]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - mm/vmscan.c
writeback, blkcg: propagate non-root blkcg congestion state
[mirror_ubuntu-zesty-kernel.git] / mm / vmscan.c
1 /*
2 * linux/mm/vmscan.c
3 *
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 *
6 * Swap reorganised 29.12.95, Stephen Tweedie.
7 * kswapd added: 7.1.96 sct
8 * Removed kswapd_ctl limits, and swap out as many pages as needed
9 * to bring the system back to freepages.high: 2.4.97, Rik van Riel.
10 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
11 * Multiqueue VM started 5.8.00, Rik van Riel.
12 */
13
14 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
15
16 #include <linux/mm.h>
17 #include <linux/module.h>
18 #include <linux/gfp.h>
19 #include <linux/kernel_stat.h>
20 #include <linux/swap.h>
21 #include <linux/pagemap.h>
22 #include <linux/init.h>
23 #include <linux/highmem.h>
24 #include <linux/vmpressure.h>
25 #include <linux/vmstat.h>
26 #include <linux/file.h>
27 #include <linux/writeback.h>
28 #include <linux/blkdev.h>
29 #include <linux/buffer_head.h> /* for try_to_release_page(),
30 buffer_heads_over_limit */
31 #include <linux/mm_inline.h>
32 #include <linux/backing-dev.h>
33 #include <linux/rmap.h>
34 #include <linux/topology.h>
35 #include <linux/cpu.h>
36 #include <linux/cpuset.h>
37 #include <linux/compaction.h>
38 #include <linux/notifier.h>
39 #include <linux/rwsem.h>
40 #include <linux/delay.h>
41 #include <linux/kthread.h>
42 #include <linux/freezer.h>
43 #include <linux/memcontrol.h>
44 #include <linux/delayacct.h>
45 #include <linux/sysctl.h>
46 #include <linux/oom.h>
47 #include <linux/prefetch.h>
48 #include <linux/printk.h>
49
50 #include <asm/tlbflush.h>
51 #include <asm/div64.h>
52
53 #include <linux/swapops.h>
54 #include <linux/balloon_compaction.h>
55
56 #include "internal.h"
57
58 #define CREATE_TRACE_POINTS
59 #include <trace/events/vmscan.h>
60
61 struct scan_control {
62 /* How many pages shrink_list() should reclaim */
63 unsigned long nr_to_reclaim;
64
65 /* This context's GFP mask */
66 gfp_t gfp_mask;
67
68 /* Allocation order */
69 int order;
70
71 /*
72 * Nodemask of nodes allowed by the caller. If NULL, all nodes
73 * are scanned.
74 */
75 nodemask_t *nodemask;
76
77 /*
78 * The memory cgroup that hit its limit and as a result is the
79 * primary target of this reclaim invocation.
80 */
81 struct mem_cgroup *target_mem_cgroup;
82
83 /* Scan (total_size >> priority) pages at once */
84 int priority;
85
86 unsigned int may_writepage:1;
87
88 /* Can mapped pages be reclaimed? */
89 unsigned int may_unmap:1;
90
91 /* Can pages be swapped as part of reclaim? */
92 unsigned int may_swap:1;
93
94 /* Can cgroups be reclaimed below their normal consumption range? */
95 unsigned int may_thrash:1;
96
97 unsigned int hibernation_mode:1;
98
99 /* One of the zones is ready for compaction */
100 unsigned int compaction_ready:1;
101
102 /* Incremented by the number of inactive pages that were scanned */
103 unsigned long nr_scanned;
104
105 /* Number of pages freed so far during a call to shrink_zones() */
106 unsigned long nr_reclaimed;
107 };
108
109 #define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
110
111 #ifdef ARCH_HAS_PREFETCH
112 #define prefetch_prev_lru_page(_page, _base, _field) \
113 do { \
114 if ((_page)->lru.prev != _base) { \
115 struct page *prev; \
116 \
117 prev = lru_to_page(&(_page->lru)); \
118 prefetch(&prev->_field); \
119 } \
120 } while (0)
121 #else
122 #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
123 #endif
124
125 #ifdef ARCH_HAS_PREFETCHW
126 #define prefetchw_prev_lru_page(_page, _base, _field) \
127 do { \
128 if ((_page)->lru.prev != _base) { \
129 struct page *prev; \
130 \
131 prev = lru_to_page(&(_page->lru)); \
132 prefetchw(&prev->_field); \
133 } \
134 } while (0)
135 #else
136 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
137 #endif
138
139 /*
140 * From 0 .. 100. Higher means more swappy.
141 */
142 int vm_swappiness = 60;
143 /*
144 * The total number of pages which are beyond the high watermark within all
145 * zones.
146 */
147 unsigned long vm_total_pages;
148
149 static LIST_HEAD(shrinker_list);
150 static DECLARE_RWSEM(shrinker_rwsem);
151
152 #ifdef CONFIG_MEMCG
153 static bool global_reclaim(struct scan_control *sc)
154 {
155 return !sc->target_mem_cgroup;
156 }
157 #else
158 static bool global_reclaim(struct scan_control *sc)
159 {
160 return true;
161 }
162 #endif
163
164 static unsigned long zone_reclaimable_pages(struct zone *zone)
165 {
166 int nr;
167
168 nr = zone_page_state(zone, NR_ACTIVE_FILE) +
169 zone_page_state(zone, NR_INACTIVE_FILE);
170
171 if (get_nr_swap_pages() > 0)
172 nr += zone_page_state(zone, NR_ACTIVE_ANON) +
173 zone_page_state(zone, NR_INACTIVE_ANON);
174
175 return nr;
176 }
177
178 bool zone_reclaimable(struct zone *zone)
179 {
180 return zone_page_state(zone, NR_PAGES_SCANNED) <
181 zone_reclaimable_pages(zone) * 6;
182 }
183
184 static unsigned long get_lru_size(struct lruvec *lruvec, enum lru_list lru)
185 {
186 if (!mem_cgroup_disabled())
187 return mem_cgroup_get_lru_size(lruvec, lru);
188
189 return zone_page_state(lruvec_zone(lruvec), NR_LRU_BASE + lru);
190 }
191
192 /*
193 * Add a shrinker callback to be called from the vm.
194 */
195 int register_shrinker(struct shrinker *shrinker)
196 {
197 size_t size = sizeof(*shrinker->nr_deferred);
198
199 /*
200 * If we only have one possible node in the system anyway, save
201 * ourselves the trouble and disable NUMA aware behavior. This way we
202 * will save memory and some small loop time later.
203 */
204 if (nr_node_ids == 1)
205 shrinker->flags &= ~SHRINKER_NUMA_AWARE;
206
207 if (shrinker->flags & SHRINKER_NUMA_AWARE)
208 size *= nr_node_ids;
209
210 shrinker->nr_deferred = kzalloc(size, GFP_KERNEL);
211 if (!shrinker->nr_deferred)
212 return -ENOMEM;
213
214 down_write(&shrinker_rwsem);
215 list_add_tail(&shrinker->list, &shrinker_list);
216 up_write(&shrinker_rwsem);
217 return 0;
218 }
219 EXPORT_SYMBOL(register_shrinker);
220
221 /*
222 * Remove one
223 */
224 void unregister_shrinker(struct shrinker *shrinker)
225 {
226 down_write(&shrinker_rwsem);
227 list_del(&shrinker->list);
228 up_write(&shrinker_rwsem);
229 kfree(shrinker->nr_deferred);
230 }
231 EXPORT_SYMBOL(unregister_shrinker);
232
233 #define SHRINK_BATCH 128
234
235 static unsigned long do_shrink_slab(struct shrink_control *shrinkctl,
236 struct shrinker *shrinker,
237 unsigned long nr_scanned,
238 unsigned long nr_eligible)
239 {
240 unsigned long freed = 0;
241 unsigned long long delta;
242 long total_scan;
243 long freeable;
244 long nr;
245 long new_nr;
246 int nid = shrinkctl->nid;
247 long batch_size = shrinker->batch ? shrinker->batch
248 : SHRINK_BATCH;
249
250 freeable = shrinker->count_objects(shrinker, shrinkctl);
251 if (freeable == 0)
252 return 0;
253
254 /*
255 * copy the current shrinker scan count into a local variable
256 * and zero it so that other concurrent shrinker invocations
257 * don't also do this scanning work.
258 */
259 nr = atomic_long_xchg(&shrinker->nr_deferred[nid], 0);
260
261 total_scan = nr;
262 delta = (4 * nr_scanned) / shrinker->seeks;
263 delta *= freeable;
264 do_div(delta, nr_eligible + 1);
265 total_scan += delta;
266 if (total_scan < 0) {
267 pr_err("shrink_slab: %pF negative objects to delete nr=%ld\n",
268 shrinker->scan_objects, total_scan);
269 total_scan = freeable;
270 }
271
272 /*
273 * We need to avoid excessive windup on filesystem shrinkers
274 * due to large numbers of GFP_NOFS allocations causing the
275 * shrinkers to return -1 all the time. This results in a large
276 * nr being built up so when a shrink that can do some work
277 * comes along it empties the entire cache due to nr >>>
278 * freeable. This is bad for sustaining a working set in
279 * memory.
280 *
281 * Hence only allow the shrinker to scan the entire cache when
282 * a large delta change is calculated directly.
283 */
284 if (delta < freeable / 4)
285 total_scan = min(total_scan, freeable / 2);
286
287 /*
288 * Avoid risking looping forever due to too large nr value:
289 * never try to free more than twice the estimate number of
290 * freeable entries.
291 */
292 if (total_scan > freeable * 2)
293 total_scan = freeable * 2;
294
295 trace_mm_shrink_slab_start(shrinker, shrinkctl, nr,
296 nr_scanned, nr_eligible,
297 freeable, delta, total_scan);
298
299 /*
300 * Normally, we should not scan less than batch_size objects in one
301 * pass to avoid too frequent shrinker calls, but if the slab has less
302 * than batch_size objects in total and we are really tight on memory,
303 * we will try to reclaim all available objects, otherwise we can end
304 * up failing allocations although there are plenty of reclaimable
305 * objects spread over several slabs with usage less than the
306 * batch_size.
307 *
308 * We detect the "tight on memory" situations by looking at the total
309 * number of objects we want to scan (total_scan). If it is greater
310 * than the total number of objects on slab (freeable), we must be
311 * scanning at high prio and therefore should try to reclaim as much as
312 * possible.
313 */
314 while (total_scan >= batch_size ||
315 total_scan >= freeable) {
316 unsigned long ret;
317 unsigned long nr_to_scan = min(batch_size, total_scan);
318
319 shrinkctl->nr_to_scan = nr_to_scan;
320 ret = shrinker->scan_objects(shrinker, shrinkctl);
321 if (ret == SHRINK_STOP)
322 break;
323 freed += ret;
324
325 count_vm_events(SLABS_SCANNED, nr_to_scan);
326 total_scan -= nr_to_scan;
327
328 cond_resched();
329 }
330
331 /*
332 * move the unused scan count back into the shrinker in a
333 * manner that handles concurrent updates. If we exhausted the
334 * scan, there is no need to do an update.
335 */
336 if (total_scan > 0)
337 new_nr = atomic_long_add_return(total_scan,
338 &shrinker->nr_deferred[nid]);
339 else
340 new_nr = atomic_long_read(&shrinker->nr_deferred[nid]);
341
342 trace_mm_shrink_slab_end(shrinker, nid, freed, nr, new_nr, total_scan);
343 return freed;
344 }
345
346 /**
347 * shrink_slab - shrink slab caches
348 * @gfp_mask: allocation context
349 * @nid: node whose slab caches to target
350 * @memcg: memory cgroup whose slab caches to target
351 * @nr_scanned: pressure numerator
352 * @nr_eligible: pressure denominator
353 *
354 * Call the shrink functions to age shrinkable caches.
355 *
356 * @nid is passed along to shrinkers with SHRINKER_NUMA_AWARE set,
357 * unaware shrinkers will receive a node id of 0 instead.
358 *
359 * @memcg specifies the memory cgroup to target. If it is not NULL,
360 * only shrinkers with SHRINKER_MEMCG_AWARE set will be called to scan
361 * objects from the memory cgroup specified. Otherwise all shrinkers
362 * are called, and memcg aware shrinkers are supposed to scan the
363 * global list then.
364 *
365 * @nr_scanned and @nr_eligible form a ratio that indicate how much of
366 * the available objects should be scanned. Page reclaim for example
367 * passes the number of pages scanned and the number of pages on the
368 * LRU lists that it considered on @nid, plus a bias in @nr_scanned
369 * when it encountered mapped pages. The ratio is further biased by
370 * the ->seeks setting of the shrink function, which indicates the
371 * cost to recreate an object relative to that of an LRU page.
372 *
373 * Returns the number of reclaimed slab objects.
374 */
375 static unsigned long shrink_slab(gfp_t gfp_mask, int nid,
376 struct mem_cgroup *memcg,
377 unsigned long nr_scanned,
378 unsigned long nr_eligible)
379 {
380 struct shrinker *shrinker;
381 unsigned long freed = 0;
382
383 if (memcg && !memcg_kmem_is_active(memcg))
384 return 0;
385
386 if (nr_scanned == 0)
387 nr_scanned = SWAP_CLUSTER_MAX;
388
389 if (!down_read_trylock(&shrinker_rwsem)) {
390 /*
391 * If we would return 0, our callers would understand that we
392 * have nothing else to shrink and give up trying. By returning
393 * 1 we keep it going and assume we'll be able to shrink next
394 * time.
395 */
396 freed = 1;
397 goto out;
398 }
399
400 list_for_each_entry(shrinker, &shrinker_list, list) {
401 struct shrink_control sc = {
402 .gfp_mask = gfp_mask,
403 .nid = nid,
404 .memcg = memcg,
405 };
406
407 if (memcg && !(shrinker->flags & SHRINKER_MEMCG_AWARE))
408 continue;
409
410 if (!(shrinker->flags & SHRINKER_NUMA_AWARE))
411 sc.nid = 0;
412
413 freed += do_shrink_slab(&sc, shrinker, nr_scanned, nr_eligible);
414 }
415
416 up_read(&shrinker_rwsem);
417 out:
418 cond_resched();
419 return freed;
420 }
421
422 void drop_slab_node(int nid)
423 {
424 unsigned long freed;
425
426 do {
427 struct mem_cgroup *memcg = NULL;
428
429 freed = 0;
430 do {
431 freed += shrink_slab(GFP_KERNEL, nid, memcg,
432 1000, 1000);
433 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL);
434 } while (freed > 10);
435 }
436
437 void drop_slab(void)
438 {
439 int nid;
440
441 for_each_online_node(nid)
442 drop_slab_node(nid);
443 }
444
445 static inline int is_page_cache_freeable(struct page *page)
446 {
447 /*
448 * A freeable page cache page is referenced only by the caller
449 * that isolated the page, the page cache radix tree and
450 * optional buffer heads at page->private.
451 */
452 return page_count(page) - page_has_private(page) == 2;
453 }
454
455 static int may_write_to_queue(struct backing_dev_info *bdi,
456 struct scan_control *sc)
457 {
458 if (current->flags & PF_SWAPWRITE)
459 return 1;
460 if (!bdi_write_congested(bdi))
461 return 1;
462 if (bdi == current->backing_dev_info)
463 return 1;
464 return 0;
465 }
466
467 /*
468 * We detected a synchronous write error writing a page out. Probably
469 * -ENOSPC. We need to propagate that into the address_space for a subsequent
470 * fsync(), msync() or close().
471 *
472 * The tricky part is that after writepage we cannot touch the mapping: nothing
473 * prevents it from being freed up. But we have a ref on the page and once
474 * that page is locked, the mapping is pinned.
475 *
476 * We're allowed to run sleeping lock_page() here because we know the caller has
477 * __GFP_FS.
478 */
479 static void handle_write_error(struct address_space *mapping,
480 struct page *page, int error)
481 {
482 lock_page(page);
483 if (page_mapping(page) == mapping)
484 mapping_set_error(mapping, error);
485 unlock_page(page);
486 }
487
488 /* possible outcome of pageout() */
489 typedef enum {
490 /* failed to write page out, page is locked */
491 PAGE_KEEP,
492 /* move page to the active list, page is locked */
493 PAGE_ACTIVATE,
494 /* page has been sent to the disk successfully, page is unlocked */
495 PAGE_SUCCESS,
496 /* page is clean and locked */
497 PAGE_CLEAN,
498 } pageout_t;
499
500 /*
501 * pageout is called by shrink_page_list() for each dirty page.
502 * Calls ->writepage().
503 */
504 static pageout_t pageout(struct page *page, struct address_space *mapping,
505 struct scan_control *sc)
506 {
507 /*
508 * If the page is dirty, only perform writeback if that write
509 * will be non-blocking. To prevent this allocation from being
510 * stalled by pagecache activity. But note that there may be
511 * stalls if we need to run get_block(). We could test
512 * PagePrivate for that.
513 *
514 * If this process is currently in __generic_file_write_iter() against
515 * this page's queue, we can perform writeback even if that
516 * will block.
517 *
518 * If the page is swapcache, write it back even if that would
519 * block, for some throttling. This happens by accident, because
520 * swap_backing_dev_info is bust: it doesn't reflect the
521 * congestion state of the swapdevs. Easy to fix, if needed.
522 */
523 if (!is_page_cache_freeable(page))
524 return PAGE_KEEP;
525 if (!mapping) {
526 /*
527 * Some data journaling orphaned pages can have
528 * page->mapping == NULL while being dirty with clean buffers.
529 */
530 if (page_has_private(page)) {
531 if (try_to_free_buffers(page)) {
532 ClearPageDirty(page);
533 pr_info("%s: orphaned page\n", __func__);
534 return PAGE_CLEAN;
535 }
536 }
537 return PAGE_KEEP;
538 }
539 if (mapping->a_ops->writepage == NULL)
540 return PAGE_ACTIVATE;
541 if (!may_write_to_queue(inode_to_bdi(mapping->host), sc))
542 return PAGE_KEEP;
543
544 if (clear_page_dirty_for_io(page)) {
545 int res;
546 struct writeback_control wbc = {
547 .sync_mode = WB_SYNC_NONE,
548 .nr_to_write = SWAP_CLUSTER_MAX,
549 .range_start = 0,
550 .range_end = LLONG_MAX,
551 .for_reclaim = 1,
552 };
553
554 SetPageReclaim(page);
555 res = mapping->a_ops->writepage(page, &wbc);
556 if (res < 0)
557 handle_write_error(mapping, page, res);
558 if (res == AOP_WRITEPAGE_ACTIVATE) {
559 ClearPageReclaim(page);
560 return PAGE_ACTIVATE;
561 }
562
563 if (!PageWriteback(page)) {
564 /* synchronous write or broken a_ops? */
565 ClearPageReclaim(page);
566 }
567 trace_mm_vmscan_writepage(page, trace_reclaim_flags(page));
568 inc_zone_page_state(page, NR_VMSCAN_WRITE);
569 return PAGE_SUCCESS;
570 }
571
572 return PAGE_CLEAN;
573 }
574
575 /*
576 * Same as remove_mapping, but if the page is removed from the mapping, it
577 * gets returned with a refcount of 0.
578 */
579 static int __remove_mapping(struct address_space *mapping, struct page *page,
580 bool reclaimed)
581 {
582 unsigned long flags;
583 struct mem_cgroup *memcg;
584
585 BUG_ON(!PageLocked(page));
586 BUG_ON(mapping != page_mapping(page));
587
588 memcg = mem_cgroup_begin_page_stat(page);
589 spin_lock_irqsave(&mapping->tree_lock, flags);
590 /*
591 * The non racy check for a busy page.
592 *
593 * Must be careful with the order of the tests. When someone has
594 * a ref to the page, it may be possible that they dirty it then
595 * drop the reference. So if PageDirty is tested before page_count
596 * here, then the following race may occur:
597 *
598 * get_user_pages(&page);
599 * [user mapping goes away]
600 * write_to(page);
601 * !PageDirty(page) [good]
602 * SetPageDirty(page);
603 * put_page(page);
604 * !page_count(page) [good, discard it]
605 *
606 * [oops, our write_to data is lost]
607 *
608 * Reversing the order of the tests ensures such a situation cannot
609 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
610 * load is not satisfied before that of page->_count.
611 *
612 * Note that if SetPageDirty is always performed via set_page_dirty,
613 * and thus under tree_lock, then this ordering is not required.
614 */
615 if (!page_freeze_refs(page, 2))
616 goto cannot_free;
617 /* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
618 if (unlikely(PageDirty(page))) {
619 page_unfreeze_refs(page, 2);
620 goto cannot_free;
621 }
622
623 if (PageSwapCache(page)) {
624 swp_entry_t swap = { .val = page_private(page) };
625 mem_cgroup_swapout(page, swap);
626 __delete_from_swap_cache(page);
627 spin_unlock_irqrestore(&mapping->tree_lock, flags);
628 mem_cgroup_end_page_stat(memcg);
629 swapcache_free(swap);
630 } else {
631 void (*freepage)(struct page *);
632 void *shadow = NULL;
633
634 freepage = mapping->a_ops->freepage;
635 /*
636 * Remember a shadow entry for reclaimed file cache in
637 * order to detect refaults, thus thrashing, later on.
638 *
639 * But don't store shadows in an address space that is
640 * already exiting. This is not just an optizimation,
641 * inode reclaim needs to empty out the radix tree or
642 * the nodes are lost. Don't plant shadows behind its
643 * back.
644 */
645 if (reclaimed && page_is_file_cache(page) &&
646 !mapping_exiting(mapping))
647 shadow = workingset_eviction(mapping, page);
648 __delete_from_page_cache(page, shadow, memcg);
649 spin_unlock_irqrestore(&mapping->tree_lock, flags);
650 mem_cgroup_end_page_stat(memcg);
651
652 if (freepage != NULL)
653 freepage(page);
654 }
655
656 return 1;
657
658 cannot_free:
659 spin_unlock_irqrestore(&mapping->tree_lock, flags);
660 mem_cgroup_end_page_stat(memcg);
661 return 0;
662 }
663
664 /*
665 * Attempt to detach a locked page from its ->mapping. If it is dirty or if
666 * someone else has a ref on the page, abort and return 0. If it was
667 * successfully detached, return 1. Assumes the caller has a single ref on
668 * this page.
669 */
670 int remove_mapping(struct address_space *mapping, struct page *page)
671 {
672 if (__remove_mapping(mapping, page, false)) {
673 /*
674 * Unfreezing the refcount with 1 rather than 2 effectively
675 * drops the pagecache ref for us without requiring another
676 * atomic operation.
677 */
678 page_unfreeze_refs(page, 1);
679 return 1;
680 }
681 return 0;
682 }
683
684 /**
685 * putback_lru_page - put previously isolated page onto appropriate LRU list
686 * @page: page to be put back to appropriate lru list
687 *
688 * Add previously isolated @page to appropriate LRU list.
689 * Page may still be unevictable for other reasons.
690 *
691 * lru_lock must not be held, interrupts must be enabled.
692 */
693 void putback_lru_page(struct page *page)
694 {
695 bool is_unevictable;
696 int was_unevictable = PageUnevictable(page);
697
698 VM_BUG_ON_PAGE(PageLRU(page), page);
699
700 redo:
701 ClearPageUnevictable(page);
702
703 if (page_evictable(page)) {
704 /*
705 * For evictable pages, we can use the cache.
706 * In event of a race, worst case is we end up with an
707 * unevictable page on [in]active list.
708 * We know how to handle that.
709 */
710 is_unevictable = false;
711 lru_cache_add(page);
712 } else {
713 /*
714 * Put unevictable pages directly on zone's unevictable
715 * list.
716 */
717 is_unevictable = true;
718 add_page_to_unevictable_list(page);
719 /*
720 * When racing with an mlock or AS_UNEVICTABLE clearing
721 * (page is unlocked) make sure that if the other thread
722 * does not observe our setting of PG_lru and fails
723 * isolation/check_move_unevictable_pages,
724 * we see PG_mlocked/AS_UNEVICTABLE cleared below and move
725 * the page back to the evictable list.
726 *
727 * The other side is TestClearPageMlocked() or shmem_lock().
728 */
729 smp_mb();
730 }
731
732 /*
733 * page's status can change while we move it among lru. If an evictable
734 * page is on unevictable list, it never be freed. To avoid that,
735 * check after we added it to the list, again.
736 */
737 if (is_unevictable && page_evictable(page)) {
738 if (!isolate_lru_page(page)) {
739 put_page(page);
740 goto redo;
741 }
742 /* This means someone else dropped this page from LRU
743 * So, it will be freed or putback to LRU again. There is
744 * nothing to do here.
745 */
746 }
747
748 if (was_unevictable && !is_unevictable)
749 count_vm_event(UNEVICTABLE_PGRESCUED);
750 else if (!was_unevictable && is_unevictable)
751 count_vm_event(UNEVICTABLE_PGCULLED);
752
753 put_page(page); /* drop ref from isolate */
754 }
755
756 enum page_references {
757 PAGEREF_RECLAIM,
758 PAGEREF_RECLAIM_CLEAN,
759 PAGEREF_KEEP,
760 PAGEREF_ACTIVATE,
761 };
762
763 static enum page_references page_check_references(struct page *page,
764 struct scan_control *sc)
765 {
766 int referenced_ptes, referenced_page;
767 unsigned long vm_flags;
768
769 referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup,
770 &vm_flags);
771 referenced_page = TestClearPageReferenced(page);
772
773 /*
774 * Mlock lost the isolation race with us. Let try_to_unmap()
775 * move the page to the unevictable list.
776 */
777 if (vm_flags & VM_LOCKED)
778 return PAGEREF_RECLAIM;
779
780 if (referenced_ptes) {
781 if (PageSwapBacked(page))
782 return PAGEREF_ACTIVATE;
783 /*
784 * All mapped pages start out with page table
785 * references from the instantiating fault, so we need
786 * to look twice if a mapped file page is used more
787 * than once.
788 *
789 * Mark it and spare it for another trip around the
790 * inactive list. Another page table reference will
791 * lead to its activation.
792 *
793 * Note: the mark is set for activated pages as well
794 * so that recently deactivated but used pages are
795 * quickly recovered.
796 */
797 SetPageReferenced(page);
798
799 if (referenced_page || referenced_ptes > 1)
800 return PAGEREF_ACTIVATE;
801
802 /*
803 * Activate file-backed executable pages after first usage.
804 */
805 if (vm_flags & VM_EXEC)
806 return PAGEREF_ACTIVATE;
807
808 return PAGEREF_KEEP;
809 }
810
811 /* Reclaim if clean, defer dirty pages to writeback */
812 if (referenced_page && !PageSwapBacked(page))
813 return PAGEREF_RECLAIM_CLEAN;
814
815 return PAGEREF_RECLAIM;
816 }
817
818 /* Check if a page is dirty or under writeback */
819 static void page_check_dirty_writeback(struct page *page,
820 bool *dirty, bool *writeback)
821 {
822 struct address_space *mapping;
823
824 /*
825 * Anonymous pages are not handled by flushers and must be written
826 * from reclaim context. Do not stall reclaim based on them
827 */
828 if (!page_is_file_cache(page)) {
829 *dirty = false;
830 *writeback = false;
831 return;
832 }
833
834 /* By default assume that the page flags are accurate */
835 *dirty = PageDirty(page);
836 *writeback = PageWriteback(page);
837
838 /* Verify dirty/writeback state if the filesystem supports it */
839 if (!page_has_private(page))
840 return;
841
842 mapping = page_mapping(page);
843 if (mapping && mapping->a_ops->is_dirty_writeback)
844 mapping->a_ops->is_dirty_writeback(page, dirty, writeback);
845 }
846
847 /*
848 * shrink_page_list() returns the number of reclaimed pages
849 */
850 static unsigned long shrink_page_list(struct list_head *page_list,
851 struct zone *zone,
852 struct scan_control *sc,
853 enum ttu_flags ttu_flags,
854 unsigned long *ret_nr_dirty,
855 unsigned long *ret_nr_unqueued_dirty,
856 unsigned long *ret_nr_congested,
857 unsigned long *ret_nr_writeback,
858 unsigned long *ret_nr_immediate,
859 bool force_reclaim)
860 {
861 LIST_HEAD(ret_pages);
862 LIST_HEAD(free_pages);
863 int pgactivate = 0;
864 unsigned long nr_unqueued_dirty = 0;
865 unsigned long nr_dirty = 0;
866 unsigned long nr_congested = 0;
867 unsigned long nr_reclaimed = 0;
868 unsigned long nr_writeback = 0;
869 unsigned long nr_immediate = 0;
870
871 cond_resched();
872
873 while (!list_empty(page_list)) {
874 struct address_space *mapping;
875 struct page *page;
876 int may_enter_fs;
877 enum page_references references = PAGEREF_RECLAIM_CLEAN;
878 bool dirty, writeback;
879
880 cond_resched();
881
882 page = lru_to_page(page_list);
883 list_del(&page->lru);
884
885 if (!trylock_page(page))
886 goto keep;
887
888 VM_BUG_ON_PAGE(PageActive(page), page);
889 VM_BUG_ON_PAGE(page_zone(page) != zone, page);
890
891 sc->nr_scanned++;
892
893 if (unlikely(!page_evictable(page)))
894 goto cull_mlocked;
895
896 if (!sc->may_unmap && page_mapped(page))
897 goto keep_locked;
898
899 /* Double the slab pressure for mapped and swapcache pages */
900 if (page_mapped(page) || PageSwapCache(page))
901 sc->nr_scanned++;
902
903 may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
904 (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
905
906 /*
907 * The number of dirty pages determines if a zone is marked
908 * reclaim_congested which affects wait_iff_congested. kswapd
909 * will stall and start writing pages if the tail of the LRU
910 * is all dirty unqueued pages.
911 */
912 page_check_dirty_writeback(page, &dirty, &writeback);
913 if (dirty || writeback)
914 nr_dirty++;
915
916 if (dirty && !writeback)
917 nr_unqueued_dirty++;
918
919 /*
920 * Treat this page as congested if the underlying BDI is or if
921 * pages are cycling through the LRU so quickly that the
922 * pages marked for immediate reclaim are making it to the
923 * end of the LRU a second time.
924 */
925 mapping = page_mapping(page);
926 if (((dirty || writeback) && mapping &&
927 bdi_write_congested(inode_to_bdi(mapping->host))) ||
928 (writeback && PageReclaim(page)))
929 nr_congested++;
930
931 /*
932 * If a page at the tail of the LRU is under writeback, there
933 * are three cases to consider.
934 *
935 * 1) If reclaim is encountering an excessive number of pages
936 * under writeback and this page is both under writeback and
937 * PageReclaim then it indicates that pages are being queued
938 * for IO but are being recycled through the LRU before the
939 * IO can complete. Waiting on the page itself risks an
940 * indefinite stall if it is impossible to writeback the
941 * page due to IO error or disconnected storage so instead
942 * note that the LRU is being scanned too quickly and the
943 * caller can stall after page list has been processed.
944 *
945 * 2) Global reclaim encounters a page, memcg encounters a
946 * page that is not marked for immediate reclaim or
947 * the caller does not have __GFP_IO. In this case mark
948 * the page for immediate reclaim and continue scanning.
949 *
950 * __GFP_IO is checked because a loop driver thread might
951 * enter reclaim, and deadlock if it waits on a page for
952 * which it is needed to do the write (loop masks off
953 * __GFP_IO|__GFP_FS for this reason); but more thought
954 * would probably show more reasons.
955 *
956 * Don't require __GFP_FS, since we're not going into the
957 * FS, just waiting on its writeback completion. Worryingly,
958 * ext4 gfs2 and xfs allocate pages with
959 * grab_cache_page_write_begin(,,AOP_FLAG_NOFS), so testing
960 * may_enter_fs here is liable to OOM on them.
961 *
962 * 3) memcg encounters a page that is not already marked
963 * PageReclaim. memcg does not have any dirty pages
964 * throttling so we could easily OOM just because too many
965 * pages are in writeback and there is nothing else to
966 * reclaim. Wait for the writeback to complete.
967 */
968 if (PageWriteback(page)) {
969 /* Case 1 above */
970 if (current_is_kswapd() &&
971 PageReclaim(page) &&
972 test_bit(ZONE_WRITEBACK, &zone->flags)) {
973 nr_immediate++;
974 goto keep_locked;
975
976 /* Case 2 above */
977 } else if (global_reclaim(sc) ||
978 !PageReclaim(page) || !(sc->gfp_mask & __GFP_IO)) {
979 /*
980 * This is slightly racy - end_page_writeback()
981 * might have just cleared PageReclaim, then
982 * setting PageReclaim here end up interpreted
983 * as PageReadahead - but that does not matter
984 * enough to care. What we do want is for this
985 * page to have PageReclaim set next time memcg
986 * reclaim reaches the tests above, so it will
987 * then wait_on_page_writeback() to avoid OOM;
988 * and it's also appropriate in global reclaim.
989 */
990 SetPageReclaim(page);
991 nr_writeback++;
992
993 goto keep_locked;
994
995 /* Case 3 above */
996 } else {
997 wait_on_page_writeback(page);
998 }
999 }
1000
1001 if (!force_reclaim)
1002 references = page_check_references(page, sc);
1003
1004 switch (references) {
1005 case PAGEREF_ACTIVATE:
1006 goto activate_locked;
1007 case PAGEREF_KEEP:
1008 goto keep_locked;
1009 case PAGEREF_RECLAIM:
1010 case PAGEREF_RECLAIM_CLEAN:
1011 ; /* try to reclaim the page below */
1012 }
1013
1014 /*
1015 * Anonymous process memory has backing store?
1016 * Try to allocate it some swap space here.
1017 */
1018 if (PageAnon(page) && !PageSwapCache(page)) {
1019 if (!(sc->gfp_mask & __GFP_IO))
1020 goto keep_locked;
1021 if (!add_to_swap(page, page_list))
1022 goto activate_locked;
1023 may_enter_fs = 1;
1024
1025 /* Adding to swap updated mapping */
1026 mapping = page_mapping(page);
1027 }
1028
1029 /*
1030 * The page is mapped into the page tables of one or more
1031 * processes. Try to unmap it here.
1032 */
1033 if (page_mapped(page) && mapping) {
1034 switch (try_to_unmap(page, ttu_flags)) {
1035 case SWAP_FAIL:
1036 goto activate_locked;
1037 case SWAP_AGAIN:
1038 goto keep_locked;
1039 case SWAP_MLOCK:
1040 goto cull_mlocked;
1041 case SWAP_SUCCESS:
1042 ; /* try to free the page below */
1043 }
1044 }
1045
1046 if (PageDirty(page)) {
1047 /*
1048 * Only kswapd can writeback filesystem pages to
1049 * avoid risk of stack overflow but only writeback
1050 * if many dirty pages have been encountered.
1051 */
1052 if (page_is_file_cache(page) &&
1053 (!current_is_kswapd() ||
1054 !test_bit(ZONE_DIRTY, &zone->flags))) {
1055 /*
1056 * Immediately reclaim when written back.
1057 * Similar in principal to deactivate_page()
1058 * except we already have the page isolated
1059 * and know it's dirty
1060 */
1061 inc_zone_page_state(page, NR_VMSCAN_IMMEDIATE);
1062 SetPageReclaim(page);
1063
1064 goto keep_locked;
1065 }
1066
1067 if (references == PAGEREF_RECLAIM_CLEAN)
1068 goto keep_locked;
1069 if (!may_enter_fs)
1070 goto keep_locked;
1071 if (!sc->may_writepage)
1072 goto keep_locked;
1073
1074 /* Page is dirty, try to write it out here */
1075 switch (pageout(page, mapping, sc)) {
1076 case PAGE_KEEP:
1077 goto keep_locked;
1078 case PAGE_ACTIVATE:
1079 goto activate_locked;
1080 case PAGE_SUCCESS:
1081 if (PageWriteback(page))
1082 goto keep;
1083 if (PageDirty(page))
1084 goto keep;
1085
1086 /*
1087 * A synchronous write - probably a ramdisk. Go
1088 * ahead and try to reclaim the page.
1089 */
1090 if (!trylock_page(page))
1091 goto keep;
1092 if (PageDirty(page) || PageWriteback(page))
1093 goto keep_locked;
1094 mapping = page_mapping(page);
1095 case PAGE_CLEAN:
1096 ; /* try to free the page below */
1097 }
1098 }
1099
1100 /*
1101 * If the page has buffers, try to free the buffer mappings
1102 * associated with this page. If we succeed we try to free
1103 * the page as well.
1104 *
1105 * We do this even if the page is PageDirty().
1106 * try_to_release_page() does not perform I/O, but it is
1107 * possible for a page to have PageDirty set, but it is actually
1108 * clean (all its buffers are clean). This happens if the
1109 * buffers were written out directly, with submit_bh(). ext3
1110 * will do this, as well as the blockdev mapping.
1111 * try_to_release_page() will discover that cleanness and will
1112 * drop the buffers and mark the page clean - it can be freed.
1113 *
1114 * Rarely, pages can have buffers and no ->mapping. These are
1115 * the pages which were not successfully invalidated in
1116 * truncate_complete_page(). We try to drop those buffers here
1117 * and if that worked, and the page is no longer mapped into
1118 * process address space (page_count == 1) it can be freed.
1119 * Otherwise, leave the page on the LRU so it is swappable.
1120 */
1121 if (page_has_private(page)) {
1122 if (!try_to_release_page(page, sc->gfp_mask))
1123 goto activate_locked;
1124 if (!mapping && page_count(page) == 1) {
1125 unlock_page(page);
1126 if (put_page_testzero(page))
1127 goto free_it;
1128 else {
1129 /*
1130 * rare race with speculative reference.
1131 * the speculative reference will free
1132 * this page shortly, so we may
1133 * increment nr_reclaimed here (and
1134 * leave it off the LRU).
1135 */
1136 nr_reclaimed++;
1137 continue;
1138 }
1139 }
1140 }
1141
1142 if (!mapping || !__remove_mapping(mapping, page, true))
1143 goto keep_locked;
1144
1145 /*
1146 * At this point, we have no other references and there is
1147 * no way to pick any more up (removed from LRU, removed
1148 * from pagecache). Can use non-atomic bitops now (and
1149 * we obviously don't have to worry about waking up a process
1150 * waiting on the page lock, because there are no references.
1151 */
1152 __clear_page_locked(page);
1153 free_it:
1154 nr_reclaimed++;
1155
1156 /*
1157 * Is there need to periodically free_page_list? It would
1158 * appear not as the counts should be low
1159 */
1160 list_add(&page->lru, &free_pages);
1161 continue;
1162
1163 cull_mlocked:
1164 if (PageSwapCache(page))
1165 try_to_free_swap(page);
1166 unlock_page(page);
1167 putback_lru_page(page);
1168 continue;
1169
1170 activate_locked:
1171 /* Not a candidate for swapping, so reclaim swap space. */
1172 if (PageSwapCache(page) && vm_swap_full())
1173 try_to_free_swap(page);
1174 VM_BUG_ON_PAGE(PageActive(page), page);
1175 SetPageActive(page);
1176 pgactivate++;
1177 keep_locked:
1178 unlock_page(page);
1179 keep:
1180 list_add(&page->lru, &ret_pages);
1181 VM_BUG_ON_PAGE(PageLRU(page) || PageUnevictable(page), page);
1182 }
1183
1184 mem_cgroup_uncharge_list(&free_pages);
1185 free_hot_cold_page_list(&free_pages, true);
1186
1187 list_splice(&ret_pages, page_list);
1188 count_vm_events(PGACTIVATE, pgactivate);
1189
1190 *ret_nr_dirty += nr_dirty;
1191 *ret_nr_congested += nr_congested;
1192 *ret_nr_unqueued_dirty += nr_unqueued_dirty;
1193 *ret_nr_writeback += nr_writeback;
1194 *ret_nr_immediate += nr_immediate;
1195 return nr_reclaimed;
1196 }
1197
1198 unsigned long reclaim_clean_pages_from_list(struct zone *zone,
1199 struct list_head *page_list)
1200 {
1201 struct scan_control sc = {
1202 .gfp_mask = GFP_KERNEL,
1203 .priority = DEF_PRIORITY,
1204 .may_unmap = 1,
1205 };
1206 unsigned long ret, dummy1, dummy2, dummy3, dummy4, dummy5;
1207 struct page *page, *next;
1208 LIST_HEAD(clean_pages);
1209
1210 list_for_each_entry_safe(page, next, page_list, lru) {
1211 if (page_is_file_cache(page) && !PageDirty(page) &&
1212 !isolated_balloon_page(page)) {
1213 ClearPageActive(page);
1214 list_move(&page->lru, &clean_pages);
1215 }
1216 }
1217
1218 ret = shrink_page_list(&clean_pages, zone, &sc,
1219 TTU_UNMAP|TTU_IGNORE_ACCESS,
1220 &dummy1, &dummy2, &dummy3, &dummy4, &dummy5, true);
1221 list_splice(&clean_pages, page_list);
1222 mod_zone_page_state(zone, NR_ISOLATED_FILE, -ret);
1223 return ret;
1224 }
1225
1226 /*
1227 * Attempt to remove the specified page from its LRU. Only take this page
1228 * if it is of the appropriate PageActive status. Pages which are being
1229 * freed elsewhere are also ignored.
1230 *
1231 * page: page to consider
1232 * mode: one of the LRU isolation modes defined above
1233 *
1234 * returns 0 on success, -ve errno on failure.
1235 */
1236 int __isolate_lru_page(struct page *page, isolate_mode_t mode)
1237 {
1238 int ret = -EINVAL;
1239
1240 /* Only take pages on the LRU. */
1241 if (!PageLRU(page))
1242 return ret;
1243
1244 /* Compaction should not handle unevictable pages but CMA can do so */
1245 if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE))
1246 return ret;
1247
1248 ret = -EBUSY;
1249
1250 /*
1251 * To minimise LRU disruption, the caller can indicate that it only
1252 * wants to isolate pages it will be able to operate on without
1253 * blocking - clean pages for the most part.
1254 *
1255 * ISOLATE_CLEAN means that only clean pages should be isolated. This
1256 * is used by reclaim when it is cannot write to backing storage
1257 *
1258 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
1259 * that it is possible to migrate without blocking
1260 */
1261 if (mode & (ISOLATE_CLEAN|ISOLATE_ASYNC_MIGRATE)) {
1262 /* All the caller can do on PageWriteback is block */
1263 if (PageWriteback(page))
1264 return ret;
1265
1266 if (PageDirty(page)) {
1267 struct address_space *mapping;
1268
1269 /* ISOLATE_CLEAN means only clean pages */
1270 if (mode & ISOLATE_CLEAN)
1271 return ret;
1272
1273 /*
1274 * Only pages without mappings or that have a
1275 * ->migratepage callback are possible to migrate
1276 * without blocking
1277 */
1278 mapping = page_mapping(page);
1279 if (mapping && !mapping->a_ops->migratepage)
1280 return ret;
1281 }
1282 }
1283
1284 if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
1285 return ret;
1286
1287 if (likely(get_page_unless_zero(page))) {
1288 /*
1289 * Be careful not to clear PageLRU until after we're
1290 * sure the page is not being freed elsewhere -- the
1291 * page release code relies on it.
1292 */
1293 ClearPageLRU(page);
1294 ret = 0;
1295 }
1296
1297 return ret;
1298 }
1299
1300 /*
1301 * zone->lru_lock is heavily contended. Some of the functions that
1302 * shrink the lists perform better by taking out a batch of pages
1303 * and working on them outside the LRU lock.
1304 *
1305 * For pagecache intensive workloads, this function is the hottest
1306 * spot in the kernel (apart from copy_*_user functions).
1307 *
1308 * Appropriate locks must be held before calling this function.
1309 *
1310 * @nr_to_scan: The number of pages to look through on the list.
1311 * @lruvec: The LRU vector to pull pages from.
1312 * @dst: The temp list to put pages on to.
1313 * @nr_scanned: The number of pages that were scanned.
1314 * @sc: The scan_control struct for this reclaim session
1315 * @mode: One of the LRU isolation modes
1316 * @lru: LRU list id for isolating
1317 *
1318 * returns how many pages were moved onto *@dst.
1319 */
1320 static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
1321 struct lruvec *lruvec, struct list_head *dst,
1322 unsigned long *nr_scanned, struct scan_control *sc,
1323 isolate_mode_t mode, enum lru_list lru)
1324 {
1325 struct list_head *src = &lruvec->lists[lru];
1326 unsigned long nr_taken = 0;
1327 unsigned long scan;
1328
1329 for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) {
1330 struct page *page;
1331 int nr_pages;
1332
1333 page = lru_to_page(src);
1334 prefetchw_prev_lru_page(page, src, flags);
1335
1336 VM_BUG_ON_PAGE(!PageLRU(page), page);
1337
1338 switch (__isolate_lru_page(page, mode)) {
1339 case 0:
1340 nr_pages = hpage_nr_pages(page);
1341 mem_cgroup_update_lru_size(lruvec, lru, -nr_pages);
1342 list_move(&page->lru, dst);
1343 nr_taken += nr_pages;
1344 break;
1345
1346 case -EBUSY:
1347 /* else it is being freed elsewhere */
1348 list_move(&page->lru, src);
1349 continue;
1350
1351 default:
1352 BUG();
1353 }
1354 }
1355
1356 *nr_scanned = scan;
1357 trace_mm_vmscan_lru_isolate(sc->order, nr_to_scan, scan,
1358 nr_taken, mode, is_file_lru(lru));
1359 return nr_taken;
1360 }
1361
1362 /**
1363 * isolate_lru_page - tries to isolate a page from its LRU list
1364 * @page: page to isolate from its LRU list
1365 *
1366 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1367 * vmstat statistic corresponding to whatever LRU list the page was on.
1368 *
1369 * Returns 0 if the page was removed from an LRU list.
1370 * Returns -EBUSY if the page was not on an LRU list.
1371 *
1372 * The returned page will have PageLRU() cleared. If it was found on
1373 * the active list, it will have PageActive set. If it was found on
1374 * the unevictable list, it will have the PageUnevictable bit set. That flag
1375 * may need to be cleared by the caller before letting the page go.
1376 *
1377 * The vmstat statistic corresponding to the list on which the page was
1378 * found will be decremented.
1379 *
1380 * Restrictions:
1381 * (1) Must be called with an elevated refcount on the page. This is a
1382 * fundamentnal difference from isolate_lru_pages (which is called
1383 * without a stable reference).
1384 * (2) the lru_lock must not be held.
1385 * (3) interrupts must be enabled.
1386 */
1387 int isolate_lru_page(struct page *page)
1388 {
1389 int ret = -EBUSY;
1390
1391 VM_BUG_ON_PAGE(!page_count(page), page);
1392
1393 if (PageLRU(page)) {
1394 struct zone *zone = page_zone(page);
1395 struct lruvec *lruvec;
1396
1397 spin_lock_irq(&zone->lru_lock);
1398 lruvec = mem_cgroup_page_lruvec(page, zone);
1399 if (PageLRU(page)) {
1400 int lru = page_lru(page);
1401 get_page(page);
1402 ClearPageLRU(page);
1403 del_page_from_lru_list(page, lruvec, lru);
1404 ret = 0;
1405 }
1406 spin_unlock_irq(&zone->lru_lock);
1407 }
1408 return ret;
1409 }
1410
1411 /*
1412 * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
1413 * then get resheduled. When there are massive number of tasks doing page
1414 * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
1415 * the LRU list will go small and be scanned faster than necessary, leading to
1416 * unnecessary swapping, thrashing and OOM.
1417 */
1418 static int too_many_isolated(struct zone *zone, int file,
1419 struct scan_control *sc)
1420 {
1421 unsigned long inactive, isolated;
1422
1423 if (current_is_kswapd())
1424 return 0;
1425
1426 if (!global_reclaim(sc))
1427 return 0;
1428
1429 if (file) {
1430 inactive = zone_page_state(zone, NR_INACTIVE_FILE);
1431 isolated = zone_page_state(zone, NR_ISOLATED_FILE);
1432 } else {
1433 inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1434 isolated = zone_page_state(zone, NR_ISOLATED_ANON);
1435 }
1436
1437 /*
1438 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
1439 * won't get blocked by normal direct-reclaimers, forming a circular
1440 * deadlock.
1441 */
1442 if ((sc->gfp_mask & GFP_IOFS) == GFP_IOFS)
1443 inactive >>= 3;
1444
1445 return isolated > inactive;
1446 }
1447
1448 static noinline_for_stack void
1449 putback_inactive_pages(struct lruvec *lruvec, struct list_head *page_list)
1450 {
1451 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1452 struct zone *zone = lruvec_zone(lruvec);
1453 LIST_HEAD(pages_to_free);
1454
1455 /*
1456 * Put back any unfreeable pages.
1457 */
1458 while (!list_empty(page_list)) {
1459 struct page *page = lru_to_page(page_list);
1460 int lru;
1461
1462 VM_BUG_ON_PAGE(PageLRU(page), page);
1463 list_del(&page->lru);
1464 if (unlikely(!page_evictable(page))) {
1465 spin_unlock_irq(&zone->lru_lock);
1466 putback_lru_page(page);
1467 spin_lock_irq(&zone->lru_lock);
1468 continue;
1469 }
1470
1471 lruvec = mem_cgroup_page_lruvec(page, zone);
1472
1473 SetPageLRU(page);
1474 lru = page_lru(page);
1475 add_page_to_lru_list(page, lruvec, lru);
1476
1477 if (is_active_lru(lru)) {
1478 int file = is_file_lru(lru);
1479 int numpages = hpage_nr_pages(page);
1480 reclaim_stat->recent_rotated[file] += numpages;
1481 }
1482 if (put_page_testzero(page)) {
1483 __ClearPageLRU(page);
1484 __ClearPageActive(page);
1485 del_page_from_lru_list(page, lruvec, lru);
1486
1487 if (unlikely(PageCompound(page))) {
1488 spin_unlock_irq(&zone->lru_lock);
1489 mem_cgroup_uncharge(page);
1490 (*get_compound_page_dtor(page))(page);
1491 spin_lock_irq(&zone->lru_lock);
1492 } else
1493 list_add(&page->lru, &pages_to_free);
1494 }
1495 }
1496
1497 /*
1498 * To save our caller's stack, now use input list for pages to free.
1499 */
1500 list_splice(&pages_to_free, page_list);
1501 }
1502
1503 /*
1504 * If a kernel thread (such as nfsd for loop-back mounts) services
1505 * a backing device by writing to the page cache it sets PF_LESS_THROTTLE.
1506 * In that case we should only throttle if the backing device it is
1507 * writing to is congested. In other cases it is safe to throttle.
1508 */
1509 static int current_may_throttle(void)
1510 {
1511 return !(current->flags & PF_LESS_THROTTLE) ||
1512 current->backing_dev_info == NULL ||
1513 bdi_write_congested(current->backing_dev_info);
1514 }
1515
1516 /*
1517 * shrink_inactive_list() is a helper for shrink_zone(). It returns the number
1518 * of reclaimed pages
1519 */
1520 static noinline_for_stack unsigned long
1521 shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec,
1522 struct scan_control *sc, enum lru_list lru)
1523 {
1524 LIST_HEAD(page_list);
1525 unsigned long nr_scanned;
1526 unsigned long nr_reclaimed = 0;
1527 unsigned long nr_taken;
1528 unsigned long nr_dirty = 0;
1529 unsigned long nr_congested = 0;
1530 unsigned long nr_unqueued_dirty = 0;
1531 unsigned long nr_writeback = 0;
1532 unsigned long nr_immediate = 0;
1533 isolate_mode_t isolate_mode = 0;
1534 int file = is_file_lru(lru);
1535 struct zone *zone = lruvec_zone(lruvec);
1536 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1537
1538 while (unlikely(too_many_isolated(zone, file, sc))) {
1539 congestion_wait(BLK_RW_ASYNC, HZ/10);
1540
1541 /* We are about to die and free our memory. Return now. */
1542 if (fatal_signal_pending(current))
1543 return SWAP_CLUSTER_MAX;
1544 }
1545
1546 lru_add_drain();
1547
1548 if (!sc->may_unmap)
1549 isolate_mode |= ISOLATE_UNMAPPED;
1550 if (!sc->may_writepage)
1551 isolate_mode |= ISOLATE_CLEAN;
1552
1553 spin_lock_irq(&zone->lru_lock);
1554
1555 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list,
1556 &nr_scanned, sc, isolate_mode, lru);
1557
1558 __mod_zone_page_state(zone, NR_LRU_BASE + lru, -nr_taken);
1559 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
1560
1561 if (global_reclaim(sc)) {
1562 __mod_zone_page_state(zone, NR_PAGES_SCANNED, nr_scanned);
1563 if (current_is_kswapd())
1564 __count_zone_vm_events(PGSCAN_KSWAPD, zone, nr_scanned);
1565 else
1566 __count_zone_vm_events(PGSCAN_DIRECT, zone, nr_scanned);
1567 }
1568 spin_unlock_irq(&zone->lru_lock);
1569
1570 if (nr_taken == 0)
1571 return 0;
1572
1573 nr_reclaimed = shrink_page_list(&page_list, zone, sc, TTU_UNMAP,
1574 &nr_dirty, &nr_unqueued_dirty, &nr_congested,
1575 &nr_writeback, &nr_immediate,
1576 false);
1577
1578 spin_lock_irq(&zone->lru_lock);
1579
1580 reclaim_stat->recent_scanned[file] += nr_taken;
1581
1582 if (global_reclaim(sc)) {
1583 if (current_is_kswapd())
1584 __count_zone_vm_events(PGSTEAL_KSWAPD, zone,
1585 nr_reclaimed);
1586 else
1587 __count_zone_vm_events(PGSTEAL_DIRECT, zone,
1588 nr_reclaimed);
1589 }
1590
1591 putback_inactive_pages(lruvec, &page_list);
1592
1593 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
1594
1595 spin_unlock_irq(&zone->lru_lock);
1596
1597 mem_cgroup_uncharge_list(&page_list);
1598 free_hot_cold_page_list(&page_list, true);
1599
1600 /*
1601 * If reclaim is isolating dirty pages under writeback, it implies
1602 * that the long-lived page allocation rate is exceeding the page
1603 * laundering rate. Either the global limits are not being effective
1604 * at throttling processes due to the page distribution throughout
1605 * zones or there is heavy usage of a slow backing device. The
1606 * only option is to throttle from reclaim context which is not ideal
1607 * as there is no guarantee the dirtying process is throttled in the
1608 * same way balance_dirty_pages() manages.
1609 *
1610 * Once a zone is flagged ZONE_WRITEBACK, kswapd will count the number
1611 * of pages under pages flagged for immediate reclaim and stall if any
1612 * are encountered in the nr_immediate check below.
1613 */
1614 if (nr_writeback && nr_writeback == nr_taken)
1615 set_bit(ZONE_WRITEBACK, &zone->flags);
1616
1617 /*
1618 * memcg will stall in page writeback so only consider forcibly
1619 * stalling for global reclaim
1620 */
1621 if (global_reclaim(sc)) {
1622 /*
1623 * Tag a zone as congested if all the dirty pages scanned were
1624 * backed by a congested BDI and wait_iff_congested will stall.
1625 */
1626 if (nr_dirty && nr_dirty == nr_congested)
1627 set_bit(ZONE_CONGESTED, &zone->flags);
1628
1629 /*
1630 * If dirty pages are scanned that are not queued for IO, it
1631 * implies that flushers are not keeping up. In this case, flag
1632 * the zone ZONE_DIRTY and kswapd will start writing pages from
1633 * reclaim context.
1634 */
1635 if (nr_unqueued_dirty == nr_taken)
1636 set_bit(ZONE_DIRTY, &zone->flags);
1637
1638 /*
1639 * If kswapd scans pages marked marked for immediate
1640 * reclaim and under writeback (nr_immediate), it implies
1641 * that pages are cycling through the LRU faster than
1642 * they are written so also forcibly stall.
1643 */
1644 if (nr_immediate && current_may_throttle())
1645 congestion_wait(BLK_RW_ASYNC, HZ/10);
1646 }
1647
1648 /*
1649 * Stall direct reclaim for IO completions if underlying BDIs or zone
1650 * is congested. Allow kswapd to continue until it starts encountering
1651 * unqueued dirty pages or cycling through the LRU too quickly.
1652 */
1653 if (!sc->hibernation_mode && !current_is_kswapd() &&
1654 current_may_throttle())
1655 wait_iff_congested(zone, BLK_RW_ASYNC, HZ/10);
1656
1657 trace_mm_vmscan_lru_shrink_inactive(zone->zone_pgdat->node_id,
1658 zone_idx(zone),
1659 nr_scanned, nr_reclaimed,
1660 sc->priority,
1661 trace_shrink_flags(file));
1662 return nr_reclaimed;
1663 }
1664
1665 /*
1666 * This moves pages from the active list to the inactive list.
1667 *
1668 * We move them the other way if the page is referenced by one or more
1669 * processes, from rmap.
1670 *
1671 * If the pages are mostly unmapped, the processing is fast and it is
1672 * appropriate to hold zone->lru_lock across the whole operation. But if
1673 * the pages are mapped, the processing is slow (page_referenced()) so we
1674 * should drop zone->lru_lock around each page. It's impossible to balance
1675 * this, so instead we remove the pages from the LRU while processing them.
1676 * It is safe to rely on PG_active against the non-LRU pages in here because
1677 * nobody will play with that bit on a non-LRU page.
1678 *
1679 * The downside is that we have to touch page->_count against each page.
1680 * But we had to alter page->flags anyway.
1681 */
1682
1683 static void move_active_pages_to_lru(struct lruvec *lruvec,
1684 struct list_head *list,
1685 struct list_head *pages_to_free,
1686 enum lru_list lru)
1687 {
1688 struct zone *zone = lruvec_zone(lruvec);
1689 unsigned long pgmoved = 0;
1690 struct page *page;
1691 int nr_pages;
1692
1693 while (!list_empty(list)) {
1694 page = lru_to_page(list);
1695 lruvec = mem_cgroup_page_lruvec(page, zone);
1696
1697 VM_BUG_ON_PAGE(PageLRU(page), page);
1698 SetPageLRU(page);
1699
1700 nr_pages = hpage_nr_pages(page);
1701 mem_cgroup_update_lru_size(lruvec, lru, nr_pages);
1702 list_move(&page->lru, &lruvec->lists[lru]);
1703 pgmoved += nr_pages;
1704
1705 if (put_page_testzero(page)) {
1706 __ClearPageLRU(page);
1707 __ClearPageActive(page);
1708 del_page_from_lru_list(page, lruvec, lru);
1709
1710 if (unlikely(PageCompound(page))) {
1711 spin_unlock_irq(&zone->lru_lock);
1712 mem_cgroup_uncharge(page);
1713 (*get_compound_page_dtor(page))(page);
1714 spin_lock_irq(&zone->lru_lock);
1715 } else
1716 list_add(&page->lru, pages_to_free);
1717 }
1718 }
1719 __mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved);
1720 if (!is_active_lru(lru))
1721 __count_vm_events(PGDEACTIVATE, pgmoved);
1722 }
1723
1724 static void shrink_active_list(unsigned long nr_to_scan,
1725 struct lruvec *lruvec,
1726 struct scan_control *sc,
1727 enum lru_list lru)
1728 {
1729 unsigned long nr_taken;
1730 unsigned long nr_scanned;
1731 unsigned long vm_flags;
1732 LIST_HEAD(l_hold); /* The pages which were snipped off */
1733 LIST_HEAD(l_active);
1734 LIST_HEAD(l_inactive);
1735 struct page *page;
1736 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1737 unsigned long nr_rotated = 0;
1738 isolate_mode_t isolate_mode = 0;
1739 int file = is_file_lru(lru);
1740 struct zone *zone = lruvec_zone(lruvec);
1741
1742 lru_add_drain();
1743
1744 if (!sc->may_unmap)
1745 isolate_mode |= ISOLATE_UNMAPPED;
1746 if (!sc->may_writepage)
1747 isolate_mode |= ISOLATE_CLEAN;
1748
1749 spin_lock_irq(&zone->lru_lock);
1750
1751 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold,
1752 &nr_scanned, sc, isolate_mode, lru);
1753 if (global_reclaim(sc))
1754 __mod_zone_page_state(zone, NR_PAGES_SCANNED, nr_scanned);
1755
1756 reclaim_stat->recent_scanned[file] += nr_taken;
1757
1758 __count_zone_vm_events(PGREFILL, zone, nr_scanned);
1759 __mod_zone_page_state(zone, NR_LRU_BASE + lru, -nr_taken);
1760 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
1761 spin_unlock_irq(&zone->lru_lock);
1762
1763 while (!list_empty(&l_hold)) {
1764 cond_resched();
1765 page = lru_to_page(&l_hold);
1766 list_del(&page->lru);
1767
1768 if (unlikely(!page_evictable(page))) {
1769 putback_lru_page(page);
1770 continue;
1771 }
1772
1773 if (unlikely(buffer_heads_over_limit)) {
1774 if (page_has_private(page) && trylock_page(page)) {
1775 if (page_has_private(page))
1776 try_to_release_page(page, 0);
1777 unlock_page(page);
1778 }
1779 }
1780
1781 if (page_referenced(page, 0, sc->target_mem_cgroup,
1782 &vm_flags)) {
1783 nr_rotated += hpage_nr_pages(page);
1784 /*
1785 * Identify referenced, file-backed active pages and
1786 * give them one more trip around the active list. So
1787 * that executable code get better chances to stay in
1788 * memory under moderate memory pressure. Anon pages
1789 * are not likely to be evicted by use-once streaming
1790 * IO, plus JVM can create lots of anon VM_EXEC pages,
1791 * so we ignore them here.
1792 */
1793 if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
1794 list_add(&page->lru, &l_active);
1795 continue;
1796 }
1797 }
1798
1799 ClearPageActive(page); /* we are de-activating */
1800 list_add(&page->lru, &l_inactive);
1801 }
1802
1803 /*
1804 * Move pages back to the lru list.
1805 */
1806 spin_lock_irq(&zone->lru_lock);
1807 /*
1808 * Count referenced pages from currently used mappings as rotated,
1809 * even though only some of them are actually re-activated. This
1810 * helps balance scan pressure between file and anonymous pages in
1811 * get_scan_count.
1812 */
1813 reclaim_stat->recent_rotated[file] += nr_rotated;
1814
1815 move_active_pages_to_lru(lruvec, &l_active, &l_hold, lru);
1816 move_active_pages_to_lru(lruvec, &l_inactive, &l_hold, lru - LRU_ACTIVE);
1817 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
1818 spin_unlock_irq(&zone->lru_lock);
1819
1820 mem_cgroup_uncharge_list(&l_hold);
1821 free_hot_cold_page_list(&l_hold, true);
1822 }
1823
1824 #ifdef CONFIG_SWAP
1825 static int inactive_anon_is_low_global(struct zone *zone)
1826 {
1827 unsigned long active, inactive;
1828
1829 active = zone_page_state(zone, NR_ACTIVE_ANON);
1830 inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1831
1832 if (inactive * zone->inactive_ratio < active)
1833 return 1;
1834
1835 return 0;
1836 }
1837
1838 /**
1839 * inactive_anon_is_low - check if anonymous pages need to be deactivated
1840 * @lruvec: LRU vector to check
1841 *
1842 * Returns true if the zone does not have enough inactive anon pages,
1843 * meaning some active anon pages need to be deactivated.
1844 */
1845 static int inactive_anon_is_low(struct lruvec *lruvec)
1846 {
1847 /*
1848 * If we don't have swap space, anonymous page deactivation
1849 * is pointless.
1850 */
1851 if (!total_swap_pages)
1852 return 0;
1853
1854 if (!mem_cgroup_disabled())
1855 return mem_cgroup_inactive_anon_is_low(lruvec);
1856
1857 return inactive_anon_is_low_global(lruvec_zone(lruvec));
1858 }
1859 #else
1860 static inline int inactive_anon_is_low(struct lruvec *lruvec)
1861 {
1862 return 0;
1863 }
1864 #endif
1865
1866 /**
1867 * inactive_file_is_low - check if file pages need to be deactivated
1868 * @lruvec: LRU vector to check
1869 *
1870 * When the system is doing streaming IO, memory pressure here
1871 * ensures that active file pages get deactivated, until more
1872 * than half of the file pages are on the inactive list.
1873 *
1874 * Once we get to that situation, protect the system's working
1875 * set from being evicted by disabling active file page aging.
1876 *
1877 * This uses a different ratio than the anonymous pages, because
1878 * the page cache uses a use-once replacement algorithm.
1879 */
1880 static int inactive_file_is_low(struct lruvec *lruvec)
1881 {
1882 unsigned long inactive;
1883 unsigned long active;
1884
1885 inactive = get_lru_size(lruvec, LRU_INACTIVE_FILE);
1886 active = get_lru_size(lruvec, LRU_ACTIVE_FILE);
1887
1888 return active > inactive;
1889 }
1890
1891 static int inactive_list_is_low(struct lruvec *lruvec, enum lru_list lru)
1892 {
1893 if (is_file_lru(lru))
1894 return inactive_file_is_low(lruvec);
1895 else
1896 return inactive_anon_is_low(lruvec);
1897 }
1898
1899 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
1900 struct lruvec *lruvec, struct scan_control *sc)
1901 {
1902 if (is_active_lru(lru)) {
1903 if (inactive_list_is_low(lruvec, lru))
1904 shrink_active_list(nr_to_scan, lruvec, sc, lru);
1905 return 0;
1906 }
1907
1908 return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
1909 }
1910
1911 enum scan_balance {
1912 SCAN_EQUAL,
1913 SCAN_FRACT,
1914 SCAN_ANON,
1915 SCAN_FILE,
1916 };
1917
1918 /*
1919 * Determine how aggressively the anon and file LRU lists should be
1920 * scanned. The relative value of each set of LRU lists is determined
1921 * by looking at the fraction of the pages scanned we did rotate back
1922 * onto the active list instead of evict.
1923 *
1924 * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan
1925 * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan
1926 */
1927 static void get_scan_count(struct lruvec *lruvec, int swappiness,
1928 struct scan_control *sc, unsigned long *nr,
1929 unsigned long *lru_pages)
1930 {
1931 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1932 u64 fraction[2];
1933 u64 denominator = 0; /* gcc */
1934 struct zone *zone = lruvec_zone(lruvec);
1935 unsigned long anon_prio, file_prio;
1936 enum scan_balance scan_balance;
1937 unsigned long anon, file;
1938 bool force_scan = false;
1939 unsigned long ap, fp;
1940 enum lru_list lru;
1941 bool some_scanned;
1942 int pass;
1943
1944 /*
1945 * If the zone or memcg is small, nr[l] can be 0. This
1946 * results in no scanning on this priority and a potential
1947 * priority drop. Global direct reclaim can go to the next
1948 * zone and tends to have no problems. Global kswapd is for
1949 * zone balancing and it needs to scan a minimum amount. When
1950 * reclaiming for a memcg, a priority drop can cause high
1951 * latencies, so it's better to scan a minimum amount there as
1952 * well.
1953 */
1954 if (current_is_kswapd()) {
1955 if (!zone_reclaimable(zone))
1956 force_scan = true;
1957 if (!mem_cgroup_lruvec_online(lruvec))
1958 force_scan = true;
1959 }
1960 if (!global_reclaim(sc))
1961 force_scan = true;
1962
1963 /* If we have no swap space, do not bother scanning anon pages. */
1964 if (!sc->may_swap || (get_nr_swap_pages() <= 0)) {
1965 scan_balance = SCAN_FILE;
1966 goto out;
1967 }
1968
1969 /*
1970 * Global reclaim will swap to prevent OOM even with no
1971 * swappiness, but memcg users want to use this knob to
1972 * disable swapping for individual groups completely when
1973 * using the memory controller's swap limit feature would be
1974 * too expensive.
1975 */
1976 if (!global_reclaim(sc) && !swappiness) {
1977 scan_balance = SCAN_FILE;
1978 goto out;
1979 }
1980
1981 /*
1982 * Do not apply any pressure balancing cleverness when the
1983 * system is close to OOM, scan both anon and file equally
1984 * (unless the swappiness setting disagrees with swapping).
1985 */
1986 if (!sc->priority && swappiness) {
1987 scan_balance = SCAN_EQUAL;
1988 goto out;
1989 }
1990
1991 /*
1992 * Prevent the reclaimer from falling into the cache trap: as
1993 * cache pages start out inactive, every cache fault will tip
1994 * the scan balance towards the file LRU. And as the file LRU
1995 * shrinks, so does the window for rotation from references.
1996 * This means we have a runaway feedback loop where a tiny
1997 * thrashing file LRU becomes infinitely more attractive than
1998 * anon pages. Try to detect this based on file LRU size.
1999 */
2000 if (global_reclaim(sc)) {
2001 unsigned long zonefile;
2002 unsigned long zonefree;
2003
2004 zonefree = zone_page_state(zone, NR_FREE_PAGES);
2005 zonefile = zone_page_state(zone, NR_ACTIVE_FILE) +
2006 zone_page_state(zone, NR_INACTIVE_FILE);
2007
2008 if (unlikely(zonefile + zonefree <= high_wmark_pages(zone))) {
2009 scan_balance = SCAN_ANON;
2010 goto out;
2011 }
2012 }
2013
2014 /*
2015 * There is enough inactive page cache, do not reclaim
2016 * anything from the anonymous working set right now.
2017 */
2018 if (!inactive_file_is_low(lruvec)) {
2019 scan_balance = SCAN_FILE;
2020 goto out;
2021 }
2022
2023 scan_balance = SCAN_FRACT;
2024
2025 /*
2026 * With swappiness at 100, anonymous and file have the same priority.
2027 * This scanning priority is essentially the inverse of IO cost.
2028 */
2029 anon_prio = swappiness;
2030 file_prio = 200 - anon_prio;
2031
2032 /*
2033 * OK, so we have swap space and a fair amount of page cache
2034 * pages. We use the recently rotated / recently scanned
2035 * ratios to determine how valuable each cache is.
2036 *
2037 * Because workloads change over time (and to avoid overflow)
2038 * we keep these statistics as a floating average, which ends
2039 * up weighing recent references more than old ones.
2040 *
2041 * anon in [0], file in [1]
2042 */
2043
2044 anon = get_lru_size(lruvec, LRU_ACTIVE_ANON) +
2045 get_lru_size(lruvec, LRU_INACTIVE_ANON);
2046 file = get_lru_size(lruvec, LRU_ACTIVE_FILE) +
2047 get_lru_size(lruvec, LRU_INACTIVE_FILE);
2048
2049 spin_lock_irq(&zone->lru_lock);
2050 if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
2051 reclaim_stat->recent_scanned[0] /= 2;
2052 reclaim_stat->recent_rotated[0] /= 2;
2053 }
2054
2055 if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
2056 reclaim_stat->recent_scanned[1] /= 2;
2057 reclaim_stat->recent_rotated[1] /= 2;
2058 }
2059
2060 /*
2061 * The amount of pressure on anon vs file pages is inversely
2062 * proportional to the fraction of recently scanned pages on
2063 * each list that were recently referenced and in active use.
2064 */
2065 ap = anon_prio * (reclaim_stat->recent_scanned[0] + 1);
2066 ap /= reclaim_stat->recent_rotated[0] + 1;
2067
2068 fp = file_prio * (reclaim_stat->recent_scanned[1] + 1);
2069 fp /= reclaim_stat->recent_rotated[1] + 1;
2070 spin_unlock_irq(&zone->lru_lock);
2071
2072 fraction[0] = ap;
2073 fraction[1] = fp;
2074 denominator = ap + fp + 1;
2075 out:
2076 some_scanned = false;
2077 /* Only use force_scan on second pass. */
2078 for (pass = 0; !some_scanned && pass < 2; pass++) {
2079 *lru_pages = 0;
2080 for_each_evictable_lru(lru) {
2081 int file = is_file_lru(lru);
2082 unsigned long size;
2083 unsigned long scan;
2084
2085 size = get_lru_size(lruvec, lru);
2086 scan = size >> sc->priority;
2087
2088 if (!scan && pass && force_scan)
2089 scan = min(size, SWAP_CLUSTER_MAX);
2090
2091 switch (scan_balance) {
2092 case SCAN_EQUAL:
2093 /* Scan lists relative to size */
2094 break;
2095 case SCAN_FRACT:
2096 /*
2097 * Scan types proportional to swappiness and
2098 * their relative recent reclaim efficiency.
2099 */
2100 scan = div64_u64(scan * fraction[file],
2101 denominator);
2102 break;
2103 case SCAN_FILE:
2104 case SCAN_ANON:
2105 /* Scan one type exclusively */
2106 if ((scan_balance == SCAN_FILE) != file) {
2107 size = 0;
2108 scan = 0;
2109 }
2110 break;
2111 default:
2112 /* Look ma, no brain */
2113 BUG();
2114 }
2115
2116 *lru_pages += size;
2117 nr[lru] = scan;
2118
2119 /*
2120 * Skip the second pass and don't force_scan,
2121 * if we found something to scan.
2122 */
2123 some_scanned |= !!scan;
2124 }
2125 }
2126 }
2127
2128 /*
2129 * This is a basic per-zone page freer. Used by both kswapd and direct reclaim.
2130 */
2131 static void shrink_lruvec(struct lruvec *lruvec, int swappiness,
2132 struct scan_control *sc, unsigned long *lru_pages)
2133 {
2134 unsigned long nr[NR_LRU_LISTS];
2135 unsigned long targets[NR_LRU_LISTS];
2136 unsigned long nr_to_scan;
2137 enum lru_list lru;
2138 unsigned long nr_reclaimed = 0;
2139 unsigned long nr_to_reclaim = sc->nr_to_reclaim;
2140 struct blk_plug plug;
2141 bool scan_adjusted;
2142
2143 get_scan_count(lruvec, swappiness, sc, nr, lru_pages);
2144
2145 /* Record the original scan target for proportional adjustments later */
2146 memcpy(targets, nr, sizeof(nr));
2147
2148 /*
2149 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal
2150 * event that can occur when there is little memory pressure e.g.
2151 * multiple streaming readers/writers. Hence, we do not abort scanning
2152 * when the requested number of pages are reclaimed when scanning at
2153 * DEF_PRIORITY on the assumption that the fact we are direct
2154 * reclaiming implies that kswapd is not keeping up and it is best to
2155 * do a batch of work at once. For memcg reclaim one check is made to
2156 * abort proportional reclaim if either the file or anon lru has already
2157 * dropped to zero at the first pass.
2158 */
2159 scan_adjusted = (global_reclaim(sc) && !current_is_kswapd() &&
2160 sc->priority == DEF_PRIORITY);
2161
2162 blk_start_plug(&plug);
2163 while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
2164 nr[LRU_INACTIVE_FILE]) {
2165 unsigned long nr_anon, nr_file, percentage;
2166 unsigned long nr_scanned;
2167
2168 for_each_evictable_lru(lru) {
2169 if (nr[lru]) {
2170 nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX);
2171 nr[lru] -= nr_to_scan;
2172
2173 nr_reclaimed += shrink_list(lru, nr_to_scan,
2174 lruvec, sc);
2175 }
2176 }
2177
2178 if (nr_reclaimed < nr_to_reclaim || scan_adjusted)
2179 continue;
2180
2181 /*
2182 * For kswapd and memcg, reclaim at least the number of pages
2183 * requested. Ensure that the anon and file LRUs are scanned
2184 * proportionally what was requested by get_scan_count(). We
2185 * stop reclaiming one LRU and reduce the amount scanning
2186 * proportional to the original scan target.
2187 */
2188 nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE];
2189 nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON];
2190
2191 /*
2192 * It's just vindictive to attack the larger once the smaller
2193 * has gone to zero. And given the way we stop scanning the
2194 * smaller below, this makes sure that we only make one nudge
2195 * towards proportionality once we've got nr_to_reclaim.
2196 */
2197 if (!nr_file || !nr_anon)
2198 break;
2199
2200 if (nr_file > nr_anon) {
2201 unsigned long scan_target = targets[LRU_INACTIVE_ANON] +
2202 targets[LRU_ACTIVE_ANON] + 1;
2203 lru = LRU_BASE;
2204 percentage = nr_anon * 100 / scan_target;
2205 } else {
2206 unsigned long scan_target = targets[LRU_INACTIVE_FILE] +
2207 targets[LRU_ACTIVE_FILE] + 1;
2208 lru = LRU_FILE;
2209 percentage = nr_file * 100 / scan_target;
2210 }
2211
2212 /* Stop scanning the smaller of the LRU */
2213 nr[lru] = 0;
2214 nr[lru + LRU_ACTIVE] = 0;
2215
2216 /*
2217 * Recalculate the other LRU scan count based on its original
2218 * scan target and the percentage scanning already complete
2219 */
2220 lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE;
2221 nr_scanned = targets[lru] - nr[lru];
2222 nr[lru] = targets[lru] * (100 - percentage) / 100;
2223 nr[lru] -= min(nr[lru], nr_scanned);
2224
2225 lru += LRU_ACTIVE;
2226 nr_scanned = targets[lru] - nr[lru];
2227 nr[lru] = targets[lru] * (100 - percentage) / 100;
2228 nr[lru] -= min(nr[lru], nr_scanned);
2229
2230 scan_adjusted = true;
2231 }
2232 blk_finish_plug(&plug);
2233 sc->nr_reclaimed += nr_reclaimed;
2234
2235 /*
2236 * Even if we did not try to evict anon pages at all, we want to
2237 * rebalance the anon lru active/inactive ratio.
2238 */
2239 if (inactive_anon_is_low(lruvec))
2240 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
2241 sc, LRU_ACTIVE_ANON);
2242
2243 throttle_vm_writeout(sc->gfp_mask);
2244 }
2245
2246 /* Use reclaim/compaction for costly allocs or under memory pressure */
2247 static bool in_reclaim_compaction(struct scan_control *sc)
2248 {
2249 if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
2250 (sc->order > PAGE_ALLOC_COSTLY_ORDER ||
2251 sc->priority < DEF_PRIORITY - 2))
2252 return true;
2253
2254 return false;
2255 }
2256
2257 /*
2258 * Reclaim/compaction is used for high-order allocation requests. It reclaims
2259 * order-0 pages before compacting the zone. should_continue_reclaim() returns
2260 * true if more pages should be reclaimed such that when the page allocator
2261 * calls try_to_compact_zone() that it will have enough free pages to succeed.
2262 * It will give up earlier than that if there is difficulty reclaiming pages.
2263 */
2264 static inline bool should_continue_reclaim(struct zone *zone,
2265 unsigned long nr_reclaimed,
2266 unsigned long nr_scanned,
2267 struct scan_control *sc)
2268 {
2269 unsigned long pages_for_compaction;
2270 unsigned long inactive_lru_pages;
2271
2272 /* If not in reclaim/compaction mode, stop */
2273 if (!in_reclaim_compaction(sc))
2274 return false;
2275
2276 /* Consider stopping depending on scan and reclaim activity */
2277 if (sc->gfp_mask & __GFP_REPEAT) {
2278 /*
2279 * For __GFP_REPEAT allocations, stop reclaiming if the
2280 * full LRU list has been scanned and we are still failing
2281 * to reclaim pages. This full LRU scan is potentially
2282 * expensive but a __GFP_REPEAT caller really wants to succeed
2283 */
2284 if (!nr_reclaimed && !nr_scanned)
2285 return false;
2286 } else {
2287 /*
2288 * For non-__GFP_REPEAT allocations which can presumably
2289 * fail without consequence, stop if we failed to reclaim
2290 * any pages from the last SWAP_CLUSTER_MAX number of
2291 * pages that were scanned. This will return to the
2292 * caller faster at the risk reclaim/compaction and
2293 * the resulting allocation attempt fails
2294 */
2295 if (!nr_reclaimed)
2296 return false;
2297 }
2298
2299 /*
2300 * If we have not reclaimed enough pages for compaction and the
2301 * inactive lists are large enough, continue reclaiming
2302 */
2303 pages_for_compaction = (2UL << sc->order);
2304 inactive_lru_pages = zone_page_state(zone, NR_INACTIVE_FILE);
2305 if (get_nr_swap_pages() > 0)
2306 inactive_lru_pages += zone_page_state(zone, NR_INACTIVE_ANON);
2307 if (sc->nr_reclaimed < pages_for_compaction &&
2308 inactive_lru_pages > pages_for_compaction)
2309 return true;
2310
2311 /* If compaction would go ahead or the allocation would succeed, stop */
2312 switch (compaction_suitable(zone, sc->order, 0, 0)) {
2313 case COMPACT_PARTIAL:
2314 case COMPACT_CONTINUE:
2315 return false;
2316 default:
2317 return true;
2318 }
2319 }
2320
2321 static bool shrink_zone(struct zone *zone, struct scan_control *sc,
2322 bool is_classzone)
2323 {
2324 struct reclaim_state *reclaim_state = current->reclaim_state;
2325 unsigned long nr_reclaimed, nr_scanned;
2326 bool reclaimable = false;
2327
2328 do {
2329 struct mem_cgroup *root = sc->target_mem_cgroup;
2330 struct mem_cgroup_reclaim_cookie reclaim = {
2331 .zone = zone,
2332 .priority = sc->priority,
2333 };
2334 unsigned long zone_lru_pages = 0;
2335 struct mem_cgroup *memcg;
2336
2337 nr_reclaimed = sc->nr_reclaimed;
2338 nr_scanned = sc->nr_scanned;
2339
2340 memcg = mem_cgroup_iter(root, NULL, &reclaim);
2341 do {
2342 unsigned long lru_pages;
2343 unsigned long scanned;
2344 struct lruvec *lruvec;
2345 int swappiness;
2346
2347 if (mem_cgroup_low(root, memcg)) {
2348 if (!sc->may_thrash)
2349 continue;
2350 mem_cgroup_events(memcg, MEMCG_LOW, 1);
2351 }
2352
2353 lruvec = mem_cgroup_zone_lruvec(zone, memcg);
2354 swappiness = mem_cgroup_swappiness(memcg);
2355 scanned = sc->nr_scanned;
2356
2357 shrink_lruvec(lruvec, swappiness, sc, &lru_pages);
2358 zone_lru_pages += lru_pages;
2359
2360 if (memcg && is_classzone)
2361 shrink_slab(sc->gfp_mask, zone_to_nid(zone),
2362 memcg, sc->nr_scanned - scanned,
2363 lru_pages);
2364
2365 /*
2366 * Direct reclaim and kswapd have to scan all memory
2367 * cgroups to fulfill the overall scan target for the
2368 * zone.
2369 *
2370 * Limit reclaim, on the other hand, only cares about
2371 * nr_to_reclaim pages to be reclaimed and it will
2372 * retry with decreasing priority if one round over the
2373 * whole hierarchy is not sufficient.
2374 */
2375 if (!global_reclaim(sc) &&
2376 sc->nr_reclaimed >= sc->nr_to_reclaim) {
2377 mem_cgroup_iter_break(root, memcg);
2378 break;
2379 }
2380 } while ((memcg = mem_cgroup_iter(root, memcg, &reclaim)));
2381
2382 /*
2383 * Shrink the slab caches in the same proportion that
2384 * the eligible LRU pages were scanned.
2385 */
2386 if (global_reclaim(sc) && is_classzone)
2387 shrink_slab(sc->gfp_mask, zone_to_nid(zone), NULL,
2388 sc->nr_scanned - nr_scanned,
2389 zone_lru_pages);
2390
2391 if (reclaim_state) {
2392 sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2393 reclaim_state->reclaimed_slab = 0;
2394 }
2395
2396 vmpressure(sc->gfp_mask, sc->target_mem_cgroup,
2397 sc->nr_scanned - nr_scanned,
2398 sc->nr_reclaimed - nr_reclaimed);
2399
2400 if (sc->nr_reclaimed - nr_reclaimed)
2401 reclaimable = true;
2402
2403 } while (should_continue_reclaim(zone, sc->nr_reclaimed - nr_reclaimed,
2404 sc->nr_scanned - nr_scanned, sc));
2405
2406 return reclaimable;
2407 }
2408
2409 /*
2410 * Returns true if compaction should go ahead for a high-order request, or
2411 * the high-order allocation would succeed without compaction.
2412 */
2413 static inline bool compaction_ready(struct zone *zone, int order)
2414 {
2415 unsigned long balance_gap, watermark;
2416 bool watermark_ok;
2417
2418 /*
2419 * Compaction takes time to run and there are potentially other
2420 * callers using the pages just freed. Continue reclaiming until
2421 * there is a buffer of free pages available to give compaction
2422 * a reasonable chance of completing and allocating the page
2423 */
2424 balance_gap = min(low_wmark_pages(zone), DIV_ROUND_UP(
2425 zone->managed_pages, KSWAPD_ZONE_BALANCE_GAP_RATIO));
2426 watermark = high_wmark_pages(zone) + balance_gap + (2UL << order);
2427 watermark_ok = zone_watermark_ok_safe(zone, 0, watermark, 0, 0);
2428
2429 /*
2430 * If compaction is deferred, reclaim up to a point where
2431 * compaction will have a chance of success when re-enabled
2432 */
2433 if (compaction_deferred(zone, order))
2434 return watermark_ok;
2435
2436 /*
2437 * If compaction is not ready to start and allocation is not likely
2438 * to succeed without it, then keep reclaiming.
2439 */
2440 if (compaction_suitable(zone, order, 0, 0) == COMPACT_SKIPPED)
2441 return false;
2442
2443 return watermark_ok;
2444 }
2445
2446 /*
2447 * This is the direct reclaim path, for page-allocating processes. We only
2448 * try to reclaim pages from zones which will satisfy the caller's allocation
2449 * request.
2450 *
2451 * We reclaim from a zone even if that zone is over high_wmark_pages(zone).
2452 * Because:
2453 * a) The caller may be trying to free *extra* pages to satisfy a higher-order
2454 * allocation or
2455 * b) The target zone may be at high_wmark_pages(zone) but the lower zones
2456 * must go *over* high_wmark_pages(zone) to satisfy the `incremental min'
2457 * zone defense algorithm.
2458 *
2459 * If a zone is deemed to be full of pinned pages then just give it a light
2460 * scan then give up on it.
2461 *
2462 * Returns true if a zone was reclaimable.
2463 */
2464 static bool shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
2465 {
2466 struct zoneref *z;
2467 struct zone *zone;
2468 unsigned long nr_soft_reclaimed;
2469 unsigned long nr_soft_scanned;
2470 gfp_t orig_mask;
2471 enum zone_type requested_highidx = gfp_zone(sc->gfp_mask);
2472 bool reclaimable = false;
2473
2474 /*
2475 * If the number of buffer_heads in the machine exceeds the maximum
2476 * allowed level, force direct reclaim to scan the highmem zone as
2477 * highmem pages could be pinning lowmem pages storing buffer_heads
2478 */
2479 orig_mask = sc->gfp_mask;
2480 if (buffer_heads_over_limit)
2481 sc->gfp_mask |= __GFP_HIGHMEM;
2482
2483 for_each_zone_zonelist_nodemask(zone, z, zonelist,
2484 requested_highidx, sc->nodemask) {
2485 enum zone_type classzone_idx;
2486
2487 if (!populated_zone(zone))
2488 continue;
2489
2490 classzone_idx = requested_highidx;
2491 while (!populated_zone(zone->zone_pgdat->node_zones +
2492 classzone_idx))
2493 classzone_idx--;
2494
2495 /*
2496 * Take care memory controller reclaiming has small influence
2497 * to global LRU.
2498 */
2499 if (global_reclaim(sc)) {
2500 if (!cpuset_zone_allowed(zone,
2501 GFP_KERNEL | __GFP_HARDWALL))
2502 continue;
2503
2504 if (sc->priority != DEF_PRIORITY &&
2505 !zone_reclaimable(zone))
2506 continue; /* Let kswapd poll it */
2507
2508 /*
2509 * If we already have plenty of memory free for
2510 * compaction in this zone, don't free any more.
2511 * Even though compaction is invoked for any
2512 * non-zero order, only frequent costly order
2513 * reclamation is disruptive enough to become a
2514 * noticeable problem, like transparent huge
2515 * page allocations.
2516 */
2517 if (IS_ENABLED(CONFIG_COMPACTION) &&
2518 sc->order > PAGE_ALLOC_COSTLY_ORDER &&
2519 zonelist_zone_idx(z) <= requested_highidx &&
2520 compaction_ready(zone, sc->order)) {
2521 sc->compaction_ready = true;
2522 continue;
2523 }
2524
2525 /*
2526 * This steals pages from memory cgroups over softlimit
2527 * and returns the number of reclaimed pages and
2528 * scanned pages. This works for global memory pressure
2529 * and balancing, not for a memcg's limit.
2530 */
2531 nr_soft_scanned = 0;
2532 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
2533 sc->order, sc->gfp_mask,
2534 &nr_soft_scanned);
2535 sc->nr_reclaimed += nr_soft_reclaimed;
2536 sc->nr_scanned += nr_soft_scanned;
2537 if (nr_soft_reclaimed)
2538 reclaimable = true;
2539 /* need some check for avoid more shrink_zone() */
2540 }
2541
2542 if (shrink_zone(zone, sc, zone_idx(zone) == classzone_idx))
2543 reclaimable = true;
2544
2545 if (global_reclaim(sc) &&
2546 !reclaimable && zone_reclaimable(zone))
2547 reclaimable = true;
2548 }
2549
2550 /*
2551 * Restore to original mask to avoid the impact on the caller if we
2552 * promoted it to __GFP_HIGHMEM.
2553 */
2554 sc->gfp_mask = orig_mask;
2555
2556 return reclaimable;
2557 }
2558
2559 /*
2560 * This is the main entry point to direct page reclaim.
2561 *
2562 * If a full scan of the inactive list fails to free enough memory then we
2563 * are "out of memory" and something needs to be killed.
2564 *
2565 * If the caller is !__GFP_FS then the probability of a failure is reasonably
2566 * high - the zone may be full of dirty or under-writeback pages, which this
2567 * caller can't do much about. We kick the writeback threads and take explicit
2568 * naps in the hope that some of these pages can be written. But if the
2569 * allocating task holds filesystem locks which prevent writeout this might not
2570 * work, and the allocation attempt will fail.
2571 *
2572 * returns: 0, if no pages reclaimed
2573 * else, the number of pages reclaimed
2574 */
2575 static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
2576 struct scan_control *sc)
2577 {
2578 int initial_priority = sc->priority;
2579 unsigned long total_scanned = 0;
2580 unsigned long writeback_threshold;
2581 bool zones_reclaimable;
2582 retry:
2583 delayacct_freepages_start();
2584
2585 if (global_reclaim(sc))
2586 count_vm_event(ALLOCSTALL);
2587
2588 do {
2589 vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup,
2590 sc->priority);
2591 sc->nr_scanned = 0;
2592 zones_reclaimable = shrink_zones(zonelist, sc);
2593
2594 total_scanned += sc->nr_scanned;
2595 if (sc->nr_reclaimed >= sc->nr_to_reclaim)
2596 break;
2597
2598 if (sc->compaction_ready)
2599 break;
2600
2601 /*
2602 * If we're getting trouble reclaiming, start doing
2603 * writepage even in laptop mode.
2604 */
2605 if (sc->priority < DEF_PRIORITY - 2)
2606 sc->may_writepage = 1;
2607
2608 /*
2609 * Try to write back as many pages as we just scanned. This
2610 * tends to cause slow streaming writers to write data to the
2611 * disk smoothly, at the dirtying rate, which is nice. But
2612 * that's undesirable in laptop mode, where we *want* lumpy
2613 * writeout. So in laptop mode, write out the whole world.
2614 */
2615 writeback_threshold = sc->nr_to_reclaim + sc->nr_to_reclaim / 2;
2616 if (total_scanned > writeback_threshold) {
2617 wakeup_flusher_threads(laptop_mode ? 0 : total_scanned,
2618 WB_REASON_TRY_TO_FREE_PAGES);
2619 sc->may_writepage = 1;
2620 }
2621 } while (--sc->priority >= 0);
2622
2623 delayacct_freepages_end();
2624
2625 if (sc->nr_reclaimed)
2626 return sc->nr_reclaimed;
2627
2628 /* Aborted reclaim to try compaction? don't OOM, then */
2629 if (sc->compaction_ready)
2630 return 1;
2631
2632 /* Untapped cgroup reserves? Don't OOM, retry. */
2633 if (!sc->may_thrash) {
2634 sc->priority = initial_priority;
2635 sc->may_thrash = 1;
2636 goto retry;
2637 }
2638
2639 /* Any of the zones still reclaimable? Don't OOM. */
2640 if (zones_reclaimable)
2641 return 1;
2642
2643 return 0;
2644 }
2645
2646 static bool pfmemalloc_watermark_ok(pg_data_t *pgdat)
2647 {
2648 struct zone *zone;
2649 unsigned long pfmemalloc_reserve = 0;
2650 unsigned long free_pages = 0;
2651 int i;
2652 bool wmark_ok;
2653
2654 for (i = 0; i <= ZONE_NORMAL; i++) {
2655 zone = &pgdat->node_zones[i];
2656 if (!populated_zone(zone))
2657 continue;
2658
2659 pfmemalloc_reserve += min_wmark_pages(zone);
2660 free_pages += zone_page_state(zone, NR_FREE_PAGES);
2661 }
2662
2663 /* If there are no reserves (unexpected config) then do not throttle */
2664 if (!pfmemalloc_reserve)
2665 return true;
2666
2667 wmark_ok = free_pages > pfmemalloc_reserve / 2;
2668
2669 /* kswapd must be awake if processes are being throttled */
2670 if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
2671 pgdat->classzone_idx = min(pgdat->classzone_idx,
2672 (enum zone_type)ZONE_NORMAL);
2673 wake_up_interruptible(&pgdat->kswapd_wait);
2674 }
2675
2676 return wmark_ok;
2677 }
2678
2679 /*
2680 * Throttle direct reclaimers if backing storage is backed by the network
2681 * and the PFMEMALLOC reserve for the preferred node is getting dangerously
2682 * depleted. kswapd will continue to make progress and wake the processes
2683 * when the low watermark is reached.
2684 *
2685 * Returns true if a fatal signal was delivered during throttling. If this
2686 * happens, the page allocator should not consider triggering the OOM killer.
2687 */
2688 static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
2689 nodemask_t *nodemask)
2690 {
2691 struct zoneref *z;
2692 struct zone *zone;
2693 pg_data_t *pgdat = NULL;
2694
2695 /*
2696 * Kernel threads should not be throttled as they may be indirectly
2697 * responsible for cleaning pages necessary for reclaim to make forward
2698 * progress. kjournald for example may enter direct reclaim while
2699 * committing a transaction where throttling it could forcing other
2700 * processes to block on log_wait_commit().
2701 */
2702 if (current->flags & PF_KTHREAD)
2703 goto out;
2704
2705 /*
2706 * If a fatal signal is pending, this process should not throttle.
2707 * It should return quickly so it can exit and free its memory
2708 */
2709 if (fatal_signal_pending(current))
2710 goto out;
2711
2712 /*
2713 * Check if the pfmemalloc reserves are ok by finding the first node
2714 * with a usable ZONE_NORMAL or lower zone. The expectation is that
2715 * GFP_KERNEL will be required for allocating network buffers when
2716 * swapping over the network so ZONE_HIGHMEM is unusable.
2717 *
2718 * Throttling is based on the first usable node and throttled processes
2719 * wait on a queue until kswapd makes progress and wakes them. There
2720 * is an affinity then between processes waking up and where reclaim
2721 * progress has been made assuming the process wakes on the same node.
2722 * More importantly, processes running on remote nodes will not compete
2723 * for remote pfmemalloc reserves and processes on different nodes
2724 * should make reasonable progress.
2725 */
2726 for_each_zone_zonelist_nodemask(zone, z, zonelist,
2727 gfp_zone(gfp_mask), nodemask) {
2728 if (zone_idx(zone) > ZONE_NORMAL)
2729 continue;
2730
2731 /* Throttle based on the first usable node */
2732 pgdat = zone->zone_pgdat;
2733 if (pfmemalloc_watermark_ok(pgdat))
2734 goto out;
2735 break;
2736 }
2737
2738 /* If no zone was usable by the allocation flags then do not throttle */
2739 if (!pgdat)
2740 goto out;
2741
2742 /* Account for the throttling */
2743 count_vm_event(PGSCAN_DIRECT_THROTTLE);
2744
2745 /*
2746 * If the caller cannot enter the filesystem, it's possible that it
2747 * is due to the caller holding an FS lock or performing a journal
2748 * transaction in the case of a filesystem like ext[3|4]. In this case,
2749 * it is not safe to block on pfmemalloc_wait as kswapd could be
2750 * blocked waiting on the same lock. Instead, throttle for up to a
2751 * second before continuing.
2752 */
2753 if (!(gfp_mask & __GFP_FS)) {
2754 wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
2755 pfmemalloc_watermark_ok(pgdat), HZ);
2756
2757 goto check_pending;
2758 }
2759
2760 /* Throttle until kswapd wakes the process */
2761 wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
2762 pfmemalloc_watermark_ok(pgdat));
2763
2764 check_pending:
2765 if (fatal_signal_pending(current))
2766 return true;
2767
2768 out:
2769 return false;
2770 }
2771
2772 unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
2773 gfp_t gfp_mask, nodemask_t *nodemask)
2774 {
2775 unsigned long nr_reclaimed;
2776 struct scan_control sc = {
2777 .nr_to_reclaim = SWAP_CLUSTER_MAX,
2778 .gfp_mask = (gfp_mask = memalloc_noio_flags(gfp_mask)),
2779 .order = order,
2780 .nodemask = nodemask,
2781 .priority = DEF_PRIORITY,
2782 .may_writepage = !laptop_mode,
2783 .may_unmap = 1,
2784 .may_swap = 1,
2785 };
2786
2787 /*
2788 * Do not enter reclaim if fatal signal was delivered while throttled.
2789 * 1 is returned so that the page allocator does not OOM kill at this
2790 * point.
2791 */
2792 if (throttle_direct_reclaim(gfp_mask, zonelist, nodemask))
2793 return 1;
2794
2795 trace_mm_vmscan_direct_reclaim_begin(order,
2796 sc.may_writepage,
2797 gfp_mask);
2798
2799 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
2800
2801 trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
2802
2803 return nr_reclaimed;
2804 }
2805
2806 #ifdef CONFIG_MEMCG
2807
2808 unsigned long mem_cgroup_shrink_node_zone(struct mem_cgroup *memcg,
2809 gfp_t gfp_mask, bool noswap,
2810 struct zone *zone,
2811 unsigned long *nr_scanned)
2812 {
2813 struct scan_control sc = {
2814 .nr_to_reclaim = SWAP_CLUSTER_MAX,
2815 .target_mem_cgroup = memcg,
2816 .may_writepage = !laptop_mode,
2817 .may_unmap = 1,
2818 .may_swap = !noswap,
2819 };
2820 struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, memcg);
2821 int swappiness = mem_cgroup_swappiness(memcg);
2822 unsigned long lru_pages;
2823
2824 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2825 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
2826
2827 trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
2828 sc.may_writepage,
2829 sc.gfp_mask);
2830
2831 /*
2832 * NOTE: Although we can get the priority field, using it
2833 * here is not a good idea, since it limits the pages we can scan.
2834 * if we don't reclaim here, the shrink_zone from balance_pgdat
2835 * will pick up pages from other mem cgroup's as well. We hack
2836 * the priority and make it zero.
2837 */
2838 shrink_lruvec(lruvec, swappiness, &sc, &lru_pages);
2839
2840 trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
2841
2842 *nr_scanned = sc.nr_scanned;
2843 return sc.nr_reclaimed;
2844 }
2845
2846 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
2847 unsigned long nr_pages,
2848 gfp_t gfp_mask,
2849 bool may_swap)
2850 {
2851 struct zonelist *zonelist;
2852 unsigned long nr_reclaimed;
2853 int nid;
2854 struct scan_control sc = {
2855 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
2856 .gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2857 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
2858 .target_mem_cgroup = memcg,
2859 .priority = DEF_PRIORITY,
2860 .may_writepage = !laptop_mode,
2861 .may_unmap = 1,
2862 .may_swap = may_swap,
2863 };
2864
2865 /*
2866 * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
2867 * take care of from where we get pages. So the node where we start the
2868 * scan does not need to be the current node.
2869 */
2870 nid = mem_cgroup_select_victim_node(memcg);
2871
2872 zonelist = NODE_DATA(nid)->node_zonelists;
2873
2874 trace_mm_vmscan_memcg_reclaim_begin(0,
2875 sc.may_writepage,
2876 sc.gfp_mask);
2877
2878 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
2879
2880 trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
2881
2882 return nr_reclaimed;
2883 }
2884 #endif
2885
2886 static void age_active_anon(struct zone *zone, struct scan_control *sc)
2887 {
2888 struct mem_cgroup *memcg;
2889
2890 if (!total_swap_pages)
2891 return;
2892
2893 memcg = mem_cgroup_iter(NULL, NULL, NULL);
2894 do {
2895 struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, memcg);
2896
2897 if (inactive_anon_is_low(lruvec))
2898 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
2899 sc, LRU_ACTIVE_ANON);
2900
2901 memcg = mem_cgroup_iter(NULL, memcg, NULL);
2902 } while (memcg);
2903 }
2904
2905 static bool zone_balanced(struct zone *zone, int order,
2906 unsigned long balance_gap, int classzone_idx)
2907 {
2908 if (!zone_watermark_ok_safe(zone, order, high_wmark_pages(zone) +
2909 balance_gap, classzone_idx, 0))
2910 return false;
2911
2912 if (IS_ENABLED(CONFIG_COMPACTION) && order && compaction_suitable(zone,
2913 order, 0, classzone_idx) == COMPACT_SKIPPED)
2914 return false;
2915
2916 return true;
2917 }
2918
2919 /*
2920 * pgdat_balanced() is used when checking if a node is balanced.
2921 *
2922 * For order-0, all zones must be balanced!
2923 *
2924 * For high-order allocations only zones that meet watermarks and are in a
2925 * zone allowed by the callers classzone_idx are added to balanced_pages. The
2926 * total of balanced pages must be at least 25% of the zones allowed by
2927 * classzone_idx for the node to be considered balanced. Forcing all zones to
2928 * be balanced for high orders can cause excessive reclaim when there are
2929 * imbalanced zones.
2930 * The choice of 25% is due to
2931 * o a 16M DMA zone that is balanced will not balance a zone on any
2932 * reasonable sized machine
2933 * o On all other machines, the top zone must be at least a reasonable
2934 * percentage of the middle zones. For example, on 32-bit x86, highmem
2935 * would need to be at least 256M for it to be balance a whole node.
2936 * Similarly, on x86-64 the Normal zone would need to be at least 1G
2937 * to balance a node on its own. These seemed like reasonable ratios.
2938 */
2939 static bool pgdat_balanced(pg_data_t *pgdat, int order, int classzone_idx)
2940 {
2941 unsigned long managed_pages = 0;
2942 unsigned long balanced_pages = 0;
2943 int i;
2944
2945 /* Check the watermark levels */
2946 for (i = 0; i <= classzone_idx; i++) {
2947 struct zone *zone = pgdat->node_zones + i;
2948
2949 if (!populated_zone(zone))
2950 continue;
2951
2952 managed_pages += zone->managed_pages;
2953
2954 /*
2955 * A special case here:
2956 *
2957 * balance_pgdat() skips over all_unreclaimable after
2958 * DEF_PRIORITY. Effectively, it considers them balanced so
2959 * they must be considered balanced here as well!
2960 */
2961 if (!zone_reclaimable(zone)) {
2962 balanced_pages += zone->managed_pages;
2963 continue;
2964 }
2965
2966 if (zone_balanced(zone, order, 0, i))
2967 balanced_pages += zone->managed_pages;
2968 else if (!order)
2969 return false;
2970 }
2971
2972 if (order)
2973 return balanced_pages >= (managed_pages >> 2);
2974 else
2975 return true;
2976 }
2977
2978 /*
2979 * Prepare kswapd for sleeping. This verifies that there are no processes
2980 * waiting in throttle_direct_reclaim() and that watermarks have been met.
2981 *
2982 * Returns true if kswapd is ready to sleep
2983 */
2984 static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, long remaining,
2985 int classzone_idx)
2986 {
2987 /* If a direct reclaimer woke kswapd within HZ/10, it's premature */
2988 if (remaining)
2989 return false;
2990
2991 /*
2992 * The throttled processes are normally woken up in balance_pgdat() as
2993 * soon as pfmemalloc_watermark_ok() is true. But there is a potential
2994 * race between when kswapd checks the watermarks and a process gets
2995 * throttled. There is also a potential race if processes get
2996 * throttled, kswapd wakes, a large process exits thereby balancing the
2997 * zones, which causes kswapd to exit balance_pgdat() before reaching
2998 * the wake up checks. If kswapd is going to sleep, no process should
2999 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If
3000 * the wake up is premature, processes will wake kswapd and get
3001 * throttled again. The difference from wake ups in balance_pgdat() is
3002 * that here we are under prepare_to_wait().
3003 */
3004 if (waitqueue_active(&pgdat->pfmemalloc_wait))
3005 wake_up_all(&pgdat->pfmemalloc_wait);
3006
3007 return pgdat_balanced(pgdat, order, classzone_idx);
3008 }
3009
3010 /*
3011 * kswapd shrinks the zone by the number of pages required to reach
3012 * the high watermark.
3013 *
3014 * Returns true if kswapd scanned at least the requested number of pages to
3015 * reclaim or if the lack of progress was due to pages under writeback.
3016 * This is used to determine if the scanning priority needs to be raised.
3017 */
3018 static bool kswapd_shrink_zone(struct zone *zone,
3019 int classzone_idx,
3020 struct scan_control *sc,
3021 unsigned long *nr_attempted)
3022 {
3023 int testorder = sc->order;
3024 unsigned long balance_gap;
3025 bool lowmem_pressure;
3026
3027 /* Reclaim above the high watermark. */
3028 sc->nr_to_reclaim = max(SWAP_CLUSTER_MAX, high_wmark_pages(zone));
3029
3030 /*
3031 * Kswapd reclaims only single pages with compaction enabled. Trying
3032 * too hard to reclaim until contiguous free pages have become
3033 * available can hurt performance by evicting too much useful data
3034 * from memory. Do not reclaim more than needed for compaction.
3035 */
3036 if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
3037 compaction_suitable(zone, sc->order, 0, classzone_idx)
3038 != COMPACT_SKIPPED)
3039 testorder = 0;
3040
3041 /*
3042 * We put equal pressure on every zone, unless one zone has way too
3043 * many pages free already. The "too many pages" is defined as the
3044 * high wmark plus a "gap" where the gap is either the low
3045 * watermark or 1% of the zone, whichever is smaller.
3046 */
3047 balance_gap = min(low_wmark_pages(zone), DIV_ROUND_UP(
3048 zone->managed_pages, KSWAPD_ZONE_BALANCE_GAP_RATIO));
3049
3050 /*
3051 * If there is no low memory pressure or the zone is balanced then no
3052 * reclaim is necessary
3053 */
3054 lowmem_pressure = (buffer_heads_over_limit && is_highmem(zone));
3055 if (!lowmem_pressure && zone_balanced(zone, testorder,
3056 balance_gap, classzone_idx))
3057 return true;
3058
3059 shrink_zone(zone, sc, zone_idx(zone) == classzone_idx);
3060
3061 /* Account for the number of pages attempted to reclaim */
3062 *nr_attempted += sc->nr_to_reclaim;
3063
3064 clear_bit(ZONE_WRITEBACK, &zone->flags);
3065
3066 /*
3067 * If a zone reaches its high watermark, consider it to be no longer
3068 * congested. It's possible there are dirty pages backed by congested
3069 * BDIs but as pressure is relieved, speculatively avoid congestion
3070 * waits.
3071 */
3072 if (zone_reclaimable(zone) &&
3073 zone_balanced(zone, testorder, 0, classzone_idx)) {
3074 clear_bit(ZONE_CONGESTED, &zone->flags);
3075 clear_bit(ZONE_DIRTY, &zone->flags);
3076 }
3077
3078 return sc->nr_scanned >= sc->nr_to_reclaim;
3079 }
3080
3081 /*
3082 * For kswapd, balance_pgdat() will work across all this node's zones until
3083 * they are all at high_wmark_pages(zone).
3084 *
3085 * Returns the final order kswapd was reclaiming at
3086 *
3087 * There is special handling here for zones which are full of pinned pages.
3088 * This can happen if the pages are all mlocked, or if they are all used by
3089 * device drivers (say, ZONE_DMA). Or if they are all in use by hugetlb.
3090 * What we do is to detect the case where all pages in the zone have been
3091 * scanned twice and there has been zero successful reclaim. Mark the zone as
3092 * dead and from now on, only perform a short scan. Basically we're polling
3093 * the zone for when the problem goes away.
3094 *
3095 * kswapd scans the zones in the highmem->normal->dma direction. It skips
3096 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
3097 * found to have free_pages <= high_wmark_pages(zone), we scan that zone and the
3098 * lower zones regardless of the number of free pages in the lower zones. This
3099 * interoperates with the page allocator fallback scheme to ensure that aging
3100 * of pages is balanced across the zones.
3101 */
3102 static unsigned long balance_pgdat(pg_data_t *pgdat, int order,
3103 int *classzone_idx)
3104 {
3105 int i;
3106 int end_zone = 0; /* Inclusive. 0 = ZONE_DMA */
3107 unsigned long nr_soft_reclaimed;
3108 unsigned long nr_soft_scanned;
3109 struct scan_control sc = {
3110 .gfp_mask = GFP_KERNEL,
3111 .order = order,
3112 .priority = DEF_PRIORITY,
3113 .may_writepage = !laptop_mode,
3114 .may_unmap = 1,
3115 .may_swap = 1,
3116 };
3117 count_vm_event(PAGEOUTRUN);
3118
3119 do {
3120 unsigned long nr_attempted = 0;
3121 bool raise_priority = true;
3122 bool pgdat_needs_compaction = (order > 0);
3123
3124 sc.nr_reclaimed = 0;
3125
3126 /*
3127 * Scan in the highmem->dma direction for the highest
3128 * zone which needs scanning
3129 */
3130 for (i = pgdat->nr_zones - 1; i >= 0; i--) {
3131 struct zone *zone = pgdat->node_zones + i;
3132
3133 if (!populated_zone(zone))
3134 continue;
3135
3136 if (sc.priority != DEF_PRIORITY &&
3137 !zone_reclaimable(zone))
3138 continue;
3139
3140 /*
3141 * Do some background aging of the anon list, to give
3142 * pages a chance to be referenced before reclaiming.
3143 */
3144 age_active_anon(zone, &sc);
3145
3146 /*
3147 * If the number of buffer_heads in the machine
3148 * exceeds the maximum allowed level and this node
3149 * has a highmem zone, force kswapd to reclaim from
3150 * it to relieve lowmem pressure.
3151 */
3152 if (buffer_heads_over_limit && is_highmem_idx(i)) {
3153 end_zone = i;
3154 break;
3155 }
3156
3157 if (!zone_balanced(zone, order, 0, 0)) {
3158 end_zone = i;
3159 break;
3160 } else {
3161 /*
3162 * If balanced, clear the dirty and congested
3163 * flags
3164 */
3165 clear_bit(ZONE_CONGESTED, &zone->flags);
3166 clear_bit(ZONE_DIRTY, &zone->flags);
3167 }
3168 }
3169
3170 if (i < 0)
3171 goto out;
3172
3173 for (i = 0; i <= end_zone; i++) {
3174 struct zone *zone = pgdat->node_zones + i;
3175
3176 if (!populated_zone(zone))
3177 continue;
3178
3179 /*
3180 * If any zone is currently balanced then kswapd will
3181 * not call compaction as it is expected that the
3182 * necessary pages are already available.
3183 */
3184 if (pgdat_needs_compaction &&
3185 zone_watermark_ok(zone, order,
3186 low_wmark_pages(zone),
3187 *classzone_idx, 0))
3188 pgdat_needs_compaction = false;
3189 }
3190
3191 /*
3192 * If we're getting trouble reclaiming, start doing writepage
3193 * even in laptop mode.
3194 */
3195 if (sc.priority < DEF_PRIORITY - 2)
3196 sc.may_writepage = 1;
3197
3198 /*
3199 * Now scan the zone in the dma->highmem direction, stopping
3200 * at the last zone which needs scanning.
3201 *
3202 * We do this because the page allocator works in the opposite
3203 * direction. This prevents the page allocator from allocating
3204 * pages behind kswapd's direction of progress, which would
3205 * cause too much scanning of the lower zones.
3206 */
3207 for (i = 0; i <= end_zone; i++) {
3208 struct zone *zone = pgdat->node_zones + i;
3209
3210 if (!populated_zone(zone))
3211 continue;
3212
3213 if (sc.priority != DEF_PRIORITY &&
3214 !zone_reclaimable(zone))
3215 continue;
3216
3217 sc.nr_scanned = 0;
3218
3219 nr_soft_scanned = 0;
3220 /*
3221 * Call soft limit reclaim before calling shrink_zone.
3222 */
3223 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
3224 order, sc.gfp_mask,
3225 &nr_soft_scanned);
3226 sc.nr_reclaimed += nr_soft_reclaimed;
3227
3228 /*
3229 * There should be no need to raise the scanning
3230 * priority if enough pages are already being scanned
3231 * that that high watermark would be met at 100%
3232 * efficiency.
3233 */
3234 if (kswapd_shrink_zone(zone, end_zone,
3235 &sc, &nr_attempted))
3236 raise_priority = false;
3237 }
3238
3239 /*
3240 * If the low watermark is met there is no need for processes
3241 * to be throttled on pfmemalloc_wait as they should not be
3242 * able to safely make forward progress. Wake them
3243 */
3244 if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
3245 pfmemalloc_watermark_ok(pgdat))
3246 wake_up_all(&pgdat->pfmemalloc_wait);
3247
3248 /*
3249 * Fragmentation may mean that the system cannot be rebalanced
3250 * for high-order allocations in all zones. If twice the
3251 * allocation size has been reclaimed and the zones are still
3252 * not balanced then recheck the watermarks at order-0 to
3253 * prevent kswapd reclaiming excessively. Assume that a
3254 * process requested a high-order can direct reclaim/compact.
3255 */
3256 if (order && sc.nr_reclaimed >= 2UL << order)
3257 order = sc.order = 0;
3258
3259 /* Check if kswapd should be suspending */
3260 if (try_to_freeze() || kthread_should_stop())
3261 break;
3262
3263 /*
3264 * Compact if necessary and kswapd is reclaiming at least the
3265 * high watermark number of pages as requsted
3266 */
3267 if (pgdat_needs_compaction && sc.nr_reclaimed > nr_attempted)
3268 compact_pgdat(pgdat, order);
3269
3270 /*
3271 * Raise priority if scanning rate is too low or there was no
3272 * progress in reclaiming pages
3273 */
3274 if (raise_priority || !sc.nr_reclaimed)
3275 sc.priority--;
3276 } while (sc.priority >= 1 &&
3277 !pgdat_balanced(pgdat, order, *classzone_idx));
3278
3279 out:
3280 /*
3281 * Return the order we were reclaiming at so prepare_kswapd_sleep()
3282 * makes a decision on the order we were last reclaiming at. However,
3283 * if another caller entered the allocator slow path while kswapd
3284 * was awake, order will remain at the higher level
3285 */
3286 *classzone_idx = end_zone;
3287 return order;
3288 }
3289
3290 static void kswapd_try_to_sleep(pg_data_t *pgdat, int order, int classzone_idx)
3291 {
3292 long remaining = 0;
3293 DEFINE_WAIT(wait);
3294
3295 if (freezing(current) || kthread_should_stop())
3296 return;
3297
3298 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3299
3300 /* Try to sleep for a short interval */
3301 if (prepare_kswapd_sleep(pgdat, order, remaining, classzone_idx)) {
3302 remaining = schedule_timeout(HZ/10);
3303 finish_wait(&pgdat->kswapd_wait, &wait);
3304 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3305 }
3306
3307 /*
3308 * After a short sleep, check if it was a premature sleep. If not, then
3309 * go fully to sleep until explicitly woken up.
3310 */
3311 if (prepare_kswapd_sleep(pgdat, order, remaining, classzone_idx)) {
3312 trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
3313
3314 /*
3315 * vmstat counters are not perfectly accurate and the estimated
3316 * value for counters such as NR_FREE_PAGES can deviate from the
3317 * true value by nr_online_cpus * threshold. To avoid the zone
3318 * watermarks being breached while under pressure, we reduce the
3319 * per-cpu vmstat threshold while kswapd is awake and restore
3320 * them before going back to sleep.
3321 */
3322 set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
3323
3324 /*
3325 * Compaction records what page blocks it recently failed to
3326 * isolate pages from and skips them in the future scanning.
3327 * When kswapd is going to sleep, it is reasonable to assume
3328 * that pages and compaction may succeed so reset the cache.
3329 */
3330 reset_isolation_suitable(pgdat);
3331
3332 if (!kthread_should_stop())
3333 schedule();
3334
3335 set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
3336 } else {
3337 if (remaining)
3338 count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
3339 else
3340 count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
3341 }
3342 finish_wait(&pgdat->kswapd_wait, &wait);
3343 }
3344
3345 /*
3346 * The background pageout daemon, started as a kernel thread
3347 * from the init process.
3348 *
3349 * This basically trickles out pages so that we have _some_
3350 * free memory available even if there is no other activity
3351 * that frees anything up. This is needed for things like routing
3352 * etc, where we otherwise might have all activity going on in
3353 * asynchronous contexts that cannot page things out.
3354 *
3355 * If there are applications that are active memory-allocators
3356 * (most normal use), this basically shouldn't matter.
3357 */
3358 static int kswapd(void *p)
3359 {
3360 unsigned long order, new_order;
3361 unsigned balanced_order;
3362 int classzone_idx, new_classzone_idx;
3363 int balanced_classzone_idx;
3364 pg_data_t *pgdat = (pg_data_t*)p;
3365 struct task_struct *tsk = current;
3366
3367 struct reclaim_state reclaim_state = {
3368 .reclaimed_slab = 0,
3369 };
3370 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
3371
3372 lockdep_set_current_reclaim_state(GFP_KERNEL);
3373
3374 if (!cpumask_empty(cpumask))
3375 set_cpus_allowed_ptr(tsk, cpumask);
3376 current->reclaim_state = &reclaim_state;
3377
3378 /*
3379 * Tell the memory management that we're a "memory allocator",
3380 * and that if we need more memory we should get access to it
3381 * regardless (see "__alloc_pages()"). "kswapd" should
3382 * never get caught in the normal page freeing logic.
3383 *
3384 * (Kswapd normally doesn't need memory anyway, but sometimes
3385 * you need a small amount of memory in order to be able to
3386 * page out something else, and this flag essentially protects
3387 * us from recursively trying to free more memory as we're
3388 * trying to free the first piece of memory in the first place).
3389 */
3390 tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
3391 set_freezable();
3392
3393 order = new_order = 0;
3394 balanced_order = 0;
3395 classzone_idx = new_classzone_idx = pgdat->nr_zones - 1;
3396 balanced_classzone_idx = classzone_idx;
3397 for ( ; ; ) {
3398 bool ret;
3399
3400 /*
3401 * If the last balance_pgdat was unsuccessful it's unlikely a
3402 * new request of a similar or harder type will succeed soon
3403 * so consider going to sleep on the basis we reclaimed at
3404 */
3405 if (balanced_classzone_idx >= new_classzone_idx &&
3406 balanced_order == new_order) {
3407 new_order = pgdat->kswapd_max_order;
3408 new_classzone_idx = pgdat->classzone_idx;
3409 pgdat->kswapd_max_order = 0;
3410 pgdat->classzone_idx = pgdat->nr_zones - 1;
3411 }
3412
3413 if (order < new_order || classzone_idx > new_classzone_idx) {
3414 /*
3415 * Don't sleep if someone wants a larger 'order'
3416 * allocation or has tigher zone constraints
3417 */
3418 order = new_order;
3419 classzone_idx = new_classzone_idx;
3420 } else {
3421 kswapd_try_to_sleep(pgdat, balanced_order,
3422 balanced_classzone_idx);
3423 order = pgdat->kswapd_max_order;
3424 classzone_idx = pgdat->classzone_idx;
3425 new_order = order;
3426 new_classzone_idx = classzone_idx;
3427 pgdat->kswapd_max_order = 0;
3428 pgdat->classzone_idx = pgdat->nr_zones - 1;
3429 }
3430
3431 ret = try_to_freeze();
3432 if (kthread_should_stop())
3433 break;
3434
3435 /*
3436 * We can speed up thawing tasks if we don't call balance_pgdat
3437 * after returning from the refrigerator
3438 */
3439 if (!ret) {
3440 trace_mm_vmscan_kswapd_wake(pgdat->node_id, order);
3441 balanced_classzone_idx = classzone_idx;
3442 balanced_order = balance_pgdat(pgdat, order,
3443 &balanced_classzone_idx);
3444 }
3445 }
3446
3447 tsk->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD);
3448 current->reclaim_state = NULL;
3449 lockdep_clear_current_reclaim_state();
3450
3451 return 0;
3452 }
3453
3454 /*
3455 * A zone is low on free memory, so wake its kswapd task to service it.
3456 */
3457 void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx)
3458 {
3459 pg_data_t *pgdat;
3460
3461 if (!populated_zone(zone))
3462 return;
3463
3464 if (!cpuset_zone_allowed(zone, GFP_KERNEL | __GFP_HARDWALL))
3465 return;
3466 pgdat = zone->zone_pgdat;
3467 if (pgdat->kswapd_max_order < order) {
3468 pgdat->kswapd_max_order = order;
3469 pgdat->classzone_idx = min(pgdat->classzone_idx, classzone_idx);
3470 }
3471 if (!waitqueue_active(&pgdat->kswapd_wait))
3472 return;
3473 if (zone_balanced(zone, order, 0, 0))
3474 return;
3475
3476 trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, zone_idx(zone), order);
3477 wake_up_interruptible(&pgdat->kswapd_wait);
3478 }
3479
3480 #ifdef CONFIG_HIBERNATION
3481 /*
3482 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
3483 * freed pages.
3484 *
3485 * Rather than trying to age LRUs the aim is to preserve the overall
3486 * LRU order by reclaiming preferentially
3487 * inactive > active > active referenced > active mapped
3488 */
3489 unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
3490 {
3491 struct reclaim_state reclaim_state;
3492 struct scan_control sc = {
3493 .nr_to_reclaim = nr_to_reclaim,
3494 .gfp_mask = GFP_HIGHUSER_MOVABLE,
3495 .priority = DEF_PRIORITY,
3496 .may_writepage = 1,
3497 .may_unmap = 1,
3498 .may_swap = 1,
3499 .hibernation_mode = 1,
3500 };
3501 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
3502 struct task_struct *p = current;
3503 unsigned long nr_reclaimed;
3504
3505 p->flags |= PF_MEMALLOC;
3506 lockdep_set_current_reclaim_state(sc.gfp_mask);
3507 reclaim_state.reclaimed_slab = 0;
3508 p->reclaim_state = &reclaim_state;
3509
3510 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3511
3512 p->reclaim_state = NULL;
3513 lockdep_clear_current_reclaim_state();
3514 p->flags &= ~PF_MEMALLOC;
3515
3516 return nr_reclaimed;
3517 }
3518 #endif /* CONFIG_HIBERNATION */
3519
3520 /* It's optimal to keep kswapds on the same CPUs as their memory, but
3521 not required for correctness. So if the last cpu in a node goes
3522 away, we get changed to run anywhere: as the first one comes back,
3523 restore their cpu bindings. */
3524 static int cpu_callback(struct notifier_block *nfb, unsigned long action,
3525 void *hcpu)
3526 {
3527 int nid;
3528
3529 if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
3530 for_each_node_state(nid, N_MEMORY) {
3531 pg_data_t *pgdat = NODE_DATA(nid);
3532 const struct cpumask *mask;
3533
3534 mask = cpumask_of_node(pgdat->node_id);
3535
3536 if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
3537 /* One of our CPUs online: restore mask */
3538 set_cpus_allowed_ptr(pgdat->kswapd, mask);
3539 }
3540 }
3541 return NOTIFY_OK;
3542 }
3543
3544 /*
3545 * This kswapd start function will be called by init and node-hot-add.
3546 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
3547 */
3548 int kswapd_run(int nid)
3549 {
3550 pg_data_t *pgdat = NODE_DATA(nid);
3551 int ret = 0;
3552
3553 if (pgdat->kswapd)
3554 return 0;
3555
3556 pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
3557 if (IS_ERR(pgdat->kswapd)) {
3558 /* failure at boot is fatal */
3559 BUG_ON(system_state == SYSTEM_BOOTING);
3560 pr_err("Failed to start kswapd on node %d\n", nid);
3561 ret = PTR_ERR(pgdat->kswapd);
3562 pgdat->kswapd = NULL;
3563 }
3564 return ret;
3565 }
3566
3567 /*
3568 * Called by memory hotplug when all memory in a node is offlined. Caller must
3569 * hold mem_hotplug_begin/end().
3570 */
3571 void kswapd_stop(int nid)
3572 {
3573 struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
3574
3575 if (kswapd) {
3576 kthread_stop(kswapd);
3577 NODE_DATA(nid)->kswapd = NULL;
3578 }
3579 }
3580
3581 static int __init kswapd_init(void)
3582 {
3583 int nid;
3584
3585 swap_setup();
3586 for_each_node_state(nid, N_MEMORY)
3587 kswapd_run(nid);
3588 hotcpu_notifier(cpu_callback, 0);
3589 return 0;
3590 }
3591
3592 module_init(kswapd_init)
3593
3594 #ifdef CONFIG_NUMA
3595 /*
3596 * Zone reclaim mode
3597 *
3598 * If non-zero call zone_reclaim when the number of free pages falls below
3599 * the watermarks.
3600 */
3601 int zone_reclaim_mode __read_mostly;
3602
3603 #define RECLAIM_OFF 0
3604 #define RECLAIM_ZONE (1<<0) /* Run shrink_inactive_list on the zone */
3605 #define RECLAIM_WRITE (1<<1) /* Writeout pages during reclaim */
3606 #define RECLAIM_SWAP (1<<2) /* Swap pages out during reclaim */
3607
3608 /*
3609 * Priority for ZONE_RECLAIM. This determines the fraction of pages
3610 * of a node considered for each zone_reclaim. 4 scans 1/16th of
3611 * a zone.
3612 */
3613 #define ZONE_RECLAIM_PRIORITY 4
3614
3615 /*
3616 * Percentage of pages in a zone that must be unmapped for zone_reclaim to
3617 * occur.
3618 */
3619 int sysctl_min_unmapped_ratio = 1;
3620
3621 /*
3622 * If the number of slab pages in a zone grows beyond this percentage then
3623 * slab reclaim needs to occur.
3624 */
3625 int sysctl_min_slab_ratio = 5;
3626
3627 static inline unsigned long zone_unmapped_file_pages(struct zone *zone)
3628 {
3629 unsigned long file_mapped = zone_page_state(zone, NR_FILE_MAPPED);
3630 unsigned long file_lru = zone_page_state(zone, NR_INACTIVE_FILE) +
3631 zone_page_state(zone, NR_ACTIVE_FILE);
3632
3633 /*
3634 * It's possible for there to be more file mapped pages than
3635 * accounted for by the pages on the file LRU lists because
3636 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
3637 */
3638 return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
3639 }
3640
3641 /* Work out how many page cache pages we can reclaim in this reclaim_mode */
3642 static long zone_pagecache_reclaimable(struct zone *zone)
3643 {
3644 long nr_pagecache_reclaimable;
3645 long delta = 0;
3646
3647 /*
3648 * If RECLAIM_SWAP is set, then all file pages are considered
3649 * potentially reclaimable. Otherwise, we have to worry about
3650 * pages like swapcache and zone_unmapped_file_pages() provides
3651 * a better estimate
3652 */
3653 if (zone_reclaim_mode & RECLAIM_SWAP)
3654 nr_pagecache_reclaimable = zone_page_state(zone, NR_FILE_PAGES);
3655 else
3656 nr_pagecache_reclaimable = zone_unmapped_file_pages(zone);
3657
3658 /* If we can't clean pages, remove dirty pages from consideration */
3659 if (!(zone_reclaim_mode & RECLAIM_WRITE))
3660 delta += zone_page_state(zone, NR_FILE_DIRTY);
3661
3662 /* Watch for any possible underflows due to delta */
3663 if (unlikely(delta > nr_pagecache_reclaimable))
3664 delta = nr_pagecache_reclaimable;
3665
3666 return nr_pagecache_reclaimable - delta;
3667 }
3668
3669 /*
3670 * Try to free up some pages from this zone through reclaim.
3671 */
3672 static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3673 {
3674 /* Minimum pages needed in order to stay on node */
3675 const unsigned long nr_pages = 1 << order;
3676 struct task_struct *p = current;
3677 struct reclaim_state reclaim_state;
3678 struct scan_control sc = {
3679 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
3680 .gfp_mask = (gfp_mask = memalloc_noio_flags(gfp_mask)),
3681 .order = order,
3682 .priority = ZONE_RECLAIM_PRIORITY,
3683 .may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE),
3684 .may_unmap = !!(zone_reclaim_mode & RECLAIM_SWAP),
3685 .may_swap = 1,
3686 };
3687
3688 cond_resched();
3689 /*
3690 * We need to be able to allocate from the reserves for RECLAIM_SWAP
3691 * and we also need to be able to write out pages for RECLAIM_WRITE
3692 * and RECLAIM_SWAP.
3693 */
3694 p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
3695 lockdep_set_current_reclaim_state(gfp_mask);
3696 reclaim_state.reclaimed_slab = 0;
3697 p->reclaim_state = &reclaim_state;
3698
3699 if (zone_pagecache_reclaimable(zone) > zone->min_unmapped_pages) {
3700 /*
3701 * Free memory by calling shrink zone with increasing
3702 * priorities until we have enough memory freed.
3703 */
3704 do {
3705 shrink_zone(zone, &sc, true);
3706 } while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
3707 }
3708
3709 p->reclaim_state = NULL;
3710 current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
3711 lockdep_clear_current_reclaim_state();
3712 return sc.nr_reclaimed >= nr_pages;
3713 }
3714
3715 int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3716 {
3717 int node_id;
3718 int ret;
3719
3720 /*
3721 * Zone reclaim reclaims unmapped file backed pages and
3722 * slab pages if we are over the defined limits.
3723 *
3724 * A small portion of unmapped file backed pages is needed for
3725 * file I/O otherwise pages read by file I/O will be immediately
3726 * thrown out if the zone is overallocated. So we do not reclaim
3727 * if less than a specified percentage of the zone is used by
3728 * unmapped file backed pages.
3729 */
3730 if (zone_pagecache_reclaimable(zone) <= zone->min_unmapped_pages &&
3731 zone_page_state(zone, NR_SLAB_RECLAIMABLE) <= zone->min_slab_pages)
3732 return ZONE_RECLAIM_FULL;
3733
3734 if (!zone_reclaimable(zone))
3735 return ZONE_RECLAIM_FULL;
3736
3737 /*
3738 * Do not scan if the allocation should not be delayed.
3739 */
3740 if (!(gfp_mask & __GFP_WAIT) || (current->flags & PF_MEMALLOC))
3741 return ZONE_RECLAIM_NOSCAN;
3742
3743 /*
3744 * Only run zone reclaim on the local zone or on zones that do not
3745 * have associated processors. This will favor the local processor
3746 * over remote processors and spread off node memory allocations
3747 * as wide as possible.
3748 */
3749 node_id = zone_to_nid(zone);
3750 if (node_state(node_id, N_CPU) && node_id != numa_node_id())
3751 return ZONE_RECLAIM_NOSCAN;
3752
3753 if (test_and_set_bit(ZONE_RECLAIM_LOCKED, &zone->flags))
3754 return ZONE_RECLAIM_NOSCAN;
3755
3756 ret = __zone_reclaim(zone, gfp_mask, order);
3757 clear_bit(ZONE_RECLAIM_LOCKED, &zone->flags);
3758
3759 if (!ret)
3760 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
3761
3762 return ret;
3763 }
3764 #endif
3765
3766 /*
3767 * page_evictable - test whether a page is evictable
3768 * @page: the page to test
3769 *
3770 * Test whether page is evictable--i.e., should be placed on active/inactive
3771 * lists vs unevictable list.
3772 *
3773 * Reasons page might not be evictable:
3774 * (1) page's mapping marked unevictable
3775 * (2) page is part of an mlocked VMA
3776 *
3777 */
3778 int page_evictable(struct page *page)
3779 {
3780 return !mapping_unevictable(page_mapping(page)) && !PageMlocked(page);
3781 }
3782
3783 #ifdef CONFIG_SHMEM
3784 /**
3785 * check_move_unevictable_pages - check pages for evictability and move to appropriate zone lru list
3786 * @pages: array of pages to check
3787 * @nr_pages: number of pages to check
3788 *
3789 * Checks pages for evictability and moves them to the appropriate lru list.
3790 *
3791 * This function is only used for SysV IPC SHM_UNLOCK.
3792 */
3793 void check_move_unevictable_pages(struct page **pages, int nr_pages)
3794 {
3795 struct lruvec *lruvec;
3796 struct zone *zone = NULL;
3797 int pgscanned = 0;
3798 int pgrescued = 0;
3799 int i;
3800
3801 for (i = 0; i < nr_pages; i++) {
3802 struct page *page = pages[i];
3803 struct zone *pagezone;
3804
3805 pgscanned++;
3806 pagezone = page_zone(page);
3807 if (pagezone != zone) {
3808 if (zone)
3809 spin_unlock_irq(&zone->lru_lock);
3810 zone = pagezone;
3811 spin_lock_irq(&zone->lru_lock);
3812 }
3813 lruvec = mem_cgroup_page_lruvec(page, zone);
3814
3815 if (!PageLRU(page) || !PageUnevictable(page))
3816 continue;
3817
3818 if (page_evictable(page)) {
3819 enum lru_list lru = page_lru_base_type(page);
3820
3821 VM_BUG_ON_PAGE(PageActive(page), page);
3822 ClearPageUnevictable(page);
3823 del_page_from_lru_list(page, lruvec, LRU_UNEVICTABLE);
3824 add_page_to_lru_list(page, lruvec, lru);
3825 pgrescued++;
3826 }
3827 }
3828
3829 if (zone) {
3830 __count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
3831 __count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
3832 spin_unlock_irq(&zone->lru_lock);
3833 }
3834 }
3835 #endif /* CONFIG_SHMEM */