]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - mm/vmscan.c
mm/swapfile.c: delete the "last_in_cluster < scan_base" loop in the body of scan_swap...
[mirror_ubuntu-bionic-kernel.git] / mm / vmscan.c
1 /*
2 * linux/mm/vmscan.c
3 *
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 *
6 * Swap reorganised 29.12.95, Stephen Tweedie.
7 * kswapd added: 7.1.96 sct
8 * Removed kswapd_ctl limits, and swap out as many pages as needed
9 * to bring the system back to freepages.high: 2.4.97, Rik van Riel.
10 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
11 * Multiqueue VM started 5.8.00, Rik van Riel.
12 */
13
14 #include <linux/mm.h>
15 #include <linux/module.h>
16 #include <linux/gfp.h>
17 #include <linux/kernel_stat.h>
18 #include <linux/swap.h>
19 #include <linux/pagemap.h>
20 #include <linux/init.h>
21 #include <linux/highmem.h>
22 #include <linux/vmpressure.h>
23 #include <linux/vmstat.h>
24 #include <linux/file.h>
25 #include <linux/writeback.h>
26 #include <linux/blkdev.h>
27 #include <linux/buffer_head.h> /* for try_to_release_page(),
28 buffer_heads_over_limit */
29 #include <linux/mm_inline.h>
30 #include <linux/backing-dev.h>
31 #include <linux/rmap.h>
32 #include <linux/topology.h>
33 #include <linux/cpu.h>
34 #include <linux/cpuset.h>
35 #include <linux/compaction.h>
36 #include <linux/notifier.h>
37 #include <linux/rwsem.h>
38 #include <linux/delay.h>
39 #include <linux/kthread.h>
40 #include <linux/freezer.h>
41 #include <linux/memcontrol.h>
42 #include <linux/delayacct.h>
43 #include <linux/sysctl.h>
44 #include <linux/oom.h>
45 #include <linux/prefetch.h>
46
47 #include <asm/tlbflush.h>
48 #include <asm/div64.h>
49
50 #include <linux/swapops.h>
51 #include <linux/balloon_compaction.h>
52
53 #include "internal.h"
54
55 #define CREATE_TRACE_POINTS
56 #include <trace/events/vmscan.h>
57
58 struct scan_control {
59 /* Incremented by the number of inactive pages that were scanned */
60 unsigned long nr_scanned;
61
62 /* Number of pages freed so far during a call to shrink_zones() */
63 unsigned long nr_reclaimed;
64
65 /* How many pages shrink_list() should reclaim */
66 unsigned long nr_to_reclaim;
67
68 unsigned long hibernation_mode;
69
70 /* This context's GFP mask */
71 gfp_t gfp_mask;
72
73 int may_writepage;
74
75 /* Can mapped pages be reclaimed? */
76 int may_unmap;
77
78 /* Can pages be swapped as part of reclaim? */
79 int may_swap;
80
81 int order;
82
83 /* Scan (total_size >> priority) pages at once */
84 int priority;
85
86 /*
87 * The memory cgroup that hit its limit and as a result is the
88 * primary target of this reclaim invocation.
89 */
90 struct mem_cgroup *target_mem_cgroup;
91
92 /*
93 * Nodemask of nodes allowed by the caller. If NULL, all nodes
94 * are scanned.
95 */
96 nodemask_t *nodemask;
97 };
98
99 #define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
100
101 #ifdef ARCH_HAS_PREFETCH
102 #define prefetch_prev_lru_page(_page, _base, _field) \
103 do { \
104 if ((_page)->lru.prev != _base) { \
105 struct page *prev; \
106 \
107 prev = lru_to_page(&(_page->lru)); \
108 prefetch(&prev->_field); \
109 } \
110 } while (0)
111 #else
112 #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
113 #endif
114
115 #ifdef ARCH_HAS_PREFETCHW
116 #define prefetchw_prev_lru_page(_page, _base, _field) \
117 do { \
118 if ((_page)->lru.prev != _base) { \
119 struct page *prev; \
120 \
121 prev = lru_to_page(&(_page->lru)); \
122 prefetchw(&prev->_field); \
123 } \
124 } while (0)
125 #else
126 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
127 #endif
128
129 /*
130 * From 0 .. 100. Higher means more swappy.
131 */
132 int vm_swappiness = 60;
133 unsigned long vm_total_pages; /* The total number of pages which the VM controls */
134
135 static LIST_HEAD(shrinker_list);
136 static DECLARE_RWSEM(shrinker_rwsem);
137
138 #ifdef CONFIG_MEMCG
139 static bool global_reclaim(struct scan_control *sc)
140 {
141 return !sc->target_mem_cgroup;
142 }
143 #else
144 static bool global_reclaim(struct scan_control *sc)
145 {
146 return true;
147 }
148 #endif
149
150 static unsigned long zone_reclaimable_pages(struct zone *zone)
151 {
152 int nr;
153
154 nr = zone_page_state(zone, NR_ACTIVE_FILE) +
155 zone_page_state(zone, NR_INACTIVE_FILE);
156
157 if (get_nr_swap_pages() > 0)
158 nr += zone_page_state(zone, NR_ACTIVE_ANON) +
159 zone_page_state(zone, NR_INACTIVE_ANON);
160
161 return nr;
162 }
163
164 bool zone_reclaimable(struct zone *zone)
165 {
166 return zone->pages_scanned < zone_reclaimable_pages(zone) * 6;
167 }
168
169 static unsigned long get_lru_size(struct lruvec *lruvec, enum lru_list lru)
170 {
171 if (!mem_cgroup_disabled())
172 return mem_cgroup_get_lru_size(lruvec, lru);
173
174 return zone_page_state(lruvec_zone(lruvec), NR_LRU_BASE + lru);
175 }
176
177 /*
178 * Add a shrinker callback to be called from the vm.
179 */
180 int register_shrinker(struct shrinker *shrinker)
181 {
182 size_t size = sizeof(*shrinker->nr_deferred);
183
184 /*
185 * If we only have one possible node in the system anyway, save
186 * ourselves the trouble and disable NUMA aware behavior. This way we
187 * will save memory and some small loop time later.
188 */
189 if (nr_node_ids == 1)
190 shrinker->flags &= ~SHRINKER_NUMA_AWARE;
191
192 if (shrinker->flags & SHRINKER_NUMA_AWARE)
193 size *= nr_node_ids;
194
195 shrinker->nr_deferred = kzalloc(size, GFP_KERNEL);
196 if (!shrinker->nr_deferred)
197 return -ENOMEM;
198
199 down_write(&shrinker_rwsem);
200 list_add_tail(&shrinker->list, &shrinker_list);
201 up_write(&shrinker_rwsem);
202 return 0;
203 }
204 EXPORT_SYMBOL(register_shrinker);
205
206 /*
207 * Remove one
208 */
209 void unregister_shrinker(struct shrinker *shrinker)
210 {
211 down_write(&shrinker_rwsem);
212 list_del(&shrinker->list);
213 up_write(&shrinker_rwsem);
214 kfree(shrinker->nr_deferred);
215 }
216 EXPORT_SYMBOL(unregister_shrinker);
217
218 #define SHRINK_BATCH 128
219
220 static unsigned long
221 shrink_slab_node(struct shrink_control *shrinkctl, struct shrinker *shrinker,
222 unsigned long nr_pages_scanned, unsigned long lru_pages)
223 {
224 unsigned long freed = 0;
225 unsigned long long delta;
226 long total_scan;
227 long freeable;
228 long nr;
229 long new_nr;
230 int nid = shrinkctl->nid;
231 long batch_size = shrinker->batch ? shrinker->batch
232 : SHRINK_BATCH;
233
234 freeable = shrinker->count_objects(shrinker, shrinkctl);
235 if (freeable == 0)
236 return 0;
237
238 /*
239 * copy the current shrinker scan count into a local variable
240 * and zero it so that other concurrent shrinker invocations
241 * don't also do this scanning work.
242 */
243 nr = atomic_long_xchg(&shrinker->nr_deferred[nid], 0);
244
245 total_scan = nr;
246 delta = (4 * nr_pages_scanned) / shrinker->seeks;
247 delta *= freeable;
248 do_div(delta, lru_pages + 1);
249 total_scan += delta;
250 if (total_scan < 0) {
251 printk(KERN_ERR
252 "shrink_slab: %pF negative objects to delete nr=%ld\n",
253 shrinker->scan_objects, total_scan);
254 total_scan = freeable;
255 }
256
257 /*
258 * We need to avoid excessive windup on filesystem shrinkers
259 * due to large numbers of GFP_NOFS allocations causing the
260 * shrinkers to return -1 all the time. This results in a large
261 * nr being built up so when a shrink that can do some work
262 * comes along it empties the entire cache due to nr >>>
263 * freeable. This is bad for sustaining a working set in
264 * memory.
265 *
266 * Hence only allow the shrinker to scan the entire cache when
267 * a large delta change is calculated directly.
268 */
269 if (delta < freeable / 4)
270 total_scan = min(total_scan, freeable / 2);
271
272 /*
273 * Avoid risking looping forever due to too large nr value:
274 * never try to free more than twice the estimate number of
275 * freeable entries.
276 */
277 if (total_scan > freeable * 2)
278 total_scan = freeable * 2;
279
280 trace_mm_shrink_slab_start(shrinker, shrinkctl, nr,
281 nr_pages_scanned, lru_pages,
282 freeable, delta, total_scan);
283
284 /*
285 * Normally, we should not scan less than batch_size objects in one
286 * pass to avoid too frequent shrinker calls, but if the slab has less
287 * than batch_size objects in total and we are really tight on memory,
288 * we will try to reclaim all available objects, otherwise we can end
289 * up failing allocations although there are plenty of reclaimable
290 * objects spread over several slabs with usage less than the
291 * batch_size.
292 *
293 * We detect the "tight on memory" situations by looking at the total
294 * number of objects we want to scan (total_scan). If it is greater
295 * than the total number of objects on slab (freeable), we must be
296 * scanning at high prio and therefore should try to reclaim as much as
297 * possible.
298 */
299 while (total_scan >= batch_size ||
300 total_scan >= freeable) {
301 unsigned long ret;
302 unsigned long nr_to_scan = min(batch_size, total_scan);
303
304 shrinkctl->nr_to_scan = nr_to_scan;
305 ret = shrinker->scan_objects(shrinker, shrinkctl);
306 if (ret == SHRINK_STOP)
307 break;
308 freed += ret;
309
310 count_vm_events(SLABS_SCANNED, nr_to_scan);
311 total_scan -= nr_to_scan;
312
313 cond_resched();
314 }
315
316 /*
317 * move the unused scan count back into the shrinker in a
318 * manner that handles concurrent updates. If we exhausted the
319 * scan, there is no need to do an update.
320 */
321 if (total_scan > 0)
322 new_nr = atomic_long_add_return(total_scan,
323 &shrinker->nr_deferred[nid]);
324 else
325 new_nr = atomic_long_read(&shrinker->nr_deferred[nid]);
326
327 trace_mm_shrink_slab_end(shrinker, nid, freed, nr, new_nr, total_scan);
328 return freed;
329 }
330
331 /*
332 * Call the shrink functions to age shrinkable caches
333 *
334 * Here we assume it costs one seek to replace a lru page and that it also
335 * takes a seek to recreate a cache object. With this in mind we age equal
336 * percentages of the lru and ageable caches. This should balance the seeks
337 * generated by these structures.
338 *
339 * If the vm encountered mapped pages on the LRU it increase the pressure on
340 * slab to avoid swapping.
341 *
342 * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits.
343 *
344 * `lru_pages' represents the number of on-LRU pages in all the zones which
345 * are eligible for the caller's allocation attempt. It is used for balancing
346 * slab reclaim versus page reclaim.
347 *
348 * Returns the number of slab objects which we shrunk.
349 */
350 unsigned long shrink_slab(struct shrink_control *shrinkctl,
351 unsigned long nr_pages_scanned,
352 unsigned long lru_pages)
353 {
354 struct shrinker *shrinker;
355 unsigned long freed = 0;
356
357 if (nr_pages_scanned == 0)
358 nr_pages_scanned = SWAP_CLUSTER_MAX;
359
360 if (!down_read_trylock(&shrinker_rwsem)) {
361 /*
362 * If we would return 0, our callers would understand that we
363 * have nothing else to shrink and give up trying. By returning
364 * 1 we keep it going and assume we'll be able to shrink next
365 * time.
366 */
367 freed = 1;
368 goto out;
369 }
370
371 list_for_each_entry(shrinker, &shrinker_list, list) {
372 if (!(shrinker->flags & SHRINKER_NUMA_AWARE)) {
373 shrinkctl->nid = 0;
374 freed += shrink_slab_node(shrinkctl, shrinker,
375 nr_pages_scanned, lru_pages);
376 continue;
377 }
378
379 for_each_node_mask(shrinkctl->nid, shrinkctl->nodes_to_scan) {
380 if (node_online(shrinkctl->nid))
381 freed += shrink_slab_node(shrinkctl, shrinker,
382 nr_pages_scanned, lru_pages);
383
384 }
385 }
386 up_read(&shrinker_rwsem);
387 out:
388 cond_resched();
389 return freed;
390 }
391
392 static inline int is_page_cache_freeable(struct page *page)
393 {
394 /*
395 * A freeable page cache page is referenced only by the caller
396 * that isolated the page, the page cache radix tree and
397 * optional buffer heads at page->private.
398 */
399 return page_count(page) - page_has_private(page) == 2;
400 }
401
402 static int may_write_to_queue(struct backing_dev_info *bdi,
403 struct scan_control *sc)
404 {
405 if (current->flags & PF_SWAPWRITE)
406 return 1;
407 if (!bdi_write_congested(bdi))
408 return 1;
409 if (bdi == current->backing_dev_info)
410 return 1;
411 return 0;
412 }
413
414 /*
415 * We detected a synchronous write error writing a page out. Probably
416 * -ENOSPC. We need to propagate that into the address_space for a subsequent
417 * fsync(), msync() or close().
418 *
419 * The tricky part is that after writepage we cannot touch the mapping: nothing
420 * prevents it from being freed up. But we have a ref on the page and once
421 * that page is locked, the mapping is pinned.
422 *
423 * We're allowed to run sleeping lock_page() here because we know the caller has
424 * __GFP_FS.
425 */
426 static void handle_write_error(struct address_space *mapping,
427 struct page *page, int error)
428 {
429 lock_page(page);
430 if (page_mapping(page) == mapping)
431 mapping_set_error(mapping, error);
432 unlock_page(page);
433 }
434
435 /* possible outcome of pageout() */
436 typedef enum {
437 /* failed to write page out, page is locked */
438 PAGE_KEEP,
439 /* move page to the active list, page is locked */
440 PAGE_ACTIVATE,
441 /* page has been sent to the disk successfully, page is unlocked */
442 PAGE_SUCCESS,
443 /* page is clean and locked */
444 PAGE_CLEAN,
445 } pageout_t;
446
447 /*
448 * pageout is called by shrink_page_list() for each dirty page.
449 * Calls ->writepage().
450 */
451 static pageout_t pageout(struct page *page, struct address_space *mapping,
452 struct scan_control *sc)
453 {
454 /*
455 * If the page is dirty, only perform writeback if that write
456 * will be non-blocking. To prevent this allocation from being
457 * stalled by pagecache activity. But note that there may be
458 * stalls if we need to run get_block(). We could test
459 * PagePrivate for that.
460 *
461 * If this process is currently in __generic_file_aio_write() against
462 * this page's queue, we can perform writeback even if that
463 * will block.
464 *
465 * If the page is swapcache, write it back even if that would
466 * block, for some throttling. This happens by accident, because
467 * swap_backing_dev_info is bust: it doesn't reflect the
468 * congestion state of the swapdevs. Easy to fix, if needed.
469 */
470 if (!is_page_cache_freeable(page))
471 return PAGE_KEEP;
472 if (!mapping) {
473 /*
474 * Some data journaling orphaned pages can have
475 * page->mapping == NULL while being dirty with clean buffers.
476 */
477 if (page_has_private(page)) {
478 if (try_to_free_buffers(page)) {
479 ClearPageDirty(page);
480 printk("%s: orphaned page\n", __func__);
481 return PAGE_CLEAN;
482 }
483 }
484 return PAGE_KEEP;
485 }
486 if (mapping->a_ops->writepage == NULL)
487 return PAGE_ACTIVATE;
488 if (!may_write_to_queue(mapping->backing_dev_info, sc))
489 return PAGE_KEEP;
490
491 if (clear_page_dirty_for_io(page)) {
492 int res;
493 struct writeback_control wbc = {
494 .sync_mode = WB_SYNC_NONE,
495 .nr_to_write = SWAP_CLUSTER_MAX,
496 .range_start = 0,
497 .range_end = LLONG_MAX,
498 .for_reclaim = 1,
499 };
500
501 SetPageReclaim(page);
502 res = mapping->a_ops->writepage(page, &wbc);
503 if (res < 0)
504 handle_write_error(mapping, page, res);
505 if (res == AOP_WRITEPAGE_ACTIVATE) {
506 ClearPageReclaim(page);
507 return PAGE_ACTIVATE;
508 }
509
510 if (!PageWriteback(page)) {
511 /* synchronous write or broken a_ops? */
512 ClearPageReclaim(page);
513 }
514 trace_mm_vmscan_writepage(page, trace_reclaim_flags(page));
515 inc_zone_page_state(page, NR_VMSCAN_WRITE);
516 return PAGE_SUCCESS;
517 }
518
519 return PAGE_CLEAN;
520 }
521
522 /*
523 * Same as remove_mapping, but if the page is removed from the mapping, it
524 * gets returned with a refcount of 0.
525 */
526 static int __remove_mapping(struct address_space *mapping, struct page *page,
527 bool reclaimed)
528 {
529 BUG_ON(!PageLocked(page));
530 BUG_ON(mapping != page_mapping(page));
531
532 spin_lock_irq(&mapping->tree_lock);
533 /*
534 * The non racy check for a busy page.
535 *
536 * Must be careful with the order of the tests. When someone has
537 * a ref to the page, it may be possible that they dirty it then
538 * drop the reference. So if PageDirty is tested before page_count
539 * here, then the following race may occur:
540 *
541 * get_user_pages(&page);
542 * [user mapping goes away]
543 * write_to(page);
544 * !PageDirty(page) [good]
545 * SetPageDirty(page);
546 * put_page(page);
547 * !page_count(page) [good, discard it]
548 *
549 * [oops, our write_to data is lost]
550 *
551 * Reversing the order of the tests ensures such a situation cannot
552 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
553 * load is not satisfied before that of page->_count.
554 *
555 * Note that if SetPageDirty is always performed via set_page_dirty,
556 * and thus under tree_lock, then this ordering is not required.
557 */
558 if (!page_freeze_refs(page, 2))
559 goto cannot_free;
560 /* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
561 if (unlikely(PageDirty(page))) {
562 page_unfreeze_refs(page, 2);
563 goto cannot_free;
564 }
565
566 if (PageSwapCache(page)) {
567 swp_entry_t swap = { .val = page_private(page) };
568 __delete_from_swap_cache(page);
569 spin_unlock_irq(&mapping->tree_lock);
570 swapcache_free(swap, page);
571 } else {
572 void (*freepage)(struct page *);
573 void *shadow = NULL;
574
575 freepage = mapping->a_ops->freepage;
576 /*
577 * Remember a shadow entry for reclaimed file cache in
578 * order to detect refaults, thus thrashing, later on.
579 *
580 * But don't store shadows in an address space that is
581 * already exiting. This is not just an optizimation,
582 * inode reclaim needs to empty out the radix tree or
583 * the nodes are lost. Don't plant shadows behind its
584 * back.
585 */
586 if (reclaimed && page_is_file_cache(page) &&
587 !mapping_exiting(mapping))
588 shadow = workingset_eviction(mapping, page);
589 __delete_from_page_cache(page, shadow);
590 spin_unlock_irq(&mapping->tree_lock);
591 mem_cgroup_uncharge_cache_page(page);
592
593 if (freepage != NULL)
594 freepage(page);
595 }
596
597 return 1;
598
599 cannot_free:
600 spin_unlock_irq(&mapping->tree_lock);
601 return 0;
602 }
603
604 /*
605 * Attempt to detach a locked page from its ->mapping. If it is dirty or if
606 * someone else has a ref on the page, abort and return 0. If it was
607 * successfully detached, return 1. Assumes the caller has a single ref on
608 * this page.
609 */
610 int remove_mapping(struct address_space *mapping, struct page *page)
611 {
612 if (__remove_mapping(mapping, page, false)) {
613 /*
614 * Unfreezing the refcount with 1 rather than 2 effectively
615 * drops the pagecache ref for us without requiring another
616 * atomic operation.
617 */
618 page_unfreeze_refs(page, 1);
619 return 1;
620 }
621 return 0;
622 }
623
624 /**
625 * putback_lru_page - put previously isolated page onto appropriate LRU list
626 * @page: page to be put back to appropriate lru list
627 *
628 * Add previously isolated @page to appropriate LRU list.
629 * Page may still be unevictable for other reasons.
630 *
631 * lru_lock must not be held, interrupts must be enabled.
632 */
633 void putback_lru_page(struct page *page)
634 {
635 bool is_unevictable;
636 int was_unevictable = PageUnevictable(page);
637
638 VM_BUG_ON_PAGE(PageLRU(page), page);
639
640 redo:
641 ClearPageUnevictable(page);
642
643 if (page_evictable(page)) {
644 /*
645 * For evictable pages, we can use the cache.
646 * In event of a race, worst case is we end up with an
647 * unevictable page on [in]active list.
648 * We know how to handle that.
649 */
650 is_unevictable = false;
651 lru_cache_add(page);
652 } else {
653 /*
654 * Put unevictable pages directly on zone's unevictable
655 * list.
656 */
657 is_unevictable = true;
658 add_page_to_unevictable_list(page);
659 /*
660 * When racing with an mlock or AS_UNEVICTABLE clearing
661 * (page is unlocked) make sure that if the other thread
662 * does not observe our setting of PG_lru and fails
663 * isolation/check_move_unevictable_pages,
664 * we see PG_mlocked/AS_UNEVICTABLE cleared below and move
665 * the page back to the evictable list.
666 *
667 * The other side is TestClearPageMlocked() or shmem_lock().
668 */
669 smp_mb();
670 }
671
672 /*
673 * page's status can change while we move it among lru. If an evictable
674 * page is on unevictable list, it never be freed. To avoid that,
675 * check after we added it to the list, again.
676 */
677 if (is_unevictable && page_evictable(page)) {
678 if (!isolate_lru_page(page)) {
679 put_page(page);
680 goto redo;
681 }
682 /* This means someone else dropped this page from LRU
683 * So, it will be freed or putback to LRU again. There is
684 * nothing to do here.
685 */
686 }
687
688 if (was_unevictable && !is_unevictable)
689 count_vm_event(UNEVICTABLE_PGRESCUED);
690 else if (!was_unevictable && is_unevictable)
691 count_vm_event(UNEVICTABLE_PGCULLED);
692
693 put_page(page); /* drop ref from isolate */
694 }
695
696 enum page_references {
697 PAGEREF_RECLAIM,
698 PAGEREF_RECLAIM_CLEAN,
699 PAGEREF_KEEP,
700 PAGEREF_ACTIVATE,
701 };
702
703 static enum page_references page_check_references(struct page *page,
704 struct scan_control *sc)
705 {
706 int referenced_ptes, referenced_page;
707 unsigned long vm_flags;
708
709 referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup,
710 &vm_flags);
711 referenced_page = TestClearPageReferenced(page);
712
713 /*
714 * Mlock lost the isolation race with us. Let try_to_unmap()
715 * move the page to the unevictable list.
716 */
717 if (vm_flags & VM_LOCKED)
718 return PAGEREF_RECLAIM;
719
720 if (referenced_ptes) {
721 if (PageSwapBacked(page))
722 return PAGEREF_ACTIVATE;
723 /*
724 * All mapped pages start out with page table
725 * references from the instantiating fault, so we need
726 * to look twice if a mapped file page is used more
727 * than once.
728 *
729 * Mark it and spare it for another trip around the
730 * inactive list. Another page table reference will
731 * lead to its activation.
732 *
733 * Note: the mark is set for activated pages as well
734 * so that recently deactivated but used pages are
735 * quickly recovered.
736 */
737 SetPageReferenced(page);
738
739 if (referenced_page || referenced_ptes > 1)
740 return PAGEREF_ACTIVATE;
741
742 /*
743 * Activate file-backed executable pages after first usage.
744 */
745 if (vm_flags & VM_EXEC)
746 return PAGEREF_ACTIVATE;
747
748 return PAGEREF_KEEP;
749 }
750
751 /* Reclaim if clean, defer dirty pages to writeback */
752 if (referenced_page && !PageSwapBacked(page))
753 return PAGEREF_RECLAIM_CLEAN;
754
755 return PAGEREF_RECLAIM;
756 }
757
758 /* Check if a page is dirty or under writeback */
759 static void page_check_dirty_writeback(struct page *page,
760 bool *dirty, bool *writeback)
761 {
762 struct address_space *mapping;
763
764 /*
765 * Anonymous pages are not handled by flushers and must be written
766 * from reclaim context. Do not stall reclaim based on them
767 */
768 if (!page_is_file_cache(page)) {
769 *dirty = false;
770 *writeback = false;
771 return;
772 }
773
774 /* By default assume that the page flags are accurate */
775 *dirty = PageDirty(page);
776 *writeback = PageWriteback(page);
777
778 /* Verify dirty/writeback state if the filesystem supports it */
779 if (!page_has_private(page))
780 return;
781
782 mapping = page_mapping(page);
783 if (mapping && mapping->a_ops->is_dirty_writeback)
784 mapping->a_ops->is_dirty_writeback(page, dirty, writeback);
785 }
786
787 /*
788 * shrink_page_list() returns the number of reclaimed pages
789 */
790 static unsigned long shrink_page_list(struct list_head *page_list,
791 struct zone *zone,
792 struct scan_control *sc,
793 enum ttu_flags ttu_flags,
794 unsigned long *ret_nr_dirty,
795 unsigned long *ret_nr_unqueued_dirty,
796 unsigned long *ret_nr_congested,
797 unsigned long *ret_nr_writeback,
798 unsigned long *ret_nr_immediate,
799 bool force_reclaim)
800 {
801 LIST_HEAD(ret_pages);
802 LIST_HEAD(free_pages);
803 int pgactivate = 0;
804 unsigned long nr_unqueued_dirty = 0;
805 unsigned long nr_dirty = 0;
806 unsigned long nr_congested = 0;
807 unsigned long nr_reclaimed = 0;
808 unsigned long nr_writeback = 0;
809 unsigned long nr_immediate = 0;
810
811 cond_resched();
812
813 mem_cgroup_uncharge_start();
814 while (!list_empty(page_list)) {
815 struct address_space *mapping;
816 struct page *page;
817 int may_enter_fs;
818 enum page_references references = PAGEREF_RECLAIM_CLEAN;
819 bool dirty, writeback;
820
821 cond_resched();
822
823 page = lru_to_page(page_list);
824 list_del(&page->lru);
825
826 if (!trylock_page(page))
827 goto keep;
828
829 VM_BUG_ON_PAGE(PageActive(page), page);
830 VM_BUG_ON_PAGE(page_zone(page) != zone, page);
831
832 sc->nr_scanned++;
833
834 if (unlikely(!page_evictable(page)))
835 goto cull_mlocked;
836
837 if (!sc->may_unmap && page_mapped(page))
838 goto keep_locked;
839
840 /* Double the slab pressure for mapped and swapcache pages */
841 if (page_mapped(page) || PageSwapCache(page))
842 sc->nr_scanned++;
843
844 may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
845 (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
846
847 /*
848 * The number of dirty pages determines if a zone is marked
849 * reclaim_congested which affects wait_iff_congested. kswapd
850 * will stall and start writing pages if the tail of the LRU
851 * is all dirty unqueued pages.
852 */
853 page_check_dirty_writeback(page, &dirty, &writeback);
854 if (dirty || writeback)
855 nr_dirty++;
856
857 if (dirty && !writeback)
858 nr_unqueued_dirty++;
859
860 /*
861 * Treat this page as congested if the underlying BDI is or if
862 * pages are cycling through the LRU so quickly that the
863 * pages marked for immediate reclaim are making it to the
864 * end of the LRU a second time.
865 */
866 mapping = page_mapping(page);
867 if ((mapping && bdi_write_congested(mapping->backing_dev_info)) ||
868 (writeback && PageReclaim(page)))
869 nr_congested++;
870
871 /*
872 * If a page at the tail of the LRU is under writeback, there
873 * are three cases to consider.
874 *
875 * 1) If reclaim is encountering an excessive number of pages
876 * under writeback and this page is both under writeback and
877 * PageReclaim then it indicates that pages are being queued
878 * for IO but are being recycled through the LRU before the
879 * IO can complete. Waiting on the page itself risks an
880 * indefinite stall if it is impossible to writeback the
881 * page due to IO error or disconnected storage so instead
882 * note that the LRU is being scanned too quickly and the
883 * caller can stall after page list has been processed.
884 *
885 * 2) Global reclaim encounters a page, memcg encounters a
886 * page that is not marked for immediate reclaim or
887 * the caller does not have __GFP_IO. In this case mark
888 * the page for immediate reclaim and continue scanning.
889 *
890 * __GFP_IO is checked because a loop driver thread might
891 * enter reclaim, and deadlock if it waits on a page for
892 * which it is needed to do the write (loop masks off
893 * __GFP_IO|__GFP_FS for this reason); but more thought
894 * would probably show more reasons.
895 *
896 * Don't require __GFP_FS, since we're not going into the
897 * FS, just waiting on its writeback completion. Worryingly,
898 * ext4 gfs2 and xfs allocate pages with
899 * grab_cache_page_write_begin(,,AOP_FLAG_NOFS), so testing
900 * may_enter_fs here is liable to OOM on them.
901 *
902 * 3) memcg encounters a page that is not already marked
903 * PageReclaim. memcg does not have any dirty pages
904 * throttling so we could easily OOM just because too many
905 * pages are in writeback and there is nothing else to
906 * reclaim. Wait for the writeback to complete.
907 */
908 if (PageWriteback(page)) {
909 /* Case 1 above */
910 if (current_is_kswapd() &&
911 PageReclaim(page) &&
912 zone_is_reclaim_writeback(zone)) {
913 nr_immediate++;
914 goto keep_locked;
915
916 /* Case 2 above */
917 } else if (global_reclaim(sc) ||
918 !PageReclaim(page) || !(sc->gfp_mask & __GFP_IO)) {
919 /*
920 * This is slightly racy - end_page_writeback()
921 * might have just cleared PageReclaim, then
922 * setting PageReclaim here end up interpreted
923 * as PageReadahead - but that does not matter
924 * enough to care. What we do want is for this
925 * page to have PageReclaim set next time memcg
926 * reclaim reaches the tests above, so it will
927 * then wait_on_page_writeback() to avoid OOM;
928 * and it's also appropriate in global reclaim.
929 */
930 SetPageReclaim(page);
931 nr_writeback++;
932
933 goto keep_locked;
934
935 /* Case 3 above */
936 } else {
937 wait_on_page_writeback(page);
938 }
939 }
940
941 if (!force_reclaim)
942 references = page_check_references(page, sc);
943
944 switch (references) {
945 case PAGEREF_ACTIVATE:
946 goto activate_locked;
947 case PAGEREF_KEEP:
948 goto keep_locked;
949 case PAGEREF_RECLAIM:
950 case PAGEREF_RECLAIM_CLEAN:
951 ; /* try to reclaim the page below */
952 }
953
954 /*
955 * Anonymous process memory has backing store?
956 * Try to allocate it some swap space here.
957 */
958 if (PageAnon(page) && !PageSwapCache(page)) {
959 if (!(sc->gfp_mask & __GFP_IO))
960 goto keep_locked;
961 if (!add_to_swap(page, page_list))
962 goto activate_locked;
963 may_enter_fs = 1;
964
965 /* Adding to swap updated mapping */
966 mapping = page_mapping(page);
967 }
968
969 /*
970 * The page is mapped into the page tables of one or more
971 * processes. Try to unmap it here.
972 */
973 if (page_mapped(page) && mapping) {
974 switch (try_to_unmap(page, ttu_flags)) {
975 case SWAP_FAIL:
976 goto activate_locked;
977 case SWAP_AGAIN:
978 goto keep_locked;
979 case SWAP_MLOCK:
980 goto cull_mlocked;
981 case SWAP_SUCCESS:
982 ; /* try to free the page below */
983 }
984 }
985
986 if (PageDirty(page)) {
987 /*
988 * Only kswapd can writeback filesystem pages to
989 * avoid risk of stack overflow but only writeback
990 * if many dirty pages have been encountered.
991 */
992 if (page_is_file_cache(page) &&
993 (!current_is_kswapd() ||
994 !zone_is_reclaim_dirty(zone))) {
995 /*
996 * Immediately reclaim when written back.
997 * Similar in principal to deactivate_page()
998 * except we already have the page isolated
999 * and know it's dirty
1000 */
1001 inc_zone_page_state(page, NR_VMSCAN_IMMEDIATE);
1002 SetPageReclaim(page);
1003
1004 goto keep_locked;
1005 }
1006
1007 if (references == PAGEREF_RECLAIM_CLEAN)
1008 goto keep_locked;
1009 if (!may_enter_fs)
1010 goto keep_locked;
1011 if (!sc->may_writepage)
1012 goto keep_locked;
1013
1014 /* Page is dirty, try to write it out here */
1015 switch (pageout(page, mapping, sc)) {
1016 case PAGE_KEEP:
1017 goto keep_locked;
1018 case PAGE_ACTIVATE:
1019 goto activate_locked;
1020 case PAGE_SUCCESS:
1021 if (PageWriteback(page))
1022 goto keep;
1023 if (PageDirty(page))
1024 goto keep;
1025
1026 /*
1027 * A synchronous write - probably a ramdisk. Go
1028 * ahead and try to reclaim the page.
1029 */
1030 if (!trylock_page(page))
1031 goto keep;
1032 if (PageDirty(page) || PageWriteback(page))
1033 goto keep_locked;
1034 mapping = page_mapping(page);
1035 case PAGE_CLEAN:
1036 ; /* try to free the page below */
1037 }
1038 }
1039
1040 /*
1041 * If the page has buffers, try to free the buffer mappings
1042 * associated with this page. If we succeed we try to free
1043 * the page as well.
1044 *
1045 * We do this even if the page is PageDirty().
1046 * try_to_release_page() does not perform I/O, but it is
1047 * possible for a page to have PageDirty set, but it is actually
1048 * clean (all its buffers are clean). This happens if the
1049 * buffers were written out directly, with submit_bh(). ext3
1050 * will do this, as well as the blockdev mapping.
1051 * try_to_release_page() will discover that cleanness and will
1052 * drop the buffers and mark the page clean - it can be freed.
1053 *
1054 * Rarely, pages can have buffers and no ->mapping. These are
1055 * the pages which were not successfully invalidated in
1056 * truncate_complete_page(). We try to drop those buffers here
1057 * and if that worked, and the page is no longer mapped into
1058 * process address space (page_count == 1) it can be freed.
1059 * Otherwise, leave the page on the LRU so it is swappable.
1060 */
1061 if (page_has_private(page)) {
1062 if (!try_to_release_page(page, sc->gfp_mask))
1063 goto activate_locked;
1064 if (!mapping && page_count(page) == 1) {
1065 unlock_page(page);
1066 if (put_page_testzero(page))
1067 goto free_it;
1068 else {
1069 /*
1070 * rare race with speculative reference.
1071 * the speculative reference will free
1072 * this page shortly, so we may
1073 * increment nr_reclaimed here (and
1074 * leave it off the LRU).
1075 */
1076 nr_reclaimed++;
1077 continue;
1078 }
1079 }
1080 }
1081
1082 if (!mapping || !__remove_mapping(mapping, page, true))
1083 goto keep_locked;
1084
1085 /*
1086 * At this point, we have no other references and there is
1087 * no way to pick any more up (removed from LRU, removed
1088 * from pagecache). Can use non-atomic bitops now (and
1089 * we obviously don't have to worry about waking up a process
1090 * waiting on the page lock, because there are no references.
1091 */
1092 __clear_page_locked(page);
1093 free_it:
1094 nr_reclaimed++;
1095
1096 /*
1097 * Is there need to periodically free_page_list? It would
1098 * appear not as the counts should be low
1099 */
1100 list_add(&page->lru, &free_pages);
1101 continue;
1102
1103 cull_mlocked:
1104 if (PageSwapCache(page))
1105 try_to_free_swap(page);
1106 unlock_page(page);
1107 putback_lru_page(page);
1108 continue;
1109
1110 activate_locked:
1111 /* Not a candidate for swapping, so reclaim swap space. */
1112 if (PageSwapCache(page) && vm_swap_full())
1113 try_to_free_swap(page);
1114 VM_BUG_ON_PAGE(PageActive(page), page);
1115 SetPageActive(page);
1116 pgactivate++;
1117 keep_locked:
1118 unlock_page(page);
1119 keep:
1120 list_add(&page->lru, &ret_pages);
1121 VM_BUG_ON_PAGE(PageLRU(page) || PageUnevictable(page), page);
1122 }
1123
1124 free_hot_cold_page_list(&free_pages, true);
1125
1126 list_splice(&ret_pages, page_list);
1127 count_vm_events(PGACTIVATE, pgactivate);
1128 mem_cgroup_uncharge_end();
1129 *ret_nr_dirty += nr_dirty;
1130 *ret_nr_congested += nr_congested;
1131 *ret_nr_unqueued_dirty += nr_unqueued_dirty;
1132 *ret_nr_writeback += nr_writeback;
1133 *ret_nr_immediate += nr_immediate;
1134 return nr_reclaimed;
1135 }
1136
1137 unsigned long reclaim_clean_pages_from_list(struct zone *zone,
1138 struct list_head *page_list)
1139 {
1140 struct scan_control sc = {
1141 .gfp_mask = GFP_KERNEL,
1142 .priority = DEF_PRIORITY,
1143 .may_unmap = 1,
1144 };
1145 unsigned long ret, dummy1, dummy2, dummy3, dummy4, dummy5;
1146 struct page *page, *next;
1147 LIST_HEAD(clean_pages);
1148
1149 list_for_each_entry_safe(page, next, page_list, lru) {
1150 if (page_is_file_cache(page) && !PageDirty(page) &&
1151 !isolated_balloon_page(page)) {
1152 ClearPageActive(page);
1153 list_move(&page->lru, &clean_pages);
1154 }
1155 }
1156
1157 ret = shrink_page_list(&clean_pages, zone, &sc,
1158 TTU_UNMAP|TTU_IGNORE_ACCESS,
1159 &dummy1, &dummy2, &dummy3, &dummy4, &dummy5, true);
1160 list_splice(&clean_pages, page_list);
1161 mod_zone_page_state(zone, NR_ISOLATED_FILE, -ret);
1162 return ret;
1163 }
1164
1165 /*
1166 * Attempt to remove the specified page from its LRU. Only take this page
1167 * if it is of the appropriate PageActive status. Pages which are being
1168 * freed elsewhere are also ignored.
1169 *
1170 * page: page to consider
1171 * mode: one of the LRU isolation modes defined above
1172 *
1173 * returns 0 on success, -ve errno on failure.
1174 */
1175 int __isolate_lru_page(struct page *page, isolate_mode_t mode)
1176 {
1177 int ret = -EINVAL;
1178
1179 /* Only take pages on the LRU. */
1180 if (!PageLRU(page))
1181 return ret;
1182
1183 /* Compaction should not handle unevictable pages but CMA can do so */
1184 if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE))
1185 return ret;
1186
1187 ret = -EBUSY;
1188
1189 /*
1190 * To minimise LRU disruption, the caller can indicate that it only
1191 * wants to isolate pages it will be able to operate on without
1192 * blocking - clean pages for the most part.
1193 *
1194 * ISOLATE_CLEAN means that only clean pages should be isolated. This
1195 * is used by reclaim when it is cannot write to backing storage
1196 *
1197 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
1198 * that it is possible to migrate without blocking
1199 */
1200 if (mode & (ISOLATE_CLEAN|ISOLATE_ASYNC_MIGRATE)) {
1201 /* All the caller can do on PageWriteback is block */
1202 if (PageWriteback(page))
1203 return ret;
1204
1205 if (PageDirty(page)) {
1206 struct address_space *mapping;
1207
1208 /* ISOLATE_CLEAN means only clean pages */
1209 if (mode & ISOLATE_CLEAN)
1210 return ret;
1211
1212 /*
1213 * Only pages without mappings or that have a
1214 * ->migratepage callback are possible to migrate
1215 * without blocking
1216 */
1217 mapping = page_mapping(page);
1218 if (mapping && !mapping->a_ops->migratepage)
1219 return ret;
1220 }
1221 }
1222
1223 if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
1224 return ret;
1225
1226 if (likely(get_page_unless_zero(page))) {
1227 /*
1228 * Be careful not to clear PageLRU until after we're
1229 * sure the page is not being freed elsewhere -- the
1230 * page release code relies on it.
1231 */
1232 ClearPageLRU(page);
1233 ret = 0;
1234 }
1235
1236 return ret;
1237 }
1238
1239 /*
1240 * zone->lru_lock is heavily contended. Some of the functions that
1241 * shrink the lists perform better by taking out a batch of pages
1242 * and working on them outside the LRU lock.
1243 *
1244 * For pagecache intensive workloads, this function is the hottest
1245 * spot in the kernel (apart from copy_*_user functions).
1246 *
1247 * Appropriate locks must be held before calling this function.
1248 *
1249 * @nr_to_scan: The number of pages to look through on the list.
1250 * @lruvec: The LRU vector to pull pages from.
1251 * @dst: The temp list to put pages on to.
1252 * @nr_scanned: The number of pages that were scanned.
1253 * @sc: The scan_control struct for this reclaim session
1254 * @mode: One of the LRU isolation modes
1255 * @lru: LRU list id for isolating
1256 *
1257 * returns how many pages were moved onto *@dst.
1258 */
1259 static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
1260 struct lruvec *lruvec, struct list_head *dst,
1261 unsigned long *nr_scanned, struct scan_control *sc,
1262 isolate_mode_t mode, enum lru_list lru)
1263 {
1264 struct list_head *src = &lruvec->lists[lru];
1265 unsigned long nr_taken = 0;
1266 unsigned long scan;
1267
1268 for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) {
1269 struct page *page;
1270 int nr_pages;
1271
1272 page = lru_to_page(src);
1273 prefetchw_prev_lru_page(page, src, flags);
1274
1275 VM_BUG_ON_PAGE(!PageLRU(page), page);
1276
1277 switch (__isolate_lru_page(page, mode)) {
1278 case 0:
1279 nr_pages = hpage_nr_pages(page);
1280 mem_cgroup_update_lru_size(lruvec, lru, -nr_pages);
1281 list_move(&page->lru, dst);
1282 nr_taken += nr_pages;
1283 break;
1284
1285 case -EBUSY:
1286 /* else it is being freed elsewhere */
1287 list_move(&page->lru, src);
1288 continue;
1289
1290 default:
1291 BUG();
1292 }
1293 }
1294
1295 *nr_scanned = scan;
1296 trace_mm_vmscan_lru_isolate(sc->order, nr_to_scan, scan,
1297 nr_taken, mode, is_file_lru(lru));
1298 return nr_taken;
1299 }
1300
1301 /**
1302 * isolate_lru_page - tries to isolate a page from its LRU list
1303 * @page: page to isolate from its LRU list
1304 *
1305 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1306 * vmstat statistic corresponding to whatever LRU list the page was on.
1307 *
1308 * Returns 0 if the page was removed from an LRU list.
1309 * Returns -EBUSY if the page was not on an LRU list.
1310 *
1311 * The returned page will have PageLRU() cleared. If it was found on
1312 * the active list, it will have PageActive set. If it was found on
1313 * the unevictable list, it will have the PageUnevictable bit set. That flag
1314 * may need to be cleared by the caller before letting the page go.
1315 *
1316 * The vmstat statistic corresponding to the list on which the page was
1317 * found will be decremented.
1318 *
1319 * Restrictions:
1320 * (1) Must be called with an elevated refcount on the page. This is a
1321 * fundamentnal difference from isolate_lru_pages (which is called
1322 * without a stable reference).
1323 * (2) the lru_lock must not be held.
1324 * (3) interrupts must be enabled.
1325 */
1326 int isolate_lru_page(struct page *page)
1327 {
1328 int ret = -EBUSY;
1329
1330 VM_BUG_ON_PAGE(!page_count(page), page);
1331
1332 if (PageLRU(page)) {
1333 struct zone *zone = page_zone(page);
1334 struct lruvec *lruvec;
1335
1336 spin_lock_irq(&zone->lru_lock);
1337 lruvec = mem_cgroup_page_lruvec(page, zone);
1338 if (PageLRU(page)) {
1339 int lru = page_lru(page);
1340 get_page(page);
1341 ClearPageLRU(page);
1342 del_page_from_lru_list(page, lruvec, lru);
1343 ret = 0;
1344 }
1345 spin_unlock_irq(&zone->lru_lock);
1346 }
1347 return ret;
1348 }
1349
1350 /*
1351 * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
1352 * then get resheduled. When there are massive number of tasks doing page
1353 * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
1354 * the LRU list will go small and be scanned faster than necessary, leading to
1355 * unnecessary swapping, thrashing and OOM.
1356 */
1357 static int too_many_isolated(struct zone *zone, int file,
1358 struct scan_control *sc)
1359 {
1360 unsigned long inactive, isolated;
1361
1362 if (current_is_kswapd())
1363 return 0;
1364
1365 if (!global_reclaim(sc))
1366 return 0;
1367
1368 if (file) {
1369 inactive = zone_page_state(zone, NR_INACTIVE_FILE);
1370 isolated = zone_page_state(zone, NR_ISOLATED_FILE);
1371 } else {
1372 inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1373 isolated = zone_page_state(zone, NR_ISOLATED_ANON);
1374 }
1375
1376 /*
1377 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
1378 * won't get blocked by normal direct-reclaimers, forming a circular
1379 * deadlock.
1380 */
1381 if ((sc->gfp_mask & GFP_IOFS) == GFP_IOFS)
1382 inactive >>= 3;
1383
1384 return isolated > inactive;
1385 }
1386
1387 static noinline_for_stack void
1388 putback_inactive_pages(struct lruvec *lruvec, struct list_head *page_list)
1389 {
1390 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1391 struct zone *zone = lruvec_zone(lruvec);
1392 LIST_HEAD(pages_to_free);
1393
1394 /*
1395 * Put back any unfreeable pages.
1396 */
1397 while (!list_empty(page_list)) {
1398 struct page *page = lru_to_page(page_list);
1399 int lru;
1400
1401 VM_BUG_ON_PAGE(PageLRU(page), page);
1402 list_del(&page->lru);
1403 if (unlikely(!page_evictable(page))) {
1404 spin_unlock_irq(&zone->lru_lock);
1405 putback_lru_page(page);
1406 spin_lock_irq(&zone->lru_lock);
1407 continue;
1408 }
1409
1410 lruvec = mem_cgroup_page_lruvec(page, zone);
1411
1412 SetPageLRU(page);
1413 lru = page_lru(page);
1414 add_page_to_lru_list(page, lruvec, lru);
1415
1416 if (is_active_lru(lru)) {
1417 int file = is_file_lru(lru);
1418 int numpages = hpage_nr_pages(page);
1419 reclaim_stat->recent_rotated[file] += numpages;
1420 }
1421 if (put_page_testzero(page)) {
1422 __ClearPageLRU(page);
1423 __ClearPageActive(page);
1424 del_page_from_lru_list(page, lruvec, lru);
1425
1426 if (unlikely(PageCompound(page))) {
1427 spin_unlock_irq(&zone->lru_lock);
1428 (*get_compound_page_dtor(page))(page);
1429 spin_lock_irq(&zone->lru_lock);
1430 } else
1431 list_add(&page->lru, &pages_to_free);
1432 }
1433 }
1434
1435 /*
1436 * To save our caller's stack, now use input list for pages to free.
1437 */
1438 list_splice(&pages_to_free, page_list);
1439 }
1440
1441 /*
1442 * If a kernel thread (such as nfsd for loop-back mounts) services
1443 * a backing device by writing to the page cache it sets PF_LESS_THROTTLE.
1444 * In that case we should only throttle if the backing device it is
1445 * writing to is congested. In other cases it is safe to throttle.
1446 */
1447 static int current_may_throttle(void)
1448 {
1449 return !(current->flags & PF_LESS_THROTTLE) ||
1450 current->backing_dev_info == NULL ||
1451 bdi_write_congested(current->backing_dev_info);
1452 }
1453
1454 /*
1455 * shrink_inactive_list() is a helper for shrink_zone(). It returns the number
1456 * of reclaimed pages
1457 */
1458 static noinline_for_stack unsigned long
1459 shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec,
1460 struct scan_control *sc, enum lru_list lru)
1461 {
1462 LIST_HEAD(page_list);
1463 unsigned long nr_scanned;
1464 unsigned long nr_reclaimed = 0;
1465 unsigned long nr_taken;
1466 unsigned long nr_dirty = 0;
1467 unsigned long nr_congested = 0;
1468 unsigned long nr_unqueued_dirty = 0;
1469 unsigned long nr_writeback = 0;
1470 unsigned long nr_immediate = 0;
1471 isolate_mode_t isolate_mode = 0;
1472 int file = is_file_lru(lru);
1473 struct zone *zone = lruvec_zone(lruvec);
1474 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1475
1476 while (unlikely(too_many_isolated(zone, file, sc))) {
1477 congestion_wait(BLK_RW_ASYNC, HZ/10);
1478
1479 /* We are about to die and free our memory. Return now. */
1480 if (fatal_signal_pending(current))
1481 return SWAP_CLUSTER_MAX;
1482 }
1483
1484 lru_add_drain();
1485
1486 if (!sc->may_unmap)
1487 isolate_mode |= ISOLATE_UNMAPPED;
1488 if (!sc->may_writepage)
1489 isolate_mode |= ISOLATE_CLEAN;
1490
1491 spin_lock_irq(&zone->lru_lock);
1492
1493 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list,
1494 &nr_scanned, sc, isolate_mode, lru);
1495
1496 __mod_zone_page_state(zone, NR_LRU_BASE + lru, -nr_taken);
1497 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
1498
1499 if (global_reclaim(sc)) {
1500 zone->pages_scanned += nr_scanned;
1501 if (current_is_kswapd())
1502 __count_zone_vm_events(PGSCAN_KSWAPD, zone, nr_scanned);
1503 else
1504 __count_zone_vm_events(PGSCAN_DIRECT, zone, nr_scanned);
1505 }
1506 spin_unlock_irq(&zone->lru_lock);
1507
1508 if (nr_taken == 0)
1509 return 0;
1510
1511 nr_reclaimed = shrink_page_list(&page_list, zone, sc, TTU_UNMAP,
1512 &nr_dirty, &nr_unqueued_dirty, &nr_congested,
1513 &nr_writeback, &nr_immediate,
1514 false);
1515
1516 spin_lock_irq(&zone->lru_lock);
1517
1518 reclaim_stat->recent_scanned[file] += nr_taken;
1519
1520 if (global_reclaim(sc)) {
1521 if (current_is_kswapd())
1522 __count_zone_vm_events(PGSTEAL_KSWAPD, zone,
1523 nr_reclaimed);
1524 else
1525 __count_zone_vm_events(PGSTEAL_DIRECT, zone,
1526 nr_reclaimed);
1527 }
1528
1529 putback_inactive_pages(lruvec, &page_list);
1530
1531 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
1532
1533 spin_unlock_irq(&zone->lru_lock);
1534
1535 free_hot_cold_page_list(&page_list, true);
1536
1537 /*
1538 * If reclaim is isolating dirty pages under writeback, it implies
1539 * that the long-lived page allocation rate is exceeding the page
1540 * laundering rate. Either the global limits are not being effective
1541 * at throttling processes due to the page distribution throughout
1542 * zones or there is heavy usage of a slow backing device. The
1543 * only option is to throttle from reclaim context which is not ideal
1544 * as there is no guarantee the dirtying process is throttled in the
1545 * same way balance_dirty_pages() manages.
1546 *
1547 * Once a zone is flagged ZONE_WRITEBACK, kswapd will count the number
1548 * of pages under pages flagged for immediate reclaim and stall if any
1549 * are encountered in the nr_immediate check below.
1550 */
1551 if (nr_writeback && nr_writeback == nr_taken)
1552 zone_set_flag(zone, ZONE_WRITEBACK);
1553
1554 /*
1555 * memcg will stall in page writeback so only consider forcibly
1556 * stalling for global reclaim
1557 */
1558 if (global_reclaim(sc)) {
1559 /*
1560 * Tag a zone as congested if all the dirty pages scanned were
1561 * backed by a congested BDI and wait_iff_congested will stall.
1562 */
1563 if (nr_dirty && nr_dirty == nr_congested)
1564 zone_set_flag(zone, ZONE_CONGESTED);
1565
1566 /*
1567 * If dirty pages are scanned that are not queued for IO, it
1568 * implies that flushers are not keeping up. In this case, flag
1569 * the zone ZONE_TAIL_LRU_DIRTY and kswapd will start writing
1570 * pages from reclaim context. It will forcibly stall in the
1571 * next check.
1572 */
1573 if (nr_unqueued_dirty == nr_taken)
1574 zone_set_flag(zone, ZONE_TAIL_LRU_DIRTY);
1575
1576 /*
1577 * In addition, if kswapd scans pages marked marked for
1578 * immediate reclaim and under writeback (nr_immediate), it
1579 * implies that pages are cycling through the LRU faster than
1580 * they are written so also forcibly stall.
1581 */
1582 if ((nr_unqueued_dirty == nr_taken || nr_immediate) &&
1583 current_may_throttle())
1584 congestion_wait(BLK_RW_ASYNC, HZ/10);
1585 }
1586
1587 /*
1588 * Stall direct reclaim for IO completions if underlying BDIs or zone
1589 * is congested. Allow kswapd to continue until it starts encountering
1590 * unqueued dirty pages or cycling through the LRU too quickly.
1591 */
1592 if (!sc->hibernation_mode && !current_is_kswapd() &&
1593 current_may_throttle())
1594 wait_iff_congested(zone, BLK_RW_ASYNC, HZ/10);
1595
1596 trace_mm_vmscan_lru_shrink_inactive(zone->zone_pgdat->node_id,
1597 zone_idx(zone),
1598 nr_scanned, nr_reclaimed,
1599 sc->priority,
1600 trace_shrink_flags(file));
1601 return nr_reclaimed;
1602 }
1603
1604 /*
1605 * This moves pages from the active list to the inactive list.
1606 *
1607 * We move them the other way if the page is referenced by one or more
1608 * processes, from rmap.
1609 *
1610 * If the pages are mostly unmapped, the processing is fast and it is
1611 * appropriate to hold zone->lru_lock across the whole operation. But if
1612 * the pages are mapped, the processing is slow (page_referenced()) so we
1613 * should drop zone->lru_lock around each page. It's impossible to balance
1614 * this, so instead we remove the pages from the LRU while processing them.
1615 * It is safe to rely on PG_active against the non-LRU pages in here because
1616 * nobody will play with that bit on a non-LRU page.
1617 *
1618 * The downside is that we have to touch page->_count against each page.
1619 * But we had to alter page->flags anyway.
1620 */
1621
1622 static void move_active_pages_to_lru(struct lruvec *lruvec,
1623 struct list_head *list,
1624 struct list_head *pages_to_free,
1625 enum lru_list lru)
1626 {
1627 struct zone *zone = lruvec_zone(lruvec);
1628 unsigned long pgmoved = 0;
1629 struct page *page;
1630 int nr_pages;
1631
1632 while (!list_empty(list)) {
1633 page = lru_to_page(list);
1634 lruvec = mem_cgroup_page_lruvec(page, zone);
1635
1636 VM_BUG_ON_PAGE(PageLRU(page), page);
1637 SetPageLRU(page);
1638
1639 nr_pages = hpage_nr_pages(page);
1640 mem_cgroup_update_lru_size(lruvec, lru, nr_pages);
1641 list_move(&page->lru, &lruvec->lists[lru]);
1642 pgmoved += nr_pages;
1643
1644 if (put_page_testzero(page)) {
1645 __ClearPageLRU(page);
1646 __ClearPageActive(page);
1647 del_page_from_lru_list(page, lruvec, lru);
1648
1649 if (unlikely(PageCompound(page))) {
1650 spin_unlock_irq(&zone->lru_lock);
1651 (*get_compound_page_dtor(page))(page);
1652 spin_lock_irq(&zone->lru_lock);
1653 } else
1654 list_add(&page->lru, pages_to_free);
1655 }
1656 }
1657 __mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved);
1658 if (!is_active_lru(lru))
1659 __count_vm_events(PGDEACTIVATE, pgmoved);
1660 }
1661
1662 static void shrink_active_list(unsigned long nr_to_scan,
1663 struct lruvec *lruvec,
1664 struct scan_control *sc,
1665 enum lru_list lru)
1666 {
1667 unsigned long nr_taken;
1668 unsigned long nr_scanned;
1669 unsigned long vm_flags;
1670 LIST_HEAD(l_hold); /* The pages which were snipped off */
1671 LIST_HEAD(l_active);
1672 LIST_HEAD(l_inactive);
1673 struct page *page;
1674 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1675 unsigned long nr_rotated = 0;
1676 isolate_mode_t isolate_mode = 0;
1677 int file = is_file_lru(lru);
1678 struct zone *zone = lruvec_zone(lruvec);
1679
1680 lru_add_drain();
1681
1682 if (!sc->may_unmap)
1683 isolate_mode |= ISOLATE_UNMAPPED;
1684 if (!sc->may_writepage)
1685 isolate_mode |= ISOLATE_CLEAN;
1686
1687 spin_lock_irq(&zone->lru_lock);
1688
1689 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold,
1690 &nr_scanned, sc, isolate_mode, lru);
1691 if (global_reclaim(sc))
1692 zone->pages_scanned += nr_scanned;
1693
1694 reclaim_stat->recent_scanned[file] += nr_taken;
1695
1696 __count_zone_vm_events(PGREFILL, zone, nr_scanned);
1697 __mod_zone_page_state(zone, NR_LRU_BASE + lru, -nr_taken);
1698 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
1699 spin_unlock_irq(&zone->lru_lock);
1700
1701 while (!list_empty(&l_hold)) {
1702 cond_resched();
1703 page = lru_to_page(&l_hold);
1704 list_del(&page->lru);
1705
1706 if (unlikely(!page_evictable(page))) {
1707 putback_lru_page(page);
1708 continue;
1709 }
1710
1711 if (unlikely(buffer_heads_over_limit)) {
1712 if (page_has_private(page) && trylock_page(page)) {
1713 if (page_has_private(page))
1714 try_to_release_page(page, 0);
1715 unlock_page(page);
1716 }
1717 }
1718
1719 if (page_referenced(page, 0, sc->target_mem_cgroup,
1720 &vm_flags)) {
1721 nr_rotated += hpage_nr_pages(page);
1722 /*
1723 * Identify referenced, file-backed active pages and
1724 * give them one more trip around the active list. So
1725 * that executable code get better chances to stay in
1726 * memory under moderate memory pressure. Anon pages
1727 * are not likely to be evicted by use-once streaming
1728 * IO, plus JVM can create lots of anon VM_EXEC pages,
1729 * so we ignore them here.
1730 */
1731 if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
1732 list_add(&page->lru, &l_active);
1733 continue;
1734 }
1735 }
1736
1737 ClearPageActive(page); /* we are de-activating */
1738 list_add(&page->lru, &l_inactive);
1739 }
1740
1741 /*
1742 * Move pages back to the lru list.
1743 */
1744 spin_lock_irq(&zone->lru_lock);
1745 /*
1746 * Count referenced pages from currently used mappings as rotated,
1747 * even though only some of them are actually re-activated. This
1748 * helps balance scan pressure between file and anonymous pages in
1749 * get_scan_ratio.
1750 */
1751 reclaim_stat->recent_rotated[file] += nr_rotated;
1752
1753 move_active_pages_to_lru(lruvec, &l_active, &l_hold, lru);
1754 move_active_pages_to_lru(lruvec, &l_inactive, &l_hold, lru - LRU_ACTIVE);
1755 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
1756 spin_unlock_irq(&zone->lru_lock);
1757
1758 free_hot_cold_page_list(&l_hold, true);
1759 }
1760
1761 #ifdef CONFIG_SWAP
1762 static int inactive_anon_is_low_global(struct zone *zone)
1763 {
1764 unsigned long active, inactive;
1765
1766 active = zone_page_state(zone, NR_ACTIVE_ANON);
1767 inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1768
1769 if (inactive * zone->inactive_ratio < active)
1770 return 1;
1771
1772 return 0;
1773 }
1774
1775 /**
1776 * inactive_anon_is_low - check if anonymous pages need to be deactivated
1777 * @lruvec: LRU vector to check
1778 *
1779 * Returns true if the zone does not have enough inactive anon pages,
1780 * meaning some active anon pages need to be deactivated.
1781 */
1782 static int inactive_anon_is_low(struct lruvec *lruvec)
1783 {
1784 /*
1785 * If we don't have swap space, anonymous page deactivation
1786 * is pointless.
1787 */
1788 if (!total_swap_pages)
1789 return 0;
1790
1791 if (!mem_cgroup_disabled())
1792 return mem_cgroup_inactive_anon_is_low(lruvec);
1793
1794 return inactive_anon_is_low_global(lruvec_zone(lruvec));
1795 }
1796 #else
1797 static inline int inactive_anon_is_low(struct lruvec *lruvec)
1798 {
1799 return 0;
1800 }
1801 #endif
1802
1803 /**
1804 * inactive_file_is_low - check if file pages need to be deactivated
1805 * @lruvec: LRU vector to check
1806 *
1807 * When the system is doing streaming IO, memory pressure here
1808 * ensures that active file pages get deactivated, until more
1809 * than half of the file pages are on the inactive list.
1810 *
1811 * Once we get to that situation, protect the system's working
1812 * set from being evicted by disabling active file page aging.
1813 *
1814 * This uses a different ratio than the anonymous pages, because
1815 * the page cache uses a use-once replacement algorithm.
1816 */
1817 static int inactive_file_is_low(struct lruvec *lruvec)
1818 {
1819 unsigned long inactive;
1820 unsigned long active;
1821
1822 inactive = get_lru_size(lruvec, LRU_INACTIVE_FILE);
1823 active = get_lru_size(lruvec, LRU_ACTIVE_FILE);
1824
1825 return active > inactive;
1826 }
1827
1828 static int inactive_list_is_low(struct lruvec *lruvec, enum lru_list lru)
1829 {
1830 if (is_file_lru(lru))
1831 return inactive_file_is_low(lruvec);
1832 else
1833 return inactive_anon_is_low(lruvec);
1834 }
1835
1836 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
1837 struct lruvec *lruvec, struct scan_control *sc)
1838 {
1839 if (is_active_lru(lru)) {
1840 if (inactive_list_is_low(lruvec, lru))
1841 shrink_active_list(nr_to_scan, lruvec, sc, lru);
1842 return 0;
1843 }
1844
1845 return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
1846 }
1847
1848 static int vmscan_swappiness(struct scan_control *sc)
1849 {
1850 if (global_reclaim(sc))
1851 return vm_swappiness;
1852 return mem_cgroup_swappiness(sc->target_mem_cgroup);
1853 }
1854
1855 enum scan_balance {
1856 SCAN_EQUAL,
1857 SCAN_FRACT,
1858 SCAN_ANON,
1859 SCAN_FILE,
1860 };
1861
1862 /*
1863 * Determine how aggressively the anon and file LRU lists should be
1864 * scanned. The relative value of each set of LRU lists is determined
1865 * by looking at the fraction of the pages scanned we did rotate back
1866 * onto the active list instead of evict.
1867 *
1868 * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan
1869 * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan
1870 */
1871 static void get_scan_count(struct lruvec *lruvec, struct scan_control *sc,
1872 unsigned long *nr)
1873 {
1874 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1875 u64 fraction[2];
1876 u64 denominator = 0; /* gcc */
1877 struct zone *zone = lruvec_zone(lruvec);
1878 unsigned long anon_prio, file_prio;
1879 enum scan_balance scan_balance;
1880 unsigned long anon, file;
1881 bool force_scan = false;
1882 unsigned long ap, fp;
1883 enum lru_list lru;
1884 bool some_scanned;
1885 int pass;
1886
1887 /*
1888 * If the zone or memcg is small, nr[l] can be 0. This
1889 * results in no scanning on this priority and a potential
1890 * priority drop. Global direct reclaim can go to the next
1891 * zone and tends to have no problems. Global kswapd is for
1892 * zone balancing and it needs to scan a minimum amount. When
1893 * reclaiming for a memcg, a priority drop can cause high
1894 * latencies, so it's better to scan a minimum amount there as
1895 * well.
1896 */
1897 if (current_is_kswapd() && !zone_reclaimable(zone))
1898 force_scan = true;
1899 if (!global_reclaim(sc))
1900 force_scan = true;
1901
1902 /* If we have no swap space, do not bother scanning anon pages. */
1903 if (!sc->may_swap || (get_nr_swap_pages() <= 0)) {
1904 scan_balance = SCAN_FILE;
1905 goto out;
1906 }
1907
1908 /*
1909 * Global reclaim will swap to prevent OOM even with no
1910 * swappiness, but memcg users want to use this knob to
1911 * disable swapping for individual groups completely when
1912 * using the memory controller's swap limit feature would be
1913 * too expensive.
1914 */
1915 if (!global_reclaim(sc) && !vmscan_swappiness(sc)) {
1916 scan_balance = SCAN_FILE;
1917 goto out;
1918 }
1919
1920 /*
1921 * Do not apply any pressure balancing cleverness when the
1922 * system is close to OOM, scan both anon and file equally
1923 * (unless the swappiness setting disagrees with swapping).
1924 */
1925 if (!sc->priority && vmscan_swappiness(sc)) {
1926 scan_balance = SCAN_EQUAL;
1927 goto out;
1928 }
1929
1930 anon = get_lru_size(lruvec, LRU_ACTIVE_ANON) +
1931 get_lru_size(lruvec, LRU_INACTIVE_ANON);
1932 file = get_lru_size(lruvec, LRU_ACTIVE_FILE) +
1933 get_lru_size(lruvec, LRU_INACTIVE_FILE);
1934
1935 /*
1936 * Prevent the reclaimer from falling into the cache trap: as
1937 * cache pages start out inactive, every cache fault will tip
1938 * the scan balance towards the file LRU. And as the file LRU
1939 * shrinks, so does the window for rotation from references.
1940 * This means we have a runaway feedback loop where a tiny
1941 * thrashing file LRU becomes infinitely more attractive than
1942 * anon pages. Try to detect this based on file LRU size.
1943 */
1944 if (global_reclaim(sc)) {
1945 unsigned long free = zone_page_state(zone, NR_FREE_PAGES);
1946
1947 if (unlikely(file + free <= high_wmark_pages(zone))) {
1948 scan_balance = SCAN_ANON;
1949 goto out;
1950 }
1951 }
1952
1953 /*
1954 * There is enough inactive page cache, do not reclaim
1955 * anything from the anonymous working set right now.
1956 */
1957 if (!inactive_file_is_low(lruvec)) {
1958 scan_balance = SCAN_FILE;
1959 goto out;
1960 }
1961
1962 scan_balance = SCAN_FRACT;
1963
1964 /*
1965 * With swappiness at 100, anonymous and file have the same priority.
1966 * This scanning priority is essentially the inverse of IO cost.
1967 */
1968 anon_prio = vmscan_swappiness(sc);
1969 file_prio = 200 - anon_prio;
1970
1971 /*
1972 * OK, so we have swap space and a fair amount of page cache
1973 * pages. We use the recently rotated / recently scanned
1974 * ratios to determine how valuable each cache is.
1975 *
1976 * Because workloads change over time (and to avoid overflow)
1977 * we keep these statistics as a floating average, which ends
1978 * up weighing recent references more than old ones.
1979 *
1980 * anon in [0], file in [1]
1981 */
1982 spin_lock_irq(&zone->lru_lock);
1983 if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
1984 reclaim_stat->recent_scanned[0] /= 2;
1985 reclaim_stat->recent_rotated[0] /= 2;
1986 }
1987
1988 if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
1989 reclaim_stat->recent_scanned[1] /= 2;
1990 reclaim_stat->recent_rotated[1] /= 2;
1991 }
1992
1993 /*
1994 * The amount of pressure on anon vs file pages is inversely
1995 * proportional to the fraction of recently scanned pages on
1996 * each list that were recently referenced and in active use.
1997 */
1998 ap = anon_prio * (reclaim_stat->recent_scanned[0] + 1);
1999 ap /= reclaim_stat->recent_rotated[0] + 1;
2000
2001 fp = file_prio * (reclaim_stat->recent_scanned[1] + 1);
2002 fp /= reclaim_stat->recent_rotated[1] + 1;
2003 spin_unlock_irq(&zone->lru_lock);
2004
2005 fraction[0] = ap;
2006 fraction[1] = fp;
2007 denominator = ap + fp + 1;
2008 out:
2009 some_scanned = false;
2010 /* Only use force_scan on second pass. */
2011 for (pass = 0; !some_scanned && pass < 2; pass++) {
2012 for_each_evictable_lru(lru) {
2013 int file = is_file_lru(lru);
2014 unsigned long size;
2015 unsigned long scan;
2016
2017 size = get_lru_size(lruvec, lru);
2018 scan = size >> sc->priority;
2019
2020 if (!scan && pass && force_scan)
2021 scan = min(size, SWAP_CLUSTER_MAX);
2022
2023 switch (scan_balance) {
2024 case SCAN_EQUAL:
2025 /* Scan lists relative to size */
2026 break;
2027 case SCAN_FRACT:
2028 /*
2029 * Scan types proportional to swappiness and
2030 * their relative recent reclaim efficiency.
2031 */
2032 scan = div64_u64(scan * fraction[file],
2033 denominator);
2034 break;
2035 case SCAN_FILE:
2036 case SCAN_ANON:
2037 /* Scan one type exclusively */
2038 if ((scan_balance == SCAN_FILE) != file)
2039 scan = 0;
2040 break;
2041 default:
2042 /* Look ma, no brain */
2043 BUG();
2044 }
2045 nr[lru] = scan;
2046 /*
2047 * Skip the second pass and don't force_scan,
2048 * if we found something to scan.
2049 */
2050 some_scanned |= !!scan;
2051 }
2052 }
2053 }
2054
2055 /*
2056 * This is a basic per-zone page freer. Used by both kswapd and direct reclaim.
2057 */
2058 static void shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
2059 {
2060 unsigned long nr[NR_LRU_LISTS];
2061 unsigned long targets[NR_LRU_LISTS];
2062 unsigned long nr_to_scan;
2063 enum lru_list lru;
2064 unsigned long nr_reclaimed = 0;
2065 unsigned long nr_to_reclaim = sc->nr_to_reclaim;
2066 struct blk_plug plug;
2067 bool scan_adjusted;
2068
2069 get_scan_count(lruvec, sc, nr);
2070
2071 /* Record the original scan target for proportional adjustments later */
2072 memcpy(targets, nr, sizeof(nr));
2073
2074 /*
2075 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal
2076 * event that can occur when there is little memory pressure e.g.
2077 * multiple streaming readers/writers. Hence, we do not abort scanning
2078 * when the requested number of pages are reclaimed when scanning at
2079 * DEF_PRIORITY on the assumption that the fact we are direct
2080 * reclaiming implies that kswapd is not keeping up and it is best to
2081 * do a batch of work at once. For memcg reclaim one check is made to
2082 * abort proportional reclaim if either the file or anon lru has already
2083 * dropped to zero at the first pass.
2084 */
2085 scan_adjusted = (global_reclaim(sc) && !current_is_kswapd() &&
2086 sc->priority == DEF_PRIORITY);
2087
2088 blk_start_plug(&plug);
2089 while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
2090 nr[LRU_INACTIVE_FILE]) {
2091 unsigned long nr_anon, nr_file, percentage;
2092 unsigned long nr_scanned;
2093
2094 for_each_evictable_lru(lru) {
2095 if (nr[lru]) {
2096 nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX);
2097 nr[lru] -= nr_to_scan;
2098
2099 nr_reclaimed += shrink_list(lru, nr_to_scan,
2100 lruvec, sc);
2101 }
2102 }
2103
2104 if (nr_reclaimed < nr_to_reclaim || scan_adjusted)
2105 continue;
2106
2107 /*
2108 * For kswapd and memcg, reclaim at least the number of pages
2109 * requested. Ensure that the anon and file LRUs are scanned
2110 * proportionally what was requested by get_scan_count(). We
2111 * stop reclaiming one LRU and reduce the amount scanning
2112 * proportional to the original scan target.
2113 */
2114 nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE];
2115 nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON];
2116
2117 /*
2118 * It's just vindictive to attack the larger once the smaller
2119 * has gone to zero. And given the way we stop scanning the
2120 * smaller below, this makes sure that we only make one nudge
2121 * towards proportionality once we've got nr_to_reclaim.
2122 */
2123 if (!nr_file || !nr_anon)
2124 break;
2125
2126 if (nr_file > nr_anon) {
2127 unsigned long scan_target = targets[LRU_INACTIVE_ANON] +
2128 targets[LRU_ACTIVE_ANON] + 1;
2129 lru = LRU_BASE;
2130 percentage = nr_anon * 100 / scan_target;
2131 } else {
2132 unsigned long scan_target = targets[LRU_INACTIVE_FILE] +
2133 targets[LRU_ACTIVE_FILE] + 1;
2134 lru = LRU_FILE;
2135 percentage = nr_file * 100 / scan_target;
2136 }
2137
2138 /* Stop scanning the smaller of the LRU */
2139 nr[lru] = 0;
2140 nr[lru + LRU_ACTIVE] = 0;
2141
2142 /*
2143 * Recalculate the other LRU scan count based on its original
2144 * scan target and the percentage scanning already complete
2145 */
2146 lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE;
2147 nr_scanned = targets[lru] - nr[lru];
2148 nr[lru] = targets[lru] * (100 - percentage) / 100;
2149 nr[lru] -= min(nr[lru], nr_scanned);
2150
2151 lru += LRU_ACTIVE;
2152 nr_scanned = targets[lru] - nr[lru];
2153 nr[lru] = targets[lru] * (100 - percentage) / 100;
2154 nr[lru] -= min(nr[lru], nr_scanned);
2155
2156 scan_adjusted = true;
2157 }
2158 blk_finish_plug(&plug);
2159 sc->nr_reclaimed += nr_reclaimed;
2160
2161 /*
2162 * Even if we did not try to evict anon pages at all, we want to
2163 * rebalance the anon lru active/inactive ratio.
2164 */
2165 if (inactive_anon_is_low(lruvec))
2166 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
2167 sc, LRU_ACTIVE_ANON);
2168
2169 throttle_vm_writeout(sc->gfp_mask);
2170 }
2171
2172 /* Use reclaim/compaction for costly allocs or under memory pressure */
2173 static bool in_reclaim_compaction(struct scan_control *sc)
2174 {
2175 if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
2176 (sc->order > PAGE_ALLOC_COSTLY_ORDER ||
2177 sc->priority < DEF_PRIORITY - 2))
2178 return true;
2179
2180 return false;
2181 }
2182
2183 /*
2184 * Reclaim/compaction is used for high-order allocation requests. It reclaims
2185 * order-0 pages before compacting the zone. should_continue_reclaim() returns
2186 * true if more pages should be reclaimed such that when the page allocator
2187 * calls try_to_compact_zone() that it will have enough free pages to succeed.
2188 * It will give up earlier than that if there is difficulty reclaiming pages.
2189 */
2190 static inline bool should_continue_reclaim(struct zone *zone,
2191 unsigned long nr_reclaimed,
2192 unsigned long nr_scanned,
2193 struct scan_control *sc)
2194 {
2195 unsigned long pages_for_compaction;
2196 unsigned long inactive_lru_pages;
2197
2198 /* If not in reclaim/compaction mode, stop */
2199 if (!in_reclaim_compaction(sc))
2200 return false;
2201
2202 /* Consider stopping depending on scan and reclaim activity */
2203 if (sc->gfp_mask & __GFP_REPEAT) {
2204 /*
2205 * For __GFP_REPEAT allocations, stop reclaiming if the
2206 * full LRU list has been scanned and we are still failing
2207 * to reclaim pages. This full LRU scan is potentially
2208 * expensive but a __GFP_REPEAT caller really wants to succeed
2209 */
2210 if (!nr_reclaimed && !nr_scanned)
2211 return false;
2212 } else {
2213 /*
2214 * For non-__GFP_REPEAT allocations which can presumably
2215 * fail without consequence, stop if we failed to reclaim
2216 * any pages from the last SWAP_CLUSTER_MAX number of
2217 * pages that were scanned. This will return to the
2218 * caller faster at the risk reclaim/compaction and
2219 * the resulting allocation attempt fails
2220 */
2221 if (!nr_reclaimed)
2222 return false;
2223 }
2224
2225 /*
2226 * If we have not reclaimed enough pages for compaction and the
2227 * inactive lists are large enough, continue reclaiming
2228 */
2229 pages_for_compaction = (2UL << sc->order);
2230 inactive_lru_pages = zone_page_state(zone, NR_INACTIVE_FILE);
2231 if (get_nr_swap_pages() > 0)
2232 inactive_lru_pages += zone_page_state(zone, NR_INACTIVE_ANON);
2233 if (sc->nr_reclaimed < pages_for_compaction &&
2234 inactive_lru_pages > pages_for_compaction)
2235 return true;
2236
2237 /* If compaction would go ahead or the allocation would succeed, stop */
2238 switch (compaction_suitable(zone, sc->order)) {
2239 case COMPACT_PARTIAL:
2240 case COMPACT_CONTINUE:
2241 return false;
2242 default:
2243 return true;
2244 }
2245 }
2246
2247 static void shrink_zone(struct zone *zone, struct scan_control *sc)
2248 {
2249 unsigned long nr_reclaimed, nr_scanned;
2250
2251 do {
2252 struct mem_cgroup *root = sc->target_mem_cgroup;
2253 struct mem_cgroup_reclaim_cookie reclaim = {
2254 .zone = zone,
2255 .priority = sc->priority,
2256 };
2257 struct mem_cgroup *memcg;
2258
2259 nr_reclaimed = sc->nr_reclaimed;
2260 nr_scanned = sc->nr_scanned;
2261
2262 memcg = mem_cgroup_iter(root, NULL, &reclaim);
2263 do {
2264 struct lruvec *lruvec;
2265
2266 lruvec = mem_cgroup_zone_lruvec(zone, memcg);
2267
2268 shrink_lruvec(lruvec, sc);
2269
2270 /*
2271 * Direct reclaim and kswapd have to scan all memory
2272 * cgroups to fulfill the overall scan target for the
2273 * zone.
2274 *
2275 * Limit reclaim, on the other hand, only cares about
2276 * nr_to_reclaim pages to be reclaimed and it will
2277 * retry with decreasing priority if one round over the
2278 * whole hierarchy is not sufficient.
2279 */
2280 if (!global_reclaim(sc) &&
2281 sc->nr_reclaimed >= sc->nr_to_reclaim) {
2282 mem_cgroup_iter_break(root, memcg);
2283 break;
2284 }
2285 memcg = mem_cgroup_iter(root, memcg, &reclaim);
2286 } while (memcg);
2287
2288 vmpressure(sc->gfp_mask, sc->target_mem_cgroup,
2289 sc->nr_scanned - nr_scanned,
2290 sc->nr_reclaimed - nr_reclaimed);
2291
2292 } while (should_continue_reclaim(zone, sc->nr_reclaimed - nr_reclaimed,
2293 sc->nr_scanned - nr_scanned, sc));
2294 }
2295
2296 /* Returns true if compaction should go ahead for a high-order request */
2297 static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
2298 {
2299 unsigned long balance_gap, watermark;
2300 bool watermark_ok;
2301
2302 /* Do not consider compaction for orders reclaim is meant to satisfy */
2303 if (sc->order <= PAGE_ALLOC_COSTLY_ORDER)
2304 return false;
2305
2306 /*
2307 * Compaction takes time to run and there are potentially other
2308 * callers using the pages just freed. Continue reclaiming until
2309 * there is a buffer of free pages available to give compaction
2310 * a reasonable chance of completing and allocating the page
2311 */
2312 balance_gap = min(low_wmark_pages(zone), DIV_ROUND_UP(
2313 zone->managed_pages, KSWAPD_ZONE_BALANCE_GAP_RATIO));
2314 watermark = high_wmark_pages(zone) + balance_gap + (2UL << sc->order);
2315 watermark_ok = zone_watermark_ok_safe(zone, 0, watermark, 0, 0);
2316
2317 /*
2318 * If compaction is deferred, reclaim up to a point where
2319 * compaction will have a chance of success when re-enabled
2320 */
2321 if (compaction_deferred(zone, sc->order))
2322 return watermark_ok;
2323
2324 /* If compaction is not ready to start, keep reclaiming */
2325 if (!compaction_suitable(zone, sc->order))
2326 return false;
2327
2328 return watermark_ok;
2329 }
2330
2331 /*
2332 * This is the direct reclaim path, for page-allocating processes. We only
2333 * try to reclaim pages from zones which will satisfy the caller's allocation
2334 * request.
2335 *
2336 * We reclaim from a zone even if that zone is over high_wmark_pages(zone).
2337 * Because:
2338 * a) The caller may be trying to free *extra* pages to satisfy a higher-order
2339 * allocation or
2340 * b) The target zone may be at high_wmark_pages(zone) but the lower zones
2341 * must go *over* high_wmark_pages(zone) to satisfy the `incremental min'
2342 * zone defense algorithm.
2343 *
2344 * If a zone is deemed to be full of pinned pages then just give it a light
2345 * scan then give up on it.
2346 *
2347 * This function returns true if a zone is being reclaimed for a costly
2348 * high-order allocation and compaction is ready to begin. This indicates to
2349 * the caller that it should consider retrying the allocation instead of
2350 * further reclaim.
2351 */
2352 static bool shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
2353 {
2354 struct zoneref *z;
2355 struct zone *zone;
2356 unsigned long nr_soft_reclaimed;
2357 unsigned long nr_soft_scanned;
2358 unsigned long lru_pages = 0;
2359 bool aborted_reclaim = false;
2360 struct reclaim_state *reclaim_state = current->reclaim_state;
2361 gfp_t orig_mask;
2362 struct shrink_control shrink = {
2363 .gfp_mask = sc->gfp_mask,
2364 };
2365 enum zone_type requested_highidx = gfp_zone(sc->gfp_mask);
2366
2367 /*
2368 * If the number of buffer_heads in the machine exceeds the maximum
2369 * allowed level, force direct reclaim to scan the highmem zone as
2370 * highmem pages could be pinning lowmem pages storing buffer_heads
2371 */
2372 orig_mask = sc->gfp_mask;
2373 if (buffer_heads_over_limit)
2374 sc->gfp_mask |= __GFP_HIGHMEM;
2375
2376 nodes_clear(shrink.nodes_to_scan);
2377
2378 for_each_zone_zonelist_nodemask(zone, z, zonelist,
2379 gfp_zone(sc->gfp_mask), sc->nodemask) {
2380 if (!populated_zone(zone))
2381 continue;
2382 /*
2383 * Take care memory controller reclaiming has small influence
2384 * to global LRU.
2385 */
2386 if (global_reclaim(sc)) {
2387 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2388 continue;
2389
2390 lru_pages += zone_reclaimable_pages(zone);
2391 node_set(zone_to_nid(zone), shrink.nodes_to_scan);
2392
2393 if (sc->priority != DEF_PRIORITY &&
2394 !zone_reclaimable(zone))
2395 continue; /* Let kswapd poll it */
2396 if (IS_ENABLED(CONFIG_COMPACTION)) {
2397 /*
2398 * If we already have plenty of memory free for
2399 * compaction in this zone, don't free any more.
2400 * Even though compaction is invoked for any
2401 * non-zero order, only frequent costly order
2402 * reclamation is disruptive enough to become a
2403 * noticeable problem, like transparent huge
2404 * page allocations.
2405 */
2406 if ((zonelist_zone_idx(z) <= requested_highidx)
2407 && compaction_ready(zone, sc)) {
2408 aborted_reclaim = true;
2409 continue;
2410 }
2411 }
2412 /*
2413 * This steals pages from memory cgroups over softlimit
2414 * and returns the number of reclaimed pages and
2415 * scanned pages. This works for global memory pressure
2416 * and balancing, not for a memcg's limit.
2417 */
2418 nr_soft_scanned = 0;
2419 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
2420 sc->order, sc->gfp_mask,
2421 &nr_soft_scanned);
2422 sc->nr_reclaimed += nr_soft_reclaimed;
2423 sc->nr_scanned += nr_soft_scanned;
2424 /* need some check for avoid more shrink_zone() */
2425 }
2426
2427 shrink_zone(zone, sc);
2428 }
2429
2430 /*
2431 * Don't shrink slabs when reclaiming memory from over limit cgroups
2432 * but do shrink slab at least once when aborting reclaim for
2433 * compaction to avoid unevenly scanning file/anon LRU pages over slab
2434 * pages.
2435 */
2436 if (global_reclaim(sc)) {
2437 shrink_slab(&shrink, sc->nr_scanned, lru_pages);
2438 if (reclaim_state) {
2439 sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2440 reclaim_state->reclaimed_slab = 0;
2441 }
2442 }
2443
2444 /*
2445 * Restore to original mask to avoid the impact on the caller if we
2446 * promoted it to __GFP_HIGHMEM.
2447 */
2448 sc->gfp_mask = orig_mask;
2449
2450 return aborted_reclaim;
2451 }
2452
2453 /* All zones in zonelist are unreclaimable? */
2454 static bool all_unreclaimable(struct zonelist *zonelist,
2455 struct scan_control *sc)
2456 {
2457 struct zoneref *z;
2458 struct zone *zone;
2459
2460 for_each_zone_zonelist_nodemask(zone, z, zonelist,
2461 gfp_zone(sc->gfp_mask), sc->nodemask) {
2462 if (!populated_zone(zone))
2463 continue;
2464 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2465 continue;
2466 if (zone_reclaimable(zone))
2467 return false;
2468 }
2469
2470 return true;
2471 }
2472
2473 /*
2474 * This is the main entry point to direct page reclaim.
2475 *
2476 * If a full scan of the inactive list fails to free enough memory then we
2477 * are "out of memory" and something needs to be killed.
2478 *
2479 * If the caller is !__GFP_FS then the probability of a failure is reasonably
2480 * high - the zone may be full of dirty or under-writeback pages, which this
2481 * caller can't do much about. We kick the writeback threads and take explicit
2482 * naps in the hope that some of these pages can be written. But if the
2483 * allocating task holds filesystem locks which prevent writeout this might not
2484 * work, and the allocation attempt will fail.
2485 *
2486 * returns: 0, if no pages reclaimed
2487 * else, the number of pages reclaimed
2488 */
2489 static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
2490 struct scan_control *sc)
2491 {
2492 unsigned long total_scanned = 0;
2493 unsigned long writeback_threshold;
2494 bool aborted_reclaim;
2495
2496 delayacct_freepages_start();
2497
2498 if (global_reclaim(sc))
2499 count_vm_event(ALLOCSTALL);
2500
2501 do {
2502 vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup,
2503 sc->priority);
2504 sc->nr_scanned = 0;
2505 aborted_reclaim = shrink_zones(zonelist, sc);
2506
2507 total_scanned += sc->nr_scanned;
2508 if (sc->nr_reclaimed >= sc->nr_to_reclaim)
2509 goto out;
2510
2511 /*
2512 * If we're getting trouble reclaiming, start doing
2513 * writepage even in laptop mode.
2514 */
2515 if (sc->priority < DEF_PRIORITY - 2)
2516 sc->may_writepage = 1;
2517
2518 /*
2519 * Try to write back as many pages as we just scanned. This
2520 * tends to cause slow streaming writers to write data to the
2521 * disk smoothly, at the dirtying rate, which is nice. But
2522 * that's undesirable in laptop mode, where we *want* lumpy
2523 * writeout. So in laptop mode, write out the whole world.
2524 */
2525 writeback_threshold = sc->nr_to_reclaim + sc->nr_to_reclaim / 2;
2526 if (total_scanned > writeback_threshold) {
2527 wakeup_flusher_threads(laptop_mode ? 0 : total_scanned,
2528 WB_REASON_TRY_TO_FREE_PAGES);
2529 sc->may_writepage = 1;
2530 }
2531 } while (--sc->priority >= 0 && !aborted_reclaim);
2532
2533 out:
2534 delayacct_freepages_end();
2535
2536 if (sc->nr_reclaimed)
2537 return sc->nr_reclaimed;
2538
2539 /*
2540 * As hibernation is going on, kswapd is freezed so that it can't mark
2541 * the zone into all_unreclaimable. Thus bypassing all_unreclaimable
2542 * check.
2543 */
2544 if (oom_killer_disabled)
2545 return 0;
2546
2547 /* Aborted reclaim to try compaction? don't OOM, then */
2548 if (aborted_reclaim)
2549 return 1;
2550
2551 /* top priority shrink_zones still had more to do? don't OOM, then */
2552 if (global_reclaim(sc) && !all_unreclaimable(zonelist, sc))
2553 return 1;
2554
2555 return 0;
2556 }
2557
2558 static bool pfmemalloc_watermark_ok(pg_data_t *pgdat)
2559 {
2560 struct zone *zone;
2561 unsigned long pfmemalloc_reserve = 0;
2562 unsigned long free_pages = 0;
2563 int i;
2564 bool wmark_ok;
2565
2566 for (i = 0; i <= ZONE_NORMAL; i++) {
2567 zone = &pgdat->node_zones[i];
2568 if (!populated_zone(zone))
2569 continue;
2570
2571 pfmemalloc_reserve += min_wmark_pages(zone);
2572 free_pages += zone_page_state(zone, NR_FREE_PAGES);
2573 }
2574
2575 /* If there are no reserves (unexpected config) then do not throttle */
2576 if (!pfmemalloc_reserve)
2577 return true;
2578
2579 wmark_ok = free_pages > pfmemalloc_reserve / 2;
2580
2581 /* kswapd must be awake if processes are being throttled */
2582 if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
2583 pgdat->classzone_idx = min(pgdat->classzone_idx,
2584 (enum zone_type)ZONE_NORMAL);
2585 wake_up_interruptible(&pgdat->kswapd_wait);
2586 }
2587
2588 return wmark_ok;
2589 }
2590
2591 /*
2592 * Throttle direct reclaimers if backing storage is backed by the network
2593 * and the PFMEMALLOC reserve for the preferred node is getting dangerously
2594 * depleted. kswapd will continue to make progress and wake the processes
2595 * when the low watermark is reached.
2596 *
2597 * Returns true if a fatal signal was delivered during throttling. If this
2598 * happens, the page allocator should not consider triggering the OOM killer.
2599 */
2600 static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
2601 nodemask_t *nodemask)
2602 {
2603 struct zoneref *z;
2604 struct zone *zone;
2605 pg_data_t *pgdat = NULL;
2606
2607 /*
2608 * Kernel threads should not be throttled as they may be indirectly
2609 * responsible for cleaning pages necessary for reclaim to make forward
2610 * progress. kjournald for example may enter direct reclaim while
2611 * committing a transaction where throttling it could forcing other
2612 * processes to block on log_wait_commit().
2613 */
2614 if (current->flags & PF_KTHREAD)
2615 goto out;
2616
2617 /*
2618 * If a fatal signal is pending, this process should not throttle.
2619 * It should return quickly so it can exit and free its memory
2620 */
2621 if (fatal_signal_pending(current))
2622 goto out;
2623
2624 /*
2625 * Check if the pfmemalloc reserves are ok by finding the first node
2626 * with a usable ZONE_NORMAL or lower zone. The expectation is that
2627 * GFP_KERNEL will be required for allocating network buffers when
2628 * swapping over the network so ZONE_HIGHMEM is unusable.
2629 *
2630 * Throttling is based on the first usable node and throttled processes
2631 * wait on a queue until kswapd makes progress and wakes them. There
2632 * is an affinity then between processes waking up and where reclaim
2633 * progress has been made assuming the process wakes on the same node.
2634 * More importantly, processes running on remote nodes will not compete
2635 * for remote pfmemalloc reserves and processes on different nodes
2636 * should make reasonable progress.
2637 */
2638 for_each_zone_zonelist_nodemask(zone, z, zonelist,
2639 gfp_mask, nodemask) {
2640 if (zone_idx(zone) > ZONE_NORMAL)
2641 continue;
2642
2643 /* Throttle based on the first usable node */
2644 pgdat = zone->zone_pgdat;
2645 if (pfmemalloc_watermark_ok(pgdat))
2646 goto out;
2647 break;
2648 }
2649
2650 /* If no zone was usable by the allocation flags then do not throttle */
2651 if (!pgdat)
2652 goto out;
2653
2654 /* Account for the throttling */
2655 count_vm_event(PGSCAN_DIRECT_THROTTLE);
2656
2657 /*
2658 * If the caller cannot enter the filesystem, it's possible that it
2659 * is due to the caller holding an FS lock or performing a journal
2660 * transaction in the case of a filesystem like ext[3|4]. In this case,
2661 * it is not safe to block on pfmemalloc_wait as kswapd could be
2662 * blocked waiting on the same lock. Instead, throttle for up to a
2663 * second before continuing.
2664 */
2665 if (!(gfp_mask & __GFP_FS)) {
2666 wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
2667 pfmemalloc_watermark_ok(pgdat), HZ);
2668
2669 goto check_pending;
2670 }
2671
2672 /* Throttle until kswapd wakes the process */
2673 wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
2674 pfmemalloc_watermark_ok(pgdat));
2675
2676 check_pending:
2677 if (fatal_signal_pending(current))
2678 return true;
2679
2680 out:
2681 return false;
2682 }
2683
2684 unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
2685 gfp_t gfp_mask, nodemask_t *nodemask)
2686 {
2687 unsigned long nr_reclaimed;
2688 struct scan_control sc = {
2689 .gfp_mask = (gfp_mask = memalloc_noio_flags(gfp_mask)),
2690 .may_writepage = !laptop_mode,
2691 .nr_to_reclaim = SWAP_CLUSTER_MAX,
2692 .may_unmap = 1,
2693 .may_swap = 1,
2694 .order = order,
2695 .priority = DEF_PRIORITY,
2696 .target_mem_cgroup = NULL,
2697 .nodemask = nodemask,
2698 };
2699
2700 /*
2701 * Do not enter reclaim if fatal signal was delivered while throttled.
2702 * 1 is returned so that the page allocator does not OOM kill at this
2703 * point.
2704 */
2705 if (throttle_direct_reclaim(gfp_mask, zonelist, nodemask))
2706 return 1;
2707
2708 trace_mm_vmscan_direct_reclaim_begin(order,
2709 sc.may_writepage,
2710 gfp_mask);
2711
2712 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
2713
2714 trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
2715
2716 return nr_reclaimed;
2717 }
2718
2719 #ifdef CONFIG_MEMCG
2720
2721 unsigned long mem_cgroup_shrink_node_zone(struct mem_cgroup *memcg,
2722 gfp_t gfp_mask, bool noswap,
2723 struct zone *zone,
2724 unsigned long *nr_scanned)
2725 {
2726 struct scan_control sc = {
2727 .nr_scanned = 0,
2728 .nr_to_reclaim = SWAP_CLUSTER_MAX,
2729 .may_writepage = !laptop_mode,
2730 .may_unmap = 1,
2731 .may_swap = !noswap,
2732 .order = 0,
2733 .priority = 0,
2734 .target_mem_cgroup = memcg,
2735 };
2736 struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, memcg);
2737
2738 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2739 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
2740
2741 trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
2742 sc.may_writepage,
2743 sc.gfp_mask);
2744
2745 /*
2746 * NOTE: Although we can get the priority field, using it
2747 * here is not a good idea, since it limits the pages we can scan.
2748 * if we don't reclaim here, the shrink_zone from balance_pgdat
2749 * will pick up pages from other mem cgroup's as well. We hack
2750 * the priority and make it zero.
2751 */
2752 shrink_lruvec(lruvec, &sc);
2753
2754 trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
2755
2756 *nr_scanned = sc.nr_scanned;
2757 return sc.nr_reclaimed;
2758 }
2759
2760 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
2761 gfp_t gfp_mask,
2762 bool noswap)
2763 {
2764 struct zonelist *zonelist;
2765 unsigned long nr_reclaimed;
2766 int nid;
2767 struct scan_control sc = {
2768 .may_writepage = !laptop_mode,
2769 .may_unmap = 1,
2770 .may_swap = !noswap,
2771 .nr_to_reclaim = SWAP_CLUSTER_MAX,
2772 .order = 0,
2773 .priority = DEF_PRIORITY,
2774 .target_mem_cgroup = memcg,
2775 .nodemask = NULL, /* we don't care the placement */
2776 .gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2777 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
2778 };
2779
2780 /*
2781 * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
2782 * take care of from where we get pages. So the node where we start the
2783 * scan does not need to be the current node.
2784 */
2785 nid = mem_cgroup_select_victim_node(memcg);
2786
2787 zonelist = NODE_DATA(nid)->node_zonelists;
2788
2789 trace_mm_vmscan_memcg_reclaim_begin(0,
2790 sc.may_writepage,
2791 sc.gfp_mask);
2792
2793 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
2794
2795 trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
2796
2797 return nr_reclaimed;
2798 }
2799 #endif
2800
2801 static void age_active_anon(struct zone *zone, struct scan_control *sc)
2802 {
2803 struct mem_cgroup *memcg;
2804
2805 if (!total_swap_pages)
2806 return;
2807
2808 memcg = mem_cgroup_iter(NULL, NULL, NULL);
2809 do {
2810 struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, memcg);
2811
2812 if (inactive_anon_is_low(lruvec))
2813 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
2814 sc, LRU_ACTIVE_ANON);
2815
2816 memcg = mem_cgroup_iter(NULL, memcg, NULL);
2817 } while (memcg);
2818 }
2819
2820 static bool zone_balanced(struct zone *zone, int order,
2821 unsigned long balance_gap, int classzone_idx)
2822 {
2823 if (!zone_watermark_ok_safe(zone, order, high_wmark_pages(zone) +
2824 balance_gap, classzone_idx, 0))
2825 return false;
2826
2827 if (IS_ENABLED(CONFIG_COMPACTION) && order &&
2828 !compaction_suitable(zone, order))
2829 return false;
2830
2831 return true;
2832 }
2833
2834 /*
2835 * pgdat_balanced() is used when checking if a node is balanced.
2836 *
2837 * For order-0, all zones must be balanced!
2838 *
2839 * For high-order allocations only zones that meet watermarks and are in a
2840 * zone allowed by the callers classzone_idx are added to balanced_pages. The
2841 * total of balanced pages must be at least 25% of the zones allowed by
2842 * classzone_idx for the node to be considered balanced. Forcing all zones to
2843 * be balanced for high orders can cause excessive reclaim when there are
2844 * imbalanced zones.
2845 * The choice of 25% is due to
2846 * o a 16M DMA zone that is balanced will not balance a zone on any
2847 * reasonable sized machine
2848 * o On all other machines, the top zone must be at least a reasonable
2849 * percentage of the middle zones. For example, on 32-bit x86, highmem
2850 * would need to be at least 256M for it to be balance a whole node.
2851 * Similarly, on x86-64 the Normal zone would need to be at least 1G
2852 * to balance a node on its own. These seemed like reasonable ratios.
2853 */
2854 static bool pgdat_balanced(pg_data_t *pgdat, int order, int classzone_idx)
2855 {
2856 unsigned long managed_pages = 0;
2857 unsigned long balanced_pages = 0;
2858 int i;
2859
2860 /* Check the watermark levels */
2861 for (i = 0; i <= classzone_idx; i++) {
2862 struct zone *zone = pgdat->node_zones + i;
2863
2864 if (!populated_zone(zone))
2865 continue;
2866
2867 managed_pages += zone->managed_pages;
2868
2869 /*
2870 * A special case here:
2871 *
2872 * balance_pgdat() skips over all_unreclaimable after
2873 * DEF_PRIORITY. Effectively, it considers them balanced so
2874 * they must be considered balanced here as well!
2875 */
2876 if (!zone_reclaimable(zone)) {
2877 balanced_pages += zone->managed_pages;
2878 continue;
2879 }
2880
2881 if (zone_balanced(zone, order, 0, i))
2882 balanced_pages += zone->managed_pages;
2883 else if (!order)
2884 return false;
2885 }
2886
2887 if (order)
2888 return balanced_pages >= (managed_pages >> 2);
2889 else
2890 return true;
2891 }
2892
2893 /*
2894 * Prepare kswapd for sleeping. This verifies that there are no processes
2895 * waiting in throttle_direct_reclaim() and that watermarks have been met.
2896 *
2897 * Returns true if kswapd is ready to sleep
2898 */
2899 static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, long remaining,
2900 int classzone_idx)
2901 {
2902 /* If a direct reclaimer woke kswapd within HZ/10, it's premature */
2903 if (remaining)
2904 return false;
2905
2906 /*
2907 * There is a potential race between when kswapd checks its watermarks
2908 * and a process gets throttled. There is also a potential race if
2909 * processes get throttled, kswapd wakes, a large process exits therby
2910 * balancing the zones that causes kswapd to miss a wakeup. If kswapd
2911 * is going to sleep, no process should be sleeping on pfmemalloc_wait
2912 * so wake them now if necessary. If necessary, processes will wake
2913 * kswapd and get throttled again
2914 */
2915 if (waitqueue_active(&pgdat->pfmemalloc_wait)) {
2916 wake_up(&pgdat->pfmemalloc_wait);
2917 return false;
2918 }
2919
2920 return pgdat_balanced(pgdat, order, classzone_idx);
2921 }
2922
2923 /*
2924 * kswapd shrinks the zone by the number of pages required to reach
2925 * the high watermark.
2926 *
2927 * Returns true if kswapd scanned at least the requested number of pages to
2928 * reclaim or if the lack of progress was due to pages under writeback.
2929 * This is used to determine if the scanning priority needs to be raised.
2930 */
2931 static bool kswapd_shrink_zone(struct zone *zone,
2932 int classzone_idx,
2933 struct scan_control *sc,
2934 unsigned long lru_pages,
2935 unsigned long *nr_attempted)
2936 {
2937 int testorder = sc->order;
2938 unsigned long balance_gap;
2939 struct reclaim_state *reclaim_state = current->reclaim_state;
2940 struct shrink_control shrink = {
2941 .gfp_mask = sc->gfp_mask,
2942 };
2943 bool lowmem_pressure;
2944
2945 /* Reclaim above the high watermark. */
2946 sc->nr_to_reclaim = max(SWAP_CLUSTER_MAX, high_wmark_pages(zone));
2947
2948 /*
2949 * Kswapd reclaims only single pages with compaction enabled. Trying
2950 * too hard to reclaim until contiguous free pages have become
2951 * available can hurt performance by evicting too much useful data
2952 * from memory. Do not reclaim more than needed for compaction.
2953 */
2954 if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
2955 compaction_suitable(zone, sc->order) !=
2956 COMPACT_SKIPPED)
2957 testorder = 0;
2958
2959 /*
2960 * We put equal pressure on every zone, unless one zone has way too
2961 * many pages free already. The "too many pages" is defined as the
2962 * high wmark plus a "gap" where the gap is either the low
2963 * watermark or 1% of the zone, whichever is smaller.
2964 */
2965 balance_gap = min(low_wmark_pages(zone), DIV_ROUND_UP(
2966 zone->managed_pages, KSWAPD_ZONE_BALANCE_GAP_RATIO));
2967
2968 /*
2969 * If there is no low memory pressure or the zone is balanced then no
2970 * reclaim is necessary
2971 */
2972 lowmem_pressure = (buffer_heads_over_limit && is_highmem(zone));
2973 if (!lowmem_pressure && zone_balanced(zone, testorder,
2974 balance_gap, classzone_idx))
2975 return true;
2976
2977 shrink_zone(zone, sc);
2978 nodes_clear(shrink.nodes_to_scan);
2979 node_set(zone_to_nid(zone), shrink.nodes_to_scan);
2980
2981 reclaim_state->reclaimed_slab = 0;
2982 shrink_slab(&shrink, sc->nr_scanned, lru_pages);
2983 sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2984
2985 /* Account for the number of pages attempted to reclaim */
2986 *nr_attempted += sc->nr_to_reclaim;
2987
2988 zone_clear_flag(zone, ZONE_WRITEBACK);
2989
2990 /*
2991 * If a zone reaches its high watermark, consider it to be no longer
2992 * congested. It's possible there are dirty pages backed by congested
2993 * BDIs but as pressure is relieved, speculatively avoid congestion
2994 * waits.
2995 */
2996 if (zone_reclaimable(zone) &&
2997 zone_balanced(zone, testorder, 0, classzone_idx)) {
2998 zone_clear_flag(zone, ZONE_CONGESTED);
2999 zone_clear_flag(zone, ZONE_TAIL_LRU_DIRTY);
3000 }
3001
3002 return sc->nr_scanned >= sc->nr_to_reclaim;
3003 }
3004
3005 /*
3006 * For kswapd, balance_pgdat() will work across all this node's zones until
3007 * they are all at high_wmark_pages(zone).
3008 *
3009 * Returns the final order kswapd was reclaiming at
3010 *
3011 * There is special handling here for zones which are full of pinned pages.
3012 * This can happen if the pages are all mlocked, or if they are all used by
3013 * device drivers (say, ZONE_DMA). Or if they are all in use by hugetlb.
3014 * What we do is to detect the case where all pages in the zone have been
3015 * scanned twice and there has been zero successful reclaim. Mark the zone as
3016 * dead and from now on, only perform a short scan. Basically we're polling
3017 * the zone for when the problem goes away.
3018 *
3019 * kswapd scans the zones in the highmem->normal->dma direction. It skips
3020 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
3021 * found to have free_pages <= high_wmark_pages(zone), we scan that zone and the
3022 * lower zones regardless of the number of free pages in the lower zones. This
3023 * interoperates with the page allocator fallback scheme to ensure that aging
3024 * of pages is balanced across the zones.
3025 */
3026 static unsigned long balance_pgdat(pg_data_t *pgdat, int order,
3027 int *classzone_idx)
3028 {
3029 int i;
3030 int end_zone = 0; /* Inclusive. 0 = ZONE_DMA */
3031 unsigned long nr_soft_reclaimed;
3032 unsigned long nr_soft_scanned;
3033 struct scan_control sc = {
3034 .gfp_mask = GFP_KERNEL,
3035 .priority = DEF_PRIORITY,
3036 .may_unmap = 1,
3037 .may_swap = 1,
3038 .may_writepage = !laptop_mode,
3039 .order = order,
3040 .target_mem_cgroup = NULL,
3041 };
3042 count_vm_event(PAGEOUTRUN);
3043
3044 do {
3045 unsigned long lru_pages = 0;
3046 unsigned long nr_attempted = 0;
3047 bool raise_priority = true;
3048 bool pgdat_needs_compaction = (order > 0);
3049
3050 sc.nr_reclaimed = 0;
3051
3052 /*
3053 * Scan in the highmem->dma direction for the highest
3054 * zone which needs scanning
3055 */
3056 for (i = pgdat->nr_zones - 1; i >= 0; i--) {
3057 struct zone *zone = pgdat->node_zones + i;
3058
3059 if (!populated_zone(zone))
3060 continue;
3061
3062 if (sc.priority != DEF_PRIORITY &&
3063 !zone_reclaimable(zone))
3064 continue;
3065
3066 /*
3067 * Do some background aging of the anon list, to give
3068 * pages a chance to be referenced before reclaiming.
3069 */
3070 age_active_anon(zone, &sc);
3071
3072 /*
3073 * If the number of buffer_heads in the machine
3074 * exceeds the maximum allowed level and this node
3075 * has a highmem zone, force kswapd to reclaim from
3076 * it to relieve lowmem pressure.
3077 */
3078 if (buffer_heads_over_limit && is_highmem_idx(i)) {
3079 end_zone = i;
3080 break;
3081 }
3082
3083 if (!zone_balanced(zone, order, 0, 0)) {
3084 end_zone = i;
3085 break;
3086 } else {
3087 /*
3088 * If balanced, clear the dirty and congested
3089 * flags
3090 */
3091 zone_clear_flag(zone, ZONE_CONGESTED);
3092 zone_clear_flag(zone, ZONE_TAIL_LRU_DIRTY);
3093 }
3094 }
3095
3096 if (i < 0)
3097 goto out;
3098
3099 for (i = 0; i <= end_zone; i++) {
3100 struct zone *zone = pgdat->node_zones + i;
3101
3102 if (!populated_zone(zone))
3103 continue;
3104
3105 lru_pages += zone_reclaimable_pages(zone);
3106
3107 /*
3108 * If any zone is currently balanced then kswapd will
3109 * not call compaction as it is expected that the
3110 * necessary pages are already available.
3111 */
3112 if (pgdat_needs_compaction &&
3113 zone_watermark_ok(zone, order,
3114 low_wmark_pages(zone),
3115 *classzone_idx, 0))
3116 pgdat_needs_compaction = false;
3117 }
3118
3119 /*
3120 * If we're getting trouble reclaiming, start doing writepage
3121 * even in laptop mode.
3122 */
3123 if (sc.priority < DEF_PRIORITY - 2)
3124 sc.may_writepage = 1;
3125
3126 /*
3127 * Now scan the zone in the dma->highmem direction, stopping
3128 * at the last zone which needs scanning.
3129 *
3130 * We do this because the page allocator works in the opposite
3131 * direction. This prevents the page allocator from allocating
3132 * pages behind kswapd's direction of progress, which would
3133 * cause too much scanning of the lower zones.
3134 */
3135 for (i = 0; i <= end_zone; i++) {
3136 struct zone *zone = pgdat->node_zones + i;
3137
3138 if (!populated_zone(zone))
3139 continue;
3140
3141 if (sc.priority != DEF_PRIORITY &&
3142 !zone_reclaimable(zone))
3143 continue;
3144
3145 sc.nr_scanned = 0;
3146
3147 nr_soft_scanned = 0;
3148 /*
3149 * Call soft limit reclaim before calling shrink_zone.
3150 */
3151 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
3152 order, sc.gfp_mask,
3153 &nr_soft_scanned);
3154 sc.nr_reclaimed += nr_soft_reclaimed;
3155
3156 /*
3157 * There should be no need to raise the scanning
3158 * priority if enough pages are already being scanned
3159 * that that high watermark would be met at 100%
3160 * efficiency.
3161 */
3162 if (kswapd_shrink_zone(zone, end_zone, &sc,
3163 lru_pages, &nr_attempted))
3164 raise_priority = false;
3165 }
3166
3167 /*
3168 * If the low watermark is met there is no need for processes
3169 * to be throttled on pfmemalloc_wait as they should not be
3170 * able to safely make forward progress. Wake them
3171 */
3172 if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
3173 pfmemalloc_watermark_ok(pgdat))
3174 wake_up(&pgdat->pfmemalloc_wait);
3175
3176 /*
3177 * Fragmentation may mean that the system cannot be rebalanced
3178 * for high-order allocations in all zones. If twice the
3179 * allocation size has been reclaimed and the zones are still
3180 * not balanced then recheck the watermarks at order-0 to
3181 * prevent kswapd reclaiming excessively. Assume that a
3182 * process requested a high-order can direct reclaim/compact.
3183 */
3184 if (order && sc.nr_reclaimed >= 2UL << order)
3185 order = sc.order = 0;
3186
3187 /* Check if kswapd should be suspending */
3188 if (try_to_freeze() || kthread_should_stop())
3189 break;
3190
3191 /*
3192 * Compact if necessary and kswapd is reclaiming at least the
3193 * high watermark number of pages as requsted
3194 */
3195 if (pgdat_needs_compaction && sc.nr_reclaimed > nr_attempted)
3196 compact_pgdat(pgdat, order);
3197
3198 /*
3199 * Raise priority if scanning rate is too low or there was no
3200 * progress in reclaiming pages
3201 */
3202 if (raise_priority || !sc.nr_reclaimed)
3203 sc.priority--;
3204 } while (sc.priority >= 1 &&
3205 !pgdat_balanced(pgdat, order, *classzone_idx));
3206
3207 out:
3208 /*
3209 * Return the order we were reclaiming at so prepare_kswapd_sleep()
3210 * makes a decision on the order we were last reclaiming at. However,
3211 * if another caller entered the allocator slow path while kswapd
3212 * was awake, order will remain at the higher level
3213 */
3214 *classzone_idx = end_zone;
3215 return order;
3216 }
3217
3218 static void kswapd_try_to_sleep(pg_data_t *pgdat, int order, int classzone_idx)
3219 {
3220 long remaining = 0;
3221 DEFINE_WAIT(wait);
3222
3223 if (freezing(current) || kthread_should_stop())
3224 return;
3225
3226 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3227
3228 /* Try to sleep for a short interval */
3229 if (prepare_kswapd_sleep(pgdat, order, remaining, classzone_idx)) {
3230 remaining = schedule_timeout(HZ/10);
3231 finish_wait(&pgdat->kswapd_wait, &wait);
3232 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3233 }
3234
3235 /*
3236 * After a short sleep, check if it was a premature sleep. If not, then
3237 * go fully to sleep until explicitly woken up.
3238 */
3239 if (prepare_kswapd_sleep(pgdat, order, remaining, classzone_idx)) {
3240 trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
3241
3242 /*
3243 * vmstat counters are not perfectly accurate and the estimated
3244 * value for counters such as NR_FREE_PAGES can deviate from the
3245 * true value by nr_online_cpus * threshold. To avoid the zone
3246 * watermarks being breached while under pressure, we reduce the
3247 * per-cpu vmstat threshold while kswapd is awake and restore
3248 * them before going back to sleep.
3249 */
3250 set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
3251
3252 /*
3253 * Compaction records what page blocks it recently failed to
3254 * isolate pages from and skips them in the future scanning.
3255 * When kswapd is going to sleep, it is reasonable to assume
3256 * that pages and compaction may succeed so reset the cache.
3257 */
3258 reset_isolation_suitable(pgdat);
3259
3260 if (!kthread_should_stop())
3261 schedule();
3262
3263 set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
3264 } else {
3265 if (remaining)
3266 count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
3267 else
3268 count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
3269 }
3270 finish_wait(&pgdat->kswapd_wait, &wait);
3271 }
3272
3273 /*
3274 * The background pageout daemon, started as a kernel thread
3275 * from the init process.
3276 *
3277 * This basically trickles out pages so that we have _some_
3278 * free memory available even if there is no other activity
3279 * that frees anything up. This is needed for things like routing
3280 * etc, where we otherwise might have all activity going on in
3281 * asynchronous contexts that cannot page things out.
3282 *
3283 * If there are applications that are active memory-allocators
3284 * (most normal use), this basically shouldn't matter.
3285 */
3286 static int kswapd(void *p)
3287 {
3288 unsigned long order, new_order;
3289 unsigned balanced_order;
3290 int classzone_idx, new_classzone_idx;
3291 int balanced_classzone_idx;
3292 pg_data_t *pgdat = (pg_data_t*)p;
3293 struct task_struct *tsk = current;
3294
3295 struct reclaim_state reclaim_state = {
3296 .reclaimed_slab = 0,
3297 };
3298 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
3299
3300 lockdep_set_current_reclaim_state(GFP_KERNEL);
3301
3302 if (!cpumask_empty(cpumask))
3303 set_cpus_allowed_ptr(tsk, cpumask);
3304 current->reclaim_state = &reclaim_state;
3305
3306 /*
3307 * Tell the memory management that we're a "memory allocator",
3308 * and that if we need more memory we should get access to it
3309 * regardless (see "__alloc_pages()"). "kswapd" should
3310 * never get caught in the normal page freeing logic.
3311 *
3312 * (Kswapd normally doesn't need memory anyway, but sometimes
3313 * you need a small amount of memory in order to be able to
3314 * page out something else, and this flag essentially protects
3315 * us from recursively trying to free more memory as we're
3316 * trying to free the first piece of memory in the first place).
3317 */
3318 tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
3319 set_freezable();
3320
3321 order = new_order = 0;
3322 balanced_order = 0;
3323 classzone_idx = new_classzone_idx = pgdat->nr_zones - 1;
3324 balanced_classzone_idx = classzone_idx;
3325 for ( ; ; ) {
3326 bool ret;
3327
3328 /*
3329 * If the last balance_pgdat was unsuccessful it's unlikely a
3330 * new request of a similar or harder type will succeed soon
3331 * so consider going to sleep on the basis we reclaimed at
3332 */
3333 if (balanced_classzone_idx >= new_classzone_idx &&
3334 balanced_order == new_order) {
3335 new_order = pgdat->kswapd_max_order;
3336 new_classzone_idx = pgdat->classzone_idx;
3337 pgdat->kswapd_max_order = 0;
3338 pgdat->classzone_idx = pgdat->nr_zones - 1;
3339 }
3340
3341 if (order < new_order || classzone_idx > new_classzone_idx) {
3342 /*
3343 * Don't sleep if someone wants a larger 'order'
3344 * allocation or has tigher zone constraints
3345 */
3346 order = new_order;
3347 classzone_idx = new_classzone_idx;
3348 } else {
3349 kswapd_try_to_sleep(pgdat, balanced_order,
3350 balanced_classzone_idx);
3351 order = pgdat->kswapd_max_order;
3352 classzone_idx = pgdat->classzone_idx;
3353 new_order = order;
3354 new_classzone_idx = classzone_idx;
3355 pgdat->kswapd_max_order = 0;
3356 pgdat->classzone_idx = pgdat->nr_zones - 1;
3357 }
3358
3359 ret = try_to_freeze();
3360 if (kthread_should_stop())
3361 break;
3362
3363 /*
3364 * We can speed up thawing tasks if we don't call balance_pgdat
3365 * after returning from the refrigerator
3366 */
3367 if (!ret) {
3368 trace_mm_vmscan_kswapd_wake(pgdat->node_id, order);
3369 balanced_classzone_idx = classzone_idx;
3370 balanced_order = balance_pgdat(pgdat, order,
3371 &balanced_classzone_idx);
3372 }
3373 }
3374
3375 current->reclaim_state = NULL;
3376 return 0;
3377 }
3378
3379 /*
3380 * A zone is low on free memory, so wake its kswapd task to service it.
3381 */
3382 void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx)
3383 {
3384 pg_data_t *pgdat;
3385
3386 if (!populated_zone(zone))
3387 return;
3388
3389 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
3390 return;
3391 pgdat = zone->zone_pgdat;
3392 if (pgdat->kswapd_max_order < order) {
3393 pgdat->kswapd_max_order = order;
3394 pgdat->classzone_idx = min(pgdat->classzone_idx, classzone_idx);
3395 }
3396 if (!waitqueue_active(&pgdat->kswapd_wait))
3397 return;
3398 if (zone_balanced(zone, order, 0, 0))
3399 return;
3400
3401 trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, zone_idx(zone), order);
3402 wake_up_interruptible(&pgdat->kswapd_wait);
3403 }
3404
3405 #ifdef CONFIG_HIBERNATION
3406 /*
3407 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
3408 * freed pages.
3409 *
3410 * Rather than trying to age LRUs the aim is to preserve the overall
3411 * LRU order by reclaiming preferentially
3412 * inactive > active > active referenced > active mapped
3413 */
3414 unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
3415 {
3416 struct reclaim_state reclaim_state;
3417 struct scan_control sc = {
3418 .gfp_mask = GFP_HIGHUSER_MOVABLE,
3419 .may_swap = 1,
3420 .may_unmap = 1,
3421 .may_writepage = 1,
3422 .nr_to_reclaim = nr_to_reclaim,
3423 .hibernation_mode = 1,
3424 .order = 0,
3425 .priority = DEF_PRIORITY,
3426 };
3427 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
3428 struct task_struct *p = current;
3429 unsigned long nr_reclaimed;
3430
3431 p->flags |= PF_MEMALLOC;
3432 lockdep_set_current_reclaim_state(sc.gfp_mask);
3433 reclaim_state.reclaimed_slab = 0;
3434 p->reclaim_state = &reclaim_state;
3435
3436 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3437
3438 p->reclaim_state = NULL;
3439 lockdep_clear_current_reclaim_state();
3440 p->flags &= ~PF_MEMALLOC;
3441
3442 return nr_reclaimed;
3443 }
3444 #endif /* CONFIG_HIBERNATION */
3445
3446 /* It's optimal to keep kswapds on the same CPUs as their memory, but
3447 not required for correctness. So if the last cpu in a node goes
3448 away, we get changed to run anywhere: as the first one comes back,
3449 restore their cpu bindings. */
3450 static int cpu_callback(struct notifier_block *nfb, unsigned long action,
3451 void *hcpu)
3452 {
3453 int nid;
3454
3455 if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
3456 for_each_node_state(nid, N_MEMORY) {
3457 pg_data_t *pgdat = NODE_DATA(nid);
3458 const struct cpumask *mask;
3459
3460 mask = cpumask_of_node(pgdat->node_id);
3461
3462 if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
3463 /* One of our CPUs online: restore mask */
3464 set_cpus_allowed_ptr(pgdat->kswapd, mask);
3465 }
3466 }
3467 return NOTIFY_OK;
3468 }
3469
3470 /*
3471 * This kswapd start function will be called by init and node-hot-add.
3472 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
3473 */
3474 int kswapd_run(int nid)
3475 {
3476 pg_data_t *pgdat = NODE_DATA(nid);
3477 int ret = 0;
3478
3479 if (pgdat->kswapd)
3480 return 0;
3481
3482 pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
3483 if (IS_ERR(pgdat->kswapd)) {
3484 /* failure at boot is fatal */
3485 BUG_ON(system_state == SYSTEM_BOOTING);
3486 pr_err("Failed to start kswapd on node %d\n", nid);
3487 ret = PTR_ERR(pgdat->kswapd);
3488 pgdat->kswapd = NULL;
3489 }
3490 return ret;
3491 }
3492
3493 /*
3494 * Called by memory hotplug when all memory in a node is offlined. Caller must
3495 * hold mem_hotplug_begin/end().
3496 */
3497 void kswapd_stop(int nid)
3498 {
3499 struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
3500
3501 if (kswapd) {
3502 kthread_stop(kswapd);
3503 NODE_DATA(nid)->kswapd = NULL;
3504 }
3505 }
3506
3507 static int __init kswapd_init(void)
3508 {
3509 int nid;
3510
3511 swap_setup();
3512 for_each_node_state(nid, N_MEMORY)
3513 kswapd_run(nid);
3514 hotcpu_notifier(cpu_callback, 0);
3515 return 0;
3516 }
3517
3518 module_init(kswapd_init)
3519
3520 #ifdef CONFIG_NUMA
3521 /*
3522 * Zone reclaim mode
3523 *
3524 * If non-zero call zone_reclaim when the number of free pages falls below
3525 * the watermarks.
3526 */
3527 int zone_reclaim_mode __read_mostly;
3528
3529 #define RECLAIM_OFF 0
3530 #define RECLAIM_ZONE (1<<0) /* Run shrink_inactive_list on the zone */
3531 #define RECLAIM_WRITE (1<<1) /* Writeout pages during reclaim */
3532 #define RECLAIM_SWAP (1<<2) /* Swap pages out during reclaim */
3533
3534 /*
3535 * Priority for ZONE_RECLAIM. This determines the fraction of pages
3536 * of a node considered for each zone_reclaim. 4 scans 1/16th of
3537 * a zone.
3538 */
3539 #define ZONE_RECLAIM_PRIORITY 4
3540
3541 /*
3542 * Percentage of pages in a zone that must be unmapped for zone_reclaim to
3543 * occur.
3544 */
3545 int sysctl_min_unmapped_ratio = 1;
3546
3547 /*
3548 * If the number of slab pages in a zone grows beyond this percentage then
3549 * slab reclaim needs to occur.
3550 */
3551 int sysctl_min_slab_ratio = 5;
3552
3553 static inline unsigned long zone_unmapped_file_pages(struct zone *zone)
3554 {
3555 unsigned long file_mapped = zone_page_state(zone, NR_FILE_MAPPED);
3556 unsigned long file_lru = zone_page_state(zone, NR_INACTIVE_FILE) +
3557 zone_page_state(zone, NR_ACTIVE_FILE);
3558
3559 /*
3560 * It's possible for there to be more file mapped pages than
3561 * accounted for by the pages on the file LRU lists because
3562 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
3563 */
3564 return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
3565 }
3566
3567 /* Work out how many page cache pages we can reclaim in this reclaim_mode */
3568 static long zone_pagecache_reclaimable(struct zone *zone)
3569 {
3570 long nr_pagecache_reclaimable;
3571 long delta = 0;
3572
3573 /*
3574 * If RECLAIM_SWAP is set, then all file pages are considered
3575 * potentially reclaimable. Otherwise, we have to worry about
3576 * pages like swapcache and zone_unmapped_file_pages() provides
3577 * a better estimate
3578 */
3579 if (zone_reclaim_mode & RECLAIM_SWAP)
3580 nr_pagecache_reclaimable = zone_page_state(zone, NR_FILE_PAGES);
3581 else
3582 nr_pagecache_reclaimable = zone_unmapped_file_pages(zone);
3583
3584 /* If we can't clean pages, remove dirty pages from consideration */
3585 if (!(zone_reclaim_mode & RECLAIM_WRITE))
3586 delta += zone_page_state(zone, NR_FILE_DIRTY);
3587
3588 /* Watch for any possible underflows due to delta */
3589 if (unlikely(delta > nr_pagecache_reclaimable))
3590 delta = nr_pagecache_reclaimable;
3591
3592 return nr_pagecache_reclaimable - delta;
3593 }
3594
3595 /*
3596 * Try to free up some pages from this zone through reclaim.
3597 */
3598 static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3599 {
3600 /* Minimum pages needed in order to stay on node */
3601 const unsigned long nr_pages = 1 << order;
3602 struct task_struct *p = current;
3603 struct reclaim_state reclaim_state;
3604 struct scan_control sc = {
3605 .may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE),
3606 .may_unmap = !!(zone_reclaim_mode & RECLAIM_SWAP),
3607 .may_swap = 1,
3608 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
3609 .gfp_mask = (gfp_mask = memalloc_noio_flags(gfp_mask)),
3610 .order = order,
3611 .priority = ZONE_RECLAIM_PRIORITY,
3612 };
3613 struct shrink_control shrink = {
3614 .gfp_mask = sc.gfp_mask,
3615 };
3616 unsigned long nr_slab_pages0, nr_slab_pages1;
3617
3618 cond_resched();
3619 /*
3620 * We need to be able to allocate from the reserves for RECLAIM_SWAP
3621 * and we also need to be able to write out pages for RECLAIM_WRITE
3622 * and RECLAIM_SWAP.
3623 */
3624 p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
3625 lockdep_set_current_reclaim_state(gfp_mask);
3626 reclaim_state.reclaimed_slab = 0;
3627 p->reclaim_state = &reclaim_state;
3628
3629 if (zone_pagecache_reclaimable(zone) > zone->min_unmapped_pages) {
3630 /*
3631 * Free memory by calling shrink zone with increasing
3632 * priorities until we have enough memory freed.
3633 */
3634 do {
3635 shrink_zone(zone, &sc);
3636 } while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
3637 }
3638
3639 nr_slab_pages0 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
3640 if (nr_slab_pages0 > zone->min_slab_pages) {
3641 /*
3642 * shrink_slab() does not currently allow us to determine how
3643 * many pages were freed in this zone. So we take the current
3644 * number of slab pages and shake the slab until it is reduced
3645 * by the same nr_pages that we used for reclaiming unmapped
3646 * pages.
3647 */
3648 nodes_clear(shrink.nodes_to_scan);
3649 node_set(zone_to_nid(zone), shrink.nodes_to_scan);
3650 for (;;) {
3651 unsigned long lru_pages = zone_reclaimable_pages(zone);
3652
3653 /* No reclaimable slab or very low memory pressure */
3654 if (!shrink_slab(&shrink, sc.nr_scanned, lru_pages))
3655 break;
3656
3657 /* Freed enough memory */
3658 nr_slab_pages1 = zone_page_state(zone,
3659 NR_SLAB_RECLAIMABLE);
3660 if (nr_slab_pages1 + nr_pages <= nr_slab_pages0)
3661 break;
3662 }
3663
3664 /*
3665 * Update nr_reclaimed by the number of slab pages we
3666 * reclaimed from this zone.
3667 */
3668 nr_slab_pages1 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
3669 if (nr_slab_pages1 < nr_slab_pages0)
3670 sc.nr_reclaimed += nr_slab_pages0 - nr_slab_pages1;
3671 }
3672
3673 p->reclaim_state = NULL;
3674 current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
3675 lockdep_clear_current_reclaim_state();
3676 return sc.nr_reclaimed >= nr_pages;
3677 }
3678
3679 int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3680 {
3681 int node_id;
3682 int ret;
3683
3684 /*
3685 * Zone reclaim reclaims unmapped file backed pages and
3686 * slab pages if we are over the defined limits.
3687 *
3688 * A small portion of unmapped file backed pages is needed for
3689 * file I/O otherwise pages read by file I/O will be immediately
3690 * thrown out if the zone is overallocated. So we do not reclaim
3691 * if less than a specified percentage of the zone is used by
3692 * unmapped file backed pages.
3693 */
3694 if (zone_pagecache_reclaimable(zone) <= zone->min_unmapped_pages &&
3695 zone_page_state(zone, NR_SLAB_RECLAIMABLE) <= zone->min_slab_pages)
3696 return ZONE_RECLAIM_FULL;
3697
3698 if (!zone_reclaimable(zone))
3699 return ZONE_RECLAIM_FULL;
3700
3701 /*
3702 * Do not scan if the allocation should not be delayed.
3703 */
3704 if (!(gfp_mask & __GFP_WAIT) || (current->flags & PF_MEMALLOC))
3705 return ZONE_RECLAIM_NOSCAN;
3706
3707 /*
3708 * Only run zone reclaim on the local zone or on zones that do not
3709 * have associated processors. This will favor the local processor
3710 * over remote processors and spread off node memory allocations
3711 * as wide as possible.
3712 */
3713 node_id = zone_to_nid(zone);
3714 if (node_state(node_id, N_CPU) && node_id != numa_node_id())
3715 return ZONE_RECLAIM_NOSCAN;
3716
3717 if (zone_test_and_set_flag(zone, ZONE_RECLAIM_LOCKED))
3718 return ZONE_RECLAIM_NOSCAN;
3719
3720 ret = __zone_reclaim(zone, gfp_mask, order);
3721 zone_clear_flag(zone, ZONE_RECLAIM_LOCKED);
3722
3723 if (!ret)
3724 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
3725
3726 return ret;
3727 }
3728 #endif
3729
3730 /*
3731 * page_evictable - test whether a page is evictable
3732 * @page: the page to test
3733 *
3734 * Test whether page is evictable--i.e., should be placed on active/inactive
3735 * lists vs unevictable list.
3736 *
3737 * Reasons page might not be evictable:
3738 * (1) page's mapping marked unevictable
3739 * (2) page is part of an mlocked VMA
3740 *
3741 */
3742 int page_evictable(struct page *page)
3743 {
3744 return !mapping_unevictable(page_mapping(page)) && !PageMlocked(page);
3745 }
3746
3747 #ifdef CONFIG_SHMEM
3748 /**
3749 * check_move_unevictable_pages - check pages for evictability and move to appropriate zone lru list
3750 * @pages: array of pages to check
3751 * @nr_pages: number of pages to check
3752 *
3753 * Checks pages for evictability and moves them to the appropriate lru list.
3754 *
3755 * This function is only used for SysV IPC SHM_UNLOCK.
3756 */
3757 void check_move_unevictable_pages(struct page **pages, int nr_pages)
3758 {
3759 struct lruvec *lruvec;
3760 struct zone *zone = NULL;
3761 int pgscanned = 0;
3762 int pgrescued = 0;
3763 int i;
3764
3765 for (i = 0; i < nr_pages; i++) {
3766 struct page *page = pages[i];
3767 struct zone *pagezone;
3768
3769 pgscanned++;
3770 pagezone = page_zone(page);
3771 if (pagezone != zone) {
3772 if (zone)
3773 spin_unlock_irq(&zone->lru_lock);
3774 zone = pagezone;
3775 spin_lock_irq(&zone->lru_lock);
3776 }
3777 lruvec = mem_cgroup_page_lruvec(page, zone);
3778
3779 if (!PageLRU(page) || !PageUnevictable(page))
3780 continue;
3781
3782 if (page_evictable(page)) {
3783 enum lru_list lru = page_lru_base_type(page);
3784
3785 VM_BUG_ON_PAGE(PageActive(page), page);
3786 ClearPageUnevictable(page);
3787 del_page_from_lru_list(page, lruvec, LRU_UNEVICTABLE);
3788 add_page_to_lru_list(page, lruvec, lru);
3789 pgrescued++;
3790 }
3791 }
3792
3793 if (zone) {
3794 __count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
3795 __count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
3796 spin_unlock_irq(&zone->lru_lock);
3797 }
3798 }
3799 #endif /* CONFIG_SHMEM */
3800
3801 static void warn_scan_unevictable_pages(void)
3802 {
3803 printk_once(KERN_WARNING
3804 "%s: The scan_unevictable_pages sysctl/node-interface has been "
3805 "disabled for lack of a legitimate use case. If you have "
3806 "one, please send an email to linux-mm@kvack.org.\n",
3807 current->comm);
3808 }
3809
3810 /*
3811 * scan_unevictable_pages [vm] sysctl handler. On demand re-scan of
3812 * all nodes' unevictable lists for evictable pages
3813 */
3814 unsigned long scan_unevictable_pages;
3815
3816 int scan_unevictable_handler(struct ctl_table *table, int write,
3817 void __user *buffer,
3818 size_t *length, loff_t *ppos)
3819 {
3820 warn_scan_unevictable_pages();
3821 proc_doulongvec_minmax(table, write, buffer, length, ppos);
3822 scan_unevictable_pages = 0;
3823 return 0;
3824 }
3825
3826 #ifdef CONFIG_NUMA
3827 /*
3828 * per node 'scan_unevictable_pages' attribute. On demand re-scan of
3829 * a specified node's per zone unevictable lists for evictable pages.
3830 */
3831
3832 static ssize_t read_scan_unevictable_node(struct device *dev,
3833 struct device_attribute *attr,
3834 char *buf)
3835 {
3836 warn_scan_unevictable_pages();
3837 return sprintf(buf, "0\n"); /* always zero; should fit... */
3838 }
3839
3840 static ssize_t write_scan_unevictable_node(struct device *dev,
3841 struct device_attribute *attr,
3842 const char *buf, size_t count)
3843 {
3844 warn_scan_unevictable_pages();
3845 return 1;
3846 }
3847
3848
3849 static DEVICE_ATTR(scan_unevictable_pages, S_IRUGO | S_IWUSR,
3850 read_scan_unevictable_node,
3851 write_scan_unevictable_node);
3852
3853 int scan_unevictable_register_node(struct node *node)
3854 {
3855 return device_create_file(&node->dev, &dev_attr_scan_unevictable_pages);
3856 }
3857
3858 void scan_unevictable_unregister_node(struct node *node)
3859 {
3860 device_remove_file(&node->dev, &dev_attr_scan_unevictable_pages);
3861 }
3862 #endif