]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - mm/vmscan.c
mm: remove isolate_pages()
[mirror_ubuntu-bionic-kernel.git] / mm / vmscan.c
1 /*
2 * linux/mm/vmscan.c
3 *
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 *
6 * Swap reorganised 29.12.95, Stephen Tweedie.
7 * kswapd added: 7.1.96 sct
8 * Removed kswapd_ctl limits, and swap out as many pages as needed
9 * to bring the system back to freepages.high: 2.4.97, Rik van Riel.
10 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
11 * Multiqueue VM started 5.8.00, Rik van Riel.
12 */
13
14 #include <linux/mm.h>
15 #include <linux/module.h>
16 #include <linux/gfp.h>
17 #include <linux/kernel_stat.h>
18 #include <linux/swap.h>
19 #include <linux/pagemap.h>
20 #include <linux/init.h>
21 #include <linux/highmem.h>
22 #include <linux/vmstat.h>
23 #include <linux/file.h>
24 #include <linux/writeback.h>
25 #include <linux/blkdev.h>
26 #include <linux/buffer_head.h> /* for try_to_release_page(),
27 buffer_heads_over_limit */
28 #include <linux/mm_inline.h>
29 #include <linux/pagevec.h>
30 #include <linux/backing-dev.h>
31 #include <linux/rmap.h>
32 #include <linux/topology.h>
33 #include <linux/cpu.h>
34 #include <linux/cpuset.h>
35 #include <linux/compaction.h>
36 #include <linux/notifier.h>
37 #include <linux/rwsem.h>
38 #include <linux/delay.h>
39 #include <linux/kthread.h>
40 #include <linux/freezer.h>
41 #include <linux/memcontrol.h>
42 #include <linux/delayacct.h>
43 #include <linux/sysctl.h>
44 #include <linux/oom.h>
45 #include <linux/prefetch.h>
46
47 #include <asm/tlbflush.h>
48 #include <asm/div64.h>
49
50 #include <linux/swapops.h>
51
52 #include "internal.h"
53
54 #define CREATE_TRACE_POINTS
55 #include <trace/events/vmscan.h>
56
57 /*
58 * reclaim_mode determines how the inactive list is shrunk
59 * RECLAIM_MODE_SINGLE: Reclaim only order-0 pages
60 * RECLAIM_MODE_ASYNC: Do not block
61 * RECLAIM_MODE_SYNC: Allow blocking e.g. call wait_on_page_writeback
62 * RECLAIM_MODE_LUMPYRECLAIM: For high-order allocations, take a reference
63 * page from the LRU and reclaim all pages within a
64 * naturally aligned range
65 * RECLAIM_MODE_COMPACTION: For high-order allocations, reclaim a number of
66 * order-0 pages and then compact the zone
67 */
68 typedef unsigned __bitwise__ reclaim_mode_t;
69 #define RECLAIM_MODE_SINGLE ((__force reclaim_mode_t)0x01u)
70 #define RECLAIM_MODE_ASYNC ((__force reclaim_mode_t)0x02u)
71 #define RECLAIM_MODE_SYNC ((__force reclaim_mode_t)0x04u)
72 #define RECLAIM_MODE_LUMPYRECLAIM ((__force reclaim_mode_t)0x08u)
73 #define RECLAIM_MODE_COMPACTION ((__force reclaim_mode_t)0x10u)
74
75 struct scan_control {
76 /* Incremented by the number of inactive pages that were scanned */
77 unsigned long nr_scanned;
78
79 /* Number of pages freed so far during a call to shrink_zones() */
80 unsigned long nr_reclaimed;
81
82 /* How many pages shrink_list() should reclaim */
83 unsigned long nr_to_reclaim;
84
85 unsigned long hibernation_mode;
86
87 /* This context's GFP mask */
88 gfp_t gfp_mask;
89
90 int may_writepage;
91
92 /* Can mapped pages be reclaimed? */
93 int may_unmap;
94
95 /* Can pages be swapped as part of reclaim? */
96 int may_swap;
97
98 int order;
99
100 /*
101 * Intend to reclaim enough continuous memory rather than reclaim
102 * enough amount of memory. i.e, mode for high order allocation.
103 */
104 reclaim_mode_t reclaim_mode;
105
106 /*
107 * The memory cgroup that hit its limit and as a result is the
108 * primary target of this reclaim invocation.
109 */
110 struct mem_cgroup *target_mem_cgroup;
111
112 /*
113 * Nodemask of nodes allowed by the caller. If NULL, all nodes
114 * are scanned.
115 */
116 nodemask_t *nodemask;
117 };
118
119 struct mem_cgroup_zone {
120 struct mem_cgroup *mem_cgroup;
121 struct zone *zone;
122 };
123
124 #define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
125
126 #ifdef ARCH_HAS_PREFETCH
127 #define prefetch_prev_lru_page(_page, _base, _field) \
128 do { \
129 if ((_page)->lru.prev != _base) { \
130 struct page *prev; \
131 \
132 prev = lru_to_page(&(_page->lru)); \
133 prefetch(&prev->_field); \
134 } \
135 } while (0)
136 #else
137 #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
138 #endif
139
140 #ifdef ARCH_HAS_PREFETCHW
141 #define prefetchw_prev_lru_page(_page, _base, _field) \
142 do { \
143 if ((_page)->lru.prev != _base) { \
144 struct page *prev; \
145 \
146 prev = lru_to_page(&(_page->lru)); \
147 prefetchw(&prev->_field); \
148 } \
149 } while (0)
150 #else
151 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
152 #endif
153
154 /*
155 * From 0 .. 100. Higher means more swappy.
156 */
157 int vm_swappiness = 60;
158 long vm_total_pages; /* The total number of pages which the VM controls */
159
160 static LIST_HEAD(shrinker_list);
161 static DECLARE_RWSEM(shrinker_rwsem);
162
163 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
164 static bool global_reclaim(struct scan_control *sc)
165 {
166 return !sc->target_mem_cgroup;
167 }
168
169 static bool scanning_global_lru(struct mem_cgroup_zone *mz)
170 {
171 return !mz->mem_cgroup;
172 }
173 #else
174 static bool global_reclaim(struct scan_control *sc)
175 {
176 return true;
177 }
178
179 static bool scanning_global_lru(struct mem_cgroup_zone *mz)
180 {
181 return true;
182 }
183 #endif
184
185 static struct zone_reclaim_stat *get_reclaim_stat(struct mem_cgroup_zone *mz)
186 {
187 if (!scanning_global_lru(mz))
188 return mem_cgroup_get_reclaim_stat(mz->mem_cgroup, mz->zone);
189
190 return &mz->zone->reclaim_stat;
191 }
192
193 static unsigned long zone_nr_lru_pages(struct mem_cgroup_zone *mz,
194 enum lru_list lru)
195 {
196 if (!scanning_global_lru(mz))
197 return mem_cgroup_zone_nr_lru_pages(mz->mem_cgroup,
198 zone_to_nid(mz->zone),
199 zone_idx(mz->zone),
200 BIT(lru));
201
202 return zone_page_state(mz->zone, NR_LRU_BASE + lru);
203 }
204
205
206 /*
207 * Add a shrinker callback to be called from the vm
208 */
209 void register_shrinker(struct shrinker *shrinker)
210 {
211 atomic_long_set(&shrinker->nr_in_batch, 0);
212 down_write(&shrinker_rwsem);
213 list_add_tail(&shrinker->list, &shrinker_list);
214 up_write(&shrinker_rwsem);
215 }
216 EXPORT_SYMBOL(register_shrinker);
217
218 /*
219 * Remove one
220 */
221 void unregister_shrinker(struct shrinker *shrinker)
222 {
223 down_write(&shrinker_rwsem);
224 list_del(&shrinker->list);
225 up_write(&shrinker_rwsem);
226 }
227 EXPORT_SYMBOL(unregister_shrinker);
228
229 static inline int do_shrinker_shrink(struct shrinker *shrinker,
230 struct shrink_control *sc,
231 unsigned long nr_to_scan)
232 {
233 sc->nr_to_scan = nr_to_scan;
234 return (*shrinker->shrink)(shrinker, sc);
235 }
236
237 #define SHRINK_BATCH 128
238 /*
239 * Call the shrink functions to age shrinkable caches
240 *
241 * Here we assume it costs one seek to replace a lru page and that it also
242 * takes a seek to recreate a cache object. With this in mind we age equal
243 * percentages of the lru and ageable caches. This should balance the seeks
244 * generated by these structures.
245 *
246 * If the vm encountered mapped pages on the LRU it increase the pressure on
247 * slab to avoid swapping.
248 *
249 * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits.
250 *
251 * `lru_pages' represents the number of on-LRU pages in all the zones which
252 * are eligible for the caller's allocation attempt. It is used for balancing
253 * slab reclaim versus page reclaim.
254 *
255 * Returns the number of slab objects which we shrunk.
256 */
257 unsigned long shrink_slab(struct shrink_control *shrink,
258 unsigned long nr_pages_scanned,
259 unsigned long lru_pages)
260 {
261 struct shrinker *shrinker;
262 unsigned long ret = 0;
263
264 if (nr_pages_scanned == 0)
265 nr_pages_scanned = SWAP_CLUSTER_MAX;
266
267 if (!down_read_trylock(&shrinker_rwsem)) {
268 /* Assume we'll be able to shrink next time */
269 ret = 1;
270 goto out;
271 }
272
273 list_for_each_entry(shrinker, &shrinker_list, list) {
274 unsigned long long delta;
275 long total_scan;
276 long max_pass;
277 int shrink_ret = 0;
278 long nr;
279 long new_nr;
280 long batch_size = shrinker->batch ? shrinker->batch
281 : SHRINK_BATCH;
282
283 max_pass = do_shrinker_shrink(shrinker, shrink, 0);
284 if (max_pass <= 0)
285 continue;
286
287 /*
288 * copy the current shrinker scan count into a local variable
289 * and zero it so that other concurrent shrinker invocations
290 * don't also do this scanning work.
291 */
292 nr = atomic_long_xchg(&shrinker->nr_in_batch, 0);
293
294 total_scan = nr;
295 delta = (4 * nr_pages_scanned) / shrinker->seeks;
296 delta *= max_pass;
297 do_div(delta, lru_pages + 1);
298 total_scan += delta;
299 if (total_scan < 0) {
300 printk(KERN_ERR "shrink_slab: %pF negative objects to "
301 "delete nr=%ld\n",
302 shrinker->shrink, total_scan);
303 total_scan = max_pass;
304 }
305
306 /*
307 * We need to avoid excessive windup on filesystem shrinkers
308 * due to large numbers of GFP_NOFS allocations causing the
309 * shrinkers to return -1 all the time. This results in a large
310 * nr being built up so when a shrink that can do some work
311 * comes along it empties the entire cache due to nr >>>
312 * max_pass. This is bad for sustaining a working set in
313 * memory.
314 *
315 * Hence only allow the shrinker to scan the entire cache when
316 * a large delta change is calculated directly.
317 */
318 if (delta < max_pass / 4)
319 total_scan = min(total_scan, max_pass / 2);
320
321 /*
322 * Avoid risking looping forever due to too large nr value:
323 * never try to free more than twice the estimate number of
324 * freeable entries.
325 */
326 if (total_scan > max_pass * 2)
327 total_scan = max_pass * 2;
328
329 trace_mm_shrink_slab_start(shrinker, shrink, nr,
330 nr_pages_scanned, lru_pages,
331 max_pass, delta, total_scan);
332
333 while (total_scan >= batch_size) {
334 int nr_before;
335
336 nr_before = do_shrinker_shrink(shrinker, shrink, 0);
337 shrink_ret = do_shrinker_shrink(shrinker, shrink,
338 batch_size);
339 if (shrink_ret == -1)
340 break;
341 if (shrink_ret < nr_before)
342 ret += nr_before - shrink_ret;
343 count_vm_events(SLABS_SCANNED, batch_size);
344 total_scan -= batch_size;
345
346 cond_resched();
347 }
348
349 /*
350 * move the unused scan count back into the shrinker in a
351 * manner that handles concurrent updates. If we exhausted the
352 * scan, there is no need to do an update.
353 */
354 if (total_scan > 0)
355 new_nr = atomic_long_add_return(total_scan,
356 &shrinker->nr_in_batch);
357 else
358 new_nr = atomic_long_read(&shrinker->nr_in_batch);
359
360 trace_mm_shrink_slab_end(shrinker, shrink_ret, nr, new_nr);
361 }
362 up_read(&shrinker_rwsem);
363 out:
364 cond_resched();
365 return ret;
366 }
367
368 static void set_reclaim_mode(int priority, struct scan_control *sc,
369 bool sync)
370 {
371 reclaim_mode_t syncmode = sync ? RECLAIM_MODE_SYNC : RECLAIM_MODE_ASYNC;
372
373 /*
374 * Initially assume we are entering either lumpy reclaim or
375 * reclaim/compaction.Depending on the order, we will either set the
376 * sync mode or just reclaim order-0 pages later.
377 */
378 if (COMPACTION_BUILD)
379 sc->reclaim_mode = RECLAIM_MODE_COMPACTION;
380 else
381 sc->reclaim_mode = RECLAIM_MODE_LUMPYRECLAIM;
382
383 /*
384 * Avoid using lumpy reclaim or reclaim/compaction if possible by
385 * restricting when its set to either costly allocations or when
386 * under memory pressure
387 */
388 if (sc->order > PAGE_ALLOC_COSTLY_ORDER)
389 sc->reclaim_mode |= syncmode;
390 else if (sc->order && priority < DEF_PRIORITY - 2)
391 sc->reclaim_mode |= syncmode;
392 else
393 sc->reclaim_mode = RECLAIM_MODE_SINGLE | RECLAIM_MODE_ASYNC;
394 }
395
396 static void reset_reclaim_mode(struct scan_control *sc)
397 {
398 sc->reclaim_mode = RECLAIM_MODE_SINGLE | RECLAIM_MODE_ASYNC;
399 }
400
401 static inline int is_page_cache_freeable(struct page *page)
402 {
403 /*
404 * A freeable page cache page is referenced only by the caller
405 * that isolated the page, the page cache radix tree and
406 * optional buffer heads at page->private.
407 */
408 return page_count(page) - page_has_private(page) == 2;
409 }
410
411 static int may_write_to_queue(struct backing_dev_info *bdi,
412 struct scan_control *sc)
413 {
414 if (current->flags & PF_SWAPWRITE)
415 return 1;
416 if (!bdi_write_congested(bdi))
417 return 1;
418 if (bdi == current->backing_dev_info)
419 return 1;
420
421 /* lumpy reclaim for hugepage often need a lot of write */
422 if (sc->order > PAGE_ALLOC_COSTLY_ORDER)
423 return 1;
424 return 0;
425 }
426
427 /*
428 * We detected a synchronous write error writing a page out. Probably
429 * -ENOSPC. We need to propagate that into the address_space for a subsequent
430 * fsync(), msync() or close().
431 *
432 * The tricky part is that after writepage we cannot touch the mapping: nothing
433 * prevents it from being freed up. But we have a ref on the page and once
434 * that page is locked, the mapping is pinned.
435 *
436 * We're allowed to run sleeping lock_page() here because we know the caller has
437 * __GFP_FS.
438 */
439 static void handle_write_error(struct address_space *mapping,
440 struct page *page, int error)
441 {
442 lock_page(page);
443 if (page_mapping(page) == mapping)
444 mapping_set_error(mapping, error);
445 unlock_page(page);
446 }
447
448 /* possible outcome of pageout() */
449 typedef enum {
450 /* failed to write page out, page is locked */
451 PAGE_KEEP,
452 /* move page to the active list, page is locked */
453 PAGE_ACTIVATE,
454 /* page has been sent to the disk successfully, page is unlocked */
455 PAGE_SUCCESS,
456 /* page is clean and locked */
457 PAGE_CLEAN,
458 } pageout_t;
459
460 /*
461 * pageout is called by shrink_page_list() for each dirty page.
462 * Calls ->writepage().
463 */
464 static pageout_t pageout(struct page *page, struct address_space *mapping,
465 struct scan_control *sc)
466 {
467 /*
468 * If the page is dirty, only perform writeback if that write
469 * will be non-blocking. To prevent this allocation from being
470 * stalled by pagecache activity. But note that there may be
471 * stalls if we need to run get_block(). We could test
472 * PagePrivate for that.
473 *
474 * If this process is currently in __generic_file_aio_write() against
475 * this page's queue, we can perform writeback even if that
476 * will block.
477 *
478 * If the page is swapcache, write it back even if that would
479 * block, for some throttling. This happens by accident, because
480 * swap_backing_dev_info is bust: it doesn't reflect the
481 * congestion state of the swapdevs. Easy to fix, if needed.
482 */
483 if (!is_page_cache_freeable(page))
484 return PAGE_KEEP;
485 if (!mapping) {
486 /*
487 * Some data journaling orphaned pages can have
488 * page->mapping == NULL while being dirty with clean buffers.
489 */
490 if (page_has_private(page)) {
491 if (try_to_free_buffers(page)) {
492 ClearPageDirty(page);
493 printk("%s: orphaned page\n", __func__);
494 return PAGE_CLEAN;
495 }
496 }
497 return PAGE_KEEP;
498 }
499 if (mapping->a_ops->writepage == NULL)
500 return PAGE_ACTIVATE;
501 if (!may_write_to_queue(mapping->backing_dev_info, sc))
502 return PAGE_KEEP;
503
504 if (clear_page_dirty_for_io(page)) {
505 int res;
506 struct writeback_control wbc = {
507 .sync_mode = WB_SYNC_NONE,
508 .nr_to_write = SWAP_CLUSTER_MAX,
509 .range_start = 0,
510 .range_end = LLONG_MAX,
511 .for_reclaim = 1,
512 };
513
514 SetPageReclaim(page);
515 res = mapping->a_ops->writepage(page, &wbc);
516 if (res < 0)
517 handle_write_error(mapping, page, res);
518 if (res == AOP_WRITEPAGE_ACTIVATE) {
519 ClearPageReclaim(page);
520 return PAGE_ACTIVATE;
521 }
522
523 if (!PageWriteback(page)) {
524 /* synchronous write or broken a_ops? */
525 ClearPageReclaim(page);
526 }
527 trace_mm_vmscan_writepage(page,
528 trace_reclaim_flags(page, sc->reclaim_mode));
529 inc_zone_page_state(page, NR_VMSCAN_WRITE);
530 return PAGE_SUCCESS;
531 }
532
533 return PAGE_CLEAN;
534 }
535
536 /*
537 * Same as remove_mapping, but if the page is removed from the mapping, it
538 * gets returned with a refcount of 0.
539 */
540 static int __remove_mapping(struct address_space *mapping, struct page *page)
541 {
542 BUG_ON(!PageLocked(page));
543 BUG_ON(mapping != page_mapping(page));
544
545 spin_lock_irq(&mapping->tree_lock);
546 /*
547 * The non racy check for a busy page.
548 *
549 * Must be careful with the order of the tests. When someone has
550 * a ref to the page, it may be possible that they dirty it then
551 * drop the reference. So if PageDirty is tested before page_count
552 * here, then the following race may occur:
553 *
554 * get_user_pages(&page);
555 * [user mapping goes away]
556 * write_to(page);
557 * !PageDirty(page) [good]
558 * SetPageDirty(page);
559 * put_page(page);
560 * !page_count(page) [good, discard it]
561 *
562 * [oops, our write_to data is lost]
563 *
564 * Reversing the order of the tests ensures such a situation cannot
565 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
566 * load is not satisfied before that of page->_count.
567 *
568 * Note that if SetPageDirty is always performed via set_page_dirty,
569 * and thus under tree_lock, then this ordering is not required.
570 */
571 if (!page_freeze_refs(page, 2))
572 goto cannot_free;
573 /* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
574 if (unlikely(PageDirty(page))) {
575 page_unfreeze_refs(page, 2);
576 goto cannot_free;
577 }
578
579 if (PageSwapCache(page)) {
580 swp_entry_t swap = { .val = page_private(page) };
581 __delete_from_swap_cache(page);
582 spin_unlock_irq(&mapping->tree_lock);
583 swapcache_free(swap, page);
584 } else {
585 void (*freepage)(struct page *);
586
587 freepage = mapping->a_ops->freepage;
588
589 __delete_from_page_cache(page);
590 spin_unlock_irq(&mapping->tree_lock);
591 mem_cgroup_uncharge_cache_page(page);
592
593 if (freepage != NULL)
594 freepage(page);
595 }
596
597 return 1;
598
599 cannot_free:
600 spin_unlock_irq(&mapping->tree_lock);
601 return 0;
602 }
603
604 /*
605 * Attempt to detach a locked page from its ->mapping. If it is dirty or if
606 * someone else has a ref on the page, abort and return 0. If it was
607 * successfully detached, return 1. Assumes the caller has a single ref on
608 * this page.
609 */
610 int remove_mapping(struct address_space *mapping, struct page *page)
611 {
612 if (__remove_mapping(mapping, page)) {
613 /*
614 * Unfreezing the refcount with 1 rather than 2 effectively
615 * drops the pagecache ref for us without requiring another
616 * atomic operation.
617 */
618 page_unfreeze_refs(page, 1);
619 return 1;
620 }
621 return 0;
622 }
623
624 /**
625 * putback_lru_page - put previously isolated page onto appropriate LRU list
626 * @page: page to be put back to appropriate lru list
627 *
628 * Add previously isolated @page to appropriate LRU list.
629 * Page may still be unevictable for other reasons.
630 *
631 * lru_lock must not be held, interrupts must be enabled.
632 */
633 void putback_lru_page(struct page *page)
634 {
635 int lru;
636 int active = !!TestClearPageActive(page);
637 int was_unevictable = PageUnevictable(page);
638
639 VM_BUG_ON(PageLRU(page));
640
641 redo:
642 ClearPageUnevictable(page);
643
644 if (page_evictable(page, NULL)) {
645 /*
646 * For evictable pages, we can use the cache.
647 * In event of a race, worst case is we end up with an
648 * unevictable page on [in]active list.
649 * We know how to handle that.
650 */
651 lru = active + page_lru_base_type(page);
652 lru_cache_add_lru(page, lru);
653 } else {
654 /*
655 * Put unevictable pages directly on zone's unevictable
656 * list.
657 */
658 lru = LRU_UNEVICTABLE;
659 add_page_to_unevictable_list(page);
660 /*
661 * When racing with an mlock or AS_UNEVICTABLE clearing
662 * (page is unlocked) make sure that if the other thread
663 * does not observe our setting of PG_lru and fails
664 * isolation/check_move_unevictable_page,
665 * we see PG_mlocked/AS_UNEVICTABLE cleared below and move
666 * the page back to the evictable list.
667 *
668 * The other side is TestClearPageMlocked() or shmem_lock().
669 */
670 smp_mb();
671 }
672
673 /*
674 * page's status can change while we move it among lru. If an evictable
675 * page is on unevictable list, it never be freed. To avoid that,
676 * check after we added it to the list, again.
677 */
678 if (lru == LRU_UNEVICTABLE && page_evictable(page, NULL)) {
679 if (!isolate_lru_page(page)) {
680 put_page(page);
681 goto redo;
682 }
683 /* This means someone else dropped this page from LRU
684 * So, it will be freed or putback to LRU again. There is
685 * nothing to do here.
686 */
687 }
688
689 if (was_unevictable && lru != LRU_UNEVICTABLE)
690 count_vm_event(UNEVICTABLE_PGRESCUED);
691 else if (!was_unevictable && lru == LRU_UNEVICTABLE)
692 count_vm_event(UNEVICTABLE_PGCULLED);
693
694 put_page(page); /* drop ref from isolate */
695 }
696
697 enum page_references {
698 PAGEREF_RECLAIM,
699 PAGEREF_RECLAIM_CLEAN,
700 PAGEREF_KEEP,
701 PAGEREF_ACTIVATE,
702 };
703
704 static enum page_references page_check_references(struct page *page,
705 struct mem_cgroup_zone *mz,
706 struct scan_control *sc)
707 {
708 int referenced_ptes, referenced_page;
709 unsigned long vm_flags;
710
711 referenced_ptes = page_referenced(page, 1, mz->mem_cgroup, &vm_flags);
712 referenced_page = TestClearPageReferenced(page);
713
714 /* Lumpy reclaim - ignore references */
715 if (sc->reclaim_mode & RECLAIM_MODE_LUMPYRECLAIM)
716 return PAGEREF_RECLAIM;
717
718 /*
719 * Mlock lost the isolation race with us. Let try_to_unmap()
720 * move the page to the unevictable list.
721 */
722 if (vm_flags & VM_LOCKED)
723 return PAGEREF_RECLAIM;
724
725 if (referenced_ptes) {
726 if (PageAnon(page))
727 return PAGEREF_ACTIVATE;
728 /*
729 * All mapped pages start out with page table
730 * references from the instantiating fault, so we need
731 * to look twice if a mapped file page is used more
732 * than once.
733 *
734 * Mark it and spare it for another trip around the
735 * inactive list. Another page table reference will
736 * lead to its activation.
737 *
738 * Note: the mark is set for activated pages as well
739 * so that recently deactivated but used pages are
740 * quickly recovered.
741 */
742 SetPageReferenced(page);
743
744 if (referenced_page || referenced_ptes > 1)
745 return PAGEREF_ACTIVATE;
746
747 /*
748 * Activate file-backed executable pages after first usage.
749 */
750 if (vm_flags & VM_EXEC)
751 return PAGEREF_ACTIVATE;
752
753 return PAGEREF_KEEP;
754 }
755
756 /* Reclaim if clean, defer dirty pages to writeback */
757 if (referenced_page && !PageSwapBacked(page))
758 return PAGEREF_RECLAIM_CLEAN;
759
760 return PAGEREF_RECLAIM;
761 }
762
763 /*
764 * shrink_page_list() returns the number of reclaimed pages
765 */
766 static unsigned long shrink_page_list(struct list_head *page_list,
767 struct mem_cgroup_zone *mz,
768 struct scan_control *sc,
769 int priority,
770 unsigned long *ret_nr_dirty,
771 unsigned long *ret_nr_writeback)
772 {
773 LIST_HEAD(ret_pages);
774 LIST_HEAD(free_pages);
775 int pgactivate = 0;
776 unsigned long nr_dirty = 0;
777 unsigned long nr_congested = 0;
778 unsigned long nr_reclaimed = 0;
779 unsigned long nr_writeback = 0;
780
781 cond_resched();
782
783 while (!list_empty(page_list)) {
784 enum page_references references;
785 struct address_space *mapping;
786 struct page *page;
787 int may_enter_fs;
788
789 cond_resched();
790
791 page = lru_to_page(page_list);
792 list_del(&page->lru);
793
794 if (!trylock_page(page))
795 goto keep;
796
797 VM_BUG_ON(PageActive(page));
798 VM_BUG_ON(page_zone(page) != mz->zone);
799
800 sc->nr_scanned++;
801
802 if (unlikely(!page_evictable(page, NULL)))
803 goto cull_mlocked;
804
805 if (!sc->may_unmap && page_mapped(page))
806 goto keep_locked;
807
808 /* Double the slab pressure for mapped and swapcache pages */
809 if (page_mapped(page) || PageSwapCache(page))
810 sc->nr_scanned++;
811
812 may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
813 (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
814
815 if (PageWriteback(page)) {
816 nr_writeback++;
817 /*
818 * Synchronous reclaim cannot queue pages for
819 * writeback due to the possibility of stack overflow
820 * but if it encounters a page under writeback, wait
821 * for the IO to complete.
822 */
823 if ((sc->reclaim_mode & RECLAIM_MODE_SYNC) &&
824 may_enter_fs)
825 wait_on_page_writeback(page);
826 else {
827 unlock_page(page);
828 goto keep_lumpy;
829 }
830 }
831
832 references = page_check_references(page, mz, sc);
833 switch (references) {
834 case PAGEREF_ACTIVATE:
835 goto activate_locked;
836 case PAGEREF_KEEP:
837 goto keep_locked;
838 case PAGEREF_RECLAIM:
839 case PAGEREF_RECLAIM_CLEAN:
840 ; /* try to reclaim the page below */
841 }
842
843 /*
844 * Anonymous process memory has backing store?
845 * Try to allocate it some swap space here.
846 */
847 if (PageAnon(page) && !PageSwapCache(page)) {
848 if (!(sc->gfp_mask & __GFP_IO))
849 goto keep_locked;
850 if (!add_to_swap(page))
851 goto activate_locked;
852 may_enter_fs = 1;
853 }
854
855 mapping = page_mapping(page);
856
857 /*
858 * The page is mapped into the page tables of one or more
859 * processes. Try to unmap it here.
860 */
861 if (page_mapped(page) && mapping) {
862 switch (try_to_unmap(page, TTU_UNMAP)) {
863 case SWAP_FAIL:
864 goto activate_locked;
865 case SWAP_AGAIN:
866 goto keep_locked;
867 case SWAP_MLOCK:
868 goto cull_mlocked;
869 case SWAP_SUCCESS:
870 ; /* try to free the page below */
871 }
872 }
873
874 if (PageDirty(page)) {
875 nr_dirty++;
876
877 /*
878 * Only kswapd can writeback filesystem pages to
879 * avoid risk of stack overflow but do not writeback
880 * unless under significant pressure.
881 */
882 if (page_is_file_cache(page) &&
883 (!current_is_kswapd() || priority >= DEF_PRIORITY - 2)) {
884 /*
885 * Immediately reclaim when written back.
886 * Similar in principal to deactivate_page()
887 * except we already have the page isolated
888 * and know it's dirty
889 */
890 inc_zone_page_state(page, NR_VMSCAN_IMMEDIATE);
891 SetPageReclaim(page);
892
893 goto keep_locked;
894 }
895
896 if (references == PAGEREF_RECLAIM_CLEAN)
897 goto keep_locked;
898 if (!may_enter_fs)
899 goto keep_locked;
900 if (!sc->may_writepage)
901 goto keep_locked;
902
903 /* Page is dirty, try to write it out here */
904 switch (pageout(page, mapping, sc)) {
905 case PAGE_KEEP:
906 nr_congested++;
907 goto keep_locked;
908 case PAGE_ACTIVATE:
909 goto activate_locked;
910 case PAGE_SUCCESS:
911 if (PageWriteback(page))
912 goto keep_lumpy;
913 if (PageDirty(page))
914 goto keep;
915
916 /*
917 * A synchronous write - probably a ramdisk. Go
918 * ahead and try to reclaim the page.
919 */
920 if (!trylock_page(page))
921 goto keep;
922 if (PageDirty(page) || PageWriteback(page))
923 goto keep_locked;
924 mapping = page_mapping(page);
925 case PAGE_CLEAN:
926 ; /* try to free the page below */
927 }
928 }
929
930 /*
931 * If the page has buffers, try to free the buffer mappings
932 * associated with this page. If we succeed we try to free
933 * the page as well.
934 *
935 * We do this even if the page is PageDirty().
936 * try_to_release_page() does not perform I/O, but it is
937 * possible for a page to have PageDirty set, but it is actually
938 * clean (all its buffers are clean). This happens if the
939 * buffers were written out directly, with submit_bh(). ext3
940 * will do this, as well as the blockdev mapping.
941 * try_to_release_page() will discover that cleanness and will
942 * drop the buffers and mark the page clean - it can be freed.
943 *
944 * Rarely, pages can have buffers and no ->mapping. These are
945 * the pages which were not successfully invalidated in
946 * truncate_complete_page(). We try to drop those buffers here
947 * and if that worked, and the page is no longer mapped into
948 * process address space (page_count == 1) it can be freed.
949 * Otherwise, leave the page on the LRU so it is swappable.
950 */
951 if (page_has_private(page)) {
952 if (!try_to_release_page(page, sc->gfp_mask))
953 goto activate_locked;
954 if (!mapping && page_count(page) == 1) {
955 unlock_page(page);
956 if (put_page_testzero(page))
957 goto free_it;
958 else {
959 /*
960 * rare race with speculative reference.
961 * the speculative reference will free
962 * this page shortly, so we may
963 * increment nr_reclaimed here (and
964 * leave it off the LRU).
965 */
966 nr_reclaimed++;
967 continue;
968 }
969 }
970 }
971
972 if (!mapping || !__remove_mapping(mapping, page))
973 goto keep_locked;
974
975 /*
976 * At this point, we have no other references and there is
977 * no way to pick any more up (removed from LRU, removed
978 * from pagecache). Can use non-atomic bitops now (and
979 * we obviously don't have to worry about waking up a process
980 * waiting on the page lock, because there are no references.
981 */
982 __clear_page_locked(page);
983 free_it:
984 nr_reclaimed++;
985
986 /*
987 * Is there need to periodically free_page_list? It would
988 * appear not as the counts should be low
989 */
990 list_add(&page->lru, &free_pages);
991 continue;
992
993 cull_mlocked:
994 if (PageSwapCache(page))
995 try_to_free_swap(page);
996 unlock_page(page);
997 putback_lru_page(page);
998 reset_reclaim_mode(sc);
999 continue;
1000
1001 activate_locked:
1002 /* Not a candidate for swapping, so reclaim swap space. */
1003 if (PageSwapCache(page) && vm_swap_full())
1004 try_to_free_swap(page);
1005 VM_BUG_ON(PageActive(page));
1006 SetPageActive(page);
1007 pgactivate++;
1008 keep_locked:
1009 unlock_page(page);
1010 keep:
1011 reset_reclaim_mode(sc);
1012 keep_lumpy:
1013 list_add(&page->lru, &ret_pages);
1014 VM_BUG_ON(PageLRU(page) || PageUnevictable(page));
1015 }
1016
1017 /*
1018 * Tag a zone as congested if all the dirty pages encountered were
1019 * backed by a congested BDI. In this case, reclaimers should just
1020 * back off and wait for congestion to clear because further reclaim
1021 * will encounter the same problem
1022 */
1023 if (nr_dirty && nr_dirty == nr_congested && global_reclaim(sc))
1024 zone_set_flag(mz->zone, ZONE_CONGESTED);
1025
1026 free_hot_cold_page_list(&free_pages, 1);
1027
1028 list_splice(&ret_pages, page_list);
1029 count_vm_events(PGACTIVATE, pgactivate);
1030 *ret_nr_dirty += nr_dirty;
1031 *ret_nr_writeback += nr_writeback;
1032 return nr_reclaimed;
1033 }
1034
1035 /*
1036 * Attempt to remove the specified page from its LRU. Only take this page
1037 * if it is of the appropriate PageActive status. Pages which are being
1038 * freed elsewhere are also ignored.
1039 *
1040 * page: page to consider
1041 * mode: one of the LRU isolation modes defined above
1042 *
1043 * returns 0 on success, -ve errno on failure.
1044 */
1045 int __isolate_lru_page(struct page *page, isolate_mode_t mode, int file)
1046 {
1047 bool all_lru_mode;
1048 int ret = -EINVAL;
1049
1050 /* Only take pages on the LRU. */
1051 if (!PageLRU(page))
1052 return ret;
1053
1054 all_lru_mode = (mode & (ISOLATE_ACTIVE|ISOLATE_INACTIVE)) ==
1055 (ISOLATE_ACTIVE|ISOLATE_INACTIVE);
1056
1057 /*
1058 * When checking the active state, we need to be sure we are
1059 * dealing with comparible boolean values. Take the logical not
1060 * of each.
1061 */
1062 if (!all_lru_mode && !PageActive(page) != !(mode & ISOLATE_ACTIVE))
1063 return ret;
1064
1065 if (!all_lru_mode && !!page_is_file_cache(page) != file)
1066 return ret;
1067
1068 /*
1069 * When this function is being called for lumpy reclaim, we
1070 * initially look into all LRU pages, active, inactive and
1071 * unevictable; only give shrink_page_list evictable pages.
1072 */
1073 if (PageUnevictable(page))
1074 return ret;
1075
1076 ret = -EBUSY;
1077
1078 /*
1079 * To minimise LRU disruption, the caller can indicate that it only
1080 * wants to isolate pages it will be able to operate on without
1081 * blocking - clean pages for the most part.
1082 *
1083 * ISOLATE_CLEAN means that only clean pages should be isolated. This
1084 * is used by reclaim when it is cannot write to backing storage
1085 *
1086 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
1087 * that it is possible to migrate without blocking
1088 */
1089 if (mode & (ISOLATE_CLEAN|ISOLATE_ASYNC_MIGRATE)) {
1090 /* All the caller can do on PageWriteback is block */
1091 if (PageWriteback(page))
1092 return ret;
1093
1094 if (PageDirty(page)) {
1095 struct address_space *mapping;
1096
1097 /* ISOLATE_CLEAN means only clean pages */
1098 if (mode & ISOLATE_CLEAN)
1099 return ret;
1100
1101 /*
1102 * Only pages without mappings or that have a
1103 * ->migratepage callback are possible to migrate
1104 * without blocking
1105 */
1106 mapping = page_mapping(page);
1107 if (mapping && !mapping->a_ops->migratepage)
1108 return ret;
1109 }
1110 }
1111
1112 if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
1113 return ret;
1114
1115 if (likely(get_page_unless_zero(page))) {
1116 /*
1117 * Be careful not to clear PageLRU until after we're
1118 * sure the page is not being freed elsewhere -- the
1119 * page release code relies on it.
1120 */
1121 ClearPageLRU(page);
1122 ret = 0;
1123 }
1124
1125 return ret;
1126 }
1127
1128 /*
1129 * zone->lru_lock is heavily contended. Some of the functions that
1130 * shrink the lists perform better by taking out a batch of pages
1131 * and working on them outside the LRU lock.
1132 *
1133 * For pagecache intensive workloads, this function is the hottest
1134 * spot in the kernel (apart from copy_*_user functions).
1135 *
1136 * Appropriate locks must be held before calling this function.
1137 *
1138 * @nr_to_scan: The number of pages to look through on the list.
1139 * @mz: The mem_cgroup_zone to pull pages from.
1140 * @dst: The temp list to put pages on to.
1141 * @nr_scanned: The number of pages that were scanned.
1142 * @order: The caller's attempted allocation order
1143 * @mode: One of the LRU isolation modes
1144 * @active: True [1] if isolating active pages
1145 * @file: True [1] if isolating file [!anon] pages
1146 *
1147 * returns how many pages were moved onto *@dst.
1148 */
1149 static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
1150 struct mem_cgroup_zone *mz, struct list_head *dst,
1151 unsigned long *nr_scanned, int order, isolate_mode_t mode,
1152 int active, int file)
1153 {
1154 struct lruvec *lruvec;
1155 struct list_head *src;
1156 unsigned long nr_taken = 0;
1157 unsigned long nr_lumpy_taken = 0;
1158 unsigned long nr_lumpy_dirty = 0;
1159 unsigned long nr_lumpy_failed = 0;
1160 unsigned long scan;
1161 int lru = LRU_BASE;
1162
1163 lruvec = mem_cgroup_zone_lruvec(mz->zone, mz->mem_cgroup);
1164 if (active)
1165 lru += LRU_ACTIVE;
1166 if (file)
1167 lru += LRU_FILE;
1168 src = &lruvec->lists[lru];
1169
1170 for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) {
1171 struct page *page;
1172 unsigned long pfn;
1173 unsigned long end_pfn;
1174 unsigned long page_pfn;
1175 int zone_id;
1176
1177 page = lru_to_page(src);
1178 prefetchw_prev_lru_page(page, src, flags);
1179
1180 VM_BUG_ON(!PageLRU(page));
1181
1182 switch (__isolate_lru_page(page, mode, file)) {
1183 case 0:
1184 mem_cgroup_lru_del(page);
1185 list_move(&page->lru, dst);
1186 nr_taken += hpage_nr_pages(page);
1187 break;
1188
1189 case -EBUSY:
1190 /* else it is being freed elsewhere */
1191 list_move(&page->lru, src);
1192 continue;
1193
1194 default:
1195 BUG();
1196 }
1197
1198 if (!order)
1199 continue;
1200
1201 /*
1202 * Attempt to take all pages in the order aligned region
1203 * surrounding the tag page. Only take those pages of
1204 * the same active state as that tag page. We may safely
1205 * round the target page pfn down to the requested order
1206 * as the mem_map is guaranteed valid out to MAX_ORDER,
1207 * where that page is in a different zone we will detect
1208 * it from its zone id and abort this block scan.
1209 */
1210 zone_id = page_zone_id(page);
1211 page_pfn = page_to_pfn(page);
1212 pfn = page_pfn & ~((1 << order) - 1);
1213 end_pfn = pfn + (1 << order);
1214 for (; pfn < end_pfn; pfn++) {
1215 struct page *cursor_page;
1216
1217 /* The target page is in the block, ignore it. */
1218 if (unlikely(pfn == page_pfn))
1219 continue;
1220
1221 /* Avoid holes within the zone. */
1222 if (unlikely(!pfn_valid_within(pfn)))
1223 break;
1224
1225 cursor_page = pfn_to_page(pfn);
1226
1227 /* Check that we have not crossed a zone boundary. */
1228 if (unlikely(page_zone_id(cursor_page) != zone_id))
1229 break;
1230
1231 /*
1232 * If we don't have enough swap space, reclaiming of
1233 * anon page which don't already have a swap slot is
1234 * pointless.
1235 */
1236 if (nr_swap_pages <= 0 && PageSwapBacked(cursor_page) &&
1237 !PageSwapCache(cursor_page))
1238 break;
1239
1240 if (__isolate_lru_page(cursor_page, mode, file) == 0) {
1241 unsigned int isolated_pages;
1242
1243 mem_cgroup_lru_del(cursor_page);
1244 list_move(&cursor_page->lru, dst);
1245 isolated_pages = hpage_nr_pages(cursor_page);
1246 nr_taken += isolated_pages;
1247 nr_lumpy_taken += isolated_pages;
1248 if (PageDirty(cursor_page))
1249 nr_lumpy_dirty += isolated_pages;
1250 scan++;
1251 pfn += isolated_pages - 1;
1252 } else {
1253 /*
1254 * Check if the page is freed already.
1255 *
1256 * We can't use page_count() as that
1257 * requires compound_head and we don't
1258 * have a pin on the page here. If a
1259 * page is tail, we may or may not
1260 * have isolated the head, so assume
1261 * it's not free, it'd be tricky to
1262 * track the head status without a
1263 * page pin.
1264 */
1265 if (!PageTail(cursor_page) &&
1266 !atomic_read(&cursor_page->_count))
1267 continue;
1268 break;
1269 }
1270 }
1271
1272 /* If we break out of the loop above, lumpy reclaim failed */
1273 if (pfn < end_pfn)
1274 nr_lumpy_failed++;
1275 }
1276
1277 *nr_scanned = scan;
1278
1279 trace_mm_vmscan_lru_isolate(order,
1280 nr_to_scan, scan,
1281 nr_taken,
1282 nr_lumpy_taken, nr_lumpy_dirty, nr_lumpy_failed,
1283 mode, file);
1284 return nr_taken;
1285 }
1286
1287 /*
1288 * clear_active_flags() is a helper for shrink_active_list(), clearing
1289 * any active bits from the pages in the list.
1290 */
1291 static unsigned long clear_active_flags(struct list_head *page_list,
1292 unsigned int *count)
1293 {
1294 int nr_active = 0;
1295 int lru;
1296 struct page *page;
1297
1298 list_for_each_entry(page, page_list, lru) {
1299 int numpages = hpage_nr_pages(page);
1300 lru = page_lru_base_type(page);
1301 if (PageActive(page)) {
1302 lru += LRU_ACTIVE;
1303 ClearPageActive(page);
1304 nr_active += numpages;
1305 }
1306 if (count)
1307 count[lru] += numpages;
1308 }
1309
1310 return nr_active;
1311 }
1312
1313 /**
1314 * isolate_lru_page - tries to isolate a page from its LRU list
1315 * @page: page to isolate from its LRU list
1316 *
1317 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1318 * vmstat statistic corresponding to whatever LRU list the page was on.
1319 *
1320 * Returns 0 if the page was removed from an LRU list.
1321 * Returns -EBUSY if the page was not on an LRU list.
1322 *
1323 * The returned page will have PageLRU() cleared. If it was found on
1324 * the active list, it will have PageActive set. If it was found on
1325 * the unevictable list, it will have the PageUnevictable bit set. That flag
1326 * may need to be cleared by the caller before letting the page go.
1327 *
1328 * The vmstat statistic corresponding to the list on which the page was
1329 * found will be decremented.
1330 *
1331 * Restrictions:
1332 * (1) Must be called with an elevated refcount on the page. This is a
1333 * fundamentnal difference from isolate_lru_pages (which is called
1334 * without a stable reference).
1335 * (2) the lru_lock must not be held.
1336 * (3) interrupts must be enabled.
1337 */
1338 int isolate_lru_page(struct page *page)
1339 {
1340 int ret = -EBUSY;
1341
1342 VM_BUG_ON(!page_count(page));
1343
1344 if (PageLRU(page)) {
1345 struct zone *zone = page_zone(page);
1346
1347 spin_lock_irq(&zone->lru_lock);
1348 if (PageLRU(page)) {
1349 int lru = page_lru(page);
1350 ret = 0;
1351 get_page(page);
1352 ClearPageLRU(page);
1353
1354 del_page_from_lru_list(zone, page, lru);
1355 }
1356 spin_unlock_irq(&zone->lru_lock);
1357 }
1358 return ret;
1359 }
1360
1361 /*
1362 * Are there way too many processes in the direct reclaim path already?
1363 */
1364 static int too_many_isolated(struct zone *zone, int file,
1365 struct scan_control *sc)
1366 {
1367 unsigned long inactive, isolated;
1368
1369 if (current_is_kswapd())
1370 return 0;
1371
1372 if (!global_reclaim(sc))
1373 return 0;
1374
1375 if (file) {
1376 inactive = zone_page_state(zone, NR_INACTIVE_FILE);
1377 isolated = zone_page_state(zone, NR_ISOLATED_FILE);
1378 } else {
1379 inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1380 isolated = zone_page_state(zone, NR_ISOLATED_ANON);
1381 }
1382
1383 return isolated > inactive;
1384 }
1385
1386 /*
1387 * TODO: Try merging with migrations version of putback_lru_pages
1388 */
1389 static noinline_for_stack void
1390 putback_lru_pages(struct mem_cgroup_zone *mz, struct scan_control *sc,
1391 unsigned long nr_anon, unsigned long nr_file,
1392 struct list_head *page_list)
1393 {
1394 struct page *page;
1395 LIST_HEAD(pages_to_free);
1396 struct zone *zone = mz->zone;
1397 struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(mz);
1398
1399 /*
1400 * Put back any unfreeable pages.
1401 */
1402 spin_lock(&zone->lru_lock);
1403 while (!list_empty(page_list)) {
1404 int lru;
1405 page = lru_to_page(page_list);
1406 VM_BUG_ON(PageLRU(page));
1407 list_del(&page->lru);
1408 if (unlikely(!page_evictable(page, NULL))) {
1409 spin_unlock_irq(&zone->lru_lock);
1410 putback_lru_page(page);
1411 spin_lock_irq(&zone->lru_lock);
1412 continue;
1413 }
1414 SetPageLRU(page);
1415 lru = page_lru(page);
1416 add_page_to_lru_list(zone, page, lru);
1417 if (is_active_lru(lru)) {
1418 int file = is_file_lru(lru);
1419 int numpages = hpage_nr_pages(page);
1420 reclaim_stat->recent_rotated[file] += numpages;
1421 }
1422 if (put_page_testzero(page)) {
1423 __ClearPageLRU(page);
1424 __ClearPageActive(page);
1425 del_page_from_lru_list(zone, page, lru);
1426
1427 if (unlikely(PageCompound(page))) {
1428 spin_unlock_irq(&zone->lru_lock);
1429 (*get_compound_page_dtor(page))(page);
1430 spin_lock_irq(&zone->lru_lock);
1431 } else
1432 list_add(&page->lru, &pages_to_free);
1433 }
1434 }
1435 __mod_zone_page_state(zone, NR_ISOLATED_ANON, -nr_anon);
1436 __mod_zone_page_state(zone, NR_ISOLATED_FILE, -nr_file);
1437
1438 spin_unlock_irq(&zone->lru_lock);
1439 free_hot_cold_page_list(&pages_to_free, 1);
1440 }
1441
1442 static noinline_for_stack void
1443 update_isolated_counts(struct mem_cgroup_zone *mz,
1444 struct scan_control *sc,
1445 unsigned long *nr_anon,
1446 unsigned long *nr_file,
1447 struct list_head *isolated_list)
1448 {
1449 unsigned long nr_active;
1450 struct zone *zone = mz->zone;
1451 unsigned int count[NR_LRU_LISTS] = { 0, };
1452 struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(mz);
1453
1454 nr_active = clear_active_flags(isolated_list, count);
1455 __count_vm_events(PGDEACTIVATE, nr_active);
1456
1457 __mod_zone_page_state(zone, NR_ACTIVE_FILE,
1458 -count[LRU_ACTIVE_FILE]);
1459 __mod_zone_page_state(zone, NR_INACTIVE_FILE,
1460 -count[LRU_INACTIVE_FILE]);
1461 __mod_zone_page_state(zone, NR_ACTIVE_ANON,
1462 -count[LRU_ACTIVE_ANON]);
1463 __mod_zone_page_state(zone, NR_INACTIVE_ANON,
1464 -count[LRU_INACTIVE_ANON]);
1465
1466 *nr_anon = count[LRU_ACTIVE_ANON] + count[LRU_INACTIVE_ANON];
1467 *nr_file = count[LRU_ACTIVE_FILE] + count[LRU_INACTIVE_FILE];
1468 __mod_zone_page_state(zone, NR_ISOLATED_ANON, *nr_anon);
1469 __mod_zone_page_state(zone, NR_ISOLATED_FILE, *nr_file);
1470
1471 reclaim_stat->recent_scanned[0] += *nr_anon;
1472 reclaim_stat->recent_scanned[1] += *nr_file;
1473 }
1474
1475 /*
1476 * Returns true if a direct reclaim should wait on pages under writeback.
1477 *
1478 * If we are direct reclaiming for contiguous pages and we do not reclaim
1479 * everything in the list, try again and wait for writeback IO to complete.
1480 * This will stall high-order allocations noticeably. Only do that when really
1481 * need to free the pages under high memory pressure.
1482 */
1483 static inline bool should_reclaim_stall(unsigned long nr_taken,
1484 unsigned long nr_freed,
1485 int priority,
1486 struct scan_control *sc)
1487 {
1488 int lumpy_stall_priority;
1489
1490 /* kswapd should not stall on sync IO */
1491 if (current_is_kswapd())
1492 return false;
1493
1494 /* Only stall on lumpy reclaim */
1495 if (sc->reclaim_mode & RECLAIM_MODE_SINGLE)
1496 return false;
1497
1498 /* If we have reclaimed everything on the isolated list, no stall */
1499 if (nr_freed == nr_taken)
1500 return false;
1501
1502 /*
1503 * For high-order allocations, there are two stall thresholds.
1504 * High-cost allocations stall immediately where as lower
1505 * order allocations such as stacks require the scanning
1506 * priority to be much higher before stalling.
1507 */
1508 if (sc->order > PAGE_ALLOC_COSTLY_ORDER)
1509 lumpy_stall_priority = DEF_PRIORITY;
1510 else
1511 lumpy_stall_priority = DEF_PRIORITY / 3;
1512
1513 return priority <= lumpy_stall_priority;
1514 }
1515
1516 /*
1517 * shrink_inactive_list() is a helper for shrink_zone(). It returns the number
1518 * of reclaimed pages
1519 */
1520 static noinline_for_stack unsigned long
1521 shrink_inactive_list(unsigned long nr_to_scan, struct mem_cgroup_zone *mz,
1522 struct scan_control *sc, int priority, int file)
1523 {
1524 LIST_HEAD(page_list);
1525 unsigned long nr_scanned;
1526 unsigned long nr_reclaimed = 0;
1527 unsigned long nr_taken;
1528 unsigned long nr_anon;
1529 unsigned long nr_file;
1530 unsigned long nr_dirty = 0;
1531 unsigned long nr_writeback = 0;
1532 isolate_mode_t reclaim_mode = ISOLATE_INACTIVE;
1533 struct zone *zone = mz->zone;
1534
1535 while (unlikely(too_many_isolated(zone, file, sc))) {
1536 congestion_wait(BLK_RW_ASYNC, HZ/10);
1537
1538 /* We are about to die and free our memory. Return now. */
1539 if (fatal_signal_pending(current))
1540 return SWAP_CLUSTER_MAX;
1541 }
1542
1543 set_reclaim_mode(priority, sc, false);
1544 if (sc->reclaim_mode & RECLAIM_MODE_LUMPYRECLAIM)
1545 reclaim_mode |= ISOLATE_ACTIVE;
1546
1547 lru_add_drain();
1548
1549 if (!sc->may_unmap)
1550 reclaim_mode |= ISOLATE_UNMAPPED;
1551 if (!sc->may_writepage)
1552 reclaim_mode |= ISOLATE_CLEAN;
1553
1554 spin_lock_irq(&zone->lru_lock);
1555
1556 nr_taken = isolate_lru_pages(nr_to_scan, mz, &page_list,
1557 &nr_scanned, sc->order,
1558 reclaim_mode, 0, file);
1559 if (global_reclaim(sc)) {
1560 zone->pages_scanned += nr_scanned;
1561 if (current_is_kswapd())
1562 __count_zone_vm_events(PGSCAN_KSWAPD, zone,
1563 nr_scanned);
1564 else
1565 __count_zone_vm_events(PGSCAN_DIRECT, zone,
1566 nr_scanned);
1567 }
1568
1569 if (nr_taken == 0) {
1570 spin_unlock_irq(&zone->lru_lock);
1571 return 0;
1572 }
1573
1574 update_isolated_counts(mz, sc, &nr_anon, &nr_file, &page_list);
1575
1576 spin_unlock_irq(&zone->lru_lock);
1577
1578 nr_reclaimed = shrink_page_list(&page_list, mz, sc, priority,
1579 &nr_dirty, &nr_writeback);
1580
1581 /* Check if we should syncronously wait for writeback */
1582 if (should_reclaim_stall(nr_taken, nr_reclaimed, priority, sc)) {
1583 set_reclaim_mode(priority, sc, true);
1584 nr_reclaimed += shrink_page_list(&page_list, mz, sc,
1585 priority, &nr_dirty, &nr_writeback);
1586 }
1587
1588 local_irq_disable();
1589 if (current_is_kswapd())
1590 __count_vm_events(KSWAPD_STEAL, nr_reclaimed);
1591 __count_zone_vm_events(PGSTEAL, zone, nr_reclaimed);
1592
1593 putback_lru_pages(mz, sc, nr_anon, nr_file, &page_list);
1594
1595 /*
1596 * If reclaim is isolating dirty pages under writeback, it implies
1597 * that the long-lived page allocation rate is exceeding the page
1598 * laundering rate. Either the global limits are not being effective
1599 * at throttling processes due to the page distribution throughout
1600 * zones or there is heavy usage of a slow backing device. The
1601 * only option is to throttle from reclaim context which is not ideal
1602 * as there is no guarantee the dirtying process is throttled in the
1603 * same way balance_dirty_pages() manages.
1604 *
1605 * This scales the number of dirty pages that must be under writeback
1606 * before throttling depending on priority. It is a simple backoff
1607 * function that has the most effect in the range DEF_PRIORITY to
1608 * DEF_PRIORITY-2 which is the priority reclaim is considered to be
1609 * in trouble and reclaim is considered to be in trouble.
1610 *
1611 * DEF_PRIORITY 100% isolated pages must be PageWriteback to throttle
1612 * DEF_PRIORITY-1 50% must be PageWriteback
1613 * DEF_PRIORITY-2 25% must be PageWriteback, kswapd in trouble
1614 * ...
1615 * DEF_PRIORITY-6 For SWAP_CLUSTER_MAX isolated pages, throttle if any
1616 * isolated page is PageWriteback
1617 */
1618 if (nr_writeback && nr_writeback >= (nr_taken >> (DEF_PRIORITY-priority)))
1619 wait_iff_congested(zone, BLK_RW_ASYNC, HZ/10);
1620
1621 trace_mm_vmscan_lru_shrink_inactive(zone->zone_pgdat->node_id,
1622 zone_idx(zone),
1623 nr_scanned, nr_reclaimed,
1624 priority,
1625 trace_shrink_flags(file, sc->reclaim_mode));
1626 return nr_reclaimed;
1627 }
1628
1629 /*
1630 * This moves pages from the active list to the inactive list.
1631 *
1632 * We move them the other way if the page is referenced by one or more
1633 * processes, from rmap.
1634 *
1635 * If the pages are mostly unmapped, the processing is fast and it is
1636 * appropriate to hold zone->lru_lock across the whole operation. But if
1637 * the pages are mapped, the processing is slow (page_referenced()) so we
1638 * should drop zone->lru_lock around each page. It's impossible to balance
1639 * this, so instead we remove the pages from the LRU while processing them.
1640 * It is safe to rely on PG_active against the non-LRU pages in here because
1641 * nobody will play with that bit on a non-LRU page.
1642 *
1643 * The downside is that we have to touch page->_count against each page.
1644 * But we had to alter page->flags anyway.
1645 */
1646
1647 static void move_active_pages_to_lru(struct zone *zone,
1648 struct list_head *list,
1649 struct list_head *pages_to_free,
1650 enum lru_list lru)
1651 {
1652 unsigned long pgmoved = 0;
1653 struct page *page;
1654
1655 if (buffer_heads_over_limit) {
1656 spin_unlock_irq(&zone->lru_lock);
1657 list_for_each_entry(page, list, lru) {
1658 if (page_has_private(page) && trylock_page(page)) {
1659 if (page_has_private(page))
1660 try_to_release_page(page, 0);
1661 unlock_page(page);
1662 }
1663 }
1664 spin_lock_irq(&zone->lru_lock);
1665 }
1666
1667 while (!list_empty(list)) {
1668 struct lruvec *lruvec;
1669
1670 page = lru_to_page(list);
1671
1672 VM_BUG_ON(PageLRU(page));
1673 SetPageLRU(page);
1674
1675 lruvec = mem_cgroup_lru_add_list(zone, page, lru);
1676 list_move(&page->lru, &lruvec->lists[lru]);
1677 pgmoved += hpage_nr_pages(page);
1678
1679 if (put_page_testzero(page)) {
1680 __ClearPageLRU(page);
1681 __ClearPageActive(page);
1682 del_page_from_lru_list(zone, page, lru);
1683
1684 if (unlikely(PageCompound(page))) {
1685 spin_unlock_irq(&zone->lru_lock);
1686 (*get_compound_page_dtor(page))(page);
1687 spin_lock_irq(&zone->lru_lock);
1688 } else
1689 list_add(&page->lru, pages_to_free);
1690 }
1691 }
1692 __mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved);
1693 if (!is_active_lru(lru))
1694 __count_vm_events(PGDEACTIVATE, pgmoved);
1695 }
1696
1697 static void shrink_active_list(unsigned long nr_to_scan,
1698 struct mem_cgroup_zone *mz,
1699 struct scan_control *sc,
1700 int priority, int file)
1701 {
1702 unsigned long nr_taken;
1703 unsigned long nr_scanned;
1704 unsigned long vm_flags;
1705 LIST_HEAD(l_hold); /* The pages which were snipped off */
1706 LIST_HEAD(l_active);
1707 LIST_HEAD(l_inactive);
1708 struct page *page;
1709 struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(mz);
1710 unsigned long nr_rotated = 0;
1711 isolate_mode_t reclaim_mode = ISOLATE_ACTIVE;
1712 struct zone *zone = mz->zone;
1713
1714 lru_add_drain();
1715
1716 if (!sc->may_unmap)
1717 reclaim_mode |= ISOLATE_UNMAPPED;
1718 if (!sc->may_writepage)
1719 reclaim_mode |= ISOLATE_CLEAN;
1720
1721 spin_lock_irq(&zone->lru_lock);
1722
1723 nr_taken = isolate_lru_pages(nr_to_scan, mz, &l_hold,
1724 &nr_scanned, sc->order,
1725 reclaim_mode, 1, file);
1726 if (global_reclaim(sc))
1727 zone->pages_scanned += nr_scanned;
1728
1729 reclaim_stat->recent_scanned[file] += nr_taken;
1730
1731 __count_zone_vm_events(PGREFILL, zone, nr_scanned);
1732 if (file)
1733 __mod_zone_page_state(zone, NR_ACTIVE_FILE, -nr_taken);
1734 else
1735 __mod_zone_page_state(zone, NR_ACTIVE_ANON, -nr_taken);
1736 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
1737 spin_unlock_irq(&zone->lru_lock);
1738
1739 while (!list_empty(&l_hold)) {
1740 cond_resched();
1741 page = lru_to_page(&l_hold);
1742 list_del(&page->lru);
1743
1744 if (unlikely(!page_evictable(page, NULL))) {
1745 putback_lru_page(page);
1746 continue;
1747 }
1748
1749 if (page_referenced(page, 0, mz->mem_cgroup, &vm_flags)) {
1750 nr_rotated += hpage_nr_pages(page);
1751 /*
1752 * Identify referenced, file-backed active pages and
1753 * give them one more trip around the active list. So
1754 * that executable code get better chances to stay in
1755 * memory under moderate memory pressure. Anon pages
1756 * are not likely to be evicted by use-once streaming
1757 * IO, plus JVM can create lots of anon VM_EXEC pages,
1758 * so we ignore them here.
1759 */
1760 if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
1761 list_add(&page->lru, &l_active);
1762 continue;
1763 }
1764 }
1765
1766 ClearPageActive(page); /* we are de-activating */
1767 list_add(&page->lru, &l_inactive);
1768 }
1769
1770 /*
1771 * Move pages back to the lru list.
1772 */
1773 spin_lock_irq(&zone->lru_lock);
1774 /*
1775 * Count referenced pages from currently used mappings as rotated,
1776 * even though only some of them are actually re-activated. This
1777 * helps balance scan pressure between file and anonymous pages in
1778 * get_scan_ratio.
1779 */
1780 reclaim_stat->recent_rotated[file] += nr_rotated;
1781
1782 move_active_pages_to_lru(zone, &l_active, &l_hold,
1783 LRU_ACTIVE + file * LRU_FILE);
1784 move_active_pages_to_lru(zone, &l_inactive, &l_hold,
1785 LRU_BASE + file * LRU_FILE);
1786 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
1787 spin_unlock_irq(&zone->lru_lock);
1788
1789 free_hot_cold_page_list(&l_hold, 1);
1790 }
1791
1792 #ifdef CONFIG_SWAP
1793 static int inactive_anon_is_low_global(struct zone *zone)
1794 {
1795 unsigned long active, inactive;
1796
1797 active = zone_page_state(zone, NR_ACTIVE_ANON);
1798 inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1799
1800 if (inactive * zone->inactive_ratio < active)
1801 return 1;
1802
1803 return 0;
1804 }
1805
1806 /**
1807 * inactive_anon_is_low - check if anonymous pages need to be deactivated
1808 * @zone: zone to check
1809 * @sc: scan control of this context
1810 *
1811 * Returns true if the zone does not have enough inactive anon pages,
1812 * meaning some active anon pages need to be deactivated.
1813 */
1814 static int inactive_anon_is_low(struct mem_cgroup_zone *mz)
1815 {
1816 /*
1817 * If we don't have swap space, anonymous page deactivation
1818 * is pointless.
1819 */
1820 if (!total_swap_pages)
1821 return 0;
1822
1823 if (!scanning_global_lru(mz))
1824 return mem_cgroup_inactive_anon_is_low(mz->mem_cgroup,
1825 mz->zone);
1826
1827 return inactive_anon_is_low_global(mz->zone);
1828 }
1829 #else
1830 static inline int inactive_anon_is_low(struct mem_cgroup_zone *mz)
1831 {
1832 return 0;
1833 }
1834 #endif
1835
1836 static int inactive_file_is_low_global(struct zone *zone)
1837 {
1838 unsigned long active, inactive;
1839
1840 active = zone_page_state(zone, NR_ACTIVE_FILE);
1841 inactive = zone_page_state(zone, NR_INACTIVE_FILE);
1842
1843 return (active > inactive);
1844 }
1845
1846 /**
1847 * inactive_file_is_low - check if file pages need to be deactivated
1848 * @mz: memory cgroup and zone to check
1849 *
1850 * When the system is doing streaming IO, memory pressure here
1851 * ensures that active file pages get deactivated, until more
1852 * than half of the file pages are on the inactive list.
1853 *
1854 * Once we get to that situation, protect the system's working
1855 * set from being evicted by disabling active file page aging.
1856 *
1857 * This uses a different ratio than the anonymous pages, because
1858 * the page cache uses a use-once replacement algorithm.
1859 */
1860 static int inactive_file_is_low(struct mem_cgroup_zone *mz)
1861 {
1862 if (!scanning_global_lru(mz))
1863 return mem_cgroup_inactive_file_is_low(mz->mem_cgroup,
1864 mz->zone);
1865
1866 return inactive_file_is_low_global(mz->zone);
1867 }
1868
1869 static int inactive_list_is_low(struct mem_cgroup_zone *mz, int file)
1870 {
1871 if (file)
1872 return inactive_file_is_low(mz);
1873 else
1874 return inactive_anon_is_low(mz);
1875 }
1876
1877 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
1878 struct mem_cgroup_zone *mz,
1879 struct scan_control *sc, int priority)
1880 {
1881 int file = is_file_lru(lru);
1882
1883 if (is_active_lru(lru)) {
1884 if (inactive_list_is_low(mz, file))
1885 shrink_active_list(nr_to_scan, mz, sc, priority, file);
1886 return 0;
1887 }
1888
1889 return shrink_inactive_list(nr_to_scan, mz, sc, priority, file);
1890 }
1891
1892 static int vmscan_swappiness(struct mem_cgroup_zone *mz,
1893 struct scan_control *sc)
1894 {
1895 if (global_reclaim(sc))
1896 return vm_swappiness;
1897 return mem_cgroup_swappiness(mz->mem_cgroup);
1898 }
1899
1900 /*
1901 * Determine how aggressively the anon and file LRU lists should be
1902 * scanned. The relative value of each set of LRU lists is determined
1903 * by looking at the fraction of the pages scanned we did rotate back
1904 * onto the active list instead of evict.
1905 *
1906 * nr[0] = anon pages to scan; nr[1] = file pages to scan
1907 */
1908 static void get_scan_count(struct mem_cgroup_zone *mz, struct scan_control *sc,
1909 unsigned long *nr, int priority)
1910 {
1911 unsigned long anon, file, free;
1912 unsigned long anon_prio, file_prio;
1913 unsigned long ap, fp;
1914 struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(mz);
1915 u64 fraction[2], denominator;
1916 enum lru_list lru;
1917 int noswap = 0;
1918 bool force_scan = false;
1919
1920 /*
1921 * If the zone or memcg is small, nr[l] can be 0. This
1922 * results in no scanning on this priority and a potential
1923 * priority drop. Global direct reclaim can go to the next
1924 * zone and tends to have no problems. Global kswapd is for
1925 * zone balancing and it needs to scan a minimum amount. When
1926 * reclaiming for a memcg, a priority drop can cause high
1927 * latencies, so it's better to scan a minimum amount there as
1928 * well.
1929 */
1930 if (current_is_kswapd() && mz->zone->all_unreclaimable)
1931 force_scan = true;
1932 if (!global_reclaim(sc))
1933 force_scan = true;
1934
1935 /* If we have no swap space, do not bother scanning anon pages. */
1936 if (!sc->may_swap || (nr_swap_pages <= 0)) {
1937 noswap = 1;
1938 fraction[0] = 0;
1939 fraction[1] = 1;
1940 denominator = 1;
1941 goto out;
1942 }
1943
1944 anon = zone_nr_lru_pages(mz, LRU_ACTIVE_ANON) +
1945 zone_nr_lru_pages(mz, LRU_INACTIVE_ANON);
1946 file = zone_nr_lru_pages(mz, LRU_ACTIVE_FILE) +
1947 zone_nr_lru_pages(mz, LRU_INACTIVE_FILE);
1948
1949 if (global_reclaim(sc)) {
1950 free = zone_page_state(mz->zone, NR_FREE_PAGES);
1951 /* If we have very few page cache pages,
1952 force-scan anon pages. */
1953 if (unlikely(file + free <= high_wmark_pages(mz->zone))) {
1954 fraction[0] = 1;
1955 fraction[1] = 0;
1956 denominator = 1;
1957 goto out;
1958 }
1959 }
1960
1961 /*
1962 * With swappiness at 100, anonymous and file have the same priority.
1963 * This scanning priority is essentially the inverse of IO cost.
1964 */
1965 anon_prio = vmscan_swappiness(mz, sc);
1966 file_prio = 200 - vmscan_swappiness(mz, sc);
1967
1968 /*
1969 * OK, so we have swap space and a fair amount of page cache
1970 * pages. We use the recently rotated / recently scanned
1971 * ratios to determine how valuable each cache is.
1972 *
1973 * Because workloads change over time (and to avoid overflow)
1974 * we keep these statistics as a floating average, which ends
1975 * up weighing recent references more than old ones.
1976 *
1977 * anon in [0], file in [1]
1978 */
1979 spin_lock_irq(&mz->zone->lru_lock);
1980 if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
1981 reclaim_stat->recent_scanned[0] /= 2;
1982 reclaim_stat->recent_rotated[0] /= 2;
1983 }
1984
1985 if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
1986 reclaim_stat->recent_scanned[1] /= 2;
1987 reclaim_stat->recent_rotated[1] /= 2;
1988 }
1989
1990 /*
1991 * The amount of pressure on anon vs file pages is inversely
1992 * proportional to the fraction of recently scanned pages on
1993 * each list that were recently referenced and in active use.
1994 */
1995 ap = (anon_prio + 1) * (reclaim_stat->recent_scanned[0] + 1);
1996 ap /= reclaim_stat->recent_rotated[0] + 1;
1997
1998 fp = (file_prio + 1) * (reclaim_stat->recent_scanned[1] + 1);
1999 fp /= reclaim_stat->recent_rotated[1] + 1;
2000 spin_unlock_irq(&mz->zone->lru_lock);
2001
2002 fraction[0] = ap;
2003 fraction[1] = fp;
2004 denominator = ap + fp + 1;
2005 out:
2006 for_each_evictable_lru(lru) {
2007 int file = is_file_lru(lru);
2008 unsigned long scan;
2009
2010 scan = zone_nr_lru_pages(mz, lru);
2011 if (priority || noswap) {
2012 scan >>= priority;
2013 if (!scan && force_scan)
2014 scan = SWAP_CLUSTER_MAX;
2015 scan = div64_u64(scan * fraction[file], denominator);
2016 }
2017 nr[lru] = scan;
2018 }
2019 }
2020
2021 /*
2022 * Reclaim/compaction depends on a number of pages being freed. To avoid
2023 * disruption to the system, a small number of order-0 pages continue to be
2024 * rotated and reclaimed in the normal fashion. However, by the time we get
2025 * back to the allocator and call try_to_compact_zone(), we ensure that
2026 * there are enough free pages for it to be likely successful
2027 */
2028 static inline bool should_continue_reclaim(struct mem_cgroup_zone *mz,
2029 unsigned long nr_reclaimed,
2030 unsigned long nr_scanned,
2031 struct scan_control *sc)
2032 {
2033 unsigned long pages_for_compaction;
2034 unsigned long inactive_lru_pages;
2035
2036 /* If not in reclaim/compaction mode, stop */
2037 if (!(sc->reclaim_mode & RECLAIM_MODE_COMPACTION))
2038 return false;
2039
2040 /* Consider stopping depending on scan and reclaim activity */
2041 if (sc->gfp_mask & __GFP_REPEAT) {
2042 /*
2043 * For __GFP_REPEAT allocations, stop reclaiming if the
2044 * full LRU list has been scanned and we are still failing
2045 * to reclaim pages. This full LRU scan is potentially
2046 * expensive but a __GFP_REPEAT caller really wants to succeed
2047 */
2048 if (!nr_reclaimed && !nr_scanned)
2049 return false;
2050 } else {
2051 /*
2052 * For non-__GFP_REPEAT allocations which can presumably
2053 * fail without consequence, stop if we failed to reclaim
2054 * any pages from the last SWAP_CLUSTER_MAX number of
2055 * pages that were scanned. This will return to the
2056 * caller faster at the risk reclaim/compaction and
2057 * the resulting allocation attempt fails
2058 */
2059 if (!nr_reclaimed)
2060 return false;
2061 }
2062
2063 /*
2064 * If we have not reclaimed enough pages for compaction and the
2065 * inactive lists are large enough, continue reclaiming
2066 */
2067 pages_for_compaction = (2UL << sc->order);
2068 inactive_lru_pages = zone_nr_lru_pages(mz, LRU_INACTIVE_FILE);
2069 if (nr_swap_pages > 0)
2070 inactive_lru_pages += zone_nr_lru_pages(mz, LRU_INACTIVE_ANON);
2071 if (sc->nr_reclaimed < pages_for_compaction &&
2072 inactive_lru_pages > pages_for_compaction)
2073 return true;
2074
2075 /* If compaction would go ahead or the allocation would succeed, stop */
2076 switch (compaction_suitable(mz->zone, sc->order)) {
2077 case COMPACT_PARTIAL:
2078 case COMPACT_CONTINUE:
2079 return false;
2080 default:
2081 return true;
2082 }
2083 }
2084
2085 /*
2086 * This is a basic per-zone page freer. Used by both kswapd and direct reclaim.
2087 */
2088 static void shrink_mem_cgroup_zone(int priority, struct mem_cgroup_zone *mz,
2089 struct scan_control *sc)
2090 {
2091 unsigned long nr[NR_LRU_LISTS];
2092 unsigned long nr_to_scan;
2093 enum lru_list lru;
2094 unsigned long nr_reclaimed, nr_scanned;
2095 unsigned long nr_to_reclaim = sc->nr_to_reclaim;
2096 struct blk_plug plug;
2097
2098 restart:
2099 nr_reclaimed = 0;
2100 nr_scanned = sc->nr_scanned;
2101 get_scan_count(mz, sc, nr, priority);
2102
2103 blk_start_plug(&plug);
2104 while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
2105 nr[LRU_INACTIVE_FILE]) {
2106 for_each_evictable_lru(lru) {
2107 if (nr[lru]) {
2108 nr_to_scan = min_t(unsigned long,
2109 nr[lru], SWAP_CLUSTER_MAX);
2110 nr[lru] -= nr_to_scan;
2111
2112 nr_reclaimed += shrink_list(lru, nr_to_scan,
2113 mz, sc, priority);
2114 }
2115 }
2116 /*
2117 * On large memory systems, scan >> priority can become
2118 * really large. This is fine for the starting priority;
2119 * we want to put equal scanning pressure on each zone.
2120 * However, if the VM has a harder time of freeing pages,
2121 * with multiple processes reclaiming pages, the total
2122 * freeing target can get unreasonably large.
2123 */
2124 if (nr_reclaimed >= nr_to_reclaim && priority < DEF_PRIORITY)
2125 break;
2126 }
2127 blk_finish_plug(&plug);
2128 sc->nr_reclaimed += nr_reclaimed;
2129
2130 /*
2131 * Even if we did not try to evict anon pages at all, we want to
2132 * rebalance the anon lru active/inactive ratio.
2133 */
2134 if (inactive_anon_is_low(mz))
2135 shrink_active_list(SWAP_CLUSTER_MAX, mz, sc, priority, 0);
2136
2137 /* reclaim/compaction might need reclaim to continue */
2138 if (should_continue_reclaim(mz, nr_reclaimed,
2139 sc->nr_scanned - nr_scanned, sc))
2140 goto restart;
2141
2142 throttle_vm_writeout(sc->gfp_mask);
2143 }
2144
2145 static void shrink_zone(int priority, struct zone *zone,
2146 struct scan_control *sc)
2147 {
2148 struct mem_cgroup *root = sc->target_mem_cgroup;
2149 struct mem_cgroup_reclaim_cookie reclaim = {
2150 .zone = zone,
2151 .priority = priority,
2152 };
2153 struct mem_cgroup *memcg;
2154
2155 memcg = mem_cgroup_iter(root, NULL, &reclaim);
2156 do {
2157 struct mem_cgroup_zone mz = {
2158 .mem_cgroup = memcg,
2159 .zone = zone,
2160 };
2161
2162 shrink_mem_cgroup_zone(priority, &mz, sc);
2163 /*
2164 * Limit reclaim has historically picked one memcg and
2165 * scanned it with decreasing priority levels until
2166 * nr_to_reclaim had been reclaimed. This priority
2167 * cycle is thus over after a single memcg.
2168 *
2169 * Direct reclaim and kswapd, on the other hand, have
2170 * to scan all memory cgroups to fulfill the overall
2171 * scan target for the zone.
2172 */
2173 if (!global_reclaim(sc)) {
2174 mem_cgroup_iter_break(root, memcg);
2175 break;
2176 }
2177 memcg = mem_cgroup_iter(root, memcg, &reclaim);
2178 } while (memcg);
2179 }
2180
2181 /* Returns true if compaction should go ahead for a high-order request */
2182 static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
2183 {
2184 unsigned long balance_gap, watermark;
2185 bool watermark_ok;
2186
2187 /* Do not consider compaction for orders reclaim is meant to satisfy */
2188 if (sc->order <= PAGE_ALLOC_COSTLY_ORDER)
2189 return false;
2190
2191 /*
2192 * Compaction takes time to run and there are potentially other
2193 * callers using the pages just freed. Continue reclaiming until
2194 * there is a buffer of free pages available to give compaction
2195 * a reasonable chance of completing and allocating the page
2196 */
2197 balance_gap = min(low_wmark_pages(zone),
2198 (zone->present_pages + KSWAPD_ZONE_BALANCE_GAP_RATIO-1) /
2199 KSWAPD_ZONE_BALANCE_GAP_RATIO);
2200 watermark = high_wmark_pages(zone) + balance_gap + (2UL << sc->order);
2201 watermark_ok = zone_watermark_ok_safe(zone, 0, watermark, 0, 0);
2202
2203 /*
2204 * If compaction is deferred, reclaim up to a point where
2205 * compaction will have a chance of success when re-enabled
2206 */
2207 if (compaction_deferred(zone))
2208 return watermark_ok;
2209
2210 /* If compaction is not ready to start, keep reclaiming */
2211 if (!compaction_suitable(zone, sc->order))
2212 return false;
2213
2214 return watermark_ok;
2215 }
2216
2217 /*
2218 * This is the direct reclaim path, for page-allocating processes. We only
2219 * try to reclaim pages from zones which will satisfy the caller's allocation
2220 * request.
2221 *
2222 * We reclaim from a zone even if that zone is over high_wmark_pages(zone).
2223 * Because:
2224 * a) The caller may be trying to free *extra* pages to satisfy a higher-order
2225 * allocation or
2226 * b) The target zone may be at high_wmark_pages(zone) but the lower zones
2227 * must go *over* high_wmark_pages(zone) to satisfy the `incremental min'
2228 * zone defense algorithm.
2229 *
2230 * If a zone is deemed to be full of pinned pages then just give it a light
2231 * scan then give up on it.
2232 *
2233 * This function returns true if a zone is being reclaimed for a costly
2234 * high-order allocation and compaction is ready to begin. This indicates to
2235 * the caller that it should consider retrying the allocation instead of
2236 * further reclaim.
2237 */
2238 static bool shrink_zones(int priority, struct zonelist *zonelist,
2239 struct scan_control *sc)
2240 {
2241 struct zoneref *z;
2242 struct zone *zone;
2243 unsigned long nr_soft_reclaimed;
2244 unsigned long nr_soft_scanned;
2245 bool aborted_reclaim = false;
2246
2247 for_each_zone_zonelist_nodemask(zone, z, zonelist,
2248 gfp_zone(sc->gfp_mask), sc->nodemask) {
2249 if (!populated_zone(zone))
2250 continue;
2251 /*
2252 * Take care memory controller reclaiming has small influence
2253 * to global LRU.
2254 */
2255 if (global_reclaim(sc)) {
2256 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2257 continue;
2258 if (zone->all_unreclaimable && priority != DEF_PRIORITY)
2259 continue; /* Let kswapd poll it */
2260 if (COMPACTION_BUILD) {
2261 /*
2262 * If we already have plenty of memory free for
2263 * compaction in this zone, don't free any more.
2264 * Even though compaction is invoked for any
2265 * non-zero order, only frequent costly order
2266 * reclamation is disruptive enough to become a
2267 * noticable problem, like transparent huge page
2268 * allocations.
2269 */
2270 if (compaction_ready(zone, sc)) {
2271 aborted_reclaim = true;
2272 continue;
2273 }
2274 }
2275 /*
2276 * This steals pages from memory cgroups over softlimit
2277 * and returns the number of reclaimed pages and
2278 * scanned pages. This works for global memory pressure
2279 * and balancing, not for a memcg's limit.
2280 */
2281 nr_soft_scanned = 0;
2282 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
2283 sc->order, sc->gfp_mask,
2284 &nr_soft_scanned);
2285 sc->nr_reclaimed += nr_soft_reclaimed;
2286 sc->nr_scanned += nr_soft_scanned;
2287 /* need some check for avoid more shrink_zone() */
2288 }
2289
2290 shrink_zone(priority, zone, sc);
2291 }
2292
2293 return aborted_reclaim;
2294 }
2295
2296 static bool zone_reclaimable(struct zone *zone)
2297 {
2298 return zone->pages_scanned < zone_reclaimable_pages(zone) * 6;
2299 }
2300
2301 /* All zones in zonelist are unreclaimable? */
2302 static bool all_unreclaimable(struct zonelist *zonelist,
2303 struct scan_control *sc)
2304 {
2305 struct zoneref *z;
2306 struct zone *zone;
2307
2308 for_each_zone_zonelist_nodemask(zone, z, zonelist,
2309 gfp_zone(sc->gfp_mask), sc->nodemask) {
2310 if (!populated_zone(zone))
2311 continue;
2312 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2313 continue;
2314 if (!zone->all_unreclaimable)
2315 return false;
2316 }
2317
2318 return true;
2319 }
2320
2321 /*
2322 * This is the main entry point to direct page reclaim.
2323 *
2324 * If a full scan of the inactive list fails to free enough memory then we
2325 * are "out of memory" and something needs to be killed.
2326 *
2327 * If the caller is !__GFP_FS then the probability of a failure is reasonably
2328 * high - the zone may be full of dirty or under-writeback pages, which this
2329 * caller can't do much about. We kick the writeback threads and take explicit
2330 * naps in the hope that some of these pages can be written. But if the
2331 * allocating task holds filesystem locks which prevent writeout this might not
2332 * work, and the allocation attempt will fail.
2333 *
2334 * returns: 0, if no pages reclaimed
2335 * else, the number of pages reclaimed
2336 */
2337 static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
2338 struct scan_control *sc,
2339 struct shrink_control *shrink)
2340 {
2341 int priority;
2342 unsigned long total_scanned = 0;
2343 struct reclaim_state *reclaim_state = current->reclaim_state;
2344 struct zoneref *z;
2345 struct zone *zone;
2346 unsigned long writeback_threshold;
2347 bool aborted_reclaim;
2348
2349 get_mems_allowed();
2350 delayacct_freepages_start();
2351
2352 if (global_reclaim(sc))
2353 count_vm_event(ALLOCSTALL);
2354
2355 for (priority = DEF_PRIORITY; priority >= 0; priority--) {
2356 sc->nr_scanned = 0;
2357 if (!priority)
2358 disable_swap_token(sc->target_mem_cgroup);
2359 aborted_reclaim = shrink_zones(priority, zonelist, sc);
2360
2361 /*
2362 * Don't shrink slabs when reclaiming memory from
2363 * over limit cgroups
2364 */
2365 if (global_reclaim(sc)) {
2366 unsigned long lru_pages = 0;
2367 for_each_zone_zonelist(zone, z, zonelist,
2368 gfp_zone(sc->gfp_mask)) {
2369 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2370 continue;
2371
2372 lru_pages += zone_reclaimable_pages(zone);
2373 }
2374
2375 shrink_slab(shrink, sc->nr_scanned, lru_pages);
2376 if (reclaim_state) {
2377 sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2378 reclaim_state->reclaimed_slab = 0;
2379 }
2380 }
2381 total_scanned += sc->nr_scanned;
2382 if (sc->nr_reclaimed >= sc->nr_to_reclaim)
2383 goto out;
2384
2385 /*
2386 * Try to write back as many pages as we just scanned. This
2387 * tends to cause slow streaming writers to write data to the
2388 * disk smoothly, at the dirtying rate, which is nice. But
2389 * that's undesirable in laptop mode, where we *want* lumpy
2390 * writeout. So in laptop mode, write out the whole world.
2391 */
2392 writeback_threshold = sc->nr_to_reclaim + sc->nr_to_reclaim / 2;
2393 if (total_scanned > writeback_threshold) {
2394 wakeup_flusher_threads(laptop_mode ? 0 : total_scanned,
2395 WB_REASON_TRY_TO_FREE_PAGES);
2396 sc->may_writepage = 1;
2397 }
2398
2399 /* Take a nap, wait for some writeback to complete */
2400 if (!sc->hibernation_mode && sc->nr_scanned &&
2401 priority < DEF_PRIORITY - 2) {
2402 struct zone *preferred_zone;
2403
2404 first_zones_zonelist(zonelist, gfp_zone(sc->gfp_mask),
2405 &cpuset_current_mems_allowed,
2406 &preferred_zone);
2407 wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/10);
2408 }
2409 }
2410
2411 out:
2412 delayacct_freepages_end();
2413 put_mems_allowed();
2414
2415 if (sc->nr_reclaimed)
2416 return sc->nr_reclaimed;
2417
2418 /*
2419 * As hibernation is going on, kswapd is freezed so that it can't mark
2420 * the zone into all_unreclaimable. Thus bypassing all_unreclaimable
2421 * check.
2422 */
2423 if (oom_killer_disabled)
2424 return 0;
2425
2426 /* Aborted reclaim to try compaction? don't OOM, then */
2427 if (aborted_reclaim)
2428 return 1;
2429
2430 /* top priority shrink_zones still had more to do? don't OOM, then */
2431 if (global_reclaim(sc) && !all_unreclaimable(zonelist, sc))
2432 return 1;
2433
2434 return 0;
2435 }
2436
2437 unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
2438 gfp_t gfp_mask, nodemask_t *nodemask)
2439 {
2440 unsigned long nr_reclaimed;
2441 struct scan_control sc = {
2442 .gfp_mask = gfp_mask,
2443 .may_writepage = !laptop_mode,
2444 .nr_to_reclaim = SWAP_CLUSTER_MAX,
2445 .may_unmap = 1,
2446 .may_swap = 1,
2447 .order = order,
2448 .target_mem_cgroup = NULL,
2449 .nodemask = nodemask,
2450 };
2451 struct shrink_control shrink = {
2452 .gfp_mask = sc.gfp_mask,
2453 };
2454
2455 trace_mm_vmscan_direct_reclaim_begin(order,
2456 sc.may_writepage,
2457 gfp_mask);
2458
2459 nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
2460
2461 trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
2462
2463 return nr_reclaimed;
2464 }
2465
2466 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
2467
2468 unsigned long mem_cgroup_shrink_node_zone(struct mem_cgroup *memcg,
2469 gfp_t gfp_mask, bool noswap,
2470 struct zone *zone,
2471 unsigned long *nr_scanned)
2472 {
2473 struct scan_control sc = {
2474 .nr_scanned = 0,
2475 .nr_to_reclaim = SWAP_CLUSTER_MAX,
2476 .may_writepage = !laptop_mode,
2477 .may_unmap = 1,
2478 .may_swap = !noswap,
2479 .order = 0,
2480 .target_mem_cgroup = memcg,
2481 };
2482 struct mem_cgroup_zone mz = {
2483 .mem_cgroup = memcg,
2484 .zone = zone,
2485 };
2486
2487 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2488 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
2489
2490 trace_mm_vmscan_memcg_softlimit_reclaim_begin(0,
2491 sc.may_writepage,
2492 sc.gfp_mask);
2493
2494 /*
2495 * NOTE: Although we can get the priority field, using it
2496 * here is not a good idea, since it limits the pages we can scan.
2497 * if we don't reclaim here, the shrink_zone from balance_pgdat
2498 * will pick up pages from other mem cgroup's as well. We hack
2499 * the priority and make it zero.
2500 */
2501 shrink_mem_cgroup_zone(0, &mz, &sc);
2502
2503 trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
2504
2505 *nr_scanned = sc.nr_scanned;
2506 return sc.nr_reclaimed;
2507 }
2508
2509 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
2510 gfp_t gfp_mask,
2511 bool noswap)
2512 {
2513 struct zonelist *zonelist;
2514 unsigned long nr_reclaimed;
2515 int nid;
2516 struct scan_control sc = {
2517 .may_writepage = !laptop_mode,
2518 .may_unmap = 1,
2519 .may_swap = !noswap,
2520 .nr_to_reclaim = SWAP_CLUSTER_MAX,
2521 .order = 0,
2522 .target_mem_cgroup = memcg,
2523 .nodemask = NULL, /* we don't care the placement */
2524 .gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2525 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
2526 };
2527 struct shrink_control shrink = {
2528 .gfp_mask = sc.gfp_mask,
2529 };
2530
2531 /*
2532 * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
2533 * take care of from where we get pages. So the node where we start the
2534 * scan does not need to be the current node.
2535 */
2536 nid = mem_cgroup_select_victim_node(memcg);
2537
2538 zonelist = NODE_DATA(nid)->node_zonelists;
2539
2540 trace_mm_vmscan_memcg_reclaim_begin(0,
2541 sc.may_writepage,
2542 sc.gfp_mask);
2543
2544 nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
2545
2546 trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
2547
2548 return nr_reclaimed;
2549 }
2550 #endif
2551
2552 static void age_active_anon(struct zone *zone, struct scan_control *sc,
2553 int priority)
2554 {
2555 struct mem_cgroup *memcg;
2556
2557 if (!total_swap_pages)
2558 return;
2559
2560 memcg = mem_cgroup_iter(NULL, NULL, NULL);
2561 do {
2562 struct mem_cgroup_zone mz = {
2563 .mem_cgroup = memcg,
2564 .zone = zone,
2565 };
2566
2567 if (inactive_anon_is_low(&mz))
2568 shrink_active_list(SWAP_CLUSTER_MAX, &mz,
2569 sc, priority, 0);
2570
2571 memcg = mem_cgroup_iter(NULL, memcg, NULL);
2572 } while (memcg);
2573 }
2574
2575 /*
2576 * pgdat_balanced is used when checking if a node is balanced for high-order
2577 * allocations. Only zones that meet watermarks and are in a zone allowed
2578 * by the callers classzone_idx are added to balanced_pages. The total of
2579 * balanced pages must be at least 25% of the zones allowed by classzone_idx
2580 * for the node to be considered balanced. Forcing all zones to be balanced
2581 * for high orders can cause excessive reclaim when there are imbalanced zones.
2582 * The choice of 25% is due to
2583 * o a 16M DMA zone that is balanced will not balance a zone on any
2584 * reasonable sized machine
2585 * o On all other machines, the top zone must be at least a reasonable
2586 * percentage of the middle zones. For example, on 32-bit x86, highmem
2587 * would need to be at least 256M for it to be balance a whole node.
2588 * Similarly, on x86-64 the Normal zone would need to be at least 1G
2589 * to balance a node on its own. These seemed like reasonable ratios.
2590 */
2591 static bool pgdat_balanced(pg_data_t *pgdat, unsigned long balanced_pages,
2592 int classzone_idx)
2593 {
2594 unsigned long present_pages = 0;
2595 int i;
2596
2597 for (i = 0; i <= classzone_idx; i++)
2598 present_pages += pgdat->node_zones[i].present_pages;
2599
2600 /* A special case here: if zone has no page, we think it's balanced */
2601 return balanced_pages >= (present_pages >> 2);
2602 }
2603
2604 /* is kswapd sleeping prematurely? */
2605 static bool sleeping_prematurely(pg_data_t *pgdat, int order, long remaining,
2606 int classzone_idx)
2607 {
2608 int i;
2609 unsigned long balanced = 0;
2610 bool all_zones_ok = true;
2611
2612 /* If a direct reclaimer woke kswapd within HZ/10, it's premature */
2613 if (remaining)
2614 return true;
2615
2616 /* Check the watermark levels */
2617 for (i = 0; i <= classzone_idx; i++) {
2618 struct zone *zone = pgdat->node_zones + i;
2619
2620 if (!populated_zone(zone))
2621 continue;
2622
2623 /*
2624 * balance_pgdat() skips over all_unreclaimable after
2625 * DEF_PRIORITY. Effectively, it considers them balanced so
2626 * they must be considered balanced here as well if kswapd
2627 * is to sleep
2628 */
2629 if (zone->all_unreclaimable) {
2630 balanced += zone->present_pages;
2631 continue;
2632 }
2633
2634 if (!zone_watermark_ok_safe(zone, order, high_wmark_pages(zone),
2635 i, 0))
2636 all_zones_ok = false;
2637 else
2638 balanced += zone->present_pages;
2639 }
2640
2641 /*
2642 * For high-order requests, the balanced zones must contain at least
2643 * 25% of the nodes pages for kswapd to sleep. For order-0, all zones
2644 * must be balanced
2645 */
2646 if (order)
2647 return !pgdat_balanced(pgdat, balanced, classzone_idx);
2648 else
2649 return !all_zones_ok;
2650 }
2651
2652 /*
2653 * For kswapd, balance_pgdat() will work across all this node's zones until
2654 * they are all at high_wmark_pages(zone).
2655 *
2656 * Returns the final order kswapd was reclaiming at
2657 *
2658 * There is special handling here for zones which are full of pinned pages.
2659 * This can happen if the pages are all mlocked, or if they are all used by
2660 * device drivers (say, ZONE_DMA). Or if they are all in use by hugetlb.
2661 * What we do is to detect the case where all pages in the zone have been
2662 * scanned twice and there has been zero successful reclaim. Mark the zone as
2663 * dead and from now on, only perform a short scan. Basically we're polling
2664 * the zone for when the problem goes away.
2665 *
2666 * kswapd scans the zones in the highmem->normal->dma direction. It skips
2667 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
2668 * found to have free_pages <= high_wmark_pages(zone), we scan that zone and the
2669 * lower zones regardless of the number of free pages in the lower zones. This
2670 * interoperates with the page allocator fallback scheme to ensure that aging
2671 * of pages is balanced across the zones.
2672 */
2673 static unsigned long balance_pgdat(pg_data_t *pgdat, int order,
2674 int *classzone_idx)
2675 {
2676 int all_zones_ok;
2677 unsigned long balanced;
2678 int priority;
2679 int i;
2680 int end_zone = 0; /* Inclusive. 0 = ZONE_DMA */
2681 unsigned long total_scanned;
2682 struct reclaim_state *reclaim_state = current->reclaim_state;
2683 unsigned long nr_soft_reclaimed;
2684 unsigned long nr_soft_scanned;
2685 struct scan_control sc = {
2686 .gfp_mask = GFP_KERNEL,
2687 .may_unmap = 1,
2688 .may_swap = 1,
2689 /*
2690 * kswapd doesn't want to be bailed out while reclaim. because
2691 * we want to put equal scanning pressure on each zone.
2692 */
2693 .nr_to_reclaim = ULONG_MAX,
2694 .order = order,
2695 .target_mem_cgroup = NULL,
2696 };
2697 struct shrink_control shrink = {
2698 .gfp_mask = sc.gfp_mask,
2699 };
2700 loop_again:
2701 total_scanned = 0;
2702 sc.nr_reclaimed = 0;
2703 sc.may_writepage = !laptop_mode;
2704 count_vm_event(PAGEOUTRUN);
2705
2706 for (priority = DEF_PRIORITY; priority >= 0; priority--) {
2707 unsigned long lru_pages = 0;
2708 int has_under_min_watermark_zone = 0;
2709
2710 /* The swap token gets in the way of swapout... */
2711 if (!priority)
2712 disable_swap_token(NULL);
2713
2714 all_zones_ok = 1;
2715 balanced = 0;
2716
2717 /*
2718 * Scan in the highmem->dma direction for the highest
2719 * zone which needs scanning
2720 */
2721 for (i = pgdat->nr_zones - 1; i >= 0; i--) {
2722 struct zone *zone = pgdat->node_zones + i;
2723
2724 if (!populated_zone(zone))
2725 continue;
2726
2727 if (zone->all_unreclaimable && priority != DEF_PRIORITY)
2728 continue;
2729
2730 /*
2731 * Do some background aging of the anon list, to give
2732 * pages a chance to be referenced before reclaiming.
2733 */
2734 age_active_anon(zone, &sc, priority);
2735
2736 if (!zone_watermark_ok_safe(zone, order,
2737 high_wmark_pages(zone), 0, 0)) {
2738 end_zone = i;
2739 break;
2740 } else {
2741 /* If balanced, clear the congested flag */
2742 zone_clear_flag(zone, ZONE_CONGESTED);
2743 }
2744 }
2745 if (i < 0)
2746 goto out;
2747
2748 for (i = 0; i <= end_zone; i++) {
2749 struct zone *zone = pgdat->node_zones + i;
2750
2751 lru_pages += zone_reclaimable_pages(zone);
2752 }
2753
2754 /*
2755 * Now scan the zone in the dma->highmem direction, stopping
2756 * at the last zone which needs scanning.
2757 *
2758 * We do this because the page allocator works in the opposite
2759 * direction. This prevents the page allocator from allocating
2760 * pages behind kswapd's direction of progress, which would
2761 * cause too much scanning of the lower zones.
2762 */
2763 for (i = 0; i <= end_zone; i++) {
2764 struct zone *zone = pgdat->node_zones + i;
2765 int nr_slab;
2766 unsigned long balance_gap;
2767
2768 if (!populated_zone(zone))
2769 continue;
2770
2771 if (zone->all_unreclaimable && priority != DEF_PRIORITY)
2772 continue;
2773
2774 sc.nr_scanned = 0;
2775
2776 nr_soft_scanned = 0;
2777 /*
2778 * Call soft limit reclaim before calling shrink_zone.
2779 */
2780 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
2781 order, sc.gfp_mask,
2782 &nr_soft_scanned);
2783 sc.nr_reclaimed += nr_soft_reclaimed;
2784 total_scanned += nr_soft_scanned;
2785
2786 /*
2787 * We put equal pressure on every zone, unless
2788 * one zone has way too many pages free
2789 * already. The "too many pages" is defined
2790 * as the high wmark plus a "gap" where the
2791 * gap is either the low watermark or 1%
2792 * of the zone, whichever is smaller.
2793 */
2794 balance_gap = min(low_wmark_pages(zone),
2795 (zone->present_pages +
2796 KSWAPD_ZONE_BALANCE_GAP_RATIO-1) /
2797 KSWAPD_ZONE_BALANCE_GAP_RATIO);
2798 if (!zone_watermark_ok_safe(zone, order,
2799 high_wmark_pages(zone) + balance_gap,
2800 end_zone, 0)) {
2801 shrink_zone(priority, zone, &sc);
2802
2803 reclaim_state->reclaimed_slab = 0;
2804 nr_slab = shrink_slab(&shrink, sc.nr_scanned, lru_pages);
2805 sc.nr_reclaimed += reclaim_state->reclaimed_slab;
2806 total_scanned += sc.nr_scanned;
2807
2808 if (nr_slab == 0 && !zone_reclaimable(zone))
2809 zone->all_unreclaimable = 1;
2810 }
2811
2812 /*
2813 * If we've done a decent amount of scanning and
2814 * the reclaim ratio is low, start doing writepage
2815 * even in laptop mode
2816 */
2817 if (total_scanned > SWAP_CLUSTER_MAX * 2 &&
2818 total_scanned > sc.nr_reclaimed + sc.nr_reclaimed / 2)
2819 sc.may_writepage = 1;
2820
2821 if (zone->all_unreclaimable) {
2822 if (end_zone && end_zone == i)
2823 end_zone--;
2824 continue;
2825 }
2826
2827 if (!zone_watermark_ok_safe(zone, order,
2828 high_wmark_pages(zone), end_zone, 0)) {
2829 all_zones_ok = 0;
2830 /*
2831 * We are still under min water mark. This
2832 * means that we have a GFP_ATOMIC allocation
2833 * failure risk. Hurry up!
2834 */
2835 if (!zone_watermark_ok_safe(zone, order,
2836 min_wmark_pages(zone), end_zone, 0))
2837 has_under_min_watermark_zone = 1;
2838 } else {
2839 /*
2840 * If a zone reaches its high watermark,
2841 * consider it to be no longer congested. It's
2842 * possible there are dirty pages backed by
2843 * congested BDIs but as pressure is relieved,
2844 * spectulatively avoid congestion waits
2845 */
2846 zone_clear_flag(zone, ZONE_CONGESTED);
2847 if (i <= *classzone_idx)
2848 balanced += zone->present_pages;
2849 }
2850
2851 }
2852 if (all_zones_ok || (order && pgdat_balanced(pgdat, balanced, *classzone_idx)))
2853 break; /* kswapd: all done */
2854 /*
2855 * OK, kswapd is getting into trouble. Take a nap, then take
2856 * another pass across the zones.
2857 */
2858 if (total_scanned && (priority < DEF_PRIORITY - 2)) {
2859 if (has_under_min_watermark_zone)
2860 count_vm_event(KSWAPD_SKIP_CONGESTION_WAIT);
2861 else
2862 congestion_wait(BLK_RW_ASYNC, HZ/10);
2863 }
2864
2865 /*
2866 * We do this so kswapd doesn't build up large priorities for
2867 * example when it is freeing in parallel with allocators. It
2868 * matches the direct reclaim path behaviour in terms of impact
2869 * on zone->*_priority.
2870 */
2871 if (sc.nr_reclaimed >= SWAP_CLUSTER_MAX)
2872 break;
2873 }
2874 out:
2875
2876 /*
2877 * order-0: All zones must meet high watermark for a balanced node
2878 * high-order: Balanced zones must make up at least 25% of the node
2879 * for the node to be balanced
2880 */
2881 if (!(all_zones_ok || (order && pgdat_balanced(pgdat, balanced, *classzone_idx)))) {
2882 cond_resched();
2883
2884 try_to_freeze();
2885
2886 /*
2887 * Fragmentation may mean that the system cannot be
2888 * rebalanced for high-order allocations in all zones.
2889 * At this point, if nr_reclaimed < SWAP_CLUSTER_MAX,
2890 * it means the zones have been fully scanned and are still
2891 * not balanced. For high-order allocations, there is
2892 * little point trying all over again as kswapd may
2893 * infinite loop.
2894 *
2895 * Instead, recheck all watermarks at order-0 as they
2896 * are the most important. If watermarks are ok, kswapd will go
2897 * back to sleep. High-order users can still perform direct
2898 * reclaim if they wish.
2899 */
2900 if (sc.nr_reclaimed < SWAP_CLUSTER_MAX)
2901 order = sc.order = 0;
2902
2903 goto loop_again;
2904 }
2905
2906 /*
2907 * If kswapd was reclaiming at a higher order, it has the option of
2908 * sleeping without all zones being balanced. Before it does, it must
2909 * ensure that the watermarks for order-0 on *all* zones are met and
2910 * that the congestion flags are cleared. The congestion flag must
2911 * be cleared as kswapd is the only mechanism that clears the flag
2912 * and it is potentially going to sleep here.
2913 */
2914 if (order) {
2915 for (i = 0; i <= end_zone; i++) {
2916 struct zone *zone = pgdat->node_zones + i;
2917
2918 if (!populated_zone(zone))
2919 continue;
2920
2921 if (zone->all_unreclaimable && priority != DEF_PRIORITY)
2922 continue;
2923
2924 /* Confirm the zone is balanced for order-0 */
2925 if (!zone_watermark_ok(zone, 0,
2926 high_wmark_pages(zone), 0, 0)) {
2927 order = sc.order = 0;
2928 goto loop_again;
2929 }
2930
2931 /* If balanced, clear the congested flag */
2932 zone_clear_flag(zone, ZONE_CONGESTED);
2933 if (i <= *classzone_idx)
2934 balanced += zone->present_pages;
2935 }
2936 }
2937
2938 /*
2939 * Return the order we were reclaiming at so sleeping_prematurely()
2940 * makes a decision on the order we were last reclaiming at. However,
2941 * if another caller entered the allocator slow path while kswapd
2942 * was awake, order will remain at the higher level
2943 */
2944 *classzone_idx = end_zone;
2945 return order;
2946 }
2947
2948 static void kswapd_try_to_sleep(pg_data_t *pgdat, int order, int classzone_idx)
2949 {
2950 long remaining = 0;
2951 DEFINE_WAIT(wait);
2952
2953 if (freezing(current) || kthread_should_stop())
2954 return;
2955
2956 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
2957
2958 /* Try to sleep for a short interval */
2959 if (!sleeping_prematurely(pgdat, order, remaining, classzone_idx)) {
2960 remaining = schedule_timeout(HZ/10);
2961 finish_wait(&pgdat->kswapd_wait, &wait);
2962 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
2963 }
2964
2965 /*
2966 * After a short sleep, check if it was a premature sleep. If not, then
2967 * go fully to sleep until explicitly woken up.
2968 */
2969 if (!sleeping_prematurely(pgdat, order, remaining, classzone_idx)) {
2970 trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
2971
2972 /*
2973 * vmstat counters are not perfectly accurate and the estimated
2974 * value for counters such as NR_FREE_PAGES can deviate from the
2975 * true value by nr_online_cpus * threshold. To avoid the zone
2976 * watermarks being breached while under pressure, we reduce the
2977 * per-cpu vmstat threshold while kswapd is awake and restore
2978 * them before going back to sleep.
2979 */
2980 set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
2981 schedule();
2982 set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
2983 } else {
2984 if (remaining)
2985 count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
2986 else
2987 count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
2988 }
2989 finish_wait(&pgdat->kswapd_wait, &wait);
2990 }
2991
2992 /*
2993 * The background pageout daemon, started as a kernel thread
2994 * from the init process.
2995 *
2996 * This basically trickles out pages so that we have _some_
2997 * free memory available even if there is no other activity
2998 * that frees anything up. This is needed for things like routing
2999 * etc, where we otherwise might have all activity going on in
3000 * asynchronous contexts that cannot page things out.
3001 *
3002 * If there are applications that are active memory-allocators
3003 * (most normal use), this basically shouldn't matter.
3004 */
3005 static int kswapd(void *p)
3006 {
3007 unsigned long order, new_order;
3008 unsigned balanced_order;
3009 int classzone_idx, new_classzone_idx;
3010 int balanced_classzone_idx;
3011 pg_data_t *pgdat = (pg_data_t*)p;
3012 struct task_struct *tsk = current;
3013
3014 struct reclaim_state reclaim_state = {
3015 .reclaimed_slab = 0,
3016 };
3017 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
3018
3019 lockdep_set_current_reclaim_state(GFP_KERNEL);
3020
3021 if (!cpumask_empty(cpumask))
3022 set_cpus_allowed_ptr(tsk, cpumask);
3023 current->reclaim_state = &reclaim_state;
3024
3025 /*
3026 * Tell the memory management that we're a "memory allocator",
3027 * and that if we need more memory we should get access to it
3028 * regardless (see "__alloc_pages()"). "kswapd" should
3029 * never get caught in the normal page freeing logic.
3030 *
3031 * (Kswapd normally doesn't need memory anyway, but sometimes
3032 * you need a small amount of memory in order to be able to
3033 * page out something else, and this flag essentially protects
3034 * us from recursively trying to free more memory as we're
3035 * trying to free the first piece of memory in the first place).
3036 */
3037 tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
3038 set_freezable();
3039
3040 order = new_order = 0;
3041 balanced_order = 0;
3042 classzone_idx = new_classzone_idx = pgdat->nr_zones - 1;
3043 balanced_classzone_idx = classzone_idx;
3044 for ( ; ; ) {
3045 int ret;
3046
3047 /*
3048 * If the last balance_pgdat was unsuccessful it's unlikely a
3049 * new request of a similar or harder type will succeed soon
3050 * so consider going to sleep on the basis we reclaimed at
3051 */
3052 if (balanced_classzone_idx >= new_classzone_idx &&
3053 balanced_order == new_order) {
3054 new_order = pgdat->kswapd_max_order;
3055 new_classzone_idx = pgdat->classzone_idx;
3056 pgdat->kswapd_max_order = 0;
3057 pgdat->classzone_idx = pgdat->nr_zones - 1;
3058 }
3059
3060 if (order < new_order || classzone_idx > new_classzone_idx) {
3061 /*
3062 * Don't sleep if someone wants a larger 'order'
3063 * allocation or has tigher zone constraints
3064 */
3065 order = new_order;
3066 classzone_idx = new_classzone_idx;
3067 } else {
3068 kswapd_try_to_sleep(pgdat, balanced_order,
3069 balanced_classzone_idx);
3070 order = pgdat->kswapd_max_order;
3071 classzone_idx = pgdat->classzone_idx;
3072 new_order = order;
3073 new_classzone_idx = classzone_idx;
3074 pgdat->kswapd_max_order = 0;
3075 pgdat->classzone_idx = pgdat->nr_zones - 1;
3076 }
3077
3078 ret = try_to_freeze();
3079 if (kthread_should_stop())
3080 break;
3081
3082 /*
3083 * We can speed up thawing tasks if we don't call balance_pgdat
3084 * after returning from the refrigerator
3085 */
3086 if (!ret) {
3087 trace_mm_vmscan_kswapd_wake(pgdat->node_id, order);
3088 balanced_classzone_idx = classzone_idx;
3089 balanced_order = balance_pgdat(pgdat, order,
3090 &balanced_classzone_idx);
3091 }
3092 }
3093 return 0;
3094 }
3095
3096 /*
3097 * A zone is low on free memory, so wake its kswapd task to service it.
3098 */
3099 void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx)
3100 {
3101 pg_data_t *pgdat;
3102
3103 if (!populated_zone(zone))
3104 return;
3105
3106 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
3107 return;
3108 pgdat = zone->zone_pgdat;
3109 if (pgdat->kswapd_max_order < order) {
3110 pgdat->kswapd_max_order = order;
3111 pgdat->classzone_idx = min(pgdat->classzone_idx, classzone_idx);
3112 }
3113 if (!waitqueue_active(&pgdat->kswapd_wait))
3114 return;
3115 if (zone_watermark_ok_safe(zone, order, low_wmark_pages(zone), 0, 0))
3116 return;
3117
3118 trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, zone_idx(zone), order);
3119 wake_up_interruptible(&pgdat->kswapd_wait);
3120 }
3121
3122 /*
3123 * The reclaimable count would be mostly accurate.
3124 * The less reclaimable pages may be
3125 * - mlocked pages, which will be moved to unevictable list when encountered
3126 * - mapped pages, which may require several travels to be reclaimed
3127 * - dirty pages, which is not "instantly" reclaimable
3128 */
3129 unsigned long global_reclaimable_pages(void)
3130 {
3131 int nr;
3132
3133 nr = global_page_state(NR_ACTIVE_FILE) +
3134 global_page_state(NR_INACTIVE_FILE);
3135
3136 if (nr_swap_pages > 0)
3137 nr += global_page_state(NR_ACTIVE_ANON) +
3138 global_page_state(NR_INACTIVE_ANON);
3139
3140 return nr;
3141 }
3142
3143 unsigned long zone_reclaimable_pages(struct zone *zone)
3144 {
3145 int nr;
3146
3147 nr = zone_page_state(zone, NR_ACTIVE_FILE) +
3148 zone_page_state(zone, NR_INACTIVE_FILE);
3149
3150 if (nr_swap_pages > 0)
3151 nr += zone_page_state(zone, NR_ACTIVE_ANON) +
3152 zone_page_state(zone, NR_INACTIVE_ANON);
3153
3154 return nr;
3155 }
3156
3157 #ifdef CONFIG_HIBERNATION
3158 /*
3159 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
3160 * freed pages.
3161 *
3162 * Rather than trying to age LRUs the aim is to preserve the overall
3163 * LRU order by reclaiming preferentially
3164 * inactive > active > active referenced > active mapped
3165 */
3166 unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
3167 {
3168 struct reclaim_state reclaim_state;
3169 struct scan_control sc = {
3170 .gfp_mask = GFP_HIGHUSER_MOVABLE,
3171 .may_swap = 1,
3172 .may_unmap = 1,
3173 .may_writepage = 1,
3174 .nr_to_reclaim = nr_to_reclaim,
3175 .hibernation_mode = 1,
3176 .order = 0,
3177 };
3178 struct shrink_control shrink = {
3179 .gfp_mask = sc.gfp_mask,
3180 };
3181 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
3182 struct task_struct *p = current;
3183 unsigned long nr_reclaimed;
3184
3185 p->flags |= PF_MEMALLOC;
3186 lockdep_set_current_reclaim_state(sc.gfp_mask);
3187 reclaim_state.reclaimed_slab = 0;
3188 p->reclaim_state = &reclaim_state;
3189
3190 nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
3191
3192 p->reclaim_state = NULL;
3193 lockdep_clear_current_reclaim_state();
3194 p->flags &= ~PF_MEMALLOC;
3195
3196 return nr_reclaimed;
3197 }
3198 #endif /* CONFIG_HIBERNATION */
3199
3200 /* It's optimal to keep kswapds on the same CPUs as their memory, but
3201 not required for correctness. So if the last cpu in a node goes
3202 away, we get changed to run anywhere: as the first one comes back,
3203 restore their cpu bindings. */
3204 static int __devinit cpu_callback(struct notifier_block *nfb,
3205 unsigned long action, void *hcpu)
3206 {
3207 int nid;
3208
3209 if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
3210 for_each_node_state(nid, N_HIGH_MEMORY) {
3211 pg_data_t *pgdat = NODE_DATA(nid);
3212 const struct cpumask *mask;
3213
3214 mask = cpumask_of_node(pgdat->node_id);
3215
3216 if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
3217 /* One of our CPUs online: restore mask */
3218 set_cpus_allowed_ptr(pgdat->kswapd, mask);
3219 }
3220 }
3221 return NOTIFY_OK;
3222 }
3223
3224 /*
3225 * This kswapd start function will be called by init and node-hot-add.
3226 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
3227 */
3228 int kswapd_run(int nid)
3229 {
3230 pg_data_t *pgdat = NODE_DATA(nid);
3231 int ret = 0;
3232
3233 if (pgdat->kswapd)
3234 return 0;
3235
3236 pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
3237 if (IS_ERR(pgdat->kswapd)) {
3238 /* failure at boot is fatal */
3239 BUG_ON(system_state == SYSTEM_BOOTING);
3240 printk("Failed to start kswapd on node %d\n",nid);
3241 ret = -1;
3242 }
3243 return ret;
3244 }
3245
3246 /*
3247 * Called by memory hotplug when all memory in a node is offlined.
3248 */
3249 void kswapd_stop(int nid)
3250 {
3251 struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
3252
3253 if (kswapd)
3254 kthread_stop(kswapd);
3255 }
3256
3257 static int __init kswapd_init(void)
3258 {
3259 int nid;
3260
3261 swap_setup();
3262 for_each_node_state(nid, N_HIGH_MEMORY)
3263 kswapd_run(nid);
3264 hotcpu_notifier(cpu_callback, 0);
3265 return 0;
3266 }
3267
3268 module_init(kswapd_init)
3269
3270 #ifdef CONFIG_NUMA
3271 /*
3272 * Zone reclaim mode
3273 *
3274 * If non-zero call zone_reclaim when the number of free pages falls below
3275 * the watermarks.
3276 */
3277 int zone_reclaim_mode __read_mostly;
3278
3279 #define RECLAIM_OFF 0
3280 #define RECLAIM_ZONE (1<<0) /* Run shrink_inactive_list on the zone */
3281 #define RECLAIM_WRITE (1<<1) /* Writeout pages during reclaim */
3282 #define RECLAIM_SWAP (1<<2) /* Swap pages out during reclaim */
3283
3284 /*
3285 * Priority for ZONE_RECLAIM. This determines the fraction of pages
3286 * of a node considered for each zone_reclaim. 4 scans 1/16th of
3287 * a zone.
3288 */
3289 #define ZONE_RECLAIM_PRIORITY 4
3290
3291 /*
3292 * Percentage of pages in a zone that must be unmapped for zone_reclaim to
3293 * occur.
3294 */
3295 int sysctl_min_unmapped_ratio = 1;
3296
3297 /*
3298 * If the number of slab pages in a zone grows beyond this percentage then
3299 * slab reclaim needs to occur.
3300 */
3301 int sysctl_min_slab_ratio = 5;
3302
3303 static inline unsigned long zone_unmapped_file_pages(struct zone *zone)
3304 {
3305 unsigned long file_mapped = zone_page_state(zone, NR_FILE_MAPPED);
3306 unsigned long file_lru = zone_page_state(zone, NR_INACTIVE_FILE) +
3307 zone_page_state(zone, NR_ACTIVE_FILE);
3308
3309 /*
3310 * It's possible for there to be more file mapped pages than
3311 * accounted for by the pages on the file LRU lists because
3312 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
3313 */
3314 return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
3315 }
3316
3317 /* Work out how many page cache pages we can reclaim in this reclaim_mode */
3318 static long zone_pagecache_reclaimable(struct zone *zone)
3319 {
3320 long nr_pagecache_reclaimable;
3321 long delta = 0;
3322
3323 /*
3324 * If RECLAIM_SWAP is set, then all file pages are considered
3325 * potentially reclaimable. Otherwise, we have to worry about
3326 * pages like swapcache and zone_unmapped_file_pages() provides
3327 * a better estimate
3328 */
3329 if (zone_reclaim_mode & RECLAIM_SWAP)
3330 nr_pagecache_reclaimable = zone_page_state(zone, NR_FILE_PAGES);
3331 else
3332 nr_pagecache_reclaimable = zone_unmapped_file_pages(zone);
3333
3334 /* If we can't clean pages, remove dirty pages from consideration */
3335 if (!(zone_reclaim_mode & RECLAIM_WRITE))
3336 delta += zone_page_state(zone, NR_FILE_DIRTY);
3337
3338 /* Watch for any possible underflows due to delta */
3339 if (unlikely(delta > nr_pagecache_reclaimable))
3340 delta = nr_pagecache_reclaimable;
3341
3342 return nr_pagecache_reclaimable - delta;
3343 }
3344
3345 /*
3346 * Try to free up some pages from this zone through reclaim.
3347 */
3348 static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3349 {
3350 /* Minimum pages needed in order to stay on node */
3351 const unsigned long nr_pages = 1 << order;
3352 struct task_struct *p = current;
3353 struct reclaim_state reclaim_state;
3354 int priority;
3355 struct scan_control sc = {
3356 .may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE),
3357 .may_unmap = !!(zone_reclaim_mode & RECLAIM_SWAP),
3358 .may_swap = 1,
3359 .nr_to_reclaim = max_t(unsigned long, nr_pages,
3360 SWAP_CLUSTER_MAX),
3361 .gfp_mask = gfp_mask,
3362 .order = order,
3363 };
3364 struct shrink_control shrink = {
3365 .gfp_mask = sc.gfp_mask,
3366 };
3367 unsigned long nr_slab_pages0, nr_slab_pages1;
3368
3369 cond_resched();
3370 /*
3371 * We need to be able to allocate from the reserves for RECLAIM_SWAP
3372 * and we also need to be able to write out pages for RECLAIM_WRITE
3373 * and RECLAIM_SWAP.
3374 */
3375 p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
3376 lockdep_set_current_reclaim_state(gfp_mask);
3377 reclaim_state.reclaimed_slab = 0;
3378 p->reclaim_state = &reclaim_state;
3379
3380 if (zone_pagecache_reclaimable(zone) > zone->min_unmapped_pages) {
3381 /*
3382 * Free memory by calling shrink zone with increasing
3383 * priorities until we have enough memory freed.
3384 */
3385 priority = ZONE_RECLAIM_PRIORITY;
3386 do {
3387 shrink_zone(priority, zone, &sc);
3388 priority--;
3389 } while (priority >= 0 && sc.nr_reclaimed < nr_pages);
3390 }
3391
3392 nr_slab_pages0 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
3393 if (nr_slab_pages0 > zone->min_slab_pages) {
3394 /*
3395 * shrink_slab() does not currently allow us to determine how
3396 * many pages were freed in this zone. So we take the current
3397 * number of slab pages and shake the slab until it is reduced
3398 * by the same nr_pages that we used for reclaiming unmapped
3399 * pages.
3400 *
3401 * Note that shrink_slab will free memory on all zones and may
3402 * take a long time.
3403 */
3404 for (;;) {
3405 unsigned long lru_pages = zone_reclaimable_pages(zone);
3406
3407 /* No reclaimable slab or very low memory pressure */
3408 if (!shrink_slab(&shrink, sc.nr_scanned, lru_pages))
3409 break;
3410
3411 /* Freed enough memory */
3412 nr_slab_pages1 = zone_page_state(zone,
3413 NR_SLAB_RECLAIMABLE);
3414 if (nr_slab_pages1 + nr_pages <= nr_slab_pages0)
3415 break;
3416 }
3417
3418 /*
3419 * Update nr_reclaimed by the number of slab pages we
3420 * reclaimed from this zone.
3421 */
3422 nr_slab_pages1 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
3423 if (nr_slab_pages1 < nr_slab_pages0)
3424 sc.nr_reclaimed += nr_slab_pages0 - nr_slab_pages1;
3425 }
3426
3427 p->reclaim_state = NULL;
3428 current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
3429 lockdep_clear_current_reclaim_state();
3430 return sc.nr_reclaimed >= nr_pages;
3431 }
3432
3433 int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3434 {
3435 int node_id;
3436 int ret;
3437
3438 /*
3439 * Zone reclaim reclaims unmapped file backed pages and
3440 * slab pages if we are over the defined limits.
3441 *
3442 * A small portion of unmapped file backed pages is needed for
3443 * file I/O otherwise pages read by file I/O will be immediately
3444 * thrown out if the zone is overallocated. So we do not reclaim
3445 * if less than a specified percentage of the zone is used by
3446 * unmapped file backed pages.
3447 */
3448 if (zone_pagecache_reclaimable(zone) <= zone->min_unmapped_pages &&
3449 zone_page_state(zone, NR_SLAB_RECLAIMABLE) <= zone->min_slab_pages)
3450 return ZONE_RECLAIM_FULL;
3451
3452 if (zone->all_unreclaimable)
3453 return ZONE_RECLAIM_FULL;
3454
3455 /*
3456 * Do not scan if the allocation should not be delayed.
3457 */
3458 if (!(gfp_mask & __GFP_WAIT) || (current->flags & PF_MEMALLOC))
3459 return ZONE_RECLAIM_NOSCAN;
3460
3461 /*
3462 * Only run zone reclaim on the local zone or on zones that do not
3463 * have associated processors. This will favor the local processor
3464 * over remote processors and spread off node memory allocations
3465 * as wide as possible.
3466 */
3467 node_id = zone_to_nid(zone);
3468 if (node_state(node_id, N_CPU) && node_id != numa_node_id())
3469 return ZONE_RECLAIM_NOSCAN;
3470
3471 if (zone_test_and_set_flag(zone, ZONE_RECLAIM_LOCKED))
3472 return ZONE_RECLAIM_NOSCAN;
3473
3474 ret = __zone_reclaim(zone, gfp_mask, order);
3475 zone_clear_flag(zone, ZONE_RECLAIM_LOCKED);
3476
3477 if (!ret)
3478 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
3479
3480 return ret;
3481 }
3482 #endif
3483
3484 /*
3485 * page_evictable - test whether a page is evictable
3486 * @page: the page to test
3487 * @vma: the VMA in which the page is or will be mapped, may be NULL
3488 *
3489 * Test whether page is evictable--i.e., should be placed on active/inactive
3490 * lists vs unevictable list. The vma argument is !NULL when called from the
3491 * fault path to determine how to instantate a new page.
3492 *
3493 * Reasons page might not be evictable:
3494 * (1) page's mapping marked unevictable
3495 * (2) page is part of an mlocked VMA
3496 *
3497 */
3498 int page_evictable(struct page *page, struct vm_area_struct *vma)
3499 {
3500
3501 if (mapping_unevictable(page_mapping(page)))
3502 return 0;
3503
3504 if (PageMlocked(page) || (vma && is_mlocked_vma(vma, page)))
3505 return 0;
3506
3507 return 1;
3508 }
3509
3510 /**
3511 * check_move_unevictable_page - check page for evictability and move to appropriate zone lru list
3512 * @page: page to check evictability and move to appropriate lru list
3513 * @zone: zone page is in
3514 *
3515 * Checks a page for evictability and moves the page to the appropriate
3516 * zone lru list.
3517 *
3518 * Restrictions: zone->lru_lock must be held, page must be on LRU and must
3519 * have PageUnevictable set.
3520 */
3521 static void check_move_unevictable_page(struct page *page, struct zone *zone)
3522 {
3523 struct lruvec *lruvec;
3524
3525 VM_BUG_ON(PageActive(page));
3526 retry:
3527 ClearPageUnevictable(page);
3528 if (page_evictable(page, NULL)) {
3529 enum lru_list l = page_lru_base_type(page);
3530
3531 __dec_zone_state(zone, NR_UNEVICTABLE);
3532 lruvec = mem_cgroup_lru_move_lists(zone, page,
3533 LRU_UNEVICTABLE, l);
3534 list_move(&page->lru, &lruvec->lists[l]);
3535 __inc_zone_state(zone, NR_INACTIVE_ANON + l);
3536 __count_vm_event(UNEVICTABLE_PGRESCUED);
3537 } else {
3538 /*
3539 * rotate unevictable list
3540 */
3541 SetPageUnevictable(page);
3542 lruvec = mem_cgroup_lru_move_lists(zone, page, LRU_UNEVICTABLE,
3543 LRU_UNEVICTABLE);
3544 list_move(&page->lru, &lruvec->lists[LRU_UNEVICTABLE]);
3545 if (page_evictable(page, NULL))
3546 goto retry;
3547 }
3548 }
3549
3550 /**
3551 * scan_mapping_unevictable_pages - scan an address space for evictable pages
3552 * @mapping: struct address_space to scan for evictable pages
3553 *
3554 * Scan all pages in mapping. Check unevictable pages for
3555 * evictability and move them to the appropriate zone lru list.
3556 */
3557 void scan_mapping_unevictable_pages(struct address_space *mapping)
3558 {
3559 pgoff_t next = 0;
3560 pgoff_t end = (i_size_read(mapping->host) + PAGE_CACHE_SIZE - 1) >>
3561 PAGE_CACHE_SHIFT;
3562 struct zone *zone;
3563 struct pagevec pvec;
3564
3565 if (mapping->nrpages == 0)
3566 return;
3567
3568 pagevec_init(&pvec, 0);
3569 while (next < end &&
3570 pagevec_lookup(&pvec, mapping, next, PAGEVEC_SIZE)) {
3571 int i;
3572 int pg_scanned = 0;
3573
3574 zone = NULL;
3575
3576 for (i = 0; i < pagevec_count(&pvec); i++) {
3577 struct page *page = pvec.pages[i];
3578 pgoff_t page_index = page->index;
3579 struct zone *pagezone = page_zone(page);
3580
3581 pg_scanned++;
3582 if (page_index > next)
3583 next = page_index;
3584 next++;
3585
3586 if (pagezone != zone) {
3587 if (zone)
3588 spin_unlock_irq(&zone->lru_lock);
3589 zone = pagezone;
3590 spin_lock_irq(&zone->lru_lock);
3591 }
3592
3593 if (PageLRU(page) && PageUnevictable(page))
3594 check_move_unevictable_page(page, zone);
3595 }
3596 if (zone)
3597 spin_unlock_irq(&zone->lru_lock);
3598 pagevec_release(&pvec);
3599
3600 count_vm_events(UNEVICTABLE_PGSCANNED, pg_scanned);
3601 }
3602
3603 }
3604
3605 static void warn_scan_unevictable_pages(void)
3606 {
3607 printk_once(KERN_WARNING
3608 "%s: The scan_unevictable_pages sysctl/node-interface has been "
3609 "disabled for lack of a legitimate use case. If you have "
3610 "one, please send an email to linux-mm@kvack.org.\n",
3611 current->comm);
3612 }
3613
3614 /*
3615 * scan_unevictable_pages [vm] sysctl handler. On demand re-scan of
3616 * all nodes' unevictable lists for evictable pages
3617 */
3618 unsigned long scan_unevictable_pages;
3619
3620 int scan_unevictable_handler(struct ctl_table *table, int write,
3621 void __user *buffer,
3622 size_t *length, loff_t *ppos)
3623 {
3624 warn_scan_unevictable_pages();
3625 proc_doulongvec_minmax(table, write, buffer, length, ppos);
3626 scan_unevictable_pages = 0;
3627 return 0;
3628 }
3629
3630 #ifdef CONFIG_NUMA
3631 /*
3632 * per node 'scan_unevictable_pages' attribute. On demand re-scan of
3633 * a specified node's per zone unevictable lists for evictable pages.
3634 */
3635
3636 static ssize_t read_scan_unevictable_node(struct device *dev,
3637 struct device_attribute *attr,
3638 char *buf)
3639 {
3640 warn_scan_unevictable_pages();
3641 return sprintf(buf, "0\n"); /* always zero; should fit... */
3642 }
3643
3644 static ssize_t write_scan_unevictable_node(struct device *dev,
3645 struct device_attribute *attr,
3646 const char *buf, size_t count)
3647 {
3648 warn_scan_unevictable_pages();
3649 return 1;
3650 }
3651
3652
3653 static DEVICE_ATTR(scan_unevictable_pages, S_IRUGO | S_IWUSR,
3654 read_scan_unevictable_node,
3655 write_scan_unevictable_node);
3656
3657 int scan_unevictable_register_node(struct node *node)
3658 {
3659 return device_create_file(&node->dev, &dev_attr_scan_unevictable_pages);
3660 }
3661
3662 void scan_unevictable_unregister_node(struct node *node)
3663 {
3664 device_remove_file(&node->dev, &dev_attr_scan_unevictable_pages);
3665 }
3666 #endif