]> git.proxmox.com Git - mirror_ubuntu-focal-kernel.git/blob - mm/sparse.c
mm: fix race between MADV_FREE reclaim and blkdev direct IO read
[mirror_ubuntu-focal-kernel.git] / mm / sparse.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * sparse memory mappings.
4 */
5 #include <linux/mm.h>
6 #include <linux/slab.h>
7 #include <linux/mmzone.h>
8 #include <linux/memblock.h>
9 #include <linux/compiler.h>
10 #include <linux/highmem.h>
11 #include <linux/export.h>
12 #include <linux/spinlock.h>
13 #include <linux/vmalloc.h>
14 #include <linux/swap.h>
15 #include <linux/swapops.h>
16
17 #include "internal.h"
18 #include <asm/dma.h>
19 #include <asm/pgalloc.h>
20 #include <asm/pgtable.h>
21
22 /*
23 * Permanent SPARSEMEM data:
24 *
25 * 1) mem_section - memory sections, mem_map's for valid memory
26 */
27 #ifdef CONFIG_SPARSEMEM_EXTREME
28 struct mem_section **mem_section;
29 #else
30 struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT]
31 ____cacheline_internodealigned_in_smp;
32 #endif
33 EXPORT_SYMBOL(mem_section);
34
35 #ifdef NODE_NOT_IN_PAGE_FLAGS
36 /*
37 * If we did not store the node number in the page then we have to
38 * do a lookup in the section_to_node_table in order to find which
39 * node the page belongs to.
40 */
41 #if MAX_NUMNODES <= 256
42 static u8 section_to_node_table[NR_MEM_SECTIONS] __cacheline_aligned;
43 #else
44 static u16 section_to_node_table[NR_MEM_SECTIONS] __cacheline_aligned;
45 #endif
46
47 int page_to_nid(const struct page *page)
48 {
49 return section_to_node_table[page_to_section(page)];
50 }
51 EXPORT_SYMBOL(page_to_nid);
52
53 static void set_section_nid(unsigned long section_nr, int nid)
54 {
55 section_to_node_table[section_nr] = nid;
56 }
57 #else /* !NODE_NOT_IN_PAGE_FLAGS */
58 static inline void set_section_nid(unsigned long section_nr, int nid)
59 {
60 }
61 #endif
62
63 #ifdef CONFIG_SPARSEMEM_EXTREME
64 static noinline struct mem_section __ref *sparse_index_alloc(int nid)
65 {
66 struct mem_section *section = NULL;
67 unsigned long array_size = SECTIONS_PER_ROOT *
68 sizeof(struct mem_section);
69
70 if (slab_is_available()) {
71 section = kzalloc_node(array_size, GFP_KERNEL, nid);
72 } else {
73 section = memblock_alloc_node(array_size, SMP_CACHE_BYTES,
74 nid);
75 if (!section)
76 panic("%s: Failed to allocate %lu bytes nid=%d\n",
77 __func__, array_size, nid);
78 }
79
80 return section;
81 }
82
83 static int __meminit sparse_index_init(unsigned long section_nr, int nid)
84 {
85 unsigned long root = SECTION_NR_TO_ROOT(section_nr);
86 struct mem_section *section;
87
88 /*
89 * An existing section is possible in the sub-section hotplug
90 * case. First hot-add instantiates, follow-on hot-add reuses
91 * the existing section.
92 *
93 * The mem_hotplug_lock resolves the apparent race below.
94 */
95 if (mem_section[root])
96 return 0;
97
98 section = sparse_index_alloc(nid);
99 if (!section)
100 return -ENOMEM;
101
102 mem_section[root] = section;
103
104 return 0;
105 }
106 #else /* !SPARSEMEM_EXTREME */
107 static inline int sparse_index_init(unsigned long section_nr, int nid)
108 {
109 return 0;
110 }
111 #endif
112
113 #ifdef CONFIG_SPARSEMEM_EXTREME
114 unsigned long __section_nr(struct mem_section *ms)
115 {
116 unsigned long root_nr;
117 struct mem_section *root = NULL;
118
119 for (root_nr = 0; root_nr < NR_SECTION_ROOTS; root_nr++) {
120 root = __nr_to_section(root_nr * SECTIONS_PER_ROOT);
121 if (!root)
122 continue;
123
124 if ((ms >= root) && (ms < (root + SECTIONS_PER_ROOT)))
125 break;
126 }
127
128 VM_BUG_ON(!root);
129
130 return (root_nr * SECTIONS_PER_ROOT) + (ms - root);
131 }
132 #else
133 unsigned long __section_nr(struct mem_section *ms)
134 {
135 return (unsigned long)(ms - mem_section[0]);
136 }
137 #endif
138
139 /*
140 * During early boot, before section_mem_map is used for an actual
141 * mem_map, we use section_mem_map to store the section's NUMA
142 * node. This keeps us from having to use another data structure. The
143 * node information is cleared just before we store the real mem_map.
144 */
145 static inline unsigned long sparse_encode_early_nid(int nid)
146 {
147 return (nid << SECTION_NID_SHIFT);
148 }
149
150 static inline int sparse_early_nid(struct mem_section *section)
151 {
152 return (section->section_mem_map >> SECTION_NID_SHIFT);
153 }
154
155 /* Validate the physical addressing limitations of the model */
156 void __meminit mminit_validate_memmodel_limits(unsigned long *start_pfn,
157 unsigned long *end_pfn)
158 {
159 unsigned long max_sparsemem_pfn = 1UL << (MAX_PHYSMEM_BITS-PAGE_SHIFT);
160
161 /*
162 * Sanity checks - do not allow an architecture to pass
163 * in larger pfns than the maximum scope of sparsemem:
164 */
165 if (*start_pfn > max_sparsemem_pfn) {
166 mminit_dprintk(MMINIT_WARNING, "pfnvalidation",
167 "Start of range %lu -> %lu exceeds SPARSEMEM max %lu\n",
168 *start_pfn, *end_pfn, max_sparsemem_pfn);
169 WARN_ON_ONCE(1);
170 *start_pfn = max_sparsemem_pfn;
171 *end_pfn = max_sparsemem_pfn;
172 } else if (*end_pfn > max_sparsemem_pfn) {
173 mminit_dprintk(MMINIT_WARNING, "pfnvalidation",
174 "End of range %lu -> %lu exceeds SPARSEMEM max %lu\n",
175 *start_pfn, *end_pfn, max_sparsemem_pfn);
176 WARN_ON_ONCE(1);
177 *end_pfn = max_sparsemem_pfn;
178 }
179 }
180
181 /*
182 * There are a number of times that we loop over NR_MEM_SECTIONS,
183 * looking for section_present() on each. But, when we have very
184 * large physical address spaces, NR_MEM_SECTIONS can also be
185 * very large which makes the loops quite long.
186 *
187 * Keeping track of this gives us an easy way to break out of
188 * those loops early.
189 */
190 unsigned long __highest_present_section_nr;
191 static void section_mark_present(struct mem_section *ms)
192 {
193 unsigned long section_nr = __section_nr(ms);
194
195 if (section_nr > __highest_present_section_nr)
196 __highest_present_section_nr = section_nr;
197
198 ms->section_mem_map |= SECTION_MARKED_PRESENT;
199 }
200
201 static inline unsigned long next_present_section_nr(unsigned long section_nr)
202 {
203 do {
204 section_nr++;
205 if (present_section_nr(section_nr))
206 return section_nr;
207 } while ((section_nr <= __highest_present_section_nr));
208
209 return -1;
210 }
211 #define for_each_present_section_nr(start, section_nr) \
212 for (section_nr = next_present_section_nr(start-1); \
213 ((section_nr != -1) && \
214 (section_nr <= __highest_present_section_nr)); \
215 section_nr = next_present_section_nr(section_nr))
216
217 static inline unsigned long first_present_section_nr(void)
218 {
219 return next_present_section_nr(-1);
220 }
221
222 static void subsection_mask_set(unsigned long *map, unsigned long pfn,
223 unsigned long nr_pages)
224 {
225 int idx = subsection_map_index(pfn);
226 int end = subsection_map_index(pfn + nr_pages - 1);
227
228 bitmap_set(map, idx, end - idx + 1);
229 }
230
231 void __init subsection_map_init(unsigned long pfn, unsigned long nr_pages)
232 {
233 int end_sec = pfn_to_section_nr(pfn + nr_pages - 1);
234 unsigned long nr, start_sec = pfn_to_section_nr(pfn);
235
236 if (!nr_pages)
237 return;
238
239 for (nr = start_sec; nr <= end_sec; nr++) {
240 struct mem_section *ms;
241 unsigned long pfns;
242
243 pfns = min(nr_pages, PAGES_PER_SECTION
244 - (pfn & ~PAGE_SECTION_MASK));
245 ms = __nr_to_section(nr);
246 subsection_mask_set(ms->usage->subsection_map, pfn, pfns);
247
248 pr_debug("%s: sec: %lu pfns: %lu set(%d, %d)\n", __func__, nr,
249 pfns, subsection_map_index(pfn),
250 subsection_map_index(pfn + pfns - 1));
251
252 pfn += pfns;
253 nr_pages -= pfns;
254 }
255 }
256
257 /* Record a memory area against a node. */
258 void __init memory_present(int nid, unsigned long start, unsigned long end)
259 {
260 unsigned long pfn;
261
262 #ifdef CONFIG_SPARSEMEM_EXTREME
263 if (unlikely(!mem_section)) {
264 unsigned long size, align;
265
266 size = sizeof(struct mem_section*) * NR_SECTION_ROOTS;
267 align = 1 << (INTERNODE_CACHE_SHIFT);
268 mem_section = memblock_alloc(size, align);
269 if (!mem_section)
270 panic("%s: Failed to allocate %lu bytes align=0x%lx\n",
271 __func__, size, align);
272 }
273 #endif
274
275 start &= PAGE_SECTION_MASK;
276 mminit_validate_memmodel_limits(&start, &end);
277 for (pfn = start; pfn < end; pfn += PAGES_PER_SECTION) {
278 unsigned long section = pfn_to_section_nr(pfn);
279 struct mem_section *ms;
280
281 sparse_index_init(section, nid);
282 set_section_nid(section, nid);
283
284 ms = __nr_to_section(section);
285 if (!ms->section_mem_map) {
286 ms->section_mem_map = sparse_encode_early_nid(nid) |
287 SECTION_IS_ONLINE;
288 section_mark_present(ms);
289 }
290 }
291 }
292
293 /*
294 * Mark all memblocks as present using memory_present(). This is a
295 * convienence function that is useful for a number of arches
296 * to mark all of the systems memory as present during initialization.
297 */
298 void __init memblocks_present(void)
299 {
300 struct memblock_region *reg;
301
302 for_each_memblock(memory, reg) {
303 memory_present(memblock_get_region_node(reg),
304 memblock_region_memory_base_pfn(reg),
305 memblock_region_memory_end_pfn(reg));
306 }
307 }
308
309 /*
310 * Subtle, we encode the real pfn into the mem_map such that
311 * the identity pfn - section_mem_map will return the actual
312 * physical page frame number.
313 */
314 static unsigned long sparse_encode_mem_map(struct page *mem_map, unsigned long pnum)
315 {
316 unsigned long coded_mem_map =
317 (unsigned long)(mem_map - (section_nr_to_pfn(pnum)));
318 BUILD_BUG_ON(SECTION_MAP_LAST_BIT > (1UL<<PFN_SECTION_SHIFT));
319 BUG_ON(coded_mem_map & ~SECTION_MAP_MASK);
320 return coded_mem_map;
321 }
322
323 /*
324 * Decode mem_map from the coded memmap
325 */
326 struct page *sparse_decode_mem_map(unsigned long coded_mem_map, unsigned long pnum)
327 {
328 /* mask off the extra low bits of information */
329 coded_mem_map &= SECTION_MAP_MASK;
330 return ((struct page *)coded_mem_map) + section_nr_to_pfn(pnum);
331 }
332
333 static void __meminit sparse_init_one_section(struct mem_section *ms,
334 unsigned long pnum, struct page *mem_map,
335 struct mem_section_usage *usage, unsigned long flags)
336 {
337 ms->section_mem_map &= ~SECTION_MAP_MASK;
338 ms->section_mem_map |= sparse_encode_mem_map(mem_map, pnum)
339 | SECTION_HAS_MEM_MAP | flags;
340 ms->usage = usage;
341 }
342
343 static unsigned long usemap_size(void)
344 {
345 return BITS_TO_LONGS(SECTION_BLOCKFLAGS_BITS) * sizeof(unsigned long);
346 }
347
348 size_t mem_section_usage_size(void)
349 {
350 return sizeof(struct mem_section_usage) + usemap_size();
351 }
352
353 #ifdef CONFIG_MEMORY_HOTREMOVE
354 static struct mem_section_usage * __init
355 sparse_early_usemaps_alloc_pgdat_section(struct pglist_data *pgdat,
356 unsigned long size)
357 {
358 struct mem_section_usage *usage;
359 unsigned long goal, limit;
360 int nid;
361 /*
362 * A page may contain usemaps for other sections preventing the
363 * page being freed and making a section unremovable while
364 * other sections referencing the usemap remain active. Similarly,
365 * a pgdat can prevent a section being removed. If section A
366 * contains a pgdat and section B contains the usemap, both
367 * sections become inter-dependent. This allocates usemaps
368 * from the same section as the pgdat where possible to avoid
369 * this problem.
370 */
371 goal = __pa(pgdat) & (PAGE_SECTION_MASK << PAGE_SHIFT);
372 limit = goal + (1UL << PA_SECTION_SHIFT);
373 nid = early_pfn_to_nid(goal >> PAGE_SHIFT);
374 again:
375 usage = memblock_alloc_try_nid(size, SMP_CACHE_BYTES, goal, limit, nid);
376 if (!usage && limit) {
377 limit = 0;
378 goto again;
379 }
380 return usage;
381 }
382
383 static void __init check_usemap_section_nr(int nid,
384 struct mem_section_usage *usage)
385 {
386 unsigned long usemap_snr, pgdat_snr;
387 static unsigned long old_usemap_snr;
388 static unsigned long old_pgdat_snr;
389 struct pglist_data *pgdat = NODE_DATA(nid);
390 int usemap_nid;
391
392 /* First call */
393 if (!old_usemap_snr) {
394 old_usemap_snr = NR_MEM_SECTIONS;
395 old_pgdat_snr = NR_MEM_SECTIONS;
396 }
397
398 usemap_snr = pfn_to_section_nr(__pa(usage) >> PAGE_SHIFT);
399 pgdat_snr = pfn_to_section_nr(__pa(pgdat) >> PAGE_SHIFT);
400 if (usemap_snr == pgdat_snr)
401 return;
402
403 if (old_usemap_snr == usemap_snr && old_pgdat_snr == pgdat_snr)
404 /* skip redundant message */
405 return;
406
407 old_usemap_snr = usemap_snr;
408 old_pgdat_snr = pgdat_snr;
409
410 usemap_nid = sparse_early_nid(__nr_to_section(usemap_snr));
411 if (usemap_nid != nid) {
412 pr_info("node %d must be removed before remove section %ld\n",
413 nid, usemap_snr);
414 return;
415 }
416 /*
417 * There is a circular dependency.
418 * Some platforms allow un-removable section because they will just
419 * gather other removable sections for dynamic partitioning.
420 * Just notify un-removable section's number here.
421 */
422 pr_info("Section %ld and %ld (node %d) have a circular dependency on usemap and pgdat allocations\n",
423 usemap_snr, pgdat_snr, nid);
424 }
425 #else
426 static struct mem_section_usage * __init
427 sparse_early_usemaps_alloc_pgdat_section(struct pglist_data *pgdat,
428 unsigned long size)
429 {
430 return memblock_alloc_node(size, SMP_CACHE_BYTES, pgdat->node_id);
431 }
432
433 static void __init check_usemap_section_nr(int nid,
434 struct mem_section_usage *usage)
435 {
436 }
437 #endif /* CONFIG_MEMORY_HOTREMOVE */
438
439 #ifdef CONFIG_SPARSEMEM_VMEMMAP
440 static unsigned long __init section_map_size(void)
441 {
442 return ALIGN(sizeof(struct page) * PAGES_PER_SECTION, PMD_SIZE);
443 }
444
445 #else
446 static unsigned long __init section_map_size(void)
447 {
448 return PAGE_ALIGN(sizeof(struct page) * PAGES_PER_SECTION);
449 }
450
451 struct page __init *__populate_section_memmap(unsigned long pfn,
452 unsigned long nr_pages, int nid, struct vmem_altmap *altmap)
453 {
454 unsigned long size = section_map_size();
455 struct page *map = sparse_buffer_alloc(size);
456 phys_addr_t addr = __pa(MAX_DMA_ADDRESS);
457
458 if (map)
459 return map;
460
461 map = memblock_alloc_try_nid(size,
462 PAGE_SIZE, addr,
463 MEMBLOCK_ALLOC_ACCESSIBLE, nid);
464 if (!map)
465 panic("%s: Failed to allocate %lu bytes align=0x%lx nid=%d from=%pa\n",
466 __func__, size, PAGE_SIZE, nid, &addr);
467
468 return map;
469 }
470 #endif /* !CONFIG_SPARSEMEM_VMEMMAP */
471
472 static void *sparsemap_buf __meminitdata;
473 static void *sparsemap_buf_end __meminitdata;
474
475 static inline void __meminit sparse_buffer_free(unsigned long size)
476 {
477 WARN_ON(!sparsemap_buf || size == 0);
478 memblock_free_early(__pa(sparsemap_buf), size);
479 }
480
481 static void __init sparse_buffer_init(unsigned long size, int nid)
482 {
483 phys_addr_t addr = __pa(MAX_DMA_ADDRESS);
484 WARN_ON(sparsemap_buf); /* forgot to call sparse_buffer_fini()? */
485 sparsemap_buf =
486 memblock_alloc_try_nid_raw(size, PAGE_SIZE,
487 addr,
488 MEMBLOCK_ALLOC_ACCESSIBLE, nid);
489 sparsemap_buf_end = sparsemap_buf + size;
490 }
491
492 static void __init sparse_buffer_fini(void)
493 {
494 unsigned long size = sparsemap_buf_end - sparsemap_buf;
495
496 if (sparsemap_buf && size > 0)
497 sparse_buffer_free(size);
498 sparsemap_buf = NULL;
499 }
500
501 void * __meminit sparse_buffer_alloc(unsigned long size)
502 {
503 void *ptr = NULL;
504
505 if (sparsemap_buf) {
506 ptr = (void *) roundup((unsigned long)sparsemap_buf, size);
507 if (ptr + size > sparsemap_buf_end)
508 ptr = NULL;
509 else {
510 /* Free redundant aligned space */
511 if ((unsigned long)(ptr - sparsemap_buf) > 0)
512 sparse_buffer_free((unsigned long)(ptr - sparsemap_buf));
513 sparsemap_buf = ptr + size;
514 }
515 }
516 return ptr;
517 }
518
519 void __weak __meminit vmemmap_populate_print_last(void)
520 {
521 }
522
523 /*
524 * Initialize sparse on a specific node. The node spans [pnum_begin, pnum_end)
525 * And number of present sections in this node is map_count.
526 */
527 static void __init sparse_init_nid(int nid, unsigned long pnum_begin,
528 unsigned long pnum_end,
529 unsigned long map_count)
530 {
531 struct mem_section_usage *usage;
532 unsigned long pnum;
533 struct page *map;
534
535 usage = sparse_early_usemaps_alloc_pgdat_section(NODE_DATA(nid),
536 mem_section_usage_size() * map_count);
537 if (!usage) {
538 pr_err("%s: node[%d] usemap allocation failed", __func__, nid);
539 goto failed;
540 }
541 sparse_buffer_init(map_count * section_map_size(), nid);
542 for_each_present_section_nr(pnum_begin, pnum) {
543 unsigned long pfn = section_nr_to_pfn(pnum);
544
545 if (pnum >= pnum_end)
546 break;
547
548 map = __populate_section_memmap(pfn, PAGES_PER_SECTION,
549 nid, NULL);
550 if (!map) {
551 pr_err("%s: node[%d] memory map backing failed. Some memory will not be available.",
552 __func__, nid);
553 pnum_begin = pnum;
554 sparse_buffer_fini();
555 goto failed;
556 }
557 check_usemap_section_nr(nid, usage);
558 sparse_init_one_section(__nr_to_section(pnum), pnum, map, usage,
559 SECTION_IS_EARLY);
560 usage = (void *) usage + mem_section_usage_size();
561 }
562 sparse_buffer_fini();
563 return;
564 failed:
565 /* We failed to allocate, mark all the following pnums as not present */
566 for_each_present_section_nr(pnum_begin, pnum) {
567 struct mem_section *ms;
568
569 if (pnum >= pnum_end)
570 break;
571 ms = __nr_to_section(pnum);
572 ms->section_mem_map = 0;
573 }
574 }
575
576 /*
577 * Allocate the accumulated non-linear sections, allocate a mem_map
578 * for each and record the physical to section mapping.
579 */
580 void __init sparse_init(void)
581 {
582 unsigned long pnum_begin = first_present_section_nr();
583 int nid_begin = sparse_early_nid(__nr_to_section(pnum_begin));
584 unsigned long pnum_end, map_count = 1;
585
586 /* Setup pageblock_order for HUGETLB_PAGE_SIZE_VARIABLE */
587 set_pageblock_order();
588
589 for_each_present_section_nr(pnum_begin + 1, pnum_end) {
590 int nid = sparse_early_nid(__nr_to_section(pnum_end));
591
592 if (nid == nid_begin) {
593 map_count++;
594 continue;
595 }
596 /* Init node with sections in range [pnum_begin, pnum_end) */
597 sparse_init_nid(nid_begin, pnum_begin, pnum_end, map_count);
598 nid_begin = nid;
599 pnum_begin = pnum_end;
600 map_count = 1;
601 }
602 /* cover the last node */
603 sparse_init_nid(nid_begin, pnum_begin, pnum_end, map_count);
604 vmemmap_populate_print_last();
605 }
606
607 #ifdef CONFIG_MEMORY_HOTPLUG
608
609 /* Mark all memory sections within the pfn range as online */
610 void online_mem_sections(unsigned long start_pfn, unsigned long end_pfn)
611 {
612 unsigned long pfn;
613
614 for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
615 unsigned long section_nr = pfn_to_section_nr(pfn);
616 struct mem_section *ms;
617
618 /* onlining code should never touch invalid ranges */
619 if (WARN_ON(!valid_section_nr(section_nr)))
620 continue;
621
622 ms = __nr_to_section(section_nr);
623 ms->section_mem_map |= SECTION_IS_ONLINE;
624 }
625 }
626
627 #ifdef CONFIG_MEMORY_HOTREMOVE
628 /* Mark all memory sections within the pfn range as offline */
629 void offline_mem_sections(unsigned long start_pfn, unsigned long end_pfn)
630 {
631 unsigned long pfn;
632
633 for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
634 unsigned long section_nr = pfn_to_section_nr(pfn);
635 struct mem_section *ms;
636
637 /*
638 * TODO this needs some double checking. Offlining code makes
639 * sure to check pfn_valid but those checks might be just bogus
640 */
641 if (WARN_ON(!valid_section_nr(section_nr)))
642 continue;
643
644 ms = __nr_to_section(section_nr);
645 ms->section_mem_map &= ~SECTION_IS_ONLINE;
646 }
647 }
648 #endif
649
650 #ifdef CONFIG_SPARSEMEM_VMEMMAP
651 static struct page * __meminit populate_section_memmap(unsigned long pfn,
652 unsigned long nr_pages, int nid, struct vmem_altmap *altmap)
653 {
654 return __populate_section_memmap(pfn, nr_pages, nid, altmap);
655 }
656
657 static void depopulate_section_memmap(unsigned long pfn, unsigned long nr_pages,
658 struct vmem_altmap *altmap)
659 {
660 unsigned long start = (unsigned long) pfn_to_page(pfn);
661 unsigned long end = start + nr_pages * sizeof(struct page);
662
663 vmemmap_free(start, end, altmap);
664 }
665 static void free_map_bootmem(struct page *memmap)
666 {
667 unsigned long start = (unsigned long)memmap;
668 unsigned long end = (unsigned long)(memmap + PAGES_PER_SECTION);
669
670 vmemmap_free(start, end, NULL);
671 }
672 #else
673 struct page * __meminit populate_section_memmap(unsigned long pfn,
674 unsigned long nr_pages, int nid, struct vmem_altmap *altmap)
675 {
676 struct page *page, *ret;
677 unsigned long memmap_size = sizeof(struct page) * PAGES_PER_SECTION;
678
679 page = alloc_pages(GFP_KERNEL|__GFP_NOWARN, get_order(memmap_size));
680 if (page)
681 goto got_map_page;
682
683 ret = vmalloc(memmap_size);
684 if (ret)
685 goto got_map_ptr;
686
687 return NULL;
688 got_map_page:
689 ret = (struct page *)pfn_to_kaddr(page_to_pfn(page));
690 got_map_ptr:
691
692 return ret;
693 }
694
695 static void depopulate_section_memmap(unsigned long pfn, unsigned long nr_pages,
696 struct vmem_altmap *altmap)
697 {
698 struct page *memmap = pfn_to_page(pfn);
699
700 if (is_vmalloc_addr(memmap))
701 vfree(memmap);
702 else
703 free_pages((unsigned long)memmap,
704 get_order(sizeof(struct page) * PAGES_PER_SECTION));
705 }
706
707 static void free_map_bootmem(struct page *memmap)
708 {
709 unsigned long maps_section_nr, removing_section_nr, i;
710 unsigned long magic, nr_pages;
711 struct page *page = virt_to_page(memmap);
712
713 nr_pages = PAGE_ALIGN(PAGES_PER_SECTION * sizeof(struct page))
714 >> PAGE_SHIFT;
715
716 for (i = 0; i < nr_pages; i++, page++) {
717 magic = (unsigned long) page->freelist;
718
719 BUG_ON(magic == NODE_INFO);
720
721 maps_section_nr = pfn_to_section_nr(page_to_pfn(page));
722 removing_section_nr = page_private(page);
723
724 /*
725 * When this function is called, the removing section is
726 * logical offlined state. This means all pages are isolated
727 * from page allocator. If removing section's memmap is placed
728 * on the same section, it must not be freed.
729 * If it is freed, page allocator may allocate it which will
730 * be removed physically soon.
731 */
732 if (maps_section_nr != removing_section_nr)
733 put_page_bootmem(page);
734 }
735 }
736 #endif /* CONFIG_SPARSEMEM_VMEMMAP */
737
738 static void section_deactivate(unsigned long pfn, unsigned long nr_pages,
739 struct vmem_altmap *altmap)
740 {
741 DECLARE_BITMAP(map, SUBSECTIONS_PER_SECTION) = { 0 };
742 DECLARE_BITMAP(tmp, SUBSECTIONS_PER_SECTION) = { 0 };
743 struct mem_section *ms = __pfn_to_section(pfn);
744 bool section_is_early = early_section(ms);
745 struct page *memmap = NULL;
746 bool empty;
747 unsigned long *subsection_map = ms->usage
748 ? &ms->usage->subsection_map[0] : NULL;
749
750 subsection_mask_set(map, pfn, nr_pages);
751 if (subsection_map)
752 bitmap_and(tmp, map, subsection_map, SUBSECTIONS_PER_SECTION);
753
754 if (WARN(!subsection_map || !bitmap_equal(tmp, map, SUBSECTIONS_PER_SECTION),
755 "section already deactivated (%#lx + %ld)\n",
756 pfn, nr_pages))
757 return;
758
759 /*
760 * There are 3 cases to handle across two configurations
761 * (SPARSEMEM_VMEMMAP={y,n}):
762 *
763 * 1/ deactivation of a partial hot-added section (only possible
764 * in the SPARSEMEM_VMEMMAP=y case).
765 * a/ section was present at memory init
766 * b/ section was hot-added post memory init
767 * 2/ deactivation of a complete hot-added section
768 * 3/ deactivation of a complete section from memory init
769 *
770 * For 1/, when subsection_map does not empty we will not be
771 * freeing the usage map, but still need to free the vmemmap
772 * range.
773 *
774 * For 2/ and 3/ the SPARSEMEM_VMEMMAP={y,n} cases are unified
775 */
776 bitmap_xor(subsection_map, map, subsection_map, SUBSECTIONS_PER_SECTION);
777 empty = bitmap_empty(subsection_map, SUBSECTIONS_PER_SECTION);
778 if (empty) {
779 unsigned long section_nr = pfn_to_section_nr(pfn);
780
781 /*
782 * When removing an early section, the usage map is kept (as the
783 * usage maps of other sections fall into the same page). It
784 * will be re-used when re-adding the section - which is then no
785 * longer an early section. If the usage map is PageReserved, it
786 * was allocated during boot.
787 */
788 if (!PageReserved(virt_to_page(ms->usage))) {
789 kfree(ms->usage);
790 ms->usage = NULL;
791 }
792 memmap = sparse_decode_mem_map(ms->section_mem_map, section_nr);
793 /*
794 * Mark the section invalid so that valid_section()
795 * return false. This prevents code from dereferencing
796 * ms->usage array.
797 */
798 ms->section_mem_map &= ~SECTION_HAS_MEM_MAP;
799 }
800
801 if (section_is_early && memmap)
802 free_map_bootmem(memmap);
803 else
804 depopulate_section_memmap(pfn, nr_pages, altmap);
805
806 if (empty)
807 ms->section_mem_map = (unsigned long)NULL;
808 }
809
810 static struct page * __meminit section_activate(int nid, unsigned long pfn,
811 unsigned long nr_pages, struct vmem_altmap *altmap)
812 {
813 DECLARE_BITMAP(map, SUBSECTIONS_PER_SECTION) = { 0 };
814 struct mem_section *ms = __pfn_to_section(pfn);
815 struct mem_section_usage *usage = NULL;
816 unsigned long *subsection_map;
817 struct page *memmap;
818 int rc = 0;
819
820 subsection_mask_set(map, pfn, nr_pages);
821
822 if (!ms->usage) {
823 usage = kzalloc(mem_section_usage_size(), GFP_KERNEL);
824 if (!usage)
825 return ERR_PTR(-ENOMEM);
826 ms->usage = usage;
827 }
828 subsection_map = &ms->usage->subsection_map[0];
829
830 if (bitmap_empty(map, SUBSECTIONS_PER_SECTION))
831 rc = -EINVAL;
832 else if (bitmap_intersects(map, subsection_map, SUBSECTIONS_PER_SECTION))
833 rc = -EEXIST;
834 else
835 bitmap_or(subsection_map, map, subsection_map,
836 SUBSECTIONS_PER_SECTION);
837
838 if (rc) {
839 if (usage)
840 ms->usage = NULL;
841 kfree(usage);
842 return ERR_PTR(rc);
843 }
844
845 /*
846 * The early init code does not consider partially populated
847 * initial sections, it simply assumes that memory will never be
848 * referenced. If we hot-add memory into such a section then we
849 * do not need to populate the memmap and can simply reuse what
850 * is already there.
851 */
852 if (nr_pages < PAGES_PER_SECTION && early_section(ms))
853 return pfn_to_page(pfn);
854
855 memmap = populate_section_memmap(pfn, nr_pages, nid, altmap);
856 if (!memmap) {
857 section_deactivate(pfn, nr_pages, altmap);
858 return ERR_PTR(-ENOMEM);
859 }
860
861 return memmap;
862 }
863
864 /**
865 * sparse_add_section - add a memory section, or populate an existing one
866 * @nid: The node to add section on
867 * @start_pfn: start pfn of the memory range
868 * @nr_pages: number of pfns to add in the section
869 * @altmap: device page map
870 *
871 * This is only intended for hotplug.
872 *
873 * Return:
874 * * 0 - On success.
875 * * -EEXIST - Section has been present.
876 * * -ENOMEM - Out of memory.
877 */
878 int __meminit sparse_add_section(int nid, unsigned long start_pfn,
879 unsigned long nr_pages, struct vmem_altmap *altmap)
880 {
881 unsigned long section_nr = pfn_to_section_nr(start_pfn);
882 struct mem_section *ms;
883 struct page *memmap;
884 int ret;
885
886 ret = sparse_index_init(section_nr, nid);
887 if (ret < 0)
888 return ret;
889
890 memmap = section_activate(nid, start_pfn, nr_pages, altmap);
891 if (IS_ERR(memmap))
892 return PTR_ERR(memmap);
893
894 /*
895 * Poison uninitialized struct pages in order to catch invalid flags
896 * combinations.
897 */
898 page_init_poison(memmap, sizeof(struct page) * nr_pages);
899
900 ms = __nr_to_section(section_nr);
901 set_section_nid(section_nr, nid);
902 section_mark_present(ms);
903
904 /* Align memmap to section boundary in the subsection case */
905 if (section_nr_to_pfn(section_nr) != start_pfn)
906 memmap = pfn_to_kaddr(section_nr_to_pfn(section_nr));
907 sparse_init_one_section(ms, section_nr, memmap, ms->usage, 0);
908
909 return 0;
910 }
911
912 #ifdef CONFIG_MEMORY_FAILURE
913 static void clear_hwpoisoned_pages(struct page *memmap, int nr_pages)
914 {
915 int i;
916
917 /*
918 * A further optimization is to have per section refcounted
919 * num_poisoned_pages. But that would need more space per memmap, so
920 * for now just do a quick global check to speed up this routine in the
921 * absence of bad pages.
922 */
923 if (atomic_long_read(&num_poisoned_pages) == 0)
924 return;
925
926 for (i = 0; i < nr_pages; i++) {
927 if (PageHWPoison(&memmap[i])) {
928 num_poisoned_pages_dec();
929 ClearPageHWPoison(&memmap[i]);
930 }
931 }
932 }
933 #else
934 static inline void clear_hwpoisoned_pages(struct page *memmap, int nr_pages)
935 {
936 }
937 #endif
938
939 void sparse_remove_section(struct mem_section *ms, unsigned long pfn,
940 unsigned long nr_pages, unsigned long map_offset,
941 struct vmem_altmap *altmap)
942 {
943 clear_hwpoisoned_pages(pfn_to_page(pfn) + map_offset,
944 nr_pages - map_offset);
945 section_deactivate(pfn, nr_pages, altmap);
946 }
947 #endif /* CONFIG_MEMORY_HOTPLUG */