(l->sum_time,
4873 l->count),
4874 l->max_time);
4875 else
4876 len += sysfs_emit_at(buf, len, " age=%ld", l->min_time);
4877
4878 if (l->min_pid != l->max_pid)
4879 len += sysfs_emit_at(buf, len, " pid=%ld-%ld",
4880 l->min_pid, l->max_pid);
4881 else
4882 len += sysfs_emit_at(buf, len, " pid=%ld",
4883 l->min_pid);
4884
4885 if (num_online_cpus() > 1 &&
4886 !cpumask_empty(to_cpumask(l->cpus)))
4887 len += sysfs_emit_at(buf, len, " cpus=%*pbl",
4888 cpumask_pr_args(to_cpumask(l->cpus)));
4889
4890 if (nr_online_nodes > 1 && !nodes_empty(l->nodes))
4891 len += sysfs_emit_at(buf, len, " nodes=%*pbl",
4892 nodemask_pr_args(&l->nodes));
4893
4894 len += sysfs_emit_at(buf, len, "\n");
4895 }
4896
4897 free_loc_track(&t);
4898 if (!t.count)
4899 len += sysfs_emit_at(buf, len, "No data\n");
4900
4901 return len;
4902 }
4903 #endif /* CONFIG_SLUB_DEBUG */
4904
4905 #ifdef SLUB_RESILIENCY_TEST
4906 static void __init resiliency_test(void)
4907 {
4908 u8 *p;
4909 int type = KMALLOC_NORMAL;
4910
4911 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || KMALLOC_SHIFT_HIGH < 10);
4912
4913 pr_err("SLUB resiliency testing\n");
4914 pr_err("-----------------------\n");
4915 pr_err("A. Corruption after allocation\n");
4916
4917 p = kzalloc(16, GFP_KERNEL);
4918 p[16] = 0x12;
4919 pr_err("\n1. kmalloc-16: Clobber Redzone/next pointer 0x12->0x%p\n\n",
4920 p + 16);
4921
4922 validate_slab_cache(kmalloc_caches[type][4]);
4923
4924 /* Hmmm... The next two are dangerous */
4925 p = kzalloc(32, GFP_KERNEL);
4926 p[32 + sizeof(void *)] = 0x34;
4927 pr_err("\n2. kmalloc-32: Clobber next pointer/next slab 0x34 -> -0x%p\n",
4928 p);
4929 pr_err("If allocated object is overwritten then not detectable\n\n");
4930
4931 validate_slab_cache(kmalloc_caches[type][5]);
4932 p = kzalloc(64, GFP_KERNEL);
4933 p += 64 + (get_cycles() & 0xff) * sizeof(void *);
4934 *p = 0x56;
4935 pr_err("\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
4936 p);
4937 pr_err("If allocated object is overwritten then not detectable\n\n");
4938 validate_slab_cache(kmalloc_caches[type][6]);
4939
4940 pr_err("\nB. Corruption after free\n");
4941 p = kzalloc(128, GFP_KERNEL);
4942 kfree(p);
4943 *p = 0x78;
4944 pr_err("1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
4945 validate_slab_cache(kmalloc_caches[type][7]);
4946
4947 p = kzalloc(256, GFP_KERNEL);
4948 kfree(p);
4949 p[50] = 0x9a;
4950 pr_err("\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n", p);
4951 validate_slab_cache(kmalloc_caches[type][8]);
4952
4953 p = kzalloc(512, GFP_KERNEL);
4954 kfree(p);
4955 p[512] = 0xab;
4956 pr_err("\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
4957 validate_slab_cache(kmalloc_caches[type][9]);
4958 }
4959 #else
4960 #ifdef CONFIG_SYSFS
4961 static void resiliency_test(void) {};
4962 #endif
4963 #endif /* SLUB_RESILIENCY_TEST */
4964
4965 #ifdef CONFIG_SYSFS
4966 enum slab_stat_type {
4967 SL_ALL, /* All slabs */
4968 SL_PARTIAL, /* Only partially allocated slabs */
4969 SL_CPU, /* Only slabs used for cpu caches */
4970 SL_OBJECTS, /* Determine allocated objects not slabs */
4971 SL_TOTAL /* Determine object capacity not slabs */
4972 };
4973
4974 #define SO_ALL (1 << SL_ALL)
4975 #define SO_PARTIAL (1 << SL_PARTIAL)
4976 #define SO_CPU (1 << SL_CPU)
4977 #define SO_OBJECTS (1 << SL_OBJECTS)
4978 #define SO_TOTAL (1 << SL_TOTAL)
4979
4980 static ssize_t show_slab_objects(struct kmem_cache *s,
4981 char *buf, unsigned long flags)
4982 {
4983 unsigned long total = 0;
4984 int node;
4985 int x;
4986 unsigned long *nodes;
4987 int len = 0;
4988
4989 nodes = kcalloc(nr_node_ids, sizeof(unsigned long), GFP_KERNEL);
4990 if (!nodes)
4991 return -ENOMEM;
4992
4993 if (flags & SO_CPU) {
4994 int cpu;
4995
4996 for_each_possible_cpu(cpu) {
4997 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab,
4998 cpu);
4999 int node;
5000 struct page *page;
5001
5002 page = READ_ONCE(c->page);
5003 if (!page)
5004 continue;
5005
5006 node = page_to_nid(page);
5007 if (flags & SO_TOTAL)
5008 x = page->objects;
5009 else if (flags & SO_OBJECTS)
5010 x = page->inuse;
5011 else
5012 x = 1;
5013
5014 total += x;
5015 nodes[node] += x;
5016
5017 page = slub_percpu_partial_read_once(c);
5018 if (page) {
5019 node = page_to_nid(page);
5020 if (flags & SO_TOTAL)
5021 WARN_ON_ONCE(1);
5022 else if (flags & SO_OBJECTS)
5023 WARN_ON_ONCE(1);
5024 else
5025 x = page->pages;
5026 total += x;
5027 nodes[node] += x;
5028 }
5029 }
5030 }
5031
5032 /*
5033 * It is impossible to take "mem_hotplug_lock" here with "kernfs_mutex"
5034 * already held which will conflict with an existing lock order:
5035 *
5036 * mem_hotplug_lock->slab_mutex->kernfs_mutex
5037 *
5038 * We don't really need mem_hotplug_lock (to hold off
5039 * slab_mem_going_offline_callback) here because slab's memory hot
5040 * unplug code doesn't destroy the kmem_cache->node[] data.
5041 */
5042
5043 #ifdef CONFIG_SLUB_DEBUG
5044 if (flags & SO_ALL) {
5045 struct kmem_cache_node *n;
5046
5047 for_each_kmem_cache_node(s, node, n) {
5048
5049 if (flags & SO_TOTAL)
5050 x = atomic_long_read(&n->total_objects);
5051 else if (flags & SO_OBJECTS)
5052 x = atomic_long_read(&n->total_objects) -
5053 count_partial(n, count_free);
5054 else
5055 x = atomic_long_read(&n->nr_slabs);
5056 total += x;
5057 nodes[node] += x;
5058 }
5059
5060 } else
5061 #endif
5062 if (flags & SO_PARTIAL) {
5063 struct kmem_cache_node *n;
5064
5065 for_each_kmem_cache_node(s, node, n) {
5066 if (flags & SO_TOTAL)
5067 x = count_partial(n, count_total);
5068 else if (flags & SO_OBJECTS)
5069 x = count_partial(n, count_inuse);
5070 else
5071 x = n->nr_partial;
5072 total += x;
5073 nodes[node] += x;
5074 }
5075 }
5076
5077 len += sysfs_emit_at(buf, len, "%lu", total);
5078 #ifdef CONFIG_NUMA
5079 for (node = 0; node < nr_node_ids; node++) {
5080 if (nodes[node])
5081 len += sysfs_emit_at(buf, len, " N%d=%lu",
5082 node, nodes[node]);
5083 }
5084 #endif
5085 len += sysfs_emit_at(buf, len, "\n");
5086 kfree(nodes);
5087
5088 return len;
5089 }
5090
5091 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
5092 #define to_slab(n) container_of(n, struct kmem_cache, kobj)
5093
5094 struct slab_attribute {
5095 struct attribute attr;
5096 ssize_t (*show)(struct kmem_cache *s, char *buf);
5097 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
5098 };
5099
5100 #define SLAB_ATTR_RO(_name) \
5101 static struct slab_attribute _name##_attr = \
5102 __ATTR(_name, 0400, _name##_show, NULL)
5103
5104 #define SLAB_ATTR(_name) \
5105 static struct slab_attribute _name##_attr = \
5106 __ATTR(_name, 0600, _name##_show, _name##_store)
5107
5108 static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
5109 {
5110 return sysfs_emit(buf, "%u\n", s->size);
5111 }
5112 SLAB_ATTR_RO(slab_size);
5113
5114 static ssize_t align_show(struct kmem_cache *s, char *buf)
5115 {
5116 return sysfs_emit(buf, "%u\n", s->align);
5117 }
5118 SLAB_ATTR_RO(align);
5119
5120 static ssize_t object_size_show(struct kmem_cache *s, char *buf)
5121 {
5122 return sysfs_emit(buf, "%u\n", s->object_size);
5123 }
5124 SLAB_ATTR_RO(object_size);
5125
5126 static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
5127 {
5128 return sysfs_emit(buf, "%u\n", oo_objects(s->oo));
5129 }
5130 SLAB_ATTR_RO(objs_per_slab);
5131
5132 static ssize_t order_show(struct kmem_cache *s, char *buf)
5133 {
5134 return sysfs_emit(buf, "%u\n", oo_order(s->oo));
5135 }
5136 SLAB_ATTR_RO(order);
5137
5138 static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
5139 {
5140 return sysfs_emit(buf, "%lu\n", s->min_partial);
5141 }
5142
5143 static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
5144 size_t length)
5145 {
5146 unsigned long min;
5147 int err;
5148
5149 err = kstrtoul(buf, 10, &min);
5150 if (err)
5151 return err;
5152
5153 set_min_partial(s, min);
5154 return length;
5155 }
5156 SLAB_ATTR(min_partial);
5157
5158 static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf)
5159 {
5160 return sysfs_emit(buf, "%u\n", slub_cpu_partial(s));
5161 }
5162
5163 static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf,
5164 size_t length)
5165 {
5166 unsigned int objects;
5167 int err;
5168
5169 err = kstrtouint(buf, 10, &objects);
5170 if (err)
5171 return err;
5172 if (objects && !kmem_cache_has_cpu_partial(s))
5173 return -EINVAL;
5174
5175 slub_set_cpu_partial(s, objects);
5176 flush_all(s);
5177 return length;
5178 }
5179 SLAB_ATTR(cpu_partial);
5180
5181 static ssize_t ctor_show(struct kmem_cache *s, char *buf)
5182 {
5183 if (!s->ctor)
5184 return 0;
5185 return sysfs_emit(buf, "%pS\n", s->ctor);
5186 }
5187 SLAB_ATTR_RO(ctor);
5188
5189 static ssize_t aliases_show(struct kmem_cache *s, char *buf)
5190 {
5191 return sysfs_emit(buf, "%d\n", s->refcount < 0 ? 0 : s->refcount - 1);
5192 }
5193 SLAB_ATTR_RO(aliases);
5194
5195 static ssize_t partial_show(struct kmem_cache *s, char *buf)
5196 {
5197 return show_slab_objects(s, buf, SO_PARTIAL);
5198 }
5199 SLAB_ATTR_RO(partial);
5200
5201 static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
5202 {
5203 return show_slab_objects(s, buf, SO_CPU);
5204 }
5205 SLAB_ATTR_RO(cpu_slabs);
5206
5207 static ssize_t objects_show(struct kmem_cache *s, char *buf)
5208 {
5209 return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
5210 }
5211 SLAB_ATTR_RO(objects);
5212
5213 static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
5214 {
5215 return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
5216 }
5217 SLAB_ATTR_RO(objects_partial);
5218
5219 static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf)
5220 {
5221 int objects = 0;
5222 int pages = 0;
5223 int cpu;
5224 int len = 0;
5225
5226 for_each_online_cpu(cpu) {
5227 struct page *page;
5228
5229 page = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu));
5230
5231 if (page) {
5232 pages += page->pages;
5233 objects += page->pobjects;
5234 }
5235 }
5236
5237 len += sysfs_emit_at(buf, len, "%d(%d)", objects, pages);
5238
5239 #ifdef CONFIG_SMP
5240 for_each_online_cpu(cpu) {
5241 struct page *page;
5242
5243 page = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu));
5244 if (page)
5245 len += sysfs_emit_at(buf, len, " C%d=%d(%d)",
5246 cpu, page->pobjects, page->pages);
5247 }
5248 #endif
5249 len += sysfs_emit_at(buf, len, "\n");
5250
5251 return len;
5252 }
5253 SLAB_ATTR_RO(slabs_cpu_partial);
5254
5255 static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
5256 {
5257 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
5258 }
5259 SLAB_ATTR_RO(reclaim_account);
5260
5261 static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
5262 {
5263 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
5264 }
5265 SLAB_ATTR_RO(hwcache_align);
5266
5267 #ifdef CONFIG_ZONE_DMA
5268 static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
5269 {
5270 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
5271 }
5272 SLAB_ATTR_RO(cache_dma);
5273 #endif
5274
5275 static ssize_t usersize_show(struct kmem_cache *s, char *buf)
5276 {
5277 return sysfs_emit(buf, "%u\n", s->usersize);
5278 }
5279 SLAB_ATTR_RO(usersize);
5280
5281 static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
5282 {
5283 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_TYPESAFE_BY_RCU));
5284 }
5285 SLAB_ATTR_RO(destroy_by_rcu);
5286
5287 #ifdef CONFIG_SLUB_DEBUG
5288 static ssize_t slabs_show(struct kmem_cache *s, char *buf)
5289 {
5290 return show_slab_objects(s, buf, SO_ALL);
5291 }
5292 SLAB_ATTR_RO(slabs);
5293
5294 static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
5295 {
5296 return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
5297 }
5298 SLAB_ATTR_RO(total_objects);
5299
5300 static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
5301 {
5302 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_CONSISTENCY_CHECKS));
5303 }
5304 SLAB_ATTR_RO(sanity_checks);
5305
5306 static ssize_t trace_show(struct kmem_cache *s, char *buf)
5307 {
5308 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_TRACE));
5309 }
5310 SLAB_ATTR_RO(trace);
5311
5312 static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
5313 {
5314 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
5315 }
5316
5317 SLAB_ATTR_RO(red_zone);
5318
5319 static ssize_t poison_show(struct kmem_cache *s, char *buf)
5320 {
5321 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_POISON));
5322 }
5323
5324 SLAB_ATTR_RO(poison);
5325
5326 static ssize_t store_user_show(struct kmem_cache *s, char *buf)
5327 {
5328 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
5329 }
5330
5331 SLAB_ATTR_RO(store_user);
5332
5333 static ssize_t validate_show(struct kmem_cache *s, char *buf)
5334 {
5335 return 0;
5336 }
5337
5338 static ssize_t validate_store(struct kmem_cache *s,
5339 const char *buf, size_t length)
5340 {
5341 int ret = -EINVAL;
5342
5343 if (buf[0] == '1') {
5344 ret = validate_slab_cache(s);
5345 if (ret >= 0)
5346 ret = length;
5347 }
5348 return ret;
5349 }
5350 SLAB_ATTR(validate);
5351
5352 static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
5353 {
5354 if (!(s->flags & SLAB_STORE_USER))
5355 return -ENOSYS;
5356 return list_locations(s, buf, TRACK_ALLOC);
5357 }
5358 SLAB_ATTR_RO(alloc_calls);
5359
5360 static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
5361 {
5362 if (!(s->flags & SLAB_STORE_USER))
5363 return -ENOSYS;
5364 return list_locations(s, buf, TRACK_FREE);
5365 }
5366 SLAB_ATTR_RO(free_calls);
5367 #endif /* CONFIG_SLUB_DEBUG */
5368
5369 #ifdef CONFIG_FAILSLAB
5370 static ssize_t failslab_show(struct kmem_cache *s, char *buf)
5371 {
5372 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
5373 }
5374 SLAB_ATTR_RO(failslab);
5375 #endif
5376
5377 static ssize_t shrink_show(struct kmem_cache *s, char *buf)
5378 {
5379 return 0;
5380 }
5381
5382 static ssize_t shrink_store(struct kmem_cache *s,
5383 const char *buf, size_t length)
5384 {
5385 if (buf[0] == '1')
5386 kmem_cache_shrink(s);
5387 else
5388 return -EINVAL;
5389 return length;
5390 }
5391 SLAB_ATTR(shrink);
5392
5393 #ifdef CONFIG_NUMA
5394 static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
5395 {
5396 return sysfs_emit(buf, "%u\n", s->remote_node_defrag_ratio / 10);
5397 }
5398
5399 static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
5400 const char *buf, size_t length)
5401 {
5402 unsigned int ratio;
5403 int err;
5404
5405 err = kstrtouint(buf, 10, &ratio);
5406 if (err)
5407 return err;
5408 if (ratio > 100)
5409 return -ERANGE;
5410
5411 s->remote_node_defrag_ratio = ratio * 10;
5412
5413 return length;
5414 }
5415 SLAB_ATTR(remote_node_defrag_ratio);
5416 #endif
5417
5418 #ifdef CONFIG_SLUB_STATS
5419 static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
5420 {
5421 unsigned long sum = 0;
5422 int cpu;
5423 int len = 0;
5424 int *data = kmalloc_array(nr_cpu_ids, sizeof(int), GFP_KERNEL);
5425
5426 if (!data)
5427 return -ENOMEM;
5428
5429 for_each_online_cpu(cpu) {
5430 unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
5431
5432 data[cpu] = x;
5433 sum += x;
5434 }
5435
5436 len += sysfs_emit_at(buf, len, "%lu", sum);
5437
5438 #ifdef CONFIG_SMP
5439 for_each_online_cpu(cpu) {
5440 if (data[cpu])
5441 len += sysfs_emit_at(buf, len, " C%d=%u",
5442 cpu, data[cpu]);
5443 }
5444 #endif
5445 kfree(data);
5446 len += sysfs_emit_at(buf, len, "\n");
5447
5448 return len;
5449 }
5450
5451 static void clear_stat(struct kmem_cache *s, enum stat_item si)
5452 {
5453 int cpu;
5454
5455 for_each_online_cpu(cpu)
5456 per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
5457 }
5458
5459 #define STAT_ATTR(si, text) \
5460 static ssize_t text##_show(struct kmem_cache *s, char *buf) \
5461 { \
5462 return show_stat(s, buf, si); \
5463 } \
5464 static ssize_t text##_store(struct kmem_cache *s, \
5465 const char *buf, size_t length) \
5466 { \
5467 if (buf[0] != '0') \
5468 return -EINVAL; \
5469 clear_stat(s, si); \
5470 return length; \
5471 } \
5472 SLAB_ATTR(text); \
5473
5474 STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
5475 STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
5476 STAT_ATTR(FREE_FASTPATH, free_fastpath);
5477 STAT_ATTR(FREE_SLOWPATH, free_slowpath);
5478 STAT_ATTR(FREE_FROZEN, free_frozen);
5479 STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
5480 STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
5481 STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
5482 STAT_ATTR(ALLOC_SLAB, alloc_slab);
5483 STAT_ATTR(ALLOC_REFILL, alloc_refill);
5484 STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch);
5485 STAT_ATTR(FREE_SLAB, free_slab);
5486 STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
5487 STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
5488 STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
5489 STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
5490 STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
5491 STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
5492 STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass);
5493 STAT_ATTR(ORDER_FALLBACK, order_fallback);
5494 STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
5495 STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
5496 STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc);
5497 STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free);
5498 STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node);
5499 STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain);
5500 #endif /* CONFIG_SLUB_STATS */
5501
5502 static struct attribute *slab_attrs[] = {
5503 &slab_size_attr.attr,
5504 &object_size_attr.attr,
5505 &objs_per_slab_attr.attr,
5506 &order_attr.attr,
5507 &min_partial_attr.attr,
5508 &cpu_partial_attr.attr,
5509 &objects_attr.attr,
5510 &objects_partial_attr.attr,
5511 &partial_attr.attr,
5512 &cpu_slabs_attr.attr,
5513 &ctor_attr.attr,
5514 &aliases_attr.attr,
5515 &align_attr.attr,
5516 &hwcache_align_attr.attr,
5517 &reclaim_account_attr.attr,
5518 &destroy_by_rcu_attr.attr,
5519 &shrink_attr.attr,
5520 &slabs_cpu_partial_attr.attr,
5521 #ifdef CONFIG_SLUB_DEBUG
5522 &total_objects_attr.attr,
5523 &slabs_attr.attr,
5524 &sanity_checks_attr.attr,
5525 &trace_attr.attr,
5526 &red_zone_attr.attr,
5527 &poison_attr.attr,
5528 &store_user_attr.attr,
5529 &validate_attr.attr,
5530 &alloc_calls_attr.attr,
5531 &free_calls_attr.attr,
5532 #endif
5533 #ifdef CONFIG_ZONE_DMA
5534 &cache_dma_attr.attr,
5535 #endif
5536 #ifdef CONFIG_NUMA
5537 &remote_node_defrag_ratio_attr.attr,
5538 #endif
5539 #ifdef CONFIG_SLUB_STATS
5540 &alloc_fastpath_attr.attr,
5541 &alloc_slowpath_attr.attr,
5542 &free_fastpath_attr.attr,
5543 &free_slowpath_attr.attr,
5544 &free_frozen_attr.attr,
5545 &free_add_partial_attr.attr,
5546 &free_remove_partial_attr.attr,
5547 &alloc_from_partial_attr.attr,
5548 &alloc_slab_attr.attr,
5549 &alloc_refill_attr.attr,
5550 &alloc_node_mismatch_attr.attr,
5551 &free_slab_attr.attr,
5552 &cpuslab_flush_attr.attr,
5553 &deactivate_full_attr.attr,
5554 &deactivate_empty_attr.attr,
5555 &deactivate_to_head_attr.attr,
5556 &deactivate_to_tail_attr.attr,
5557 &deactivate_remote_frees_attr.attr,
5558 &deactivate_bypass_attr.attr,
5559 &order_fallback_attr.attr,
5560 &cmpxchg_double_fail_attr.attr,
5561 &cmpxchg_double_cpu_fail_attr.attr,
5562 &cpu_partial_alloc_attr.attr,
5563 &cpu_partial_free_attr.attr,
5564 &cpu_partial_node_attr.attr,
5565 &cpu_partial_drain_attr.attr,
5566 #endif
5567 #ifdef CONFIG_FAILSLAB
5568 &failslab_attr.attr,
5569 #endif
5570 &usersize_attr.attr,
5571
5572 NULL
5573 };
5574
5575 static const struct attribute_group slab_attr_group = {
5576 .attrs = slab_attrs,
5577 };
5578
5579 static ssize_t slab_attr_show(struct kobject *kobj,
5580 struct attribute *attr,
5581 char *buf)
5582 {
5583 struct slab_attribute *attribute;
5584 struct kmem_cache *s;
5585 int err;
5586
5587 attribute = to_slab_attr(attr);
5588 s = to_slab(kobj);
5589
5590 if (!attribute->show)
5591 return -EIO;
5592
5593 err = attribute->show(s, buf);
5594
5595 return err;
5596 }
5597
5598 static ssize_t slab_attr_store(struct kobject *kobj,
5599 struct attribute *attr,
5600 const char *buf, size_t len)
5601 {
5602 struct slab_attribute *attribute;
5603 struct kmem_cache *s;
5604 int err;
5605
5606 attribute = to_slab_attr(attr);
5607 s = to_slab(kobj);
5608
5609 if (!attribute->store)
5610 return -EIO;
5611
5612 err = attribute->store(s, buf, len);
5613 return err;
5614 }
5615
5616 static void kmem_cache_release(struct kobject *k)
5617 {
5618 slab_kmem_cache_release(to_slab(k));
5619 }
5620
5621 static const struct sysfs_ops slab_sysfs_ops = {
5622 .show = slab_attr_show,
5623 .store = slab_attr_store,
5624 };
5625
5626 static struct kobj_type slab_ktype = {
5627 .sysfs_ops = &slab_sysfs_ops,
5628 .release = kmem_cache_release,
5629 };
5630
5631 static struct kset *slab_kset;
5632
5633 static inline struct kset *cache_kset(struct kmem_cache *s)
5634 {
5635 return slab_kset;
5636 }
5637
5638 #define ID_STR_LENGTH 64
5639
5640 /* Create a unique string id for a slab cache:
5641 *
5642 * Format :[flags-]size
5643 */
5644 static char *create_unique_id(struct kmem_cache *s)
5645 {
5646 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
5647 char *p = name;
5648
5649 BUG_ON(!name);
5650
5651 *p++ = ':';
5652 /*
5653 * First flags affecting slabcache operations. We will only
5654 * get here for aliasable slabs so we do not need to support
5655 * too many flags. The flags here must cover all flags that
5656 * are matched during merging to guarantee that the id is
5657 * unique.
5658 */
5659 if (s->flags & SLAB_CACHE_DMA)
5660 *p++ = 'd';
5661 if (s->flags & SLAB_CACHE_DMA32)
5662 *p++ = 'D';
5663 if (s->flags & SLAB_RECLAIM_ACCOUNT)
5664 *p++ = 'a';
5665 if (s->flags & SLAB_CONSISTENCY_CHECKS)
5666 *p++ = 'F';
5667 if (s->flags & SLAB_ACCOUNT)
5668 *p++ = 'A';
5669 if (p != name + 1)
5670 *p++ = '-';
5671 p += sprintf(p, "%07u", s->size);
5672
5673 BUG_ON(p > name + ID_STR_LENGTH - 1);
5674 return name;
5675 }
5676
5677 static int sysfs_slab_add(struct kmem_cache *s)
5678 {
5679 int err;
5680 const char *name;
5681 struct kset *kset = cache_kset(s);
5682 int unmergeable = slab_unmergeable(s);
5683
5684 if (!kset) {
5685 kobject_init(&s->kobj, &slab_ktype);
5686 return 0;
5687 }
5688
5689 if (!unmergeable && disable_higher_order_debug &&
5690 (slub_debug & DEBUG_METADATA_FLAGS))
5691 unmergeable = 1;
5692
5693 if (unmergeable) {
5694 /*
5695 * Slabcache can never be merged so we can use the name proper.
5696 * This is typically the case for debug situations. In that
5697 * case we can catch duplicate names easily.
5698 */
5699 sysfs_remove_link(&slab_kset->kobj, s->name);
5700 name = s->name;
5701 } else {
5702 /*
5703 * Create a unique name for the slab as a target
5704 * for the symlinks.
5705 */
5706 name = create_unique_id(s);
5707 }
5708
5709 s->kobj.kset = kset;
5710 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, "%s", name);
5711 if (err)
5712 goto out;
5713
5714 err = sysfs_create_group(&s->kobj, &slab_attr_group);
5715 if (err)
5716 goto out_del_kobj;
5717
5718 if (!unmergeable) {
5719 /* Setup first alias */
5720 sysfs_slab_alias(s, s->name);
5721 }
5722 out:
5723 if (!unmergeable)
5724 kfree(name);
5725 return err;
5726 out_del_kobj:
5727 kobject_del(&s->kobj);
5728 goto out;
5729 }
5730
5731 void sysfs_slab_unlink(struct kmem_cache *s)
5732 {
5733 if (slab_state >= FULL)
5734 kobject_del(&s->kobj);
5735 }
5736
5737 void sysfs_slab_release(struct kmem_cache *s)
5738 {
5739 if (slab_state >= FULL)
5740 kobject_put(&s->kobj);
5741 }
5742
5743 /*
5744 * Need to buffer aliases during bootup until sysfs becomes
5745 * available lest we lose that information.
5746 */
5747 struct saved_alias {
5748 struct kmem_cache *s;
5749 const char *name;
5750 struct saved_alias *next;
5751 };
5752
5753 static struct saved_alias *alias_list;
5754
5755 static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
5756 {
5757 struct saved_alias *al;
5758
5759 if (slab_state == FULL) {
5760 /*
5761 * If we have a leftover link then remove it.
5762 */
5763 sysfs_remove_link(&slab_kset->kobj, name);
5764 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
5765 }
5766
5767 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
5768 if (!al)
5769 return -ENOMEM;
5770
5771 al->s = s;
5772 al->name = name;
5773 al->next = alias_list;
5774 alias_list = al;
5775 return 0;
5776 }
5777
5778 static int __init slab_sysfs_init(void)
5779 {
5780 struct kmem_cache *s;
5781 int err;
5782
5783 mutex_lock(&slab_mutex);
5784
5785 slab_kset = kset_create_and_add("slab", NULL, kernel_kobj);
5786 if (!slab_kset) {
5787 mutex_unlock(&slab_mutex);
5788 pr_err("Cannot register slab subsystem.\n");
5789 return -ENOSYS;
5790 }
5791
5792 slab_state = FULL;
5793
5794 list_for_each_entry(s, &slab_caches, list) {
5795 err = sysfs_slab_add(s);
5796 if (err)
5797 pr_err("SLUB: Unable to add boot slab %s to sysfs\n",
5798 s->name);
5799 }
5800
5801 while (alias_list) {
5802 struct saved_alias *al = alias_list;
5803
5804 alias_list = alias_list->next;
5805 err = sysfs_slab_alias(al->s, al->name);
5806 if (err)
5807 pr_err("SLUB: Unable to add boot slab alias %s to sysfs\n",
5808 al->name);
5809 kfree(al);
5810 }
5811
5812 mutex_unlock(&slab_mutex);
5813 resiliency_test();
5814 return 0;
5815 }
5816
5817 __initcall(slab_sysfs_init);
5818 #endif /* CONFIG_SYSFS */
5819
5820 /*
5821 * The /proc/slabinfo ABI
5822 */
5823 #ifdef CONFIG_SLUB_DEBUG
5824 void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo)
5825 {
5826 unsigned long nr_slabs = 0;
5827 unsigned long nr_objs = 0;
5828 unsigned long nr_free = 0;
5829 int node;
5830 struct kmem_cache_node *n;
5831
5832 for_each_kmem_cache_node(s, node, n) {
5833 nr_slabs += node_nr_slabs(n);
5834 nr_objs += node_nr_objs(n);
5835 nr_free += count_partial(n, count_free);
5836 }
5837
5838 sinfo->active_objs = nr_objs - nr_free;
5839 sinfo->num_objs = nr_objs;
5840 sinfo->active_slabs = nr_slabs;
5841 sinfo->num_slabs = nr_slabs;
5842 sinfo->objects_per_slab = oo_objects(s->oo);
5843 sinfo->cache_order = oo_order(s->oo);
5844 }
5845
5846 void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s)
5847 {
5848 }
5849
5850 ssize_t slabinfo_write(struct file *file, const char __user *buffer,
5851 size_t count, loff_t *ppos)
5852 {
5853 return -EIO;
5854 }
5855 #endif /* CONFIG_SLUB_DEBUG */