]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - mm/swap.c
mm: hugetlbfs: move the put/get_page slab and hugetlbfs optimization in a faster...
[mirror_ubuntu-bionic-kernel.git] / mm / swap.c
1 /*
2 * linux/mm/swap.c
3 *
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 */
6
7 /*
8 * This file contains the default values for the operation of the
9 * Linux VM subsystem. Fine-tuning documentation can be found in
10 * Documentation/sysctl/vm.txt.
11 * Started 18.12.91
12 * Swap aging added 23.2.95, Stephen Tweedie.
13 * Buffermem limits added 12.3.98, Rik van Riel.
14 */
15
16 #include <linux/mm.h>
17 #include <linux/sched.h>
18 #include <linux/kernel_stat.h>
19 #include <linux/swap.h>
20 #include <linux/mman.h>
21 #include <linux/pagemap.h>
22 #include <linux/pagevec.h>
23 #include <linux/init.h>
24 #include <linux/export.h>
25 #include <linux/mm_inline.h>
26 #include <linux/percpu_counter.h>
27 #include <linux/percpu.h>
28 #include <linux/cpu.h>
29 #include <linux/notifier.h>
30 #include <linux/backing-dev.h>
31 #include <linux/memcontrol.h>
32 #include <linux/gfp.h>
33 #include <linux/uio.h>
34 #include <linux/hugetlb.h>
35
36 #include "internal.h"
37
38 #define CREATE_TRACE_POINTS
39 #include <trace/events/pagemap.h>
40
41 /* How many pages do we try to swap or page in/out together? */
42 int page_cluster;
43
44 static DEFINE_PER_CPU(struct pagevec, lru_add_pvec);
45 static DEFINE_PER_CPU(struct pagevec, lru_rotate_pvecs);
46 static DEFINE_PER_CPU(struct pagevec, lru_deactivate_pvecs);
47
48 /*
49 * This path almost never happens for VM activity - pages are normally
50 * freed via pagevecs. But it gets used by networking.
51 */
52 static void __page_cache_release(struct page *page)
53 {
54 if (PageLRU(page)) {
55 struct zone *zone = page_zone(page);
56 struct lruvec *lruvec;
57 unsigned long flags;
58
59 spin_lock_irqsave(&zone->lru_lock, flags);
60 lruvec = mem_cgroup_page_lruvec(page, zone);
61 VM_BUG_ON(!PageLRU(page));
62 __ClearPageLRU(page);
63 del_page_from_lru_list(page, lruvec, page_off_lru(page));
64 spin_unlock_irqrestore(&zone->lru_lock, flags);
65 }
66 }
67
68 static void __put_single_page(struct page *page)
69 {
70 __page_cache_release(page);
71 free_hot_cold_page(page, 0);
72 }
73
74 static void __put_compound_page(struct page *page)
75 {
76 compound_page_dtor *dtor;
77
78 __page_cache_release(page);
79 dtor = get_compound_page_dtor(page);
80 (*dtor)(page);
81 }
82
83 static void put_compound_page(struct page *page)
84 {
85 if (unlikely(PageTail(page))) {
86 /* __split_huge_page_refcount can run under us */
87 struct page *page_head = compound_trans_head(page);
88
89 /*
90 * THP can not break up slab pages so avoid taking
91 * compound_lock(). Slab performs non-atomic bit ops
92 * on page->flags for better performance. In
93 * particular slab_unlock() in slub used to be a hot
94 * path. It is still hot on arches that do not support
95 * this_cpu_cmpxchg_double().
96 *
97 * If "page" is part of a slab or hugetlbfs page it
98 * cannot be splitted and the head page cannot change
99 * from under us. And if "page" is part of a THP page
100 * under splitting, if the head page pointed by the
101 * THP tail isn't a THP head anymore, we'll find
102 * PageTail clear after smp_rmb() and we'll treat it
103 * as a single page.
104 */
105 if (PageSlab(page_head) || PageHeadHuge(page_head)) {
106 /*
107 * If "page" is a THP tail, we must read the tail page
108 * flags after the head page flags. The
109 * split_huge_page side enforces write memory
110 * barriers between clearing PageTail and before the
111 * head page can be freed and reallocated.
112 */
113 smp_rmb();
114 if (likely(PageTail(page))) {
115 /*
116 * __split_huge_page_refcount
117 * cannot race here.
118 */
119 VM_BUG_ON(!PageHead(page_head));
120 VM_BUG_ON(page_mapcount(page) <= 0);
121 atomic_dec(&page->_mapcount);
122 if (put_page_testzero(page_head))
123 __put_compound_page(page_head);
124 return;
125 } else
126 /*
127 * __split_huge_page_refcount
128 * run before us, "page" was a
129 * THP tail. The split
130 * page_head has been freed
131 * and reallocated as slab or
132 * hugetlbfs page of smaller
133 * order (only possible if
134 * reallocated as slab on
135 * x86).
136 */
137 goto out_put_single;
138 }
139
140 if (likely(page != page_head &&
141 get_page_unless_zero(page_head))) {
142 unsigned long flags;
143
144 /*
145 * page_head wasn't a dangling pointer but it
146 * may not be a head page anymore by the time
147 * we obtain the lock. That is ok as long as it
148 * can't be freed from under us.
149 */
150 flags = compound_lock_irqsave(page_head);
151 if (unlikely(!PageTail(page))) {
152 /* __split_huge_page_refcount run before us */
153 compound_unlock_irqrestore(page_head, flags);
154 if (put_page_testzero(page_head)) {
155 /*
156 * The head page may have been
157 * freed and reallocated as a
158 * compound page of smaller
159 * order and then freed again.
160 * All we know is that it
161 * cannot have become: a THP
162 * page, a compound page of
163 * higher order, a tail page.
164 * That is because we still
165 * hold the refcount of the
166 * split THP tail and
167 * page_head was the THP head
168 * before the split.
169 */
170 if (PageHead(page_head))
171 __put_compound_page(page_head);
172 else
173 __put_single_page(page_head);
174 }
175 out_put_single:
176 if (put_page_testzero(page))
177 __put_single_page(page);
178 return;
179 }
180 VM_BUG_ON(page_head != page->first_page);
181 /*
182 * We can release the refcount taken by
183 * get_page_unless_zero() now that
184 * __split_huge_page_refcount() is blocked on
185 * the compound_lock.
186 */
187 if (put_page_testzero(page_head))
188 VM_BUG_ON(1);
189 /* __split_huge_page_refcount will wait now */
190 VM_BUG_ON(page_mapcount(page) <= 0);
191 atomic_dec(&page->_mapcount);
192 VM_BUG_ON(atomic_read(&page_head->_count) <= 0);
193 VM_BUG_ON(atomic_read(&page->_count) != 0);
194 compound_unlock_irqrestore(page_head, flags);
195
196 if (put_page_testzero(page_head)) {
197 if (PageHead(page_head))
198 __put_compound_page(page_head);
199 else
200 __put_single_page(page_head);
201 }
202 } else {
203 /* page_head is a dangling pointer */
204 VM_BUG_ON(PageTail(page));
205 goto out_put_single;
206 }
207 } else if (put_page_testzero(page)) {
208 if (PageHead(page))
209 __put_compound_page(page);
210 else
211 __put_single_page(page);
212 }
213 }
214
215 void put_page(struct page *page)
216 {
217 if (unlikely(PageCompound(page)))
218 put_compound_page(page);
219 else if (put_page_testzero(page))
220 __put_single_page(page);
221 }
222 EXPORT_SYMBOL(put_page);
223
224 /*
225 * This function is exported but must not be called by anything other
226 * than get_page(). It implements the slow path of get_page().
227 */
228 bool __get_page_tail(struct page *page)
229 {
230 /*
231 * This takes care of get_page() if run on a tail page
232 * returned by one of the get_user_pages/follow_page variants.
233 * get_user_pages/follow_page itself doesn't need the compound
234 * lock because it runs __get_page_tail_foll() under the
235 * proper PT lock that already serializes against
236 * split_huge_page().
237 */
238 unsigned long flags;
239 bool got;
240 struct page *page_head = compound_trans_head(page);
241
242 /* Ref to put_compound_page() comment. */
243 if (PageSlab(page_head) || PageHeadHuge(page_head)) {
244 smp_rmb();
245 if (likely(PageTail(page))) {
246 /*
247 * This is a hugetlbfs page or a slab
248 * page. __split_huge_page_refcount
249 * cannot race here.
250 */
251 VM_BUG_ON(!PageHead(page_head));
252 __get_page_tail_foll(page, true);
253 return true;
254 } else {
255 /*
256 * __split_huge_page_refcount run
257 * before us, "page" was a THP
258 * tail. The split page_head has been
259 * freed and reallocated as slab or
260 * hugetlbfs page of smaller order
261 * (only possible if reallocated as
262 * slab on x86).
263 */
264 return false;
265 }
266 }
267
268 got = false;
269 if (likely(page != page_head && get_page_unless_zero(page_head))) {
270 /*
271 * page_head wasn't a dangling pointer but it
272 * may not be a head page anymore by the time
273 * we obtain the lock. That is ok as long as it
274 * can't be freed from under us.
275 */
276 flags = compound_lock_irqsave(page_head);
277 /* here __split_huge_page_refcount won't run anymore */
278 if (likely(PageTail(page))) {
279 __get_page_tail_foll(page, false);
280 got = true;
281 }
282 compound_unlock_irqrestore(page_head, flags);
283 if (unlikely(!got))
284 put_page(page_head);
285 }
286 return got;
287 }
288 EXPORT_SYMBOL(__get_page_tail);
289
290 /**
291 * put_pages_list() - release a list of pages
292 * @pages: list of pages threaded on page->lru
293 *
294 * Release a list of pages which are strung together on page.lru. Currently
295 * used by read_cache_pages() and related error recovery code.
296 */
297 void put_pages_list(struct list_head *pages)
298 {
299 while (!list_empty(pages)) {
300 struct page *victim;
301
302 victim = list_entry(pages->prev, struct page, lru);
303 list_del(&victim->lru);
304 page_cache_release(victim);
305 }
306 }
307 EXPORT_SYMBOL(put_pages_list);
308
309 /*
310 * get_kernel_pages() - pin kernel pages in memory
311 * @kiov: An array of struct kvec structures
312 * @nr_segs: number of segments to pin
313 * @write: pinning for read/write, currently ignored
314 * @pages: array that receives pointers to the pages pinned.
315 * Should be at least nr_segs long.
316 *
317 * Returns number of pages pinned. This may be fewer than the number
318 * requested. If nr_pages is 0 or negative, returns 0. If no pages
319 * were pinned, returns -errno. Each page returned must be released
320 * with a put_page() call when it is finished with.
321 */
322 int get_kernel_pages(const struct kvec *kiov, int nr_segs, int write,
323 struct page **pages)
324 {
325 int seg;
326
327 for (seg = 0; seg < nr_segs; seg++) {
328 if (WARN_ON(kiov[seg].iov_len != PAGE_SIZE))
329 return seg;
330
331 pages[seg] = kmap_to_page(kiov[seg].iov_base);
332 page_cache_get(pages[seg]);
333 }
334
335 return seg;
336 }
337 EXPORT_SYMBOL_GPL(get_kernel_pages);
338
339 /*
340 * get_kernel_page() - pin a kernel page in memory
341 * @start: starting kernel address
342 * @write: pinning for read/write, currently ignored
343 * @pages: array that receives pointer to the page pinned.
344 * Must be at least nr_segs long.
345 *
346 * Returns 1 if page is pinned. If the page was not pinned, returns
347 * -errno. The page returned must be released with a put_page() call
348 * when it is finished with.
349 */
350 int get_kernel_page(unsigned long start, int write, struct page **pages)
351 {
352 const struct kvec kiov = {
353 .iov_base = (void *)start,
354 .iov_len = PAGE_SIZE
355 };
356
357 return get_kernel_pages(&kiov, 1, write, pages);
358 }
359 EXPORT_SYMBOL_GPL(get_kernel_page);
360
361 static void pagevec_lru_move_fn(struct pagevec *pvec,
362 void (*move_fn)(struct page *page, struct lruvec *lruvec, void *arg),
363 void *arg)
364 {
365 int i;
366 struct zone *zone = NULL;
367 struct lruvec *lruvec;
368 unsigned long flags = 0;
369
370 for (i = 0; i < pagevec_count(pvec); i++) {
371 struct page *page = pvec->pages[i];
372 struct zone *pagezone = page_zone(page);
373
374 if (pagezone != zone) {
375 if (zone)
376 spin_unlock_irqrestore(&zone->lru_lock, flags);
377 zone = pagezone;
378 spin_lock_irqsave(&zone->lru_lock, flags);
379 }
380
381 lruvec = mem_cgroup_page_lruvec(page, zone);
382 (*move_fn)(page, lruvec, arg);
383 }
384 if (zone)
385 spin_unlock_irqrestore(&zone->lru_lock, flags);
386 release_pages(pvec->pages, pvec->nr, pvec->cold);
387 pagevec_reinit(pvec);
388 }
389
390 static void pagevec_move_tail_fn(struct page *page, struct lruvec *lruvec,
391 void *arg)
392 {
393 int *pgmoved = arg;
394
395 if (PageLRU(page) && !PageActive(page) && !PageUnevictable(page)) {
396 enum lru_list lru = page_lru_base_type(page);
397 list_move_tail(&page->lru, &lruvec->lists[lru]);
398 (*pgmoved)++;
399 }
400 }
401
402 /*
403 * pagevec_move_tail() must be called with IRQ disabled.
404 * Otherwise this may cause nasty races.
405 */
406 static void pagevec_move_tail(struct pagevec *pvec)
407 {
408 int pgmoved = 0;
409
410 pagevec_lru_move_fn(pvec, pagevec_move_tail_fn, &pgmoved);
411 __count_vm_events(PGROTATED, pgmoved);
412 }
413
414 /*
415 * Writeback is about to end against a page which has been marked for immediate
416 * reclaim. If it still appears to be reclaimable, move it to the tail of the
417 * inactive list.
418 */
419 void rotate_reclaimable_page(struct page *page)
420 {
421 if (!PageLocked(page) && !PageDirty(page) && !PageActive(page) &&
422 !PageUnevictable(page) && PageLRU(page)) {
423 struct pagevec *pvec;
424 unsigned long flags;
425
426 page_cache_get(page);
427 local_irq_save(flags);
428 pvec = &__get_cpu_var(lru_rotate_pvecs);
429 if (!pagevec_add(pvec, page))
430 pagevec_move_tail(pvec);
431 local_irq_restore(flags);
432 }
433 }
434
435 static void update_page_reclaim_stat(struct lruvec *lruvec,
436 int file, int rotated)
437 {
438 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
439
440 reclaim_stat->recent_scanned[file]++;
441 if (rotated)
442 reclaim_stat->recent_rotated[file]++;
443 }
444
445 static void __activate_page(struct page *page, struct lruvec *lruvec,
446 void *arg)
447 {
448 if (PageLRU(page) && !PageActive(page) && !PageUnevictable(page)) {
449 int file = page_is_file_cache(page);
450 int lru = page_lru_base_type(page);
451
452 del_page_from_lru_list(page, lruvec, lru);
453 SetPageActive(page);
454 lru += LRU_ACTIVE;
455 add_page_to_lru_list(page, lruvec, lru);
456 trace_mm_lru_activate(page, page_to_pfn(page));
457
458 __count_vm_event(PGACTIVATE);
459 update_page_reclaim_stat(lruvec, file, 1);
460 }
461 }
462
463 #ifdef CONFIG_SMP
464 static DEFINE_PER_CPU(struct pagevec, activate_page_pvecs);
465
466 static void activate_page_drain(int cpu)
467 {
468 struct pagevec *pvec = &per_cpu(activate_page_pvecs, cpu);
469
470 if (pagevec_count(pvec))
471 pagevec_lru_move_fn(pvec, __activate_page, NULL);
472 }
473
474 static bool need_activate_page_drain(int cpu)
475 {
476 return pagevec_count(&per_cpu(activate_page_pvecs, cpu)) != 0;
477 }
478
479 void activate_page(struct page *page)
480 {
481 if (PageLRU(page) && !PageActive(page) && !PageUnevictable(page)) {
482 struct pagevec *pvec = &get_cpu_var(activate_page_pvecs);
483
484 page_cache_get(page);
485 if (!pagevec_add(pvec, page))
486 pagevec_lru_move_fn(pvec, __activate_page, NULL);
487 put_cpu_var(activate_page_pvecs);
488 }
489 }
490
491 #else
492 static inline void activate_page_drain(int cpu)
493 {
494 }
495
496 static bool need_activate_page_drain(int cpu)
497 {
498 return false;
499 }
500
501 void activate_page(struct page *page)
502 {
503 struct zone *zone = page_zone(page);
504
505 spin_lock_irq(&zone->lru_lock);
506 __activate_page(page, mem_cgroup_page_lruvec(page, zone), NULL);
507 spin_unlock_irq(&zone->lru_lock);
508 }
509 #endif
510
511 static void __lru_cache_activate_page(struct page *page)
512 {
513 struct pagevec *pvec = &get_cpu_var(lru_add_pvec);
514 int i;
515
516 /*
517 * Search backwards on the optimistic assumption that the page being
518 * activated has just been added to this pagevec. Note that only
519 * the local pagevec is examined as a !PageLRU page could be in the
520 * process of being released, reclaimed, migrated or on a remote
521 * pagevec that is currently being drained. Furthermore, marking
522 * a remote pagevec's page PageActive potentially hits a race where
523 * a page is marked PageActive just after it is added to the inactive
524 * list causing accounting errors and BUG_ON checks to trigger.
525 */
526 for (i = pagevec_count(pvec) - 1; i >= 0; i--) {
527 struct page *pagevec_page = pvec->pages[i];
528
529 if (pagevec_page == page) {
530 SetPageActive(page);
531 break;
532 }
533 }
534
535 put_cpu_var(lru_add_pvec);
536 }
537
538 /*
539 * Mark a page as having seen activity.
540 *
541 * inactive,unreferenced -> inactive,referenced
542 * inactive,referenced -> active,unreferenced
543 * active,unreferenced -> active,referenced
544 */
545 void mark_page_accessed(struct page *page)
546 {
547 if (!PageActive(page) && !PageUnevictable(page) &&
548 PageReferenced(page)) {
549
550 /*
551 * If the page is on the LRU, queue it for activation via
552 * activate_page_pvecs. Otherwise, assume the page is on a
553 * pagevec, mark it active and it'll be moved to the active
554 * LRU on the next drain.
555 */
556 if (PageLRU(page))
557 activate_page(page);
558 else
559 __lru_cache_activate_page(page);
560 ClearPageReferenced(page);
561 } else if (!PageReferenced(page)) {
562 SetPageReferenced(page);
563 }
564 }
565 EXPORT_SYMBOL(mark_page_accessed);
566
567 /*
568 * Queue the page for addition to the LRU via pagevec. The decision on whether
569 * to add the page to the [in]active [file|anon] list is deferred until the
570 * pagevec is drained. This gives a chance for the caller of __lru_cache_add()
571 * have the page added to the active list using mark_page_accessed().
572 */
573 void __lru_cache_add(struct page *page)
574 {
575 struct pagevec *pvec = &get_cpu_var(lru_add_pvec);
576
577 page_cache_get(page);
578 if (!pagevec_space(pvec))
579 __pagevec_lru_add(pvec);
580 pagevec_add(pvec, page);
581 put_cpu_var(lru_add_pvec);
582 }
583 EXPORT_SYMBOL(__lru_cache_add);
584
585 /**
586 * lru_cache_add - add a page to a page list
587 * @page: the page to be added to the LRU.
588 */
589 void lru_cache_add(struct page *page)
590 {
591 VM_BUG_ON(PageActive(page) && PageUnevictable(page));
592 VM_BUG_ON(PageLRU(page));
593 __lru_cache_add(page);
594 }
595
596 /**
597 * add_page_to_unevictable_list - add a page to the unevictable list
598 * @page: the page to be added to the unevictable list
599 *
600 * Add page directly to its zone's unevictable list. To avoid races with
601 * tasks that might be making the page evictable, through eg. munlock,
602 * munmap or exit, while it's not on the lru, we want to add the page
603 * while it's locked or otherwise "invisible" to other tasks. This is
604 * difficult to do when using the pagevec cache, so bypass that.
605 */
606 void add_page_to_unevictable_list(struct page *page)
607 {
608 struct zone *zone = page_zone(page);
609 struct lruvec *lruvec;
610
611 spin_lock_irq(&zone->lru_lock);
612 lruvec = mem_cgroup_page_lruvec(page, zone);
613 ClearPageActive(page);
614 SetPageUnevictable(page);
615 SetPageLRU(page);
616 add_page_to_lru_list(page, lruvec, LRU_UNEVICTABLE);
617 spin_unlock_irq(&zone->lru_lock);
618 }
619
620 /*
621 * If the page can not be invalidated, it is moved to the
622 * inactive list to speed up its reclaim. It is moved to the
623 * head of the list, rather than the tail, to give the flusher
624 * threads some time to write it out, as this is much more
625 * effective than the single-page writeout from reclaim.
626 *
627 * If the page isn't page_mapped and dirty/writeback, the page
628 * could reclaim asap using PG_reclaim.
629 *
630 * 1. active, mapped page -> none
631 * 2. active, dirty/writeback page -> inactive, head, PG_reclaim
632 * 3. inactive, mapped page -> none
633 * 4. inactive, dirty/writeback page -> inactive, head, PG_reclaim
634 * 5. inactive, clean -> inactive, tail
635 * 6. Others -> none
636 *
637 * In 4, why it moves inactive's head, the VM expects the page would
638 * be write it out by flusher threads as this is much more effective
639 * than the single-page writeout from reclaim.
640 */
641 static void lru_deactivate_fn(struct page *page, struct lruvec *lruvec,
642 void *arg)
643 {
644 int lru, file;
645 bool active;
646
647 if (!PageLRU(page))
648 return;
649
650 if (PageUnevictable(page))
651 return;
652
653 /* Some processes are using the page */
654 if (page_mapped(page))
655 return;
656
657 active = PageActive(page);
658 file = page_is_file_cache(page);
659 lru = page_lru_base_type(page);
660
661 del_page_from_lru_list(page, lruvec, lru + active);
662 ClearPageActive(page);
663 ClearPageReferenced(page);
664 add_page_to_lru_list(page, lruvec, lru);
665
666 if (PageWriteback(page) || PageDirty(page)) {
667 /*
668 * PG_reclaim could be raced with end_page_writeback
669 * It can make readahead confusing. But race window
670 * is _really_ small and it's non-critical problem.
671 */
672 SetPageReclaim(page);
673 } else {
674 /*
675 * The page's writeback ends up during pagevec
676 * We moves tha page into tail of inactive.
677 */
678 list_move_tail(&page->lru, &lruvec->lists[lru]);
679 __count_vm_event(PGROTATED);
680 }
681
682 if (active)
683 __count_vm_event(PGDEACTIVATE);
684 update_page_reclaim_stat(lruvec, file, 0);
685 }
686
687 /*
688 * Drain pages out of the cpu's pagevecs.
689 * Either "cpu" is the current CPU, and preemption has already been
690 * disabled; or "cpu" is being hot-unplugged, and is already dead.
691 */
692 void lru_add_drain_cpu(int cpu)
693 {
694 struct pagevec *pvec = &per_cpu(lru_add_pvec, cpu);
695
696 if (pagevec_count(pvec))
697 __pagevec_lru_add(pvec);
698
699 pvec = &per_cpu(lru_rotate_pvecs, cpu);
700 if (pagevec_count(pvec)) {
701 unsigned long flags;
702
703 /* No harm done if a racing interrupt already did this */
704 local_irq_save(flags);
705 pagevec_move_tail(pvec);
706 local_irq_restore(flags);
707 }
708
709 pvec = &per_cpu(lru_deactivate_pvecs, cpu);
710 if (pagevec_count(pvec))
711 pagevec_lru_move_fn(pvec, lru_deactivate_fn, NULL);
712
713 activate_page_drain(cpu);
714 }
715
716 /**
717 * deactivate_page - forcefully deactivate a page
718 * @page: page to deactivate
719 *
720 * This function hints the VM that @page is a good reclaim candidate,
721 * for example if its invalidation fails due to the page being dirty
722 * or under writeback.
723 */
724 void deactivate_page(struct page *page)
725 {
726 /*
727 * In a workload with many unevictable page such as mprotect, unevictable
728 * page deactivation for accelerating reclaim is pointless.
729 */
730 if (PageUnevictable(page))
731 return;
732
733 if (likely(get_page_unless_zero(page))) {
734 struct pagevec *pvec = &get_cpu_var(lru_deactivate_pvecs);
735
736 if (!pagevec_add(pvec, page))
737 pagevec_lru_move_fn(pvec, lru_deactivate_fn, NULL);
738 put_cpu_var(lru_deactivate_pvecs);
739 }
740 }
741
742 void lru_add_drain(void)
743 {
744 lru_add_drain_cpu(get_cpu());
745 put_cpu();
746 }
747
748 static void lru_add_drain_per_cpu(struct work_struct *dummy)
749 {
750 lru_add_drain();
751 }
752
753 static DEFINE_PER_CPU(struct work_struct, lru_add_drain_work);
754
755 void lru_add_drain_all(void)
756 {
757 static DEFINE_MUTEX(lock);
758 static struct cpumask has_work;
759 int cpu;
760
761 mutex_lock(&lock);
762 get_online_cpus();
763 cpumask_clear(&has_work);
764
765 for_each_online_cpu(cpu) {
766 struct work_struct *work = &per_cpu(lru_add_drain_work, cpu);
767
768 if (pagevec_count(&per_cpu(lru_add_pvec, cpu)) ||
769 pagevec_count(&per_cpu(lru_rotate_pvecs, cpu)) ||
770 pagevec_count(&per_cpu(lru_deactivate_pvecs, cpu)) ||
771 need_activate_page_drain(cpu)) {
772 INIT_WORK(work, lru_add_drain_per_cpu);
773 schedule_work_on(cpu, work);
774 cpumask_set_cpu(cpu, &has_work);
775 }
776 }
777
778 for_each_cpu(cpu, &has_work)
779 flush_work(&per_cpu(lru_add_drain_work, cpu));
780
781 put_online_cpus();
782 mutex_unlock(&lock);
783 }
784
785 /*
786 * Batched page_cache_release(). Decrement the reference count on all the
787 * passed pages. If it fell to zero then remove the page from the LRU and
788 * free it.
789 *
790 * Avoid taking zone->lru_lock if possible, but if it is taken, retain it
791 * for the remainder of the operation.
792 *
793 * The locking in this function is against shrink_inactive_list(): we recheck
794 * the page count inside the lock to see whether shrink_inactive_list()
795 * grabbed the page via the LRU. If it did, give up: shrink_inactive_list()
796 * will free it.
797 */
798 void release_pages(struct page **pages, int nr, int cold)
799 {
800 int i;
801 LIST_HEAD(pages_to_free);
802 struct zone *zone = NULL;
803 struct lruvec *lruvec;
804 unsigned long uninitialized_var(flags);
805
806 for (i = 0; i < nr; i++) {
807 struct page *page = pages[i];
808
809 if (unlikely(PageCompound(page))) {
810 if (zone) {
811 spin_unlock_irqrestore(&zone->lru_lock, flags);
812 zone = NULL;
813 }
814 put_compound_page(page);
815 continue;
816 }
817
818 if (!put_page_testzero(page))
819 continue;
820
821 if (PageLRU(page)) {
822 struct zone *pagezone = page_zone(page);
823
824 if (pagezone != zone) {
825 if (zone)
826 spin_unlock_irqrestore(&zone->lru_lock,
827 flags);
828 zone = pagezone;
829 spin_lock_irqsave(&zone->lru_lock, flags);
830 }
831
832 lruvec = mem_cgroup_page_lruvec(page, zone);
833 VM_BUG_ON(!PageLRU(page));
834 __ClearPageLRU(page);
835 del_page_from_lru_list(page, lruvec, page_off_lru(page));
836 }
837
838 /* Clear Active bit in case of parallel mark_page_accessed */
839 ClearPageActive(page);
840
841 list_add(&page->lru, &pages_to_free);
842 }
843 if (zone)
844 spin_unlock_irqrestore(&zone->lru_lock, flags);
845
846 free_hot_cold_page_list(&pages_to_free, cold);
847 }
848 EXPORT_SYMBOL(release_pages);
849
850 /*
851 * The pages which we're about to release may be in the deferred lru-addition
852 * queues. That would prevent them from really being freed right now. That's
853 * OK from a correctness point of view but is inefficient - those pages may be
854 * cache-warm and we want to give them back to the page allocator ASAP.
855 *
856 * So __pagevec_release() will drain those queues here. __pagevec_lru_add()
857 * and __pagevec_lru_add_active() call release_pages() directly to avoid
858 * mutual recursion.
859 */
860 void __pagevec_release(struct pagevec *pvec)
861 {
862 lru_add_drain();
863 release_pages(pvec->pages, pagevec_count(pvec), pvec->cold);
864 pagevec_reinit(pvec);
865 }
866 EXPORT_SYMBOL(__pagevec_release);
867
868 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
869 /* used by __split_huge_page_refcount() */
870 void lru_add_page_tail(struct page *page, struct page *page_tail,
871 struct lruvec *lruvec, struct list_head *list)
872 {
873 const int file = 0;
874
875 VM_BUG_ON(!PageHead(page));
876 VM_BUG_ON(PageCompound(page_tail));
877 VM_BUG_ON(PageLRU(page_tail));
878 VM_BUG_ON(NR_CPUS != 1 &&
879 !spin_is_locked(&lruvec_zone(lruvec)->lru_lock));
880
881 if (!list)
882 SetPageLRU(page_tail);
883
884 if (likely(PageLRU(page)))
885 list_add_tail(&page_tail->lru, &page->lru);
886 else if (list) {
887 /* page reclaim is reclaiming a huge page */
888 get_page(page_tail);
889 list_add_tail(&page_tail->lru, list);
890 } else {
891 struct list_head *list_head;
892 /*
893 * Head page has not yet been counted, as an hpage,
894 * so we must account for each subpage individually.
895 *
896 * Use the standard add function to put page_tail on the list,
897 * but then correct its position so they all end up in order.
898 */
899 add_page_to_lru_list(page_tail, lruvec, page_lru(page_tail));
900 list_head = page_tail->lru.prev;
901 list_move_tail(&page_tail->lru, list_head);
902 }
903
904 if (!PageUnevictable(page))
905 update_page_reclaim_stat(lruvec, file, PageActive(page_tail));
906 }
907 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
908
909 static void __pagevec_lru_add_fn(struct page *page, struct lruvec *lruvec,
910 void *arg)
911 {
912 int file = page_is_file_cache(page);
913 int active = PageActive(page);
914 enum lru_list lru = page_lru(page);
915
916 VM_BUG_ON(PageLRU(page));
917
918 SetPageLRU(page);
919 add_page_to_lru_list(page, lruvec, lru);
920 update_page_reclaim_stat(lruvec, file, active);
921 trace_mm_lru_insertion(page, page_to_pfn(page), lru, trace_pagemap_flags(page));
922 }
923
924 /*
925 * Add the passed pages to the LRU, then drop the caller's refcount
926 * on them. Reinitialises the caller's pagevec.
927 */
928 void __pagevec_lru_add(struct pagevec *pvec)
929 {
930 pagevec_lru_move_fn(pvec, __pagevec_lru_add_fn, NULL);
931 }
932 EXPORT_SYMBOL(__pagevec_lru_add);
933
934 /**
935 * pagevec_lookup - gang pagecache lookup
936 * @pvec: Where the resulting pages are placed
937 * @mapping: The address_space to search
938 * @start: The starting page index
939 * @nr_pages: The maximum number of pages
940 *
941 * pagevec_lookup() will search for and return a group of up to @nr_pages pages
942 * in the mapping. The pages are placed in @pvec. pagevec_lookup() takes a
943 * reference against the pages in @pvec.
944 *
945 * The search returns a group of mapping-contiguous pages with ascending
946 * indexes. There may be holes in the indices due to not-present pages.
947 *
948 * pagevec_lookup() returns the number of pages which were found.
949 */
950 unsigned pagevec_lookup(struct pagevec *pvec, struct address_space *mapping,
951 pgoff_t start, unsigned nr_pages)
952 {
953 pvec->nr = find_get_pages(mapping, start, nr_pages, pvec->pages);
954 return pagevec_count(pvec);
955 }
956 EXPORT_SYMBOL(pagevec_lookup);
957
958 unsigned pagevec_lookup_tag(struct pagevec *pvec, struct address_space *mapping,
959 pgoff_t *index, int tag, unsigned nr_pages)
960 {
961 pvec->nr = find_get_pages_tag(mapping, index, tag,
962 nr_pages, pvec->pages);
963 return pagevec_count(pvec);
964 }
965 EXPORT_SYMBOL(pagevec_lookup_tag);
966
967 /*
968 * Perform any setup for the swap system
969 */
970 void __init swap_setup(void)
971 {
972 unsigned long megs = totalram_pages >> (20 - PAGE_SHIFT);
973 #ifdef CONFIG_SWAP
974 int i;
975
976 if (bdi_init(swapper_spaces[0].backing_dev_info))
977 panic("Failed to init swap bdi");
978 for (i = 0; i < MAX_SWAPFILES; i++) {
979 spin_lock_init(&swapper_spaces[i].tree_lock);
980 INIT_LIST_HEAD(&swapper_spaces[i].i_mmap_nonlinear);
981 }
982 #endif
983
984 /* Use a smaller cluster for small-memory machines */
985 if (megs < 16)
986 page_cluster = 2;
987 else
988 page_cluster = 3;
989 /*
990 * Right now other parts of the system means that we
991 * _really_ don't want to cluster much more
992 */
993 }