]> git.proxmox.com Git - mirror_zfs.git/blob - module/os/freebsd/zfs/zfs_ctldir.c
Extending FreeBSD UIO Struct
[mirror_zfs.git] / module / os / freebsd / zfs / zfs_ctldir.c
1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2012, 2015 by Delphix. All rights reserved.
24 * Copyright 2015, OmniTI Computer Consulting, Inc. All rights reserved.
25 */
26
27 /*
28 * ZFS control directory (a.k.a. ".zfs")
29 *
30 * This directory provides a common location for all ZFS meta-objects.
31 * Currently, this is only the 'snapshot' directory, but this may expand in the
32 * future. The elements are built using the GFS primitives, as the hierarchy
33 * does not actually exist on disk.
34 *
35 * For 'snapshot', we don't want to have all snapshots always mounted, because
36 * this would take up a huge amount of space in /etc/mnttab. We have three
37 * types of objects:
38 *
39 * ctldir ------> snapshotdir -------> snapshot
40 * |
41 * |
42 * V
43 * mounted fs
44 *
45 * The 'snapshot' node contains just enough information to lookup '..' and act
46 * as a mountpoint for the snapshot. Whenever we lookup a specific snapshot, we
47 * perform an automount of the underlying filesystem and return the
48 * corresponding vnode.
49 *
50 * All mounts are handled automatically by the kernel, but unmounts are
51 * (currently) handled from user land. The main reason is that there is no
52 * reliable way to auto-unmount the filesystem when it's "no longer in use".
53 * When the user unmounts a filesystem, we call zfsctl_unmount(), which
54 * unmounts any snapshots within the snapshot directory.
55 *
56 * The '.zfs', '.zfs/snapshot', and all directories created under
57 * '.zfs/snapshot' (ie: '.zfs/snapshot/<snapname>') are all GFS nodes and
58 * share the same vfs_t as the head filesystem (what '.zfs' lives under).
59 *
60 * File systems mounted ontop of the GFS nodes '.zfs/snapshot/<snapname>'
61 * (ie: snapshots) are ZFS nodes and have their own unique vfs_t.
62 * However, vnodes within these mounted on file systems have their v_vfsp
63 * fields set to the head filesystem to make NFS happy (see
64 * zfsctl_snapdir_lookup()). We VFS_HOLD the head filesystem's vfs_t
65 * so that it cannot be freed until all snapshots have been unmounted.
66 */
67
68 #include <sys/types.h>
69 #include <sys/param.h>
70 #include <sys/libkern.h>
71 #include <sys/dirent.h>
72 #include <sys/zfs_context.h>
73 #include <sys/zfs_ctldir.h>
74 #include <sys/zfs_ioctl.h>
75 #include <sys/zfs_vfsops.h>
76 #include <sys/namei.h>
77 #include <sys/stat.h>
78 #include <sys/dmu.h>
79 #include <sys/dsl_dataset.h>
80 #include <sys/dsl_destroy.h>
81 #include <sys/dsl_deleg.h>
82 #include <sys/mount.h>
83 #include <sys/zap.h>
84 #include <sys/sysproto.h>
85
86 #include "zfs_namecheck.h"
87
88 #include <sys/kernel.h>
89 #include <sys/ccompat.h>
90
91 /* Common access mode for all virtual directories under the ctldir */
92 const uint16_t zfsctl_ctldir_mode = S_IRUSR | S_IXUSR | S_IRGRP | S_IXGRP |
93 S_IROTH | S_IXOTH;
94
95 /*
96 * "Synthetic" filesystem implementation.
97 */
98
99 /*
100 * Assert that A implies B.
101 */
102 #define KASSERT_IMPLY(A, B, msg) KASSERT(!(A) || (B), (msg));
103
104 static MALLOC_DEFINE(M_SFSNODES, "sfs_nodes", "synthetic-fs nodes");
105
106 typedef struct sfs_node {
107 char sn_name[ZFS_MAX_DATASET_NAME_LEN];
108 uint64_t sn_parent_id;
109 uint64_t sn_id;
110 } sfs_node_t;
111
112 /*
113 * Check the parent's ID as well as the node's to account for a chance
114 * that IDs originating from different domains (snapshot IDs, artificial
115 * IDs, znode IDs) may clash.
116 */
117 static int
118 sfs_compare_ids(struct vnode *vp, void *arg)
119 {
120 sfs_node_t *n1 = vp->v_data;
121 sfs_node_t *n2 = arg;
122 bool equal;
123
124 equal = n1->sn_id == n2->sn_id &&
125 n1->sn_parent_id == n2->sn_parent_id;
126
127 /* Zero means equality. */
128 return (!equal);
129 }
130
131 static int
132 sfs_vnode_get(const struct mount *mp, int flags, uint64_t parent_id,
133 uint64_t id, struct vnode **vpp)
134 {
135 sfs_node_t search;
136 int err;
137
138 search.sn_id = id;
139 search.sn_parent_id = parent_id;
140 err = vfs_hash_get(mp, (uint32_t)id, flags, curthread, vpp,
141 sfs_compare_ids, &search);
142 return (err);
143 }
144
145 static int
146 sfs_vnode_insert(struct vnode *vp, int flags, uint64_t parent_id,
147 uint64_t id, struct vnode **vpp)
148 {
149 int err;
150
151 KASSERT(vp->v_data != NULL, ("sfs_vnode_insert with NULL v_data"));
152 err = vfs_hash_insert(vp, (uint32_t)id, flags, curthread, vpp,
153 sfs_compare_ids, vp->v_data);
154 return (err);
155 }
156
157 static void
158 sfs_vnode_remove(struct vnode *vp)
159 {
160 vfs_hash_remove(vp);
161 }
162
163 typedef void sfs_vnode_setup_fn(vnode_t *vp, void *arg);
164
165 static int
166 sfs_vgetx(struct mount *mp, int flags, uint64_t parent_id, uint64_t id,
167 const char *tag, struct vop_vector *vops,
168 sfs_vnode_setup_fn setup, void *arg,
169 struct vnode **vpp)
170 {
171 struct vnode *vp;
172 int error;
173
174 error = sfs_vnode_get(mp, flags, parent_id, id, vpp);
175 if (error != 0 || *vpp != NULL) {
176 KASSERT_IMPLY(error == 0, (*vpp)->v_data != NULL,
177 "sfs vnode with no data");
178 return (error);
179 }
180
181 /* Allocate a new vnode/inode. */
182 error = getnewvnode(tag, mp, vops, &vp);
183 if (error != 0) {
184 *vpp = NULL;
185 return (error);
186 }
187
188 /*
189 * Exclusively lock the vnode vnode while it's being constructed.
190 */
191 lockmgr(vp->v_vnlock, LK_EXCLUSIVE, NULL);
192 error = insmntque(vp, mp);
193 if (error != 0) {
194 *vpp = NULL;
195 return (error);
196 }
197
198 setup(vp, arg);
199
200 error = sfs_vnode_insert(vp, flags, parent_id, id, vpp);
201 if (error != 0 || *vpp != NULL) {
202 KASSERT_IMPLY(error == 0, (*vpp)->v_data != NULL,
203 "sfs vnode with no data");
204 return (error);
205 }
206
207 *vpp = vp;
208 return (0);
209 }
210
211 static void
212 sfs_print_node(sfs_node_t *node)
213 {
214 printf("\tname = %s\n", node->sn_name);
215 printf("\tparent_id = %ju\n", (uintmax_t)node->sn_parent_id);
216 printf("\tid = %ju\n", (uintmax_t)node->sn_id);
217 }
218
219 static sfs_node_t *
220 sfs_alloc_node(size_t size, const char *name, uint64_t parent_id, uint64_t id)
221 {
222 struct sfs_node *node;
223
224 KASSERT(strlen(name) < sizeof (node->sn_name),
225 ("sfs node name is too long"));
226 KASSERT(size >= sizeof (*node), ("sfs node size is too small"));
227 node = malloc(size, M_SFSNODES, M_WAITOK | M_ZERO);
228 strlcpy(node->sn_name, name, sizeof (node->sn_name));
229 node->sn_parent_id = parent_id;
230 node->sn_id = id;
231
232 return (node);
233 }
234
235 static void
236 sfs_destroy_node(sfs_node_t *node)
237 {
238 free(node, M_SFSNODES);
239 }
240
241 static void *
242 sfs_reclaim_vnode(vnode_t *vp)
243 {
244 void *data;
245
246 sfs_vnode_remove(vp);
247 data = vp->v_data;
248 vp->v_data = NULL;
249 return (data);
250 }
251
252 static int
253 sfs_readdir_common(uint64_t parent_id, uint64_t id, struct vop_readdir_args *ap,
254 zfs_uio_t *uio, off_t *offp)
255 {
256 struct dirent entry;
257 int error;
258
259 /* Reset ncookies for subsequent use of vfs_read_dirent. */
260 if (ap->a_ncookies != NULL)
261 *ap->a_ncookies = 0;
262
263 if (zfs_uio_resid(uio) < sizeof (entry))
264 return (SET_ERROR(EINVAL));
265
266 if (zfs_uio_offset(uio) < 0)
267 return (SET_ERROR(EINVAL));
268 if (zfs_uio_offset(uio) == 0) {
269 entry.d_fileno = id;
270 entry.d_type = DT_DIR;
271 entry.d_name[0] = '.';
272 entry.d_name[1] = '\0';
273 entry.d_namlen = 1;
274 entry.d_reclen = sizeof (entry);
275 error = vfs_read_dirent(ap, &entry, zfs_uio_offset(uio));
276 if (error != 0)
277 return (SET_ERROR(error));
278 }
279
280 if (zfs_uio_offset(uio) < sizeof (entry))
281 return (SET_ERROR(EINVAL));
282 if (zfs_uio_offset(uio) == sizeof (entry)) {
283 entry.d_fileno = parent_id;
284 entry.d_type = DT_DIR;
285 entry.d_name[0] = '.';
286 entry.d_name[1] = '.';
287 entry.d_name[2] = '\0';
288 entry.d_namlen = 2;
289 entry.d_reclen = sizeof (entry);
290 error = vfs_read_dirent(ap, &entry, zfs_uio_offset(uio));
291 if (error != 0)
292 return (SET_ERROR(error));
293 }
294
295 if (offp != NULL)
296 *offp = 2 * sizeof (entry);
297 return (0);
298 }
299
300
301 /*
302 * .zfs inode namespace
303 *
304 * We need to generate unique inode numbers for all files and directories
305 * within the .zfs pseudo-filesystem. We use the following scheme:
306 *
307 * ENTRY ZFSCTL_INODE
308 * .zfs 1
309 * .zfs/snapshot 2
310 * .zfs/snapshot/<snap> objectid(snap)
311 */
312 #define ZFSCTL_INO_SNAP(id) (id)
313
314 static struct vop_vector zfsctl_ops_root;
315 static struct vop_vector zfsctl_ops_snapdir;
316 static struct vop_vector zfsctl_ops_snapshot;
317
318 void
319 zfsctl_init(void)
320 {
321 }
322
323 void
324 zfsctl_fini(void)
325 {
326 }
327
328 boolean_t
329 zfsctl_is_node(vnode_t *vp)
330 {
331 return (vn_matchops(vp, zfsctl_ops_root) ||
332 vn_matchops(vp, zfsctl_ops_snapdir) ||
333 vn_matchops(vp, zfsctl_ops_snapshot));
334
335 }
336
337 typedef struct zfsctl_root {
338 sfs_node_t node;
339 sfs_node_t *snapdir;
340 timestruc_t cmtime;
341 } zfsctl_root_t;
342
343
344 /*
345 * Create the '.zfs' directory.
346 */
347 void
348 zfsctl_create(zfsvfs_t *zfsvfs)
349 {
350 zfsctl_root_t *dot_zfs;
351 sfs_node_t *snapdir;
352 vnode_t *rvp;
353 uint64_t crtime[2];
354
355 ASSERT(zfsvfs->z_ctldir == NULL);
356
357 snapdir = sfs_alloc_node(sizeof (*snapdir), "snapshot", ZFSCTL_INO_ROOT,
358 ZFSCTL_INO_SNAPDIR);
359 dot_zfs = (zfsctl_root_t *)sfs_alloc_node(sizeof (*dot_zfs), ".zfs", 0,
360 ZFSCTL_INO_ROOT);
361 dot_zfs->snapdir = snapdir;
362
363 VERIFY(VFS_ROOT(zfsvfs->z_vfs, LK_EXCLUSIVE, &rvp) == 0);
364 VERIFY(0 == sa_lookup(VTOZ(rvp)->z_sa_hdl, SA_ZPL_CRTIME(zfsvfs),
365 &crtime, sizeof (crtime)));
366 ZFS_TIME_DECODE(&dot_zfs->cmtime, crtime);
367 vput(rvp);
368
369 zfsvfs->z_ctldir = dot_zfs;
370 }
371
372 /*
373 * Destroy the '.zfs' directory. Only called when the filesystem is unmounted.
374 * The nodes must not have any associated vnodes by now as they should be
375 * vflush-ed.
376 */
377 void
378 zfsctl_destroy(zfsvfs_t *zfsvfs)
379 {
380 sfs_destroy_node(zfsvfs->z_ctldir->snapdir);
381 sfs_destroy_node((sfs_node_t *)zfsvfs->z_ctldir);
382 zfsvfs->z_ctldir = NULL;
383 }
384
385 static int
386 zfsctl_fs_root_vnode(struct mount *mp, void *arg __unused, int flags,
387 struct vnode **vpp)
388 {
389 return (VFS_ROOT(mp, flags, vpp));
390 }
391
392 static void
393 zfsctl_common_vnode_setup(vnode_t *vp, void *arg)
394 {
395 ASSERT_VOP_ELOCKED(vp, __func__);
396
397 /* We support shared locking. */
398 VN_LOCK_ASHARE(vp);
399 vp->v_type = VDIR;
400 vp->v_data = arg;
401 }
402
403 static int
404 zfsctl_root_vnode(struct mount *mp, void *arg __unused, int flags,
405 struct vnode **vpp)
406 {
407 void *node;
408 int err;
409
410 node = ((zfsvfs_t *)mp->mnt_data)->z_ctldir;
411 err = sfs_vgetx(mp, flags, 0, ZFSCTL_INO_ROOT, "zfs", &zfsctl_ops_root,
412 zfsctl_common_vnode_setup, node, vpp);
413 return (err);
414 }
415
416 static int
417 zfsctl_snapdir_vnode(struct mount *mp, void *arg __unused, int flags,
418 struct vnode **vpp)
419 {
420 void *node;
421 int err;
422
423 node = ((zfsvfs_t *)mp->mnt_data)->z_ctldir->snapdir;
424 err = sfs_vgetx(mp, flags, ZFSCTL_INO_ROOT, ZFSCTL_INO_SNAPDIR, "zfs",
425 &zfsctl_ops_snapdir, zfsctl_common_vnode_setup, node, vpp);
426 return (err);
427 }
428
429 /*
430 * Given a root znode, retrieve the associated .zfs directory.
431 * Add a hold to the vnode and return it.
432 */
433 int
434 zfsctl_root(zfsvfs_t *zfsvfs, int flags, vnode_t **vpp)
435 {
436 int error;
437
438 error = zfsctl_root_vnode(zfsvfs->z_vfs, NULL, flags, vpp);
439 return (error);
440 }
441
442 /*
443 * Common open routine. Disallow any write access.
444 */
445 static int
446 zfsctl_common_open(struct vop_open_args *ap)
447 {
448 int flags = ap->a_mode;
449
450 if (flags & FWRITE)
451 return (SET_ERROR(EACCES));
452
453 return (0);
454 }
455
456 /*
457 * Common close routine. Nothing to do here.
458 */
459 /* ARGSUSED */
460 static int
461 zfsctl_common_close(struct vop_close_args *ap)
462 {
463 return (0);
464 }
465
466 /*
467 * Common access routine. Disallow writes.
468 */
469 static int
470 zfsctl_common_access(struct vop_access_args *ap)
471 {
472 accmode_t accmode = ap->a_accmode;
473
474 if (accmode & VWRITE)
475 return (SET_ERROR(EACCES));
476 return (0);
477 }
478
479 /*
480 * Common getattr function. Fill in basic information.
481 */
482 static void
483 zfsctl_common_getattr(vnode_t *vp, vattr_t *vap)
484 {
485 timestruc_t now;
486 sfs_node_t *node;
487
488 node = vp->v_data;
489
490 vap->va_uid = 0;
491 vap->va_gid = 0;
492 vap->va_rdev = 0;
493 /*
494 * We are a purely virtual object, so we have no
495 * blocksize or allocated blocks.
496 */
497 vap->va_blksize = 0;
498 vap->va_nblocks = 0;
499 vap->va_seq = 0;
500 vn_fsid(vp, vap);
501 vap->va_mode = zfsctl_ctldir_mode;
502 vap->va_type = VDIR;
503 /*
504 * We live in the now (for atime).
505 */
506 gethrestime(&now);
507 vap->va_atime = now;
508 /* FreeBSD: Reset chflags(2) flags. */
509 vap->va_flags = 0;
510
511 vap->va_nodeid = node->sn_id;
512
513 /* At least '.' and '..'. */
514 vap->va_nlink = 2;
515 }
516
517 #ifndef _OPENSOLARIS_SYS_VNODE_H_
518 struct vop_fid_args {
519 struct vnode *a_vp;
520 struct fid *a_fid;
521 };
522 #endif
523
524 static int
525 zfsctl_common_fid(struct vop_fid_args *ap)
526 {
527 vnode_t *vp = ap->a_vp;
528 fid_t *fidp = (void *)ap->a_fid;
529 sfs_node_t *node = vp->v_data;
530 uint64_t object = node->sn_id;
531 zfid_short_t *zfid;
532 int i;
533
534 zfid = (zfid_short_t *)fidp;
535 zfid->zf_len = SHORT_FID_LEN;
536
537 for (i = 0; i < sizeof (zfid->zf_object); i++)
538 zfid->zf_object[i] = (uint8_t)(object >> (8 * i));
539
540 /* .zfs nodes always have a generation number of 0 */
541 for (i = 0; i < sizeof (zfid->zf_gen); i++)
542 zfid->zf_gen[i] = 0;
543
544 return (0);
545 }
546
547 #ifndef _SYS_SYSPROTO_H_
548 struct vop_reclaim_args {
549 struct vnode *a_vp;
550 struct thread *a_td;
551 };
552 #endif
553
554 static int
555 zfsctl_common_reclaim(struct vop_reclaim_args *ap)
556 {
557 vnode_t *vp = ap->a_vp;
558
559 (void) sfs_reclaim_vnode(vp);
560 return (0);
561 }
562
563 #ifndef _SYS_SYSPROTO_H_
564 struct vop_print_args {
565 struct vnode *a_vp;
566 };
567 #endif
568
569 static int
570 zfsctl_common_print(struct vop_print_args *ap)
571 {
572 sfs_print_node(ap->a_vp->v_data);
573 return (0);
574 }
575
576 #ifndef _SYS_SYSPROTO_H_
577 struct vop_getattr_args {
578 struct vnode *a_vp;
579 struct vattr *a_vap;
580 struct ucred *a_cred;
581 };
582 #endif
583
584 /*
585 * Get root directory attributes.
586 */
587 static int
588 zfsctl_root_getattr(struct vop_getattr_args *ap)
589 {
590 struct vnode *vp = ap->a_vp;
591 struct vattr *vap = ap->a_vap;
592 zfsctl_root_t *node = vp->v_data;
593
594 zfsctl_common_getattr(vp, vap);
595 vap->va_ctime = node->cmtime;
596 vap->va_mtime = vap->va_ctime;
597 vap->va_birthtime = vap->va_ctime;
598 vap->va_nlink += 1; /* snapdir */
599 vap->va_size = vap->va_nlink;
600 return (0);
601 }
602
603 /*
604 * When we lookup "." we still can be asked to lock it
605 * differently, can't we?
606 */
607 static int
608 zfsctl_relock_dot(vnode_t *dvp, int ltype)
609 {
610 vref(dvp);
611 if (ltype != VOP_ISLOCKED(dvp)) {
612 if (ltype == LK_EXCLUSIVE)
613 vn_lock(dvp, LK_UPGRADE | LK_RETRY);
614 else /* if (ltype == LK_SHARED) */
615 vn_lock(dvp, LK_DOWNGRADE | LK_RETRY);
616
617 /* Relock for the "." case may left us with reclaimed vnode. */
618 if (VN_IS_DOOMED(dvp)) {
619 vrele(dvp);
620 return (SET_ERROR(ENOENT));
621 }
622 }
623 return (0);
624 }
625
626 /*
627 * Special case the handling of "..".
628 */
629 static int
630 zfsctl_root_lookup(struct vop_lookup_args *ap)
631 {
632 struct componentname *cnp = ap->a_cnp;
633 vnode_t *dvp = ap->a_dvp;
634 vnode_t **vpp = ap->a_vpp;
635 int flags = ap->a_cnp->cn_flags;
636 int lkflags = ap->a_cnp->cn_lkflags;
637 int nameiop = ap->a_cnp->cn_nameiop;
638 int err;
639
640 ASSERT(dvp->v_type == VDIR);
641
642 if ((flags & ISLASTCN) != 0 && nameiop != LOOKUP)
643 return (SET_ERROR(ENOTSUP));
644
645 if (cnp->cn_namelen == 1 && *cnp->cn_nameptr == '.') {
646 err = zfsctl_relock_dot(dvp, lkflags & LK_TYPE_MASK);
647 if (err == 0)
648 *vpp = dvp;
649 } else if ((flags & ISDOTDOT) != 0) {
650 err = vn_vget_ino_gen(dvp, zfsctl_fs_root_vnode, NULL,
651 lkflags, vpp);
652 } else if (strncmp(cnp->cn_nameptr, "snapshot", cnp->cn_namelen) == 0) {
653 err = zfsctl_snapdir_vnode(dvp->v_mount, NULL, lkflags, vpp);
654 } else {
655 err = SET_ERROR(ENOENT);
656 }
657 if (err != 0)
658 *vpp = NULL;
659 return (err);
660 }
661
662 static int
663 zfsctl_root_readdir(struct vop_readdir_args *ap)
664 {
665 struct dirent entry;
666 vnode_t *vp = ap->a_vp;
667 zfsvfs_t *zfsvfs = vp->v_vfsp->vfs_data;
668 zfsctl_root_t *node = vp->v_data;
669 zfs_uio_t uio;
670 int *eofp = ap->a_eofflag;
671 off_t dots_offset;
672 int error;
673
674 zfs_uio_init(&uio, ap->a_uio);
675
676 ASSERT(vp->v_type == VDIR);
677
678 error = sfs_readdir_common(zfsvfs->z_root, ZFSCTL_INO_ROOT, ap, &uio,
679 &dots_offset);
680 if (error != 0) {
681 if (error == ENAMETOOLONG) /* ran out of destination space */
682 error = 0;
683 return (error);
684 }
685 if (zfs_uio_offset(&uio) != dots_offset)
686 return (SET_ERROR(EINVAL));
687
688 CTASSERT(sizeof (node->snapdir->sn_name) <= sizeof (entry.d_name));
689 entry.d_fileno = node->snapdir->sn_id;
690 entry.d_type = DT_DIR;
691 strcpy(entry.d_name, node->snapdir->sn_name);
692 entry.d_namlen = strlen(entry.d_name);
693 entry.d_reclen = sizeof (entry);
694 error = vfs_read_dirent(ap, &entry, zfs_uio_offset(&uio));
695 if (error != 0) {
696 if (error == ENAMETOOLONG)
697 error = 0;
698 return (SET_ERROR(error));
699 }
700 if (eofp != NULL)
701 *eofp = 1;
702 return (0);
703 }
704
705 static int
706 zfsctl_root_vptocnp(struct vop_vptocnp_args *ap)
707 {
708 static const char dotzfs_name[4] = ".zfs";
709 vnode_t *dvp;
710 int error;
711
712 if (*ap->a_buflen < sizeof (dotzfs_name))
713 return (SET_ERROR(ENOMEM));
714
715 error = vn_vget_ino_gen(ap->a_vp, zfsctl_fs_root_vnode, NULL,
716 LK_SHARED, &dvp);
717 if (error != 0)
718 return (SET_ERROR(error));
719
720 VOP_UNLOCK1(dvp);
721 *ap->a_vpp = dvp;
722 *ap->a_buflen -= sizeof (dotzfs_name);
723 bcopy(dotzfs_name, ap->a_buf + *ap->a_buflen, sizeof (dotzfs_name));
724 return (0);
725 }
726
727 static int
728 zfsctl_common_pathconf(struct vop_pathconf_args *ap)
729 {
730 /*
731 * We care about ACL variables so that user land utilities like ls
732 * can display them correctly. Since the ctldir's st_dev is set to be
733 * the same as the parent dataset, we must support all variables that
734 * it supports.
735 */
736 switch (ap->a_name) {
737 case _PC_LINK_MAX:
738 *ap->a_retval = MIN(LONG_MAX, ZFS_LINK_MAX);
739 return (0);
740
741 case _PC_FILESIZEBITS:
742 *ap->a_retval = 64;
743 return (0);
744
745 case _PC_MIN_HOLE_SIZE:
746 *ap->a_retval = (int)SPA_MINBLOCKSIZE;
747 return (0);
748
749 case _PC_ACL_EXTENDED:
750 *ap->a_retval = 0;
751 return (0);
752
753 case _PC_ACL_NFS4:
754 *ap->a_retval = 1;
755 return (0);
756
757 case _PC_ACL_PATH_MAX:
758 *ap->a_retval = ACL_MAX_ENTRIES;
759 return (0);
760
761 case _PC_NAME_MAX:
762 *ap->a_retval = NAME_MAX;
763 return (0);
764
765 default:
766 return (vop_stdpathconf(ap));
767 }
768 }
769
770 /*
771 * Returns a trivial ACL
772 */
773 static int
774 zfsctl_common_getacl(struct vop_getacl_args *ap)
775 {
776 int i;
777
778 if (ap->a_type != ACL_TYPE_NFS4)
779 return (EINVAL);
780
781 acl_nfs4_sync_acl_from_mode(ap->a_aclp, zfsctl_ctldir_mode, 0);
782 /*
783 * acl_nfs4_sync_acl_from_mode assumes that the owner can always modify
784 * attributes. That is not the case for the ctldir, so we must clear
785 * those bits. We also must clear ACL_READ_NAMED_ATTRS, because xattrs
786 * aren't supported by the ctldir.
787 */
788 for (i = 0; i < ap->a_aclp->acl_cnt; i++) {
789 struct acl_entry *entry;
790 entry = &(ap->a_aclp->acl_entry[i]);
791 entry->ae_perm &= ~(ACL_WRITE_ACL | ACL_WRITE_OWNER |
792 ACL_WRITE_ATTRIBUTES | ACL_WRITE_NAMED_ATTRS |
793 ACL_READ_NAMED_ATTRS);
794 }
795
796 return (0);
797 }
798
799 static struct vop_vector zfsctl_ops_root = {
800 .vop_default = &default_vnodeops,
801 #if __FreeBSD_version >= 1300121
802 .vop_fplookup_vexec = VOP_EAGAIN,
803 #endif
804 .vop_open = zfsctl_common_open,
805 .vop_close = zfsctl_common_close,
806 .vop_ioctl = VOP_EINVAL,
807 .vop_getattr = zfsctl_root_getattr,
808 .vop_access = zfsctl_common_access,
809 .vop_readdir = zfsctl_root_readdir,
810 .vop_lookup = zfsctl_root_lookup,
811 .vop_inactive = VOP_NULL,
812 .vop_reclaim = zfsctl_common_reclaim,
813 .vop_fid = zfsctl_common_fid,
814 .vop_print = zfsctl_common_print,
815 .vop_vptocnp = zfsctl_root_vptocnp,
816 .vop_pathconf = zfsctl_common_pathconf,
817 .vop_getacl = zfsctl_common_getacl,
818 };
819 VFS_VOP_VECTOR_REGISTER(zfsctl_ops_root);
820
821 static int
822 zfsctl_snapshot_zname(vnode_t *vp, const char *name, int len, char *zname)
823 {
824 objset_t *os = ((zfsvfs_t *)((vp)->v_vfsp->vfs_data))->z_os;
825
826 dmu_objset_name(os, zname);
827 if (strlen(zname) + 1 + strlen(name) >= len)
828 return (SET_ERROR(ENAMETOOLONG));
829 (void) strcat(zname, "@");
830 (void) strcat(zname, name);
831 return (0);
832 }
833
834 static int
835 zfsctl_snapshot_lookup(vnode_t *vp, const char *name, uint64_t *id)
836 {
837 objset_t *os = ((zfsvfs_t *)((vp)->v_vfsp->vfs_data))->z_os;
838 int err;
839
840 err = dsl_dataset_snap_lookup(dmu_objset_ds(os), name, id);
841 return (err);
842 }
843
844 /*
845 * Given a vnode get a root vnode of a filesystem mounted on top of
846 * the vnode, if any. The root vnode is referenced and locked.
847 * If no filesystem is mounted then the orinal vnode remains referenced
848 * and locked. If any error happens the orinal vnode is unlocked and
849 * released.
850 */
851 static int
852 zfsctl_mounted_here(vnode_t **vpp, int flags)
853 {
854 struct mount *mp;
855 int err;
856
857 ASSERT_VOP_LOCKED(*vpp, __func__);
858 ASSERT3S((*vpp)->v_type, ==, VDIR);
859
860 if ((mp = (*vpp)->v_mountedhere) != NULL) {
861 err = vfs_busy(mp, 0);
862 KASSERT(err == 0, ("vfs_busy(mp, 0) failed with %d", err));
863 KASSERT(vrefcnt(*vpp) > 1, ("unreferenced mountpoint"));
864 vput(*vpp);
865 err = VFS_ROOT(mp, flags, vpp);
866 vfs_unbusy(mp);
867 return (err);
868 }
869 return (EJUSTRETURN);
870 }
871
872 typedef struct {
873 const char *snap_name;
874 uint64_t snap_id;
875 } snapshot_setup_arg_t;
876
877 static void
878 zfsctl_snapshot_vnode_setup(vnode_t *vp, void *arg)
879 {
880 snapshot_setup_arg_t *ssa = arg;
881 sfs_node_t *node;
882
883 ASSERT_VOP_ELOCKED(vp, __func__);
884
885 node = sfs_alloc_node(sizeof (sfs_node_t),
886 ssa->snap_name, ZFSCTL_INO_SNAPDIR, ssa->snap_id);
887 zfsctl_common_vnode_setup(vp, node);
888
889 /* We have to support recursive locking. */
890 VN_LOCK_AREC(vp);
891 }
892
893 /*
894 * Lookup entry point for the 'snapshot' directory. Try to open the
895 * snapshot if it exist, creating the pseudo filesystem vnode as necessary.
896 * Perform a mount of the associated dataset on top of the vnode.
897 * There are four possibilities:
898 * - the snapshot node and vnode do not exist
899 * - the snapshot vnode is covered by the mounted snapshot
900 * - the snapshot vnode is not covered yet, the mount operation is in progress
901 * - the snapshot vnode is not covered, because the snapshot has been unmounted
902 * The last two states are transient and should be relatively short-lived.
903 */
904 static int
905 zfsctl_snapdir_lookup(struct vop_lookup_args *ap)
906 {
907 vnode_t *dvp = ap->a_dvp;
908 vnode_t **vpp = ap->a_vpp;
909 struct componentname *cnp = ap->a_cnp;
910 char name[NAME_MAX + 1];
911 char fullname[ZFS_MAX_DATASET_NAME_LEN];
912 char *mountpoint;
913 size_t mountpoint_len;
914 zfsvfs_t *zfsvfs = dvp->v_vfsp->vfs_data;
915 uint64_t snap_id;
916 int nameiop = cnp->cn_nameiop;
917 int lkflags = cnp->cn_lkflags;
918 int flags = cnp->cn_flags;
919 int err;
920
921 ASSERT(dvp->v_type == VDIR);
922
923 if ((flags & ISLASTCN) != 0 && nameiop != LOOKUP)
924 return (SET_ERROR(ENOTSUP));
925
926 if (cnp->cn_namelen == 1 && *cnp->cn_nameptr == '.') {
927 err = zfsctl_relock_dot(dvp, lkflags & LK_TYPE_MASK);
928 if (err == 0)
929 *vpp = dvp;
930 return (err);
931 }
932 if (flags & ISDOTDOT) {
933 err = vn_vget_ino_gen(dvp, zfsctl_root_vnode, NULL, lkflags,
934 vpp);
935 return (err);
936 }
937
938 if (cnp->cn_namelen >= sizeof (name))
939 return (SET_ERROR(ENAMETOOLONG));
940
941 strlcpy(name, ap->a_cnp->cn_nameptr, ap->a_cnp->cn_namelen + 1);
942 err = zfsctl_snapshot_lookup(dvp, name, &snap_id);
943 if (err != 0)
944 return (SET_ERROR(ENOENT));
945
946 for (;;) {
947 snapshot_setup_arg_t ssa;
948
949 ssa.snap_name = name;
950 ssa.snap_id = snap_id;
951 err = sfs_vgetx(dvp->v_mount, LK_SHARED, ZFSCTL_INO_SNAPDIR,
952 snap_id, "zfs", &zfsctl_ops_snapshot,
953 zfsctl_snapshot_vnode_setup, &ssa, vpp);
954 if (err != 0)
955 return (err);
956
957 /* Check if a new vnode has just been created. */
958 if (VOP_ISLOCKED(*vpp) == LK_EXCLUSIVE)
959 break;
960
961 /*
962 * Check if a snapshot is already mounted on top of the vnode.
963 */
964 err = zfsctl_mounted_here(vpp, lkflags);
965 if (err != EJUSTRETURN)
966 return (err);
967
968 /*
969 * If the vnode is not covered, then either the mount operation
970 * is in progress or the snapshot has already been unmounted
971 * but the vnode hasn't been inactivated and reclaimed yet.
972 * We can try to re-use the vnode in the latter case.
973 */
974 VI_LOCK(*vpp);
975 if (((*vpp)->v_iflag & VI_MOUNT) == 0) {
976 /*
977 * Upgrade to exclusive lock in order to:
978 * - avoid race conditions
979 * - satisfy the contract of mount_snapshot()
980 */
981 err = VOP_LOCK(*vpp, LK_TRYUPGRADE | LK_INTERLOCK);
982 if (err == 0)
983 break;
984 } else {
985 VI_UNLOCK(*vpp);
986 }
987
988 /*
989 * In this state we can loop on uncontested locks and starve
990 * the thread doing the lengthy, non-trivial mount operation.
991 * So, yield to prevent that from happening.
992 */
993 vput(*vpp);
994 kern_yield(PRI_USER);
995 }
996
997 VERIFY0(zfsctl_snapshot_zname(dvp, name, sizeof (fullname), fullname));
998
999 mountpoint_len = strlen(dvp->v_vfsp->mnt_stat.f_mntonname) +
1000 strlen("/" ZFS_CTLDIR_NAME "/snapshot/") + strlen(name) + 1;
1001 mountpoint = kmem_alloc(mountpoint_len, KM_SLEEP);
1002 (void) snprintf(mountpoint, mountpoint_len,
1003 "%s/" ZFS_CTLDIR_NAME "/snapshot/%s",
1004 dvp->v_vfsp->mnt_stat.f_mntonname, name);
1005
1006 err = mount_snapshot(curthread, vpp, "zfs", mountpoint, fullname, 0);
1007 kmem_free(mountpoint, mountpoint_len);
1008 if (err == 0) {
1009 /*
1010 * Fix up the root vnode mounted on .zfs/snapshot/<snapname>.
1011 *
1012 * This is where we lie about our v_vfsp in order to
1013 * make .zfs/snapshot/<snapname> accessible over NFS
1014 * without requiring manual mounts of <snapname>.
1015 */
1016 ASSERT(VTOZ(*vpp)->z_zfsvfs != zfsvfs);
1017 VTOZ(*vpp)->z_zfsvfs->z_parent = zfsvfs;
1018
1019 /* Clear the root flag (set via VFS_ROOT) as well. */
1020 (*vpp)->v_vflag &= ~VV_ROOT;
1021 }
1022
1023 if (err != 0)
1024 *vpp = NULL;
1025 return (err);
1026 }
1027
1028 static int
1029 zfsctl_snapdir_readdir(struct vop_readdir_args *ap)
1030 {
1031 char snapname[ZFS_MAX_DATASET_NAME_LEN];
1032 struct dirent entry;
1033 vnode_t *vp = ap->a_vp;
1034 zfsvfs_t *zfsvfs = vp->v_vfsp->vfs_data;
1035 zfs_uio_t uio;
1036 int *eofp = ap->a_eofflag;
1037 off_t dots_offset;
1038 int error;
1039
1040 zfs_uio_init(&uio, ap->a_uio);
1041
1042 ASSERT(vp->v_type == VDIR);
1043
1044 error = sfs_readdir_common(ZFSCTL_INO_ROOT, ZFSCTL_INO_SNAPDIR, ap,
1045 &uio, &dots_offset);
1046 if (error != 0) {
1047 if (error == ENAMETOOLONG) /* ran out of destination space */
1048 error = 0;
1049 return (error);
1050 }
1051
1052 ZFS_ENTER(zfsvfs);
1053 for (;;) {
1054 uint64_t cookie;
1055 uint64_t id;
1056
1057 cookie = zfs_uio_offset(&uio) - dots_offset;
1058
1059 dsl_pool_config_enter(dmu_objset_pool(zfsvfs->z_os), FTAG);
1060 error = dmu_snapshot_list_next(zfsvfs->z_os, sizeof (snapname),
1061 snapname, &id, &cookie, NULL);
1062 dsl_pool_config_exit(dmu_objset_pool(zfsvfs->z_os), FTAG);
1063 if (error != 0) {
1064 if (error == ENOENT) {
1065 if (eofp != NULL)
1066 *eofp = 1;
1067 error = 0;
1068 }
1069 ZFS_EXIT(zfsvfs);
1070 return (error);
1071 }
1072
1073 entry.d_fileno = id;
1074 entry.d_type = DT_DIR;
1075 strcpy(entry.d_name, snapname);
1076 entry.d_namlen = strlen(entry.d_name);
1077 entry.d_reclen = sizeof (entry);
1078 error = vfs_read_dirent(ap, &entry, zfs_uio_offset(&uio));
1079 if (error != 0) {
1080 if (error == ENAMETOOLONG)
1081 error = 0;
1082 ZFS_EXIT(zfsvfs);
1083 return (SET_ERROR(error));
1084 }
1085 zfs_uio_setoffset(&uio, cookie + dots_offset);
1086 }
1087 /* NOTREACHED */
1088 }
1089
1090 static int
1091 zfsctl_snapdir_getattr(struct vop_getattr_args *ap)
1092 {
1093 vnode_t *vp = ap->a_vp;
1094 vattr_t *vap = ap->a_vap;
1095 zfsvfs_t *zfsvfs = vp->v_vfsp->vfs_data;
1096 dsl_dataset_t *ds;
1097 uint64_t snap_count;
1098 int err;
1099
1100 ZFS_ENTER(zfsvfs);
1101 ds = dmu_objset_ds(zfsvfs->z_os);
1102 zfsctl_common_getattr(vp, vap);
1103 vap->va_ctime = dmu_objset_snap_cmtime(zfsvfs->z_os);
1104 vap->va_mtime = vap->va_ctime;
1105 vap->va_birthtime = vap->va_ctime;
1106 if (dsl_dataset_phys(ds)->ds_snapnames_zapobj != 0) {
1107 err = zap_count(dmu_objset_pool(ds->ds_objset)->dp_meta_objset,
1108 dsl_dataset_phys(ds)->ds_snapnames_zapobj, &snap_count);
1109 if (err != 0) {
1110 ZFS_EXIT(zfsvfs);
1111 return (err);
1112 }
1113 vap->va_nlink += snap_count;
1114 }
1115 vap->va_size = vap->va_nlink;
1116
1117 ZFS_EXIT(zfsvfs);
1118 return (0);
1119 }
1120
1121 static struct vop_vector zfsctl_ops_snapdir = {
1122 .vop_default = &default_vnodeops,
1123 #if __FreeBSD_version >= 1300121
1124 .vop_fplookup_vexec = VOP_EAGAIN,
1125 #endif
1126 .vop_open = zfsctl_common_open,
1127 .vop_close = zfsctl_common_close,
1128 .vop_getattr = zfsctl_snapdir_getattr,
1129 .vop_access = zfsctl_common_access,
1130 .vop_readdir = zfsctl_snapdir_readdir,
1131 .vop_lookup = zfsctl_snapdir_lookup,
1132 .vop_reclaim = zfsctl_common_reclaim,
1133 .vop_fid = zfsctl_common_fid,
1134 .vop_print = zfsctl_common_print,
1135 .vop_pathconf = zfsctl_common_pathconf,
1136 .vop_getacl = zfsctl_common_getacl,
1137 };
1138 VFS_VOP_VECTOR_REGISTER(zfsctl_ops_snapdir);
1139
1140
1141 static int
1142 zfsctl_snapshot_inactive(struct vop_inactive_args *ap)
1143 {
1144 vnode_t *vp = ap->a_vp;
1145
1146 VERIFY(vrecycle(vp) == 1);
1147 return (0);
1148 }
1149
1150 static int
1151 zfsctl_snapshot_reclaim(struct vop_reclaim_args *ap)
1152 {
1153 vnode_t *vp = ap->a_vp;
1154 void *data = vp->v_data;
1155
1156 sfs_reclaim_vnode(vp);
1157 sfs_destroy_node(data);
1158 return (0);
1159 }
1160
1161 static int
1162 zfsctl_snapshot_vptocnp(struct vop_vptocnp_args *ap)
1163 {
1164 struct mount *mp;
1165 vnode_t *dvp;
1166 vnode_t *vp;
1167 sfs_node_t *node;
1168 size_t len;
1169 int locked;
1170 int error;
1171
1172 vp = ap->a_vp;
1173 node = vp->v_data;
1174 len = strlen(node->sn_name);
1175 if (*ap->a_buflen < len)
1176 return (SET_ERROR(ENOMEM));
1177
1178 /*
1179 * Prevent unmounting of the snapshot while the vnode lock
1180 * is not held. That is not strictly required, but allows
1181 * us to assert that an uncovered snapshot vnode is never
1182 * "leaked".
1183 */
1184 mp = vp->v_mountedhere;
1185 if (mp == NULL)
1186 return (SET_ERROR(ENOENT));
1187 error = vfs_busy(mp, 0);
1188 KASSERT(error == 0, ("vfs_busy(mp, 0) failed with %d", error));
1189
1190 /*
1191 * We can vput the vnode as we can now depend on the reference owned
1192 * by the busied mp. But we also need to hold the vnode, because
1193 * the reference may go after vfs_unbusy() which has to be called
1194 * before we can lock the vnode again.
1195 */
1196 locked = VOP_ISLOCKED(vp);
1197 #if __FreeBSD_version >= 1300045
1198 enum vgetstate vs = vget_prep(vp);
1199 #else
1200 vhold(vp);
1201 #endif
1202 vput(vp);
1203
1204 /* Look up .zfs/snapshot, our parent. */
1205 error = zfsctl_snapdir_vnode(vp->v_mount, NULL, LK_SHARED, &dvp);
1206 if (error == 0) {
1207 VOP_UNLOCK1(dvp);
1208 *ap->a_vpp = dvp;
1209 *ap->a_buflen -= len;
1210 bcopy(node->sn_name, ap->a_buf + *ap->a_buflen, len);
1211 }
1212 vfs_unbusy(mp);
1213 #if __FreeBSD_version >= 1300045
1214 vget_finish(vp, locked | LK_RETRY, vs);
1215 #else
1216 vget(vp, locked | LK_VNHELD | LK_RETRY, curthread);
1217 #endif
1218 return (error);
1219 }
1220
1221 /*
1222 * These VP's should never see the light of day. They should always
1223 * be covered.
1224 */
1225 static struct vop_vector zfsctl_ops_snapshot = {
1226 .vop_default = NULL, /* ensure very restricted access */
1227 #if __FreeBSD_version >= 1300121
1228 .vop_fplookup_vexec = VOP_EAGAIN,
1229 #endif
1230 .vop_inactive = zfsctl_snapshot_inactive,
1231 #if __FreeBSD_version >= 1300045
1232 .vop_need_inactive = vop_stdneed_inactive,
1233 #endif
1234 .vop_reclaim = zfsctl_snapshot_reclaim,
1235 .vop_vptocnp = zfsctl_snapshot_vptocnp,
1236 .vop_lock1 = vop_stdlock,
1237 .vop_unlock = vop_stdunlock,
1238 .vop_islocked = vop_stdislocked,
1239 .vop_advlockpurge = vop_stdadvlockpurge, /* called by vgone */
1240 .vop_print = zfsctl_common_print,
1241 };
1242 VFS_VOP_VECTOR_REGISTER(zfsctl_ops_snapshot);
1243
1244 int
1245 zfsctl_lookup_objset(vfs_t *vfsp, uint64_t objsetid, zfsvfs_t **zfsvfsp)
1246 {
1247 zfsvfs_t *zfsvfs __unused = vfsp->vfs_data;
1248 vnode_t *vp;
1249 int error;
1250
1251 ASSERT(zfsvfs->z_ctldir != NULL);
1252 *zfsvfsp = NULL;
1253 error = sfs_vnode_get(vfsp, LK_EXCLUSIVE,
1254 ZFSCTL_INO_SNAPDIR, objsetid, &vp);
1255 if (error == 0 && vp != NULL) {
1256 /*
1257 * XXX Probably need to at least reference, if not busy, the mp.
1258 */
1259 if (vp->v_mountedhere != NULL)
1260 *zfsvfsp = vp->v_mountedhere->mnt_data;
1261 vput(vp);
1262 }
1263 if (*zfsvfsp == NULL)
1264 return (SET_ERROR(EINVAL));
1265 return (0);
1266 }
1267
1268 /*
1269 * Unmount any snapshots for the given filesystem. This is called from
1270 * zfs_umount() - if we have a ctldir, then go through and unmount all the
1271 * snapshots.
1272 */
1273 int
1274 zfsctl_umount_snapshots(vfs_t *vfsp, int fflags, cred_t *cr)
1275 {
1276 char snapname[ZFS_MAX_DATASET_NAME_LEN];
1277 zfsvfs_t *zfsvfs = vfsp->vfs_data;
1278 struct mount *mp;
1279 vnode_t *vp;
1280 uint64_t cookie;
1281 int error;
1282
1283 ASSERT(zfsvfs->z_ctldir != NULL);
1284
1285 cookie = 0;
1286 for (;;) {
1287 uint64_t id;
1288
1289 dsl_pool_config_enter(dmu_objset_pool(zfsvfs->z_os), FTAG);
1290 error = dmu_snapshot_list_next(zfsvfs->z_os, sizeof (snapname),
1291 snapname, &id, &cookie, NULL);
1292 dsl_pool_config_exit(dmu_objset_pool(zfsvfs->z_os), FTAG);
1293 if (error != 0) {
1294 if (error == ENOENT)
1295 error = 0;
1296 break;
1297 }
1298
1299 for (;;) {
1300 error = sfs_vnode_get(vfsp, LK_EXCLUSIVE,
1301 ZFSCTL_INO_SNAPDIR, id, &vp);
1302 if (error != 0 || vp == NULL)
1303 break;
1304
1305 mp = vp->v_mountedhere;
1306
1307 /*
1308 * v_mountedhere being NULL means that the
1309 * (uncovered) vnode is in a transient state
1310 * (mounting or unmounting), so loop until it
1311 * settles down.
1312 */
1313 if (mp != NULL)
1314 break;
1315 vput(vp);
1316 }
1317 if (error != 0)
1318 break;
1319 if (vp == NULL)
1320 continue; /* no mountpoint, nothing to do */
1321
1322 /*
1323 * The mount-point vnode is kept locked to avoid spurious EBUSY
1324 * from a concurrent umount.
1325 * The vnode lock must have recursive locking enabled.
1326 */
1327 vfs_ref(mp);
1328 error = dounmount(mp, fflags, curthread);
1329 KASSERT_IMPLY(error == 0, vrefcnt(vp) == 1,
1330 ("extra references after unmount"));
1331 vput(vp);
1332 if (error != 0)
1333 break;
1334 }
1335 KASSERT_IMPLY((fflags & MS_FORCE) != 0, error == 0,
1336 ("force unmounting failed"));
1337 return (error);
1338 }
1339
1340 int
1341 zfsctl_snapshot_unmount(const char *snapname, int flags __unused)
1342 {
1343 vfs_t *vfsp = NULL;
1344 zfsvfs_t *zfsvfs = NULL;
1345
1346 if (strchr(snapname, '@') == NULL)
1347 return (0);
1348
1349 int err = getzfsvfs(snapname, &zfsvfs);
1350 if (err != 0) {
1351 ASSERT3P(zfsvfs, ==, NULL);
1352 return (0);
1353 }
1354 vfsp = zfsvfs->z_vfs;
1355
1356 ASSERT(!dsl_pool_config_held(dmu_objset_pool(zfsvfs->z_os)));
1357
1358 vfs_ref(vfsp);
1359 vfs_unbusy(vfsp);
1360 return (dounmount(vfsp, MS_FORCE, curthread));
1361 }