]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - mm/vmstat.c
cma: count free CMA pages
[mirror_ubuntu-artful-kernel.git] / mm / vmstat.c
1 /*
2 * linux/mm/vmstat.c
3 *
4 * Manages VM statistics
5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
6 *
7 * zoned VM statistics
8 * Copyright (C) 2006 Silicon Graphics, Inc.,
9 * Christoph Lameter <christoph@lameter.com>
10 */
11 #include <linux/fs.h>
12 #include <linux/mm.h>
13 #include <linux/err.h>
14 #include <linux/module.h>
15 #include <linux/slab.h>
16 #include <linux/cpu.h>
17 #include <linux/vmstat.h>
18 #include <linux/sched.h>
19 #include <linux/math64.h>
20 #include <linux/writeback.h>
21 #include <linux/compaction.h>
22
23 #ifdef CONFIG_VM_EVENT_COUNTERS
24 DEFINE_PER_CPU(struct vm_event_state, vm_event_states) = {{0}};
25 EXPORT_PER_CPU_SYMBOL(vm_event_states);
26
27 static void sum_vm_events(unsigned long *ret)
28 {
29 int cpu;
30 int i;
31
32 memset(ret, 0, NR_VM_EVENT_ITEMS * sizeof(unsigned long));
33
34 for_each_online_cpu(cpu) {
35 struct vm_event_state *this = &per_cpu(vm_event_states, cpu);
36
37 for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
38 ret[i] += this->event[i];
39 }
40 }
41
42 /*
43 * Accumulate the vm event counters across all CPUs.
44 * The result is unavoidably approximate - it can change
45 * during and after execution of this function.
46 */
47 void all_vm_events(unsigned long *ret)
48 {
49 get_online_cpus();
50 sum_vm_events(ret);
51 put_online_cpus();
52 }
53 EXPORT_SYMBOL_GPL(all_vm_events);
54
55 #ifdef CONFIG_HOTPLUG
56 /*
57 * Fold the foreign cpu events into our own.
58 *
59 * This is adding to the events on one processor
60 * but keeps the global counts constant.
61 */
62 void vm_events_fold_cpu(int cpu)
63 {
64 struct vm_event_state *fold_state = &per_cpu(vm_event_states, cpu);
65 int i;
66
67 for (i = 0; i < NR_VM_EVENT_ITEMS; i++) {
68 count_vm_events(i, fold_state->event[i]);
69 fold_state->event[i] = 0;
70 }
71 }
72 #endif /* CONFIG_HOTPLUG */
73
74 #endif /* CONFIG_VM_EVENT_COUNTERS */
75
76 /*
77 * Manage combined zone based / global counters
78 *
79 * vm_stat contains the global counters
80 */
81 atomic_long_t vm_stat[NR_VM_ZONE_STAT_ITEMS] __cacheline_aligned_in_smp;
82 EXPORT_SYMBOL(vm_stat);
83
84 #ifdef CONFIG_SMP
85
86 int calculate_pressure_threshold(struct zone *zone)
87 {
88 int threshold;
89 int watermark_distance;
90
91 /*
92 * As vmstats are not up to date, there is drift between the estimated
93 * and real values. For high thresholds and a high number of CPUs, it
94 * is possible for the min watermark to be breached while the estimated
95 * value looks fine. The pressure threshold is a reduced value such
96 * that even the maximum amount of drift will not accidentally breach
97 * the min watermark
98 */
99 watermark_distance = low_wmark_pages(zone) - min_wmark_pages(zone);
100 threshold = max(1, (int)(watermark_distance / num_online_cpus()));
101
102 /*
103 * Maximum threshold is 125
104 */
105 threshold = min(125, threshold);
106
107 return threshold;
108 }
109
110 int calculate_normal_threshold(struct zone *zone)
111 {
112 int threshold;
113 int mem; /* memory in 128 MB units */
114
115 /*
116 * The threshold scales with the number of processors and the amount
117 * of memory per zone. More memory means that we can defer updates for
118 * longer, more processors could lead to more contention.
119 * fls() is used to have a cheap way of logarithmic scaling.
120 *
121 * Some sample thresholds:
122 *
123 * Threshold Processors (fls) Zonesize fls(mem+1)
124 * ------------------------------------------------------------------
125 * 8 1 1 0.9-1 GB 4
126 * 16 2 2 0.9-1 GB 4
127 * 20 2 2 1-2 GB 5
128 * 24 2 2 2-4 GB 6
129 * 28 2 2 4-8 GB 7
130 * 32 2 2 8-16 GB 8
131 * 4 2 2 <128M 1
132 * 30 4 3 2-4 GB 5
133 * 48 4 3 8-16 GB 8
134 * 32 8 4 1-2 GB 4
135 * 32 8 4 0.9-1GB 4
136 * 10 16 5 <128M 1
137 * 40 16 5 900M 4
138 * 70 64 7 2-4 GB 5
139 * 84 64 7 4-8 GB 6
140 * 108 512 9 4-8 GB 6
141 * 125 1024 10 8-16 GB 8
142 * 125 1024 10 16-32 GB 9
143 */
144
145 mem = zone->present_pages >> (27 - PAGE_SHIFT);
146
147 threshold = 2 * fls(num_online_cpus()) * (1 + fls(mem));
148
149 /*
150 * Maximum threshold is 125
151 */
152 threshold = min(125, threshold);
153
154 return threshold;
155 }
156
157 /*
158 * Refresh the thresholds for each zone.
159 */
160 void refresh_zone_stat_thresholds(void)
161 {
162 struct zone *zone;
163 int cpu;
164 int threshold;
165
166 for_each_populated_zone(zone) {
167 unsigned long max_drift, tolerate_drift;
168
169 threshold = calculate_normal_threshold(zone);
170
171 for_each_online_cpu(cpu)
172 per_cpu_ptr(zone->pageset, cpu)->stat_threshold
173 = threshold;
174
175 /*
176 * Only set percpu_drift_mark if there is a danger that
177 * NR_FREE_PAGES reports the low watermark is ok when in fact
178 * the min watermark could be breached by an allocation
179 */
180 tolerate_drift = low_wmark_pages(zone) - min_wmark_pages(zone);
181 max_drift = num_online_cpus() * threshold;
182 if (max_drift > tolerate_drift)
183 zone->percpu_drift_mark = high_wmark_pages(zone) +
184 max_drift;
185 }
186 }
187
188 void set_pgdat_percpu_threshold(pg_data_t *pgdat,
189 int (*calculate_pressure)(struct zone *))
190 {
191 struct zone *zone;
192 int cpu;
193 int threshold;
194 int i;
195
196 for (i = 0; i < pgdat->nr_zones; i++) {
197 zone = &pgdat->node_zones[i];
198 if (!zone->percpu_drift_mark)
199 continue;
200
201 threshold = (*calculate_pressure)(zone);
202 for_each_possible_cpu(cpu)
203 per_cpu_ptr(zone->pageset, cpu)->stat_threshold
204 = threshold;
205 }
206 }
207
208 /*
209 * For use when we know that interrupts are disabled.
210 */
211 void __mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
212 int delta)
213 {
214 struct per_cpu_pageset __percpu *pcp = zone->pageset;
215 s8 __percpu *p = pcp->vm_stat_diff + item;
216 long x;
217 long t;
218
219 x = delta + __this_cpu_read(*p);
220
221 t = __this_cpu_read(pcp->stat_threshold);
222
223 if (unlikely(x > t || x < -t)) {
224 zone_page_state_add(x, zone, item);
225 x = 0;
226 }
227 __this_cpu_write(*p, x);
228 }
229 EXPORT_SYMBOL(__mod_zone_page_state);
230
231 /*
232 * Optimized increment and decrement functions.
233 *
234 * These are only for a single page and therefore can take a struct page *
235 * argument instead of struct zone *. This allows the inclusion of the code
236 * generated for page_zone(page) into the optimized functions.
237 *
238 * No overflow check is necessary and therefore the differential can be
239 * incremented or decremented in place which may allow the compilers to
240 * generate better code.
241 * The increment or decrement is known and therefore one boundary check can
242 * be omitted.
243 *
244 * NOTE: These functions are very performance sensitive. Change only
245 * with care.
246 *
247 * Some processors have inc/dec instructions that are atomic vs an interrupt.
248 * However, the code must first determine the differential location in a zone
249 * based on the processor number and then inc/dec the counter. There is no
250 * guarantee without disabling preemption that the processor will not change
251 * in between and therefore the atomicity vs. interrupt cannot be exploited
252 * in a useful way here.
253 */
254 void __inc_zone_state(struct zone *zone, enum zone_stat_item item)
255 {
256 struct per_cpu_pageset __percpu *pcp = zone->pageset;
257 s8 __percpu *p = pcp->vm_stat_diff + item;
258 s8 v, t;
259
260 v = __this_cpu_inc_return(*p);
261 t = __this_cpu_read(pcp->stat_threshold);
262 if (unlikely(v > t)) {
263 s8 overstep = t >> 1;
264
265 zone_page_state_add(v + overstep, zone, item);
266 __this_cpu_write(*p, -overstep);
267 }
268 }
269
270 void __inc_zone_page_state(struct page *page, enum zone_stat_item item)
271 {
272 __inc_zone_state(page_zone(page), item);
273 }
274 EXPORT_SYMBOL(__inc_zone_page_state);
275
276 void __dec_zone_state(struct zone *zone, enum zone_stat_item item)
277 {
278 struct per_cpu_pageset __percpu *pcp = zone->pageset;
279 s8 __percpu *p = pcp->vm_stat_diff + item;
280 s8 v, t;
281
282 v = __this_cpu_dec_return(*p);
283 t = __this_cpu_read(pcp->stat_threshold);
284 if (unlikely(v < - t)) {
285 s8 overstep = t >> 1;
286
287 zone_page_state_add(v - overstep, zone, item);
288 __this_cpu_write(*p, overstep);
289 }
290 }
291
292 void __dec_zone_page_state(struct page *page, enum zone_stat_item item)
293 {
294 __dec_zone_state(page_zone(page), item);
295 }
296 EXPORT_SYMBOL(__dec_zone_page_state);
297
298 #ifdef CONFIG_HAVE_CMPXCHG_LOCAL
299 /*
300 * If we have cmpxchg_local support then we do not need to incur the overhead
301 * that comes with local_irq_save/restore if we use this_cpu_cmpxchg.
302 *
303 * mod_state() modifies the zone counter state through atomic per cpu
304 * operations.
305 *
306 * Overstep mode specifies how overstep should handled:
307 * 0 No overstepping
308 * 1 Overstepping half of threshold
309 * -1 Overstepping minus half of threshold
310 */
311 static inline void mod_state(struct zone *zone,
312 enum zone_stat_item item, int delta, int overstep_mode)
313 {
314 struct per_cpu_pageset __percpu *pcp = zone->pageset;
315 s8 __percpu *p = pcp->vm_stat_diff + item;
316 long o, n, t, z;
317
318 do {
319 z = 0; /* overflow to zone counters */
320
321 /*
322 * The fetching of the stat_threshold is racy. We may apply
323 * a counter threshold to the wrong the cpu if we get
324 * rescheduled while executing here. However, the next
325 * counter update will apply the threshold again and
326 * therefore bring the counter under the threshold again.
327 *
328 * Most of the time the thresholds are the same anyways
329 * for all cpus in a zone.
330 */
331 t = this_cpu_read(pcp->stat_threshold);
332
333 o = this_cpu_read(*p);
334 n = delta + o;
335
336 if (n > t || n < -t) {
337 int os = overstep_mode * (t >> 1) ;
338
339 /* Overflow must be added to zone counters */
340 z = n + os;
341 n = -os;
342 }
343 } while (this_cpu_cmpxchg(*p, o, n) != o);
344
345 if (z)
346 zone_page_state_add(z, zone, item);
347 }
348
349 void mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
350 int delta)
351 {
352 mod_state(zone, item, delta, 0);
353 }
354 EXPORT_SYMBOL(mod_zone_page_state);
355
356 void inc_zone_state(struct zone *zone, enum zone_stat_item item)
357 {
358 mod_state(zone, item, 1, 1);
359 }
360
361 void inc_zone_page_state(struct page *page, enum zone_stat_item item)
362 {
363 mod_state(page_zone(page), item, 1, 1);
364 }
365 EXPORT_SYMBOL(inc_zone_page_state);
366
367 void dec_zone_page_state(struct page *page, enum zone_stat_item item)
368 {
369 mod_state(page_zone(page), item, -1, -1);
370 }
371 EXPORT_SYMBOL(dec_zone_page_state);
372 #else
373 /*
374 * Use interrupt disable to serialize counter updates
375 */
376 void mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
377 int delta)
378 {
379 unsigned long flags;
380
381 local_irq_save(flags);
382 __mod_zone_page_state(zone, item, delta);
383 local_irq_restore(flags);
384 }
385 EXPORT_SYMBOL(mod_zone_page_state);
386
387 void inc_zone_state(struct zone *zone, enum zone_stat_item item)
388 {
389 unsigned long flags;
390
391 local_irq_save(flags);
392 __inc_zone_state(zone, item);
393 local_irq_restore(flags);
394 }
395
396 void inc_zone_page_state(struct page *page, enum zone_stat_item item)
397 {
398 unsigned long flags;
399 struct zone *zone;
400
401 zone = page_zone(page);
402 local_irq_save(flags);
403 __inc_zone_state(zone, item);
404 local_irq_restore(flags);
405 }
406 EXPORT_SYMBOL(inc_zone_page_state);
407
408 void dec_zone_page_state(struct page *page, enum zone_stat_item item)
409 {
410 unsigned long flags;
411
412 local_irq_save(flags);
413 __dec_zone_page_state(page, item);
414 local_irq_restore(flags);
415 }
416 EXPORT_SYMBOL(dec_zone_page_state);
417 #endif
418
419 /*
420 * Update the zone counters for one cpu.
421 *
422 * The cpu specified must be either the current cpu or a processor that
423 * is not online. If it is the current cpu then the execution thread must
424 * be pinned to the current cpu.
425 *
426 * Note that refresh_cpu_vm_stats strives to only access
427 * node local memory. The per cpu pagesets on remote zones are placed
428 * in the memory local to the processor using that pageset. So the
429 * loop over all zones will access a series of cachelines local to
430 * the processor.
431 *
432 * The call to zone_page_state_add updates the cachelines with the
433 * statistics in the remote zone struct as well as the global cachelines
434 * with the global counters. These could cause remote node cache line
435 * bouncing and will have to be only done when necessary.
436 */
437 void refresh_cpu_vm_stats(int cpu)
438 {
439 struct zone *zone;
440 int i;
441 int global_diff[NR_VM_ZONE_STAT_ITEMS] = { 0, };
442
443 for_each_populated_zone(zone) {
444 struct per_cpu_pageset *p;
445
446 p = per_cpu_ptr(zone->pageset, cpu);
447
448 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
449 if (p->vm_stat_diff[i]) {
450 unsigned long flags;
451 int v;
452
453 local_irq_save(flags);
454 v = p->vm_stat_diff[i];
455 p->vm_stat_diff[i] = 0;
456 local_irq_restore(flags);
457 atomic_long_add(v, &zone->vm_stat[i]);
458 global_diff[i] += v;
459 #ifdef CONFIG_NUMA
460 /* 3 seconds idle till flush */
461 p->expire = 3;
462 #endif
463 }
464 cond_resched();
465 #ifdef CONFIG_NUMA
466 /*
467 * Deal with draining the remote pageset of this
468 * processor
469 *
470 * Check if there are pages remaining in this pageset
471 * if not then there is nothing to expire.
472 */
473 if (!p->expire || !p->pcp.count)
474 continue;
475
476 /*
477 * We never drain zones local to this processor.
478 */
479 if (zone_to_nid(zone) == numa_node_id()) {
480 p->expire = 0;
481 continue;
482 }
483
484 p->expire--;
485 if (p->expire)
486 continue;
487
488 if (p->pcp.count)
489 drain_zone_pages(zone, &p->pcp);
490 #endif
491 }
492
493 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
494 if (global_diff[i])
495 atomic_long_add(global_diff[i], &vm_stat[i]);
496 }
497
498 #endif
499
500 #ifdef CONFIG_NUMA
501 /*
502 * zonelist = the list of zones passed to the allocator
503 * z = the zone from which the allocation occurred.
504 *
505 * Must be called with interrupts disabled.
506 *
507 * When __GFP_OTHER_NODE is set assume the node of the preferred
508 * zone is the local node. This is useful for daemons who allocate
509 * memory on behalf of other processes.
510 */
511 void zone_statistics(struct zone *preferred_zone, struct zone *z, gfp_t flags)
512 {
513 if (z->zone_pgdat == preferred_zone->zone_pgdat) {
514 __inc_zone_state(z, NUMA_HIT);
515 } else {
516 __inc_zone_state(z, NUMA_MISS);
517 __inc_zone_state(preferred_zone, NUMA_FOREIGN);
518 }
519 if (z->node == ((flags & __GFP_OTHER_NODE) ?
520 preferred_zone->node : numa_node_id()))
521 __inc_zone_state(z, NUMA_LOCAL);
522 else
523 __inc_zone_state(z, NUMA_OTHER);
524 }
525 #endif
526
527 #ifdef CONFIG_COMPACTION
528
529 struct contig_page_info {
530 unsigned long free_pages;
531 unsigned long free_blocks_total;
532 unsigned long free_blocks_suitable;
533 };
534
535 /*
536 * Calculate the number of free pages in a zone, how many contiguous
537 * pages are free and how many are large enough to satisfy an allocation of
538 * the target size. Note that this function makes no attempt to estimate
539 * how many suitable free blocks there *might* be if MOVABLE pages were
540 * migrated. Calculating that is possible, but expensive and can be
541 * figured out from userspace
542 */
543 static void fill_contig_page_info(struct zone *zone,
544 unsigned int suitable_order,
545 struct contig_page_info *info)
546 {
547 unsigned int order;
548
549 info->free_pages = 0;
550 info->free_blocks_total = 0;
551 info->free_blocks_suitable = 0;
552
553 for (order = 0; order < MAX_ORDER; order++) {
554 unsigned long blocks;
555
556 /* Count number of free blocks */
557 blocks = zone->free_area[order].nr_free;
558 info->free_blocks_total += blocks;
559
560 /* Count free base pages */
561 info->free_pages += blocks << order;
562
563 /* Count the suitable free blocks */
564 if (order >= suitable_order)
565 info->free_blocks_suitable += blocks <<
566 (order - suitable_order);
567 }
568 }
569
570 /*
571 * A fragmentation index only makes sense if an allocation of a requested
572 * size would fail. If that is true, the fragmentation index indicates
573 * whether external fragmentation or a lack of memory was the problem.
574 * The value can be used to determine if page reclaim or compaction
575 * should be used
576 */
577 static int __fragmentation_index(unsigned int order, struct contig_page_info *info)
578 {
579 unsigned long requested = 1UL << order;
580
581 if (!info->free_blocks_total)
582 return 0;
583
584 /* Fragmentation index only makes sense when a request would fail */
585 if (info->free_blocks_suitable)
586 return -1000;
587
588 /*
589 * Index is between 0 and 1 so return within 3 decimal places
590 *
591 * 0 => allocation would fail due to lack of memory
592 * 1 => allocation would fail due to fragmentation
593 */
594 return 1000 - div_u64( (1000+(div_u64(info->free_pages * 1000ULL, requested))), info->free_blocks_total);
595 }
596
597 /* Same as __fragmentation index but allocs contig_page_info on stack */
598 int fragmentation_index(struct zone *zone, unsigned int order)
599 {
600 struct contig_page_info info;
601
602 fill_contig_page_info(zone, order, &info);
603 return __fragmentation_index(order, &info);
604 }
605 #endif
606
607 #if defined(CONFIG_PROC_FS) || defined(CONFIG_COMPACTION)
608 #include <linux/proc_fs.h>
609 #include <linux/seq_file.h>
610
611 static char * const migratetype_names[MIGRATE_TYPES] = {
612 "Unmovable",
613 "Reclaimable",
614 "Movable",
615 "Reserve",
616 #ifdef CONFIG_CMA
617 "CMA",
618 #endif
619 "Isolate",
620 };
621
622 static void *frag_start(struct seq_file *m, loff_t *pos)
623 {
624 pg_data_t *pgdat;
625 loff_t node = *pos;
626 for (pgdat = first_online_pgdat();
627 pgdat && node;
628 pgdat = next_online_pgdat(pgdat))
629 --node;
630
631 return pgdat;
632 }
633
634 static void *frag_next(struct seq_file *m, void *arg, loff_t *pos)
635 {
636 pg_data_t *pgdat = (pg_data_t *)arg;
637
638 (*pos)++;
639 return next_online_pgdat(pgdat);
640 }
641
642 static void frag_stop(struct seq_file *m, void *arg)
643 {
644 }
645
646 /* Walk all the zones in a node and print using a callback */
647 static void walk_zones_in_node(struct seq_file *m, pg_data_t *pgdat,
648 void (*print)(struct seq_file *m, pg_data_t *, struct zone *))
649 {
650 struct zone *zone;
651 struct zone *node_zones = pgdat->node_zones;
652 unsigned long flags;
653
654 for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) {
655 if (!populated_zone(zone))
656 continue;
657
658 spin_lock_irqsave(&zone->lock, flags);
659 print(m, pgdat, zone);
660 spin_unlock_irqrestore(&zone->lock, flags);
661 }
662 }
663 #endif
664
665 #if defined(CONFIG_PROC_FS) || defined(CONFIG_SYSFS) || defined(CONFIG_NUMA)
666 #ifdef CONFIG_ZONE_DMA
667 #define TEXT_FOR_DMA(xx) xx "_dma",
668 #else
669 #define TEXT_FOR_DMA(xx)
670 #endif
671
672 #ifdef CONFIG_ZONE_DMA32
673 #define TEXT_FOR_DMA32(xx) xx "_dma32",
674 #else
675 #define TEXT_FOR_DMA32(xx)
676 #endif
677
678 #ifdef CONFIG_HIGHMEM
679 #define TEXT_FOR_HIGHMEM(xx) xx "_high",
680 #else
681 #define TEXT_FOR_HIGHMEM(xx)
682 #endif
683
684 #define TEXTS_FOR_ZONES(xx) TEXT_FOR_DMA(xx) TEXT_FOR_DMA32(xx) xx "_normal", \
685 TEXT_FOR_HIGHMEM(xx) xx "_movable",
686
687 const char * const vmstat_text[] = {
688 /* Zoned VM counters */
689 "nr_free_pages",
690 "nr_inactive_anon",
691 "nr_active_anon",
692 "nr_inactive_file",
693 "nr_active_file",
694 "nr_unevictable",
695 "nr_mlock",
696 "nr_anon_pages",
697 "nr_mapped",
698 "nr_file_pages",
699 "nr_dirty",
700 "nr_writeback",
701 "nr_slab_reclaimable",
702 "nr_slab_unreclaimable",
703 "nr_page_table_pages",
704 "nr_kernel_stack",
705 "nr_unstable",
706 "nr_bounce",
707 "nr_vmscan_write",
708 "nr_vmscan_immediate_reclaim",
709 "nr_writeback_temp",
710 "nr_isolated_anon",
711 "nr_isolated_file",
712 "nr_shmem",
713 "nr_dirtied",
714 "nr_written",
715
716 #ifdef CONFIG_NUMA
717 "numa_hit",
718 "numa_miss",
719 "numa_foreign",
720 "numa_interleave",
721 "numa_local",
722 "numa_other",
723 #endif
724 "nr_anon_transparent_hugepages",
725 "nr_free_cma",
726 "nr_dirty_threshold",
727 "nr_dirty_background_threshold",
728
729 #ifdef CONFIG_VM_EVENT_COUNTERS
730 "pgpgin",
731 "pgpgout",
732 "pswpin",
733 "pswpout",
734
735 TEXTS_FOR_ZONES("pgalloc")
736
737 "pgfree",
738 "pgactivate",
739 "pgdeactivate",
740
741 "pgfault",
742 "pgmajfault",
743
744 TEXTS_FOR_ZONES("pgrefill")
745 TEXTS_FOR_ZONES("pgsteal_kswapd")
746 TEXTS_FOR_ZONES("pgsteal_direct")
747 TEXTS_FOR_ZONES("pgscan_kswapd")
748 TEXTS_FOR_ZONES("pgscan_direct")
749 "pgscan_direct_throttle",
750
751 #ifdef CONFIG_NUMA
752 "zone_reclaim_failed",
753 #endif
754 "pginodesteal",
755 "slabs_scanned",
756 "kswapd_inodesteal",
757 "kswapd_low_wmark_hit_quickly",
758 "kswapd_high_wmark_hit_quickly",
759 "kswapd_skip_congestion_wait",
760 "pageoutrun",
761 "allocstall",
762
763 "pgrotated",
764
765 #ifdef CONFIG_COMPACTION
766 "compact_blocks_moved",
767 "compact_pages_moved",
768 "compact_pagemigrate_failed",
769 "compact_stall",
770 "compact_fail",
771 "compact_success",
772 #endif
773
774 #ifdef CONFIG_HUGETLB_PAGE
775 "htlb_buddy_alloc_success",
776 "htlb_buddy_alloc_fail",
777 #endif
778 "unevictable_pgs_culled",
779 "unevictable_pgs_scanned",
780 "unevictable_pgs_rescued",
781 "unevictable_pgs_mlocked",
782 "unevictable_pgs_munlocked",
783 "unevictable_pgs_cleared",
784 "unevictable_pgs_stranded",
785 "unevictable_pgs_mlockfreed",
786
787 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
788 "thp_fault_alloc",
789 "thp_fault_fallback",
790 "thp_collapse_alloc",
791 "thp_collapse_alloc_failed",
792 "thp_split",
793 #endif
794
795 #endif /* CONFIG_VM_EVENTS_COUNTERS */
796 };
797 #endif /* CONFIG_PROC_FS || CONFIG_SYSFS || CONFIG_NUMA */
798
799
800 #ifdef CONFIG_PROC_FS
801 static void frag_show_print(struct seq_file *m, pg_data_t *pgdat,
802 struct zone *zone)
803 {
804 int order;
805
806 seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name);
807 for (order = 0; order < MAX_ORDER; ++order)
808 seq_printf(m, "%6lu ", zone->free_area[order].nr_free);
809 seq_putc(m, '\n');
810 }
811
812 /*
813 * This walks the free areas for each zone.
814 */
815 static int frag_show(struct seq_file *m, void *arg)
816 {
817 pg_data_t *pgdat = (pg_data_t *)arg;
818 walk_zones_in_node(m, pgdat, frag_show_print);
819 return 0;
820 }
821
822 static void pagetypeinfo_showfree_print(struct seq_file *m,
823 pg_data_t *pgdat, struct zone *zone)
824 {
825 int order, mtype;
826
827 for (mtype = 0; mtype < MIGRATE_TYPES; mtype++) {
828 seq_printf(m, "Node %4d, zone %8s, type %12s ",
829 pgdat->node_id,
830 zone->name,
831 migratetype_names[mtype]);
832 for (order = 0; order < MAX_ORDER; ++order) {
833 unsigned long freecount = 0;
834 struct free_area *area;
835 struct list_head *curr;
836
837 area = &(zone->free_area[order]);
838
839 list_for_each(curr, &area->free_list[mtype])
840 freecount++;
841 seq_printf(m, "%6lu ", freecount);
842 }
843 seq_putc(m, '\n');
844 }
845 }
846
847 /* Print out the free pages at each order for each migatetype */
848 static int pagetypeinfo_showfree(struct seq_file *m, void *arg)
849 {
850 int order;
851 pg_data_t *pgdat = (pg_data_t *)arg;
852
853 /* Print header */
854 seq_printf(m, "%-43s ", "Free pages count per migrate type at order");
855 for (order = 0; order < MAX_ORDER; ++order)
856 seq_printf(m, "%6d ", order);
857 seq_putc(m, '\n');
858
859 walk_zones_in_node(m, pgdat, pagetypeinfo_showfree_print);
860
861 return 0;
862 }
863
864 static void pagetypeinfo_showblockcount_print(struct seq_file *m,
865 pg_data_t *pgdat, struct zone *zone)
866 {
867 int mtype;
868 unsigned long pfn;
869 unsigned long start_pfn = zone->zone_start_pfn;
870 unsigned long end_pfn = start_pfn + zone->spanned_pages;
871 unsigned long count[MIGRATE_TYPES] = { 0, };
872
873 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
874 struct page *page;
875
876 if (!pfn_valid(pfn))
877 continue;
878
879 page = pfn_to_page(pfn);
880
881 /* Watch for unexpected holes punched in the memmap */
882 if (!memmap_valid_within(pfn, page, zone))
883 continue;
884
885 mtype = get_pageblock_migratetype(page);
886
887 if (mtype < MIGRATE_TYPES)
888 count[mtype]++;
889 }
890
891 /* Print counts */
892 seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name);
893 for (mtype = 0; mtype < MIGRATE_TYPES; mtype++)
894 seq_printf(m, "%12lu ", count[mtype]);
895 seq_putc(m, '\n');
896 }
897
898 /* Print out the free pages at each order for each migratetype */
899 static int pagetypeinfo_showblockcount(struct seq_file *m, void *arg)
900 {
901 int mtype;
902 pg_data_t *pgdat = (pg_data_t *)arg;
903
904 seq_printf(m, "\n%-23s", "Number of blocks type ");
905 for (mtype = 0; mtype < MIGRATE_TYPES; mtype++)
906 seq_printf(m, "%12s ", migratetype_names[mtype]);
907 seq_putc(m, '\n');
908 walk_zones_in_node(m, pgdat, pagetypeinfo_showblockcount_print);
909
910 return 0;
911 }
912
913 /*
914 * This prints out statistics in relation to grouping pages by mobility.
915 * It is expensive to collect so do not constantly read the file.
916 */
917 static int pagetypeinfo_show(struct seq_file *m, void *arg)
918 {
919 pg_data_t *pgdat = (pg_data_t *)arg;
920
921 /* check memoryless node */
922 if (!node_state(pgdat->node_id, N_HIGH_MEMORY))
923 return 0;
924
925 seq_printf(m, "Page block order: %d\n", pageblock_order);
926 seq_printf(m, "Pages per block: %lu\n", pageblock_nr_pages);
927 seq_putc(m, '\n');
928 pagetypeinfo_showfree(m, pgdat);
929 pagetypeinfo_showblockcount(m, pgdat);
930
931 return 0;
932 }
933
934 static const struct seq_operations fragmentation_op = {
935 .start = frag_start,
936 .next = frag_next,
937 .stop = frag_stop,
938 .show = frag_show,
939 };
940
941 static int fragmentation_open(struct inode *inode, struct file *file)
942 {
943 return seq_open(file, &fragmentation_op);
944 }
945
946 static const struct file_operations fragmentation_file_operations = {
947 .open = fragmentation_open,
948 .read = seq_read,
949 .llseek = seq_lseek,
950 .release = seq_release,
951 };
952
953 static const struct seq_operations pagetypeinfo_op = {
954 .start = frag_start,
955 .next = frag_next,
956 .stop = frag_stop,
957 .show = pagetypeinfo_show,
958 };
959
960 static int pagetypeinfo_open(struct inode *inode, struct file *file)
961 {
962 return seq_open(file, &pagetypeinfo_op);
963 }
964
965 static const struct file_operations pagetypeinfo_file_ops = {
966 .open = pagetypeinfo_open,
967 .read = seq_read,
968 .llseek = seq_lseek,
969 .release = seq_release,
970 };
971
972 static void zoneinfo_show_print(struct seq_file *m, pg_data_t *pgdat,
973 struct zone *zone)
974 {
975 int i;
976 seq_printf(m, "Node %d, zone %8s", pgdat->node_id, zone->name);
977 seq_printf(m,
978 "\n pages free %lu"
979 "\n min %lu"
980 "\n low %lu"
981 "\n high %lu"
982 "\n scanned %lu"
983 "\n spanned %lu"
984 "\n present %lu",
985 zone_page_state(zone, NR_FREE_PAGES),
986 min_wmark_pages(zone),
987 low_wmark_pages(zone),
988 high_wmark_pages(zone),
989 zone->pages_scanned,
990 zone->spanned_pages,
991 zone->present_pages);
992
993 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
994 seq_printf(m, "\n %-12s %lu", vmstat_text[i],
995 zone_page_state(zone, i));
996
997 seq_printf(m,
998 "\n protection: (%lu",
999 zone->lowmem_reserve[0]);
1000 for (i = 1; i < ARRAY_SIZE(zone->lowmem_reserve); i++)
1001 seq_printf(m, ", %lu", zone->lowmem_reserve[i]);
1002 seq_printf(m,
1003 ")"
1004 "\n pagesets");
1005 for_each_online_cpu(i) {
1006 struct per_cpu_pageset *pageset;
1007
1008 pageset = per_cpu_ptr(zone->pageset, i);
1009 seq_printf(m,
1010 "\n cpu: %i"
1011 "\n count: %i"
1012 "\n high: %i"
1013 "\n batch: %i",
1014 i,
1015 pageset->pcp.count,
1016 pageset->pcp.high,
1017 pageset->pcp.batch);
1018 #ifdef CONFIG_SMP
1019 seq_printf(m, "\n vm stats threshold: %d",
1020 pageset->stat_threshold);
1021 #endif
1022 }
1023 seq_printf(m,
1024 "\n all_unreclaimable: %u"
1025 "\n start_pfn: %lu"
1026 "\n inactive_ratio: %u",
1027 zone->all_unreclaimable,
1028 zone->zone_start_pfn,
1029 zone->inactive_ratio);
1030 seq_putc(m, '\n');
1031 }
1032
1033 /*
1034 * Output information about zones in @pgdat.
1035 */
1036 static int zoneinfo_show(struct seq_file *m, void *arg)
1037 {
1038 pg_data_t *pgdat = (pg_data_t *)arg;
1039 walk_zones_in_node(m, pgdat, zoneinfo_show_print);
1040 return 0;
1041 }
1042
1043 static const struct seq_operations zoneinfo_op = {
1044 .start = frag_start, /* iterate over all zones. The same as in
1045 * fragmentation. */
1046 .next = frag_next,
1047 .stop = frag_stop,
1048 .show = zoneinfo_show,
1049 };
1050
1051 static int zoneinfo_open(struct inode *inode, struct file *file)
1052 {
1053 return seq_open(file, &zoneinfo_op);
1054 }
1055
1056 static const struct file_operations proc_zoneinfo_file_operations = {
1057 .open = zoneinfo_open,
1058 .read = seq_read,
1059 .llseek = seq_lseek,
1060 .release = seq_release,
1061 };
1062
1063 enum writeback_stat_item {
1064 NR_DIRTY_THRESHOLD,
1065 NR_DIRTY_BG_THRESHOLD,
1066 NR_VM_WRITEBACK_STAT_ITEMS,
1067 };
1068
1069 static void *vmstat_start(struct seq_file *m, loff_t *pos)
1070 {
1071 unsigned long *v;
1072 int i, stat_items_size;
1073
1074 if (*pos >= ARRAY_SIZE(vmstat_text))
1075 return NULL;
1076 stat_items_size = NR_VM_ZONE_STAT_ITEMS * sizeof(unsigned long) +
1077 NR_VM_WRITEBACK_STAT_ITEMS * sizeof(unsigned long);
1078
1079 #ifdef CONFIG_VM_EVENT_COUNTERS
1080 stat_items_size += sizeof(struct vm_event_state);
1081 #endif
1082
1083 v = kmalloc(stat_items_size, GFP_KERNEL);
1084 m->private = v;
1085 if (!v)
1086 return ERR_PTR(-ENOMEM);
1087 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
1088 v[i] = global_page_state(i);
1089 v += NR_VM_ZONE_STAT_ITEMS;
1090
1091 global_dirty_limits(v + NR_DIRTY_BG_THRESHOLD,
1092 v + NR_DIRTY_THRESHOLD);
1093 v += NR_VM_WRITEBACK_STAT_ITEMS;
1094
1095 #ifdef CONFIG_VM_EVENT_COUNTERS
1096 all_vm_events(v);
1097 v[PGPGIN] /= 2; /* sectors -> kbytes */
1098 v[PGPGOUT] /= 2;
1099 #endif
1100 return (unsigned long *)m->private + *pos;
1101 }
1102
1103 static void *vmstat_next(struct seq_file *m, void *arg, loff_t *pos)
1104 {
1105 (*pos)++;
1106 if (*pos >= ARRAY_SIZE(vmstat_text))
1107 return NULL;
1108 return (unsigned long *)m->private + *pos;
1109 }
1110
1111 static int vmstat_show(struct seq_file *m, void *arg)
1112 {
1113 unsigned long *l = arg;
1114 unsigned long off = l - (unsigned long *)m->private;
1115
1116 seq_printf(m, "%s %lu\n", vmstat_text[off], *l);
1117 return 0;
1118 }
1119
1120 static void vmstat_stop(struct seq_file *m, void *arg)
1121 {
1122 kfree(m->private);
1123 m->private = NULL;
1124 }
1125
1126 static const struct seq_operations vmstat_op = {
1127 .start = vmstat_start,
1128 .next = vmstat_next,
1129 .stop = vmstat_stop,
1130 .show = vmstat_show,
1131 };
1132
1133 static int vmstat_open(struct inode *inode, struct file *file)
1134 {
1135 return seq_open(file, &vmstat_op);
1136 }
1137
1138 static const struct file_operations proc_vmstat_file_operations = {
1139 .open = vmstat_open,
1140 .read = seq_read,
1141 .llseek = seq_lseek,
1142 .release = seq_release,
1143 };
1144 #endif /* CONFIG_PROC_FS */
1145
1146 #ifdef CONFIG_SMP
1147 static DEFINE_PER_CPU(struct delayed_work, vmstat_work);
1148 int sysctl_stat_interval __read_mostly = HZ;
1149
1150 static void vmstat_update(struct work_struct *w)
1151 {
1152 refresh_cpu_vm_stats(smp_processor_id());
1153 schedule_delayed_work(&__get_cpu_var(vmstat_work),
1154 round_jiffies_relative(sysctl_stat_interval));
1155 }
1156
1157 static void __cpuinit start_cpu_timer(int cpu)
1158 {
1159 struct delayed_work *work = &per_cpu(vmstat_work, cpu);
1160
1161 INIT_DEFERRABLE_WORK(work, vmstat_update);
1162 schedule_delayed_work_on(cpu, work, __round_jiffies_relative(HZ, cpu));
1163 }
1164
1165 /*
1166 * Use the cpu notifier to insure that the thresholds are recalculated
1167 * when necessary.
1168 */
1169 static int __cpuinit vmstat_cpuup_callback(struct notifier_block *nfb,
1170 unsigned long action,
1171 void *hcpu)
1172 {
1173 long cpu = (long)hcpu;
1174
1175 switch (action) {
1176 case CPU_ONLINE:
1177 case CPU_ONLINE_FROZEN:
1178 refresh_zone_stat_thresholds();
1179 start_cpu_timer(cpu);
1180 node_set_state(cpu_to_node(cpu), N_CPU);
1181 break;
1182 case CPU_DOWN_PREPARE:
1183 case CPU_DOWN_PREPARE_FROZEN:
1184 cancel_delayed_work_sync(&per_cpu(vmstat_work, cpu));
1185 per_cpu(vmstat_work, cpu).work.func = NULL;
1186 break;
1187 case CPU_DOWN_FAILED:
1188 case CPU_DOWN_FAILED_FROZEN:
1189 start_cpu_timer(cpu);
1190 break;
1191 case CPU_DEAD:
1192 case CPU_DEAD_FROZEN:
1193 refresh_zone_stat_thresholds();
1194 break;
1195 default:
1196 break;
1197 }
1198 return NOTIFY_OK;
1199 }
1200
1201 static struct notifier_block __cpuinitdata vmstat_notifier =
1202 { &vmstat_cpuup_callback, NULL, 0 };
1203 #endif
1204
1205 static int __init setup_vmstat(void)
1206 {
1207 #ifdef CONFIG_SMP
1208 int cpu;
1209
1210 register_cpu_notifier(&vmstat_notifier);
1211
1212 for_each_online_cpu(cpu)
1213 start_cpu_timer(cpu);
1214 #endif
1215 #ifdef CONFIG_PROC_FS
1216 proc_create("buddyinfo", S_IRUGO, NULL, &fragmentation_file_operations);
1217 proc_create("pagetypeinfo", S_IRUGO, NULL, &pagetypeinfo_file_ops);
1218 proc_create("vmstat", S_IRUGO, NULL, &proc_vmstat_file_operations);
1219 proc_create("zoneinfo", S_IRUGO, NULL, &proc_zoneinfo_file_operations);
1220 #endif
1221 return 0;
1222 }
1223 module_init(setup_vmstat)
1224
1225 #if defined(CONFIG_DEBUG_FS) && defined(CONFIG_COMPACTION)
1226 #include <linux/debugfs.h>
1227
1228
1229 /*
1230 * Return an index indicating how much of the available free memory is
1231 * unusable for an allocation of the requested size.
1232 */
1233 static int unusable_free_index(unsigned int order,
1234 struct contig_page_info *info)
1235 {
1236 /* No free memory is interpreted as all free memory is unusable */
1237 if (info->free_pages == 0)
1238 return 1000;
1239
1240 /*
1241 * Index should be a value between 0 and 1. Return a value to 3
1242 * decimal places.
1243 *
1244 * 0 => no fragmentation
1245 * 1 => high fragmentation
1246 */
1247 return div_u64((info->free_pages - (info->free_blocks_suitable << order)) * 1000ULL, info->free_pages);
1248
1249 }
1250
1251 static void unusable_show_print(struct seq_file *m,
1252 pg_data_t *pgdat, struct zone *zone)
1253 {
1254 unsigned int order;
1255 int index;
1256 struct contig_page_info info;
1257
1258 seq_printf(m, "Node %d, zone %8s ",
1259 pgdat->node_id,
1260 zone->name);
1261 for (order = 0; order < MAX_ORDER; ++order) {
1262 fill_contig_page_info(zone, order, &info);
1263 index = unusable_free_index(order, &info);
1264 seq_printf(m, "%d.%03d ", index / 1000, index % 1000);
1265 }
1266
1267 seq_putc(m, '\n');
1268 }
1269
1270 /*
1271 * Display unusable free space index
1272 *
1273 * The unusable free space index measures how much of the available free
1274 * memory cannot be used to satisfy an allocation of a given size and is a
1275 * value between 0 and 1. The higher the value, the more of free memory is
1276 * unusable and by implication, the worse the external fragmentation is. This
1277 * can be expressed as a percentage by multiplying by 100.
1278 */
1279 static int unusable_show(struct seq_file *m, void *arg)
1280 {
1281 pg_data_t *pgdat = (pg_data_t *)arg;
1282
1283 /* check memoryless node */
1284 if (!node_state(pgdat->node_id, N_HIGH_MEMORY))
1285 return 0;
1286
1287 walk_zones_in_node(m, pgdat, unusable_show_print);
1288
1289 return 0;
1290 }
1291
1292 static const struct seq_operations unusable_op = {
1293 .start = frag_start,
1294 .next = frag_next,
1295 .stop = frag_stop,
1296 .show = unusable_show,
1297 };
1298
1299 static int unusable_open(struct inode *inode, struct file *file)
1300 {
1301 return seq_open(file, &unusable_op);
1302 }
1303
1304 static const struct file_operations unusable_file_ops = {
1305 .open = unusable_open,
1306 .read = seq_read,
1307 .llseek = seq_lseek,
1308 .release = seq_release,
1309 };
1310
1311 static void extfrag_show_print(struct seq_file *m,
1312 pg_data_t *pgdat, struct zone *zone)
1313 {
1314 unsigned int order;
1315 int index;
1316
1317 /* Alloc on stack as interrupts are disabled for zone walk */
1318 struct contig_page_info info;
1319
1320 seq_printf(m, "Node %d, zone %8s ",
1321 pgdat->node_id,
1322 zone->name);
1323 for (order = 0; order < MAX_ORDER; ++order) {
1324 fill_contig_page_info(zone, order, &info);
1325 index = __fragmentation_index(order, &info);
1326 seq_printf(m, "%d.%03d ", index / 1000, index % 1000);
1327 }
1328
1329 seq_putc(m, '\n');
1330 }
1331
1332 /*
1333 * Display fragmentation index for orders that allocations would fail for
1334 */
1335 static int extfrag_show(struct seq_file *m, void *arg)
1336 {
1337 pg_data_t *pgdat = (pg_data_t *)arg;
1338
1339 walk_zones_in_node(m, pgdat, extfrag_show_print);
1340
1341 return 0;
1342 }
1343
1344 static const struct seq_operations extfrag_op = {
1345 .start = frag_start,
1346 .next = frag_next,
1347 .stop = frag_stop,
1348 .show = extfrag_show,
1349 };
1350
1351 static int extfrag_open(struct inode *inode, struct file *file)
1352 {
1353 return seq_open(file, &extfrag_op);
1354 }
1355
1356 static const struct file_operations extfrag_file_ops = {
1357 .open = extfrag_open,
1358 .read = seq_read,
1359 .llseek = seq_lseek,
1360 .release = seq_release,
1361 };
1362
1363 static int __init extfrag_debug_init(void)
1364 {
1365 struct dentry *extfrag_debug_root;
1366
1367 extfrag_debug_root = debugfs_create_dir("extfrag", NULL);
1368 if (!extfrag_debug_root)
1369 return -ENOMEM;
1370
1371 if (!debugfs_create_file("unusable_index", 0444,
1372 extfrag_debug_root, NULL, &unusable_file_ops))
1373 goto fail;
1374
1375 if (!debugfs_create_file("extfrag_index", 0444,
1376 extfrag_debug_root, NULL, &extfrag_file_ops))
1377 goto fail;
1378
1379 return 0;
1380 fail:
1381 debugfs_remove_recursive(extfrag_debug_root);
1382 return -ENOMEM;
1383 }
1384
1385 module_init(extfrag_debug_init);
1386 #endif