]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - mm/vmscan.c
mm, vmscan: extract shrink_page_list reclaim counters into a struct
[mirror_ubuntu-artful-kernel.git] / mm / vmscan.c
1 /*
2 * linux/mm/vmscan.c
3 *
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 *
6 * Swap reorganised 29.12.95, Stephen Tweedie.
7 * kswapd added: 7.1.96 sct
8 * Removed kswapd_ctl limits, and swap out as many pages as needed
9 * to bring the system back to freepages.high: 2.4.97, Rik van Riel.
10 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
11 * Multiqueue VM started 5.8.00, Rik van Riel.
12 */
13
14 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
15
16 #include <linux/mm.h>
17 #include <linux/module.h>
18 #include <linux/gfp.h>
19 #include <linux/kernel_stat.h>
20 #include <linux/swap.h>
21 #include <linux/pagemap.h>
22 #include <linux/init.h>
23 #include <linux/highmem.h>
24 #include <linux/vmpressure.h>
25 #include <linux/vmstat.h>
26 #include <linux/file.h>
27 #include <linux/writeback.h>
28 #include <linux/blkdev.h>
29 #include <linux/buffer_head.h> /* for try_to_release_page(),
30 buffer_heads_over_limit */
31 #include <linux/mm_inline.h>
32 #include <linux/backing-dev.h>
33 #include <linux/rmap.h>
34 #include <linux/topology.h>
35 #include <linux/cpu.h>
36 #include <linux/cpuset.h>
37 #include <linux/compaction.h>
38 #include <linux/notifier.h>
39 #include <linux/rwsem.h>
40 #include <linux/delay.h>
41 #include <linux/kthread.h>
42 #include <linux/freezer.h>
43 #include <linux/memcontrol.h>
44 #include <linux/delayacct.h>
45 #include <linux/sysctl.h>
46 #include <linux/oom.h>
47 #include <linux/prefetch.h>
48 #include <linux/printk.h>
49 #include <linux/dax.h>
50
51 #include <asm/tlbflush.h>
52 #include <asm/div64.h>
53
54 #include <linux/swapops.h>
55 #include <linux/balloon_compaction.h>
56
57 #include "internal.h"
58
59 #define CREATE_TRACE_POINTS
60 #include <trace/events/vmscan.h>
61
62 struct scan_control {
63 /* How many pages shrink_list() should reclaim */
64 unsigned long nr_to_reclaim;
65
66 /* This context's GFP mask */
67 gfp_t gfp_mask;
68
69 /* Allocation order */
70 int order;
71
72 /*
73 * Nodemask of nodes allowed by the caller. If NULL, all nodes
74 * are scanned.
75 */
76 nodemask_t *nodemask;
77
78 /*
79 * The memory cgroup that hit its limit and as a result is the
80 * primary target of this reclaim invocation.
81 */
82 struct mem_cgroup *target_mem_cgroup;
83
84 /* Scan (total_size >> priority) pages at once */
85 int priority;
86
87 /* The highest zone to isolate pages for reclaim from */
88 enum zone_type reclaim_idx;
89
90 unsigned int may_writepage:1;
91
92 /* Can mapped pages be reclaimed? */
93 unsigned int may_unmap:1;
94
95 /* Can pages be swapped as part of reclaim? */
96 unsigned int may_swap:1;
97
98 /* Can cgroups be reclaimed below their normal consumption range? */
99 unsigned int may_thrash:1;
100
101 unsigned int hibernation_mode:1;
102
103 /* One of the zones is ready for compaction */
104 unsigned int compaction_ready:1;
105
106 /* Incremented by the number of inactive pages that were scanned */
107 unsigned long nr_scanned;
108
109 /* Number of pages freed so far during a call to shrink_zones() */
110 unsigned long nr_reclaimed;
111 };
112
113 #ifdef ARCH_HAS_PREFETCH
114 #define prefetch_prev_lru_page(_page, _base, _field) \
115 do { \
116 if ((_page)->lru.prev != _base) { \
117 struct page *prev; \
118 \
119 prev = lru_to_page(&(_page->lru)); \
120 prefetch(&prev->_field); \
121 } \
122 } while (0)
123 #else
124 #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
125 #endif
126
127 #ifdef ARCH_HAS_PREFETCHW
128 #define prefetchw_prev_lru_page(_page, _base, _field) \
129 do { \
130 if ((_page)->lru.prev != _base) { \
131 struct page *prev; \
132 \
133 prev = lru_to_page(&(_page->lru)); \
134 prefetchw(&prev->_field); \
135 } \
136 } while (0)
137 #else
138 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
139 #endif
140
141 /*
142 * From 0 .. 100. Higher means more swappy.
143 */
144 int vm_swappiness = 60;
145 /*
146 * The total number of pages which are beyond the high watermark within all
147 * zones.
148 */
149 unsigned long vm_total_pages;
150
151 static LIST_HEAD(shrinker_list);
152 static DECLARE_RWSEM(shrinker_rwsem);
153
154 #ifdef CONFIG_MEMCG
155 static bool global_reclaim(struct scan_control *sc)
156 {
157 return !sc->target_mem_cgroup;
158 }
159
160 /**
161 * sane_reclaim - is the usual dirty throttling mechanism operational?
162 * @sc: scan_control in question
163 *
164 * The normal page dirty throttling mechanism in balance_dirty_pages() is
165 * completely broken with the legacy memcg and direct stalling in
166 * shrink_page_list() is used for throttling instead, which lacks all the
167 * niceties such as fairness, adaptive pausing, bandwidth proportional
168 * allocation and configurability.
169 *
170 * This function tests whether the vmscan currently in progress can assume
171 * that the normal dirty throttling mechanism is operational.
172 */
173 static bool sane_reclaim(struct scan_control *sc)
174 {
175 struct mem_cgroup *memcg = sc->target_mem_cgroup;
176
177 if (!memcg)
178 return true;
179 #ifdef CONFIG_CGROUP_WRITEBACK
180 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
181 return true;
182 #endif
183 return false;
184 }
185 #else
186 static bool global_reclaim(struct scan_control *sc)
187 {
188 return true;
189 }
190
191 static bool sane_reclaim(struct scan_control *sc)
192 {
193 return true;
194 }
195 #endif
196
197 /*
198 * This misses isolated pages which are not accounted for to save counters.
199 * As the data only determines if reclaim or compaction continues, it is
200 * not expected that isolated pages will be a dominating factor.
201 */
202 unsigned long zone_reclaimable_pages(struct zone *zone)
203 {
204 unsigned long nr;
205
206 nr = zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_FILE) +
207 zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_FILE);
208 if (get_nr_swap_pages() > 0)
209 nr += zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_ANON) +
210 zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_ANON);
211
212 return nr;
213 }
214
215 unsigned long pgdat_reclaimable_pages(struct pglist_data *pgdat)
216 {
217 unsigned long nr;
218
219 nr = node_page_state_snapshot(pgdat, NR_ACTIVE_FILE) +
220 node_page_state_snapshot(pgdat, NR_INACTIVE_FILE) +
221 node_page_state_snapshot(pgdat, NR_ISOLATED_FILE);
222
223 if (get_nr_swap_pages() > 0)
224 nr += node_page_state_snapshot(pgdat, NR_ACTIVE_ANON) +
225 node_page_state_snapshot(pgdat, NR_INACTIVE_ANON) +
226 node_page_state_snapshot(pgdat, NR_ISOLATED_ANON);
227
228 return nr;
229 }
230
231 bool pgdat_reclaimable(struct pglist_data *pgdat)
232 {
233 return node_page_state_snapshot(pgdat, NR_PAGES_SCANNED) <
234 pgdat_reclaimable_pages(pgdat) * 6;
235 }
236
237 unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru)
238 {
239 if (!mem_cgroup_disabled())
240 return mem_cgroup_get_lru_size(lruvec, lru);
241
242 return node_page_state(lruvec_pgdat(lruvec), NR_LRU_BASE + lru);
243 }
244
245 unsigned long lruvec_zone_lru_size(struct lruvec *lruvec, enum lru_list lru,
246 int zone_idx)
247 {
248 if (!mem_cgroup_disabled())
249 return mem_cgroup_get_zone_lru_size(lruvec, lru, zone_idx);
250
251 return zone_page_state(&lruvec_pgdat(lruvec)->node_zones[zone_idx],
252 NR_ZONE_LRU_BASE + lru);
253 }
254
255 /*
256 * Add a shrinker callback to be called from the vm.
257 */
258 int register_shrinker(struct shrinker *shrinker)
259 {
260 size_t size = sizeof(*shrinker->nr_deferred);
261
262 if (shrinker->flags & SHRINKER_NUMA_AWARE)
263 size *= nr_node_ids;
264
265 shrinker->nr_deferred = kzalloc(size, GFP_KERNEL);
266 if (!shrinker->nr_deferred)
267 return -ENOMEM;
268
269 down_write(&shrinker_rwsem);
270 list_add_tail(&shrinker->list, &shrinker_list);
271 up_write(&shrinker_rwsem);
272 return 0;
273 }
274 EXPORT_SYMBOL(register_shrinker);
275
276 /*
277 * Remove one
278 */
279 void unregister_shrinker(struct shrinker *shrinker)
280 {
281 down_write(&shrinker_rwsem);
282 list_del(&shrinker->list);
283 up_write(&shrinker_rwsem);
284 kfree(shrinker->nr_deferred);
285 }
286 EXPORT_SYMBOL(unregister_shrinker);
287
288 #define SHRINK_BATCH 128
289
290 static unsigned long do_shrink_slab(struct shrink_control *shrinkctl,
291 struct shrinker *shrinker,
292 unsigned long nr_scanned,
293 unsigned long nr_eligible)
294 {
295 unsigned long freed = 0;
296 unsigned long long delta;
297 long total_scan;
298 long freeable;
299 long nr;
300 long new_nr;
301 int nid = shrinkctl->nid;
302 long batch_size = shrinker->batch ? shrinker->batch
303 : SHRINK_BATCH;
304 long scanned = 0, next_deferred;
305
306 freeable = shrinker->count_objects(shrinker, shrinkctl);
307 if (freeable == 0)
308 return 0;
309
310 /*
311 * copy the current shrinker scan count into a local variable
312 * and zero it so that other concurrent shrinker invocations
313 * don't also do this scanning work.
314 */
315 nr = atomic_long_xchg(&shrinker->nr_deferred[nid], 0);
316
317 total_scan = nr;
318 delta = (4 * nr_scanned) / shrinker->seeks;
319 delta *= freeable;
320 do_div(delta, nr_eligible + 1);
321 total_scan += delta;
322 if (total_scan < 0) {
323 pr_err("shrink_slab: %pF negative objects to delete nr=%ld\n",
324 shrinker->scan_objects, total_scan);
325 total_scan = freeable;
326 next_deferred = nr;
327 } else
328 next_deferred = total_scan;
329
330 /*
331 * We need to avoid excessive windup on filesystem shrinkers
332 * due to large numbers of GFP_NOFS allocations causing the
333 * shrinkers to return -1 all the time. This results in a large
334 * nr being built up so when a shrink that can do some work
335 * comes along it empties the entire cache due to nr >>>
336 * freeable. This is bad for sustaining a working set in
337 * memory.
338 *
339 * Hence only allow the shrinker to scan the entire cache when
340 * a large delta change is calculated directly.
341 */
342 if (delta < freeable / 4)
343 total_scan = min(total_scan, freeable / 2);
344
345 /*
346 * Avoid risking looping forever due to too large nr value:
347 * never try to free more than twice the estimate number of
348 * freeable entries.
349 */
350 if (total_scan > freeable * 2)
351 total_scan = freeable * 2;
352
353 trace_mm_shrink_slab_start(shrinker, shrinkctl, nr,
354 nr_scanned, nr_eligible,
355 freeable, delta, total_scan);
356
357 /*
358 * Normally, we should not scan less than batch_size objects in one
359 * pass to avoid too frequent shrinker calls, but if the slab has less
360 * than batch_size objects in total and we are really tight on memory,
361 * we will try to reclaim all available objects, otherwise we can end
362 * up failing allocations although there are plenty of reclaimable
363 * objects spread over several slabs with usage less than the
364 * batch_size.
365 *
366 * We detect the "tight on memory" situations by looking at the total
367 * number of objects we want to scan (total_scan). If it is greater
368 * than the total number of objects on slab (freeable), we must be
369 * scanning at high prio and therefore should try to reclaim as much as
370 * possible.
371 */
372 while (total_scan >= batch_size ||
373 total_scan >= freeable) {
374 unsigned long ret;
375 unsigned long nr_to_scan = min(batch_size, total_scan);
376
377 shrinkctl->nr_to_scan = nr_to_scan;
378 ret = shrinker->scan_objects(shrinker, shrinkctl);
379 if (ret == SHRINK_STOP)
380 break;
381 freed += ret;
382
383 count_vm_events(SLABS_SCANNED, nr_to_scan);
384 total_scan -= nr_to_scan;
385 scanned += nr_to_scan;
386
387 cond_resched();
388 }
389
390 if (next_deferred >= scanned)
391 next_deferred -= scanned;
392 else
393 next_deferred = 0;
394 /*
395 * move the unused scan count back into the shrinker in a
396 * manner that handles concurrent updates. If we exhausted the
397 * scan, there is no need to do an update.
398 */
399 if (next_deferred > 0)
400 new_nr = atomic_long_add_return(next_deferred,
401 &shrinker->nr_deferred[nid]);
402 else
403 new_nr = atomic_long_read(&shrinker->nr_deferred[nid]);
404
405 trace_mm_shrink_slab_end(shrinker, nid, freed, nr, new_nr, total_scan);
406 return freed;
407 }
408
409 /**
410 * shrink_slab - shrink slab caches
411 * @gfp_mask: allocation context
412 * @nid: node whose slab caches to target
413 * @memcg: memory cgroup whose slab caches to target
414 * @nr_scanned: pressure numerator
415 * @nr_eligible: pressure denominator
416 *
417 * Call the shrink functions to age shrinkable caches.
418 *
419 * @nid is passed along to shrinkers with SHRINKER_NUMA_AWARE set,
420 * unaware shrinkers will receive a node id of 0 instead.
421 *
422 * @memcg specifies the memory cgroup to target. If it is not NULL,
423 * only shrinkers with SHRINKER_MEMCG_AWARE set will be called to scan
424 * objects from the memory cgroup specified. Otherwise, only unaware
425 * shrinkers are called.
426 *
427 * @nr_scanned and @nr_eligible form a ratio that indicate how much of
428 * the available objects should be scanned. Page reclaim for example
429 * passes the number of pages scanned and the number of pages on the
430 * LRU lists that it considered on @nid, plus a bias in @nr_scanned
431 * when it encountered mapped pages. The ratio is further biased by
432 * the ->seeks setting of the shrink function, which indicates the
433 * cost to recreate an object relative to that of an LRU page.
434 *
435 * Returns the number of reclaimed slab objects.
436 */
437 static unsigned long shrink_slab(gfp_t gfp_mask, int nid,
438 struct mem_cgroup *memcg,
439 unsigned long nr_scanned,
440 unsigned long nr_eligible)
441 {
442 struct shrinker *shrinker;
443 unsigned long freed = 0;
444
445 if (memcg && (!memcg_kmem_enabled() || !mem_cgroup_online(memcg)))
446 return 0;
447
448 if (nr_scanned == 0)
449 nr_scanned = SWAP_CLUSTER_MAX;
450
451 if (!down_read_trylock(&shrinker_rwsem)) {
452 /*
453 * If we would return 0, our callers would understand that we
454 * have nothing else to shrink and give up trying. By returning
455 * 1 we keep it going and assume we'll be able to shrink next
456 * time.
457 */
458 freed = 1;
459 goto out;
460 }
461
462 list_for_each_entry(shrinker, &shrinker_list, list) {
463 struct shrink_control sc = {
464 .gfp_mask = gfp_mask,
465 .nid = nid,
466 .memcg = memcg,
467 };
468
469 /*
470 * If kernel memory accounting is disabled, we ignore
471 * SHRINKER_MEMCG_AWARE flag and call all shrinkers
472 * passing NULL for memcg.
473 */
474 if (memcg_kmem_enabled() &&
475 !!memcg != !!(shrinker->flags & SHRINKER_MEMCG_AWARE))
476 continue;
477
478 if (!(shrinker->flags & SHRINKER_NUMA_AWARE))
479 sc.nid = 0;
480
481 freed += do_shrink_slab(&sc, shrinker, nr_scanned, nr_eligible);
482 }
483
484 up_read(&shrinker_rwsem);
485 out:
486 cond_resched();
487 return freed;
488 }
489
490 void drop_slab_node(int nid)
491 {
492 unsigned long freed;
493
494 do {
495 struct mem_cgroup *memcg = NULL;
496
497 freed = 0;
498 do {
499 freed += shrink_slab(GFP_KERNEL, nid, memcg,
500 1000, 1000);
501 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL);
502 } while (freed > 10);
503 }
504
505 void drop_slab(void)
506 {
507 int nid;
508
509 for_each_online_node(nid)
510 drop_slab_node(nid);
511 }
512
513 static inline int is_page_cache_freeable(struct page *page)
514 {
515 /*
516 * A freeable page cache page is referenced only by the caller
517 * that isolated the page, the page cache radix tree and
518 * optional buffer heads at page->private.
519 */
520 return page_count(page) - page_has_private(page) == 2;
521 }
522
523 static int may_write_to_inode(struct inode *inode, struct scan_control *sc)
524 {
525 if (current->flags & PF_SWAPWRITE)
526 return 1;
527 if (!inode_write_congested(inode))
528 return 1;
529 if (inode_to_bdi(inode) == current->backing_dev_info)
530 return 1;
531 return 0;
532 }
533
534 /*
535 * We detected a synchronous write error writing a page out. Probably
536 * -ENOSPC. We need to propagate that into the address_space for a subsequent
537 * fsync(), msync() or close().
538 *
539 * The tricky part is that after writepage we cannot touch the mapping: nothing
540 * prevents it from being freed up. But we have a ref on the page and once
541 * that page is locked, the mapping is pinned.
542 *
543 * We're allowed to run sleeping lock_page() here because we know the caller has
544 * __GFP_FS.
545 */
546 static void handle_write_error(struct address_space *mapping,
547 struct page *page, int error)
548 {
549 lock_page(page);
550 if (page_mapping(page) == mapping)
551 mapping_set_error(mapping, error);
552 unlock_page(page);
553 }
554
555 /* possible outcome of pageout() */
556 typedef enum {
557 /* failed to write page out, page is locked */
558 PAGE_KEEP,
559 /* move page to the active list, page is locked */
560 PAGE_ACTIVATE,
561 /* page has been sent to the disk successfully, page is unlocked */
562 PAGE_SUCCESS,
563 /* page is clean and locked */
564 PAGE_CLEAN,
565 } pageout_t;
566
567 /*
568 * pageout is called by shrink_page_list() for each dirty page.
569 * Calls ->writepage().
570 */
571 static pageout_t pageout(struct page *page, struct address_space *mapping,
572 struct scan_control *sc)
573 {
574 /*
575 * If the page is dirty, only perform writeback if that write
576 * will be non-blocking. To prevent this allocation from being
577 * stalled by pagecache activity. But note that there may be
578 * stalls if we need to run get_block(). We could test
579 * PagePrivate for that.
580 *
581 * If this process is currently in __generic_file_write_iter() against
582 * this page's queue, we can perform writeback even if that
583 * will block.
584 *
585 * If the page is swapcache, write it back even if that would
586 * block, for some throttling. This happens by accident, because
587 * swap_backing_dev_info is bust: it doesn't reflect the
588 * congestion state of the swapdevs. Easy to fix, if needed.
589 */
590 if (!is_page_cache_freeable(page))
591 return PAGE_KEEP;
592 if (!mapping) {
593 /*
594 * Some data journaling orphaned pages can have
595 * page->mapping == NULL while being dirty with clean buffers.
596 */
597 if (page_has_private(page)) {
598 if (try_to_free_buffers(page)) {
599 ClearPageDirty(page);
600 pr_info("%s: orphaned page\n", __func__);
601 return PAGE_CLEAN;
602 }
603 }
604 return PAGE_KEEP;
605 }
606 if (mapping->a_ops->writepage == NULL)
607 return PAGE_ACTIVATE;
608 if (!may_write_to_inode(mapping->host, sc))
609 return PAGE_KEEP;
610
611 if (clear_page_dirty_for_io(page)) {
612 int res;
613 struct writeback_control wbc = {
614 .sync_mode = WB_SYNC_NONE,
615 .nr_to_write = SWAP_CLUSTER_MAX,
616 .range_start = 0,
617 .range_end = LLONG_MAX,
618 .for_reclaim = 1,
619 };
620
621 SetPageReclaim(page);
622 res = mapping->a_ops->writepage(page, &wbc);
623 if (res < 0)
624 handle_write_error(mapping, page, res);
625 if (res == AOP_WRITEPAGE_ACTIVATE) {
626 ClearPageReclaim(page);
627 return PAGE_ACTIVATE;
628 }
629
630 if (!PageWriteback(page)) {
631 /* synchronous write or broken a_ops? */
632 ClearPageReclaim(page);
633 }
634 trace_mm_vmscan_writepage(page);
635 inc_node_page_state(page, NR_VMSCAN_WRITE);
636 return PAGE_SUCCESS;
637 }
638
639 return PAGE_CLEAN;
640 }
641
642 /*
643 * Same as remove_mapping, but if the page is removed from the mapping, it
644 * gets returned with a refcount of 0.
645 */
646 static int __remove_mapping(struct address_space *mapping, struct page *page,
647 bool reclaimed)
648 {
649 unsigned long flags;
650
651 BUG_ON(!PageLocked(page));
652 BUG_ON(mapping != page_mapping(page));
653
654 spin_lock_irqsave(&mapping->tree_lock, flags);
655 /*
656 * The non racy check for a busy page.
657 *
658 * Must be careful with the order of the tests. When someone has
659 * a ref to the page, it may be possible that they dirty it then
660 * drop the reference. So if PageDirty is tested before page_count
661 * here, then the following race may occur:
662 *
663 * get_user_pages(&page);
664 * [user mapping goes away]
665 * write_to(page);
666 * !PageDirty(page) [good]
667 * SetPageDirty(page);
668 * put_page(page);
669 * !page_count(page) [good, discard it]
670 *
671 * [oops, our write_to data is lost]
672 *
673 * Reversing the order of the tests ensures such a situation cannot
674 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
675 * load is not satisfied before that of page->_refcount.
676 *
677 * Note that if SetPageDirty is always performed via set_page_dirty,
678 * and thus under tree_lock, then this ordering is not required.
679 */
680 if (!page_ref_freeze(page, 2))
681 goto cannot_free;
682 /* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
683 if (unlikely(PageDirty(page))) {
684 page_ref_unfreeze(page, 2);
685 goto cannot_free;
686 }
687
688 if (PageSwapCache(page)) {
689 swp_entry_t swap = { .val = page_private(page) };
690 mem_cgroup_swapout(page, swap);
691 __delete_from_swap_cache(page);
692 spin_unlock_irqrestore(&mapping->tree_lock, flags);
693 swapcache_free(swap);
694 } else {
695 void (*freepage)(struct page *);
696 void *shadow = NULL;
697
698 freepage = mapping->a_ops->freepage;
699 /*
700 * Remember a shadow entry for reclaimed file cache in
701 * order to detect refaults, thus thrashing, later on.
702 *
703 * But don't store shadows in an address space that is
704 * already exiting. This is not just an optizimation,
705 * inode reclaim needs to empty out the radix tree or
706 * the nodes are lost. Don't plant shadows behind its
707 * back.
708 *
709 * We also don't store shadows for DAX mappings because the
710 * only page cache pages found in these are zero pages
711 * covering holes, and because we don't want to mix DAX
712 * exceptional entries and shadow exceptional entries in the
713 * same page_tree.
714 */
715 if (reclaimed && page_is_file_cache(page) &&
716 !mapping_exiting(mapping) && !dax_mapping(mapping))
717 shadow = workingset_eviction(mapping, page);
718 __delete_from_page_cache(page, shadow);
719 spin_unlock_irqrestore(&mapping->tree_lock, flags);
720
721 if (freepage != NULL)
722 freepage(page);
723 }
724
725 return 1;
726
727 cannot_free:
728 spin_unlock_irqrestore(&mapping->tree_lock, flags);
729 return 0;
730 }
731
732 /*
733 * Attempt to detach a locked page from its ->mapping. If it is dirty or if
734 * someone else has a ref on the page, abort and return 0. If it was
735 * successfully detached, return 1. Assumes the caller has a single ref on
736 * this page.
737 */
738 int remove_mapping(struct address_space *mapping, struct page *page)
739 {
740 if (__remove_mapping(mapping, page, false)) {
741 /*
742 * Unfreezing the refcount with 1 rather than 2 effectively
743 * drops the pagecache ref for us without requiring another
744 * atomic operation.
745 */
746 page_ref_unfreeze(page, 1);
747 return 1;
748 }
749 return 0;
750 }
751
752 /**
753 * putback_lru_page - put previously isolated page onto appropriate LRU list
754 * @page: page to be put back to appropriate lru list
755 *
756 * Add previously isolated @page to appropriate LRU list.
757 * Page may still be unevictable for other reasons.
758 *
759 * lru_lock must not be held, interrupts must be enabled.
760 */
761 void putback_lru_page(struct page *page)
762 {
763 bool is_unevictable;
764 int was_unevictable = PageUnevictable(page);
765
766 VM_BUG_ON_PAGE(PageLRU(page), page);
767
768 redo:
769 ClearPageUnevictable(page);
770
771 if (page_evictable(page)) {
772 /*
773 * For evictable pages, we can use the cache.
774 * In event of a race, worst case is we end up with an
775 * unevictable page on [in]active list.
776 * We know how to handle that.
777 */
778 is_unevictable = false;
779 lru_cache_add(page);
780 } else {
781 /*
782 * Put unevictable pages directly on zone's unevictable
783 * list.
784 */
785 is_unevictable = true;
786 add_page_to_unevictable_list(page);
787 /*
788 * When racing with an mlock or AS_UNEVICTABLE clearing
789 * (page is unlocked) make sure that if the other thread
790 * does not observe our setting of PG_lru and fails
791 * isolation/check_move_unevictable_pages,
792 * we see PG_mlocked/AS_UNEVICTABLE cleared below and move
793 * the page back to the evictable list.
794 *
795 * The other side is TestClearPageMlocked() or shmem_lock().
796 */
797 smp_mb();
798 }
799
800 /*
801 * page's status can change while we move it among lru. If an evictable
802 * page is on unevictable list, it never be freed. To avoid that,
803 * check after we added it to the list, again.
804 */
805 if (is_unevictable && page_evictable(page)) {
806 if (!isolate_lru_page(page)) {
807 put_page(page);
808 goto redo;
809 }
810 /* This means someone else dropped this page from LRU
811 * So, it will be freed or putback to LRU again. There is
812 * nothing to do here.
813 */
814 }
815
816 if (was_unevictable && !is_unevictable)
817 count_vm_event(UNEVICTABLE_PGRESCUED);
818 else if (!was_unevictable && is_unevictable)
819 count_vm_event(UNEVICTABLE_PGCULLED);
820
821 put_page(page); /* drop ref from isolate */
822 }
823
824 enum page_references {
825 PAGEREF_RECLAIM,
826 PAGEREF_RECLAIM_CLEAN,
827 PAGEREF_KEEP,
828 PAGEREF_ACTIVATE,
829 };
830
831 static enum page_references page_check_references(struct page *page,
832 struct scan_control *sc)
833 {
834 int referenced_ptes, referenced_page;
835 unsigned long vm_flags;
836
837 referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup,
838 &vm_flags);
839 referenced_page = TestClearPageReferenced(page);
840
841 /*
842 * Mlock lost the isolation race with us. Let try_to_unmap()
843 * move the page to the unevictable list.
844 */
845 if (vm_flags & VM_LOCKED)
846 return PAGEREF_RECLAIM;
847
848 if (referenced_ptes) {
849 if (PageSwapBacked(page))
850 return PAGEREF_ACTIVATE;
851 /*
852 * All mapped pages start out with page table
853 * references from the instantiating fault, so we need
854 * to look twice if a mapped file page is used more
855 * than once.
856 *
857 * Mark it and spare it for another trip around the
858 * inactive list. Another page table reference will
859 * lead to its activation.
860 *
861 * Note: the mark is set for activated pages as well
862 * so that recently deactivated but used pages are
863 * quickly recovered.
864 */
865 SetPageReferenced(page);
866
867 if (referenced_page || referenced_ptes > 1)
868 return PAGEREF_ACTIVATE;
869
870 /*
871 * Activate file-backed executable pages after first usage.
872 */
873 if (vm_flags & VM_EXEC)
874 return PAGEREF_ACTIVATE;
875
876 return PAGEREF_KEEP;
877 }
878
879 /* Reclaim if clean, defer dirty pages to writeback */
880 if (referenced_page && !PageSwapBacked(page))
881 return PAGEREF_RECLAIM_CLEAN;
882
883 return PAGEREF_RECLAIM;
884 }
885
886 /* Check if a page is dirty or under writeback */
887 static void page_check_dirty_writeback(struct page *page,
888 bool *dirty, bool *writeback)
889 {
890 struct address_space *mapping;
891
892 /*
893 * Anonymous pages are not handled by flushers and must be written
894 * from reclaim context. Do not stall reclaim based on them
895 */
896 if (!page_is_file_cache(page)) {
897 *dirty = false;
898 *writeback = false;
899 return;
900 }
901
902 /* By default assume that the page flags are accurate */
903 *dirty = PageDirty(page);
904 *writeback = PageWriteback(page);
905
906 /* Verify dirty/writeback state if the filesystem supports it */
907 if (!page_has_private(page))
908 return;
909
910 mapping = page_mapping(page);
911 if (mapping && mapping->a_ops->is_dirty_writeback)
912 mapping->a_ops->is_dirty_writeback(page, dirty, writeback);
913 }
914
915 struct reclaim_stat {
916 unsigned nr_dirty;
917 unsigned nr_unqueued_dirty;
918 unsigned nr_congested;
919 unsigned nr_writeback;
920 unsigned nr_immediate;
921 };
922
923 /*
924 * shrink_page_list() returns the number of reclaimed pages
925 */
926 static unsigned long shrink_page_list(struct list_head *page_list,
927 struct pglist_data *pgdat,
928 struct scan_control *sc,
929 enum ttu_flags ttu_flags,
930 struct reclaim_stat *stat,
931 bool force_reclaim)
932 {
933 LIST_HEAD(ret_pages);
934 LIST_HEAD(free_pages);
935 int pgactivate = 0;
936 unsigned nr_unqueued_dirty = 0;
937 unsigned nr_dirty = 0;
938 unsigned nr_congested = 0;
939 unsigned nr_reclaimed = 0;
940 unsigned nr_writeback = 0;
941 unsigned nr_immediate = 0;
942
943 cond_resched();
944
945 while (!list_empty(page_list)) {
946 struct address_space *mapping;
947 struct page *page;
948 int may_enter_fs;
949 enum page_references references = PAGEREF_RECLAIM_CLEAN;
950 bool dirty, writeback;
951 bool lazyfree = false;
952 int ret = SWAP_SUCCESS;
953
954 cond_resched();
955
956 page = lru_to_page(page_list);
957 list_del(&page->lru);
958
959 if (!trylock_page(page))
960 goto keep;
961
962 VM_BUG_ON_PAGE(PageActive(page), page);
963
964 sc->nr_scanned++;
965
966 if (unlikely(!page_evictable(page)))
967 goto cull_mlocked;
968
969 if (!sc->may_unmap && page_mapped(page))
970 goto keep_locked;
971
972 /* Double the slab pressure for mapped and swapcache pages */
973 if (page_mapped(page) || PageSwapCache(page))
974 sc->nr_scanned++;
975
976 may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
977 (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
978
979 /*
980 * The number of dirty pages determines if a zone is marked
981 * reclaim_congested which affects wait_iff_congested. kswapd
982 * will stall and start writing pages if the tail of the LRU
983 * is all dirty unqueued pages.
984 */
985 page_check_dirty_writeback(page, &dirty, &writeback);
986 if (dirty || writeback)
987 nr_dirty++;
988
989 if (dirty && !writeback)
990 nr_unqueued_dirty++;
991
992 /*
993 * Treat this page as congested if the underlying BDI is or if
994 * pages are cycling through the LRU so quickly that the
995 * pages marked for immediate reclaim are making it to the
996 * end of the LRU a second time.
997 */
998 mapping = page_mapping(page);
999 if (((dirty || writeback) && mapping &&
1000 inode_write_congested(mapping->host)) ||
1001 (writeback && PageReclaim(page)))
1002 nr_congested++;
1003
1004 /*
1005 * If a page at the tail of the LRU is under writeback, there
1006 * are three cases to consider.
1007 *
1008 * 1) If reclaim is encountering an excessive number of pages
1009 * under writeback and this page is both under writeback and
1010 * PageReclaim then it indicates that pages are being queued
1011 * for IO but are being recycled through the LRU before the
1012 * IO can complete. Waiting on the page itself risks an
1013 * indefinite stall if it is impossible to writeback the
1014 * page due to IO error or disconnected storage so instead
1015 * note that the LRU is being scanned too quickly and the
1016 * caller can stall after page list has been processed.
1017 *
1018 * 2) Global or new memcg reclaim encounters a page that is
1019 * not marked for immediate reclaim, or the caller does not
1020 * have __GFP_FS (or __GFP_IO if it's simply going to swap,
1021 * not to fs). In this case mark the page for immediate
1022 * reclaim and continue scanning.
1023 *
1024 * Require may_enter_fs because we would wait on fs, which
1025 * may not have submitted IO yet. And the loop driver might
1026 * enter reclaim, and deadlock if it waits on a page for
1027 * which it is needed to do the write (loop masks off
1028 * __GFP_IO|__GFP_FS for this reason); but more thought
1029 * would probably show more reasons.
1030 *
1031 * 3) Legacy memcg encounters a page that is already marked
1032 * PageReclaim. memcg does not have any dirty pages
1033 * throttling so we could easily OOM just because too many
1034 * pages are in writeback and there is nothing else to
1035 * reclaim. Wait for the writeback to complete.
1036 */
1037 if (PageWriteback(page)) {
1038 /* Case 1 above */
1039 if (current_is_kswapd() &&
1040 PageReclaim(page) &&
1041 test_bit(PGDAT_WRITEBACK, &pgdat->flags)) {
1042 nr_immediate++;
1043 goto keep_locked;
1044
1045 /* Case 2 above */
1046 } else if (sane_reclaim(sc) ||
1047 !PageReclaim(page) || !may_enter_fs) {
1048 /*
1049 * This is slightly racy - end_page_writeback()
1050 * might have just cleared PageReclaim, then
1051 * setting PageReclaim here end up interpreted
1052 * as PageReadahead - but that does not matter
1053 * enough to care. What we do want is for this
1054 * page to have PageReclaim set next time memcg
1055 * reclaim reaches the tests above, so it will
1056 * then wait_on_page_writeback() to avoid OOM;
1057 * and it's also appropriate in global reclaim.
1058 */
1059 SetPageReclaim(page);
1060 nr_writeback++;
1061 goto keep_locked;
1062
1063 /* Case 3 above */
1064 } else {
1065 unlock_page(page);
1066 wait_on_page_writeback(page);
1067 /* then go back and try same page again */
1068 list_add_tail(&page->lru, page_list);
1069 continue;
1070 }
1071 }
1072
1073 if (!force_reclaim)
1074 references = page_check_references(page, sc);
1075
1076 switch (references) {
1077 case PAGEREF_ACTIVATE:
1078 goto activate_locked;
1079 case PAGEREF_KEEP:
1080 goto keep_locked;
1081 case PAGEREF_RECLAIM:
1082 case PAGEREF_RECLAIM_CLEAN:
1083 ; /* try to reclaim the page below */
1084 }
1085
1086 /*
1087 * Anonymous process memory has backing store?
1088 * Try to allocate it some swap space here.
1089 */
1090 if (PageAnon(page) && !PageSwapCache(page)) {
1091 if (!(sc->gfp_mask & __GFP_IO))
1092 goto keep_locked;
1093 if (!add_to_swap(page, page_list))
1094 goto activate_locked;
1095 lazyfree = true;
1096 may_enter_fs = 1;
1097
1098 /* Adding to swap updated mapping */
1099 mapping = page_mapping(page);
1100 } else if (unlikely(PageTransHuge(page))) {
1101 /* Split file THP */
1102 if (split_huge_page_to_list(page, page_list))
1103 goto keep_locked;
1104 }
1105
1106 VM_BUG_ON_PAGE(PageTransHuge(page), page);
1107
1108 /*
1109 * The page is mapped into the page tables of one or more
1110 * processes. Try to unmap it here.
1111 */
1112 if (page_mapped(page) && mapping) {
1113 switch (ret = try_to_unmap(page, lazyfree ?
1114 (ttu_flags | TTU_BATCH_FLUSH | TTU_LZFREE) :
1115 (ttu_flags | TTU_BATCH_FLUSH))) {
1116 case SWAP_FAIL:
1117 goto activate_locked;
1118 case SWAP_AGAIN:
1119 goto keep_locked;
1120 case SWAP_MLOCK:
1121 goto cull_mlocked;
1122 case SWAP_LZFREE:
1123 goto lazyfree;
1124 case SWAP_SUCCESS:
1125 ; /* try to free the page below */
1126 }
1127 }
1128
1129 if (PageDirty(page)) {
1130 /*
1131 * Only kswapd can writeback filesystem pages to
1132 * avoid risk of stack overflow but only writeback
1133 * if many dirty pages have been encountered.
1134 */
1135 if (page_is_file_cache(page) &&
1136 (!current_is_kswapd() ||
1137 !test_bit(PGDAT_DIRTY, &pgdat->flags))) {
1138 /*
1139 * Immediately reclaim when written back.
1140 * Similar in principal to deactivate_page()
1141 * except we already have the page isolated
1142 * and know it's dirty
1143 */
1144 inc_node_page_state(page, NR_VMSCAN_IMMEDIATE);
1145 SetPageReclaim(page);
1146
1147 goto keep_locked;
1148 }
1149
1150 if (references == PAGEREF_RECLAIM_CLEAN)
1151 goto keep_locked;
1152 if (!may_enter_fs)
1153 goto keep_locked;
1154 if (!sc->may_writepage)
1155 goto keep_locked;
1156
1157 /*
1158 * Page is dirty. Flush the TLB if a writable entry
1159 * potentially exists to avoid CPU writes after IO
1160 * starts and then write it out here.
1161 */
1162 try_to_unmap_flush_dirty();
1163 switch (pageout(page, mapping, sc)) {
1164 case PAGE_KEEP:
1165 goto keep_locked;
1166 case PAGE_ACTIVATE:
1167 goto activate_locked;
1168 case PAGE_SUCCESS:
1169 if (PageWriteback(page))
1170 goto keep;
1171 if (PageDirty(page))
1172 goto keep;
1173
1174 /*
1175 * A synchronous write - probably a ramdisk. Go
1176 * ahead and try to reclaim the page.
1177 */
1178 if (!trylock_page(page))
1179 goto keep;
1180 if (PageDirty(page) || PageWriteback(page))
1181 goto keep_locked;
1182 mapping = page_mapping(page);
1183 case PAGE_CLEAN:
1184 ; /* try to free the page below */
1185 }
1186 }
1187
1188 /*
1189 * If the page has buffers, try to free the buffer mappings
1190 * associated with this page. If we succeed we try to free
1191 * the page as well.
1192 *
1193 * We do this even if the page is PageDirty().
1194 * try_to_release_page() does not perform I/O, but it is
1195 * possible for a page to have PageDirty set, but it is actually
1196 * clean (all its buffers are clean). This happens if the
1197 * buffers were written out directly, with submit_bh(). ext3
1198 * will do this, as well as the blockdev mapping.
1199 * try_to_release_page() will discover that cleanness and will
1200 * drop the buffers and mark the page clean - it can be freed.
1201 *
1202 * Rarely, pages can have buffers and no ->mapping. These are
1203 * the pages which were not successfully invalidated in
1204 * truncate_complete_page(). We try to drop those buffers here
1205 * and if that worked, and the page is no longer mapped into
1206 * process address space (page_count == 1) it can be freed.
1207 * Otherwise, leave the page on the LRU so it is swappable.
1208 */
1209 if (page_has_private(page)) {
1210 if (!try_to_release_page(page, sc->gfp_mask))
1211 goto activate_locked;
1212 if (!mapping && page_count(page) == 1) {
1213 unlock_page(page);
1214 if (put_page_testzero(page))
1215 goto free_it;
1216 else {
1217 /*
1218 * rare race with speculative reference.
1219 * the speculative reference will free
1220 * this page shortly, so we may
1221 * increment nr_reclaimed here (and
1222 * leave it off the LRU).
1223 */
1224 nr_reclaimed++;
1225 continue;
1226 }
1227 }
1228 }
1229
1230 lazyfree:
1231 if (!mapping || !__remove_mapping(mapping, page, true))
1232 goto keep_locked;
1233
1234 /*
1235 * At this point, we have no other references and there is
1236 * no way to pick any more up (removed from LRU, removed
1237 * from pagecache). Can use non-atomic bitops now (and
1238 * we obviously don't have to worry about waking up a process
1239 * waiting on the page lock, because there are no references.
1240 */
1241 __ClearPageLocked(page);
1242 free_it:
1243 if (ret == SWAP_LZFREE)
1244 count_vm_event(PGLAZYFREED);
1245
1246 nr_reclaimed++;
1247
1248 /*
1249 * Is there need to periodically free_page_list? It would
1250 * appear not as the counts should be low
1251 */
1252 list_add(&page->lru, &free_pages);
1253 continue;
1254
1255 cull_mlocked:
1256 if (PageSwapCache(page))
1257 try_to_free_swap(page);
1258 unlock_page(page);
1259 list_add(&page->lru, &ret_pages);
1260 continue;
1261
1262 activate_locked:
1263 /* Not a candidate for swapping, so reclaim swap space. */
1264 if (PageSwapCache(page) && mem_cgroup_swap_full(page))
1265 try_to_free_swap(page);
1266 VM_BUG_ON_PAGE(PageActive(page), page);
1267 SetPageActive(page);
1268 pgactivate++;
1269 keep_locked:
1270 unlock_page(page);
1271 keep:
1272 list_add(&page->lru, &ret_pages);
1273 VM_BUG_ON_PAGE(PageLRU(page) || PageUnevictable(page), page);
1274 }
1275
1276 mem_cgroup_uncharge_list(&free_pages);
1277 try_to_unmap_flush();
1278 free_hot_cold_page_list(&free_pages, true);
1279
1280 list_splice(&ret_pages, page_list);
1281 count_vm_events(PGACTIVATE, pgactivate);
1282
1283 if (stat) {
1284 stat->nr_dirty = nr_dirty;
1285 stat->nr_congested = nr_congested;
1286 stat->nr_unqueued_dirty = nr_unqueued_dirty;
1287 stat->nr_writeback = nr_writeback;
1288 stat->nr_immediate = nr_immediate;
1289 }
1290 return nr_reclaimed;
1291 }
1292
1293 unsigned long reclaim_clean_pages_from_list(struct zone *zone,
1294 struct list_head *page_list)
1295 {
1296 struct scan_control sc = {
1297 .gfp_mask = GFP_KERNEL,
1298 .priority = DEF_PRIORITY,
1299 .may_unmap = 1,
1300 };
1301 unsigned long ret;
1302 struct page *page, *next;
1303 LIST_HEAD(clean_pages);
1304
1305 list_for_each_entry_safe(page, next, page_list, lru) {
1306 if (page_is_file_cache(page) && !PageDirty(page) &&
1307 !__PageMovable(page)) {
1308 ClearPageActive(page);
1309 list_move(&page->lru, &clean_pages);
1310 }
1311 }
1312
1313 ret = shrink_page_list(&clean_pages, zone->zone_pgdat, &sc,
1314 TTU_UNMAP|TTU_IGNORE_ACCESS, NULL, true);
1315 list_splice(&clean_pages, page_list);
1316 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE, -ret);
1317 return ret;
1318 }
1319
1320 /*
1321 * Attempt to remove the specified page from its LRU. Only take this page
1322 * if it is of the appropriate PageActive status. Pages which are being
1323 * freed elsewhere are also ignored.
1324 *
1325 * page: page to consider
1326 * mode: one of the LRU isolation modes defined above
1327 *
1328 * returns 0 on success, -ve errno on failure.
1329 */
1330 int __isolate_lru_page(struct page *page, isolate_mode_t mode)
1331 {
1332 int ret = -EINVAL;
1333
1334 /* Only take pages on the LRU. */
1335 if (!PageLRU(page))
1336 return ret;
1337
1338 /* Compaction should not handle unevictable pages but CMA can do so */
1339 if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE))
1340 return ret;
1341
1342 ret = -EBUSY;
1343
1344 /*
1345 * To minimise LRU disruption, the caller can indicate that it only
1346 * wants to isolate pages it will be able to operate on without
1347 * blocking - clean pages for the most part.
1348 *
1349 * ISOLATE_CLEAN means that only clean pages should be isolated. This
1350 * is used by reclaim when it is cannot write to backing storage
1351 *
1352 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
1353 * that it is possible to migrate without blocking
1354 */
1355 if (mode & (ISOLATE_CLEAN|ISOLATE_ASYNC_MIGRATE)) {
1356 /* All the caller can do on PageWriteback is block */
1357 if (PageWriteback(page))
1358 return ret;
1359
1360 if (PageDirty(page)) {
1361 struct address_space *mapping;
1362
1363 /* ISOLATE_CLEAN means only clean pages */
1364 if (mode & ISOLATE_CLEAN)
1365 return ret;
1366
1367 /*
1368 * Only pages without mappings or that have a
1369 * ->migratepage callback are possible to migrate
1370 * without blocking
1371 */
1372 mapping = page_mapping(page);
1373 if (mapping && !mapping->a_ops->migratepage)
1374 return ret;
1375 }
1376 }
1377
1378 if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
1379 return ret;
1380
1381 if (likely(get_page_unless_zero(page))) {
1382 /*
1383 * Be careful not to clear PageLRU until after we're
1384 * sure the page is not being freed elsewhere -- the
1385 * page release code relies on it.
1386 */
1387 ClearPageLRU(page);
1388 ret = 0;
1389 }
1390
1391 return ret;
1392 }
1393
1394
1395 /*
1396 * Update LRU sizes after isolating pages. The LRU size updates must
1397 * be complete before mem_cgroup_update_lru_size due to a santity check.
1398 */
1399 static __always_inline void update_lru_sizes(struct lruvec *lruvec,
1400 enum lru_list lru, unsigned long *nr_zone_taken)
1401 {
1402 int zid;
1403
1404 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1405 if (!nr_zone_taken[zid])
1406 continue;
1407
1408 __update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]);
1409 #ifdef CONFIG_MEMCG
1410 mem_cgroup_update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]);
1411 #endif
1412 }
1413
1414 }
1415
1416 /*
1417 * zone_lru_lock is heavily contended. Some of the functions that
1418 * shrink the lists perform better by taking out a batch of pages
1419 * and working on them outside the LRU lock.
1420 *
1421 * For pagecache intensive workloads, this function is the hottest
1422 * spot in the kernel (apart from copy_*_user functions).
1423 *
1424 * Appropriate locks must be held before calling this function.
1425 *
1426 * @nr_to_scan: The number of pages to look through on the list.
1427 * @lruvec: The LRU vector to pull pages from.
1428 * @dst: The temp list to put pages on to.
1429 * @nr_scanned: The number of pages that were scanned.
1430 * @sc: The scan_control struct for this reclaim session
1431 * @mode: One of the LRU isolation modes
1432 * @lru: LRU list id for isolating
1433 *
1434 * returns how many pages were moved onto *@dst.
1435 */
1436 static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
1437 struct lruvec *lruvec, struct list_head *dst,
1438 unsigned long *nr_scanned, struct scan_control *sc,
1439 isolate_mode_t mode, enum lru_list lru)
1440 {
1441 struct list_head *src = &lruvec->lists[lru];
1442 unsigned long nr_taken = 0;
1443 unsigned long nr_zone_taken[MAX_NR_ZONES] = { 0 };
1444 unsigned long nr_skipped[MAX_NR_ZONES] = { 0, };
1445 unsigned long skipped = 0, total_skipped = 0;
1446 unsigned long scan, nr_pages;
1447 LIST_HEAD(pages_skipped);
1448
1449 for (scan = 0; scan < nr_to_scan && nr_taken < nr_to_scan &&
1450 !list_empty(src);) {
1451 struct page *page;
1452
1453 page = lru_to_page(src);
1454 prefetchw_prev_lru_page(page, src, flags);
1455
1456 VM_BUG_ON_PAGE(!PageLRU(page), page);
1457
1458 if (page_zonenum(page) > sc->reclaim_idx) {
1459 list_move(&page->lru, &pages_skipped);
1460 nr_skipped[page_zonenum(page)]++;
1461 continue;
1462 }
1463
1464 /*
1465 * Account for scanned and skipped separetly to avoid the pgdat
1466 * being prematurely marked unreclaimable by pgdat_reclaimable.
1467 */
1468 scan++;
1469
1470 switch (__isolate_lru_page(page, mode)) {
1471 case 0:
1472 nr_pages = hpage_nr_pages(page);
1473 nr_taken += nr_pages;
1474 nr_zone_taken[page_zonenum(page)] += nr_pages;
1475 list_move(&page->lru, dst);
1476 break;
1477
1478 case -EBUSY:
1479 /* else it is being freed elsewhere */
1480 list_move(&page->lru, src);
1481 continue;
1482
1483 default:
1484 BUG();
1485 }
1486 }
1487
1488 /*
1489 * Splice any skipped pages to the start of the LRU list. Note that
1490 * this disrupts the LRU order when reclaiming for lower zones but
1491 * we cannot splice to the tail. If we did then the SWAP_CLUSTER_MAX
1492 * scanning would soon rescan the same pages to skip and put the
1493 * system at risk of premature OOM.
1494 */
1495 if (!list_empty(&pages_skipped)) {
1496 int zid;
1497
1498 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1499 if (!nr_skipped[zid])
1500 continue;
1501
1502 __count_zid_vm_events(PGSCAN_SKIP, zid, nr_skipped[zid]);
1503 skipped += nr_skipped[zid];
1504 }
1505
1506 /*
1507 * Account skipped pages as a partial scan as the pgdat may be
1508 * close to unreclaimable. If the LRU list is empty, account
1509 * skipped pages as a full scan.
1510 */
1511 total_skipped = list_empty(src) ? skipped : skipped >> 2;
1512
1513 list_splice(&pages_skipped, src);
1514 }
1515 *nr_scanned = scan + total_skipped;
1516 trace_mm_vmscan_lru_isolate(sc->reclaim_idx, sc->order, nr_to_scan,
1517 scan, skipped, nr_taken, mode, lru);
1518 update_lru_sizes(lruvec, lru, nr_zone_taken);
1519 return nr_taken;
1520 }
1521
1522 /**
1523 * isolate_lru_page - tries to isolate a page from its LRU list
1524 * @page: page to isolate from its LRU list
1525 *
1526 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1527 * vmstat statistic corresponding to whatever LRU list the page was on.
1528 *
1529 * Returns 0 if the page was removed from an LRU list.
1530 * Returns -EBUSY if the page was not on an LRU list.
1531 *
1532 * The returned page will have PageLRU() cleared. If it was found on
1533 * the active list, it will have PageActive set. If it was found on
1534 * the unevictable list, it will have the PageUnevictable bit set. That flag
1535 * may need to be cleared by the caller before letting the page go.
1536 *
1537 * The vmstat statistic corresponding to the list on which the page was
1538 * found will be decremented.
1539 *
1540 * Restrictions:
1541 * (1) Must be called with an elevated refcount on the page. This is a
1542 * fundamentnal difference from isolate_lru_pages (which is called
1543 * without a stable reference).
1544 * (2) the lru_lock must not be held.
1545 * (3) interrupts must be enabled.
1546 */
1547 int isolate_lru_page(struct page *page)
1548 {
1549 int ret = -EBUSY;
1550
1551 VM_BUG_ON_PAGE(!page_count(page), page);
1552 WARN_RATELIMIT(PageTail(page), "trying to isolate tail page");
1553
1554 if (PageLRU(page)) {
1555 struct zone *zone = page_zone(page);
1556 struct lruvec *lruvec;
1557
1558 spin_lock_irq(zone_lru_lock(zone));
1559 lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat);
1560 if (PageLRU(page)) {
1561 int lru = page_lru(page);
1562 get_page(page);
1563 ClearPageLRU(page);
1564 del_page_from_lru_list(page, lruvec, lru);
1565 ret = 0;
1566 }
1567 spin_unlock_irq(zone_lru_lock(zone));
1568 }
1569 return ret;
1570 }
1571
1572 /*
1573 * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
1574 * then get resheduled. When there are massive number of tasks doing page
1575 * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
1576 * the LRU list will go small and be scanned faster than necessary, leading to
1577 * unnecessary swapping, thrashing and OOM.
1578 */
1579 static int too_many_isolated(struct pglist_data *pgdat, int file,
1580 struct scan_control *sc)
1581 {
1582 unsigned long inactive, isolated;
1583
1584 if (current_is_kswapd())
1585 return 0;
1586
1587 if (!sane_reclaim(sc))
1588 return 0;
1589
1590 if (file) {
1591 inactive = node_page_state(pgdat, NR_INACTIVE_FILE);
1592 isolated = node_page_state(pgdat, NR_ISOLATED_FILE);
1593 } else {
1594 inactive = node_page_state(pgdat, NR_INACTIVE_ANON);
1595 isolated = node_page_state(pgdat, NR_ISOLATED_ANON);
1596 }
1597
1598 /*
1599 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
1600 * won't get blocked by normal direct-reclaimers, forming a circular
1601 * deadlock.
1602 */
1603 if ((sc->gfp_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
1604 inactive >>= 3;
1605
1606 return isolated > inactive;
1607 }
1608
1609 static noinline_for_stack void
1610 putback_inactive_pages(struct lruvec *lruvec, struct list_head *page_list)
1611 {
1612 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1613 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1614 LIST_HEAD(pages_to_free);
1615
1616 /*
1617 * Put back any unfreeable pages.
1618 */
1619 while (!list_empty(page_list)) {
1620 struct page *page = lru_to_page(page_list);
1621 int lru;
1622
1623 VM_BUG_ON_PAGE(PageLRU(page), page);
1624 list_del(&page->lru);
1625 if (unlikely(!page_evictable(page))) {
1626 spin_unlock_irq(&pgdat->lru_lock);
1627 putback_lru_page(page);
1628 spin_lock_irq(&pgdat->lru_lock);
1629 continue;
1630 }
1631
1632 lruvec = mem_cgroup_page_lruvec(page, pgdat);
1633
1634 SetPageLRU(page);
1635 lru = page_lru(page);
1636 add_page_to_lru_list(page, lruvec, lru);
1637
1638 if (is_active_lru(lru)) {
1639 int file = is_file_lru(lru);
1640 int numpages = hpage_nr_pages(page);
1641 reclaim_stat->recent_rotated[file] += numpages;
1642 }
1643 if (put_page_testzero(page)) {
1644 __ClearPageLRU(page);
1645 __ClearPageActive(page);
1646 del_page_from_lru_list(page, lruvec, lru);
1647
1648 if (unlikely(PageCompound(page))) {
1649 spin_unlock_irq(&pgdat->lru_lock);
1650 mem_cgroup_uncharge(page);
1651 (*get_compound_page_dtor(page))(page);
1652 spin_lock_irq(&pgdat->lru_lock);
1653 } else
1654 list_add(&page->lru, &pages_to_free);
1655 }
1656 }
1657
1658 /*
1659 * To save our caller's stack, now use input list for pages to free.
1660 */
1661 list_splice(&pages_to_free, page_list);
1662 }
1663
1664 /*
1665 * If a kernel thread (such as nfsd for loop-back mounts) services
1666 * a backing device by writing to the page cache it sets PF_LESS_THROTTLE.
1667 * In that case we should only throttle if the backing device it is
1668 * writing to is congested. In other cases it is safe to throttle.
1669 */
1670 static int current_may_throttle(void)
1671 {
1672 return !(current->flags & PF_LESS_THROTTLE) ||
1673 current->backing_dev_info == NULL ||
1674 bdi_write_congested(current->backing_dev_info);
1675 }
1676
1677 static bool inactive_reclaimable_pages(struct lruvec *lruvec,
1678 struct scan_control *sc, enum lru_list lru)
1679 {
1680 int zid;
1681 struct zone *zone;
1682 int file = is_file_lru(lru);
1683 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1684
1685 if (!global_reclaim(sc))
1686 return true;
1687
1688 for (zid = sc->reclaim_idx; zid >= 0; zid--) {
1689 zone = &pgdat->node_zones[zid];
1690 if (!managed_zone(zone))
1691 continue;
1692
1693 if (zone_page_state_snapshot(zone, NR_ZONE_LRU_BASE +
1694 LRU_FILE * file) >= SWAP_CLUSTER_MAX)
1695 return true;
1696 }
1697
1698 return false;
1699 }
1700
1701 /*
1702 * shrink_inactive_list() is a helper for shrink_node(). It returns the number
1703 * of reclaimed pages
1704 */
1705 static noinline_for_stack unsigned long
1706 shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec,
1707 struct scan_control *sc, enum lru_list lru)
1708 {
1709 LIST_HEAD(page_list);
1710 unsigned long nr_scanned;
1711 unsigned long nr_reclaimed = 0;
1712 unsigned long nr_taken;
1713 struct reclaim_stat stat = {};
1714 isolate_mode_t isolate_mode = 0;
1715 int file = is_file_lru(lru);
1716 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1717 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1718
1719 if (!inactive_reclaimable_pages(lruvec, sc, lru))
1720 return 0;
1721
1722 while (unlikely(too_many_isolated(pgdat, file, sc))) {
1723 congestion_wait(BLK_RW_ASYNC, HZ/10);
1724
1725 /* We are about to die and free our memory. Return now. */
1726 if (fatal_signal_pending(current))
1727 return SWAP_CLUSTER_MAX;
1728 }
1729
1730 lru_add_drain();
1731
1732 if (!sc->may_unmap)
1733 isolate_mode |= ISOLATE_UNMAPPED;
1734 if (!sc->may_writepage)
1735 isolate_mode |= ISOLATE_CLEAN;
1736
1737 spin_lock_irq(&pgdat->lru_lock);
1738
1739 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list,
1740 &nr_scanned, sc, isolate_mode, lru);
1741
1742 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
1743 reclaim_stat->recent_scanned[file] += nr_taken;
1744
1745 if (global_reclaim(sc)) {
1746 __mod_node_page_state(pgdat, NR_PAGES_SCANNED, nr_scanned);
1747 if (current_is_kswapd())
1748 __count_vm_events(PGSCAN_KSWAPD, nr_scanned);
1749 else
1750 __count_vm_events(PGSCAN_DIRECT, nr_scanned);
1751 }
1752 spin_unlock_irq(&pgdat->lru_lock);
1753
1754 if (nr_taken == 0)
1755 return 0;
1756
1757 nr_reclaimed = shrink_page_list(&page_list, pgdat, sc, TTU_UNMAP,
1758 &stat, false);
1759
1760 spin_lock_irq(&pgdat->lru_lock);
1761
1762 if (global_reclaim(sc)) {
1763 if (current_is_kswapd())
1764 __count_vm_events(PGSTEAL_KSWAPD, nr_reclaimed);
1765 else
1766 __count_vm_events(PGSTEAL_DIRECT, nr_reclaimed);
1767 }
1768
1769 putback_inactive_pages(lruvec, &page_list);
1770
1771 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
1772
1773 spin_unlock_irq(&pgdat->lru_lock);
1774
1775 mem_cgroup_uncharge_list(&page_list);
1776 free_hot_cold_page_list(&page_list, true);
1777
1778 /*
1779 * If reclaim is isolating dirty pages under writeback, it implies
1780 * that the long-lived page allocation rate is exceeding the page
1781 * laundering rate. Either the global limits are not being effective
1782 * at throttling processes due to the page distribution throughout
1783 * zones or there is heavy usage of a slow backing device. The
1784 * only option is to throttle from reclaim context which is not ideal
1785 * as there is no guarantee the dirtying process is throttled in the
1786 * same way balance_dirty_pages() manages.
1787 *
1788 * Once a zone is flagged ZONE_WRITEBACK, kswapd will count the number
1789 * of pages under pages flagged for immediate reclaim and stall if any
1790 * are encountered in the nr_immediate check below.
1791 */
1792 if (stat.nr_writeback && stat.nr_writeback == nr_taken)
1793 set_bit(PGDAT_WRITEBACK, &pgdat->flags);
1794
1795 /*
1796 * Legacy memcg will stall in page writeback so avoid forcibly
1797 * stalling here.
1798 */
1799 if (sane_reclaim(sc)) {
1800 /*
1801 * Tag a zone as congested if all the dirty pages scanned were
1802 * backed by a congested BDI and wait_iff_congested will stall.
1803 */
1804 if (stat.nr_dirty && stat.nr_dirty == stat.nr_congested)
1805 set_bit(PGDAT_CONGESTED, &pgdat->flags);
1806
1807 /*
1808 * If dirty pages are scanned that are not queued for IO, it
1809 * implies that flushers are not keeping up. In this case, flag
1810 * the pgdat PGDAT_DIRTY and kswapd will start writing pages from
1811 * reclaim context.
1812 */
1813 if (stat.nr_unqueued_dirty == nr_taken)
1814 set_bit(PGDAT_DIRTY, &pgdat->flags);
1815
1816 /*
1817 * If kswapd scans pages marked marked for immediate
1818 * reclaim and under writeback (nr_immediate), it implies
1819 * that pages are cycling through the LRU faster than
1820 * they are written so also forcibly stall.
1821 */
1822 if (stat.nr_immediate && current_may_throttle())
1823 congestion_wait(BLK_RW_ASYNC, HZ/10);
1824 }
1825
1826 /*
1827 * Stall direct reclaim for IO completions if underlying BDIs or zone
1828 * is congested. Allow kswapd to continue until it starts encountering
1829 * unqueued dirty pages or cycling through the LRU too quickly.
1830 */
1831 if (!sc->hibernation_mode && !current_is_kswapd() &&
1832 current_may_throttle())
1833 wait_iff_congested(pgdat, BLK_RW_ASYNC, HZ/10);
1834
1835 trace_mm_vmscan_lru_shrink_inactive(pgdat->node_id,
1836 nr_scanned, nr_reclaimed,
1837 sc->priority, file);
1838 return nr_reclaimed;
1839 }
1840
1841 /*
1842 * This moves pages from the active list to the inactive list.
1843 *
1844 * We move them the other way if the page is referenced by one or more
1845 * processes, from rmap.
1846 *
1847 * If the pages are mostly unmapped, the processing is fast and it is
1848 * appropriate to hold zone_lru_lock across the whole operation. But if
1849 * the pages are mapped, the processing is slow (page_referenced()) so we
1850 * should drop zone_lru_lock around each page. It's impossible to balance
1851 * this, so instead we remove the pages from the LRU while processing them.
1852 * It is safe to rely on PG_active against the non-LRU pages in here because
1853 * nobody will play with that bit on a non-LRU page.
1854 *
1855 * The downside is that we have to touch page->_refcount against each page.
1856 * But we had to alter page->flags anyway.
1857 *
1858 * Returns the number of pages moved to the given lru.
1859 */
1860
1861 static unsigned move_active_pages_to_lru(struct lruvec *lruvec,
1862 struct list_head *list,
1863 struct list_head *pages_to_free,
1864 enum lru_list lru)
1865 {
1866 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1867 unsigned long pgmoved = 0;
1868 struct page *page;
1869 int nr_pages;
1870 int nr_moved = 0;
1871
1872 while (!list_empty(list)) {
1873 page = lru_to_page(list);
1874 lruvec = mem_cgroup_page_lruvec(page, pgdat);
1875
1876 VM_BUG_ON_PAGE(PageLRU(page), page);
1877 SetPageLRU(page);
1878
1879 nr_pages = hpage_nr_pages(page);
1880 update_lru_size(lruvec, lru, page_zonenum(page), nr_pages);
1881 list_move(&page->lru, &lruvec->lists[lru]);
1882 pgmoved += nr_pages;
1883
1884 if (put_page_testzero(page)) {
1885 __ClearPageLRU(page);
1886 __ClearPageActive(page);
1887 del_page_from_lru_list(page, lruvec, lru);
1888
1889 if (unlikely(PageCompound(page))) {
1890 spin_unlock_irq(&pgdat->lru_lock);
1891 mem_cgroup_uncharge(page);
1892 (*get_compound_page_dtor(page))(page);
1893 spin_lock_irq(&pgdat->lru_lock);
1894 } else
1895 list_add(&page->lru, pages_to_free);
1896 } else {
1897 nr_moved += nr_pages;
1898 }
1899 }
1900
1901 if (!is_active_lru(lru))
1902 __count_vm_events(PGDEACTIVATE, pgmoved);
1903
1904 return nr_moved;
1905 }
1906
1907 static void shrink_active_list(unsigned long nr_to_scan,
1908 struct lruvec *lruvec,
1909 struct scan_control *sc,
1910 enum lru_list lru)
1911 {
1912 unsigned long nr_taken;
1913 unsigned long nr_scanned;
1914 unsigned long vm_flags;
1915 LIST_HEAD(l_hold); /* The pages which were snipped off */
1916 LIST_HEAD(l_active);
1917 LIST_HEAD(l_inactive);
1918 struct page *page;
1919 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1920 unsigned nr_deactivate, nr_activate;
1921 unsigned nr_rotated = 0;
1922 isolate_mode_t isolate_mode = 0;
1923 int file = is_file_lru(lru);
1924 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1925
1926 lru_add_drain();
1927
1928 if (!sc->may_unmap)
1929 isolate_mode |= ISOLATE_UNMAPPED;
1930 if (!sc->may_writepage)
1931 isolate_mode |= ISOLATE_CLEAN;
1932
1933 spin_lock_irq(&pgdat->lru_lock);
1934
1935 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold,
1936 &nr_scanned, sc, isolate_mode, lru);
1937
1938 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
1939 reclaim_stat->recent_scanned[file] += nr_taken;
1940
1941 if (global_reclaim(sc))
1942 __mod_node_page_state(pgdat, NR_PAGES_SCANNED, nr_scanned);
1943 __count_vm_events(PGREFILL, nr_scanned);
1944
1945 spin_unlock_irq(&pgdat->lru_lock);
1946
1947 while (!list_empty(&l_hold)) {
1948 cond_resched();
1949 page = lru_to_page(&l_hold);
1950 list_del(&page->lru);
1951
1952 if (unlikely(!page_evictable(page))) {
1953 putback_lru_page(page);
1954 continue;
1955 }
1956
1957 if (unlikely(buffer_heads_over_limit)) {
1958 if (page_has_private(page) && trylock_page(page)) {
1959 if (page_has_private(page))
1960 try_to_release_page(page, 0);
1961 unlock_page(page);
1962 }
1963 }
1964
1965 if (page_referenced(page, 0, sc->target_mem_cgroup,
1966 &vm_flags)) {
1967 nr_rotated += hpage_nr_pages(page);
1968 /*
1969 * Identify referenced, file-backed active pages and
1970 * give them one more trip around the active list. So
1971 * that executable code get better chances to stay in
1972 * memory under moderate memory pressure. Anon pages
1973 * are not likely to be evicted by use-once streaming
1974 * IO, plus JVM can create lots of anon VM_EXEC pages,
1975 * so we ignore them here.
1976 */
1977 if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
1978 list_add(&page->lru, &l_active);
1979 continue;
1980 }
1981 }
1982
1983 ClearPageActive(page); /* we are de-activating */
1984 list_add(&page->lru, &l_inactive);
1985 }
1986
1987 /*
1988 * Move pages back to the lru list.
1989 */
1990 spin_lock_irq(&pgdat->lru_lock);
1991 /*
1992 * Count referenced pages from currently used mappings as rotated,
1993 * even though only some of them are actually re-activated. This
1994 * helps balance scan pressure between file and anonymous pages in
1995 * get_scan_count.
1996 */
1997 reclaim_stat->recent_rotated[file] += nr_rotated;
1998
1999 nr_activate = move_active_pages_to_lru(lruvec, &l_active, &l_hold, lru);
2000 nr_deactivate = move_active_pages_to_lru(lruvec, &l_inactive, &l_hold, lru - LRU_ACTIVE);
2001 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
2002 spin_unlock_irq(&pgdat->lru_lock);
2003
2004 mem_cgroup_uncharge_list(&l_hold);
2005 free_hot_cold_page_list(&l_hold, true);
2006 trace_mm_vmscan_lru_shrink_active(pgdat->node_id, nr_taken, nr_activate,
2007 nr_deactivate, nr_rotated, sc->priority, file);
2008 }
2009
2010 /*
2011 * The inactive anon list should be small enough that the VM never has
2012 * to do too much work.
2013 *
2014 * The inactive file list should be small enough to leave most memory
2015 * to the established workingset on the scan-resistant active list,
2016 * but large enough to avoid thrashing the aggregate readahead window.
2017 *
2018 * Both inactive lists should also be large enough that each inactive
2019 * page has a chance to be referenced again before it is reclaimed.
2020 *
2021 * The inactive_ratio is the target ratio of ACTIVE to INACTIVE pages
2022 * on this LRU, maintained by the pageout code. A zone->inactive_ratio
2023 * of 3 means 3:1 or 25% of the pages are kept on the inactive list.
2024 *
2025 * total target max
2026 * memory ratio inactive
2027 * -------------------------------------
2028 * 10MB 1 5MB
2029 * 100MB 1 50MB
2030 * 1GB 3 250MB
2031 * 10GB 10 0.9GB
2032 * 100GB 31 3GB
2033 * 1TB 101 10GB
2034 * 10TB 320 32GB
2035 */
2036 static bool inactive_list_is_low(struct lruvec *lruvec, bool file,
2037 struct scan_control *sc)
2038 {
2039 unsigned long inactive_ratio;
2040 unsigned long inactive;
2041 unsigned long active;
2042 unsigned long gb;
2043 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2044 int zid;
2045
2046 /*
2047 * If we don't have swap space, anonymous page deactivation
2048 * is pointless.
2049 */
2050 if (!file && !total_swap_pages)
2051 return false;
2052
2053 inactive = lruvec_lru_size(lruvec, file * LRU_FILE);
2054 active = lruvec_lru_size(lruvec, file * LRU_FILE + LRU_ACTIVE);
2055
2056 /*
2057 * For zone-constrained allocations, it is necessary to check if
2058 * deactivations are required for lowmem to be reclaimed. This
2059 * calculates the inactive/active pages available in eligible zones.
2060 */
2061 for (zid = sc->reclaim_idx + 1; zid < MAX_NR_ZONES; zid++) {
2062 struct zone *zone = &pgdat->node_zones[zid];
2063 unsigned long inactive_zone, active_zone;
2064
2065 if (!managed_zone(zone))
2066 continue;
2067
2068 inactive_zone = lruvec_zone_lru_size(lruvec, file * LRU_FILE, zid);
2069 active_zone = lruvec_zone_lru_size(lruvec, (file * LRU_FILE) + LRU_ACTIVE, zid);
2070
2071 inactive -= min(inactive, inactive_zone);
2072 active -= min(active, active_zone);
2073 }
2074
2075 gb = (inactive + active) >> (30 - PAGE_SHIFT);
2076 if (gb)
2077 inactive_ratio = int_sqrt(10 * gb);
2078 else
2079 inactive_ratio = 1;
2080
2081 return inactive * inactive_ratio < active;
2082 }
2083
2084 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
2085 struct lruvec *lruvec, struct scan_control *sc)
2086 {
2087 if (is_active_lru(lru)) {
2088 if (inactive_list_is_low(lruvec, is_file_lru(lru), sc))
2089 shrink_active_list(nr_to_scan, lruvec, sc, lru);
2090 return 0;
2091 }
2092
2093 return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
2094 }
2095
2096 enum scan_balance {
2097 SCAN_EQUAL,
2098 SCAN_FRACT,
2099 SCAN_ANON,
2100 SCAN_FILE,
2101 };
2102
2103 /*
2104 * Determine how aggressively the anon and file LRU lists should be
2105 * scanned. The relative value of each set of LRU lists is determined
2106 * by looking at the fraction of the pages scanned we did rotate back
2107 * onto the active list instead of evict.
2108 *
2109 * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan
2110 * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan
2111 */
2112 static void get_scan_count(struct lruvec *lruvec, struct mem_cgroup *memcg,
2113 struct scan_control *sc, unsigned long *nr,
2114 unsigned long *lru_pages)
2115 {
2116 int swappiness = mem_cgroup_swappiness(memcg);
2117 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
2118 u64 fraction[2];
2119 u64 denominator = 0; /* gcc */
2120 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2121 unsigned long anon_prio, file_prio;
2122 enum scan_balance scan_balance;
2123 unsigned long anon, file;
2124 bool force_scan = false;
2125 unsigned long ap, fp;
2126 enum lru_list lru;
2127 bool some_scanned;
2128 int pass;
2129
2130 /*
2131 * If the zone or memcg is small, nr[l] can be 0. This
2132 * results in no scanning on this priority and a potential
2133 * priority drop. Global direct reclaim can go to the next
2134 * zone and tends to have no problems. Global kswapd is for
2135 * zone balancing and it needs to scan a minimum amount. When
2136 * reclaiming for a memcg, a priority drop can cause high
2137 * latencies, so it's better to scan a minimum amount there as
2138 * well.
2139 */
2140 if (current_is_kswapd()) {
2141 if (!pgdat_reclaimable(pgdat))
2142 force_scan = true;
2143 if (!mem_cgroup_online(memcg))
2144 force_scan = true;
2145 }
2146 if (!global_reclaim(sc))
2147 force_scan = true;
2148
2149 /* If we have no swap space, do not bother scanning anon pages. */
2150 if (!sc->may_swap || mem_cgroup_get_nr_swap_pages(memcg) <= 0) {
2151 scan_balance = SCAN_FILE;
2152 goto out;
2153 }
2154
2155 /*
2156 * Global reclaim will swap to prevent OOM even with no
2157 * swappiness, but memcg users want to use this knob to
2158 * disable swapping for individual groups completely when
2159 * using the memory controller's swap limit feature would be
2160 * too expensive.
2161 */
2162 if (!global_reclaim(sc) && !swappiness) {
2163 scan_balance = SCAN_FILE;
2164 goto out;
2165 }
2166
2167 /*
2168 * Do not apply any pressure balancing cleverness when the
2169 * system is close to OOM, scan both anon and file equally
2170 * (unless the swappiness setting disagrees with swapping).
2171 */
2172 if (!sc->priority && swappiness) {
2173 scan_balance = SCAN_EQUAL;
2174 goto out;
2175 }
2176
2177 /*
2178 * Prevent the reclaimer from falling into the cache trap: as
2179 * cache pages start out inactive, every cache fault will tip
2180 * the scan balance towards the file LRU. And as the file LRU
2181 * shrinks, so does the window for rotation from references.
2182 * This means we have a runaway feedback loop where a tiny
2183 * thrashing file LRU becomes infinitely more attractive than
2184 * anon pages. Try to detect this based on file LRU size.
2185 */
2186 if (global_reclaim(sc)) {
2187 unsigned long pgdatfile;
2188 unsigned long pgdatfree;
2189 int z;
2190 unsigned long total_high_wmark = 0;
2191
2192 pgdatfree = sum_zone_node_page_state(pgdat->node_id, NR_FREE_PAGES);
2193 pgdatfile = node_page_state(pgdat, NR_ACTIVE_FILE) +
2194 node_page_state(pgdat, NR_INACTIVE_FILE);
2195
2196 for (z = 0; z < MAX_NR_ZONES; z++) {
2197 struct zone *zone = &pgdat->node_zones[z];
2198 if (!managed_zone(zone))
2199 continue;
2200
2201 total_high_wmark += high_wmark_pages(zone);
2202 }
2203
2204 if (unlikely(pgdatfile + pgdatfree <= total_high_wmark)) {
2205 scan_balance = SCAN_ANON;
2206 goto out;
2207 }
2208 }
2209
2210 /*
2211 * If there is enough inactive page cache, i.e. if the size of the
2212 * inactive list is greater than that of the active list *and* the
2213 * inactive list actually has some pages to scan on this priority, we
2214 * do not reclaim anything from the anonymous working set right now.
2215 * Without the second condition we could end up never scanning an
2216 * lruvec even if it has plenty of old anonymous pages unless the
2217 * system is under heavy pressure.
2218 */
2219 if (!inactive_list_is_low(lruvec, true, sc) &&
2220 lruvec_lru_size(lruvec, LRU_INACTIVE_FILE) >> sc->priority) {
2221 scan_balance = SCAN_FILE;
2222 goto out;
2223 }
2224
2225 scan_balance = SCAN_FRACT;
2226
2227 /*
2228 * With swappiness at 100, anonymous and file have the same priority.
2229 * This scanning priority is essentially the inverse of IO cost.
2230 */
2231 anon_prio = swappiness;
2232 file_prio = 200 - anon_prio;
2233
2234 /*
2235 * OK, so we have swap space and a fair amount of page cache
2236 * pages. We use the recently rotated / recently scanned
2237 * ratios to determine how valuable each cache is.
2238 *
2239 * Because workloads change over time (and to avoid overflow)
2240 * we keep these statistics as a floating average, which ends
2241 * up weighing recent references more than old ones.
2242 *
2243 * anon in [0], file in [1]
2244 */
2245
2246 anon = lruvec_lru_size(lruvec, LRU_ACTIVE_ANON) +
2247 lruvec_lru_size(lruvec, LRU_INACTIVE_ANON);
2248 file = lruvec_lru_size(lruvec, LRU_ACTIVE_FILE) +
2249 lruvec_lru_size(lruvec, LRU_INACTIVE_FILE);
2250
2251 spin_lock_irq(&pgdat->lru_lock);
2252 if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
2253 reclaim_stat->recent_scanned[0] /= 2;
2254 reclaim_stat->recent_rotated[0] /= 2;
2255 }
2256
2257 if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
2258 reclaim_stat->recent_scanned[1] /= 2;
2259 reclaim_stat->recent_rotated[1] /= 2;
2260 }
2261
2262 /*
2263 * The amount of pressure on anon vs file pages is inversely
2264 * proportional to the fraction of recently scanned pages on
2265 * each list that were recently referenced and in active use.
2266 */
2267 ap = anon_prio * (reclaim_stat->recent_scanned[0] + 1);
2268 ap /= reclaim_stat->recent_rotated[0] + 1;
2269
2270 fp = file_prio * (reclaim_stat->recent_scanned[1] + 1);
2271 fp /= reclaim_stat->recent_rotated[1] + 1;
2272 spin_unlock_irq(&pgdat->lru_lock);
2273
2274 fraction[0] = ap;
2275 fraction[1] = fp;
2276 denominator = ap + fp + 1;
2277 out:
2278 some_scanned = false;
2279 /* Only use force_scan on second pass. */
2280 for (pass = 0; !some_scanned && pass < 2; pass++) {
2281 *lru_pages = 0;
2282 for_each_evictable_lru(lru) {
2283 int file = is_file_lru(lru);
2284 unsigned long size;
2285 unsigned long scan;
2286
2287 size = lruvec_lru_size(lruvec, lru);
2288 scan = size >> sc->priority;
2289
2290 if (!scan && pass && force_scan)
2291 scan = min(size, SWAP_CLUSTER_MAX);
2292
2293 switch (scan_balance) {
2294 case SCAN_EQUAL:
2295 /* Scan lists relative to size */
2296 break;
2297 case SCAN_FRACT:
2298 /*
2299 * Scan types proportional to swappiness and
2300 * their relative recent reclaim efficiency.
2301 */
2302 scan = div64_u64(scan * fraction[file],
2303 denominator);
2304 break;
2305 case SCAN_FILE:
2306 case SCAN_ANON:
2307 /* Scan one type exclusively */
2308 if ((scan_balance == SCAN_FILE) != file) {
2309 size = 0;
2310 scan = 0;
2311 }
2312 break;
2313 default:
2314 /* Look ma, no brain */
2315 BUG();
2316 }
2317
2318 *lru_pages += size;
2319 nr[lru] = scan;
2320
2321 /*
2322 * Skip the second pass and don't force_scan,
2323 * if we found something to scan.
2324 */
2325 some_scanned |= !!scan;
2326 }
2327 }
2328 }
2329
2330 /*
2331 * This is a basic per-node page freer. Used by both kswapd and direct reclaim.
2332 */
2333 static void shrink_node_memcg(struct pglist_data *pgdat, struct mem_cgroup *memcg,
2334 struct scan_control *sc, unsigned long *lru_pages)
2335 {
2336 struct lruvec *lruvec = mem_cgroup_lruvec(pgdat, memcg);
2337 unsigned long nr[NR_LRU_LISTS];
2338 unsigned long targets[NR_LRU_LISTS];
2339 unsigned long nr_to_scan;
2340 enum lru_list lru;
2341 unsigned long nr_reclaimed = 0;
2342 unsigned long nr_to_reclaim = sc->nr_to_reclaim;
2343 struct blk_plug plug;
2344 bool scan_adjusted;
2345
2346 get_scan_count(lruvec, memcg, sc, nr, lru_pages);
2347
2348 /* Record the original scan target for proportional adjustments later */
2349 memcpy(targets, nr, sizeof(nr));
2350
2351 /*
2352 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal
2353 * event that can occur when there is little memory pressure e.g.
2354 * multiple streaming readers/writers. Hence, we do not abort scanning
2355 * when the requested number of pages are reclaimed when scanning at
2356 * DEF_PRIORITY on the assumption that the fact we are direct
2357 * reclaiming implies that kswapd is not keeping up and it is best to
2358 * do a batch of work at once. For memcg reclaim one check is made to
2359 * abort proportional reclaim if either the file or anon lru has already
2360 * dropped to zero at the first pass.
2361 */
2362 scan_adjusted = (global_reclaim(sc) && !current_is_kswapd() &&
2363 sc->priority == DEF_PRIORITY);
2364
2365 blk_start_plug(&plug);
2366 while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
2367 nr[LRU_INACTIVE_FILE]) {
2368 unsigned long nr_anon, nr_file, percentage;
2369 unsigned long nr_scanned;
2370
2371 for_each_evictable_lru(lru) {
2372 if (nr[lru]) {
2373 nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX);
2374 nr[lru] -= nr_to_scan;
2375
2376 nr_reclaimed += shrink_list(lru, nr_to_scan,
2377 lruvec, sc);
2378 }
2379 }
2380
2381 cond_resched();
2382
2383 if (nr_reclaimed < nr_to_reclaim || scan_adjusted)
2384 continue;
2385
2386 /*
2387 * For kswapd and memcg, reclaim at least the number of pages
2388 * requested. Ensure that the anon and file LRUs are scanned
2389 * proportionally what was requested by get_scan_count(). We
2390 * stop reclaiming one LRU and reduce the amount scanning
2391 * proportional to the original scan target.
2392 */
2393 nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE];
2394 nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON];
2395
2396 /*
2397 * It's just vindictive to attack the larger once the smaller
2398 * has gone to zero. And given the way we stop scanning the
2399 * smaller below, this makes sure that we only make one nudge
2400 * towards proportionality once we've got nr_to_reclaim.
2401 */
2402 if (!nr_file || !nr_anon)
2403 break;
2404
2405 if (nr_file > nr_anon) {
2406 unsigned long scan_target = targets[LRU_INACTIVE_ANON] +
2407 targets[LRU_ACTIVE_ANON] + 1;
2408 lru = LRU_BASE;
2409 percentage = nr_anon * 100 / scan_target;
2410 } else {
2411 unsigned long scan_target = targets[LRU_INACTIVE_FILE] +
2412 targets[LRU_ACTIVE_FILE] + 1;
2413 lru = LRU_FILE;
2414 percentage = nr_file * 100 / scan_target;
2415 }
2416
2417 /* Stop scanning the smaller of the LRU */
2418 nr[lru] = 0;
2419 nr[lru + LRU_ACTIVE] = 0;
2420
2421 /*
2422 * Recalculate the other LRU scan count based on its original
2423 * scan target and the percentage scanning already complete
2424 */
2425 lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE;
2426 nr_scanned = targets[lru] - nr[lru];
2427 nr[lru] = targets[lru] * (100 - percentage) / 100;
2428 nr[lru] -= min(nr[lru], nr_scanned);
2429
2430 lru += LRU_ACTIVE;
2431 nr_scanned = targets[lru] - nr[lru];
2432 nr[lru] = targets[lru] * (100 - percentage) / 100;
2433 nr[lru] -= min(nr[lru], nr_scanned);
2434
2435 scan_adjusted = true;
2436 }
2437 blk_finish_plug(&plug);
2438 sc->nr_reclaimed += nr_reclaimed;
2439
2440 /*
2441 * Even if we did not try to evict anon pages at all, we want to
2442 * rebalance the anon lru active/inactive ratio.
2443 */
2444 if (inactive_list_is_low(lruvec, false, sc))
2445 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
2446 sc, LRU_ACTIVE_ANON);
2447 }
2448
2449 /* Use reclaim/compaction for costly allocs or under memory pressure */
2450 static bool in_reclaim_compaction(struct scan_control *sc)
2451 {
2452 if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
2453 (sc->order > PAGE_ALLOC_COSTLY_ORDER ||
2454 sc->priority < DEF_PRIORITY - 2))
2455 return true;
2456
2457 return false;
2458 }
2459
2460 /*
2461 * Reclaim/compaction is used for high-order allocation requests. It reclaims
2462 * order-0 pages before compacting the zone. should_continue_reclaim() returns
2463 * true if more pages should be reclaimed such that when the page allocator
2464 * calls try_to_compact_zone() that it will have enough free pages to succeed.
2465 * It will give up earlier than that if there is difficulty reclaiming pages.
2466 */
2467 static inline bool should_continue_reclaim(struct pglist_data *pgdat,
2468 unsigned long nr_reclaimed,
2469 unsigned long nr_scanned,
2470 struct scan_control *sc)
2471 {
2472 unsigned long pages_for_compaction;
2473 unsigned long inactive_lru_pages;
2474 int z;
2475
2476 /* If not in reclaim/compaction mode, stop */
2477 if (!in_reclaim_compaction(sc))
2478 return false;
2479
2480 /* Consider stopping depending on scan and reclaim activity */
2481 if (sc->gfp_mask & __GFP_REPEAT) {
2482 /*
2483 * For __GFP_REPEAT allocations, stop reclaiming if the
2484 * full LRU list has been scanned and we are still failing
2485 * to reclaim pages. This full LRU scan is potentially
2486 * expensive but a __GFP_REPEAT caller really wants to succeed
2487 */
2488 if (!nr_reclaimed && !nr_scanned)
2489 return false;
2490 } else {
2491 /*
2492 * For non-__GFP_REPEAT allocations which can presumably
2493 * fail without consequence, stop if we failed to reclaim
2494 * any pages from the last SWAP_CLUSTER_MAX number of
2495 * pages that were scanned. This will return to the
2496 * caller faster at the risk reclaim/compaction and
2497 * the resulting allocation attempt fails
2498 */
2499 if (!nr_reclaimed)
2500 return false;
2501 }
2502
2503 /*
2504 * If we have not reclaimed enough pages for compaction and the
2505 * inactive lists are large enough, continue reclaiming
2506 */
2507 pages_for_compaction = compact_gap(sc->order);
2508 inactive_lru_pages = node_page_state(pgdat, NR_INACTIVE_FILE);
2509 if (get_nr_swap_pages() > 0)
2510 inactive_lru_pages += node_page_state(pgdat, NR_INACTIVE_ANON);
2511 if (sc->nr_reclaimed < pages_for_compaction &&
2512 inactive_lru_pages > pages_for_compaction)
2513 return true;
2514
2515 /* If compaction would go ahead or the allocation would succeed, stop */
2516 for (z = 0; z <= sc->reclaim_idx; z++) {
2517 struct zone *zone = &pgdat->node_zones[z];
2518 if (!managed_zone(zone))
2519 continue;
2520
2521 switch (compaction_suitable(zone, sc->order, 0, sc->reclaim_idx)) {
2522 case COMPACT_SUCCESS:
2523 case COMPACT_CONTINUE:
2524 return false;
2525 default:
2526 /* check next zone */
2527 ;
2528 }
2529 }
2530 return true;
2531 }
2532
2533 static bool shrink_node(pg_data_t *pgdat, struct scan_control *sc)
2534 {
2535 struct reclaim_state *reclaim_state = current->reclaim_state;
2536 unsigned long nr_reclaimed, nr_scanned;
2537 bool reclaimable = false;
2538
2539 do {
2540 struct mem_cgroup *root = sc->target_mem_cgroup;
2541 struct mem_cgroup_reclaim_cookie reclaim = {
2542 .pgdat = pgdat,
2543 .priority = sc->priority,
2544 };
2545 unsigned long node_lru_pages = 0;
2546 struct mem_cgroup *memcg;
2547
2548 nr_reclaimed = sc->nr_reclaimed;
2549 nr_scanned = sc->nr_scanned;
2550
2551 memcg = mem_cgroup_iter(root, NULL, &reclaim);
2552 do {
2553 unsigned long lru_pages;
2554 unsigned long reclaimed;
2555 unsigned long scanned;
2556
2557 if (mem_cgroup_low(root, memcg)) {
2558 if (!sc->may_thrash)
2559 continue;
2560 mem_cgroup_events(memcg, MEMCG_LOW, 1);
2561 }
2562
2563 reclaimed = sc->nr_reclaimed;
2564 scanned = sc->nr_scanned;
2565
2566 shrink_node_memcg(pgdat, memcg, sc, &lru_pages);
2567 node_lru_pages += lru_pages;
2568
2569 if (memcg)
2570 shrink_slab(sc->gfp_mask, pgdat->node_id,
2571 memcg, sc->nr_scanned - scanned,
2572 lru_pages);
2573
2574 /* Record the group's reclaim efficiency */
2575 vmpressure(sc->gfp_mask, memcg, false,
2576 sc->nr_scanned - scanned,
2577 sc->nr_reclaimed - reclaimed);
2578
2579 /*
2580 * Direct reclaim and kswapd have to scan all memory
2581 * cgroups to fulfill the overall scan target for the
2582 * node.
2583 *
2584 * Limit reclaim, on the other hand, only cares about
2585 * nr_to_reclaim pages to be reclaimed and it will
2586 * retry with decreasing priority if one round over the
2587 * whole hierarchy is not sufficient.
2588 */
2589 if (!global_reclaim(sc) &&
2590 sc->nr_reclaimed >= sc->nr_to_reclaim) {
2591 mem_cgroup_iter_break(root, memcg);
2592 break;
2593 }
2594 } while ((memcg = mem_cgroup_iter(root, memcg, &reclaim)));
2595
2596 /*
2597 * Shrink the slab caches in the same proportion that
2598 * the eligible LRU pages were scanned.
2599 */
2600 if (global_reclaim(sc))
2601 shrink_slab(sc->gfp_mask, pgdat->node_id, NULL,
2602 sc->nr_scanned - nr_scanned,
2603 node_lru_pages);
2604
2605 if (reclaim_state) {
2606 sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2607 reclaim_state->reclaimed_slab = 0;
2608 }
2609
2610 /* Record the subtree's reclaim efficiency */
2611 vmpressure(sc->gfp_mask, sc->target_mem_cgroup, true,
2612 sc->nr_scanned - nr_scanned,
2613 sc->nr_reclaimed - nr_reclaimed);
2614
2615 if (sc->nr_reclaimed - nr_reclaimed)
2616 reclaimable = true;
2617
2618 } while (should_continue_reclaim(pgdat, sc->nr_reclaimed - nr_reclaimed,
2619 sc->nr_scanned - nr_scanned, sc));
2620
2621 return reclaimable;
2622 }
2623
2624 /*
2625 * Returns true if compaction should go ahead for a costly-order request, or
2626 * the allocation would already succeed without compaction. Return false if we
2627 * should reclaim first.
2628 */
2629 static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
2630 {
2631 unsigned long watermark;
2632 enum compact_result suitable;
2633
2634 suitable = compaction_suitable(zone, sc->order, 0, sc->reclaim_idx);
2635 if (suitable == COMPACT_SUCCESS)
2636 /* Allocation should succeed already. Don't reclaim. */
2637 return true;
2638 if (suitable == COMPACT_SKIPPED)
2639 /* Compaction cannot yet proceed. Do reclaim. */
2640 return false;
2641
2642 /*
2643 * Compaction is already possible, but it takes time to run and there
2644 * are potentially other callers using the pages just freed. So proceed
2645 * with reclaim to make a buffer of free pages available to give
2646 * compaction a reasonable chance of completing and allocating the page.
2647 * Note that we won't actually reclaim the whole buffer in one attempt
2648 * as the target watermark in should_continue_reclaim() is lower. But if
2649 * we are already above the high+gap watermark, don't reclaim at all.
2650 */
2651 watermark = high_wmark_pages(zone) + compact_gap(sc->order);
2652
2653 return zone_watermark_ok_safe(zone, 0, watermark, sc->reclaim_idx);
2654 }
2655
2656 /*
2657 * This is the direct reclaim path, for page-allocating processes. We only
2658 * try to reclaim pages from zones which will satisfy the caller's allocation
2659 * request.
2660 *
2661 * If a zone is deemed to be full of pinned pages then just give it a light
2662 * scan then give up on it.
2663 */
2664 static void shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
2665 {
2666 struct zoneref *z;
2667 struct zone *zone;
2668 unsigned long nr_soft_reclaimed;
2669 unsigned long nr_soft_scanned;
2670 gfp_t orig_mask;
2671 pg_data_t *last_pgdat = NULL;
2672
2673 /*
2674 * If the number of buffer_heads in the machine exceeds the maximum
2675 * allowed level, force direct reclaim to scan the highmem zone as
2676 * highmem pages could be pinning lowmem pages storing buffer_heads
2677 */
2678 orig_mask = sc->gfp_mask;
2679 if (buffer_heads_over_limit) {
2680 sc->gfp_mask |= __GFP_HIGHMEM;
2681 sc->reclaim_idx = gfp_zone(sc->gfp_mask);
2682 }
2683
2684 for_each_zone_zonelist_nodemask(zone, z, zonelist,
2685 sc->reclaim_idx, sc->nodemask) {
2686 /*
2687 * Take care memory controller reclaiming has small influence
2688 * to global LRU.
2689 */
2690 if (global_reclaim(sc)) {
2691 if (!cpuset_zone_allowed(zone,
2692 GFP_KERNEL | __GFP_HARDWALL))
2693 continue;
2694
2695 if (sc->priority != DEF_PRIORITY &&
2696 !pgdat_reclaimable(zone->zone_pgdat))
2697 continue; /* Let kswapd poll it */
2698
2699 /*
2700 * If we already have plenty of memory free for
2701 * compaction in this zone, don't free any more.
2702 * Even though compaction is invoked for any
2703 * non-zero order, only frequent costly order
2704 * reclamation is disruptive enough to become a
2705 * noticeable problem, like transparent huge
2706 * page allocations.
2707 */
2708 if (IS_ENABLED(CONFIG_COMPACTION) &&
2709 sc->order > PAGE_ALLOC_COSTLY_ORDER &&
2710 compaction_ready(zone, sc)) {
2711 sc->compaction_ready = true;
2712 continue;
2713 }
2714
2715 /*
2716 * Shrink each node in the zonelist once. If the
2717 * zonelist is ordered by zone (not the default) then a
2718 * node may be shrunk multiple times but in that case
2719 * the user prefers lower zones being preserved.
2720 */
2721 if (zone->zone_pgdat == last_pgdat)
2722 continue;
2723
2724 /*
2725 * This steals pages from memory cgroups over softlimit
2726 * and returns the number of reclaimed pages and
2727 * scanned pages. This works for global memory pressure
2728 * and balancing, not for a memcg's limit.
2729 */
2730 nr_soft_scanned = 0;
2731 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone->zone_pgdat,
2732 sc->order, sc->gfp_mask,
2733 &nr_soft_scanned);
2734 sc->nr_reclaimed += nr_soft_reclaimed;
2735 sc->nr_scanned += nr_soft_scanned;
2736 /* need some check for avoid more shrink_zone() */
2737 }
2738
2739 /* See comment about same check for global reclaim above */
2740 if (zone->zone_pgdat == last_pgdat)
2741 continue;
2742 last_pgdat = zone->zone_pgdat;
2743 shrink_node(zone->zone_pgdat, sc);
2744 }
2745
2746 /*
2747 * Restore to original mask to avoid the impact on the caller if we
2748 * promoted it to __GFP_HIGHMEM.
2749 */
2750 sc->gfp_mask = orig_mask;
2751 }
2752
2753 /*
2754 * This is the main entry point to direct page reclaim.
2755 *
2756 * If a full scan of the inactive list fails to free enough memory then we
2757 * are "out of memory" and something needs to be killed.
2758 *
2759 * If the caller is !__GFP_FS then the probability of a failure is reasonably
2760 * high - the zone may be full of dirty or under-writeback pages, which this
2761 * caller can't do much about. We kick the writeback threads and take explicit
2762 * naps in the hope that some of these pages can be written. But if the
2763 * allocating task holds filesystem locks which prevent writeout this might not
2764 * work, and the allocation attempt will fail.
2765 *
2766 * returns: 0, if no pages reclaimed
2767 * else, the number of pages reclaimed
2768 */
2769 static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
2770 struct scan_control *sc)
2771 {
2772 int initial_priority = sc->priority;
2773 unsigned long total_scanned = 0;
2774 unsigned long writeback_threshold;
2775 retry:
2776 delayacct_freepages_start();
2777
2778 if (global_reclaim(sc))
2779 __count_zid_vm_events(ALLOCSTALL, sc->reclaim_idx, 1);
2780
2781 do {
2782 vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup,
2783 sc->priority);
2784 sc->nr_scanned = 0;
2785 shrink_zones(zonelist, sc);
2786
2787 total_scanned += sc->nr_scanned;
2788 if (sc->nr_reclaimed >= sc->nr_to_reclaim)
2789 break;
2790
2791 if (sc->compaction_ready)
2792 break;
2793
2794 /*
2795 * If we're getting trouble reclaiming, start doing
2796 * writepage even in laptop mode.
2797 */
2798 if (sc->priority < DEF_PRIORITY - 2)
2799 sc->may_writepage = 1;
2800
2801 /*
2802 * Try to write back as many pages as we just scanned. This
2803 * tends to cause slow streaming writers to write data to the
2804 * disk smoothly, at the dirtying rate, which is nice. But
2805 * that's undesirable in laptop mode, where we *want* lumpy
2806 * writeout. So in laptop mode, write out the whole world.
2807 */
2808 writeback_threshold = sc->nr_to_reclaim + sc->nr_to_reclaim / 2;
2809 if (total_scanned > writeback_threshold) {
2810 wakeup_flusher_threads(laptop_mode ? 0 : total_scanned,
2811 WB_REASON_TRY_TO_FREE_PAGES);
2812 sc->may_writepage = 1;
2813 }
2814 } while (--sc->priority >= 0);
2815
2816 delayacct_freepages_end();
2817
2818 if (sc->nr_reclaimed)
2819 return sc->nr_reclaimed;
2820
2821 /* Aborted reclaim to try compaction? don't OOM, then */
2822 if (sc->compaction_ready)
2823 return 1;
2824
2825 /* Untapped cgroup reserves? Don't OOM, retry. */
2826 if (!sc->may_thrash) {
2827 sc->priority = initial_priority;
2828 sc->may_thrash = 1;
2829 goto retry;
2830 }
2831
2832 return 0;
2833 }
2834
2835 static bool pfmemalloc_watermark_ok(pg_data_t *pgdat)
2836 {
2837 struct zone *zone;
2838 unsigned long pfmemalloc_reserve = 0;
2839 unsigned long free_pages = 0;
2840 int i;
2841 bool wmark_ok;
2842
2843 for (i = 0; i <= ZONE_NORMAL; i++) {
2844 zone = &pgdat->node_zones[i];
2845 if (!managed_zone(zone) ||
2846 pgdat_reclaimable_pages(pgdat) == 0)
2847 continue;
2848
2849 pfmemalloc_reserve += min_wmark_pages(zone);
2850 free_pages += zone_page_state(zone, NR_FREE_PAGES);
2851 }
2852
2853 /* If there are no reserves (unexpected config) then do not throttle */
2854 if (!pfmemalloc_reserve)
2855 return true;
2856
2857 wmark_ok = free_pages > pfmemalloc_reserve / 2;
2858
2859 /* kswapd must be awake if processes are being throttled */
2860 if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
2861 pgdat->kswapd_classzone_idx = min(pgdat->kswapd_classzone_idx,
2862 (enum zone_type)ZONE_NORMAL);
2863 wake_up_interruptible(&pgdat->kswapd_wait);
2864 }
2865
2866 return wmark_ok;
2867 }
2868
2869 /*
2870 * Throttle direct reclaimers if backing storage is backed by the network
2871 * and the PFMEMALLOC reserve for the preferred node is getting dangerously
2872 * depleted. kswapd will continue to make progress and wake the processes
2873 * when the low watermark is reached.
2874 *
2875 * Returns true if a fatal signal was delivered during throttling. If this
2876 * happens, the page allocator should not consider triggering the OOM killer.
2877 */
2878 static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
2879 nodemask_t *nodemask)
2880 {
2881 struct zoneref *z;
2882 struct zone *zone;
2883 pg_data_t *pgdat = NULL;
2884
2885 /*
2886 * Kernel threads should not be throttled as they may be indirectly
2887 * responsible for cleaning pages necessary for reclaim to make forward
2888 * progress. kjournald for example may enter direct reclaim while
2889 * committing a transaction where throttling it could forcing other
2890 * processes to block on log_wait_commit().
2891 */
2892 if (current->flags & PF_KTHREAD)
2893 goto out;
2894
2895 /*
2896 * If a fatal signal is pending, this process should not throttle.
2897 * It should return quickly so it can exit and free its memory
2898 */
2899 if (fatal_signal_pending(current))
2900 goto out;
2901
2902 /*
2903 * Check if the pfmemalloc reserves are ok by finding the first node
2904 * with a usable ZONE_NORMAL or lower zone. The expectation is that
2905 * GFP_KERNEL will be required for allocating network buffers when
2906 * swapping over the network so ZONE_HIGHMEM is unusable.
2907 *
2908 * Throttling is based on the first usable node and throttled processes
2909 * wait on a queue until kswapd makes progress and wakes them. There
2910 * is an affinity then between processes waking up and where reclaim
2911 * progress has been made assuming the process wakes on the same node.
2912 * More importantly, processes running on remote nodes will not compete
2913 * for remote pfmemalloc reserves and processes on different nodes
2914 * should make reasonable progress.
2915 */
2916 for_each_zone_zonelist_nodemask(zone, z, zonelist,
2917 gfp_zone(gfp_mask), nodemask) {
2918 if (zone_idx(zone) > ZONE_NORMAL)
2919 continue;
2920
2921 /* Throttle based on the first usable node */
2922 pgdat = zone->zone_pgdat;
2923 if (pfmemalloc_watermark_ok(pgdat))
2924 goto out;
2925 break;
2926 }
2927
2928 /* If no zone was usable by the allocation flags then do not throttle */
2929 if (!pgdat)
2930 goto out;
2931
2932 /* Account for the throttling */
2933 count_vm_event(PGSCAN_DIRECT_THROTTLE);
2934
2935 /*
2936 * If the caller cannot enter the filesystem, it's possible that it
2937 * is due to the caller holding an FS lock or performing a journal
2938 * transaction in the case of a filesystem like ext[3|4]. In this case,
2939 * it is not safe to block on pfmemalloc_wait as kswapd could be
2940 * blocked waiting on the same lock. Instead, throttle for up to a
2941 * second before continuing.
2942 */
2943 if (!(gfp_mask & __GFP_FS)) {
2944 wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
2945 pfmemalloc_watermark_ok(pgdat), HZ);
2946
2947 goto check_pending;
2948 }
2949
2950 /* Throttle until kswapd wakes the process */
2951 wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
2952 pfmemalloc_watermark_ok(pgdat));
2953
2954 check_pending:
2955 if (fatal_signal_pending(current))
2956 return true;
2957
2958 out:
2959 return false;
2960 }
2961
2962 unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
2963 gfp_t gfp_mask, nodemask_t *nodemask)
2964 {
2965 unsigned long nr_reclaimed;
2966 struct scan_control sc = {
2967 .nr_to_reclaim = SWAP_CLUSTER_MAX,
2968 .gfp_mask = (gfp_mask = memalloc_noio_flags(gfp_mask)),
2969 .reclaim_idx = gfp_zone(gfp_mask),
2970 .order = order,
2971 .nodemask = nodemask,
2972 .priority = DEF_PRIORITY,
2973 .may_writepage = !laptop_mode,
2974 .may_unmap = 1,
2975 .may_swap = 1,
2976 };
2977
2978 /*
2979 * Do not enter reclaim if fatal signal was delivered while throttled.
2980 * 1 is returned so that the page allocator does not OOM kill at this
2981 * point.
2982 */
2983 if (throttle_direct_reclaim(gfp_mask, zonelist, nodemask))
2984 return 1;
2985
2986 trace_mm_vmscan_direct_reclaim_begin(order,
2987 sc.may_writepage,
2988 gfp_mask,
2989 sc.reclaim_idx);
2990
2991 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
2992
2993 trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
2994
2995 return nr_reclaimed;
2996 }
2997
2998 #ifdef CONFIG_MEMCG
2999
3000 unsigned long mem_cgroup_shrink_node(struct mem_cgroup *memcg,
3001 gfp_t gfp_mask, bool noswap,
3002 pg_data_t *pgdat,
3003 unsigned long *nr_scanned)
3004 {
3005 struct scan_control sc = {
3006 .nr_to_reclaim = SWAP_CLUSTER_MAX,
3007 .target_mem_cgroup = memcg,
3008 .may_writepage = !laptop_mode,
3009 .may_unmap = 1,
3010 .reclaim_idx = MAX_NR_ZONES - 1,
3011 .may_swap = !noswap,
3012 };
3013 unsigned long lru_pages;
3014
3015 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
3016 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
3017
3018 trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
3019 sc.may_writepage,
3020 sc.gfp_mask,
3021 sc.reclaim_idx);
3022
3023 /*
3024 * NOTE: Although we can get the priority field, using it
3025 * here is not a good idea, since it limits the pages we can scan.
3026 * if we don't reclaim here, the shrink_node from balance_pgdat
3027 * will pick up pages from other mem cgroup's as well. We hack
3028 * the priority and make it zero.
3029 */
3030 shrink_node_memcg(pgdat, memcg, &sc, &lru_pages);
3031
3032 trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
3033
3034 *nr_scanned = sc.nr_scanned;
3035 return sc.nr_reclaimed;
3036 }
3037
3038 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
3039 unsigned long nr_pages,
3040 gfp_t gfp_mask,
3041 bool may_swap)
3042 {
3043 struct zonelist *zonelist;
3044 unsigned long nr_reclaimed;
3045 int nid;
3046 struct scan_control sc = {
3047 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
3048 .gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
3049 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
3050 .reclaim_idx = MAX_NR_ZONES - 1,
3051 .target_mem_cgroup = memcg,
3052 .priority = DEF_PRIORITY,
3053 .may_writepage = !laptop_mode,
3054 .may_unmap = 1,
3055 .may_swap = may_swap,
3056 };
3057
3058 /*
3059 * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
3060 * take care of from where we get pages. So the node where we start the
3061 * scan does not need to be the current node.
3062 */
3063 nid = mem_cgroup_select_victim_node(memcg);
3064
3065 zonelist = &NODE_DATA(nid)->node_zonelists[ZONELIST_FALLBACK];
3066
3067 trace_mm_vmscan_memcg_reclaim_begin(0,
3068 sc.may_writepage,
3069 sc.gfp_mask,
3070 sc.reclaim_idx);
3071
3072 current->flags |= PF_MEMALLOC;
3073 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3074 current->flags &= ~PF_MEMALLOC;
3075
3076 trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
3077
3078 return nr_reclaimed;
3079 }
3080 #endif
3081
3082 static void age_active_anon(struct pglist_data *pgdat,
3083 struct scan_control *sc)
3084 {
3085 struct mem_cgroup *memcg;
3086
3087 if (!total_swap_pages)
3088 return;
3089
3090 memcg = mem_cgroup_iter(NULL, NULL, NULL);
3091 do {
3092 struct lruvec *lruvec = mem_cgroup_lruvec(pgdat, memcg);
3093
3094 if (inactive_list_is_low(lruvec, false, sc))
3095 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
3096 sc, LRU_ACTIVE_ANON);
3097
3098 memcg = mem_cgroup_iter(NULL, memcg, NULL);
3099 } while (memcg);
3100 }
3101
3102 static bool zone_balanced(struct zone *zone, int order, int classzone_idx)
3103 {
3104 unsigned long mark = high_wmark_pages(zone);
3105
3106 if (!zone_watermark_ok_safe(zone, order, mark, classzone_idx))
3107 return false;
3108
3109 /*
3110 * If any eligible zone is balanced then the node is not considered
3111 * to be congested or dirty
3112 */
3113 clear_bit(PGDAT_CONGESTED, &zone->zone_pgdat->flags);
3114 clear_bit(PGDAT_DIRTY, &zone->zone_pgdat->flags);
3115
3116 return true;
3117 }
3118
3119 /*
3120 * Prepare kswapd for sleeping. This verifies that there are no processes
3121 * waiting in throttle_direct_reclaim() and that watermarks have been met.
3122 *
3123 * Returns true if kswapd is ready to sleep
3124 */
3125 static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, int classzone_idx)
3126 {
3127 int i;
3128
3129 /*
3130 * The throttled processes are normally woken up in balance_pgdat() as
3131 * soon as pfmemalloc_watermark_ok() is true. But there is a potential
3132 * race between when kswapd checks the watermarks and a process gets
3133 * throttled. There is also a potential race if processes get
3134 * throttled, kswapd wakes, a large process exits thereby balancing the
3135 * zones, which causes kswapd to exit balance_pgdat() before reaching
3136 * the wake up checks. If kswapd is going to sleep, no process should
3137 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If
3138 * the wake up is premature, processes will wake kswapd and get
3139 * throttled again. The difference from wake ups in balance_pgdat() is
3140 * that here we are under prepare_to_wait().
3141 */
3142 if (waitqueue_active(&pgdat->pfmemalloc_wait))
3143 wake_up_all(&pgdat->pfmemalloc_wait);
3144
3145 for (i = 0; i <= classzone_idx; i++) {
3146 struct zone *zone = pgdat->node_zones + i;
3147
3148 if (!managed_zone(zone))
3149 continue;
3150
3151 if (!zone_balanced(zone, order, classzone_idx))
3152 return false;
3153 }
3154
3155 return true;
3156 }
3157
3158 /*
3159 * kswapd shrinks a node of pages that are at or below the highest usable
3160 * zone that is currently unbalanced.
3161 *
3162 * Returns true if kswapd scanned at least the requested number of pages to
3163 * reclaim or if the lack of progress was due to pages under writeback.
3164 * This is used to determine if the scanning priority needs to be raised.
3165 */
3166 static bool kswapd_shrink_node(pg_data_t *pgdat,
3167 struct scan_control *sc)
3168 {
3169 struct zone *zone;
3170 int z;
3171
3172 /* Reclaim a number of pages proportional to the number of zones */
3173 sc->nr_to_reclaim = 0;
3174 for (z = 0; z <= sc->reclaim_idx; z++) {
3175 zone = pgdat->node_zones + z;
3176 if (!managed_zone(zone))
3177 continue;
3178
3179 sc->nr_to_reclaim += max(high_wmark_pages(zone), SWAP_CLUSTER_MAX);
3180 }
3181
3182 /*
3183 * Historically care was taken to put equal pressure on all zones but
3184 * now pressure is applied based on node LRU order.
3185 */
3186 shrink_node(pgdat, sc);
3187
3188 /*
3189 * Fragmentation may mean that the system cannot be rebalanced for
3190 * high-order allocations. If twice the allocation size has been
3191 * reclaimed then recheck watermarks only at order-0 to prevent
3192 * excessive reclaim. Assume that a process requested a high-order
3193 * can direct reclaim/compact.
3194 */
3195 if (sc->order && sc->nr_reclaimed >= compact_gap(sc->order))
3196 sc->order = 0;
3197
3198 return sc->nr_scanned >= sc->nr_to_reclaim;
3199 }
3200
3201 /*
3202 * For kswapd, balance_pgdat() will reclaim pages across a node from zones
3203 * that are eligible for use by the caller until at least one zone is
3204 * balanced.
3205 *
3206 * Returns the order kswapd finished reclaiming at.
3207 *
3208 * kswapd scans the zones in the highmem->normal->dma direction. It skips
3209 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
3210 * found to have free_pages <= high_wmark_pages(zone), any page is that zone
3211 * or lower is eligible for reclaim until at least one usable zone is
3212 * balanced.
3213 */
3214 static int balance_pgdat(pg_data_t *pgdat, int order, int classzone_idx)
3215 {
3216 int i;
3217 unsigned long nr_soft_reclaimed;
3218 unsigned long nr_soft_scanned;
3219 struct zone *zone;
3220 struct scan_control sc = {
3221 .gfp_mask = GFP_KERNEL,
3222 .order = order,
3223 .priority = DEF_PRIORITY,
3224 .may_writepage = !laptop_mode,
3225 .may_unmap = 1,
3226 .may_swap = 1,
3227 };
3228 count_vm_event(PAGEOUTRUN);
3229
3230 do {
3231 bool raise_priority = true;
3232
3233 sc.nr_reclaimed = 0;
3234 sc.reclaim_idx = classzone_idx;
3235
3236 /*
3237 * If the number of buffer_heads exceeds the maximum allowed
3238 * then consider reclaiming from all zones. This has a dual
3239 * purpose -- on 64-bit systems it is expected that
3240 * buffer_heads are stripped during active rotation. On 32-bit
3241 * systems, highmem pages can pin lowmem memory and shrinking
3242 * buffers can relieve lowmem pressure. Reclaim may still not
3243 * go ahead if all eligible zones for the original allocation
3244 * request are balanced to avoid excessive reclaim from kswapd.
3245 */
3246 if (buffer_heads_over_limit) {
3247 for (i = MAX_NR_ZONES - 1; i >= 0; i--) {
3248 zone = pgdat->node_zones + i;
3249 if (!managed_zone(zone))
3250 continue;
3251
3252 sc.reclaim_idx = i;
3253 break;
3254 }
3255 }
3256
3257 /*
3258 * Only reclaim if there are no eligible zones. Check from
3259 * high to low zone as allocations prefer higher zones.
3260 * Scanning from low to high zone would allow congestion to be
3261 * cleared during a very small window when a small low
3262 * zone was balanced even under extreme pressure when the
3263 * overall node may be congested. Note that sc.reclaim_idx
3264 * is not used as buffer_heads_over_limit may have adjusted
3265 * it.
3266 */
3267 for (i = classzone_idx; i >= 0; i--) {
3268 zone = pgdat->node_zones + i;
3269 if (!managed_zone(zone))
3270 continue;
3271
3272 if (zone_balanced(zone, sc.order, classzone_idx))
3273 goto out;
3274 }
3275
3276 /*
3277 * Do some background aging of the anon list, to give
3278 * pages a chance to be referenced before reclaiming. All
3279 * pages are rotated regardless of classzone as this is
3280 * about consistent aging.
3281 */
3282 age_active_anon(pgdat, &sc);
3283
3284 /*
3285 * If we're getting trouble reclaiming, start doing writepage
3286 * even in laptop mode.
3287 */
3288 if (sc.priority < DEF_PRIORITY - 2 || !pgdat_reclaimable(pgdat))
3289 sc.may_writepage = 1;
3290
3291 /* Call soft limit reclaim before calling shrink_node. */
3292 sc.nr_scanned = 0;
3293 nr_soft_scanned = 0;
3294 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(pgdat, sc.order,
3295 sc.gfp_mask, &nr_soft_scanned);
3296 sc.nr_reclaimed += nr_soft_reclaimed;
3297
3298 /*
3299 * There should be no need to raise the scanning priority if
3300 * enough pages are already being scanned that that high
3301 * watermark would be met at 100% efficiency.
3302 */
3303 if (kswapd_shrink_node(pgdat, &sc))
3304 raise_priority = false;
3305
3306 /*
3307 * If the low watermark is met there is no need for processes
3308 * to be throttled on pfmemalloc_wait as they should not be
3309 * able to safely make forward progress. Wake them
3310 */
3311 if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
3312 pfmemalloc_watermark_ok(pgdat))
3313 wake_up_all(&pgdat->pfmemalloc_wait);
3314
3315 /* Check if kswapd should be suspending */
3316 if (try_to_freeze() || kthread_should_stop())
3317 break;
3318
3319 /*
3320 * Raise priority if scanning rate is too low or there was no
3321 * progress in reclaiming pages
3322 */
3323 if (raise_priority || !sc.nr_reclaimed)
3324 sc.priority--;
3325 } while (sc.priority >= 1);
3326
3327 out:
3328 /*
3329 * Return the order kswapd stopped reclaiming at as
3330 * prepare_kswapd_sleep() takes it into account. If another caller
3331 * entered the allocator slow path while kswapd was awake, order will
3332 * remain at the higher level.
3333 */
3334 return sc.order;
3335 }
3336
3337 static void kswapd_try_to_sleep(pg_data_t *pgdat, int alloc_order, int reclaim_order,
3338 unsigned int classzone_idx)
3339 {
3340 long remaining = 0;
3341 DEFINE_WAIT(wait);
3342
3343 if (freezing(current) || kthread_should_stop())
3344 return;
3345
3346 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3347
3348 /* Try to sleep for a short interval */
3349 if (prepare_kswapd_sleep(pgdat, reclaim_order, classzone_idx)) {
3350 /*
3351 * Compaction records what page blocks it recently failed to
3352 * isolate pages from and skips them in the future scanning.
3353 * When kswapd is going to sleep, it is reasonable to assume
3354 * that pages and compaction may succeed so reset the cache.
3355 */
3356 reset_isolation_suitable(pgdat);
3357
3358 /*
3359 * We have freed the memory, now we should compact it to make
3360 * allocation of the requested order possible.
3361 */
3362 wakeup_kcompactd(pgdat, alloc_order, classzone_idx);
3363
3364 remaining = schedule_timeout(HZ/10);
3365
3366 /*
3367 * If woken prematurely then reset kswapd_classzone_idx and
3368 * order. The values will either be from a wakeup request or
3369 * the previous request that slept prematurely.
3370 */
3371 if (remaining) {
3372 pgdat->kswapd_classzone_idx = max(pgdat->kswapd_classzone_idx, classzone_idx);
3373 pgdat->kswapd_order = max(pgdat->kswapd_order, reclaim_order);
3374 }
3375
3376 finish_wait(&pgdat->kswapd_wait, &wait);
3377 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3378 }
3379
3380 /*
3381 * After a short sleep, check if it was a premature sleep. If not, then
3382 * go fully to sleep until explicitly woken up.
3383 */
3384 if (!remaining &&
3385 prepare_kswapd_sleep(pgdat, reclaim_order, classzone_idx)) {
3386 trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
3387
3388 /*
3389 * vmstat counters are not perfectly accurate and the estimated
3390 * value for counters such as NR_FREE_PAGES can deviate from the
3391 * true value by nr_online_cpus * threshold. To avoid the zone
3392 * watermarks being breached while under pressure, we reduce the
3393 * per-cpu vmstat threshold while kswapd is awake and restore
3394 * them before going back to sleep.
3395 */
3396 set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
3397
3398 if (!kthread_should_stop())
3399 schedule();
3400
3401 set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
3402 } else {
3403 if (remaining)
3404 count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
3405 else
3406 count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
3407 }
3408 finish_wait(&pgdat->kswapd_wait, &wait);
3409 }
3410
3411 /*
3412 * The background pageout daemon, started as a kernel thread
3413 * from the init process.
3414 *
3415 * This basically trickles out pages so that we have _some_
3416 * free memory available even if there is no other activity
3417 * that frees anything up. This is needed for things like routing
3418 * etc, where we otherwise might have all activity going on in
3419 * asynchronous contexts that cannot page things out.
3420 *
3421 * If there are applications that are active memory-allocators
3422 * (most normal use), this basically shouldn't matter.
3423 */
3424 static int kswapd(void *p)
3425 {
3426 unsigned int alloc_order, reclaim_order, classzone_idx;
3427 pg_data_t *pgdat = (pg_data_t*)p;
3428 struct task_struct *tsk = current;
3429
3430 struct reclaim_state reclaim_state = {
3431 .reclaimed_slab = 0,
3432 };
3433 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
3434
3435 lockdep_set_current_reclaim_state(GFP_KERNEL);
3436
3437 if (!cpumask_empty(cpumask))
3438 set_cpus_allowed_ptr(tsk, cpumask);
3439 current->reclaim_state = &reclaim_state;
3440
3441 /*
3442 * Tell the memory management that we're a "memory allocator",
3443 * and that if we need more memory we should get access to it
3444 * regardless (see "__alloc_pages()"). "kswapd" should
3445 * never get caught in the normal page freeing logic.
3446 *
3447 * (Kswapd normally doesn't need memory anyway, but sometimes
3448 * you need a small amount of memory in order to be able to
3449 * page out something else, and this flag essentially protects
3450 * us from recursively trying to free more memory as we're
3451 * trying to free the first piece of memory in the first place).
3452 */
3453 tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
3454 set_freezable();
3455
3456 pgdat->kswapd_order = alloc_order = reclaim_order = 0;
3457 pgdat->kswapd_classzone_idx = classzone_idx = 0;
3458 for ( ; ; ) {
3459 bool ret;
3460
3461 kswapd_try_sleep:
3462 kswapd_try_to_sleep(pgdat, alloc_order, reclaim_order,
3463 classzone_idx);
3464
3465 /* Read the new order and classzone_idx */
3466 alloc_order = reclaim_order = pgdat->kswapd_order;
3467 classzone_idx = pgdat->kswapd_classzone_idx;
3468 pgdat->kswapd_order = 0;
3469 pgdat->kswapd_classzone_idx = 0;
3470
3471 ret = try_to_freeze();
3472 if (kthread_should_stop())
3473 break;
3474
3475 /*
3476 * We can speed up thawing tasks if we don't call balance_pgdat
3477 * after returning from the refrigerator
3478 */
3479 if (ret)
3480 continue;
3481
3482 /*
3483 * Reclaim begins at the requested order but if a high-order
3484 * reclaim fails then kswapd falls back to reclaiming for
3485 * order-0. If that happens, kswapd will consider sleeping
3486 * for the order it finished reclaiming at (reclaim_order)
3487 * but kcompactd is woken to compact for the original
3488 * request (alloc_order).
3489 */
3490 trace_mm_vmscan_kswapd_wake(pgdat->node_id, classzone_idx,
3491 alloc_order);
3492 reclaim_order = balance_pgdat(pgdat, alloc_order, classzone_idx);
3493 if (reclaim_order < alloc_order)
3494 goto kswapd_try_sleep;
3495
3496 alloc_order = reclaim_order = pgdat->kswapd_order;
3497 classzone_idx = pgdat->kswapd_classzone_idx;
3498 }
3499
3500 tsk->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD);
3501 current->reclaim_state = NULL;
3502 lockdep_clear_current_reclaim_state();
3503
3504 return 0;
3505 }
3506
3507 /*
3508 * A zone is low on free memory, so wake its kswapd task to service it.
3509 */
3510 void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx)
3511 {
3512 pg_data_t *pgdat;
3513 int z;
3514
3515 if (!managed_zone(zone))
3516 return;
3517
3518 if (!cpuset_zone_allowed(zone, GFP_KERNEL | __GFP_HARDWALL))
3519 return;
3520 pgdat = zone->zone_pgdat;
3521 pgdat->kswapd_classzone_idx = max(pgdat->kswapd_classzone_idx, classzone_idx);
3522 pgdat->kswapd_order = max(pgdat->kswapd_order, order);
3523 if (!waitqueue_active(&pgdat->kswapd_wait))
3524 return;
3525
3526 /* Only wake kswapd if all zones are unbalanced */
3527 for (z = 0; z <= classzone_idx; z++) {
3528 zone = pgdat->node_zones + z;
3529 if (!managed_zone(zone))
3530 continue;
3531
3532 if (zone_balanced(zone, order, classzone_idx))
3533 return;
3534 }
3535
3536 trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, zone_idx(zone), order);
3537 wake_up_interruptible(&pgdat->kswapd_wait);
3538 }
3539
3540 #ifdef CONFIG_HIBERNATION
3541 /*
3542 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
3543 * freed pages.
3544 *
3545 * Rather than trying to age LRUs the aim is to preserve the overall
3546 * LRU order by reclaiming preferentially
3547 * inactive > active > active referenced > active mapped
3548 */
3549 unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
3550 {
3551 struct reclaim_state reclaim_state;
3552 struct scan_control sc = {
3553 .nr_to_reclaim = nr_to_reclaim,
3554 .gfp_mask = GFP_HIGHUSER_MOVABLE,
3555 .reclaim_idx = MAX_NR_ZONES - 1,
3556 .priority = DEF_PRIORITY,
3557 .may_writepage = 1,
3558 .may_unmap = 1,
3559 .may_swap = 1,
3560 .hibernation_mode = 1,
3561 };
3562 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
3563 struct task_struct *p = current;
3564 unsigned long nr_reclaimed;
3565
3566 p->flags |= PF_MEMALLOC;
3567 lockdep_set_current_reclaim_state(sc.gfp_mask);
3568 reclaim_state.reclaimed_slab = 0;
3569 p->reclaim_state = &reclaim_state;
3570
3571 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3572
3573 p->reclaim_state = NULL;
3574 lockdep_clear_current_reclaim_state();
3575 p->flags &= ~PF_MEMALLOC;
3576
3577 return nr_reclaimed;
3578 }
3579 #endif /* CONFIG_HIBERNATION */
3580
3581 /* It's optimal to keep kswapds on the same CPUs as their memory, but
3582 not required for correctness. So if the last cpu in a node goes
3583 away, we get changed to run anywhere: as the first one comes back,
3584 restore their cpu bindings. */
3585 static int kswapd_cpu_online(unsigned int cpu)
3586 {
3587 int nid;
3588
3589 for_each_node_state(nid, N_MEMORY) {
3590 pg_data_t *pgdat = NODE_DATA(nid);
3591 const struct cpumask *mask;
3592
3593 mask = cpumask_of_node(pgdat->node_id);
3594
3595 if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
3596 /* One of our CPUs online: restore mask */
3597 set_cpus_allowed_ptr(pgdat->kswapd, mask);
3598 }
3599 return 0;
3600 }
3601
3602 /*
3603 * This kswapd start function will be called by init and node-hot-add.
3604 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
3605 */
3606 int kswapd_run(int nid)
3607 {
3608 pg_data_t *pgdat = NODE_DATA(nid);
3609 int ret = 0;
3610
3611 if (pgdat->kswapd)
3612 return 0;
3613
3614 pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
3615 if (IS_ERR(pgdat->kswapd)) {
3616 /* failure at boot is fatal */
3617 BUG_ON(system_state == SYSTEM_BOOTING);
3618 pr_err("Failed to start kswapd on node %d\n", nid);
3619 ret = PTR_ERR(pgdat->kswapd);
3620 pgdat->kswapd = NULL;
3621 }
3622 return ret;
3623 }
3624
3625 /*
3626 * Called by memory hotplug when all memory in a node is offlined. Caller must
3627 * hold mem_hotplug_begin/end().
3628 */
3629 void kswapd_stop(int nid)
3630 {
3631 struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
3632
3633 if (kswapd) {
3634 kthread_stop(kswapd);
3635 NODE_DATA(nid)->kswapd = NULL;
3636 }
3637 }
3638
3639 static int __init kswapd_init(void)
3640 {
3641 int nid, ret;
3642
3643 swap_setup();
3644 for_each_node_state(nid, N_MEMORY)
3645 kswapd_run(nid);
3646 ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN,
3647 "mm/vmscan:online", kswapd_cpu_online,
3648 NULL);
3649 WARN_ON(ret < 0);
3650 return 0;
3651 }
3652
3653 module_init(kswapd_init)
3654
3655 #ifdef CONFIG_NUMA
3656 /*
3657 * Node reclaim mode
3658 *
3659 * If non-zero call node_reclaim when the number of free pages falls below
3660 * the watermarks.
3661 */
3662 int node_reclaim_mode __read_mostly;
3663
3664 #define RECLAIM_OFF 0
3665 #define RECLAIM_ZONE (1<<0) /* Run shrink_inactive_list on the zone */
3666 #define RECLAIM_WRITE (1<<1) /* Writeout pages during reclaim */
3667 #define RECLAIM_UNMAP (1<<2) /* Unmap pages during reclaim */
3668
3669 /*
3670 * Priority for NODE_RECLAIM. This determines the fraction of pages
3671 * of a node considered for each zone_reclaim. 4 scans 1/16th of
3672 * a zone.
3673 */
3674 #define NODE_RECLAIM_PRIORITY 4
3675
3676 /*
3677 * Percentage of pages in a zone that must be unmapped for node_reclaim to
3678 * occur.
3679 */
3680 int sysctl_min_unmapped_ratio = 1;
3681
3682 /*
3683 * If the number of slab pages in a zone grows beyond this percentage then
3684 * slab reclaim needs to occur.
3685 */
3686 int sysctl_min_slab_ratio = 5;
3687
3688 static inline unsigned long node_unmapped_file_pages(struct pglist_data *pgdat)
3689 {
3690 unsigned long file_mapped = node_page_state(pgdat, NR_FILE_MAPPED);
3691 unsigned long file_lru = node_page_state(pgdat, NR_INACTIVE_FILE) +
3692 node_page_state(pgdat, NR_ACTIVE_FILE);
3693
3694 /*
3695 * It's possible for there to be more file mapped pages than
3696 * accounted for by the pages on the file LRU lists because
3697 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
3698 */
3699 return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
3700 }
3701
3702 /* Work out how many page cache pages we can reclaim in this reclaim_mode */
3703 static unsigned long node_pagecache_reclaimable(struct pglist_data *pgdat)
3704 {
3705 unsigned long nr_pagecache_reclaimable;
3706 unsigned long delta = 0;
3707
3708 /*
3709 * If RECLAIM_UNMAP is set, then all file pages are considered
3710 * potentially reclaimable. Otherwise, we have to worry about
3711 * pages like swapcache and node_unmapped_file_pages() provides
3712 * a better estimate
3713 */
3714 if (node_reclaim_mode & RECLAIM_UNMAP)
3715 nr_pagecache_reclaimable = node_page_state(pgdat, NR_FILE_PAGES);
3716 else
3717 nr_pagecache_reclaimable = node_unmapped_file_pages(pgdat);
3718
3719 /* If we can't clean pages, remove dirty pages from consideration */
3720 if (!(node_reclaim_mode & RECLAIM_WRITE))
3721 delta += node_page_state(pgdat, NR_FILE_DIRTY);
3722
3723 /* Watch for any possible underflows due to delta */
3724 if (unlikely(delta > nr_pagecache_reclaimable))
3725 delta = nr_pagecache_reclaimable;
3726
3727 return nr_pagecache_reclaimable - delta;
3728 }
3729
3730 /*
3731 * Try to free up some pages from this node through reclaim.
3732 */
3733 static int __node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
3734 {
3735 /* Minimum pages needed in order to stay on node */
3736 const unsigned long nr_pages = 1 << order;
3737 struct task_struct *p = current;
3738 struct reclaim_state reclaim_state;
3739 int classzone_idx = gfp_zone(gfp_mask);
3740 struct scan_control sc = {
3741 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
3742 .gfp_mask = (gfp_mask = memalloc_noio_flags(gfp_mask)),
3743 .order = order,
3744 .priority = NODE_RECLAIM_PRIORITY,
3745 .may_writepage = !!(node_reclaim_mode & RECLAIM_WRITE),
3746 .may_unmap = !!(node_reclaim_mode & RECLAIM_UNMAP),
3747 .may_swap = 1,
3748 .reclaim_idx = classzone_idx,
3749 };
3750
3751 cond_resched();
3752 /*
3753 * We need to be able to allocate from the reserves for RECLAIM_UNMAP
3754 * and we also need to be able to write out pages for RECLAIM_WRITE
3755 * and RECLAIM_UNMAP.
3756 */
3757 p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
3758 lockdep_set_current_reclaim_state(gfp_mask);
3759 reclaim_state.reclaimed_slab = 0;
3760 p->reclaim_state = &reclaim_state;
3761
3762 if (node_pagecache_reclaimable(pgdat) > pgdat->min_unmapped_pages) {
3763 /*
3764 * Free memory by calling shrink zone with increasing
3765 * priorities until we have enough memory freed.
3766 */
3767 do {
3768 shrink_node(pgdat, &sc);
3769 } while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
3770 }
3771
3772 p->reclaim_state = NULL;
3773 current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
3774 lockdep_clear_current_reclaim_state();
3775 return sc.nr_reclaimed >= nr_pages;
3776 }
3777
3778 int node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
3779 {
3780 int ret;
3781
3782 /*
3783 * Node reclaim reclaims unmapped file backed pages and
3784 * slab pages if we are over the defined limits.
3785 *
3786 * A small portion of unmapped file backed pages is needed for
3787 * file I/O otherwise pages read by file I/O will be immediately
3788 * thrown out if the node is overallocated. So we do not reclaim
3789 * if less than a specified percentage of the node is used by
3790 * unmapped file backed pages.
3791 */
3792 if (node_pagecache_reclaimable(pgdat) <= pgdat->min_unmapped_pages &&
3793 sum_zone_node_page_state(pgdat->node_id, NR_SLAB_RECLAIMABLE) <= pgdat->min_slab_pages)
3794 return NODE_RECLAIM_FULL;
3795
3796 if (!pgdat_reclaimable(pgdat))
3797 return NODE_RECLAIM_FULL;
3798
3799 /*
3800 * Do not scan if the allocation should not be delayed.
3801 */
3802 if (!gfpflags_allow_blocking(gfp_mask) || (current->flags & PF_MEMALLOC))
3803 return NODE_RECLAIM_NOSCAN;
3804
3805 /*
3806 * Only run node reclaim on the local node or on nodes that do not
3807 * have associated processors. This will favor the local processor
3808 * over remote processors and spread off node memory allocations
3809 * as wide as possible.
3810 */
3811 if (node_state(pgdat->node_id, N_CPU) && pgdat->node_id != numa_node_id())
3812 return NODE_RECLAIM_NOSCAN;
3813
3814 if (test_and_set_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags))
3815 return NODE_RECLAIM_NOSCAN;
3816
3817 ret = __node_reclaim(pgdat, gfp_mask, order);
3818 clear_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags);
3819
3820 if (!ret)
3821 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
3822
3823 return ret;
3824 }
3825 #endif
3826
3827 /*
3828 * page_evictable - test whether a page is evictable
3829 * @page: the page to test
3830 *
3831 * Test whether page is evictable--i.e., should be placed on active/inactive
3832 * lists vs unevictable list.
3833 *
3834 * Reasons page might not be evictable:
3835 * (1) page's mapping marked unevictable
3836 * (2) page is part of an mlocked VMA
3837 *
3838 */
3839 int page_evictable(struct page *page)
3840 {
3841 return !mapping_unevictable(page_mapping(page)) && !PageMlocked(page);
3842 }
3843
3844 #ifdef CONFIG_SHMEM
3845 /**
3846 * check_move_unevictable_pages - check pages for evictability and move to appropriate zone lru list
3847 * @pages: array of pages to check
3848 * @nr_pages: number of pages to check
3849 *
3850 * Checks pages for evictability and moves them to the appropriate lru list.
3851 *
3852 * This function is only used for SysV IPC SHM_UNLOCK.
3853 */
3854 void check_move_unevictable_pages(struct page **pages, int nr_pages)
3855 {
3856 struct lruvec *lruvec;
3857 struct pglist_data *pgdat = NULL;
3858 int pgscanned = 0;
3859 int pgrescued = 0;
3860 int i;
3861
3862 for (i = 0; i < nr_pages; i++) {
3863 struct page *page = pages[i];
3864 struct pglist_data *pagepgdat = page_pgdat(page);
3865
3866 pgscanned++;
3867 if (pagepgdat != pgdat) {
3868 if (pgdat)
3869 spin_unlock_irq(&pgdat->lru_lock);
3870 pgdat = pagepgdat;
3871 spin_lock_irq(&pgdat->lru_lock);
3872 }
3873 lruvec = mem_cgroup_page_lruvec(page, pgdat);
3874
3875 if (!PageLRU(page) || !PageUnevictable(page))
3876 continue;
3877
3878 if (page_evictable(page)) {
3879 enum lru_list lru = page_lru_base_type(page);
3880
3881 VM_BUG_ON_PAGE(PageActive(page), page);
3882 ClearPageUnevictable(page);
3883 del_page_from_lru_list(page, lruvec, LRU_UNEVICTABLE);
3884 add_page_to_lru_list(page, lruvec, lru);
3885 pgrescued++;
3886 }
3887 }
3888
3889 if (pgdat) {
3890 __count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
3891 __count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
3892 spin_unlock_irq(&pgdat->lru_lock);
3893 }
3894 }
3895 #endif /* CONFIG_SHMEM */